Lakshmanan, Manu N.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.
2016-01-01
Abstract. A scatter imaging technique for the differentiation of cancerous and healthy breast tissue in a heterogeneous sample is introduced in this work. Such a technique has potential utility in intraoperative margin assessment during lumpectomy procedures. In this work, we investigate the feasibility of the imaging method for tumor classification using Monte Carlo simulations and physical experiments. The coded aperture coherent scatter spectral imaging technique was used to reconstruct three-dimensional (3-D) images of breast tissue samples acquired through a single-position snapshot acquisition, without rotation as is required in coherent scatter computed tomography. We perform a quantitative assessment of the accuracy of the cancerous voxel classification using Monte Carlo simulations of the imaging system; describe our experimental implementation of coded aperture scatter imaging; show the reconstructed images of the breast tissue samples; and present segmentations of the 3-D images in order to identify the cancerous and healthy tissue in the samples. From the Monte Carlo simulations, we find that coded aperture scatter imaging is able to reconstruct images of the samples and identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) inside them with a cancerous voxel identification sensitivity, specificity, and accuracy of 92.4%, 91.9%, and 92.0%, respectively. From the experimental results, we find that the technique is able to identify cancerous and healthy tissue samples and reconstruct differential coherent scatter cross sections that are highly correlated with those measured by other groups using x-ray diffraction. Coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue inside samples within a time on the order of a minute per slice. PMID:26962543
Lakshmanan, Manu N; Greenberg, Joel A; Samei, Ehsan; Kapadia, Anuj J
2016-01-01
A scatter imaging technique for the differentiation of cancerous and healthy breast tissue in a heterogeneous sample is introduced in this work. Such a technique has potential utility in intraoperative margin assessment during lumpectomy procedures. In this work, we investigate the feasibility of the imaging method for tumor classification using Monte Carlo simulations and physical experiments. The coded aperture coherent scatter spectral imaging technique was used to reconstruct three-dimensional (3-D) images of breast tissue samples acquired through a single-position snapshot acquisition, without rotation as is required in coherent scatter computed tomography. We perform a quantitative assessment of the accuracy of the cancerous voxel classification using Monte Carlo simulations of the imaging system; describe our experimental implementation of coded aperture scatter imaging; show the reconstructed images of the breast tissue samples; and present segmentations of the 3-D images in order to identify the cancerous and healthy tissue in the samples. From the Monte Carlo simulations, we find that coded aperture scatter imaging is able to reconstruct images of the samples and identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) inside them with a cancerous voxel identification sensitivity, specificity, and accuracy of 92.4%, 91.9%, and 92.0%, respectively. From the experimental results, we find that the technique is able to identify cancerous and healthy tissue samples and reconstruct differential coherent scatter cross sections that are highly correlated with those measured by other groups using x-ray diffraction. Coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue inside samples within a time on the order of a minute per slice.
Low dose reconstruction algorithm for differential phase contrast imaging.
Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni
2011-01-01
Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.
Identifying Jets Using Artifical Neural Networks
NASA Astrophysics Data System (ADS)
Rosand, Benjamin; Caines, Helen; Checa, Sofia
2017-09-01
We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.
Jiang, Xiaolei; Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang
2015-01-01
X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm.
Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang
2015-01-01
X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm. PMID:26089971
Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.
Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan
2018-05-16
Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simulation of the Beating Heart Based on Physically Modeling aDeformable Balloon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.
2006-07-18
The motion of the beating heart is complex and createsartifacts in SPECT and x-ray CT images. Phantoms such as the JaszczakDynamic Cardiac Phantom are used to simulate cardiac motion forevaluationof acquisition and data processing protocols used for cardiacimaging. Two concentric elastic membranes filled with water are connectedto tubing and pump apparatus for creating fluid flow in and out of theinner volume to simulate motion of the heart. In the present report, themovement of two concentric balloons is solved numerically in order tocreate a computer simulation of the motion of the moving membranes in theJaszczak Dynamic Cardiac Phantom. A system ofmore » differential equations,based on the physical properties, determine the motion. Two methods aretested for solving the system of differential equations. The results ofboth methods are similar providing a final shape that does not convergeto a trivial circular profile. Finally,a tomographic imaging simulationis performed by acquiring static projections of the moving shape andreconstructing the result to observe motion artifacts. Two cases aretaken into account: in one case each projection angle is sampled for ashort time interval and the other case is sampled for a longer timeinterval. The longer sampling acquisition shows a clear improvement indecreasing the tomographic streaking artifacts.« less
Imaging isodensity contours of molecular states with STM
NASA Astrophysics Data System (ADS)
Reecht, Gaël; Heinrich, Benjamin W.; Bulou, Hervé; Scheurer, Fabrice; Limot, Laurent; Schull, Guillaume
2017-11-01
We present an improved way for imaging the density of states of a sample with a scanning tunneling microscope, which consists in mapping the surface topography while keeping the differential conductance (dI/dV) constant. When archetypical C60 molecules on Cu(111) are imaged with this method, these so-called iso-dI/dV maps are in excellent agreement with theoretical simulations of the isodensity contours of the molecular orbitals. A direct visualization and unambiguous identification of superatomic C60 orbitals and their hybridization is then possible.
Phase contrast STEM for thin samples: Integrated differential phase contrast.
Lazić, Ivan; Bosch, Eric G T; Lazar, Sorin
2016-01-01
It has been known since the 1970s that the movement of the center of mass (COM) of a convergent beam electron diffraction (CBED) pattern is linearly related to the (projected) electrical field in the sample. We re-derive a contrast transfer function (CTF) for a scanning transmission electron microscopy (STEM) imaging technique based on this movement from the point of view of image formation and continue by performing a two-dimensional integration on the two images based on the two components of the COM movement. The resulting integrated COM (iCOM) STEM technique yields a scalar image that is linear in the phase shift caused by the sample and therefore also in the local (projected) electrostatic potential field of a thin sample. We confirm that the differential phase contrast (DPC) STEM technique using a segmented detector with 4 quadrants (4Q) yields a good approximation for the COM movement. Performing a two-dimensional integration, just as for the COM, we obtain an integrated DPC (iDPC) image which is approximately linear in the phase of the sample. Beside deriving the CTFs of iCOM and iDPC, we clearly point out the objects of the two corresponding imaging techniques, and highlight the differences to objects corresponding to COM-, DPC-, and (HA) ADF-STEM. The theory is validated with simulations and we present first experimental results of the iDPC-STEM technique showing its capability for imaging both light and heavy elements with atomic resolution and a good signal to noise ratio (SNR). Copyright © 2015 Elsevier B.V. All rights reserved.
Image formation of thick three-dimensional objects in differential-interference-contrast microscopy.
Trattner, Sigal; Kashdan, Eugene; Feigin, Micha; Sochen, Nir
2014-05-01
The differential-interference-contrast (DIC) microscope is of widespread use in life sciences as it enables noninvasive visualization of transparent objects. The goal of this work is to model the image formation process of thick three-dimensional objects in DIC microscopy. The model is based on the principles of electromagnetic wave propagation and scattering. It simulates light propagation through the components of the DIC microscope to the image plane using a combined geometrical and physical optics approach and replicates the DIC image of the illuminated object. The model is evaluated by comparing simulated images of three-dimensional spherical objects with the recorded images of polystyrene microspheres. Our computer simulations confirm that the model captures the major DIC image characteristics of the simulated object, and it is sensitive to the defocusing effects.
Tay, Benjamin Chia-Meng; Chow, Tzu-Hao; Ng, Beng-Koon; Loh, Thomas Kwok-Seng
2012-09-01
This study investigates the autocorrelation bandwidths of dual-window (DW) optical coherence tomography (OCT) k-space scattering profile of different-sized microspheres and their correlation to scatterer size. A dual-bandwidth spectroscopic metric defined as the ratio of the 10% to 90% autocorrelation bandwidths is found to change monotonically with microsphere size and gives the best contrast enhancement for scatterer size differentiation in the resulting spectroscopic image. A simulation model supports the experimental results and revealed a tradeoff between the smallest detectable scatterer size and the maximum scatterer size in the linear range of the dual-window dual-bandwidth (DWDB) metric, which depends on the choice of the light source optical bandwidth. Spectroscopic OCT (SOCT) images of microspheres and tonsil tissue samples based on the proposed DWDB metric showed clear differentiation between different-sized scatterers as compared to those derived from conventional short-time Fourier transform metrics. The DWDB metric significantly improves the contrast in SOCT imaging and can aid the visualization and identification of dissimilar scatterer size in a sample. Potential applications include the early detection of cell nuclear changes in tissue carcinogenesis, the monitoring of healing tendons, and cell proliferation in tissue scaffolds.
You, Wei; Cretu, Edmond; Rohling, Robert
2013-11-01
This paper investigates a low computational cost, super-resolution ultrasound imaging method that leverages the asymmetric vibration mode of CMUTs. Instead of focusing on the broadband received signal on the entire CMUT membrane, we utilize the differential signal received on the left and right part of the membrane obtained by a multi-electrode CMUT structure. The differential signal reflects the asymmetric vibration mode of the CMUT cell excited by the nonuniform acoustic pressure field impinging on the membrane, and has a resonant component in immersion. To improve the resolution, we propose an imaging method as follows: a set of manifold matrices of CMUT responses for multiple focal directions are constructed off-line with a grid of hypothetical point targets. During the subsequent imaging process, the array sequentially steers to multiple angles, and the amplitudes (weights) of all hypothetical targets at each angle are estimated in a maximum a posteriori (MAP) process with the manifold matrix corresponding to that angle. Then, the weight vector undergoes a directional pruning process to remove the false estimation at other angles caused by the side lobe energy. Ultrasound imaging simulation is performed on ring and linear arrays with a simulation program adapted with a multi-electrode CMUT structure capable of obtaining both average and differential received signals. Because the differential signals from all receiving channels form a more distinctive temporal pattern than the average signals, better MAP estimation results are expected than using the average signals. The imaging simulation shows that using differential signals alone or in combination with the average signals produces better lateral resolution than the traditional phased array or using the average signals alone. This study is an exploration into the potential benefits of asymmetric CMUT responses for super-resolution imaging.
Lakshmanan, Manu N.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.
2017-01-01
Abstract. Although transmission-based x-ray imaging is the most commonly used imaging approach for breast cancer detection, it exhibits false negative rates higher than 15%. To improve cancer detection accuracy, x-ray coherent scatter computed tomography (CSCT) has been explored to potentially detect cancer with greater consistency. However, the 10-min scan duration of CSCT limits its possible clinical applications. The coded aperture coherent scatter spectral imaging (CACSSI) technique has been shown to reduce scan time through enabling single-angle imaging while providing high detection accuracy. Here, we use Monte Carlo simulations to test analytical optimization studies of the CACSSI technique, specifically for detecting cancer in ex vivo breast samples. An anthropomorphic breast tissue phantom was modeled, a CACSSI imaging system was virtually simulated to image the phantom, a diagnostic voxel classification algorithm was applied to all reconstructed voxels in the phantom, and receiver-operator characteristics analysis of the voxel classification was used to evaluate and characterize the imaging system for a range of parameters that have been optimized in a prior analytical study. The results indicate that CACSSI is able to identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) in tissue samples with a cancerous voxel identification area-under-the-curve of 0.94 through a scan lasting less than 10 s per slice. These results show that coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue within ex vivo samples. Furthermore, the results indicate potential CACSSI imaging system configurations for implementation in subsequent imaging development studies. PMID:28331884
Lin, Tiger W.; Das, Anup; Krishnan, Giri P.; Bazhenov, Maxim; Sejnowski, Terrence J.
2017-01-01
With our ability to record more neurons simultaneously, making sense of these data is a challenge. Functional connectivity is one popular way to study the relationship of multiple neural signals. Correlation-based methods are a set of currently well-used techniques for functional connectivity estimation. However, due to explaining away and unobserved common inputs (Stevenson, Rebesco, Miller, & Körding, 2008), they produce spurious connections. The general linear model (GLM), which models spike trains as Poisson processes (Okatan, Wilson, & Brown, 2005; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005; Pillow et al., 2008), avoids these confounds. We develop here a new class of methods by using differential signals based on simulated intracellular voltage recordings. It is equivalent to a regularized AR(2) model. We also expand the method to simulated local field potential recordings and calcium imaging. In all of our simulated data, the differential covariance-based methods achieved performance better than or similar to the GLM method and required fewer data samples. This new class of methods provides alternative ways to analyze neural signals. PMID:28777719
Lin, Tiger W; Das, Anup; Krishnan, Giri P; Bazhenov, Maxim; Sejnowski, Terrence J
2017-10-01
With our ability to record more neurons simultaneously, making sense of these data is a challenge. Functional connectivity is one popular way to study the relationship of multiple neural signals. Correlation-based methods are a set of currently well-used techniques for functional connectivity estimation. However, due to explaining away and unobserved common inputs (Stevenson, Rebesco, Miller, & Körding, 2008 ), they produce spurious connections. The general linear model (GLM), which models spike trains as Poisson processes (Okatan, Wilson, & Brown, 2005 ; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005 ; Pillow et al., 2008 ), avoids these confounds. We develop here a new class of methods by using differential signals based on simulated intracellular voltage recordings. It is equivalent to a regularized AR(2) model. We also expand the method to simulated local field potential recordings and calcium imaging. In all of our simulated data, the differential covariance-based methods achieved performance better than or similar to the GLM method and required fewer data samples. This new class of methods provides alternative ways to analyze neural signals.
Simulation of the planetary interior differentiation processes in the laboratory.
Fei, Yingwei
2013-11-15
A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process.
Simulation of the Planetary Interior Differentiation Processes in the Laboratory
Fei, Yingwei
2013-01-01
A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process. PMID:24326245
Multi-spectral endogenous fluorescence imaging for bacterial differentiation
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.
2017-07-01
In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.
Single grating x-ray imaging for dynamic biological systems
NASA Astrophysics Data System (ADS)
Morgan, Kaye S.; Paganin, David M.; Parsons, David W.; Donnelley, Martin; Yagi, Naoto; Uesugi, Kentaro; Suzuki, Yoshio; Takeuchi, Akihisa; Siu, Karen K. W.
2012-07-01
Biomedical studies are already benefiting from the excellent contrast offered by phase contrast x-ray imaging, but live imaging work presents several challenges. Living samples make it particularly difficult to achieve high resolution, sensitive phase contrast images, as exposures must be short and cannot be repeated. We therefore present a single-exposure, high-flux method of differential phase contrast imaging [1, 2, 3] in the context of imaging live airways for Cystic Fibrosis (CF) treatment assessment [4]. The CF study seeks to non-invasively observe the liquid lining the airways, which should increase in depth in response to effective treatments. Both high spatial resolution and sensitivity are required in order to track micron size changes in a liquid that is not easily differentiated from the tissue on which it lies. Our imaging method achieves these goals by using a single attenuation grating or grid as a reference pattern, and analyzing how the sample deforms the pattern to quantitatively retrieve the phase depth of the sample. The deformations are mapped at each pixel in the image using local cross-correlations comparing each 'sample and pattern' image with a reference 'pattern only' image taken before the sample is introduced. This produces a differential phase image, which may be integrated to give the sample phase depth.
Performing differential operation with a silver dendritic metasurface at visible wavelengths.
Chen, Huan; An, Di; Li, Zhenchun; Zhao, Xiaopeng
2017-10-30
We design a reflective silver dendritic metasurface that can perform differential operation at visible wavelengths. The metasurface consists of an upper layer of silver dendritic structures, a silica spacer, and a lower layer of silver film. Simulation results show that the metasurface can realize differential operation in red, yellow, and green bands. Such a functionality is readily extended to infrared and communication wavelengths. The metasurface samples that respond to green and red bands are prepared by using the electrochemical deposition method, and their differential operation properties are proved through tests. Silver dendritic metasurfaces that can conduct the mathematical operation in visible light pave the way for realizing miniaturized, integratable all-optical information processing systems. Their differentiation functionality, which is used for real-time ultra-fast edge detection, image contrast enhancement, hidden object detection, and other practical applications, has a great development potential.
Cell Membrane Tracking in Living Brain Tissue Using Differential Interference Contrast Microscopy.
Lee, John; Kolb, Ilya; Forest, Craig R; Rozell, Christopher J
2018-04-01
Differential interference contrast (DIC) microscopy is widely used for observing unstained biological samples that are otherwise optically transparent. Combining this optical technique with machine vision could enable the automation of many life science experiments; however, identifying relevant features under DIC is challenging. In particular, precise tracking of cell boundaries in a thick ( ) slice of tissue has not previously been accomplished. We present a novel deconvolution algorithm that achieves the state-of-the-art performance at identifying and tracking these membrane locations. Our proposed algorithm is formulated as a regularized least squares optimization that incorporates a filtering mechanism to handle organic tissue interference and a robust edge-sparsity regularizer that integrates dynamic edge tracking capabilities. As a secondary contribution, this paper also describes new community infrastructure in the form of a MATLAB toolbox for accurately simulating DIC microscopy images of in vitro brain slices. Building on existing DIC optics modeling, our simulation framework additionally contributes an accurate representation of interference from organic tissue, neuronal cell-shapes, and tissue motion due to the action of the pipette. This simulator allows us to better understand the image statistics (to improve algorithms), as well as quantitatively test cell segmentation and tracking algorithms in scenarios, where ground truth data is fully known.
Yang, Yi; Tang, Xiangyang
2012-12-01
The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the second-order derivative is magnified substantially by the ratio of detector cell dimension over grating period, which plays a significant role in dark-field imaging implemented with the Talbot interferometry. The analytic formulae derived in this work to characterize the second-order differential phase contrast in the dark-field imaging implemented with the Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive preclinical and eventually clinical applications.
Adaptive single-pixel imaging with aggregated sampling and continuous differential measurements
NASA Astrophysics Data System (ADS)
Huo, Yaoran; He, Hongjie; Chen, Fan; Tai, Heng-Ming
2018-06-01
This paper proposes an adaptive compressive imaging technique with one single-pixel detector and single arm. The aggregated sampling (AS) method enables the reduction of resolutions of the reconstructed images. It aims to reduce the time and space consumption. The target image with a resolution up to 1024 × 1024 can be reconstructed successfully at the 20% sampling rate. The continuous differential measurement (CDM) method combined with a ratio factor of significant coefficient (RFSC) improves the imaging quality. Moreover, RFSC reduces the human intervention in parameter setting. This technique enhances the practicability of single-pixel imaging with the benefits from less time and space consumption, better imaging quality and less human intervention.
Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh
2011-06-01
This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.
A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface
Hamdy, Omnia; El-Azab, Jala; Al-Saeed, Tarek A.; Hassan, Mahmoud F.
2017-01-01
Optical differentiation is a promising tool in biomedical diagnosis mainly because of its safety. The optical parameters’ values of biological tissues differ according to the histopathology of the tissue and hence could be used for differentiation. The optical fluence rate distribution on tissue boundaries depends on the optical parameters. So, providing image displays of such distributions can provide a visual means of biomedical diagnosis. In this work, an experimental setup was implemented to measure the spatially-resolved steady state diffuse reflectance and transmittance of native and coagulated chicken liver and native and boiled breast chicken skin at 635 and 808 nm wavelengths laser irradiation. With the measured values, the optical parameters of the samples were calculated in vitro using a combination of modified Kubelka-Munk model and Bouguer-Beer-Lambert law. The estimated optical parameters values were substituted in the diffusion equation to simulate the fluence rate at the tissue surface using the finite element method. Results were verified with Monte-Carlo simulation. The results obtained showed that the diffuse reflectance curves and fluence rate distribution images can provide discrimination tools between different tissue types and hence can be used for biomedical diagnosis. PMID:28930158
A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface.
Hamdy, Omnia; El-Azab, Jala; Al-Saeed, Tarek A; Hassan, Mahmoud F; Solouma, Nahed H
2017-09-20
Optical differentiation is a promising tool in biomedical diagnosis mainly because of its safety. The optical parameters' values of biological tissues differ according to the histopathology of the tissue and hence could be used for differentiation. The optical fluence rate distribution on tissue boundaries depends on the optical parameters. So, providing image displays of such distributions can provide a visual means of biomedical diagnosis. In this work, an experimental setup was implemented to measure the spatially-resolved steady state diffuse reflectance and transmittance of native and coagulated chicken liver and native and boiled breast chicken skin at 635 and 808 nm wavelengths laser irradiation. With the measured values, the optical parameters of the samples were calculated in vitro using a combination of modified Kubelka-Munk model and Bouguer-Beer-Lambert law. The estimated optical parameters values were substituted in the diffusion equation to simulate the fluence rate at the tissue surface using the finite element method. Results were verified with Monte-Carlo simulation. The results obtained showed that the diffuse reflectance curves and fluence rate distribution images can provide discrimination tools between different tissue types and hence can be used for biomedical diagnosis.
Tondare, Vipin N; Villarrubia, John S; Vlada R, András E
2017-10-01
Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.
A closed-loop control-loading system
NASA Technical Reports Server (NTRS)
Ashworth, B. R.; Parrish, R. V.
1979-01-01
Langley Differential Maneuvering Simulator (DMS) realistically simulates two aircraft operating in differential mode. It consists of two identical fixed-base cockpits and dome projection systems. Each projection system consists of sky/Earth projector and target-image generator and projector. Although programmable control forces are small part of overall system, they play large role in providing pilot with kinesthetic cues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelliccia, Daniele; Vaz, Raquel; Svalbe, Imants
X-ray imaging of soft tissue is made difficult by their low absorbance. The use of x-ray phase imaging and tomography can significantly enhance the detection of these tissues and several approaches have been proposed to this end. Methods such as analyzer-based imaging or grating interferometry produce differential phase projections that can be used to reconstruct the 3D distribution of the sample refractive index. We report on the quantitative comparison of three different methods to obtain x-ray phase tomography with filtered back-projection from differential phase projections in the presence of noise. The three procedures represent different numerical approaches to solve themore » same mathematical problem, namely phase retrieval and filtered back-projection. It is found that obtaining individual phase projections and subsequently applying a conventional filtered back-projection algorithm produces the best results for noisy experimental data, when compared with other procedures based on the Hilbert transform. The algorithms are tested on simulated phantom data with added noise and the predictions are confirmed by experimental data acquired using a grating interferometer. The experiment is performed on unstained adult zebrafish, an important model organism for biomedical studies. The method optimization described here allows resolution of weak soft tissue features, such as muscle fibers.« less
Ripeness detection simulation of oil palm fruit bunches using laser-based imaging system
NASA Astrophysics Data System (ADS)
Shiddiq, Minarni; Fitmawati, Anjasmara, Ridho; Sari, Nurmaya; Hefniati
2017-01-01
Ripeness is one of important factors for quality sorting of harvested oil palm fresh fruit bunches (FFB). Traditional ripeness classifications using FFB color and number of fruit loose for harvesting have some disadvantages especially for high oil palm trees. A laser based imaging system is proposed to substitute the traditional method. In this study, ripeness detection simulation of oil palm FFBs was performed. The system composed of two diode lasers with 532 nm and 680 nm in wavelengths and a CMOS camera which was set on a rotating plate for easy adjustment of laser beam hitting FFB. The FFB samples were placed on an aluminum platform with 4 height variations, 1.5 m, 2 m, 2.5 m, and 3 m. The relations of reflectance intensities represented by Red Green Blue (RGB) values of the FFB images to the height variations and ripeness levels of FFBs with and without laser beam were analyzed. The samples were from Tenera variety with 4 ripeness levels called F0, F1, F3, and F4. The results showed that the red component of RGB values were dominant for FFBs without laser and with red laser. The average RGB values are higher for F3 (ripe) level and F4 (overripe). Imaging with green laser showed consistency. Imaging methods using laser was able to differentiate ripeness levels of oil palm fresh fruit bunch, it could be applied for future remote detection of oil palm FFB ripeness.
Quantitative phase and amplitude imaging using Differential-Interference Contrast (DIC) microscopy
NASA Astrophysics Data System (ADS)
Preza, Chrysanthe; O'Sullivan, Joseph A.
2009-02-01
We present an extension of the development of an alternating minimization (AM) method for the computation of a specimen's complex transmittance function (magnitude and phase) from DIC images. The ability to extract both quantitative phase and amplitude information from two rotationally-diverse DIC images (i.e., acquired by rotating the sample) extends previous efforts in computational DIC microscopy that have focused on quantitative phase imaging only. Simulation results show that the inverse problem at hand is sensitive to noise as well as to the choice of the AM algorithm parameters. The AM framework allows constraints and penalties on the magnitude and phase estimates to be incorporated in a principled manner. Towards this end, Green and De Pierro's "log-cosh" regularization penalty is applied to the magnitude of differences of neighboring values of the complex-valued function of the specimen during the AM iterations. The penalty is shown to be convex in the complex space. A procedure to approximate the penalty within the iterations is presented. In addition, a methodology to pre-compute AM parameters that are optimal with respect to the convergence rate of the AM algorithm is also presented. Both extensions of the AM method are investigated with simulations.
[A capillary blood flow velocity detection system based on linear array charge-coupled devices].
Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang
2017-12-01
In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.
Noise in x-ray grating-based phase-contrast imaging.
Weber, Thomas; Bartl, Peter; Bayer, Florian; Durst, Jürgen; Haas, Wilhelm; Michel, Thilo; Ritter, André; Anton, Gisela
2011-07-01
Grating-based x-ray phase-contrast imaging is a fast developing new modality not only for medical imaging, but as well for other fields such as material sciences. While these many possible applications arise, the knowledge of the noise behavior is essential. In this work, the authors used a least squares fitting algorithm to calculate the noise behavior of the three quantities absorption, differential phase, and dark-field image. Further, the calculated error formula of the differential phase image was verified by measurements. Therefore, a Talbot interferometer was setup, using a microfocus x-ray tube as source and a Timepix detector for photon counting. Additionally, simulations regarding this topic were performed. It turned out that the variance of the reconstructed phase is only dependent of the total number of photons used to generate the phase image and the visibility of the experimental setup. These results could be evaluated in measurements as well as in simulations. Furthermore, the correlation between absorption and dark-field image was calculated. These results provide the understanding of the noise characteristics of grating-based phase-contrast imaging and will help to improve image quality.
NASA Astrophysics Data System (ADS)
Weber, T.; Bartl, P.; Durst, J.; Haas, W.; Michel, T.; Ritter, A.; Anton, G.
2011-08-01
In the last decades, phase-contrast imaging using a Talbot-Lau grating interferometer is possible even with a low-brilliance X-ray source. With the potential of increasing the soft-tissue contrast, this method is on its way into medical imaging. For this purpose, the knowledge of the underlying physics of this technique is necessary.With this paper, we would like to contribute to the understanding of grating-based phase-contrast imaging by presenting results on measurements and simulations regarding the noise behaviour of the differential phases.These measurements were done using a microfocus X-ray tube with a hybrid, photon-counting, semiconductor Medipix2 detector. The additional simulations were performed by our in-house developed phase-contrast simulation tool “SPHINX”, combining both wave and particle contributions of the simulated photons.The results obtained by both of these methods show the same behaviour. Increasing the number of photons leads to a linear decrease of the standard deviation of the phase. The number of used phase steps has no influence on the standard deviation, if the total number of photons is held constant.Furthermore, the probability density function (pdf) of the reconstructed differential phases was analysed. It turned out that the so-called von Mises distribution is the physically correct pdf, which was also confirmed by measurements.This information advances the understanding of grating-based phase-contrast imaging and can be used to improve image quality.
Image analysis of representative food structures: application of the bootstrap method.
Ramírez, Cristian; Germain, Juan C; Aguilera, José M
2009-08-01
Images (for example, photomicrographs) are routinely used as qualitative evidence of the microstructure of foods. In quantitative image analysis it is important to estimate the area (or volume) to be sampled, the field of view, and the resolution. The bootstrap method is proposed to estimate the size of the sampling area as a function of the coefficient of variation (CV(Bn)) and standard error (SE(Bn)) of the bootstrap taking sub-areas of different sizes. The bootstrap method was applied to simulated and real structures (apple tissue). For simulated structures, 10 computer-generated images were constructed containing 225 black circles (elements) and different coefficient of variation (CV(image)). For apple tissue, 8 images of apple tissue containing cellular cavities with different CV(image) were analyzed. Results confirmed that for simulated and real structures, increasing the size of the sampling area decreased the CV(Bn) and SE(Bn). Furthermore, there was a linear relationship between the CV(image) and CV(Bn) (.) For example, to obtain a CV(Bn) = 0.10 in an image with CV(image) = 0.60, a sampling area of 400 x 400 pixels (11% of whole image) was required, whereas if CV(image) = 1.46, a sampling area of 1000 x 100 pixels (69% of whole image) became necessary. This suggests that a large-size dispersion of element sizes in an image requires increasingly larger sampling areas or a larger number of images.
Optical transmission testing based on asynchronous sampling techniques
NASA Astrophysics Data System (ADS)
Mrozek, T.; Perlicki, K.; Wilczewski, G.
2016-09-01
This paper presents a method of analysis of images obtained with the Asynchronous Delay Tap Sampling technique, which is used for simultaneous monitoring of a number of phenomena in the physical layer of an optical network. This method allows visualization of results in a form of an optical signal's waveform (characteristics depicting phase portraits). Depending on a specific phenomenon being observed (i.e.: chromatic dispersion, polarization mode dispersion and ASE noise), the shape of the waveform changes. Herein presented original waveforms were acquired utilizing the OptSim 4.0 simulation package. After specific simulation testing, the obtained numerical data was transformed into an image form, that was further subjected to the analysis using authors' custom algorithms. These algorithms utilize various pixel operations and creation of reports each image might be characterized with. Each individual report shows the number of black pixels being present in the specific image segment. Afterwards, generated reports are compared with each other, across the original-impaired relationship. The differential report is created which consists of a "binary key" that shows the increase in the number of pixels in each particular segment. The ultimate aim of this work is to find the correlation between the generated binary keys and the analyzed common phenomenon being observed, allowing identification of the type of interference occurring. In the further course of the work it is evitable to determine their respective values. The presented work delivers the first objective - the ability to recognize interference.
Differential phase acoustic microscope for micro-NDE
NASA Technical Reports Server (NTRS)
Waters, David D.; Pusateri, T. L.; Huang, S. R.
1992-01-01
A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.
TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redler, G; Cifter, G; Templeton, A
2016-06-15
Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lungmore » tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated patient images demonstrate the clinical utility of scatter imaging for real-time tumor tracking during lung SBRT.« less
NASA Astrophysics Data System (ADS)
Bao, Yuan; Wang, Yan; Gao, Kun; Wang, Zhi-Li; Zhu, Pei-Ping; Wu, Zi-Yu
2015-10-01
The relationship between noise variance and spatial resolution in grating-based x-ray phase computed tomography (PCT) imaging is investigated with reverse projection extraction method, and the noise variances of the reconstructed absorption coefficient and refractive index decrement are compared. For the differential phase contrast method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both theoretical analysis and simulations demonstrate that in PCT the noise variance of the reconstructed refractive index decrement scales with spatial resolution follows an inverse linear relationship at fixed slice thickness, while the noise variance of the reconstructed absorption coefficient conforms with the inverse cubic law. The results indicate that, for the same noise variance level, PCT imaging may enable higher spatial resolution than conventional absorption computed tomography (ACT), while ACT benefits more from degraded spatial resolution. This could be a useful guidance in imaging the inner structure of the sample in higher spatial resolution. Project supported by the National Basic Research Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-YW-N42 and Y4545320Y2), the National Natural Science Foundation of China (Grant Nos. 11475170, 11205157, 11305173, 11205189, 11375225, 11321503, 11179004, and U1332109).
NASA Astrophysics Data System (ADS)
Medich, David C.; Currier, Blake H.; Karellas, Andrew
2014-10-01
A novel technique is presented for obtaining a single in-vivo image containing both functional and anatomical information in a small animal model such as a mouse. This technique, which incorporates appropriate image neutron-scatter rejection and uses a neutron opaque contrast agent, is based on neutron radiographic technology and was demonstrated through a series of Monte Carlo simulations. With respect to functional imaging, this technique can be useful in biomedical and biological research because it could achieve a spatial resolution orders of magnitude better than what presently can be achieved with current functional imaging technologies such as nuclear medicine (PET, SPECT) and fMRI. For these studies, Monte Carlo simulations were performed with thermal (0.025 eV) neutrons in a 3 cm thick phantom using the MCNP5 simulations software. The goals of these studies were to determine: 1) the extent that scattered neutrons degrade image contrast; 2) the contrasts of various normal and diseased tissues under conditions of complete scatter rejection; 3) the concentrations of Boron-10 and Gadolinium-157 required for contrast differentiation in functional imaging; and 4) the efficacy of collimation for neutron scatter image rejection. Results demonstrate that with proper neutron-scatter rejection, a neutron fluence of 2 ×107 n/cm2 will provide a signal to noise ratio of at least one ( S/N ≥ 1) when attempting to image various 300 μm thick tissues placed in a 3 cm thick phantom. Similarly, a neutron fluence of only 1 ×107 n/cm2 is required to differentiate a 300 μm thick diseased tissue relative to its normal tissue counterpart. The utility of a B-10 contrast agent was demonstrated at a concentration of 50 μg/g to achieve S/N ≥ 1 in 0.3 mm thick tissues while Gd-157 requires only slightly more than 10 μg/g to achieve the same level of differentiation. Lastly, neutron collimator with an L/D ratio from 50 to 200 were calculated to provide appropriate scatter rejection for thick tissue biological imaging with neutrons.
Electronic structure and simulated STM images of non-honeycomb phosphorene allotropes
NASA Astrophysics Data System (ADS)
Kaur, Sumandeep; Kumar, Ashok; Srivastava, Sunita; Tankeshwar, K.
2018-04-01
We have investigated the electronic structure and simulated STM images of various non-honeycomb allotropes of phosphorene namely ɛ - P, ζ - P, η - P and θ - P, within combined density functional theory and Tersoff-Hamman approach. All these allotropes are found to be energetically stable and electronically semiconductingwith bandgap ranging between 0.5-1.2 eV. Simulated STM images show distinctly different features in terms of the topography. Different maximas in the distance-height profile indicates the difference in buckling of atoms in these allotropes. Distinctly different images obtained in this study may be useful to differentiate various allotropes that can serve as fingerprints to identify various allotropes during the synthesis of phosphorene.
MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redler, G; Bernard, D; Templeton, A
2015-06-15
Purpose: A novel scatter imaging modality is developed and its feasibility for image-guided radiation therapy (IGRT) during stereotactic body radiation therapy (SBRT) for lung cancer patients is assessed using analytic and Monte Carlo models as well as experimental testing. Methods: During treatment, incident radiation interacts and scatters from within the patient. The presented methodology forms an image of patient anatomy from the scattered radiation for real-time localization of the treatment target. A radiographic flat panel-based pinhole camera provides spatial information regarding the origin of detected scattered radiation. An analytical model is developed, which provides a mathematical formalism for describing themore » scatter imaging system. Experimental scatter images are acquired by irradiating an object using a Varian TrueBeam accelerator. The differentiation between tissue types is investigated by imaging simple objects of known compositions (water, lung, and cortical bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is fabricated and imaged to investigate image quality for various quantities of delivered radiation. Monte Carlo N-Particle (MCNP) code is used for validation and testing by simulating scatter image formation using the experimental pinhole camera setup. Results: Analytical calculations, MCNP simulations, and experimental results when imaging the water, lung, and cortical bone equivalent objects show close agreement, thus validating the proposed models and demonstrating that scatter imaging differentiates these materials well. Lung tumor phantom images have sufficient contrast-to-noise ratio (CNR) to clearly distinguish tumor from surrounding lung tissue. CNR=4.1 and CNR=29.1 for 10MU and 5000MU images (equivalent to 0.5 and 250 second images), respectively. Conclusion: Lung SBRT provides favorable treatment outcomes, but depends on accurate target localization. A comprehensive approach, employing multiple simulation techniques and experiments, is taken to demonstrate the feasibility of a novel scatter imaging modality for the necessary real-time image guidance.« less
A Revised Semantic Differential Scale Distinguishing between Negative and Positive God Images
ERIC Educational Resources Information Center
Francis, Leslie J.; Robbins, Mandy; Gibson, Harry M.
2006-01-01
A sample of 755 school pupils between the ages of 11 and 18 years completed the Benson and Spilka semantic differential measure of God images. Factor analysis indicated the advantages of re-scoring the measure as an eight item unidimensional index, defining semantic space relating to God images ranging from negative affect to positive affect.…
Lin, Yu-Pin; Chu, Hone-Jay; Wang, Cheng-Long; Yu, Hsiao-Hsuan; Wang, Yung-Chieh
2009-01-01
This study applies variogram analyses of normalized difference vegetation index (NDVI) images derived from SPOT HRV images obtained before and after the ChiChi earthquake in the Chenyulan watershed, Taiwan, as well as images after four large typhoons, to delineate the spatial patterns, spatial structures and spatial variability of landscapes caused by these large disturbances. The conditional Latin hypercube sampling approach was applied to select samples from multiple NDVI images. Kriging and sequential Gaussian simulation with sufficient samples were then used to generate maps of NDVI images. The variography of NDVI image results demonstrate that spatial patterns of disturbed landscapes were successfully delineated by variogram analysis in study areas. The high-magnitude Chi-Chi earthquake created spatial landscape variations in the study area. After the earthquake, the cumulative impacts of typhoons on landscape patterns depended on the magnitudes and paths of typhoons, but were not always evident in the spatiotemporal variability of landscapes in the study area. The statistics and spatial structures of multiple NDVI images were captured by 3,000 samples from 62,500 grids in the NDVI images. Kriging and sequential Gaussian simulation with the 3,000 samples effectively reproduced spatial patterns of NDVI images. However, the proposed approach, which integrates the conditional Latin hypercube sampling approach, variogram, kriging and sequential Gaussian simulation in remotely sensed images, efficiently monitors, samples and maps the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial variability and heterogeneity.
A Review of Inflammatory Processes of the Breast with a Focus on Diagnosis in Core Biopsy Samples
D’Alfonso, Timothy M.; Ginter, Paula S.; Shin, Sandra J.
2015-01-01
Inflammatory and reactive lesions of the breast are relatively uncommon among benign breast lesions and can be the source of an abnormality on imaging. Such lesions can simulate a malignant process, based on both clinical and radiographic findings, and core biopsy is often performed to rule out malignancy. Furthermore, some inflammatory processes can mimic carcinoma or other malignancy microscopically, and vice versa. Diagnostic difficulty may arise due to the small and fragmented sample of a core biopsy. This review will focus on the pertinent clinical, radiographic, and histopathologic features of the more commonly encountered inflammatory lesions of the breast that can be characterized in a core biopsy sample. These include fat necrosis, mammary duct ectasia, granulomatous lobular mastitis, diabetic mastopathy, and abscess. The microscopic differential diagnoses for these lesions when seen in a core biopsy sample will be discussed. PMID:26095437
A Review of Inflammatory Processes of the Breast with a Focus on Diagnosis in Core Biopsy Samples.
D'Alfonso, Timothy M; Ginter, Paula S; Shin, Sandra J
2015-07-01
Inflammatory and reactive lesions of the breast are relatively uncommon among benign breast lesions and can be the source of an abnormality on imaging. Such lesions can simulate a malignant process, based on both clinical and radiographic findings, and core biopsy is often performed to rule out malignancy. Furthermore, some inflammatory processes can mimic carcinoma or other malignancy microscopically, and vice versa. Diagnostic difficulty may arise due to the small and fragmented sample of a core biopsy. This review will focus on the pertinent clinical, radiographic, and histopathologic features of the more commonly encountered inflammatory lesions of the breast that can be characterized in a core biopsy sample. These include fat necrosis, mammary duct ectasia, granulomatous lobular mastitis, diabetic mastopathy, and abscess. The microscopic differential diagnoses for these lesions when seen in a core biopsy sample will be discussed.
Noise in x-ray grating-based phase-contrast imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Thomas; Bartl, Peter; Bayer, Florian
Purpose: Grating-based x-ray phase-contrast imaging is a fast developing new modality not only for medical imaging, but as well for other fields such as material sciences. While these many possible applications arise, the knowledge of the noise behavior is essential. Methods: In this work, the authors used a least squares fitting algorithm to calculate the noise behavior of the three quantities absorption, differential phase, and dark-field image. Further, the calculated error formula of the differential phase image was verified by measurements. Therefore, a Talbot interferometer was setup, using a microfocus x-ray tube as source and a Timepix detector for photonmore » counting. Additionally, simulations regarding this topic were performed. Results: It turned out that the variance of the reconstructed phase is only dependent of the total number of photons used to generate the phase image and the visibility of the experimental setup. These results could be evaluated in measurements as well as in simulations. Furthermore, the correlation between absorption and dark-field image was calculated. Conclusions: These results provide the understanding of the noise characteristics of grating-based phase-contrast imaging and will help to improve image quality.« less
Simulation of sampling effects in FPAs
NASA Astrophysics Data System (ADS)
Cook, Thomas H.; Hall, Charles S.; Smith, Frederick G.; Rogne, Timothy J.
1991-09-01
The use of multiplexers and large focal plane arrays in advanced thermal imaging systems has drawn renewed attention to sampling and aliasing issues in imaging applications. As evidenced by discussions in a recent workshop, there is no clear consensus among experts whether aliasing in sensor designs can be readily tolerated, or must be avoided at all cost. Further, there is no straightforward, analytical method that can answer the question, particularly when considering image interpreters as different as humans and autonomous target recognizers (ATR). However, the means exist for investigating sampling and aliasing issues through computer simulation. The U.S. Army Tank-Automotive Command (TACOM) Thermal Image Model (TTIM) provides realistic sensor imagery that can be evaluated by both human observers and TRs. This paper briefly describes the history and current status of TTIM, explains the simulation of FPA sampling effects, presents validation results of the FPA sensor model, and demonstrates the utility of TTIM for investigating sampling effects in imagery.
Kazmerski, Lawrence L.
1990-01-01
A Method and apparatus for differential spectroscopic atomic-imaging is disclosed for spatial resolution and imaging for display not only individual atoms on a sample surface, but also bonding and the specific atomic species in such bond. The apparatus includes a scanning tunneling microscope (STM) that is modified to include photon biasing, preferably a tuneable laser, modulating electronic surface biasing for the sample, and temperature biasing, preferably a vibration-free refrigerated sample mounting stage. Computer control and data processing and visual display components are also included. The method includes modulating the electronic bias voltage with and without selected photon wavelengths and frequency biasing under a stabilizing (usually cold) bias temperature to detect bonding and specific atomic species in the bonds as the STM rasters the sample. This data is processed along with atomic spatial topography data obtained from the STM raster scan to create a real-time visual image of the atoms on the sample surface.
Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).
Phillips, Zachary F; Chen, Michael; Waller, Laura
2017-01-01
We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.
NASA Astrophysics Data System (ADS)
Hernández Vera, Mario; Wester, Roland; Gianturco, Francesco Antonio
2018-01-01
We construct the velocity map images of the proton transfer reaction between helium and molecular hydrogen ion {{{H}}}2+. We perform simulations of imaging experiments at one representative total collision energy taking into account the inherent aberrations of the velocity mapping in order to explore the feasibility of direct comparisons between theory and future experiments planned in our laboratory. The asymptotic angular distributions of the fragments in a 3D velocity space is determined from the quantum state-to-state differential reactive cross sections and reaction probabilities which are computed by using the time-independent coupled channel hyperspherical coordinate method. The calculations employ an earlier ab initio potential energy surface computed at the FCI/cc-pVQZ level of theory. The present simulations indicate that the planned experiments would be selective enough to differentiate between product distributions resulting from different initial internal states of the reactants.
Multiple Point Statistics algorithm based on direct sampling and multi-resolution images
NASA Astrophysics Data System (ADS)
Julien, S.; Renard, P.; Chugunova, T.
2017-12-01
Multiple Point Statistics (MPS) has become popular for more than one decade in Earth Sciences, because these methods allow to generate random fields reproducing highly complex spatial features given in a conceptual model, the training image, while classical geostatistics techniques based on bi-point statistics (covariance or variogram) fail to generate realistic models. Among MPS methods, the direct sampling consists in borrowing patterns from the training image to populate a simulation grid. This latter is sequentially filled by visiting each of these nodes in a random order, and then the patterns, whose the number of nodes is fixed, become narrower during the simulation process, as the simulation grid is more densely informed. Hence, large scale structures are caught in the beginning of the simulation and small scale ones in the end. However, MPS may mix spatial characteristics distinguishable at different scales in the training image, and then loose the spatial arrangement of different structures. To overcome this limitation, we propose to perform MPS simulation using a decomposition of the training image in a set of images at multiple resolutions. Applying a Gaussian kernel onto the training image (convolution) results in a lower resolution image, and iterating this process, a pyramid of images depicting fewer details at each level is built, as it can be done in image processing for example to lighten the space storage of a photography. The direct sampling is then employed to simulate the lowest resolution level, and then to simulate each level, up to the finest resolution, conditioned to the level one rank coarser. This scheme helps reproduce the spatial structures at any scale of the training image and then generate more realistic models. We illustrate the method with aerial photographies (satellite images) and natural textures. Indeed, these kinds of images often display typical structures at different scales and are well-suited for MPS simulation techniques.
NASA Technical Reports Server (NTRS)
Ford, J. P.; Arvidson, R. E.
1989-01-01
The high sensitivity of imaging radars to slope at moderate to low incidence angles enhances the perception of linear topography on images. It reveals broad spatial patterns that are essential to landform mapping and interpretation. As radar responses are strongly directional, the ability to discriminate linear features on images varies with their orientation. Landforms that appear prominent on images where they are transverse to the illumination may be obscure to indistinguishable on images where they are parallel to it. Landform detection is also influenced by the spatial resolution in radar images. Seasat radar images of the Gran Desierto Dunes complex, Sonora, Mexico; the Appalachian Valley and Ridge Province; and accreted terranes in eastern interior Alaska were processed to simulate both Venera 15 and 16 images (1000 to 3000 km resolution) and image data expected from the Magellan mission (120 to 300 m resolution. The Gran Desierto Dunes are not discernable in the Venera simulation, whereas the higher resolution Magellan simulation shows dominant dune patterns produced from differential erosion of the rocks. The Magellan simulation also shows that fluvial processes have dominated erosion and exposure of the folds.
Generation of 3D synthetic breast tissue
NASA Astrophysics Data System (ADS)
Elangovan, Premkumar; Dance, David R.; Young, Kenneth C.; Wells, Kevin
2016-03-01
Virtual clinical trials are an emergent approach for the rapid evaluation and comparison of various breast imaging technologies and techniques using computer-based modeling tools. A fundamental requirement of this approach for mammography is the use of realistic looking breast anatomy in the studies to produce clinically relevant results. In this work, a biologically inspired approach has been used to simulate realistic synthetic breast phantom blocks for use in virtual clinical trials. A variety of high and low frequency features (including Cooper's ligaments, blood vessels and glandular tissue) have been extracted from clinical digital breast tomosynthesis images and used to simulate synthetic breast blocks. The appearance of the phantom blocks was validated by presenting a selection of simulated 2D and DBT images interleaved with real images to a team of experienced readers for rating using an ROC paradigm. The average areas under the curve for 2D and DBT images were 0.53+/-.04 and 0.55+/-.07 respectively; errors are the standard errors of the mean. The values indicate that the observers had difficulty in differentiating the real images from simulated images. The statistical properties of simulated images of the phantom blocks were evaluated by means of power spectrum analysis. The power spectrum curves for real and simulated images closely match and overlap indicating good agreement.
The redshift distribution of cosmological samples: a forward modeling approach
NASA Astrophysics Data System (ADS)
Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam; Refregier, Alexandre; Bruderer, Claudio; Nicola, Andrina
2017-08-01
Determining the redshift distribution n(z) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n(z) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc{UFig} (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizes and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n(z) distributions for the acceptable models. We demonstrate the method by determining n(z) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n(z) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.
The redshift distribution of cosmological samples: a forward modeling approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam
Determining the redshift distribution n ( z ) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n ( z ) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc(UFig) (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizesmore » and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n ( z ) distributions for the acceptable models. We demonstrate the method by determining n ( z ) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n ( z ) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.« less
Mei, Kai; Kopp, Felix K; Bippus, Rolf; Köhler, Thomas; Schwaiger, Benedikt J; Gersing, Alexandra S; Fehringer, Andreas; Sauter, Andreas; Münzel, Daniela; Pfeiffer, Franz; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B; Baum, Thomas
2017-12-01
Osteoporosis diagnosis using multidetector CT (MDCT) is limited to relatively high radiation exposure. We investigated the effect of simulated ultra-low-dose protocols on in-vivo bone mineral density (BMD) and quantitative trabecular bone assessment. Institutional review board approval was obtained. Twelve subjects with osteoporotic vertebral fractures and 12 age- and gender-matched controls undergoing routine thoracic and abdominal MDCT were included (average effective dose: 10 mSv). Ultra-low radiation examinations were achieved by simulating lower tube currents and sparse samplings at 50%, 25% and 10% of the original dose. BMD and trabecular bone parameters were extracted in T10-L5. Except for BMD measurements in sparse sampling data, absolute values of all parameters derived from ultra-low-dose data were significantly different from those derived from original dose images (p<0.05). BMD, apparent bone fraction and trabecular thickness were still consistently lower in subjects with than in those without fractures (p<0.05). In ultra-low-dose scans, BMD and microstructure parameters were able to differentiate subjects with and without vertebral fractures, suggesting osteoporosis diagnosis is feasible. However, absolute values differed from original values. BMD from sparse sampling appeared to be more robust. This dose-dependency of parameters should be considered for future clinical use. • BMD and quantitative bone parameters are assessable in ultra-low-dose in vivo MDCT scans. • Bone mineral density does not change significantly when sparse sampling is applied. • Quantitative trabecular bone microstructure measurements are sensitive to dose reduction. • Osteoporosis subjects could be differentiated even at 10% of original dose. • Radiation exposure should be considered when comparing quantitative bone parameters.
[Accuracy Check of Monte Carlo Simulation in Particle Therapy Using Gel Dosimeters].
Furuta, Takuya
2017-01-01
Gel dosimeters are a three-dimensional imaging tool for dose distribution induced by radiations. They can be used for accuracy check of Monte Carlo simulation in particle therapy. An application was reviewed in this article. An inhomogeneous biological sample placing a gel dosimeter behind it was irradiated by carbon beam. The recorded dose distribution in the gel dosimeter reflected the inhomogeneity of the biological sample. Monte Carlo simulation was conducted by reconstructing the biological sample from its CT image. The accuracy of the particle transport by Monte Carlo simulation was checked by comparing the dose distribution in the gel dosimeter between simulation and experiment.
NASA Astrophysics Data System (ADS)
Peller, Joseph A.; Ceja, Nancy K.; Wawak, Amanda J.; Trammell, Susan R.
2018-02-01
Polarized light imaging and optical spectroscopy can be used to distinguish between healthy and diseased tissue. In this study, the design and testing of a single-pixel hyperspectral imaging system that uses differences in the polarization of light reflected from tissue to differentiate between healthy and thermally damaged tissue is discussed. Thermal lesions were created in porcine skin (n = 8) samples using an IR laser. The damaged regions were clearly visible in the polarized light hyperspectral images. Reflectance hyperspectral and white light imaging was also obtained for all tissue samples. Sizes of the thermally damaged regions as measured via polarized light hyperspectral imaging are compared to sizes of these regions as measured in the reflectance hyperspectral images and white light images. Good agreement between the sizes measured by all three imaging modalities was found. Hyperspectral polarized light imaging can differentiate between healthy and damaged tissue. Possible applications of this imaging system include determination of tumor margins during cancer surgery or pre-surgical biopsy.
Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)
2017-01-01
We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification—an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel. PMID:28152023
Study and simulation of low rate video coding schemes
NASA Technical Reports Server (NTRS)
Sayood, Khalid; Chen, Yun-Chung; Kipp, G.
1992-01-01
The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design.
Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging.
Das, Mini; Liang, Zhihua
2014-09-15
Transport-of-intensity equations (TIEs) allow better understanding of image formation and assist in simplifying the "phase problem" associated with phase-sensitive x-ray measurements. In this Letter, we present for the first time to our knowledge a simplified form of TIE that models x-ray differential phase-contrast (DPC) imaging with coded-aperture (CA) geometry. The validity of our approximation is demonstrated through comparison with an exact TIE in numerical simulations. The relative contributions of absorption, phase, and differential phase to the acquired phase-sensitive intensity images are made readily apparent with the approximate TIE, which may prove useful for solving the inverse phase-retrieval problem associated with these CA geometry based DPC.
Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves
Vincent, Paul
2005-06-28
A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.
Multi-scale image segmentation and numerical modeling in carbonate rocks
NASA Astrophysics Data System (ADS)
Alves, G. C.; Vanorio, T.
2016-12-01
Numerical methods based on computational simulations can be an important tool in estimating physical properties of rocks. These can complement experimental results, especially when time constraints and sample availability are a problem. However, computational models created at different scales can yield conflicting results with respect to the physical laboratory. This problem is exacerbated in carbonate rocks due to their heterogeneity at all scales. We developed a multi-scale approach performing segmentation of the rock images and numerical modeling across several scales, accounting for those heterogeneities. As a first step, we measured the porosity and the elastic properties of a group of carbonate samples with varying micrite content. Then, samples were imaged by Scanning Electron Microscope (SEM) as well as optical microscope at different magnifications. We applied three different image segmentation techniques to create numerical models from the SEM images and performed numerical simulations of the elastic wave-equation. Our results show that a multi-scale approach can efficiently account for micro-porosities in tight micrite-supported samples, yielding acoustic velocities comparable to those obtained experimentally. Nevertheless, in high-porosity samples characterized by larger grain/micrite ratio, results show that SEM scale images tend to overestimate velocities, mostly due to their inability to capture macro- and/or intragranular- porosity. This suggests that, for high-porosity carbonate samples, optical microscope images would be more suited for numerical simulations.
NASA Astrophysics Data System (ADS)
Villano, Michelangelo; Papathanassiou, Konstantinos P.
2011-03-01
The estimation of the local differential shift between synthetic aperture radar (SAR) images has proven to be an effective technique for monitoring glacier surface motion. As images acquired over glaciers by short wavelength SAR systems, such as TerraSAR-X, often suffer from a lack of coherence, image features have to be exploited for the shift estimation (feature-tracking).The present paper addresses feature-tracking with special attention to the feasibility requirements and the achievable accuracy of the shift estimation. In particular, the dependence of the performance on image characteristics, such as texture parameters, signal-to-noise ratio (SNR) and resolution, as well as on processing techniques (despeckling, normalised cross-correlation versus maximum likelihood estimation) is analysed by means of Monte-Carlo simulations. TerraSAR-X data acquired over the Helheim glacier, Greenland, and the Aletsch glacier, Switzerland, have been processed to validate the simulation results.Feature-tracking can benefit of the availability of fully-polarimetric data. As some image characteristics, in fact, are polarisation-dependent, the selection of an optimum polarisation leads to improved performance. Furthermore, fully-polarimetric SAR images can be despeckled without degrading the resolution, so that additional (smaller-scale) features can be exploited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Shaojie; Tang Xiangyang; School of Automation, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121
2012-09-15
Purposes: The suppression of noise in x-ray computed tomography (CT) imaging is of clinical relevance for diagnostic image quality and the potential for radiation dose saving. Toward this purpose, statistical noise reduction methods in either the image or projection domain have been proposed, which employ a multiscale decomposition to enhance the performance of noise suppression while maintaining image sharpness. Recognizing the advantages of noise suppression in the projection domain, the authors propose a projection domain multiscale penalized weighted least squares (PWLS) method, in which the angular sampling rate is explicitly taken into consideration to account for the possible variation ofmore » interview sampling rate in advanced clinical or preclinical applications. Methods: The projection domain multiscale PWLS method is derived by converting an isotropic diffusion partial differential equation in the image domain into the projection domain, wherein a multiscale decomposition is carried out. With adoption of the Markov random field or soft thresholding objective function, the projection domain multiscale PWLS method deals with noise at each scale. To compensate for the degradation in image sharpness caused by the projection domain multiscale PWLS method, an edge enhancement is carried out following the noise reduction. The performance of the proposed method is experimentally evaluated and verified using the projection data simulated by computer and acquired by a CT scanner. Results: The preliminary results show that the proposed projection domain multiscale PWLS method outperforms the projection domain single-scale PWLS method and the image domain multiscale anisotropic diffusion method in noise reduction. In addition, the proposed method can preserve image sharpness very well while the occurrence of 'salt-and-pepper' noise and mosaic artifacts can be avoided. Conclusions: Since the interview sampling rate is taken into account in the projection domain multiscale decomposition, the proposed method is anticipated to be useful in advanced clinical and preclinical applications where the interview sampling rate varies.« less
NASA Astrophysics Data System (ADS)
Sinclair Yemini, Francis; Chenu, Claire; Monga, Olivier; Vieuble Gonond, Laure; Juarez, Sabrina; Pihneiro, Marc; otten, Wilfred; Garnier, Patricia
2014-05-01
Contaminant degradation by microorganisms is very variable in soils because of the very heterogeneous spatial relationship of contaminant/degraders. Repacked Soil columns were carried out to study the degradation of 2,4D pesticide labelled with C14 for different scenarios of microorganisms and pesticide initial location. Measurements of global C14-CO2 emission and C14 distribution in the soil column showed that the initial location play a crucial rule on the dissipation of the pollutant. Experiments were simulated using a 3D model able to model microbial degradation and substrate diffusion between aggregates by considering explicitly the 3D structure of soil from CT images. The initial version of the model (Monga et al., 2008) was improved in order to simulate diffusion in samples of large size. Partial differential equations were implemented using freefem++ solver. The model simulates properly the dynamics of 2,4D in the column for the different initial situations. CT images of the same soil but using undisturbed structure instead of repacked aggregates were also carried out. Significant differences of the simulated results were observed between the repacked and the undisturbed soil. The conclusion of our work is that the heterogeneity of the soil structure and location of pollutants and decomposers has a very strong influence on the dissipation of pollutants.
NASA Tech Briefs, September 2009
NASA Technical Reports Server (NTRS)
2009-01-01
opics covered include: Filtering Water by Use of Ultrasonically Vibrated Nanotubes; Computer Code for Nanostructure Simulation; Functionalizing CNTs for Making Epoxy/CNT Composites; Improvements in Production of Single-Walled Carbon Nanotubes; Progress Toward Sequestering Carbon Nanotubes in PmPV; Two-Stage Variable Sample-Rate Conversion System; Estimating Transmitted-Signal Phase Variations for Uplink Array Antennas; Board Saver for Use with Developmental FPGAs; Circuit for Driving Piezoelectric Transducers; Digital Synchronizer without Metastability; Compact, Low-Overhead, MIL-STD-1553B Controller; Parallel-Processing CMOS Circuitry for M-QAM and 8PSK TCM; Differential InP HEMT MMIC Amplifiers Embedded in Waveguides; Improved Aerogel Vacuum Thermal Insulation; Fluoroester Co-Solvents for Low-Temperature Li+ Cells; Using Volcanic Ash to Remove Dissolved Uranium and Lead; High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell; Silicon Wafer-Scale Substrate for Microshutters and Detector Arrays; Micro-Horn Arrays for Ultrasonic Impedance Matching; Improved Controller for a Three-Axis Piezoelectric Stage; Nano-Pervaporation Membrane with Heat Exchanger Generates Medical-Grade Water; Micro-Organ Devices; Nonlinear Thermal Compensators for WGM Resonators; Dynamic Self-Locking of an OEO Containing a VCSEL; Internal Water Vapor Photoacoustic Calibration; Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings; Improving the Visible and Infrared Contrast Ratio of Microshutter Arrays; Improved Scanners for Microscopic Hyperspectral Imaging; Rate-Compatible LDPC Codes with Linear Minimum Distance; PrimeSupplier Cross-Program Impact Analysis and Supplier Stability Indicator Simulation Model; Integrated Planning for Telepresence With Time Delays; Minimizing Input-to-Output Latency in Virtual Environment; Battery Cell Voltage Sensing and Balancing Using Addressable Transformers; Gaussian and Lognormal Models of Hurricane Gust Factors; Simulation of Attitude and Trajectory Dynamics and Control of Multiple Spacecraft; Integrated Modeling of Spacecraft Touch-and-Go Sampling; Spacecraft Station-Keeping Trajectory and Mission Design Tools; Efficient Model-Based Diagnosis Engine; and DSN Simulator.
Distributed encoding of spatial and object categories in primate hippocampal microcircuits
Opris, Ioan; Santos, Lucas M.; Gerhardt, Greg A.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.
2015-01-01
The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics. PMID:26500473
NASA Astrophysics Data System (ADS)
Sierra, Heidy; Brooks, Dana; Dimarzio, Charles
2010-07-01
The extraction of 3-D morphological information about thick objects is explored in this work. We extract this information from 3-D differential interference contrast (DIC) images by applying a texture detection method. Texture extraction methods have been successfully used in different applications to study biological samples. A 3-D texture image is obtained by applying a local entropy-based texture extraction method. The use of this method to detect regions of blastocyst mouse embryos that are used in assisted reproduction techniques such as in vitro fertilization is presented as an example. Results demonstrate the potential of using texture detection methods to improve morphological analysis of thick samples, which is relevant to many biomedical and biological studies. Fluorescence and optical quadrature microscope phase images are used for validation.
NASA Astrophysics Data System (ADS)
Ney, Michael; Abdulhalim, Ibrahim
2016-03-01
Skin cancer detection at its early stages has been the focus of a large number of experimental and theoretical studies during the past decades. Among these studies two prominent approaches presenting high potential are reflectometric sensing at the THz wavelengths region and polarimetric imaging techniques in the visible wavelengths. While THz radiation contrast agent and source of sensitivity to cancer related tissue alterations was considered to be mainly the elevated water content in the cancerous tissue, the polarimetric approach has been verified to enable cancerous tissue differentiation based on cancer induced structural alterations to the tissue. Combining THz with the polarimetric approach, which is considered in this study, is examined in order to enable higher detection sensitivity than previously pure reflectometric THz measurements. For this, a comprehensive MC simulation of radiative transfer in a complex skin tissue model fitted for the THz domain that considers the skin`s stratified structure, tissue material optical dispersion modeling, surface roughness, scatterers, and substructure organelles has been developed. Additionally, a narrow beam Mueller matrix differential analysis technique is suggested for assessing skin cancer induced changes in the polarimetric image, enabling the tissue model and MC simulation to be utilized for determining the imaging parameters resulting in maximal detection sensitivity.
NASA Astrophysics Data System (ADS)
Golosio, Bruno; Schoonjans, Tom; Brunetti, Antonio; Oliva, Piernicola; Masala, Giovanni Luca
2014-03-01
The simulation of X-ray imaging experiments is often performed using deterministic codes, which can be relatively fast and easy to use. However, such codes are generally not suitable for the simulation of even slightly more complex experimental conditions, involving, for instance, first-order or higher-order scattering, X-ray fluorescence emissions, or more complex geometries, particularly for experiments that combine spatial resolution with spectral information. In such cases, simulations are often performed using codes based on the Monte Carlo method. In a simple Monte Carlo approach, the interaction position of an X-ray photon and the state of the photon after an interaction are obtained simply according to the theoretical probability distributions. This approach may be quite inefficient because the final channels of interest may include only a limited region of space or photons produced by a rare interaction, e.g., fluorescent emission from elements with very low concentrations. In the field of X-ray fluorescence spectroscopy, this problem has been solved by combining the Monte Carlo method with variance reduction techniques, which can reduce the computation time by several orders of magnitude. In this work, we present a C++ code for the general simulation of X-ray imaging and spectroscopy experiments, based on the application of the Monte Carlo method in combination with variance reduction techniques, with a description of sample geometry based on quadric surfaces. We describe the benefits of the object-oriented approach in terms of code maintenance, the flexibility of the program for the simulation of different experimental conditions and the possibility of easily adding new modules. Sample applications in the fields of X-ray imaging and X-ray spectroscopy are discussed. Catalogue identifier: AERO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERO_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 83617 No. of bytes in distributed program, including test data, etc.: 1038160 Distribution format: tar.gz Programming language: C++. Computer: Tested on several PCs and on Mac. Operating system: Linux, Mac OS X, Windows (native and cygwin). RAM: It is dependent on the input data but usually between 1 and 10 MB. Classification: 2.5, 21.1. External routines: XrayLib (https://github.com/tschoonj/xraylib/wiki) Nature of problem: Simulation of a wide range of X-ray imaging and spectroscopy experiments using different types of sources and detectors. Solution method: XRMC is a versatile program that is useful for the simulation of a wide range of X-ray imaging and spectroscopy experiments. It enables the simulation of monochromatic and polychromatic X-ray sources, with unpolarised or partially/completely polarised radiation. Single-element detectors as well as two-dimensional pixel detectors can be used in the simulations, with several acquisition options. In the current version of the program, the sample is modelled by combining convex three-dimensional objects demarcated by quadric surfaces, such as planes, ellipsoids and cylinders. The Monte Carlo approach makes XRMC able to accurately simulate X-ray photon transport and interactions with matter up to any order of interaction. The differential cross-sections and all other quantities related to the interaction processes (photoelectric absorption, fluorescence emission, elastic and inelastic scattering) are computed using the xraylib software library, which is currently the most complete and up-to-date software library for X-ray parameters. The use of variance reduction techniques makes XRMC able to reduce the simulation time by several orders of magnitude compared to other general-purpose Monte Carlo simulation programs. Running time: It is dependent on the complexity of the simulation. For the examples distributed with the code, it ranges from less than 1 s to a few minutes.
Wang, Ye; He, Honghui; Chang, Jintao; Zeng, Nan; Liu, Shaoxiong; Li, Migao; Ma, Hui
2015-12-01
Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nagayama, T.; Bailey, J. E.; Loisel, G.; ...
2016-02-05
Recently, frequency-resolved iron opacity measurements at electron temperatures of 170–200 eV and electron densities of (0.7 – 4.0) × 10 22 cm –3 revealed a 30–400% disagreement with the calculated opacities [J. E. Bailey et al., Nature (London) 517, 56 (2015)]. The discrepancies have a high impact on astrophysics, atomic physics, and high-energy density physics, and it is important to verify our understanding of the experimental platform with simulations. Reliable simulations are challenging because the temporal and spatial evolution of the source radiation and of the sample plasma are both complex and incompletely diagnosed. In this article, we describe simulationsmore » that reproduce the measured temperature and density in recent iron opacity experiments performed at the Sandia National Laboratories Z facility. The time-dependent spectral irradiance at the sample is estimated using the measured time- and space-dependent source radiation distribution, in situ source-to-sample distance measurements, and a three-dimensional (3D) view-factor code. The inferred spectral irradiance is used to drive 1D sample radiation hydrodynamics simulations. The images recorded by slit-imaged space-resolved spectrometers are modeled by solving radiation transport of the source radiation through the sample. We find that the same drive radiation time history successfully reproduces the measured plasma conditions for eight different opacity experiments. These results provide a quantitative physical explanation for the observed dependence of both temperature and density on the sample configuration. Simulated spectral images for the experiments without the FeMg sample show quantitative agreement with the measured spectral images. The agreement in spectral profile, spatial profile, and brightness provides further confidence in our understanding of the backlight-radiation time history and image formation. Furthermore, these simulations bridge the static-uniform picture of the data interpretation and the dynamic-gradient reality of the experiments, and they will allow us to quantitatively assess the impact of effects neglected in the data interpretation.« less
Differential phase microscope and micro-tomography with a Foucault knife-edge scanning filter
NASA Astrophysics Data System (ADS)
Watanabe, N.; Hashizume, J.; Goto, M.; Yamaguchi, M.; Tsujimura, T.; Aoki, S.
2013-10-01
An x-ray differential phase microscope with a Foucault knife-edge scanning filter was set up at the bending magnet source BL3C, Photon Factory. A reconstructed phase profile from the differential phase image of an aluminium wire at 5.36 keV was fairly good agreement with the numerical simulation. Phase tomography of a biological specimen, such as an Artemia cyst, could be successfully demonstrated.
In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.
Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf
2016-05-01
High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.
A new hyperchaotic map and its application for image encryption
NASA Astrophysics Data System (ADS)
Natiq, Hayder; Al-Saidi, N. M. G.; Said, M. R. M.; Kilicman, Adem
2018-01-01
Based on the one-dimensional Sine map and the two-dimensional Hénon map, a new two-dimensional Sine-Hénon alteration model (2D-SHAM) is hereby proposed. Basic dynamic characteristics of 2D-SHAM are studied through the following aspects: equilibria, Jacobin eigenvalues, trajectory, bifurcation diagram, Lyapunov exponents and sensitivity dependence test. The complexity of 2D-SHAM is investigated using Sample Entropy algorithm. Simulation results show that 2D-SHAM is overall hyperchaotic with the high complexity, and high sensitivity to its initial values and control parameters. To investigate its performance in terms of security, a new 2D-SHAM-based image encryption algorithm (SHAM-IEA) is also proposed. In this algorithm, the essential requirements of confusion and diffusion are accomplished, and the stochastic 2D-SHAM is used to enhance the security of encrypted image. The stochastic 2D-SHAM generates random values, hence SHAM-IEA can produce different encrypted images even with the same secret key. Experimental results and security analysis show that SHAM-IEA has strong capability to withstand statistical analysis, differential attack, chosen-plaintext and chosen-ciphertext attacks.
Lin, Tao; Sun, Huijun; Chen, Zhong; You, Rongyi; Zhong, Jianhui
2007-12-01
Diffusion weighting in MRI is commonly achieved with the pulsed-gradient spin-echo (PGSE) method. When combined with spin-warping image formation, this method often results in ghosts due to the sample's macroscopic motion. It has been shown experimentally (Kennedy and Zhong, MRM 2004;52:1-6) that these motion artifacts can be effectively eliminated by the distant dipolar field (DDF) method, which relies on the refocusing of spatially modulated transverse magnetization by the DDF within the sample itself. In this report, diffusion-weighted images (DWIs) using both DDF and PGSE methods in the presence of macroscopic sample motion were simulated. Numerical simulation results quantify the dependence of signals in DWI on several key motion parameters and demonstrate that the DDF DWIs are much less sensitive to macroscopic sample motion than the traditional PGSE DWIs. The results also show that the dipolar correlation distance (d(c)) can alter contrast in DDF DWIs. The simulated results are in good agreement with the experimental results reported previously.
Dynamic Simulation and Static Matching for Action Prediction: Evidence from Body Part Priming
ERIC Educational Resources Information Center
Springer, Anne; Brandstadter, Simone; Prinz, Wolfgang
2013-01-01
Accurately predicting other people's actions may involve two processes: internal real-time simulation (dynamic updating) and matching recently perceived action images (static matching). Using a priming of body parts, this study aimed to differentiate the two processes. Specifically, participants played a motion-controlled video game with…
Simulations of multi-contrast x-ray imaging using near-field speckles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zdora, Marie-Christine; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT; Thibault, Pierre
2016-01-28
X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.
When Can Clades Be Potentially Resolved with Morphology?
Bapst, David W.
2013-01-01
Morphology-based phylogenetic analyses are the only option for reconstructing relationships among extinct lineages, but often find support for conflicting hypotheses of relationships. The resulting lack of phylogenetic resolution is generally explained in terms of data quality and methodological issues, such as character selection. A previous suggestion is that sampling ancestral morphotaxa or sampling multiple taxa descended from a long-lived, unchanging lineage can also yield clades which have no opportunity to share synapomorphies. This lack of character information leads to a lack of ‘intrinsic’ resolution, an issue that cannot be solved with additional morphological data. It is unclear how often we should expect clades to be intrinsically resolvable in realistic circumstances, as intrinsic resolution must increase as taxonomic sampling decreases. Using branching simulations, I quantify intrinsic resolution across several models of morphological differentiation and taxonomic sampling. Intrinsically unresolvable clades are found to be relatively frequent in simulations of both extinct and living taxa under realistic sampling scenarios, implying that intrinsic resolution is an issue for morphology-based analyses of phylogeny. Simulations which vary the rates of sampling and differentiation were tested for their agreement to observed distributions of durations from well-sampled fossil records and also having high intrinsic resolution. This combination only occurs in those datasets when differentiation and sampling rates are both unrealistically high relative to branching and extinction rates. Thus, the poor phylogenetic resolution occasionally observed in morphological phylogenetics may result from a lack of intrinsic resolvability within groups. PMID:23638034
An earth imaging camera simulation using wide-scale construction of reflectance surfaces
NASA Astrophysics Data System (ADS)
Murthy, Kiran; Chau, Alexandra H.; Amin, Minesh B.; Robinson, M. Dirk
2013-10-01
Developing and testing advanced ground-based image processing systems for earth-observing remote sensing applications presents a unique challenge that requires advanced imagery simulation capabilities. This paper presents an earth-imaging multispectral framing camera simulation system called PayloadSim (PaySim) capable of generating terabytes of photorealistic simulated imagery. PaySim leverages previous work in 3-D scene-based image simulation, adding a novel method for automatically and efficiently constructing 3-D reflectance scenes by draping tiled orthorectified imagery over a geo-registered Digital Elevation Map (DEM). PaySim's modeling chain is presented in detail, with emphasis given to the techniques used to achieve computational efficiency. These techniques as well as cluster deployment of the simulator have enabled tuning and robust testing of image processing algorithms, and production of realistic sample data for customer-driven image product development. Examples of simulated imagery of Skybox's first imaging satellite are shown.
Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin
2017-01-01
There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811
Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin
2017-01-01
There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.
A beam hardening and dispersion correction for x-ray dark-field radiography.
Pelzer, Georg; Anton, Gisela; Horn, Florian; Rieger, Jens; Ritter, André; Wandner, Johannes; Weber, Thomas; Michel, Thilo
2016-06-01
X-ray dark-field imaging promises information on the small angle scattering properties even of large samples. However, the dark-field image is correlated with the object's attenuation and phase-shift if a polychromatic x-ray spectrum is used. A method to remove part of these correlations is proposed. The experimental setup for image acquisition was modeled in a wave-field simulation to quantify the dark-field signals originating solely from a material's attenuation and phase-shift. A calibration matrix was simulated for ICRU46 breast tissue. Using the simulated data, a dark-field image of a human mastectomy sample was corrected for the finger print of attenuation- and phase-image. Comparing the simulated, attenuation-based dark-field values to a phantom measurement, a good agreement was found. Applying the proposed method to mammographic dark-field data, a reduction of the dark-field background and anatomical noise was achieved. The contrast between microcalcifications and their surrounding background was increased. The authors show that the influence of and dispersion can be quantified by simulation and, thus, measured image data can be corrected. The simulation allows to determine the corresponding dark-field artifacts for a wide range of setup parameters, like tube-voltage and filtration. The application of the proposed method to mammographic dark-field data shows an increase in contrast compared to the original image, which might simplify a further image-based diagnosis.
Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlaepfer, D.; Itten, K.I.; Borel, C.C.
1998-09-01
Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, whichmore » is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.« less
Image-guided interventional procedures in the dog and cat.
Vignoli, Massimo; Saunders, Jimmy H
2011-03-01
Medical imaging is essential for the diagnostic workup of many soft tissue and bone lesions in dogs and cats, but imaging modalities do not always allow the clinician to differentiate inflammatory or infectious conditions from neoplastic disorders. This review describes interventional procedures in dogs and cats for collection of samples for cytological or histopathological examinations under imaging guidance. It describes the indications and procedures for imaging-guided sampling, including ultrasound (US), computed tomography (CT), magnetic resonance imaging and fluoroscopy. US and CT are currently the modalities of choice in interventional imaging. Copyright © 2009 Elsevier Ltd. All rights reserved.
New closed-form approximation for skin chromophore mapping.
Välisuo, Petri; Kaartinen, Ilkka; Tuchin, Valery; Alander, Jarmo
2011-04-01
The concentrations of blood and melanin in skin can be estimated based on the reflectance of light. Many models for this estimation have been built, such as Monte Carlo simulation, diffusion models, and the differential modified Beer-Lambert law. The optimization-based methods are too slow for chromophore mapping of high-resolution spectral images, and the differential modified Beer-Lambert is not often accurate enough. Optimal coefficients for the differential Beer-Lambert model are calculated by differentiating the diffusion model, optimized to the normal skin spectrum. The derivatives are then used in predicting the difference in chromophore concentrations from the difference in absorption spectra. The accuracy of the method is tested both computationally and experimentally using a Monte Carlo multilayer simulation model, and the data are measured from the palm of a hand during an Allen's test, which modulates the blood content of skin. The correlations of the given and predicted blood, melanin, and oxygen saturation levels are correspondingly r = 0.94, r = 0.99, and r = 0.73. The prediction of the concentrations for all pixels in a 1-megapixel image would take ∼ 20 min, which is orders of magnitude faster than the methods based on optimization during the prediction.
Fourth-order partial differential equation noise removal on welding images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halim, Suhaila Abd; Ibrahim, Arsmah; Sulong, Tuan Nurul Norazura Tuan
2015-10-22
Partial differential equation (PDE) has become one of the important topics in mathematics and is widely used in various fields. It can be used for image denoising in the image analysis field. In this paper, a fourth-order PDE is discussed and implemented as a denoising method on digital images. The fourth-order PDE is solved computationally using finite difference approach and then implemented on a set of digital radiographic images with welding defects. The performance of the discretized model is evaluated using Peak Signal to Noise Ratio (PSNR). Simulation is carried out on the discretized model on different level of Gaussianmore » noise in order to get the maximum PSNR value. The convergence criteria chosen to determine the number of iterations required is measured based on the highest PSNR value. Results obtained show that the fourth-order PDE model produced promising results as an image denoising tool compared with median filter.« less
Unsupervised Pathological Area Extraction using 3D T2 and FLAIR MR Images
NASA Astrophysics Data System (ADS)
Dvořák, Pavel; Bartušek, Karel; Smékal, Zdeněk
2014-12-01
This work discusses fully automated extraction of brain tumor and edema in 3D MR volumes. The goal of this work is the extraction of the whole pathological area using such an algorithm that does not require a human intervention. For the good visibility of these kinds of tissues both T2-weighted and FLAIR images were used. The proposed method was tested on 80 MR volumes of publicly available BRATS database, which contains high and low grade gliomas, both real and simulated. The performance was evaluated by the Dice coefficient, where the results were differentiated between high and low grade and real and simulated gliomas. The method reached promising results for all of the combinations of images: real high grade (0.73 ± 0.20), real low grade (0.81 ± 0.06), simulated high grade (0.81 ± 0.14), and simulated low grade (0.81 ± 0.04).
Jeong, Jeong-Won; Shin, Dae C; Do, Synho; Marmarelis, Vasilis Z
2006-08-01
This paper presents a novel segmentation methodology for automated classification and differentiation of soft tissues using multiband data obtained with the newly developed system of high-resolution ultrasonic transmission tomography (HUTT) for imaging biological organs. This methodology extends and combines two existing approaches: the L-level set active contour (AC) segmentation approach and the agglomerative hierarchical kappa-means approach for unsupervised clustering (UC). To prevent the trapping of the current iterative minimization AC algorithm in a local minimum, we introduce a multiresolution approach that applies the level set functions at successively increasing resolutions of the image data. The resulting AC clusters are subsequently rearranged by the UC algorithm that seeks the optimal set of clusters yielding the minimum within-cluster distances in the feature space. The presented results from Monte Carlo simulations and experimental animal-tissue data demonstrate that the proposed methodology outperforms other existing methods without depending on heuristic parameters and provides a reliable means for soft tissue differentiation in HUTT images.
NASA Astrophysics Data System (ADS)
Xu, Xiaoyun; Li, Xiaoyan; Cheng, Jie; Liu, Zhengfan; Thrall, Michael J.; Wang, Xi; Wang, Zhiyong; Wong, Stephen T. C.
2013-03-01
The development of real-time, label-free imaging techniques has recently attracted research interest for in situ differentiation of cancerous lesions from normal tissues. Molecule-specific intrinsic contrast can arise from label-free imaging techniques such as Coherent Anti-Stokes Raman Scattering (CARS), Two-Photon Excited AutoFluorescence (TPEAF), and Second Harmonic Generation (SHG), which, in combination, would hold the promise of a powerful label-free tool for cancer diagnosis. Among cancer-related deaths, lung carcinoma is the leading cause for both sexes. Although early treatment can increase the survival rate dramatically, lesion detection and precise diagnosis at an early stage is unusual due to its asymptomatic nature and limitations of current diagnostic techniques that make screening difficult. We investigated the potential of using multimodality nonlinear optical microscopy that incorporates CARS, TPEAF, and SHG techniques for differentiation of lung cancer from normal tissue. Cancerous and non-cancerous lung tissue samples from patients were imaged using CARS, TPEAF, and SHG techniques for comparison. These images showed good pathology correlation with hematoxylin and eosin (H and E) stained sections from the same tissue samples. Ongoing work includes imaging at various penetration depths to show three-dimensional morphologies of tumor cell nuclei using CARS, elastin using TPEAF, and collagen using SHG and developing classification algorithms for quantitative feature extraction to enable lung cancer diagnosis. Our results indicate that via real-time morphology analyses, a multimodality nonlinear optical imaging platform potentially offers a powerful minimally-invasive way to differentiate cancer lesions from surrounding non-tumor tissues in vivo for clinical applications.
Hauser, Nik; Wang, Zhentian; Kubik-Huch, Rahel A; Trippel, Mafalda; Singer, Gad; Hohl, Michael K; Roessl, Ewald; Köhler, Thomas; van Stevendaal, Udo; Wieberneit, Nataly; Stampanoni, Marco
2014-03-01
Differential phase contrast and scattering-based x-ray mammography has the potential to provide additional and complementary clinically relevant information compared with absorption-based mammography. The purpose of our study was to provide a first statistical evaluation of the imaging capabilities of the new technique compared with digital absorption mammography. We investigated non-fixed mastectomy samples of 33 patients with invasive breast cancer, using grating-based differential phase contrast mammography (mammoDPC) with a conventional, low-brilliance x-ray tube. We simultaneously recorded absorption, differential phase contrast, and small-angle scattering signals that were combined into novel high-frequency-enhanced images with a dedicated image fusion algorithm. Six international, expert breast radiologists evaluated clinical digital and experimental mammograms in a 2-part blinded, prospective independent reader study. The results were statistically analyzed in terms of image quality and clinical relevance. The results of the comparison of mammoDPC with clinical digital mammography revealed the general quality of the images to be significantly superior (P < 0.001); sharpness, lesion delineation, as well as the general visibility of calcifications to be significantly more assessable (P < 0.001); and delineation of anatomic components of the specimens (surface structures) to be significantly sharper (P < 0.001). Spiculations were significantly better identified, and the overall clinically relevant information provided by mammoDPC was judged to be superior (P < 0.001). Our results demonstrate that complementary information provided by phase and scattering enhanced mammograms obtained with the mammoDPC approach deliver images of generally superior quality. This technique has the potential to improve radiological breast diagnostics.
An Evaluation of the Effects of Variable Sampling on Component, Image, and Factor Analysis.
ERIC Educational Resources Information Center
Velicer, Wayne F.; Fava, Joseph L.
1987-01-01
Principal component analysis, image component analysis, and maximum likelihood factor analysis were compared to assess the effects of variable sampling. Results with respect to degree of saturation and average number of variables per factor were clear and dramatic. Differential effects on boundary cases and nonconvergence problems were also found.…
Ex vivo MR spectroscopic measure differentiates tumor from treatment effects in GBM
Srinivasan, Radhika; Phillips, Joanna J.; VandenBerg, Scott R.; Polley, Mei-Yin C.; Bourne, Gabriela; Au, Alvin; Pirzkall, Andrea; Cha, Soonmee; Chang, Susan M.; Nelson, Sarah J.
2010-01-01
The motivation of this study was to address the urgent clinical problem related to the inability of magnetic resonance (MR) imaging measures to differentiate tumor progression from treatment effects in patients with glioblastoma multiforme (GBM). While contrast enhancement on MR imaging (MRI) is routinely used for assessment of tumor burden, therapy response, and progression-free survival in GBM, it is well known that changes in enhancement following treatment are nonspecific to tumor. To address this issue, the objective of this study was to investigate whether MR spectroscopy can provide improved biomarker surrogates for tumor following treatment. High-resolution metabolic profiles of tissue samples obtained from patients with GBM were directly correlated with their pathological assessment to determine metabolic markers that correspond to pathological indications of tumor or treatment effects. Acquisition of tissue samples with image guidance enabled the association of ex vivo biochemical and pathological properties of the tissue samples with in vivo MR anatomical and structural properties derived from presurgical MR images. Using this approach, we found that metabolic concentration levels of [Myo-inositol/total choline (MCI)] in tissue samples are able to differentiate tumor from nontumor and treatment-induced reactive astrocytosis with high significance (P < .001) in newly diagnosed and recurrent GBM. The MCI index has a sensitivity of 93% to tumor in recurrent GBM and delineates the contribution of cellularity that originates from tumor and astrocytic proliferation following treatment. Low levels of MCI for tumor were associated with a reduced apparent diffusion coefficient and elevated choline-N-acetyl-aspartate index derived from in vivo MR images. PMID:20647244
Translational-circular scanning for magneto-acoustic tomography with current injection.
Wang, Shigang; Ma, Ren; Zhang, Shunqi; Yin, Tao; Liu, Zhipeng
2016-01-27
Magneto-acoustic tomography with current injection involves using electrical impedance imaging technology. To explore the potential applications in imaging biological tissue and enhance image quality, a new scan mode for the transducer is proposed that is based on translational and circular scanning to record acoustic signals from sources. An imaging algorithm to analyze these signals is developed in respect to this alternative scanning scheme. Numerical simulations and physical experiments were conducted to evaluate the effectiveness of this scheme. An experiment using a graphite sheet as a tissue-mimicking phantom medium was conducted to verify simulation results. A pulsed voltage signal was applied across the sample, and acoustic signals were recorded as the transducer performed stepped translational or circular scans. The imaging algorithm was used to obtain an acoustic-source image based on the signals. In simulations, the acoustic-source image is correlated with the conductivity at the sample boundaries of the sample, but image results change depending on distance and angular aspect of the transducer. In general, as angle and distance decreases, the image quality improves. Moreover, experimental data confirmed the correlation. The acoustic-source images resulting from the alternative scanning mode has yielded the outline of a phantom medium. This scan mode enables improvements to be made in the sensitivity of the detecting unit and a change to a transducer array that would improve the efficiency and accuracy of acoustic-source images.
Simulation of Forward and Inverse X-ray Scattering From Shocked Materials
NASA Astrophysics Data System (ADS)
Barber, John; Marksteiner, Quinn; Barnes, Cris
2012-02-01
The next generation of high-intensity, coherent light sources should generate sufficient brilliance to perform in-situ coherent x-ray diffraction imaging (CXDI) of shocked materials. In this work, we present beginning-to-end simulations of this process. This includes the calculation of the partially-coherent intensity profiles of self-amplified stimulated emission (SASE) x-ray free electron lasers (XFELs), as well as the use of simulated, shocked molecular-dynamics-based samples to predict the evolution of the resulting diffraction patterns. In addition, we will explore the corresponding inverse problem by performing iterative phase retrieval to generate reconstructed images of the simulated sample. The development of these methods in the context of materials under extreme conditions should provide crucial insights into the design and capabilities of shocked in-situ imaging experiments.
ERIC Educational Resources Information Center
Paek, Insu; Wilson, Mark
2011-01-01
This study elaborates the Rasch differential item functioning (DIF) model formulation under the marginal maximum likelihood estimation context. Also, the Rasch DIF model performance was examined and compared with the Mantel-Haenszel (MH) procedure in small sample and short test length conditions through simulations. The theoretically known…
NASA Astrophysics Data System (ADS)
Larsen, J. D.; Schaap, M. G.
2013-12-01
Recent advances in computing technology and experimental techniques have made it possible to observe and characterize fluid dynamics at the micro-scale. Many computational methods exist that can adequately simulate fluid flow in porous media. Lattice Boltzmann methods provide the distinct advantage of tracking particles at the microscopic level and returning macroscopic observations. While experimental methods can accurately measure macroscopic fluid dynamics, computational efforts can be used to predict and gain insight into fluid dynamics by utilizing thin sections or computed micro-tomography (CMT) images of core sections. Although substantial effort have been made to advance non-invasive imaging methods such as CMT, fluid dynamics simulations, and microscale analysis, a true three dimensional image segmentation technique has not been developed until recently. Many competing segmentation techniques are utilized in industry and research settings with varying results. In this study lattice Boltzmann method is used to simulate stokes flow in a macroporous soil column. Two dimensional CMT images were used to reconstruct a three dimensional representation of the original sample. Six competing segmentation standards were used to binarize the CMT volumes which provide distinction between solid phase and pore space. The permeability of the reconstructed samples was calculated, with Darcy's Law, from lattice Boltzmann simulations of fluid flow in the samples. We compare simulated permeability from differing segmentation algorithms to experimental findings.
NASA Astrophysics Data System (ADS)
Watson, H. C.; Yu, T.; Wang, Y.
2011-12-01
The timing and mechanisms of core formation in the Earth, as well as in Earth-forming planetesimals is a problem of significant importance in our understanding of the early evolution of terrestrial planets . W-Hf isotopic signatures in meteorites indicate that core formation in small pre-differentiated planetesimals was relatively rapid, and occurred over the span of a few million years. This time scale is difficult to achieve by percolative flow of the metallic phase through a silicate matrix in textural equilibrium. It has been suggested that during this active time in the early solar system, dynamic processes such as impacts may have caused significant deformation in the differentiating planetesimals, which could lead to much higher permeability of the core forming melts. Here, we have measured the change in permeability of core forming melts in a silicate matrix due to deformation. Mixtures of San Carlos olivine and FeS close to the equilibrium percolation threshold (~5 vol%FeS) were pre-synthesized to achieve an equilibrium microstructure, and then loaded into the rotational Drickamer apparatus at GSE-CARS, sector 13-BMD, at the Advanced Photon Source (Argonne National Laboratory). The samples were subsequently pressed to ~2GPa, and heated to 1100°C. Alternating cycles of rotation to collect X-ray tomography images, and twisting to deform the sample were conducted until the sample had been twisted by 1080°. Qualitative and quantitative analyses were performed on the resulting 3-dimensional x-ray tomographic images to evaluate the effect of shear deformation on permeability and migration velocity. Lattice-Boltzmann simulations were conducted, and show a marked increase in the permeability with increasing deformation, which would allow for much more rapid core formation in planetesimals.
A street rubbish detection algorithm based on Sift and RCNN
NASA Astrophysics Data System (ADS)
Yu, XiPeng; Chen, Zhong; Zhang, Shuo; Zhang, Ting
2018-02-01
This paper presents a street rubbish detection algorithm based on image registration with Sift feature and RCNN. Firstly, obtain the rubbish region proposal on the real-time street image and set up the CNN convolution neural network trained by the rubbish samples set consists of rubbish and non-rubbish images; Secondly, for every clean street image, obtain the Sift feature and do image registration with the real-time street image to obtain the differential image, the differential image filters a lot of background information, obtain the rubbish region proposal rect where the rubbish may appear on the differential image by the selective search algorithm. Then, the CNN model is used to detect the image pixel data in each of the region proposal on the real-time street image. According to the output vector of the CNN, it is judged whether the rubbish is in the region proposal or not. If it is rubbish, the region proposal on the real-time street image is marked. This algorithm avoids the large number of false detection caused by the detection on the whole image because the CNN is used to identify the image only in the region proposal on the real-time street image that may appear rubbish. Different from the traditional object detection algorithm based on the region proposal, the region proposal is obtained on the differential image not whole real-time street image, and the number of the invalid region proposal is greatly reduced. The algorithm has the high mean average precision (mAP).
Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound
Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth C.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.
2013-01-01
The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg/ml Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of 3-dimensional imaging of a 185 μL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi. PMID:24077004
Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound
NASA Astrophysics Data System (ADS)
Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth P.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.
2013-10-01
The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg ml-1 Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of three-dimensional imaging of a 185 µL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi.
Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound.
Pope, Ava G; Wu, Gongting; McWhorter, Frances Y; Merricks, Elizabeth P; Nichols, Timothy C; Czernuszewicz, Tomasz J; Gallippi, Caterina M; Oldenburg, Amy L
2013-10-21
The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg ml(-1) Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of three-dimensional imaging of a 185 µL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi.
Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy.
Jiang, Shihong; Walker, John
2010-01-20
We report a differential fluorescence speckle confocal microscope that acquires an image in a fraction of a second by exploiting the very high frame rate of modern digital micromirror devices (DMDs). The DMD projects a sequence of predefined binary speckle patterns to the sample and modulates the intensity of the returning fluorescent light simultaneously. The fluorescent light reflecting from the DMD's "on" and "off" pixels is modulated by correlated speckle and anticorrelated speckle, respectively, to form two images on two CCD cameras in parallel. The sum of the two images recovers a widefield image, but their difference gives a near-confocal image in real time. Experimental results for both low and high numerical apertures are shown.
On the simulation and mitigation of anisoplanatic optical turbulence for long range imaging
NASA Astrophysics Data System (ADS)
Hardie, Russell C.; LeMaster, Daniel A.
2017-05-01
We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an excellent match between the simulation statistics and the theoretical predictions. The simulation tool is also used here to quantitatively evaluate a recently proposed block- matching and Wiener filtering (BMWF) method for turbulence mitigation. In this method block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames are then averaged and processed with a Wiener filter for restoration. A novel aspect of the proposed BMWF method is that the PSF model used for restoration takes into account the level of geometric correction achieved during image registration. This way, the Wiener filter is able fully exploit the reduced blurring achieved by registration. The BMWF method is relatively simple computationally, and yet, has excellent performance in comparison to state-of-the-art benchmark methods.
[Comparative research on the NIR and MIR micro-imaging of two similar plastic materials].
Wang, Dong; Ma, Zhi-Hong; Zhao, Liu; Pan, Li-Gang; Li, Xiao-Ting; Wang, Ji-Hua
2011-09-01
The NIR/MIR micro-imaging can supply not only the information of spectra, but also the information of spacial distribution of the sample, which is superior to the traditional NIR/MIR spectroscopy analysis. In the present paper, polyethylene and parafilm, with similar appearances, were regarded as the research objects, of which the NIR/MIR micro-imaging was collected. Chemical imaging (CI) and compare correlation imaging were carried out for the two materials respectively to discuss the imaging methods of the two materials. The result indicated that the differentiation of the CI values of the two materials in the NIR/MIR CI for material II was 0.004 8 and 0.254 8 respectively, while those in the NIR/MIR CI for material I were 0.002 6 and 0.326 5, respectively. Clear CI was acquired, and the two materials could be differentiated. The result of the compare correlation imagings indicated that the compare correlation imagings, in which the NIR/MIR spectra of the two materials were regarded as reference spectra respectively, can differentiate the two materials remarkably with clear imagings. In the compare correlation imagings of MIR micro-imaging, the difference of the correlation coefficients between the two materials' MIR spectra and the reference spectrum was more than 0.12, which showed a better imaging result; while a tiny difference of the correlation coefficients between the two materials' NIR spectra and the reference spectrum could be employed to show a clear imaging result for NIR compare correlation imaging so as to differentiate the two materials. This thesis, to some extent, can supply the reference to not only the rapid discrimination of the safety of the packaging material for agri-food, but also the imaging methods for NIR/MIR micro-imaging to differentiate the different materials.
ERIC Educational Resources Information Center
Martin, Elizabeth L.; Cataneo, Daniel F.
A study was conducted by the Air Force to determine the extent to which takeoff/landing skills learned in a simulator equipped with a night visual system would transfer to daytime performance in the aircraft. A transfer-of-training design was used to assess the differential effectiveness of simulator training with a day versus a night…
In Situ Identification of Nanoparticle Structural Information Using Optical Microscopy.
Culver, Kayla S B; Liu, Tingting; Hryn, Alexander J; Fang, Ning; Odom, Teri W
2018-05-11
Diffraction-limited optical microscopy lacks the resolution to characterize directly nanoscale features of single nanoparticles. This paper describes how surprisingly rich structural features of small gold nanostars can be identified using differential interference contrast (DIC) microscopy. First, we established a library of structure-property relationships between nanoparticle shape and DIC optical image and then validated the correlation with electrodynamic simulations and electron microscopy. We found that DIC image patterns of single nanostars could be differentiated between 2D and 3D geometries. Also, DIC images could elucidate the symmetry properties and orientation of nanoparticles. Finally, we demonstrated how this wide-field optical technique can be used for in situ characterization of single nanoparticles rotating at a glass-water interface.
Su, Rong; Kirillin, Mikhail; Chang, Ernest W.; Sergeeva, Ekaterina; Yun, Seok H.; Mattsson, Lars
2014-01-01
Optical coherence tomography (OCT) is a promising tool for detecting micro channels, metal prints, defects and delaminations embedded in alumina and zirconia ceramic layers at hundreds of micrometers beneath surfaces. The effect of surface roughness and scattering of probing radiation within sample on OCT inspection is analyzed from the experimental and simulated OCT images of the ceramic samples with varying surface roughnesses and operating wavelengths. By Monte Carlo simulations of the OCT images in the mid-IR the optimal operating wavelength is found to be 4 µm for the alumina samples and 2 µm for the zirconia samples for achieving sufficient probing depth of about 1 mm. The effects of rough surfaces and dispersion on the detection of the embedded boundaries are discussed. Two types of image artefacts are found in OCT images due to multiple reflections between neighboring boundaries and inhomogeneity of refractive index. PMID:24977838
2012-01-01
Background RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Results Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. Conclusions This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates. PMID:22985019
Robles, José A; Qureshi, Sumaira E; Stephen, Stuart J; Wilson, Susan R; Burden, Conrad J; Taylor, Jennifer M
2012-09-17
RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates.
NASA Astrophysics Data System (ADS)
Furuta, T.; Maeyama, T.; Ishikawa, K. L.; Fukunishi, N.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Hayashi, S.
2015-08-01
In this research, we used a 135 MeV/nucleon carbon-ion beam to irradiate a biological sample composed of fresh chicken meat and bones, which was placed in front of a PAGAT gel dosimeter, and compared the measured and simulated transverse-relaxation-rate (R2) distributions in the gel dosimeter. We experimentally measured the three-dimensional R2 distribution, which records the dose induced by particles penetrating the sample, by using magnetic resonance imaging. The obtained R2 distribution reflected the heterogeneity of the biological sample. We also conducted Monte Carlo simulations using the PHITS code by reconstructing the elemental composition of the biological sample from its computed tomography images while taking into account the dependence of the gel response on the linear energy transfer. The simulation reproduced the experimental distal edge structure of the R2 distribution with an accuracy under about 2 mm, which is approximately the same as the voxel size currently used in treatment planning.
Furuta, T; Maeyama, T; Ishikawa, K L; Fukunishi, N; Fukasaku, K; Takagi, S; Noda, S; Himeno, R; Hayashi, S
2015-08-21
In this research, we used a 135 MeV/nucleon carbon-ion beam to irradiate a biological sample composed of fresh chicken meat and bones, which was placed in front of a PAGAT gel dosimeter, and compared the measured and simulated transverse-relaxation-rate (R2) distributions in the gel dosimeter. We experimentally measured the three-dimensional R2 distribution, which records the dose induced by particles penetrating the sample, by using magnetic resonance imaging. The obtained R2 distribution reflected the heterogeneity of the biological sample. We also conducted Monte Carlo simulations using the PHITS code by reconstructing the elemental composition of the biological sample from its computed tomography images while taking into account the dependence of the gel response on the linear energy transfer. The simulation reproduced the experimental distal edge structure of the R2 distribution with an accuracy under about 2 mm, which is approximately the same as the voxel size currently used in treatment planning.
Analyser-based mammography using single-image reconstruction.
Briedis, Dahliyani; Siu, Karen K W; Paganin, David M; Pavlov, Konstantin M; Lewis, Rob A
2005-08-07
We implement an algorithm that is able to decode a single analyser-based x-ray phase-contrast image of a sample, converting it into an equivalent conventional absorption-contrast radiograph. The algorithm assumes the projection approximation for x-ray propagation in a single-material object embedded in a substrate of approximately uniform thickness. Unlike the phase-contrast images, which have both directional bias and a bias towards edges present in the sample, the reconstructed images are directly interpretable in terms of the projected absorption coefficient of the sample. The technique was applied to a Leeds TOR[MAM] phantom, which is designed to test mammogram quality by the inclusion of simulated microcalcifications, filaments and circular discs. This phantom was imaged at varying doses using three modalities: analyser-based synchrotron phase-contrast images converted to equivalent absorption radiographs using our algorithm, slot-scanned synchrotron imaging and imaging using a conventional mammography unit. Features in the resulting images were then assigned a quality score by volunteers. The single-image reconstruction method achieved higher scores at equivalent and lower doses than the conventional mammography images, but no improvement of visualization of the simulated microcalcifications, and some degradation in image quality at reduced doses for filament features.
Pore-scale Simulation and Imaging of Multi-phase Flow and Transport in Porous Media (Invited)
NASA Astrophysics Data System (ADS)
Crawshaw, J.; Welch, N.; Daher, I.; Yang, J.; Shah, S.; Grey, F.; Boek, E.
2013-12-01
We combine multi-scale imaging and computer simulation of multi-phase flow and reactive transport in rock samples to enhance our fundamental understanding of long term CO2 storage in rock formations. The imaging techniques include Confocal Laser Scanning Microscopy (CLSM), micro-CT and medical CT scanning, with spatial resolutions ranging from sub-micron to mm respectively. First, we report a new sample preparation technique to study micro-porosity in carbonates using CLSM in 3 dimensions. Second, we use micro-CT scanning to generate high resolution 3D pore space images of carbonate and cap rock samples. In addition, we employ micro-CT to image the processes of evaporation in fractures and cap rock degradation due to exposure to CO2 flow. Third, we use medical CT scanning to image spontaneous imbibition in carbonate rock samples. Our imaging studies are complemented by computer simulations of multi-phase flow and transport, using the 3D pore space images obtained from the scanning experiments. We have developed a massively parallel lattice-Boltzmann (LB) code to calculate the single phase flow field in these pore space images. The resulting flow fields are then used to calculate hydrodynamic dispersion using a novel scheme to predict probability distributions for molecular displacements using the LB method and a streamline algorithm, modified for optimal solid boundary conditions. We calculate solute transport on pore-space images of rock cores with increasing degree of heterogeneity: a bead pack, Bentheimer sandstone and Portland carbonate. We observe that for homogeneous rock samples, such as bead packs, the displacement distribution remains Gaussian with time increasing. In the more heterogeneous rocks, on the other hand, the displacement distribution develops a stagnant part. We observe that the fraction of trapped solute increases from the beadpack (0 %) to Bentheimer sandstone (1.5 %) to Portland carbonate (8.1 %), in excellent agreement with PFG-NMR experiments. We then use our preferred multi-phase model to directly calculate flow in pore space images of two different sandstones and observe excellent agreement with experimental relative permeabilities. Also we calculate cluster size distributions in good agreement with experimental studies. Our analysis shows that the simulations are able to predict both multi-phase flow and transport properties directly on large 3D pore space images of real rocks. Pore space images, left and velocity distributions, right (Yang and Boek, 2013)
Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Akao, Yoshinori; Higashikawa, Yoshiyasu
2017-10-01
The time-resolved luminescence spectra and the lifetimes of eighteen black writing inks were measured to differentiate pen ink on altered documents. The spectra and lifetimes depended on the samples. About half of the samples only exhibited short-lived luminescence components on the nanosecond time scale. On the other hand, the other samples exhibited short- and long-lived components on the microsecond time scale. The samples could be classified into fifteen groups based on the luminescence spectra and dynamics. Therefore, luminescence lifetime can be used for the differentiation of writing inks, and luminescence lifetime imaging can be applied for the examination of altered documents. Copyright © 2017 Elsevier B.V. All rights reserved.
Design and simulation of a 800 Mbit/s data link for magnetic resonance imaging wearables.
Vogt, Christian; Buthe, Lars; Petti, Luisa; Cantarella, Giuseppe; Munzenrieder, Niko; Daus, Alwin; Troster, Gerhard
2015-08-01
This paper presents the optimization of electronic circuitry for operation in the harsh electro magnetic (EM) environment during a magnetic resonance imaging (MRI) scan. As demonstrator, a device small enough to be worn during the scan is optimized. Based on finite element method (FEM) simulations, the induced current densities due to magnetic field changes of 200 T s(-1) were reduced from 1 × 10(10) A m(-2) by one order of magnitude, predicting error-free operation of the 1.8V logic employed. The simulations were validated using a bit error rate test, which showed no bit errors during a MRI scan sequence. Therefore, neither the logic, nor the utilized 800 Mbit s(-1) low voltage differential swing (LVDS) data link of the optimized wearable device were significantly influenced by the EM interference. Next, the influence of ferro-magnetic components on the static magnetic field and consequently the image quality was simulated showing a MRI image loss with approximately 2 cm radius around a commercial integrated circuit of 1×1 cm(2). This was successively validated by a conventional MRI scan.
Simulation of noise involved in synthetic aperture radar
NASA Astrophysics Data System (ADS)
Grandchamp, Myriam; Cavassilas, Jean-Francois
1996-08-01
The synthetic aperture radr (SAR) returns from a linear distribution of scatterers are simulated and processed in order to estimate the reflectivity coefficients of the ground. An original expression of this estimate is given, which establishes the relation between the terms of signal and noise. Both are compared. One application of this formulation consists of detecting a surface ship wake on a complex SAR image. A smoothing is first accomplished on the complex image. The choice of the integration area is determined by the preceding mathematical formulation. Then a differential filter is applied, and results are shown for two parts of the wake.
High-speed imaging using CMOS image sensor with quasi pixel-wise exposure
NASA Astrophysics Data System (ADS)
Sonoda, T.; Nagahara, H.; Endo, K.; Sugiyama, Y.; Taniguchi, R.
2017-02-01
Several recent studies in compressive video sensing have realized scene capture beyond the fundamental trade-off limit between spatial resolution and temporal resolution using random space-time sampling. However, most of these studies showed results for higher frame rate video that were produced by simulation experiments or using an optically simulated random sampling camera, because there are currently no commercially available image sensors with random exposure or sampling capabilities. We fabricated a prototype complementary metal oxide semiconductor (CMOS) image sensor with quasi pixel-wise exposure timing that can realize nonuniform space-time sampling. The prototype sensor can reset exposures independently by columns and fix these amount of exposure by rows for each 8x8 pixel block. This CMOS sensor is not fully controllable via the pixels, and has line-dependent controls, but it offers flexibility when compared with regular CMOS or charge-coupled device sensors with global or rolling shutters. We propose a method to realize pseudo-random sampling for high-speed video acquisition that uses the flexibility of the CMOS sensor. We reconstruct the high-speed video sequence from the images produced by pseudo-random sampling using an over-complete dictionary.
Biobeam—Multiplexed wave-optical simulations of light-sheet microscopy
Weigert, Martin; Bundschuh, Sebastian T.
2018-01-01
Sample-induced image-degradation remains an intricate wave-optical problem in light-sheet microscopy. Here we present biobeam, an open-source software package that enables simulation of operational light-sheet microscopes by combining data from 105–106 multiplexed and GPU-accelerated point-spread-function calculations. The wave-optical nature of these simulations leads to the faithful reproduction of spatially varying aberrations, diffraction artifacts, geometric image distortions, adaptive optics, and emergent wave-optical phenomena, and renders image-formation in light-sheet microscopy computationally tractable. PMID:29652879
Lin, Yu-Zi; Huang, Kuang-Yuh; Luo, Yuan
2018-06-15
Half-circle illumination-based differential phase contrast (DPC) microscopy has been utilized to recover phase images through a pair of images along multiple axes. Recently, the half-circle based DPC using 12-axis measurements significantly provides a circularly symmetric phase transfer function to improve accuracy for more stable phase recovery. Instead of using half-circle-based DPC, we propose a new scheme of DPC under radially asymmetric illumination to achieve circularly symmetric phase transfer function and enhance the accuracy of phase recovery in a more stable and efficient fashion. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of microspheres, as well as live fibroblast cell samples.
Multi-wavelength differential absorption measurements of chemical species
NASA Astrophysics Data System (ADS)
Brown, David M.
The probability of accurate detection and quantification of airborne species is enhanced when several optical wavelengths are used to measure the differential absorption of molecular spectral features. Characterization of minor atmospheric constituents, biological hazards, and chemical plumes containing multiple species is difficult when using current approaches because of weak signatures and the use of a limited number of wavelengths used for identification. Current broadband systems such as Differential Optical Absorption Spectroscopy (DOAS) have either limitations for long-range propagation, or require transmitter power levels that are unsafe for operation in urban environments. Passive hyperspectral imaging systems that utilize absorption of solar scatter at visible and infrared wavelengths, or use absorption of background thermal emission, have been employed routinely for detection of airborne chemical species. Passive approaches have operational limitations at various ranges, or under adverse atmospheric conditions because the source intensity and spectrum is often an unknown variable. The work presented here describes a measurement approach that uses a known source of a low transmitted power level for an active system, while retaining the benefits of broadband and extremely long-path absorption operations. An optimized passive imaging system also is described that operates in the 3 to 4 mum window of the mid-infrared. Such active and passive instruments can be configured to optimize the detection of several hydrocarbon gases, as well as many other species of interest. Measurements have provided the incentive to develop algorithms for the calculations of atmospheric species concentrations using multiple wavelengths. These algorithms are used to prepare simulations and make comparisons with experimental results from absorption data of a supercontinuum laser source. The MODTRAN model is used in preparing the simulations, and also in developing additional algorithms to select filters for use with a MWIR (midwave infrared) imager for detection of plumes of methane, propane, gasoline vapor, and diesel vapor. These simulations were prepared for system designs operating on a down-looking airborne platform. A data analysis algorithm for use with a hydrocarbon imaging system extracts regions of interest from the field-of-view for further analysis. An error analysis is presented for a scanning DAS (Differential Absorption Spectroscopy) lidar system operating from an airborne platform that uses signals scattered from topographical targets. The analysis is built into a simulation program for testing real-time data processing approaches, and to gauge the effects on measurements of path column concentration due to ground reflectivity variations. An example simulation provides a description of the data expected for methane. Several accomplishments of this research include: (1) A new lidar technique for detection and measurement of concentrations of atmospheric species is demonstrated that uses a low-power supercontinuum source. (2) A new multi-wavelength algorithm, which demonstrates excellent performance, is applied to processing spectroscopic data collected by a longpath supercontinuum laser absorption instrument. (3) A simulation program for topographical scattering of a scanning DAS system is developed, and it is validated with aircraft data from the ITT Industries ANGEL (Airborne Natural Gas Emission Lidar) 3-lambda lidar system. (4) An error analysis procedure for DAS is developed, and is applied to measurements and simulations for an airborne platform. (5) A method for filter selection is developed and tested for use with an infrared imager that optimizes the detection for various hydrocarbons that absorb in the midwave infrared. (6) The development of a Fourier analysis algorithm is described that allows a user to rapidly separate hydrocarbon plumes from the background features in the field of view of an imaging system.
Color separation in forensic image processing using interactive differential evolution.
Mushtaq, Harris; Rahnamayan, Shahryar; Siddiqi, Areeb
2015-01-01
Color separation is an image processing technique that has often been used in forensic applications to differentiate among variant colors and to remove unwanted image interference. This process can reveal important information such as covered text or fingerprints in forensic investigation procedures. However, several limitations prevent users from selecting the appropriate parameters pertaining to the desired and undesired colors. This study proposes the hybridization of an interactive differential evolution (IDE) and a color separation technique that no longer requires users to guess required control parameters. The IDE algorithm optimizes these parameters in an interactive manner by utilizing human visual judgment to uncover desired objects. A comprehensive experimental verification has been conducted on various sample test images, including heavily obscured texts, texts with subtle color variations, and fingerprint smudges. The advantage of IDE is apparent as it effectively optimizes the color separation parameters at a level indiscernible to the naked eyes. © 2014 American Academy of Forensic Sciences.
Tie Points Extraction for SAR Images Based on Differential Constraints
NASA Astrophysics Data System (ADS)
Xiong, X.; Jin, G.; Xu, Q.; Zhang, H.
2018-04-01
Automatically extracting tie points (TPs) on large-size synthetic aperture radar (SAR) images is still challenging because the efficiency and correct ratio of the image matching need to be improved. This paper proposes an automatic TPs extraction method based on differential constraints for large-size SAR images obtained from approximately parallel tracks, between which the relative geometric distortions are small in azimuth direction and large in range direction. Image pyramids are built firstly, and then corresponding layers of pyramids are matched from the top to the bottom. In the process, the similarity is measured by the normalized cross correlation (NCC) algorithm, which is calculated from a rectangular window with the long side parallel to the azimuth direction. False matches are removed by the differential constrained random sample consensus (DC-RANSAC) algorithm, which appends strong constraints in azimuth direction and weak constraints in range direction. Matching points in the lower pyramid images are predicted with the local bilinear transformation model in range direction. Experiments performed on ENVISAT ASAR and Chinese airborne SAR images validated the efficiency, correct ratio and accuracy of the proposed method.
Through-focus scanning optical microscopy (TSOM) with adaptive optics
NASA Astrophysics Data System (ADS)
Lee, Jun Ho; Park, Gyunam; Jeong, Junhee; Park, Chris
2018-03-01
Through-focus optical microscopy (TSOM) with nanometer-scale lateral and vertical sensitivity levels matching those of scanning electron microscopy has been demonstrated to be useful both for 3D inspections and metrology assessments. In 2014, funded by two private companies (Nextin/Samsung Electronics) and the Korea Evaluation Institute of Industrial Technology (KEIT), a research team from four universities in South Korea set out to investigate core technologies for developing in-line TSOM inspection and metrology tools, with the respective teams focusing on optics implementation, defect inspection, computer simulation and high-speed metrology matching. We initially confirmed the reported validity of the TSOM operation through a computer simulation, after which we implemented the TSOM operation by throughfocus scanning of existing UV (355nm) and IR (800nm) inspection tools. These tools have an identical sampling distance of 150 nm but have different resolving distances (310 and 810 nm, respectively). We initially experienced some improvement in the defect inspection sensitivity level over TSV (through-silicon via) samples with 6.6 μm diameters. However, during the experiment, we noted sensitivity and instability issues when attempting to acquire TSOM images. As TSOM 3D information is indirectly extracted by differentiating a target TSOM image from reference TSOM images, any instability or mismatch in imaging conditions can result in measurement errors. As a remedy to such a situation, we proposed the application of adaptive optics to the TSOM operation and developed a closed-loop system with a tip/tilt mirror and a Shack-Hartmann sensor on an optical bench. We were able to keep the plane position within in RMS 0.4 pixel by actively compensating for any position instability which arose during the TSOM scanning process along the optical axis. Currently, we are also developing another TSOM tool with a deformable mirror instead of a tip/tilt mirror, in which case we will not require any mechanical scanning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magome, Taiki; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Department of Radiology, The University of Tokyo Hospital, Tokyo
Purpose: To develop an imaging method to characterize and map marrow composition in the entire skeletal system, and to simulate differential targeted marrow irradiation based on marrow composition. Methods and Materials: Whole-body dual energy computed tomography (DECT) images of cadavers and leukemia patients were acquired, segmented to separate bone marrow components, namely, bone, red marrow (RM), and yellow marrow (YM). DECT-derived marrow fat fraction was validated using histology of lumbar vertebrae obtained from cadavers. The fractions of RM (RMF = RM/total marrow) and YMF were calculated in each skeletal region to assess the correlation of marrow composition with sites and ages. Treatmentmore » planning was simulated to target irradiation differentially at a higher dose (18 Gy) to either RM or YM and a lower dose (12 Gy) to the rest of the skeleton. Results: A significant correlation between fat fractions obtained from DECT and cadaver histology samples was observed (r=0.861, P<.0001, Pearson). The RMF decreased in the head, neck, and chest was significantly inversely correlated with age but did not show any significant age-related changes in the abdomen and pelvis regions. Conformity of radiation to targets (RM, YM) was significantly dependent on skeletal sites. The radiation exposure was significantly reduced (P<.05, t test) to organs at risk (OARs) in RM and YM irradiation compared with standard total marrow irradiation (TMI). Conclusions: Whole-body DECT offers a new imaging technique to visualize and measure skeletal-wide marrow composition. The DECT-based treatment planning offers volumetric and site-specific precise radiation dosimetry of RM and YM, which varies with aging. Our proposed method could be used as a functional compartment of TMI for further targeted radiation to specific bone marrow environment, dose escalation, reduction of doses to OARs, or a combination of these factors.« less
Brown, H G; Ishikawa, R; Sánchez-Santolino, G; Lugg, N R; Ikuhara, Y; Allen, L J; Shibata, N
2017-02-01
Important properties of functional materials, such as ferroelectric shifts and octahedral distortions, are associated with displacements of the positions of lighter atoms in the unit cell. Annular bright-field scanning transmission electron microscopy is a good experimental method for investigating such phenomena due to its ability to image light and heavy atoms simultaneously. To map atomic positions at the required accuracy precise angular alignment of the sample with the microscope optical axis is necessary, since misalignment (tilt) of the specimen contributes to errors in position measurements of lighter elements in annular bright-field imaging. In this paper it is shown that it is possible to detect tilt with the aid of images recorded using a central bright-field detector placed within the inner radius of the annular bright-field detector. For a probe focus near the middle of the specimen the central bright-field image becomes especially sensitive to tilt and we demonstrate experimentally that misalignment can be detected with a precision of less than a milliradian, as we also confirm in simulation. Coma in the probe, an aberration that can be misidentified as tilt of the specimen, is also investigated and it is shown how the effects of coma and tilt can be differentiated. The effects of tilt may be offset to a large extent by shifting the diffraction plane detector an amount equivalent to the specimen tilt and we provide an experimental proof of principle of this using a segmented detector system. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of Differential Item Functioning on Test Equating
ERIC Educational Resources Information Center
Kabasakal, Kübra Atalay; Kelecioglu, Hülya
2015-01-01
This study examines the effect of differential item functioning (DIF) items on test equating through multilevel item response models (MIRMs) and traditional IRMs. The performances of three different equating models were investigated under 24 different simulation conditions, and the variables whose effects were examined included sample size, test…
In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling
NASA Astrophysics Data System (ADS)
Yeager, John; Manner, Virginia; Patterson, Brian; Walters, David; Cordes, Nikolaus; Henderson, Kevin; Tappan, Bryce; Luscher, Darby
2017-06-01
The microstructure of plastic bonded explosives (PBXs) is known to influence behavior during insults such as deformation, heating or initiation to detonation. Obtaining three-dimensional microstructural data can be difficult due in part to fragility of the material and small feature size. X-ray computed tomography (CT) is an ideal characterization technique but the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient x-ray contrast to differentiate between the components. Here, we have formulated several PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7- tetrazocine (HMX) crystals and low-density binder systems. The full three-dimensional microstructure of these samples has been characterized using microscale CT during uniaxial mechanical compression in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and material flow. Additionally, the segmented, 3D images were meshed for finite element simulation. Initial results of the mesoscale modeling exhibit qualitatively similar delamination. Los Alamos National Laboratory - LDRD.
Zhang, Shunqi; Yin, Tao; Ma, Ren; Liu, Zhipeng
2015-08-01
Functional imaging method of biological electrical characteristics based on magneto-acoustic effect gives valuable information of tissue in early tumor diagnosis, therein time and frequency characteristics analysis of magneto-acoustic signal is important in image reconstruction. This paper proposes wave summing method based on Green function solution for acoustic source of magneto-acoustic effect. Simulations and analysis under quasi 1D transmission condition are carried out to time and frequency characteristics of magneto-acoustic signal of models with different thickness. Simulation results of magneto-acoustic signal were verified through experiments. Results of the simulation with different thickness showed that time-frequency characteristics of magneto-acoustic signal reflected thickness of sample. Thin sample, which is less than one wavelength of pulse, and thick sample, which is larger than one wavelength, showed different summed waveform and frequency characteristics, due to difference of summing thickness. Experimental results verified theoretical analysis and simulation results. This research has laid a foundation for acoustic source and conductivity reconstruction to the medium with different thickness in magneto-acoustic imaging.
Design and simulation of the circuit of SWIR hyper-spectral imaging spectrometer
NASA Astrophysics Data System (ADS)
Ren, Bin; Li, Zi-tian; Meng, Nan
2009-07-01
With the requirement of the SWIR Hyper-spectral Imaging Spectrometer, this article describes a project of SWIR image circuit based on IRFPA detector. First, the structure of the SWIR Hyper-spectral Imaging Spectrometer is introduced in this paper, and then the infrared imaging circuit design is proposed, which is based on MCT SWIR FPA with 500*256 pixels, the detector NEPTURN, in Safradir Company. According to the scheme, several key technologies have been studied in particular, such as driving circuit, time control circuit, high-speed A/D converter, LVDS (Low Voltage Differential Signaling) transmission circuit. At last, An improved two-point Correction Method was chosen to correct the Non-uniformity of image. The simulation results demonstrate that the proposed method can effectively suppress noises and work with low power consumption. The electric system not only has the advantages of simplicity and compactness but also can work stably, providing 500×256 image at the frame frequency of 200 Hz in good quality.
Development of Nomarski microscopy for quantitative determination of surface topography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, J. S.; Gordon, R. L.; Lessor, D. L.
1979-01-01
The use of Nomarski differential interference contrast (DIC) microscopy has been extended to provide nondestructive, quantitative analysis of a sample's surface topography. Theoretical modeling has determined the dependence of the image intensity on the microscope's optical components, the sample's optical properties, and the sample's surface orientation relative to the microscope. Results include expressions to allow the inversion of image intensity data to determine sample surface slopes. A commercial Nomarski system has been modified and characterized to allow the evaluation of the optical model. Data have been recorded with smooth, planar samples that verify the theoretical predictions.
Gauquelin, N; van den Bos, K H W; Béché, A; Krause, F F; Lobato, I; Lazar, S; Rosenauer, A; Van Aert, S; Verbeeck, J
2017-10-01
Nowadays, aberration corrected transmission electron microscopy (TEM) is a popular method to characterise nanomaterials at the atomic scale. Here, atomically resolved images of nanomaterials are acquired, where the contrast depends on the illumination, imaging and detector conditions of the microscope. Visualization of light elements is possible when using low angle annular dark field (LAADF) STEM, annular bright field (ABF) STEM, integrated differential phase contrast (iDPC) STEM, negative spherical aberration imaging (NCSI) and imaging STEM (ISTEM). In this work, images of a NdGaO 3 -La 0.67 Sr 0.33 MnO 3 (NGO-LSMO) interface are quantitatively evaluated by using statistical parameter estimation theory. For imaging light elements, all techniques are providing reliable results, while the techniques based on interference contrast, NCSI and ISTEM, are less robust in terms of accuracy for extracting heavy column locations. In term of precision, sample drift and scan distortions mainly limits the STEM based techniques as compared to NCSI. Post processing techniques can, however, partially compensate for this. In order to provide an outlook to the future, simulated images of NGO, in which the unavoidable presence of Poisson noise is taken into account, are used to determine the ultimate precision. In this future counting noise limited scenario, NCSI and ISTEM imaging will provide more precise values as compared to the other techniques, which can be related to the mechanisms behind the image recording. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guan, Huifeng; Anastasio, Mark A.
2017-03-01
It is well-known that properly designed image reconstruction methods can facilitate reductions in imaging doses and data-acquisition times in tomographic imaging. The ability to do so is particularly important for emerging modalities such as differential X-ray phase-contrast tomography (D-XPCT), which are currently limited by these factors. An important application of D-XPCT is high-resolution imaging of biomedical samples. However, reconstructing high-resolution images from few-view tomographic measurements remains a challenging task. In this work, a two-step sub-space reconstruction strategy is proposed and investigated for use in few-view D-XPCT image reconstruction. It is demonstrated that the resulting iterative algorithm can mitigate the high-frequency information loss caused by data incompleteness and produce images that have better preserved high spatial frequency content than those produced by use of a conventional penalized least squares (PLS) estimator.
Li, Ye; Yu, Baiying; Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang
2013-01-01
The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.
Postek, Michael T; Vladár, András E; Villarrubia, John S; Muto, Atsushi
2016-08-01
Dimensional measurements from secondary electron (SE) images were compared with those from backscattered electron (BSE) and low-loss electron (LLE) images. With the commonly used 50% threshold criterion, the lines consistently appeared larger in the SE images. As the images were acquired simultaneously by an instrument with the capability to operate detectors for both signals at the same time, the differences cannot be explained by the assumption that contamination or drift between images affected the SE, BSE, or LLE images differently. Simulations with JMONSEL, an electron microscope simulator, indicate that the nanometer-scale differences observed on this sample can be explained by the different convolution effects of a beam with finite size on signals with different symmetry (the SE signal's characteristic peak versus the BSE or LLE signal's characteristic step). This effect is too small to explain the >100 nm discrepancies that were observed in earlier work on different samples. Additional modeling indicates that those discrepancies can be explained by the much larger sidewall angles of the earlier samples, coupled with the different response of SE versus BSE/LLE profiles to such wall angles.
NASA Astrophysics Data System (ADS)
Peller, Joseph; Thompson, Kyle J.; Siddiqui, Imran; Martinie, John; Iannitti, David A.; Trammell, Susan R.
2017-02-01
Pancreatic cancer is the fourth leading cause of cancer death in the US. Currently, surgery is the only treatment that offers a chance of cure, however, accurately identifying tumor margins in real-time is difficult. Research has demonstrated that optical spectroscopy can be used to distinguish between healthy and diseased tissue. The design of a single-pixel imaging system for cancer detection is discussed. The system differentiates between healthy and diseased tissue based on differences in the optical reflectance spectra of these regions. In this study, pancreatic tissue samples from 6 patients undergoing Whipple procedures are imaged with the system (total number of tissue sample imaged was N=11). Regions of healthy and unhealthy tissue are determined based on SAM analysis of these spectral images. Hyperspectral imaging results are then compared to white light imaging and histological analysis. Cancerous regions were clearly visible in the hyperspectral images. Margins determined via spectral imaging were in good agreement with margins identified by histology, indicating that hyperspectral imaging system can differentiate between healthy and diseased tissue. After imaging the system was able to detect cancerous regions with a sensitivity of 74.50±5.89% and a specificity of 75.53±10.81%. Possible applications of this imaging system include determination of tumor margins during surgery/biopsy and assistance with cancer diagnosis and staging.
Using compressive sensing to recover images from PET scanners with partial detector rings.
Valiollahzadeh, SeyyedMajid; Clark, John W; Mawlawi, Osama
2015-01-01
Most positron emission tomography/computed tomography (PET/CT) scanners consist of tightly packed discrete detector rings to improve scanner efficiency. The authors' aim was to use compressive sensing (CS) techniques in PET imaging to investigate the possibility of decreasing the number of detector elements per ring (introducing gaps) while maintaining image quality. A CS model based on a combination of gradient magnitude and wavelet domains (wavelet-TV) was developed to recover missing observations in PET data acquisition. The model was designed to minimize the total variation (TV) and L1-norm of wavelet coefficients while constrained by the partially observed data. The CS model also incorporated a Poisson noise term that modeled the observed noise while suppressing its contribution by penalizing the Poisson log likelihood function. Three experiments were performed to evaluate the proposed CS recovery algorithm: a simulation study, a phantom study, and six patient studies. The simulation dataset comprised six disks of various sizes in a uniform background with an activity concentration of 5:1. The simulated image was multiplied by the system matrix to obtain the corresponding sinogram and then Poisson noise was added. The resultant sinogram was masked to create the effect of partial detector removal and then the proposed CS algorithm was applied to recover the missing PET data. In addition, different levels of noise were simulated to assess the performance of the proposed algorithm. For the phantom study, an IEC phantom with six internal spheres each filled with F-18 at an activity-to-background ratio of 10:1 was used. The phantom was imaged twice on a RX PET/CT scanner: once with all detectors operational (baseline) and once with four detector blocks (11%) turned off at each of 0 ˚, 90 ˚, 180 ˚, and 270° (partially sampled). The partially acquired sinograms were then recovered using the proposed algorithm. For the third test, PET images from six patient studies were investigated using the same strategy of the phantom study. The recovered images using WTV and TV as well as the partially sampled images from all three experiments were then compared with the fully sampled images (the baseline). Comparisons were done by calculating the mean error (%bias), root mean square error (RMSE), contrast recovery (CR), and SNR of activity concentration in regions of interest drawn in the background as well as the disks, spheres, and lesions. For the simulation study, the mean error, RMSE, and CR for the WTV (TV) recovered images were 0.26% (0.48%), 2.6% (2.9%), 97% (96%), respectively, when compared to baseline. For the partially sampled images, these results were 22.5%, 45.9%, and 64%, respectively. For the simulation study, the average SNR for the baseline was 41.7 while for WTV (TV), recovered image was 44.2 (44.0). The phantom study showed similar trends with 5.4% (18.2%), 15.6% (18.8%), and 78% (60%), respectively, for the WTV (TV) images and 33%, 34.3%, and 69% for the partially sampled images. For the phantom study, the average SNR for the baseline was 14.7 while for WTV (TV) recovered image was 13.7 (11.9). Finally, the average of these values for the six patient studies for the WTV-recovered, TV, and partially sampled images was 1%, 7.2%, 92% and 1.3%, 15.1%, 87%, and 27%, 25.8%, 45%, respectively. CS with WTV is capable of recovering PET images with good quantitative accuracy from partially sampled data. Such an approach can be used to potentially reduce the cost of scanners while maintaining good image quality.
Using compressive sensing to recover images from PET scanners with partial detector rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valiollahzadeh, SeyyedMajid, E-mail: sv4@rice.edu; Clark, John W.; Mawlawi, Osama
2015-01-15
Purpose: Most positron emission tomography/computed tomography (PET/CT) scanners consist of tightly packed discrete detector rings to improve scanner efficiency. The authors’ aim was to use compressive sensing (CS) techniques in PET imaging to investigate the possibility of decreasing the number of detector elements per ring (introducing gaps) while maintaining image quality. Methods: A CS model based on a combination of gradient magnitude and wavelet domains (wavelet-TV) was developed to recover missing observations in PET data acquisition. The model was designed to minimize the total variation (TV) and L1-norm of wavelet coefficients while constrained by the partially observed data. The CSmore » model also incorporated a Poisson noise term that modeled the observed noise while suppressing its contribution by penalizing the Poisson log likelihood function. Three experiments were performed to evaluate the proposed CS recovery algorithm: a simulation study, a phantom study, and six patient studies. The simulation dataset comprised six disks of various sizes in a uniform background with an activity concentration of 5:1. The simulated image was multiplied by the system matrix to obtain the corresponding sinogram and then Poisson noise was added. The resultant sinogram was masked to create the effect of partial detector removal and then the proposed CS algorithm was applied to recover the missing PET data. In addition, different levels of noise were simulated to assess the performance of the proposed algorithm. For the phantom study, an IEC phantom with six internal spheres each filled with F-18 at an activity-to-background ratio of 10:1 was used. The phantom was imaged twice on a RX PET/CT scanner: once with all detectors operational (baseline) and once with four detector blocks (11%) turned off at each of 0 °, 90 °, 180 °, and 270° (partially sampled). The partially acquired sinograms were then recovered using the proposed algorithm. For the third test, PET images from six patient studies were investigated using the same strategy of the phantom study. The recovered images using WTV and TV as well as the partially sampled images from all three experiments were then compared with the fully sampled images (the baseline). Comparisons were done by calculating the mean error (%bias), root mean square error (RMSE), contrast recovery (CR), and SNR of activity concentration in regions of interest drawn in the background as well as the disks, spheres, and lesions. Results: For the simulation study, the mean error, RMSE, and CR for the WTV (TV) recovered images were 0.26% (0.48%), 2.6% (2.9%), 97% (96%), respectively, when compared to baseline. For the partially sampled images, these results were 22.5%, 45.9%, and 64%, respectively. For the simulation study, the average SNR for the baseline was 41.7 while for WTV (TV), recovered image was 44.2 (44.0). The phantom study showed similar trends with 5.4% (18.2%), 15.6% (18.8%), and 78% (60%), respectively, for the WTV (TV) images and 33%, 34.3%, and 69% for the partially sampled images. For the phantom study, the average SNR for the baseline was 14.7 while for WTV (TV) recovered image was 13.7 (11.9). Finally, the average of these values for the six patient studies for the WTV-recovered, TV, and partially sampled images was 1%, 7.2%, 92% and 1.3%, 15.1%, 87%, and 27%, 25.8%, 45%, respectively. Conclusions: CS with WTV is capable of recovering PET images with good quantitative accuracy from partially sampled data. Such an approach can be used to potentially reduce the cost of scanners while maintaining good image quality.« less
Acoustic imaging of a duct spinning mode by the use of an in-duct circular microphone array.
Wei, Qingkai; Huang, Xun; Peers, Edward
2013-06-01
An imaging method of acoustic spinning modes propagating within a circular duct simply with surface pressure information is introduced in this paper. The proposed method is developed in a theoretical way and is demonstrated by a numerical simulation case. Nowadays, the measurements within a duct have to be conducted using in-duct microphone array, which is unable to provide information of complete acoustic solutions across the test section. The proposed method can estimate immeasurable information by forming a so-called observer. The fundamental idea behind the testing method was originally developed in control theory for ordinary differential equations. Spinning mode propagation, however, is formulated in partial differential equations. A finite difference technique is used to reduce the associated partial differential equations to a classical form in control. The observer method can thereafter be applied straightforwardly. The algorithm is recursive and, thus, could be operated in real-time. A numerical simulation for a straight circular duct is conducted. The acoustic solutions on the test section can be reconstructed with good agreement to analytical solutions. The results suggest the potential and applications of the proposed method.
Remote Sensing Image Quality Assessment Experiment with Post-Processing
NASA Astrophysics Data System (ADS)
Jiang, W.; Chen, S.; Wang, X.; Huang, Q.; Shi, H.; Man, Y.
2018-04-01
This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND) subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.
NASA Astrophysics Data System (ADS)
Mehta, Shalin B.; Sheppard, Colin J. R.
2010-05-01
Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.
Wan, Xiaohua; Katchalski, Tsvi; Churas, Christopher; Ghosh, Sreya; Phan, Sebastien; Lawrence, Albert; Hao, Yu; Zhou, Ziying; Chen, Ruijuan; Chen, Yu; Zhang, Fa; Ellisman, Mark H
2017-05-01
Because of the significance of electron microscope tomography in the investigation of biological structure at nanometer scales, ongoing improvement efforts have been continuous over recent years. This is particularly true in the case of software developments. Nevertheless, verification of improvements delivered by new algorithms and software remains difficult. Current analysis tools do not provide adaptable and consistent methods for quality assessment. This is particularly true with images of biological samples, due to image complexity, variability, low contrast and noise. We report an electron tomography (ET) simulator with accurate ray optics modeling of image formation that includes curvilinear trajectories through the sample, warping of the sample and noise. As a demonstration of the utility of our approach, we have concentrated on providing verification of the class of reconstruction methods applicable to wide field images of stained plastic-embedded samples. Accordingly, we have also constructed digital phantoms derived from serial block face scanning electron microscope images. These phantoms are also easily modified to include alignment features to test alignment algorithms. The combination of more realistic phantoms with more faithful simulations facilitates objective comparison of acquisition parameters, alignment and reconstruction algorithms and their range of applicability. With proper phantoms, this approach can also be modified to include more complex optical models, including distance-dependent blurring and phase contrast functions, such as may occur in cryotomography. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Frollo, Ivan; Krafčík, Andrej; Andris, Peter; Přibil, Jiří; Dermek, Tomáš
2015-12-01
Circular samples are the frequent objects of "in-vitro" investigation using imaging method based on magnetic resonance principles. The goal of our investigation is imaging of thin planar layers without using the slide selection procedure, thus only 2D imaging or imaging of selected layers of samples in circular vessels, eppendorf tubes,.. compulsorily using procedure "slide selection". In spite of that the standard imaging methods was used, some specificity arise when mathematical modeling of these procedure is introduced. In the paper several mathematical models were presented that were compared with real experimental results. Circular magnetic samples were placed into the homogenous magnetic field of a low field imager based on nuclear magnetic resonance. For experimental verification an MRI 0.178 Tesla ESAOTE Opera imager was used.
Three-dimensional scene reconstruction from a two-dimensional image
NASA Astrophysics Data System (ADS)
Parkins, Franz; Jacobs, Eddie
2017-05-01
We propose and simulate a method of reconstructing a three-dimensional scene from a two-dimensional image for developing and augmenting world models for autonomous navigation. This is an extension of the Perspective-n-Point (PnP) method which uses a sampling of the 3D scene, 2D image point parings, and Random Sampling Consensus (RANSAC) to infer the pose of the object and produce a 3D mesh of the original scene. Using object recognition and segmentation, we simulate the implementation on a scene of 3D objects with an eye to implementation on embeddable hardware. The final solution will be deployed on the NVIDIA Tegra platform.
A fast image simulation algorithm for scanning transmission electron microscopy.
Ophus, Colin
2017-01-01
Image simulation for scanning transmission electron microscopy at atomic resolution for samples with realistic dimensions can require very large computation times using existing simulation algorithms. We present a new algorithm named PRISM that combines features of the two most commonly used algorithms, namely the Bloch wave and multislice methods. PRISM uses a Fourier interpolation factor f that has typical values of 4-20 for atomic resolution simulations. We show that in many cases PRISM can provide a speedup that scales with f 4 compared to multislice simulations, with a negligible loss of accuracy. We demonstrate the usefulness of this method with large-scale scanning transmission electron microscopy image simulations of a crystalline nanoparticle on an amorphous carbon substrate.
A fast image simulation algorithm for scanning transmission electron microscopy
Ophus, Colin
2017-05-10
Image simulation for scanning transmission electron microscopy at atomic resolution for samples with realistic dimensions can require very large computation times using existing simulation algorithms. Here, we present a new algorithm named PRISM that combines features of the two most commonly used algorithms, namely the Bloch wave and multislice methods. PRISM uses a Fourier interpolation factor f that has typical values of 4-20 for atomic resolution simulations. We show that in many cases PRISM can provide a speedup that scales with f 4 compared to multislice simulations, with a negligible loss of accuracy. We demonstrate the usefulness of this methodmore » with large-scale scanning transmission electron microscopy image simulations of a crystalline nanoparticle on an amorphous carbon substrate.« less
Building an Open-source Simulation Platform of Acoustic Radiation Force-based Breast Elastography
Wang, Yu; Peng, Bo; Jiang, Jingfeng
2017-01-01
Ultrasound-based elastography including strain elastography (SE), acoustic radiation force Impulse (ARFI) imaging, point shear wave elastography (pSWE) and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. “ground truth”) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity – one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments. PMID:28075330
Building an open-source simulation platform of acoustic radiation force-based breast elastography
NASA Astrophysics Data System (ADS)
Wang, Yu; Peng, Bo; Jiang, Jingfeng
2017-03-01
Ultrasound-based elastography including strain elastography, acoustic radiation force impulse (ARFI) imaging, point shear wave elastography and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. ‘ground truth’) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity—one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments.
Differential Item Functioning: Its Consequences. Research Report. ETS RR-10-01
ERIC Educational Resources Information Center
Lee, Yi-Hsuan; Zhang, Jinming
2010-01-01
This report examines the consequences of differential item functioning (DIF) using simulated data. Its impact on total score, item response theory (IRT) ability estimate, and test reliability was evaluated in various testing scenarios created by manipulating the following four factors: test length, percentage of DIF items per form, sample sizes of…
Separation and identification of the silt-sized heavy-mineral fraction in sediments
Commeau, Judith A.; Poppe, Lawrence J.; Commeau, R.F.
1992-01-01
The separation of silt-sized minerals by specific gravity is made possible by using a nontoxic, heavy liquid medium of sodium polytungstate and water. Once separated, the silt-sized heavy-mineral fraction is prepared for analysis with a scanning electron microscope equipped with an automatic image analyzer and energy-dispersive spectrometer. Particles within each sample are sized and sorted according to their chemistry, and the data are tabulated in histograms and tables. Where possible, the user can define the chemical categories to simulate distinct mineral groups. Polymorphs and minerals that have overlapping compositions are combined into a group and differentiated by X-ray diffraction. Hundreds of particles can be rapidly sized and classified by chemistry. The technique can be employed on sediments from any environment.
Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers
NASA Astrophysics Data System (ADS)
Fortmann-Grote, C.; Bielecki, J.; Jurek, Z.; Santra, R.; Ziaja-Motyka, B.; Mancuso, A. P.
2017-08-01
We employ start-to-end simulations to model coherent diffractive imaging of single biomolecules using x-ray free electron lasers. This technique is expected to yield new structural information about biologically relevant macromolecules thanks to the ability to study the isolated sample in its natural environment as opposed to crystallized or cryogenic samples. The effect of the solvent on the diffraction pattern and interpretability of the data is an open question. We present first results of calculations where the solvent is taken into account explicitly. They were performed with a molecular dynamics scheme for a sample consisting of a protein and a hydration layer of varying thickness. Through R-factor analysis of the simulated diffraction patterns from hydrated samples, we show that the scattering background from realistic hydration layers of up to 3 Å thickness presents no obstacle for the resolution of molecular structures at the sub-nm level.
Influence of wave-front sampling in adaptive optics retinal imaging
Laslandes, Marie; Salas, Matthias; Hitzenberger, Christoph K.; Pircher, Michael
2017-01-01
A wide range of sampling densities of the wave-front has been used in retinal adaptive optics (AO) instruments, compared to the number of corrector elements. We developed a model in order to characterize the link between number of actuators, number of wave-front sampling points and AO correction performance. Based on available data from aberration measurements in the human eye, 1000 wave-fronts were generated for the simulations. The AO correction performance in the presence of these representative aberrations was simulated for different deformable mirror and Shack Hartmann wave-front sensor combinations. Predictions of the model were experimentally tested through in vivo measurements in 10 eyes including retinal imaging with an AO scanning laser ophthalmoscope. According to our study, a ratio between wavefront sampling points and actuator elements of 2 is sufficient to achieve high resolution in vivo images of photoreceptors. PMID:28271004
Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki
2011-06-01
Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. Copyright © 2010 Elsevier B.V. All rights reserved.
Murase, E; Siegelman, E S; Outwater, E K; Perez-Jaffe, L A; Tureck, R W
1999-01-01
Leiomyomas are the most common uterine neoplasm and are composed of smooth muscle with varying amounts of fibrous connective tissue. As leiomyomas enlarge, they may outgrow their blood supply, resulting in various types of degeneration: hyaline or myxoid degeneration, calcification, cystic degeneration, and red degeneration. Leiomyomas are classified as submucosal, intramural, or subserosal; the latter may become pedunculated and simulate ovarian neoplasms. Although most leiomyomas are asymptomatic, patients may present with abnormal uterine bleeding, pressure on adjacent organs, pain, infertility, or a palpable abdominalpelvic mass. Magnetic resonance (MR) imaging is the most accurate imaging technique for detection and localization of leiomyomas. On T2-weighted images, nondegenerated leiomyomas appear as well-circumscribed masses of decreased signal intensity; however, cellular leiomyomas can have relatively higher signal intensity on T2-weighted images and demonstrate enhancement on contrast material-enhanced images. Degenerated leiomyomas have variable appearances on T2-weighted images and contrast-enhanced images. The differential diagnosis of leiomyomas includes adenomyosis, solid adnexal mass, focal myometrial contraction, and uterine leiomyosarcoma. For patients with symptoms, medical or surgical treatment may be indicated. MR imaging also has a role in treatment of leiomyomas by assisting in surgical planning and monitoring the response to medical therapy.
Peter, Silvia; Modregger, Peter; Fix, Michael K.; Volken, Werner; Frei, Daniel; Manser, Peter; Stampanoni, Marco
2014-01-01
Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging. PMID:24763652
NASA Astrophysics Data System (ADS)
Bird, M. B.; Butler, S. L.; Hawkes, C. D.; Kotzer, T.
2014-12-01
The use of numerical simulations to model physical processes occurring within subvolumes of rock samples that have been characterized using advanced 3D imaging techniques is becoming increasingly common. Not only do these simulations allow for the determination of macroscopic properties like hydraulic permeability and electrical formation factor, but they also allow the user to visualize processes taking place at the pore scale and they allow for multiple different processes to be simulated on the same geometry. Most efforts to date have used specialized research software for the purpose of simulations. In this contribution, we outline the steps taken to use commercial software Avizo to transform a 3D synchrotron X-ray-derived tomographic image of a rock core sample to an STL (STereoLithography) file which can be imported into the commercial multiphysics modeling package COMSOL. We demonstrate that the use of COMSOL to perform fluid and electrical current flow simulations through the pore spaces. The permeability and electrical formation factor of the sample are calculated and compared with laboratory-derived values and benchmark calculations. Although the simulation domains that we were able to model on a desk top computer were significantly smaller than representative elementary volumes, and we were able to establish Kozeny-Carman and Archie's Law trends on which laboratory measurements and previous benchmark solutions fall. The rock core samples include a Fountainebleau sandstone used for benchmarking and a marly dolostone sampled from a well in the Weyburn oil field of southeastern Saskatchewan, Canada. Such carbonates are known to have complicated pore structures compared with sandstones, yet we are able to calculate reasonable macroscopic properties. We discuss the computing resources required.
NASA Astrophysics Data System (ADS)
Minamikawa, Y.; Sato, H.; Mori, F.; Damayanthi, R. M. T.; Takahashi, H.; Ohno, M.
2008-04-01
We are developing a new x-ray microcalorimeter based on a superconducting transition edge sensor (TES) as an imaging sensor. Our measurement shows unique waveforms which we consider as an expression of thermal nonuniformity of TES films. This arises from the different thermal responses, so that response signal shapes would vary according to the position of the incident x-ray. This position dependency deteriorate the measured energy resolution, but with appropriate waveform analysis, this would be useful for imaging device. For more inspection, we have developed a simulation code which enables a dynamic simulation to obtain a transient response of the TES by finite differential method. Temperature and electric current distributions are calculated. As a result, we successfully obtained waveform signals. The calculated signal waveforms have similar characteristics to the measured signals. This simulation visualized the transition state of the device and will help to design better detector.
NASA Astrophysics Data System (ADS)
Gao, Y.; Lin, Q.; Bijeljic, B.; Blunt, M. J.
2017-12-01
To observe intermittency in consolidated rock, we image a steady state flow of brine and decane in Bentheimer sandstone. We devise an experimental method based on X-ray differential imaging method to examine how changes in flow rate impact the pore-scale distribution of fluids during co-injection flow under dynamic flow conditions at steady state. This helps us elucidate the diverse flow regimes (connected, intermittent break-up, or continual break-up of the non-wetting phase pathways) for two capillary numbers. Also, relative permeability curves under both capillary and viscous limited conditions could be measured. We have performed imbibition sample floods using oil-brine and measured steady state relative permeability on a sandstone rock core in order to fully characterize the flow behaviour at low and high Ca. Two sets of experiments at high and low flow rates are provided to explore the time-evolution of the non-wetting phase clusters distribution under different flow conditions. The high flow rate is 0.5 mL/min, whose corresponding capillary number is 7.7×10-6. The low flow rate is 0.02 mL/min, whose capillary number is 3.1×10-7. A procedure based on using high-salinity brine as the contrast phase and applying differential imaging between the dry scan and that of the sample saturation with a 30 wt% Potassium iodide (KI) doped brine help to make sure there is no non-wetting phase in micro-pores. Then the intermittent phase in multiphase flow image at high Ca can be quantified by obtaining the differential image between the 30 wt% KI brine image and the scans that taken at each fixed fractional flow. By using the grey scale histogram distribution of the raw images at each condition, the oil proportion in the intermittent phase can be calculated. The pressure drops at each fractional flow at low and high Ca can be measured by high-precision pressure differential sensors and utilized to calculate to the relative permeability at pore scale. The relative permeability data and fw-Sw relationship obtained by our experiment at pore scale are compared with the data collected from experiments which were conducted at core scale, and they match well.
Virtual rough samples to test 3D nanometer-scale scanning electron microscopy stereo photogrammetry.
Villarrubia, J S; Tondare, V N; Vladár, A E
2016-01-01
The combination of scanning electron microscopy for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for nanometer-scale dimensional metrology in 3D. A method is described to test 3D photogrammetry software by the use of virtual samples-mathematical samples from which simulated images are made for use as inputs to the software under test. The virtual sample is constructed by wrapping a rough skin with any desired power spectral density around a smooth near-trapezoidal line with rounded top corners. Reconstruction is performed with images simulated from different angular viewpoints. The software's reconstructed 3D model is then compared to the known geometry of the virtual sample. Three commercial photogrammetry software packages were tested. Two of them produced results for line height and width that were within close to 1 nm of the correct values. All of the packages exhibited some difficulty in reconstructing details of the surface roughness.
Multi-Excitation Magnetoacoustic Tomography with Magnetic Induction for Bioimpedance Imaging
Li, Xu; He, Bin
2011-01-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging approach proposed to conduct non-invasive electrical conductivity imaging of biological tissue with high spatial resolution. In the present study, based on the analysis of the relationship between the conductivity distribution and the generated MAT-MI acoustic source, we propose a new multi-excitation MAT-MI approach and the corresponding reconstruction algorithms. In the proposed method, multiple magnetic excitations using different coil configurations are employed and ultrasound measurements corresponding to each excitation are collected to derive the conductivity distribution inside the sample. A modified reconstruction algorithm is also proposed for the multi-excitation MAT-MI imaging approach when only limited bandwidth acoustic measurements are available. Computer simulation and phantom experiment studies have been done to demonstrate the merits of the proposed method. It is shown that if unlimited bandwidth acoustic data is available, we can accurately reconstruct the internal conductivity contrast of an object using the proposed method. With limited bandwidth data and the use of the modified algorithm we can reconstruct the relative conductivity contrast of an object instead of only boundaries at the conductivity heterogeneity. Benefits that come with this new method include better differentiation of tissue types with conductivity contrast using the MAT-MI approach, specifically for potential breast cancer screening application in the future. PMID:20529729
Du, Yang; Huang, Jianheng; Lin, Danying; Niu, Hanben
2012-08-01
X-ray phase-contrast imaging based on grating interferometry is a technique with the potential to provide absorption, differential phase contrast, and dark-field signals simultaneously. The multi-line X-ray source used recently in grating interferometry has the advantage of high-energy X-rays for imaging of thick samples for most clinical and industrial investigations. However, it has a drawback of limited field of view (FOV), because of the axial extension of the X-ray emission area. In this paper, we analyze the effects of axial extension of the multi-line X-ray source on the FOV and its improvement in terms of Fresnel diffraction theory. Computer simulation results show that the FOV limitation can be overcome by use of an alternative X-ray tube with a specially designed multi-step anode. The FOV of this newly designed X-ray source can be approximately four times larger than that of the multi-line X-ray source in the same emission area. This might be beneficial for the applications of X-ray phase contrast imaging in materials science, biology, medicine, and industry.
NASA Astrophysics Data System (ADS)
Pan, Bing; Wu, Dafang; Xia, Yong
2010-09-01
To determine the full-field high-temperature thermal deformation of the structural materials used in high-speed aerospace flight vehicles, a novel non-contact high-temperature deformation measurement system is established by combining transient aerodynamic heating simulation device with the reliability-guided digital image correlation (RG-DIC). The test planar sample with size varying from several mm 2 to several hundreds mm 2 can be heated from room temperature to 1100 °C rapidly and accurately using the infrared radiator of the transient aerodynamic heating simulation system. The digital images of the test sample surface at various temperatures are recorded using an ordinary optical imaging system. To cope with the possible local decorrelated regions caused by black-body radiation within the deformed images at the temperatures over 450 °C, the RG-DIC technique is used to extract full-field in-plane thermal deformation from the recorded images. In validation test, the thermal deformation fields and the values of coefficient of thermal expansion (CTEs) of a chromiumnickel austenite stainless steel sample from room temperature to 550 °C is measured and compared with the well-established handbook value, confirming the effectiveness and accuracy of the proposed technique. The experimental results reveal that the present system using an ordinary optical imaging system, is able to accurately measure full-field thermal deformation of metals and alloys at temperatures not exceeding 600 °C.
Development and analysis of a finite element model to simulate pulmonary emphysema in CT imaging.
Diciotti, Stefano; Nobis, Alessandro; Ciulli, Stefano; Landini, Nicholas; Mascalchi, Mario; Sverzellati, Nicola; Innocenti, Bernardo
2015-01-01
In CT imaging, pulmonary emphysema appears as lung regions with Low-Attenuation Areas (LAA). In this study we propose a finite element (FE) model of lung parenchyma, based on a 2-D grid of beam elements, which simulates pulmonary emphysema related to smoking in CT imaging. Simulated LAA images were generated through space sampling of the model output. We employed two measurements of emphysema extent: Relative Area (RA) and the exponent D of the cumulative distribution function of LAA clusters size. The model has been used to compare RA and D computed on the simulated LAA images with those computed on the models output. Different mesh element sizes and various model parameters, simulating different physiological/pathological conditions, have been considered and analyzed. A proper mesh element size has been determined as the best trade-off between reliable results and reasonable computational cost. Both RA and D computed on simulated LAA images were underestimated with respect to those calculated on the models output. Such underestimations were larger for RA (≈ -44 ÷ -26%) as compared to those for D (≈ -16 ÷ -2%). Our FE model could be useful to generate standard test images and to design realistic physical phantoms of LAA images for the assessment of the accuracy of descriptors for quantifying emphysema in CT imaging.
Experimental Demonstration of In-Place Calibration for Time Domain Microwave Imaging System
NASA Astrophysics Data System (ADS)
Kwon, S.; Son, S.; Lee, K.
2018-04-01
In this study, the experimental demonstration of in-place calibration was conducted using the developed time domain measurement system. Experiments were conducted using three calibration methods—in-place calibration and two existing calibrations, that is, array rotation and differential calibration. The in-place calibration uses dual receivers located at an equal distance from the transmitter. The received signals at the dual receivers contain similar unwanted signals, that is, the directly received signal and antenna coupling. In contrast to the simulations, the antennas are not perfectly matched and there might be unexpected environmental errors. Thus, we experimented with the developed experimental system to demonstrate the proposed method. The possible problems with low signal-to-noise ratio and clock jitter, which may exist in time domain systems, were rectified by averaging repeatedly measured signals. The tumor was successfully detected using the three calibration methods according to the experimental results. The cross correlation was calculated using the reconstructed image of the ideal differential calibration for a quantitative comparison between the existing rotation calibration and the proposed in-place calibration. The mean value of cross correlation between the in-place calibration and ideal differential calibration was 0.80, and the mean value of cross correlation of the rotation calibration was 0.55. Furthermore, the results of simulation were compared with the experimental results to verify the in-place calibration method. A quantitative analysis was also performed, and the experimental results show a tendency similar to the simulation.
NASA Astrophysics Data System (ADS)
Hardie, Russell C.; Power, Jonathan D.; LeMaster, Daniel A.; Droege, Douglas R.; Gladysz, Szymon; Bose-Pillai, Santasri
2017-07-01
We present a numerical wave propagation method for simulating imaging of an extended scene under anisoplanatic conditions. While isoplanatic simulation is relatively common, few tools are specifically designed for simulating the imaging of extended scenes under anisoplanatic conditions. We provide a complete description of the proposed simulation tool, including the wave propagation method used. Our approach computes an array of point spread functions (PSFs) for a two-dimensional grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. The degradation includes spatially varying warping and blurring. To produce the PSF array, we generate a series of extended phase screens. Simulated point sources are numerically propagated from an array of positions on the object plane, through the phase screens, and ultimately to the focal plane of the simulated camera. Note that the optical path for each PSF will be different, and thus, pass through a different portion of the extended phase screens. These different paths give rise to a spatially varying PSF to produce anisoplanatic effects. We use a method for defining the individual phase screen statistics that we have not seen used in previous anisoplanatic simulations. We also present a validation analysis. In particular, we compare simulated outputs with the theoretical anisoplanatic tilt correlation and a derived differential tilt variance statistic. This is in addition to comparing the long- and short-exposure PSFs and isoplanatic angle. We believe this analysis represents the most thorough validation of an anisoplanatic simulation to date. The current work is also unique that we simulate and validate both constant and varying Cn2(z) profiles. Furthermore, we simulate sequences with both temporally independent and temporally correlated turbulence effects. Temporal correlation is introduced by generating even larger extended phase screens and translating this block of screens in front of the propagation area. Our validation analysis shows an excellent match between the simulation statistics and the theoretical predictions. Thus, we think this tool can be used effectively to study optical anisoplanatic turbulence and to aid in the development of image restoration methods.
A light field microscope imaging spectrometer based on the microlens array
NASA Astrophysics Data System (ADS)
Yao, Yu-jia; Xu, Feng; Xia, Yin-xiang
2017-10-01
A new light field spectrometry microscope imaging system, which was composed by microscope objective, microlens array and spectrometry system was designed in this paper. 5-D information (4-D light field and 1-D spectrometer) of the sample could be captured by the snapshot system in only one exposure, avoiding the motion blur and aberration caused by the scanning imaging process of the traditional imaging spectrometry. Microscope objective had been used as the former group while microlens array used as the posterior group. The optical design of the system was simulated by Zemax, the parameter matching condition between microscope objective and microlens array was discussed significantly during the simulation process. The result simulated in the image plane was analyzed and discussed.
The image of psychology programs: the value of the instrumental-symbolic framework.
Van Hoye, Greet; Lievens, Filip; De Soete, Britt; Libbrecht, Nele; Schollaert, Eveline; Baligant, Dimphna
2014-01-01
As competition for funding and students intensifies, it becomes increasingly important for psychology programs to have an image that is attractive and makes them stand out from other programs. The current study uses the instrumental-symbolic framework from the marketing domain to determine the image of different master's programs in psychology and examines how these image dimensions relate to student attraction and competitor differentiation. The samples consist of both potential students (N = 114) and current students (N = 68) of three psychology programs at a Belgian university: industrial and organizational psychology, clinical psychology, and experimental psychology. The results demonstrate that both instrumental attributes (e.g., interpersonal activities) and symbolic trait inferences (e.g., sincerity) are key components of the image of psychology programs and predict attractiveness as well as differentiation. In addition, symbolic image dimensions seem more important for current students of psychology programs than for potential students.
Simulation of a Geiger-Mode Imaging LADAR System for Performance Assessment
Kim, Seongjoon; Lee, Impyeong; Kwon, Yong Joon
2013-01-01
As LADAR systems applications gradually become more diverse, new types of systems are being developed. When developing new systems, simulation studies are an essential prerequisite. A simulator enables performance predictions and optimal system parameters at the design level, as well as providing sample data for developing and validating application algorithms. The purpose of the study is to propose a method for simulating a Geiger-mode imaging LADAR system. We develop simulation software to assess system performance and generate sample data for the applications. The simulation is based on three aspects of modeling—the geometry, radiometry and detection. The geometric model computes the ranges to the reflection points of the laser pulses. The radiometric model generates the return signals, including the noises. The detection model determines the flight times of the laser pulses based on the nature of the Geiger-mode detector. We generated sample data using the simulator with the system parameters and analyzed the detection performance by comparing the simulated points to the reference points. The proportion of the outliers in the simulated points reached 25.53%, indicating the need for efficient outlier elimination algorithms. In addition, the false alarm rate and dropout rate of the designed system were computed as 1.76% and 1.06%, respectively. PMID:23823970
NASA Astrophysics Data System (ADS)
Garma, Rey Jan D.
The trade between detector and optics performance is often conveyed through the Q metric, which is defined as the ratio of detector sampling frequency and optical cutoff frequency. Historically sensors have operated at Q ≈ 1, which introduces aliasing but increases the system modulation transfer function (MTF) and signal-to-noise ratio (SNR). Though mathematically suboptimal, such designs have been operationally ideal when considering system parameters such as pointing stability and detector performance. Substantial advances in read noise and quantum efficiency of modern detectors may compensate for the negative aspects associated with balancing detector/optics performance, presenting an opportunity to revisit the potential for implementing Nyquist-sampled (Q ≈ 2) sensors. A digital image chain simulation is developed and validated against a laboratory testbed using objective and subjective assessments. Objective assessments are accomplished by comparison of the modeled MTF and measurements from slant-edge photographs. Subjective assessments are carried out by performing a psychophysical study where subjects are asked to rate simulation and testbed imagery against a DeltaNIIRS scale with the aid of a marker set. Using the validated model, additional test cases are simulated to study the effects of increased detector sampling on image quality with operational considerations. First, a factorial experiment using Q-sampling, pointing stability, integration time, and detector performance is conducted to measure the main effects and interactions of each on the response variable, DeltaNIIRS. To assess the fidelity of current models, variants of the General Image Quality Equation (GIQE) are evaluated against subject-provided ratings and two modified GIQE versions are proposed. Finally, using the validated simulation and modified IQE, trades are conducted to ascertain the feasibility of implementing Q ≈ 2 designs in future systems.
Yang, Yang; Kramer, Christopher M.; Shaw, Peter W.; Meyer, Craig H.; Salerno, Michael
2015-01-01
Purpose To design and evaluate 2D L1-SPIRiT accelerated spiral pulse sequences for first-pass myocardial perfusion imaging with whole heart coverage capable of measuring 8 slices at 2 mm in-plane resolution at heart rates up to 125 beats per minute (BPM). Methods Combinations of 5 different spiral trajectories and 4 k-t sampling patterns were retrospectively simulated in 25 fully sampled datasets and reconstructed with L1-SPIRiT to determine the best combination of parameters. Two candidate sequences were prospectively evaluated in 34 human subjects to assess in-vivo performance. Results A dual density broad transition spiral trajectory with either angularly uniform or golden angle in time k-t sampling pattern had the largest structural similarity (SSIM) and smallest root mean square error (RMSE) from the retrospective simulation, and the L1-SPIRiT reconstruction had well-preserved temporal dynamics. In vivo data demonstrated that both of the sampling patterns could produce high quality perfusion images with whole-heart coverage. Conclusion First-pass myocardial perfusion imaging using accelerated spirals with optimized trajectory and k-t sampling pattern can produce high quality 2D-perfusion images with wholeheart coverage at the heart rates up to 125 BPM. PMID:26538511
NASA Astrophysics Data System (ADS)
Chlebda, Damian K.; Majda, Alicja; Łojewski, Tomasz; Łojewska, Joanna
2016-11-01
Differentiation of the written text can be performed with a non-invasive and non-contact tool that connects conventional imaging methods with spectroscopy. Hyperspectral imaging (HSI) is a relatively new and rapid analytical technique that can be applied in forensic science disciplines. It allows an image of the sample to be acquired, with full spectral information within every pixel. For this paper, HSI and three statistical methods (hierarchical cluster analysis, principal component analysis, and spectral angle mapper) were used to distinguish between traces of modern black gel pen inks. Non-invasiveness and high efficiency are among the unquestionable advantages of ink differentiation using HSI. It is also less time-consuming than traditional methods such as chromatography. In this study, a set of 45 modern gel pen ink marks deposited on a paper sheet were registered. The spectral characteristics embodied in every pixel were extracted from an image and analysed using statistical methods, externally and directly on the hypercube. As a result, different black gel inks deposited on paper can be distinguished and classified into several groups, in a non-invasive manner.
Cross-correlation photothermal optical coherence tomography with high effective resolution.
Tang, Peijun; Liu, Shaojie; Chen, Junbo; Yuan, Zhiling; Xie, Bingkai; Zhou, Jianhua; Tang, Zhilie
2017-12-01
We developed a cross-correlation photothermal optical coherence tomography (CC-PTOCT) system for photothermal imaging with high lateral and axial resolution. The CC-PTOCT system consists of a phase-sensitive OCT system, a modulated pumping laser, and a digital cross-correlator. The pumping laser was used to induce the photothermal effect in the sample, causing a slight phase modulation of the OCT signals. A spatial phase differentiation method was employed to reduce phase accumulation. The noise brought by the phase differentiation method and the strong background noise were suppressed efficiently by the cross-correlator, which was utilized to extract the photothermal signals from the modulated signals. Combining the cross-correlation technique with spatial phase differentiation can improve both lateral and axial resolution of the PTOCT imaging system. Clear photothermal images of blood capillaries of a mouse ear in vivo were successfully obtained with high lateral and axial resolution. The experimental results demonstrated that this system can enhance the effective transverse resolution, effective depth resolution, and contrast of the PTOCT image effectively, aiding the ongoing development of the accurate 3D functional imaging.
NASA Technical Reports Server (NTRS)
Hazra, Rajeeb; Viles, Charles L.; Park, Stephen K.; Reichenbach, Stephen E.; Sieracki, Michael E.
1992-01-01
Consideration is given to a model-based method for estimating the spatial frequency response of a digital-imaging system (e.g., a CCD camera) that is modeled as a linear, shift-invariant image acquisition subsystem that is cascaded with a linear, shift-variant sampling subsystem. The method characterizes the 2D frequency response of the image acquisition subsystem to beyond the Nyquist frequency by accounting explicitly for insufficient sampling and the sample-scene phase. Results for simulated systems and a real CCD-based epifluorescence microscopy system are presented to demonstrate the accuracy of the method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp
2009-03-06
The indirect secondary electron contrast (ISEC) condition of the scanning electron microscopy (SEM) produces high contrast detection with minimal damage of unstained biological samples mounted under a thin carbon film. The high contrast image is created by a secondary electron signal produced under the carbon film by a low acceleration voltage. Here, we show that ISEC condition is clearly able to detect unstained bacteriophage T4 under a thin carbon film (10-15 nm) by using high-resolution field emission (FE) SEM. The results show that FE-SEM provides higher resolution than thermionic emission SEM. Furthermore, we investigated the scattered electron area within themore » carbon film under ISEC conditions using Monte Carlo simulation. The simulations indicated that the image resolution difference is related to the scattering width in the carbon film and the electron beam spot size. Using ISEC conditions on unstained virus samples would produce low electronic damage, because the electron beam does not directly irradiate the sample. In addition to the routine analysis, this method can be utilized for structural analysis of various biological samples like viruses, bacteria, and protein complexes.« less
Comparison of IRT Likelihood Ratio Test and Logistic Regression DIF Detection Procedures
ERIC Educational Resources Information Center
Atar, Burcu; Kamata, Akihito
2011-01-01
The Type I error rates and the power of IRT likelihood ratio test and cumulative logit ordinal logistic regression procedures in detecting differential item functioning (DIF) for polytomously scored items were investigated in this Monte Carlo simulation study. For this purpose, 54 simulation conditions (combinations of 3 sample sizes, 2 sample…
NASA Astrophysics Data System (ADS)
Jeon, Hosang; Kim, Hyunduk; Cha, Bo Kyung; Kim, Jong Yul; Cho, Gyuseong; Chung, Yong Hyun; Yun, Jong-Il
2009-06-01
Presently, the gamma camera system is widely used in various medical diagnostic, industrial and environmental fields. Hence, the quantitative and effective evaluation of its imaging performance is essential for design and quality assurance. The National Electrical Manufacturers Association (NEMA) standards for gamma camera evaluation are insufficient to perform sensitive evaluation. In this study, modulation transfer function (MTF) and normalized noise power spectrum (NNPS) will be suggested to evaluate the performance of small gamma camera with changeable pinhole collimators using Monte Carlo simulation. We simulated the system with a cylinder and a disk source, and seven different pinhole collimators from 1- to 4-mm-diameter pinhole with lead. The MTF and NNPS data were obtained from output images and were compared with full-width at half-maximum (FWHM), sensitivity and differential uniformity. In the result, we found that MTF and NNPS are effective and novel standards to evaluate imaging performance of gamma cameras instead of conventional NEMA standards.
Nativ, Amit; Feldman, Haim; Shaked, Natan T
2018-05-01
We present a system that is based on a new external, polarization-insensitive differential interference contrast (DIC) module specifically adapted for detecting defects in semiconductor wafers. We obtained defect signal enhancement relative to the surrounding wafer pattern when compared with bright-field imaging. The new DIC module proposed is based on a shearing interferometer that connects externally at the output port of an optical microscope and enables imaging thin samples, such as wafer defects. This module does not require polarization optics (such as Wollaston or Nomarski prisms) and is insensitive to polarization, unlike traditional DIC techniques. In addition, it provides full control of the DIC shear and orientation, which allows obtaining a differential phase image directly on the camera (with no further digital processing) while enhancing defect detection capabilities, even if the size of the defect is smaller than the resolution limit. Our technique has the potential of future integration into semiconductor production lines.
Hexagonal undersampling for faster MRI near metallic implants.
Sveinsson, Bragi; Worters, Pauline W; Gold, Garry E; Hargreaves, Brian A
2015-02-01
Slice encoding for metal artifact correction acquires a three-dimensional image of each excited slice with view-angle tilting to reduce slice and readout direction artifacts respectively, but requires additional imaging time. The purpose of this study was to provide a technique for faster imaging around metallic implants by undersampling k-space. Assuming that areas of slice distortion are localized, hexagonal sampling can reduce imaging time by 50% compared with conventional scans. This work demonstrates this technique by comparisons of fully sampled images with undersampled images, either from simulations from fully acquired data or from data actually undersampled during acquisition, in patients and phantoms. Hexagonal sampling is also shown to be compatible with parallel imaging and partial Fourier acquisitions. Image quality was evaluated using a structural similarity (SSIM) index. Images acquired with hexagonal undersampling had no visible difference in artifact suppression from fully sampled images. The SSIM index indicated high similarity to fully sampled images in all cases. The study demonstrates the ability to reduce scan time by undersampling without compromising image quality. © 2014 Wiley Periodicals, Inc.
Park, Jinil; Shin, Taehoon; Yoon, Soon Ho; Goo, Jin Mo; Park, Jang-Yeon
2016-05-01
The purpose of this work was to develop a 3D radial-sampling strategy which maintains uniform k-space sample density after retrospective respiratory gating, and demonstrate its feasibility in free-breathing ultrashort-echo-time lung MRI. A multi-shot, interleaved 3D radial sampling function was designed by segmenting a single-shot trajectory of projection views such that each interleaf samples k-space in an incoherent fashion. An optimal segmentation factor for the interleaved acquisition was derived based on an approximate model of respiratory patterns such that radial interleaves are evenly accepted during the retrospective gating. The optimality of the proposed sampling scheme was tested by numerical simulations and phantom experiments using human respiratory waveforms. Retrospectively, respiratory-gated, free-breathing lung MRI with the proposed sampling strategy was performed in healthy subjects. The simulation yielded the most uniform k-space sample density with the optimal segmentation factor, as evidenced by the smallest standard deviation of the number of neighboring samples as well as minimal side-lobe energy in the point spread function. The optimality of the proposed scheme was also confirmed by minimal image artifacts in phantom images. Human lung images showed that the proposed sampling scheme significantly reduced streak and ring artifacts compared with the conventional retrospective respiratory gating while suppressing motion-related blurring compared with full sampling without respiratory gating. In conclusion, the proposed 3D radial-sampling scheme can effectively suppress the image artifacts due to non-uniform k-space sample density in retrospectively respiratory-gated lung MRI by uniformly distributing gated radial views across the k-space. Copyright © 2016 John Wiley & Sons, Ltd.
Image quality comparison between single energy and dual energy CT protocols for hepatic imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Yuan, E-mail: yuanyao@stanford.edu; Pelc, Nor
Purpose: Multi-detector computed tomography (MDCT) enables volumetric scans in a single breath hold and is clinically useful for hepatic imaging. For simple tasks, conventional single energy (SE) computed tomography (CT) images acquired at the optimal tube potential are known to have better quality than dual energy (DE) blended images. However, liver imaging is complex and often requires imaging of both structures containing iodinated contrast media, where atomic number differences are the primary contrast mechanism, and other structures, where density differences are the primary contrast mechanism. Hence it is conceivable that the broad spectrum used in a dual energy acquisition maymore » be an advantage. In this work we are interested in comparing these two imaging strategies at equal-dose and more complex settings. Methods: We developed numerical anthropomorphic phantoms to mimic realistic clinical CT scans for medium size and large size patients. MDCT images based on the defined phantoms were simulated using various SE and DE protocols at pre- and post-contrast stages. For SE CT, images from 60 kVp through 140 with 10 kVp steps were considered; for DE CT, both 80/140 and 100/140 kVp scans were simulated and linearly blended at the optimal weights. To make a fair comparison, the mAs of each scan was adjusted to match the reference radiation dose (120 kVp, 200 mAs for medium size patients and 140 kVp, 400 mAs for large size patients). Contrast-to-noise ratio (CNR) of liver against other soft tissues was used to evaluate and compare the SE and DE protocols, and multiple pre- and post-contrasted liver-tissue pairs were used to define a composite CNR. To help validate the simulation results, we conducted a small clinical study. Eighty-five 120 kVp images and 81 blended 80/140 kVp images were collected and compared through both quantitative image quality analysis and an observer study. Results: In the simulation study, we found that the CNR of pre-contrast SE image mostly increased with increasing kVp while for post-contrast imaging 90 kVp or lower yielded higher CNR images, depending on the differential iodine concentration of each tissue. Similar trends were seen in DE blended CNR and those from SE protocols. In the presence of differential iodine concentration (i.e., post-contrast), the CNR curves maximize at lower kVps (80–120), with the peak shifted rightward for larger patients. The combined pre- and post-contrast composite CNR study demonstrated that an optimal SE protocol has better performance than blended DE images, and the optimal tube potential for SE scan is around 90 kVp for a medium size patients and between 90 and 120 kVp for large size patients (although low kVp imaging requires high x-ray tube power to avoid photon starvation). Also, a tin filter added to the high kVp beam is not only beneficial for material decomposition but it improves the CNR of the DE blended images as well. The dose adjusted CNR of the clinical images also showed the same trend and radiologists favored the SE scans over blended DE images. Conclusions: Our simulation showed that an optimized SE protocol produces up to 5% higher CNR for a range of clinical tasks. The clinical study also suggested 120 kVp SE scans have better image quality than blended DE images. Hence, blended DE images do not have a fundamental CNR advantage over optimized SE images.« less
Observation of FeGe skyrmions by electron phase microscopy with hole-free phase plate
NASA Astrophysics Data System (ADS)
Kotani, Atsuhiro; Harada, Ken; Malac, Marek; Salomons, Mark; Hayashida, Misa; Mori, Shigeo
2018-05-01
We report application of hole-free phase plate (HFPP) to imaging of magnetic skyrmion lattices. Using HFPP imaging, we observed skyrmions in FeGe, and succeeded in obtaining phase contrast images that reflect the sample magnetization distribution. According to the Aharonov-Bohm effect, the electron phase is shifted by the magnetic flux due to sample magnetization. The differential processing of the intensity in a HFPP image allows us to successfully reconstruct the magnetization map of the skyrmion lattice. Furthermore, the calculated phase shift due to the magnetization of the thin film was consistent with that measured by electron holography experiment, which demonstrates that HFPP imaging can be utilized for analysis of magnetic fields and electrostatic potential distribution at the nanoscale.
Method calibration of the model 13145 infrared target projectors
NASA Astrophysics Data System (ADS)
Huang, Jianxia; Gao, Yuan; Han, Ying
2014-11-01
The SBIR Model 13145 Infrared Target Projectors ( The following abbreviation Evaluation Unit ) used for characterizing the performances of infrared imaging system. Test items: SiTF, MTF, NETD, MRTD, MDTD, NPS. Infrared target projectors includes two area blackbodies, a 12 position target wheel, all reflective collimator. It provide high spatial frequency differential targets, Precision differential targets imaged by infrared imaging system. And by photoelectricity convert on simulate signal or digital signal. Applications software (IR Windows TM 2001) evaluate characterizing the performances of infrared imaging system. With regards to as a whole calibration, first differently calibration for distributed component , According to calibration specification for area blackbody to calibration area blackbody, by means of to amend error factor to calibration of all reflective collimator, radiance calibration of an infrared target projectors using the SR5000 spectral radiometer, and to analyze systematic error. With regards to as parameter of infrared imaging system, need to integrate evaluation method. According to regulation with -GJB2340-1995 General specification for military thermal imaging sets -testing parameters of infrared imaging system, the results compare with results from Optical Calibration Testing Laboratory . As a goal to real calibration performances of the Evaluation Unit.
Cognitive load predicts point-of-care ultrasound simulator performance.
Aldekhyl, Sara; Cavalcanti, Rodrigo B; Naismith, Laura M
2018-02-01
The ability to maintain good performance with low cognitive load is an important marker of expertise. Incorporating cognitive load measurements in the context of simulation training may help to inform judgements of competence. This exploratory study investigated relationships between demographic markers of expertise, cognitive load measures, and simulator performance in the context of point-of-care ultrasonography. Twenty-nine medical trainees and clinicians at the University of Toronto with a range of clinical ultrasound experience were recruited. Participants answered a demographic questionnaire then used an ultrasound simulator to perform targeted scanning tasks based on clinical vignettes. Participants were scored on their ability to both acquire and interpret ultrasound images. Cognitive load measures included participant self-report, eye-based physiological indices, and behavioural measures. Data were analyzed using a multilevel linear modelling approach, wherein observations were clustered by participants. Experienced participants outperformed novice participants on ultrasound image acquisition. Ultrasound image interpretation was comparable between the two groups. Ultrasound image acquisition performance was predicted by level of training, prior ultrasound training, and cognitive load. There was significant convergence between cognitive load measurement techniques. A marginal model of ultrasound image acquisition performance including prior ultrasound training and cognitive load as fixed effects provided the best overall fit for the observed data. In this proof-of-principle study, the combination of demographic and cognitive load measures provided more sensitive metrics to predict ultrasound simulator performance. Performance assessments which include cognitive load can help differentiate between levels of expertise in simulation environments, and may serve as better predictors of skill transfer to clinical practice.
NASA Astrophysics Data System (ADS)
Sowmiya, C.; Thittai, Arun K.
2017-03-01
Photoacoustic imaging is a molecular cum functional imaging modality based on differential optical absorption of the incident laser pulse by the endogeneous tissue chromophores. Several numerical simulations and finite element models have been developed in the past to describe and study Photoacoustic (PA) signal generation principles and study the effect of variation in PA parameters. Most of these simulation work concentrate on analyzing extracted 1D PA signals and each of them mostly describe only few of the building blocks of a Photoacoustic Tomography (PAT) imaging system. Papers describing simulation of the entire PAT system in one simulation platform, along with reconstruction is seemingly rare. This study attempts to describe how a commercially available Finite Element software (COMSOL(R)), can serve as a single platform for simulating PAT that couples the electromagnetic, thermodynamic and acoustic pressure physics involved in PA phenomena. Further, an array of detector elements placed at the boundary in the FE model can provide acoustic pressure data that can be exported to Matlab(R) to perform tomographic image reconstruction. The performance of two most commonly used image reconstruction techniques; namely, Filtered Backprojection (FBP) and Synthetic Aperture (SA) beamforming are compared. Results obtained showed that the lateral resolution obtained using FBP vs. SA largely depends on the aperture parameters. FBP reconstruction was able to provide a slightly better lateral resolution for smaller aperture while SA worked better for larger aperture. This interesting effect is currently being investigated further. Computationally FBP was faster, but it had artifacts along the spherical shell on which the data is projected.
Thermal luminescence spectroscopy chemical imaging sensor.
Carrieri, Arthur H; Buican, Tudor N; Roese, Erik S; Sutter, James; Samuels, Alan C
2012-10-01
The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.
Maximizing fluorescence collection efficiency in multiphoton microscopy
Zinter, Joseph P.; Levene, Michael J.
2011-01-01
Understanding fluorescence propagation through a multiphoton microscope is of critical importance in designing high performance systems capable of deep tissue imaging. Optical models of a scattering tissue sample and the Olympus 20X 0.95NA microscope objective were used to simulate fluorescence propagation as a function of imaging depth for physiologically relevant scattering parameters. The spatio-angular distribution of fluorescence at the objective back aperture derived from these simulations was used to design a simple, maximally efficient post-objective fluorescence collection system. Monte Carlo simulations corroborated by data from experimental tissue phantoms demonstrate collection efficiency improvements of 50% – 90% over conventional, non-optimized fluorescence collection geometries at large imaging depths. Imaging performance was verified by imaging layer V neurons in mouse cortex to a depth of 850 μm. PMID:21934897
Multislice spiral CT simulator for dynamic cardiopulmonary studies
NASA Astrophysics Data System (ADS)
De Francesco, Silvia; Ferreira da Silva, Augusto M.
2002-04-01
We've developed a Multi-slice Spiral CT Simulator modeling the acquisition process of a real tomograph over a 4-dimensional phantom (4D MCAT) of the human thorax. The simulator allows us to visually characterize artifacts due to insufficient temporal sampling and a priori evaluate the quality of the images obtained in cardio-pulmonary studies (both with single-/multi-slice and ECG gated acquisition processes). The simulating environment allows both for conventional and spiral scanning modes and includes a model of noise in the acquisition process. In case of spiral scanning, reconstruction facilities include longitudinal interpolation methods (360LI and 180LI both for single and multi-slice). Then, the reconstruction of the section is performed through FBP. The reconstructed images/volumes are affected by distortion due to insufficient temporal sampling of the moving object. The developed simulating environment allows us to investigate the nature of the distortion characterizing it qualitatively and quantitatively (using, for example, Herman's measures). Much of our work is focused on the determination of adequate temporal sampling and sinogram regularization techniques. At the moment, the simulator model is limited to the case of multi-slice tomograph, being planned as a next step of development the extension to cone beam or area detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Ashish; McNulty, Ian; Munson, Todd
We propose a new approach to robustly retrieve the exit wave of an extended sample from its coherent diffraction pattern by exploiting sparsity of the sample's edges. This approach enables imaging of an extended sample with a single view, without ptychography. We introduce nonlinear optimization methods that promote sparsity, and we derive update rules to robustly recover the sample's exit wave. We test these methods on simulated samples by varying the sparsity of the edge-detected representation of the exit wave. Finally, our tests illustrate the strengths and limitations of the proposed method in imaging extended samples.
NASA Astrophysics Data System (ADS)
Islam, Amina; Chevalier, Sylvie; Sassi, Mohamed
2018-04-01
With advances in imaging techniques and computational power, Digital Rock Physics (DRP) is becoming an increasingly popular tool to characterize reservoir samples and determine their internal structure and flow properties. In this work, we present the details for imaging, segmentation, as well as numerical simulation of single-phase flow through a standard homogenous Silurian dolomite core plug sample as well as a heterogeneous sample from a carbonate reservoir. We develop a procedure that integrates experimental results into the segmentation step to calibrate the porosity. We also look into using two different numerical tools for the simulation; namely Avizo Fire Xlab Hydro that solves the Stokes' equations via the finite volume method and Palabos that solves the same equations using the Lattice Boltzmann Method. Representative Elementary Volume (REV) and isotropy studies are conducted on the two samples and we show how DRP can be a useful tool to characterize rock properties that are time consuming and costly to obtain experimentally.
Simulation of a compact analyzer-based imaging system with a regular x-ray source
NASA Astrophysics Data System (ADS)
Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.
2017-03-01
Analyzer-based Imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray techniques. PC measures X-ray deflection phenomena when interacting with a sample, which is known to provide higher contrast images of soft tissue than other X-ray methods. This is of high interest in the medical field, in particular for mammogram applications. This paper presents a simulation tool for table-top ABI systems using a conventional polychromatic X-ray source.
Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy.
Gualda, Emilio J; Simão, Daniel; Pinto, Catarina; Alves, Paula M; Brito, Catarina
2014-01-01
The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment.
Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy
Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina
2014-01-01
The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607
Correcting Concomitant Gradient Distortion in Microtesla Magnetic Resonance Imaging
NASA Astrophysics Data System (ADS)
Myers, Whittier
2005-03-01
Progress in ultra-low field magnetic resonance imaging (MRI) using an untuned gradiometer coupled to a Superconducting Quantum Interference Device (SQUID) has resulted in three-dimensional images with an in-plane resolution of 2 mm. Protons in samples up to 80 mm in size were prepolarized in a 100 mT field, manipulated by ˜100 μT/m gradients for image encoding, and detected by the SQUID in the ˜65 μT precession field. Maxwell's equations prohibit a unidirectional magnetic field gradient. While the additional concomitant gradients can be neglected in high-field MRI, they distort high-resolution images of large samples taken in microtesla precession fields. We propose two methods to mitigate such distortion: raising the precession field during image encoding, and software post-processing. Both approaches are demonstrated using computer simulations and MRI images. Simulations show that the combination of these techniques can correct the concomitant gradient distortion present in a 4-mm resolution image of an object the size of a human brain with a precession field of 50 μT. Supported by USDOE.
NASA Astrophysics Data System (ADS)
Flinders, Bryn; Beasley, Emma; Verlaan, Ricky M.; Cuypers, Eva; Francese, Simona; Bassindale, Tom; Clench, Malcolm R.; Heeren, Ron M. A.
2017-08-01
Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) has been employed to rapidly screen longitudinally sectioned drug user hair samples for cocaine and its metabolites using continuous raster imaging. Optimization of the spatial resolution and raster speed were performed on intact cocaine contaminated hair samples. The optimized settings (100 × 150 μm at 0.24 mm/s) were subsequently used to examine longitudinally sectioned drug user hair samples. The MALDI-MS/MS images showed the distribution of the most abundant cocaine product ion at m/z 182. Using the optimized settings, multiple hair samples obtained from two users were analyzed in approximately 3 h: six times faster than the standard spot-to-spot acquisition method. Quantitation was achieved using longitudinally sectioned control hair samples sprayed with a cocaine dilution series. A multiple reaction monitoring (MRM) experiment was also performed using the `dynamic pixel' imaging method to screen for cocaine and a range of its metabolites, in order to differentiate between contaminated hairs and drug users. Cocaine, benzoylecgonine, and cocaethylene were detectable, in agreement with analyses carried out using the standard LC-MS/MS method. [Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Brand, R. R.; Barker, J. L.
1983-01-01
A multistage sampling procedure using image processing, geographical information systems, and analytical photogrammetry is presented which can be used to guide the collection of representative, high-resolution spectra and discrete reflectance targets for future satellite sensors. The procedure is general and can be adapted to characterize areas as small as minor watersheds and as large as multistate regions. Beginning with a user-determined study area, successive reductions in size and spectral variation are performed using image analysis techniques on data from the Multispectral Scanner, orbital and simulated Thematic Mapper, low altitude photography synchronized with the simulator, and associated digital data. An integrated image-based geographical information system supports processing requirements.
Haffert, S Y
2016-08-22
Current wavefront sensors for high resolution imaging have either a large dynamic range or a high sensitivity. A new kind of wavefront sensor is developed which can have both: the Generalised Optical Differentiation wavefront sensor. This new wavefront sensor is based on the principles of optical differentiation by amplitude filters. We have extended the theory behind linear optical differentiation and generalised it to nonlinear filters. We used numerical simulations and laboratory experiments to investigate the properties of the generalised wavefront sensor. With this we created a new filter that can decouple the dynamic range from the sensitivity. These properties make it suitable for adaptive optic systems where a large range of phase aberrations have to be measured with high precision.
NASA Astrophysics Data System (ADS)
Zhang, Ding; Han, Xiaoyan; Newaz, Golam; Favro, Lawrence D.; Thomas, Robert L.
2013-01-01
We showed our work on modeling turbine blade crack detection in Sonic Infrared (IR) Imaging with a method of creating flat crack surface in finite element analysis (FEA) in last year's QNDE paper. This modeling has been carried out continuously as part of model-assisted study on crack detection in aircraft engine turbine blades. We have presented that Sonic IR Imaging NDE is a viable method to detect defects in various structures. It combines ultrasound excitation for frictional heating in defects and infrared imaging to sense this heating, and thus to identify the defects. It is a fast wide-area imaging technology. It only takes a second to image a large area of a target sample. When an aircraft is in flight, the turbine engine blades operate under high temperature and high cyclic stresses. Thus, fatigue cracks can form after many hours of operation. Sonic IR Imaging can be used to detect such cracks. However, we still need to better understand contributions of parameters/factors in the crack detection process with Sonic IR Imaging. FEA modeling can help us to reveal certain aspects through the data it produces where experimental work cannot achieve. Upon the model we presented last year, a two-step simulation process was designed to simulate the important aspects in our experiments. These include a newly designed model for the ultrasound transducer which delivers mechanical energy to the sample and the implementation of static force while engaging the transducer to the sample. In this paper, we present the ideas and the results from the new model.
Time domain SAR raw data simulation using CST and image focusing of 3D objects
NASA Astrophysics Data System (ADS)
Saeed, Adnan; Hellwich, Olaf
2017-10-01
This paper presents the use of a general purpose electromagnetic simulator, CST, to simulate realistic synthetic aperture radar (SAR) raw data of three-dimensional objects. Raw data is later focused in MATLAB using range-doppler algorithm. Within CST Microwave Studio a replica of TerraSAR-X chirp signal is incident upon a modeled Corner Reflector (CR) whose design and material properties are identical to that of the real one. Defining mesh and other appropriate settings reflected wave is measured at several distant points within a line parallel to the viewing direction. This is analogous to an array antenna and is synthesized to create a long aperture for SAR processing. The time domain solver in CST is based on the solution of differential form of Maxwells equations. Exported data from CST is arranged into a 2-d matrix of axis range and azimuth. Hilbert transform is applied to convert the real signal to complex data with phase information. Range compression, range cell migration correction (RCMC), and azimuth compression are applied in time domain to obtain the final SAR image. This simulation can provide valuable information to clarify which real world objects cause images suitable for high accuracy identification in the SAR images.
Evaluating methods to visualize patterns of genetic differentiation on a landscape.
House, Geoffrey L; Hahn, Matthew W
2018-05-01
With advances in sequencing technology, research in the field of landscape genetics can now be conducted at unprecedented spatial and genomic scales. This has been especially evident when using sequence data to visualize patterns of genetic differentiation across a landscape due to demographic history, including changes in migration. Two recent model-based visualization methods that can highlight unusual patterns of genetic differentiation across a landscape, SpaceMix and EEMS, are increasingly used. While SpaceMix's model can infer long-distance migration, EEMS' model is more sensitive to short-distance changes in genetic differentiation, and it is unclear how these differences may affect their results in various situations. Here, we compare SpaceMix and EEMS side by side using landscape genetics simulations representing different migration scenarios. While both methods excel when patterns of simulated migration closely match their underlying models, they can produce either un-intuitive or misleading results when the simulated migration patterns match their models less well, and this may be difficult to assess in empirical data sets. We also introduce unbundled principal components (un-PC), a fast, model-free method to visualize patterns of genetic differentiation by combining principal components analysis (PCA), which is already used in many landscape genetics studies, with the locations of sampled individuals. Un-PC has characteristics of both SpaceMix and EEMS and works well with simulated and empirical data. Finally, we introduce msLandscape, a collection of tools that streamline the creation of customizable landscape-scale simulations using the popular coalescent simulator ms and conversion of the simulated data for use with un-PC, SpaceMix and EEMS. © 2017 John Wiley & Sons Ltd.
3-d brownian motion simulator for high-sensitivity nanobiotechnological applications.
Toth, Arpád; Banky, Dániel; Grolmusz, Vince
2011-12-01
A wide variety of nanobiotechnologic applications are being developed for nanoparticle based in vitro diagnostic and imaging systems. Some of these systems make possible highly sensitive detection of molecular biomarkers. Frequently, the very low concentration of the biomarkers makes impossible the classical, partial differential equation-based mathematical simulation of the motion of the nanoparticles involved. We present a three-dimensional Brownian motion simulation tool for the prediction of the movement of nanoparticles in various thermal, viscosity, and geometric settings in a rectangular cuvette. For nonprofit users the server is freely available at the site http://brownian.pitgroup.org.
Monotonicity-based electrical impedance tomography for lung imaging
NASA Astrophysics Data System (ADS)
Zhou, Liangdong; Harrach, Bastian; Seo, Jin Keun
2018-04-01
This paper presents a monotonicity-based spatiotemporal conductivity imaging method for continuous regional lung monitoring using electrical impedance tomography (EIT). The EIT data (i.e. the boundary current-voltage data) can be decomposed into pulmonary, cardiac and other parts using their different periodic natures. The time-differential current-voltage operator corresponding to the lung ventilation can be viewed as either semi-positive or semi-negative definite owing to monotonic conductivity changes within the lung regions. We used these monotonicity constraints to improve the quality of lung EIT imaging. We tested the proposed methods in numerical simulations, phantom experiments and human experiments.
Bright, A N; Yoshida, K; Tanaka, N
2013-01-01
Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. Copyright © 2012 Elsevier B.V. All rights reserved.
BRENDA: a dynamic simulator for a sodium-cooled fast reactor power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hetrick, D.L.; Sowers, G.W.
1978-06-01
This report is a users' manual for one version of BRENDA (Breeder Reactor Nuclear Dynamic Analysis), which is a digital program for simulating the dynamic behavior of a sodium-cooled fast reactor power plant. This version, which contains 57 differential equations, represents a simplified model of the Clinch River Breeder Reactor Project (CRBRP). BRENDA is an input deck for DARE P (Differential Analyzer Replacement, Portable), which is a continuous-system simulation language developed at the University of Arizona. This report contains brief descriptions of DARE P and BRENDA, instructions for using BRENDA in conjunction with DARE P, and some sample output. Amore » list of variable names and a listing for BRENDA are included as appendices.« less
A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.
Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz
2012-09-10
Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.
VizieR Online Data Catalog: KOIs companions from high-resolution imaging (Hirsch+, 2017)
NASA Astrophysics Data System (ADS)
Hirsch, L. A.; Ciardi, D. R.; Howard, A. W.; Everett, M. E.; Furlan, E.; Saylors, M.; Horch, E. P.; Howell, S. B.; Teske, J.; Marcy, G. W.
2017-07-01
We report on 176 close (<2'') stellar companions detected with high-resolution imaging near 170 hosts of Kepler Objects of Interest (KOIs). Our sample consists of 170 stellar hosts of Kepler Objects of Interest (KOIs) observed with various high-resolution imaging campaigns. This sample was drawn from the overall sample of KOI stars observed with high-resolution imaging, described in the imaging compilation paper by Furlan et al. 2017 (Cat. J/AJ/153/71). We choose targets for this study by requiring that at least one companion was detected within 2'', and that the companion was detected in two or more filters, providing color information. We choose the 2'' separation limit to include all companions falling on the same Kepler pixel as the primary KOI host star. Furlan et al. 2017 (Cat. J/AJ/153/71) details the observations and measured differential magnitudes (Δm=m2-m1) for stars with high-resolution imaging, including our target systems. Each companion within 2'' must have at least two measured Δm values from the full set of filters used for follow-up observations, in order to be included in our sample. These filters include J-band, H-band, and K-band from adaptive optics imaging from the Keck/NIRC2, Palomar/PHARO, Lick/IRCAL, and MMT/Aries instruments; 562, 692 and 880nm filters from the Differential Speckle Survey Instrument (DSSI) at the Gemini North and WIYN telescopes; i and z bands from the AstraLux lucky imaging campaign at the Calar Alto 2.2m telescope; and LP600 and i bands from Palomar/RoboAO. We also include seeing-limited observations in the U-, B-, and V-bands from the UBV survey (Everett et al.) and "secure" detections (noise probability <10%) in the J-band from the UKIRT Kepler field survey. (3 data files).
Hyperspectral imaging for detection of cholesterol in human skin
NASA Astrophysics Data System (ADS)
Milanič, Matija; Bjorgan, Asgeir; Larsson, Marcus; Marraccini, Paolo; Strömberg, Tomas; Randeberg, Lise L.
2015-03-01
Hypercholesterolemia is characterized by high levels of cholesterol in the blood and is associated with an increased risk of atherosclerosis and coronary heart disease. Early detection of hypercholesterolemia is necessary to prevent onset and progress of cardiovascular disease. Optical imaging techniques might have a potential for early diagnosis and monitoring of hypercholesterolemia. In this study, hyperspectral imaging was investigated for this application. The main aim of the study was to identify spectral and spatial characteristics that can aid identification of hypercholesterolemia in facial skin. The first part of the study involved a numerical simulation of human skin affected by hypercholesterolemia. A literature survey was performed to identify characteristic morphological and physiological parameters. Realistic models were prepared and Monte Carlo simulations were performed to obtain hyperspectral images. Based on the simulations optimal wavelength regions for differentiation between normal and cholesterol rich skin were identified. Minimum Noise Fraction transformation (MNF) was used for analysis. In the second part of the study, the simulations were verified by a clinical study involving volunteers with elevated and normal levels of cholesterol. The faces of the volunteers were scanned by a hyperspectral camera covering the spectral range between 400 nm and 720 nm, and characteristic spectral features of the affected skin were identified. Processing of the images was done after conversion to reflectance and masking of the images. The identified features were compared to the known cholesterol levels of the subjects. The results of this study demonstrate that hyperspectral imaging of facial skin can be a promising, rapid modality for detection of hypercholesterolemia.
Yang, Yang; Kramer, Christopher M; Shaw, Peter W; Meyer, Craig H; Salerno, Michael
2016-11-01
To design and evaluate two-dimensional (2D) L1-SPIRiT accelerated spiral pulse sequences for first-pass myocardial perfusion imaging with whole heart coverage capable of measuring eight slices at 2 mm in-plane resolution at heart rates up to 125 beats per minute (BPM). Combinations of five different spiral trajectories and four k-t sampling patterns were retrospectively simulated in 25 fully sampled datasets and reconstructed with L1-SPIRiT to determine the best combination of parameters. Two candidate sequences were prospectively evaluated in 34 human subjects to assess in vivo performance. A dual density broad transition spiral trajectory with either angularly uniform or golden angle in time k-t sampling pattern had the largest structural similarity and smallest root mean square error from the retrospective simulation, and the L1-SPIRiT reconstruction had well-preserved temporal dynamics. In vivo data demonstrated that both of the sampling patterns could produce high quality perfusion images with whole-heart coverage. First-pass myocardial perfusion imaging using accelerated spirals with optimized trajectory and k-t sampling pattern can produce high quality 2D perfusion images with whole-heart coverage at the heart rates up to 125 BPM. Magn Reson Med 76:1375-1387, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.
Simulation of parametric model towards the fixed covariate of right censored lung cancer data
NASA Astrophysics Data System (ADS)
Afiqah Muhamad Jamil, Siti; Asrul Affendi Abdullah, M.; Kek, Sie Long; Ridwan Olaniran, Oyebayo; Enera Amran, Syahila
2017-09-01
In this study, simulation procedure was applied to measure the fixed covariate of right censored data by using parametric survival model. The scale and shape parameter were modified to differentiate the analysis of parametric regression survival model. Statistically, the biases, mean biases and the coverage probability were used in this analysis. Consequently, different sample sizes were employed to distinguish the impact of parametric regression model towards right censored data with 50, 100, 150 and 200 number of sample. R-statistical software was utilised to develop the coding simulation with right censored data. Besides, the final model of right censored simulation was compared with the right censored lung cancer data in Malaysia. It was found that different values of shape and scale parameter with different sample size, help to improve the simulation strategy for right censored data and Weibull regression survival model is suitable fit towards the simulation of survival of lung cancer patients data in Malaysia.
Haider, S; Hrbek, A; Xu, Y
2008-06-01
Primarily this report outlines our investigation on utilizing magneto-acousto-electrical-tomography (MAET) to image the lead field current density in volume conductors. A lead field current density distribution is obtained when a current/voltage source is applied to a sample via a pair of electrodes. This is the first time a high-spatial-resolution image of current density is presented using MAET. We also compare an experimental image of current density in a sample with its corresponding numerical simulation. To image the lead field current density, rather than applying a current/voltage source directly to the sample, we place the sample in a static magnetic field and focus an ultrasonic pulse on the sample to simulate a point-like current dipole source at the focal point. Then by using electrodes we measure the voltage/current signal which, based on the reciprocity theorem, is proportional to a component of the lead field current density. In the theory section, we derive the equation relating the measured voltage to the lead field current density and the displacement velocity caused by ultrasound. The experimental data include the MAET signal and an image of the lead field current density for a thin sample. In addition, we discuss the potential improvements for MAET especially to overcome the limitation created by the observation that no signal was detected from the interior of a region having a uniform conductivity. As an auxiliary we offer a mathematical formula whereby the lead field current density may be utilized to reconstruct the distribution of the electrical impedance in a piecewise smooth object.
NASA Astrophysics Data System (ADS)
Gao, Liang; Li, Fuhai; Thrall, Michael J.; Yang, Yaliang; Xing, Jiong; Hammoudi, Ahmad A.; Zhao, Hong; Massoud, Yehia; Cagle, Philip T.; Fan, Yubo; Wong, Kelvin K.; Wang, Zhiyong; Wong, Stephen T. C.
2011-09-01
We report the development and application of a knowledge-based coherent anti-Stokes Raman scattering (CARS) microscopy system for label-free imaging, pattern recognition, and classification of cells and tissue structures for differentiating lung cancer from non-neoplastic lung tissues and identifying lung cancer subtypes. A total of 1014 CARS images were acquired from 92 fresh frozen lung tissue samples. The established pathological workup and diagnostic cellular were used as prior knowledge for establishment of a knowledge-based CARS system using a machine learning approach. This system functions to separate normal, non-neoplastic, and subtypes of lung cancer tissues based on extracted quantitative features describing fibrils and cell morphology. The knowledge-based CARS system showed the ability to distinguish lung cancer from normal and non-neoplastic lung tissue with 91% sensitivity and 92% specificity. Small cell carcinomas were distinguished from nonsmall cell carcinomas with 100% sensitivity and specificity. As an adjunct to submitting tissue samples to routine pathology, our novel system recognizes the patterns of fibril and cell morphology, enabling medical practitioners to perform differential diagnosis of lung lesions in mere minutes. The demonstration of the strategy is also a necessary step toward in vivo point-of-care diagnosis of precancerous and cancerous lung lesions with a fiber-based CARS microendoscope.
Single-view phase retrieval of an extended sample by exploiting edge detection and sparsity
Tripathi, Ashish; McNulty, Ian; Munson, Todd; ...
2016-10-14
We propose a new approach to robustly retrieve the exit wave of an extended sample from its coherent diffraction pattern by exploiting sparsity of the sample's edges. This approach enables imaging of an extended sample with a single view, without ptychography. We introduce nonlinear optimization methods that promote sparsity, and we derive update rules to robustly recover the sample's exit wave. We test these methods on simulated samples by varying the sparsity of the edge-detected representation of the exit wave. Finally, our tests illustrate the strengths and limitations of the proposed method in imaging extended samples.
AKPINAR, GURLER; KASAP, MURAT; CANTURK, NUH ZAFER; ZULFIGAROVA, MEHIN; ISLEK, EYLÜL ECE; GULER, SERTAC ATA; SIMSEK, TURGAY; CANTURK, ZEYNEP
2017-01-01
Background/Aim: To unveil the pathophysiology of primary hyperparathyroidism, molecular details of parathyroid hyperplasia and adenoma have to be revealed. Such details will provide the tools necessary for differentiation of these two look-alike diseases. Therefore, in the present study, a comparative proteomic study using postoperative tissue samples from the parathyroid adenoma and parathyroid hyperplasia patients was performed. Materials and Methods: Protein extracts were prepared from tissue samples (n=8 per group). Protein pools were created for each group and subjected to DIGE and conventional 2DE. Following image analysis, spots representing the differentially regulated proteins were excised from the and used for identification via MALDI-TOF/TOF analysis. Results: The identities of 40 differentially-expressed proteins were revealed. Fourteen of these proteins were over-expressed in the hyperplasia while 26 of them were over-expressed in the adenoma. Conclusion: Most proteins found to be over-expressed in the hyperplasia samples were mitochondrial, underlying the importance of the mitochondrial activity as a potential biomarker for differentiation of parathyroid hyperplasia from adenoma. PMID:28446534
Quantitative DIC microscopy using an off-axis self-interference approach.
Fu, Dan; Oh, Seungeun; Choi, Wonshik; Yamauchi, Toyohiko; Dorn, August; Yaqoob, Zahid; Dasari, Ramachandra R; Feld, Michael S
2010-07-15
Traditional Normarski differential interference contrast (DIC) microscopy is a very powerful method for imaging nonstained biological samples. However, one of its major limitations is the nonquantitative nature of the imaging. To overcome this problem, we developed a quantitative DIC microscopy method based on off-axis sample self-interference. The digital holography algorithm is applied to obtain quantitative phase gradients in orthogonal directions, which leads to a quantitative phase image through a spiral integration of the phase gradients. This method is practically simple to implement on any standard microscope without stringent requirements on polarization optics. Optical sectioning can be obtained through enlarged illumination NA.
Estimation of the sugar cane cultivated area from LANDSAT images using the two phase sampling method
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Cappelletti, C. A.; Mendonca, F. J.; Lee, D. C. L.; Shimabukuro, Y. E.
1982-01-01
A two phase sampling method and the optimal sampling segment dimensions for the estimation of sugar cane cultivated area were developed. This technique employs visual interpretations of LANDSAT images and panchromatic aerial photographs considered as the ground truth. The estimates, as a mean value of 100 simulated samples, represent 99.3% of the true value with a CV of approximately 1%; the relative efficiency of the two phase design was 157% when compared with a one phase aerial photographs sample.
Development of a High-Throughput Microwave Imaging System for Concealed Weapons Detection
2016-07-15
hardware. Index Terms—Microwave imaging, multistatic radar, Fast Fourier Transform (FFT). I. INTRODUCTION Near-field microwave imaging is a non-ionizing...configuration, but its computational demands are extreme. Fast Fourier Transform (FFT) imaging has long been used to efficiently construct images sampled with...Simulated image of 25 point scatterers imaged at range 1.5m, with array layout depicted in Fig. 3. Left: image formed with Equation (5) ( Fourier
Advanced EUV mask and imaging modeling
NASA Astrophysics Data System (ADS)
Evanschitzky, Peter; Erdmann, Andreas
2017-10-01
The exploration and optimization of image formation in partially coherent EUV projection systems with complex source shapes requires flexible, accurate, and efficient simulation models. This paper reviews advanced mask diffraction and imaging models for the highly accurate and fast simulation of EUV lithography systems, addressing important aspects of the current technical developments. The simulation of light diffraction from the mask employs an extended rigorous coupled wave analysis (RCWA) approach, which is optimized for EUV applications. In order to be able to deal with current EUV simulation requirements, several additional models are included in the extended RCWA approach: a field decomposition and a field stitching technique enable the simulation of larger complex structured mask areas. An EUV multilayer defect model including a database approach makes the fast and fully rigorous defect simulation and defect repair simulation possible. A hybrid mask simulation approach combining real and ideal mask parts allows the detailed investigation of the origin of different mask 3-D effects. The image computation is done with a fully vectorial Abbe-based approach. Arbitrary illumination and polarization schemes and adapted rigorous mask simulations guarantee a high accuracy. A fully vectorial sampling-free description of the pupil with Zernikes and Jones pupils and an optimized representation of the diffraction spectrum enable the computation of high-resolution images with high accuracy and short simulation times. A new pellicle model supports the simulation of arbitrary membrane stacks, pellicle distortions, and particles/defects on top of the pellicle. Finally, an extension for highly accurate anamorphic imaging simulations is included. The application of the models is demonstrated by typical use cases.
Roalf, David R.; Quarmley, Megan; Elliott, Mark A.; Satterthwaite, Theodore D.; Vandekar, Simon N.; Ruparel, Kosha; Gennatas, Efstathios D.; Calkins, Monica E.; Moore, Tyler M.; Hopson, Ryan; Prabhakaran, Karthik; Jackson, Chad T.; Verma, Ragini; Hakonarson, Hakon; Gur, Ruben C.; Gur, Raquel E.
2015-01-01
Background Diffusion tensor imaging (DTI) is applied in investigation of brain biomarkers for neurodevelopmental and neurodegenerative disorders. However, the quality of DTI measurements, like other neuroimaging techniques, is susceptible to several confounding factors (e.g. motion, eddy currents), which have only recently come under scrutiny. These confounds are especially relevant in adolescent samples where data quality may be compromised in ways that confound interpretation of maturation parameters. The current study aims to leverage DTI data from the Philadelphia Neurodevelopmental Cohort (PNC), a sample of 1,601 youths ages of 8–21 who underwent neuroimaging, to: 1) establish quality assurance (QA) metrics for the automatic identification of poor DTI image quality; 2) examine the performance of these QA measures in an external validation sample; 3) document the influence of data quality on developmental patterns of typical DTI metrics. Methods All diffusion-weighted images were acquired on the same scanner. Visual QA was performed on all subjects completing DTI; images were manually categorized as Poor, Good, or Excellent. Four image quality metrics were automatically computed and used to predict manual QA status: Mean voxel intensity outlier count (MEANVOX), Maximum voxel intensity outlier count (MAXVOX), mean relative motion (MOTION) and temporal signal-to-noise ratio (TSNR). Classification accuracy for each metric was calculated as the area under the receiver-operating characteristic curve (AUC). A threshold was generated for each measure that best differentiated visual QA status and applied in a validation sample. The effects of data quality on sensitivity to expected age effects in this developmental sample were then investigated using the traditional MRI diffusion metrics: fractional anisotropy (FA) and mean diffusivity (MD). Finally, our method of QA is compared to DTIPrep. Results TSNR (AUC=0.94) best differentiated Poor data from Good and Excellent data. MAXVOX (AUC=0.88) best differentiated Good from Excellent DTI data. At the optimal threshold, 88% of Poor data and 91% Good/Excellent data were correctly identified. Use of these thresholds on a validation dataset (n=374) indicated high accuracy. In the validation sample 83% of Poor data and 94% of Excellent data was identified using thresholds derived from the training sample. Both FA and MD were affected by the inclusion of poor data in an analysis of age, sex and race in a matched comparison sample. In addition, we show that the inclusion of poor data results in significant attenuation of the correlation between diffusion metrics (FA and MD) and age during a critical neurodevelopmental period. We find higher correspondence between our QA method and DTIPrep for Poor data, but we find our method to be more robust for apparently high-quality images. Conclusion Automated QA of DTI can facilitate large-scale, high-throughput quality assurance by reliably identifying both scanner and subject induced imaging artifacts. The results present a practical example of the confounding effects of artifacts on DTI analysis in a large population-based sample, and suggest that estimates of data quality should not only be reported but also accounted for in data analysis, especially in studies of development. PMID:26520775
NASA Astrophysics Data System (ADS)
Hagemann, Alexander; Rohr, Karl; Stiehl, H. Siegfried
2000-06-01
In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images w.r.t. intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropriate boundary conditions or by spatially varying material parameter values, while assuming the same physical model for all anatomical structures. In general, this leads to physically implausible results, especially in the case of adjacent elastic and fluid structures. Therefore, we propose a new approach which allows to couple different physical models. In our case, we simulate rigid, elastic, and fluid regions by using the appropriate physical description for each material, namely either the Navier equation or the Stokes equation. To solve the resulting differential equations, we derive a linear matrix system for each region by applying the finite element method (FEM). Thereafter, the linear matrix systems are linked together, ending up with one overall linear matrix system. Our approach has been tested using synthetic as well as tomographic images. It turns out from experiments, that the integrated treatment of rigid, elastic, and fluid regions significantly improves the prediction results in comparison to a pure linear elastic model.
Zhu, Wensheng; Yuan, Ying; Zhang, Jingwen; Zhou, Fan; Knickmeyer, Rebecca C; Zhu, Hongtu
2017-02-01
The aim of this paper is to systematically evaluate a biased sampling issue associated with genome-wide association analysis (GWAS) of imaging phenotypes for most imaging genetic studies, including the Alzheimer's Disease Neuroimaging Initiative (ADNI). Specifically, the original sampling scheme of these imaging genetic studies is primarily the retrospective case-control design, whereas most existing statistical analyses of these studies ignore such sampling scheme by directly correlating imaging phenotypes (called the secondary traits) with genotype. Although it has been well documented in genetic epidemiology that ignoring the case-control sampling scheme can produce highly biased estimates, and subsequently lead to misleading results and suspicious associations, such findings are not well documented in imaging genetics. We use extensive simulations and a large-scale imaging genetic data analysis of the Alzheimer's Disease Neuroimaging Initiative (ADNI) data to evaluate the effects of the case-control sampling scheme on GWAS results based on some standard statistical methods, such as linear regression methods, while comparing it with several advanced statistical methods that appropriately adjust for the case-control sampling scheme. Copyright © 2016 Elsevier Inc. All rights reserved.
Attitude determination for high-accuracy submicroradian jitter pointing on space-based platforms
NASA Astrophysics Data System (ADS)
Gupta, Avanindra A.; van Houten, Charles N.; Germann, Lawrence M.
1990-10-01
A description of the requirement definition process is given for a new wideband attitude determination subsystem (ADS) for image motion compensation (IMC) systems. The subsystem consists of either lateral accelerometers functioning in differential pairs or gas-bearing gyros for high-frequency sensors using CCD-based star trackers for low-frequency sensors. To minimize error the sensor signals are combined so that the mixing filter does not allow phase distortion. The two ADS models are introduced in an IMC simulation to predict measurement error, correction capability, and residual image jitter for a variety of system parameters. The IMC three-axis testbed is utilized to simulate an incoming beam in inertial space. Results demonstrate that both mechanical and electronic IMC meet the requirements of image stabilization for space-based observation at submicroradian-jitter levels. Currently available technology may be employed to implement IMC systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarma, Manoj; Department of Radiation Oncology, University of California, Los Angeles, California; Hu, Peng
Purpose: To evaluate a low-rank decomposition method to reconstruct down-sampled k-space data for the purpose of tumor tracking. Methods and Materials: Seven retrospective lung cancer patients were included in the simulation study. The fully-sampled k-space data were first generated from existing 2-dimensional dynamic MR images and then down-sampled by 5 × -20 × before reconstruction using a Cartesian undersampling mask. Two methods, a low-rank decomposition method using combined dynamic MR images (k-t SLR based on sparsity and low-rank penalties) and a total variation (TV) method using individual dynamic MR frames, were used to reconstruct images. The tumor trajectories were derived on the basis ofmore » autosegmentation of the resultant images. To further test its feasibility, k-t SLR was used to reconstruct prospective data of a healthy subject. An undersampled balanced steady-state free precession sequence with the same undersampling mask was used to acquire the imaging data. Results: In the simulation study, higher imaging fidelity and low noise levels were achieved with the k-t SLR compared with TV. At 10 × undersampling, the k-t SLR method resulted in an average normalized mean square error <0.05, as opposed to 0.23 by using the TV reconstruction on individual frames. Less than 6% showed tracking errors >1 mm with 10 × down-sampling using k-t SLR, as opposed to 17% using TV. In the prospective study, k-t SLR substantially reduced reconstruction artifacts and retained anatomic details. Conclusions: Magnetic resonance reconstruction using k-t SLR on highly undersampled dynamic MR imaging data results in high image quality useful for tumor tracking. The k-t SLR was superior to TV by better exploiting the intrinsic anatomic coherence of the same patient. The feasibility of k-t SLR was demonstrated by prospective imaging acquisition and reconstruction.« less
Phipps, Eric T.; D'Elia, Marta; Edwards, Harold C.; ...
2017-04-18
In this study, quantifying simulation uncertainties is a critical component of rigorous predictive simulation. A key component of this is forward propagation of uncertainties in simulation input data to output quantities of interest. Typical approaches involve repeated sampling of the simulation over the uncertain input data, and can require numerous samples when accurately propagating uncertainties from large numbers of sources. Often simulation processes from sample to sample are similar and much of the data generated from each sample evaluation could be reused. We explore a new method for implementing sampling methods that simultaneously propagates groups of samples together in anmore » embedded fashion, which we call embedded ensemble propagation. We show how this approach takes advantage of properties of modern computer architectures to improve performance by enabling reuse between samples, reducing memory bandwidth requirements, improving memory access patterns, improving opportunities for fine-grained parallelization, and reducing communication costs. We describe a software technique for implementing embedded ensemble propagation based on the use of C++ templates and describe its integration with various scientific computing libraries within Trilinos. We demonstrate improved performance, portability and scalability for the approach applied to the simulation of partial differential equations on a variety of CPU, GPU, and accelerator architectures, including up to 131,072 cores on a Cray XK7 (Titan).« less
NASA Astrophysics Data System (ADS)
Phan, Khoi A.; Spence, Chris A.; Dakshina-Murthy, S.; Bala, Vidya; Williams, Alvina M.; Strener, Steve; Eandi, Richard D.; Li, Junling; Karklin, Linard
1999-12-01
As advanced process technologies in the wafer fabs push the patterning processes toward lower k1 factor for sub-wavelength resolution printing, reticles are required to use optical proximity correction (OPC) and phase-shifted mask (PSM) for resolution enhancement. For OPC/PSM mask technology, defect printability is one of the major concerns. Current reticle inspection tools available on the market sometimes are not capable of consistently differentiating between an OPC feature and a true random defect. Due to the process complexity and high cost associated with the making of OPC/PSM reticles, it is important for both mask shops and lithography engineers to understand the impact of different defect types and sizes to the printability. Aerial Image Measurement System (AIMS) has been used in the mask shops for a number of years for reticle applications such as aerial image simulation and transmission measurement of repaired defects. The Virtual Stepper System (VSS) provides an alternative method to do defect printability simulation and analysis using reticle images captured by an optical inspection or review system. In this paper, pre- programmed defects and repairs from a Defect Sensitivity Monitor (DSM) reticle with 200 nm minimum features (at 1x) will be studied for printability. The simulated resist lines by AIMS and VSS are both compared to SEM images of resist wafers qualitatively and quantitatively using CD verification.Process window comparison between unrepaired and repaired defects for both good and bad repair cases will be shown. The effect of mask repairs to resist pattern images for the binary mask case will be discussed. AIMS simulation was done at the International Sematech, Virtual stepper simulation at Zygo and resist wafers were processed at AMD-Submicron Development Center using a DUV lithographic process for 0.18 micrometer Logic process technology.
Lu, Alex Y; Turban, Jack L; Damisah, Eyiyemisi C; Li, Jie; Alomari, Ahmed K; Eid, Tore; Vortmeyer, Alexander O; Chiang, Veronica L
2017-08-01
OBJECTIVE Following an initial response of brain metastases to Gamma Knife radiosurgery, regrowth of the enhancing lesion as detected on MRI may represent either radiation necrosis (a treatment-related inflammatory change) or recurrent tumor. Differentiation of radiation necrosis from tumor is vital for management decision making but remains difficult by imaging alone. In this study, gas chromatography with time-of-flight mass spectrometry (GC-TOF) was used to identify differential metabolite profiles of the 2 tissue types obtained by surgical biopsy to find potential targets for noninvasive imaging. METHODS Specimens of pure radiation necrosis and pure tumor obtained from patient brain biopsies were flash-frozen and validated histologically. These formalin-free tissue samples were then analyzed using GC-TOF. The metabolite profiles of radiation necrosis and tumor samples were compared using multivariate and univariate statistical analysis. Statistical significance was defined as p ≤ 0.05. RESULTS For the metabolic profiling, GC-TOF was performed on 7 samples of radiation necrosis and 7 samples of tumor. Of the 141 metabolites identified, 17 (12.1%) were found to be statistically significantly different between comparison groups. Of these metabolites, 6 were increased in tumor, and 11 were increased in radiation necrosis. An unsupervised hierarchical clustering analysis found that tumor had elevated levels of metabolites associated with energy metabolism, whereas radiation necrosis had elevated levels of metabolites that were fatty acids and antioxidants/cofactors. CONCLUSIONS To the authors' knowledge, this is the first tissue-based metabolomics study of radiation necrosis and tumor. Radiation necrosis and recurrent tumor following Gamma Knife radiosurgery for brain metastases have unique metabolite profiles that may be targeted in the future to develop noninvasive metabolic imaging techniques.
NASA Astrophysics Data System (ADS)
Han, Tao; Chen, Lingyun; Lai, Chao-Jen; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Shaw, Chris C.
2009-02-01
Images of mastectomy breast specimens have been acquired with a bench top experimental Cone beam CT (CBCT) system. The resulting images have been segmented to model an uncompressed breast for simulation of various CBCT techniques. To further simulate conventional or tomosynthesis mammographic imaging for comparison with the CBCT technique, a deformation technique was developed to convert the CT data for an uncompressed breast to a compressed breast without altering the breast volume or regional breast density. With this technique, 3D breast deformation is separated into two 2D deformations in coronal and axial views. To preserve the total breast volume and regional tissue composition, each 2D deformation step was achieved by altering the square pixels into rectangular ones with the pixel areas unchanged and resampling with the original square pixels using bilinear interpolation. The compression was modeled by first stretching the breast in the superior-inferior direction in the coronal view. The image data were first deformed by distorting the voxels with a uniform distortion ratio. These deformed data were then deformed again using distortion ratios varying with the breast thickness and re-sampled. The deformation procedures were applied in the axial view to stretch the breast in the chest wall to nipple direction while shrinking it in the mediolateral to lateral direction re-sampled and converted into data for uniform cubic voxels. Threshold segmentation was applied to the final deformed image data to obtain the 3D compressed breast model. Our results show that the original segmented CBCT image data were successfully converted into those for a compressed breast with the same volume and regional density preserved. Using this compressed breast model, conventional and tomosynthesis mammograms were simulated for comparison with CBCT.
Fat: friend or foe? A review of fat-containing masses within the head and neck.
Kale, Hrishikesh A; Prabhu, Arpan V; Sinelnikov, Andrey; Branstetter, Barton
2016-11-01
Fat-containing lesions of the head and neck are commonly encountered in day-to-day practice. Our aim was to review the various imaging presentations of common and some uncommon fat-containing lesions within the head and neck with potential pitfalls and mimics. While most soft-tissue masses have a fairly similar density, the presence of fat in a mass lesion is easy to identify on both CT/MRI and can help narrow the differential. Case-based examples of lipomas, liposarcomas, lipoblastomas, dermoids, teratomas and other fatty lesions will be used to describe imaging features. While fat density can be helpful, differentiating benign from malignant fat-containing lesions can still pose a challenge. Lesions simulating pathology such as brown fat, fatty changes within organs and post-operative flaps are presented. Finally, examples of fatty lesions in atypical locations are shown to illustrate examples that should be kept in mind in any differential. The presence of fat in head and neck masses can aid radiologists in arriving at an accurate diagnosis. Knowledge of the imaging appearance of these fat-containing lesions and their mimics can help avoid unnecessary biopsy or surgery.
Comparison of texture synthesis methods for content generation in ultrasound simulation for training
NASA Astrophysics Data System (ADS)
Mattausch, Oliver; Ren, Elizabeth; Bajka, Michael; Vanhoey, Kenneth; Goksel, Orcun
2017-03-01
Navigation and interpretation of ultrasound (US) images require substantial expertise, the training of which can be aided by virtual-reality simulators. However, a major challenge in creating plausible simulated US images is the generation of realistic ultrasound speckle. Since typical ultrasound speckle exhibits many properties of Markov Random Fields, it is conceivable to use texture synthesis for generating plausible US appearance. In this work, we investigate popular classes of texture synthesis methods for generating realistic US content. In a user study, we evaluate their performance for reproducing homogeneous tissue regions in B-mode US images from small image samples of similar tissue and report the best-performing synthesis methods. We further show that regression trees can be used on speckle texture features to learn a predictor for US realism.
Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.
Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R
2015-10-01
Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. © 2015 Wiley Periodicals, Inc.
Numerical Simulation of Electrical Properties of Carbonate Reservoir Rocks Using µCT Images
NASA Astrophysics Data System (ADS)
Colgin, J.; Niu, Q.; Zhang, C.; Zhang, F.
2017-12-01
Digital rock physics involves the modern microscopic imaging of geomaterials, digitalization of the microstructure, and numerical simulation of physical properties of rocks. This physics-based approach can give important insight into understanding properties of reservoir rocks, and help reveal the link between intrinsic rock properties and macroscopic geophysical responses. The focus of this study is the simulation of the complex conductivity of carbonate reservoir rocks using reconstructed 3D rock structures from high-resolution X-ray micro computed tomography (µCT). Carbonate core samples with varying lithofacies and pore structures from the Cambro-Ordovician Arbuckle Group and the Upper Pennsylvanian Lansing-Kansas City Group in Kansas are used in this study. The wide variations in pore geometry and connectivity of these samples were imaged using µCT. A two-phase segmentation method was used to reconstruct a digital rock of solid particles and pores. We then calculate the effective electrical conductivity of the digital rock volume using a pore-scale numerical approach. The complex conductivity of geomaterials is influenced by the electrical properties and geometry of each phase, i.e., the solid and fluid phases. In addition, the electrical double layer that forms between the solid and fluid phases can also affect the effective conductivity of the material. In the numerical modeling, the influence of the electrical double layer is quantified by a complex surface conductance and converted to an apparent volumetric complex conductivity of either solid particles or pore fluid. The effective complex conductivity resulting from numerical simulations based on µCT images will be compared to results from laboratory experiments on equivalent rock samples. The imaging and digital segmentation method, assumptions in the numerical simulation, and trends as compared to laboratory results will be discussed. This study will help us understand how microscale physics affects macroscale electrical conductivity in porous media.
NASA Astrophysics Data System (ADS)
Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; Martino, Antonello De; Pagnoux, Dominique
2016-07-01
This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.
Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; De Martino, Antonello; Pagnoux, Dominique
2016-07-01
This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.
NASA Astrophysics Data System (ADS)
Dwyer, Linnea; Yadav, Kamini; Congalton, Russell G.
2017-04-01
Providing adequate food and water for a growing, global population continues to be a major challenge. Mapping and monitoring crops are useful tools for estimating the extent of crop productivity. GFSAD30 (Global Food Security Analysis Data at 30m) is a program, funded by NASA, that is producing global cropland maps by using field measurements and remote sensing images. This program studies 8 major crop types, and includes information on cropland area/extent, if crops are irrigated or rainfed, and the cropping intensities. Using results from the US and the extensive reference data available, CDL (USDA Crop Data Layer), we will experiment with various sampling simulations to determine optimal sampling for thematic map accuracy assessment. These simulations will include varying the sampling unit, the sampling strategy, and the sample number. Results of these simulations will allow us to recommend assessment approaches to handle different cropping scenarios.
Guo, Shuguang; Zhang, Jun; Wang, Lei; Nelson, J Stuart; Chen, Zhongping
2004-09-01
Conventional polarization-sensitive optical coherence tomography (PS-OCT) can provide depth-resolved Stokes parameter measurements of light reflected from turbid media. A new algorithm that takes into account changes in the optical axis is introduced to provide depth-resolved birefringence and differential optical axis orientation images by use of fiber-based PS-OCT. Quaternion, a convenient mathematical tool, is used to represent an optical element and simplify the algorithm. Experimental results with beef tendon and rabbit tendon and muscle show that this technique has promising potential for imaging the birefringent structure of multiple-layer samples with varying optical axes.
Liu, Jianjun; Song, Rui; Cui, Mengmeng
2014-01-01
A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view.
Liu, Jianjun; Song, Rui; Cui, Mengmeng
2014-01-01
A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view. PMID:24955384
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Zaytsev, Kirill I.; Lesnichaya, Anastasiya D.; Kudrin, Konstantin G.; Cherkasova, Olga P.; Kurlov, Vladimir N.; Shikunova, Irina A.; Perchik, Alexei V.; Yurchenko, Stanislav O.; Reshetov, Igor V.
2016-09-01
In present paper, an ability to differentiate basal cell carcinoma (BCC) and healthy skin by combining multi-spectral autofluorescence imaging, principle component analysis (PCA), and linear discriminant analysis (LDA) has been demonstrated. For this purpose, the experimental setup, which includes excitation and detection branches, has been assembled. The excitation branch utilizes a mercury arc lamp equipped with a 365-nm narrow-linewidth excitation filter, a beam homogenizer, and a mechanical chopper. The detection branch employs a set of bandpass filters with the central wavelength of spectral transparency of λ = 400, 450, 500, and 550 nm, and a digital camera. The setup has been used to study three samples of freshly excised BCC. PCA and LDA have been implemented to analyze the data of multi-spectral fluorescence imaging. Observed results of this pilot study highlight the advantages of proposed imaging technique for skin cancer diagnosis.
Density functional theory study of the capacitance of single file ions in a narrow cylinder
Kong, Xian; Wu, Jianzhong; Henderson, Douglas
2014-11-14
In this paper, the differential capacitance of a model organic electrolyte in a cylindrical pore that is so narrow that the ions can form only a single file is studied by means of density functional theory (DFT). Kornyshev (2013), has studied this system and found the differential capacitance to have only a double hump shape (the so-called camel shape) whereas other geometries show this behavior only at low ionic concentrations that are typical for aqueous electrolytes. However, his calculation is rather approximate. In this DFT study we find that the double hump shape occurs only at low ionic concentrations. Atmore » high concentrations, the capacitance has only a single hump. Kornyshev considers a metallic cylinder and approximately includes the contributions of electrostatic images. Electrostatic images are not easily incorporated into DFT. In conclusion, images are not considered in this study and the question of whether Kornyshev’s result is due to his approximations or images cannot be answered. Simulations to answer this question are planned.« less
Isotope analysis in the transmission electron microscope.
Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani
2016-10-10
The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.
NASA Astrophysics Data System (ADS)
Mrozek, T.; Perlicki, K.; Tajmajer, T.; Wasilewski, P.
2017-08-01
The article presents an image analysis method, obtained from an asynchronous delay tap sampling (ADTS) technique, which is used for simultaneous monitoring of various impairments occurring in the physical layer of the optical network. The ADTS method enables the visualization of the optical signal in the form of characteristics (so called phase portraits) that change their shape under the influence of impairments such as chromatic dispersion, polarization mode dispersion and ASE noise. Using this method, a simulation model was built with OptSim 4.0. After the simulation study, data were obtained in the form of images that were further analyzed using the convolutional neural network algorithm. The main goal of the study was to train a convolutional neural network to recognize the selected impairment (distortion); then to test its accuracy and estimate the impairment for the selected set of test images. The input data consisted of processed binary images in the form of two-dimensional matrices, with the position of the pixel. This article focuses only on the analysis of images containing chromatic dispersion.
Three-dimensional thermographic imaging using a virtual wave concept
NASA Astrophysics Data System (ADS)
Burgholzer, Peter; Thor, Michael; Gruber, Jürgen; Mayr, Günther
2017-03-01
In this work, it is shown that image reconstruction methods from ultrasonic imaging can be employed for thermographic signals. Before using these imaging methods, a virtual signal is calculated by applying a local transformation to the temperature evolution measured on a sample surface. The introduced transformation describes all the irreversibility of the heat diffusion process and can be used for every sample shape. To date, one-dimensional methods have been primarily used in thermographic imaging. The proposed two-stage algorithm enables reconstruction in two and three dimensions. The feasibility of this approach is demonstrated through simulations and experiments. For the latter, small steel beads embedded in an epoxy resin are imaged. The resolution limit is found to be proportional to the depth of the structures and to be inversely proportional to the logarithm of the signal-to-noise ratio. Limited-view artefacts can arise if the measurement is performed on a single planar detection surface. These artifacts can be reduced by measuring the thermographic signals from multiple planes, which is demonstrated by numerical simulations and by experiments performed on an epoxy cube.
BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory
Berisha, Sebastian; van Dijk, Thomas; Bhargava, Rohit; Carney, P. Scott; Mayerich, David
2017-01-01
Understanding the structure of a scattered electromagnetic (EM) field is critical to improving the imaging process. Mechanisms such as diffraction, scattering, and interference affect an image, limiting the resolution, and potentially introducing artifacts. Simulation and visualization of scattered fields thus plays an important role in imaging science. However, EM fields are high-dimensional, making them time-consuming to simulate, and difficult to visualize. In this paper, we present a framework for interactively computing and visualizing EM fields scattered by micro and nano-particles. Our software uses graphics hardware for evaluating the field both inside and outside of these particles. We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional structure of the field, spectral profiles at individual points, the structure of the field at the surface of the particle, and the resulting image produced by an optical system. PMID:29170738
A single-image method for x-ray refractive index CT.
Mittone, A; Gasilov, S; Brun, E; Bravin, A; Coan, P
2015-05-07
X-ray refraction-based computer tomography imaging is a well-established method for nondestructive investigations of various objects. In order to perform the 3D reconstruction of the index of refraction, two or more raw computed tomography phase-contrast images are usually acquired and combined to retrieve the refraction map (i.e. differential phase) signal within the sample. We suggest an approximate method to extract the refraction signal, which uses a single raw phase-contrast image. This method, here applied to analyzer-based phase-contrast imaging, is employed to retrieve the index of refraction map of a biological sample. The achieved accuracy in distinguishing the different tissues is comparable with the non-approximated approach. The suggested procedure can be used for precise refraction computer tomography with the advantage of a reduction of at least a factor of two of both the acquisition time and the dose delivered to the sample with respect to any of the other algorithms in the literature.
Heterogeneity, histological features and DNA ploidy in oral carcinoma by image-based analysis.
Diwakar, N; Sperandio, M; Sherriff, M; Brown, A; Odell, E W
2005-04-01
Oral squamous carcinomas appear heterogeneous on DNA ploidy analysis. However, this may be partly a result of sample dilution or the detection limit of techniques. The aim of this study was to determine whether oral squamous carcinomas are heterogeneous for ploidy status using image-based ploidy analysis and to determine whether ploidy status correlates with histological parameters. Multiple samples from 42 oral squamous carcinomas were analysed for DNA ploidy using an image-based system and scored for histological parameters. 22 were uniformly aneuploid, 1 uniformly tetraploid and 3 uniformly diploid. 16 appeared heterogeneous but only 8 appeared to be genuinely heterogeneous when minor ploidy histogram peaks were taken into account. Ploidy was closely related to nuclear pleomorphism but not differentiation. Sample variation, detection limits and diagnostic criteria account for much of the ploidy heterogeneity observed. Confident diagnosis of diploid status in an oral squamous cell carcinoma requires a minimum of 5 samples.
Wilms, M; Werner, R; Blendowski, M; Ortmüller, J; Handels, H
2014-01-01
A major problem associated with the irradiation of thoracic and abdominal tumors is respiratory motion. In clinical practice, motion compensation approaches are frequently steered by low-dimensional breathing signals (e.g., spirometry) and patient-specific correspondence models, which are used to estimate the sought internal motion given a signal measurement. Recently, the use of multidimensional signals derived from range images of the moving skin surface has been proposed to better account for complex motion patterns. In this work, a simulation study is carried out to investigate the motion estimation accuracy of such multidimensional signals and the influence of noise, the signal dimensionality, and different sampling patterns (points, lines, regions). A diffeomorphic correspondence modeling framework is employed to relate multidimensional breathing signals derived from simulated range images to internal motion patterns represented by diffeomorphic non-linear transformations. Furthermore, an automatic approach for the selection of optimal signal combinations/patterns within this framework is presented. This simulation study focuses on lung motion estimation and is based on 28 4D CT data sets. The results show that the use of multidimensional signals instead of one-dimensional signals significantly improves the motion estimation accuracy, which is, however, highly affected by noise. Only small differences exist between different multidimensional sampling patterns (lines and regions). Automatically determined optimal combinations of points and lines do not lead to accuracy improvements compared to results obtained by using all points or lines. Our results show the potential of multidimensional breathing signals derived from range images for the model-based estimation of respiratory motion in radiation therapy.
X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer
NASA Astrophysics Data System (ADS)
Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.
2016-09-01
X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.
Photometric Modeling of Simulated Surace-Resolved Bennu Images
NASA Astrophysics Data System (ADS)
Golish, D.; DellaGiustina, D. N.; Clark, B.; Li, J. Y.; Zou, X. D.; Bennett, C. A.; Lauretta, D. S.
2017-12-01
The Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) is a NASA mission to study and return a sample of asteroid (101955) Bennu. Imaging data from the mission will be used to develop empirical surface-resolved photometric models of Bennu at a series of wavelengths. These models will be used to photometrically correct panchromatic and color base maps of Bennu, compensating for variations due to shadows and photometric angle differences, thereby minimizing seams in mosaicked images. Well-corrected mosaics are critical to the generation of a global hazard map and a global 1064-nm reflectance map which predicts LIDAR response. These data products directly feed into the selection of a site from which to safely acquire a sample. We also require photometric correction for the creation of color ratio maps of Bennu. Color ratios maps provide insight into the composition and geological history of the surface and allow for comparison to other Solar System small bodies. In advance of OSIRIS-REx's arrival at Bennu, we use simulated images to judge the efficacy of both the photometric modeling software and the mission observation plan. Our simulation software is based on USGS's Integrated Software for Imagers and Spectrometers (ISIS) and uses a synthetic shape model, a camera model, and an empirical photometric model to generate simulated images. This approach gives us the flexibility to create simulated images of Bennu based on analog surfaces from other small Solar System bodies and to test our modeling software under those conditions. Our photometric modeling software fits image data to several conventional empirical photometric models and produces the best fit model parameters. The process is largely automated, which is crucial to the efficient production of data products during proximity operations. The software also produces several metrics on the quality of the observations themselves, such as surface coverage and the completeness of the data set for evaluating the phase and disk functions of the surface. Application of this software to simulated mission data has revealed limitations in the initial mission design, which has fed back into the planning process. The entire photometric pipeline further serves as an exercise of planned activities for proximity operations.
Grating-Based Phase-Contrast Imaging of Tumor Angiogenesis in Lung Metastases
Li, Xiangting; Wang, Yujie; Ding, Bei; Shi, Chen; Liu, Huanhuan; Tang, Rongbiao; Sun, Jianqi; Yan, Fuhua; Zhang, Huan
2015-01-01
Purpose To assess the feasibility of the grating-based phase-contrast imaging (GPI) technique for studying tumor angiogenesis in nude BALB/c mice, without contrast agents. Methods We established lung metastatic models of human gastric cancer by injecting the moderately differentiated SGC-7901 gastric cancer cell line into the tail vein of nude mice. Samples were embedded in a 10% formalin suspension and dried before imaging. Grating-based X-ray phase-contrast images were obtained at the BL13W beamline of the Shanghai Synchrotron Radiation Facility (SSRF) and compared with histological sections. Results Without contrast agents, grating-based X-ray phase-contrast imaging still differentiated angiogenesis within metastatic tumors with high spatial resolution. Vessels, down to tens of microns, showed gray values that were distinctive from those of the surrounding tumors, which made them easily identifiable. The vessels depicted in the imaging study were similar to those identified on histopathology, both in size and shape. Conclusions Our preliminary study demonstrates that grating-based X-ray phase-contrast imaging has the potential to depict angiogenesis in lung metastases. PMID:25811626
The Abundance of Large Arcs From CLASH
NASA Astrophysics Data System (ADS)
Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Coe, Dan A.; Clash Team
2015-01-01
We have developed an automated arc-finding algorithm to perform a rigorous comparison of the observed and simulated abundance of large lensed background galaxies (a.k.a arcs). We use images from the CLASH program to derive our observed arc abundance. Simulated CLASH images are created by performing ray tracing through mock clusters generated by the N-body simulation calibrated tool -- MOKA, and N-body/hydrodynamic simulations -- MUSIC, over the same mass and redshift range as the CLASH X-ray selected sample. We derive a lensing efficiency of 15 ± 3 arcs per cluster for the X-ray selected CLASH sample and 4 ± 2 arcs per cluster for the simulated sample. The marginally significant difference (3.0 σ) between the results for the observations and the simulations can be explained by the systematically smaller area with magnification larger than 3 (by a factor of ˜4) in both MOKA and MUSIC mass models relative to those derived from the CLASH data. Accounting for this difference brings the observed and simulated arc statistics into full agreement. We find that the source redshift distribution does not have big impact on the arc abundance but the arc abundance is very sensitive to the concentration of the dark matter halos. Our results suggest that the solution to the "arc statistics problem" lies primarily in matching the cluster dark matter distribution.
Image simulation and surface reconstruction of undercut features in atomic force microscopy
NASA Astrophysics Data System (ADS)
Qian, Xiaoping; Villarrubia, John; Tian, Fenglei; Dixson, Ronald
2007-03-01
CD-AFMs (critical dimension atomic force microscopes) are instruments with servo-control of the tip in more than one direction. With appropriately "boot-shaped" or flared tips, such instruments can image vertical or even undercut features. As with any AFM, the image is a dilation of the sample shape with the tip shape. Accurate extraction of the CD requires a correction for the tip effect. Analytical methods to correct images for the tip shape have been available for some time for the traditional (vertical feedback only) AFMs, but were until recently unavailable for instruments with multi-dimensional feedback. Dahlen et al. [J. Vac. Sci. Technol. B23, pp. 2297-2303, (2005)] recently introduced a swept-volume approach, implemented for 2-dimensional (2D) feedback. It permits image simulation and sample reconstruction, techniques previously developed for the traditional instruments, to be extended for the newer tools. We have introduced [X. Qian and J. S. Villarrubia, Ultramicroscopy, in press] an alternative dexel-based method, that does the same in either 2D or 3D. This paper describes the application of this method to sample shapes of interest in semiconductor manufacturing. When the tip shape is known (e.g., by prior measurement using a tip characterizer) a 3D sample surface may be reconstructed from its 3D image. Basing the CD measurement upon such a reconstruction is shown here to remove some measurement artifacts that are not removed (or are incompletely removed) by the existing measurement procedures.
Chen, Bin; Zhao, Kai; Li, Bo; Cai, Wenchao; Wang, Xiaoying; Zhang, Jue; Fang, Jing
2015-10-01
To demonstrate the feasibility of the improved temporal resolution by using compressed sensing (CS) combined imaging sequence in dynamic contrast-enhanced MRI (DCE-MRI) of kidney, and investigate its quantitative effects on renal perfusion measurements. Ten rabbits were included in the accelerated scans with a CS-combined 3D pulse sequence. To evaluate the image quality, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between the proposed CS strategy and the conventional full sampling method. Moreover, renal perfusion was estimated by using the separable compartmental model in both CS simulation and realistic CS acquisitions. The CS method showed DCE-MRI images with improved temporal resolution and acceptable image contrast, while presenting significantly higher SNR than the fully sampled images (p<.01) at 2-, 3- and 4-X acceleration. In quantitative measurements, renal perfusion results were in good agreement with the fully sampled one (concordance correlation coefficient=0.95, 0.91, 0.88) at 2-, 3- and 4-X acceleration in CS simulation. Moreover, in realistic acquisitions, the estimated perfusion by the separable compartmental model exhibited no significant differences (p>.05) between each CS-accelerated acquisition and the full sampling method. The CS-combined 3D sequence could improve the temporal resolution for DCE-MRI in kidney while yielding diagnostically acceptable image quality, and it could provide effective measurements of renal perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Villiger, Martin; Lorenser, Dirk; McLaughlin, Robert A.; Quirk, Bryden C.; Kirk, Rodney W.; Bouma, Brett E.; Sampson, David D.
2016-07-01
Identifying tumour margins during breast-conserving surgeries is a persistent challenge. We have previously developed miniature needle probes that could enable intraoperative volume imaging with optical coherence tomography. In many situations, however, scattering contrast alone is insufficient to clearly identify and delineate malignant regions. Additional polarization-sensitive measurements provide the means to assess birefringence, which is elevated in oriented collagen fibres and may offer an intrinsic biomarker to differentiate tumour from benign tissue. Here, we performed polarization-sensitive optical coherence tomography through miniature imaging needles and developed an algorithm to efficiently reconstruct images of the depth-resolved tissue birefringence free of artefacts. First ex vivo imaging of breast tumour samples revealed excellent contrast between lowly birefringent malignant regions, and stromal tissue, which is rich in oriented collagen and exhibits higher birefringence, as confirmed with co-located histology. The ability to clearly differentiate between tumour and uninvolved stroma based on intrinsic contrast could prove decisive for the intraoperative assessment of tumour margins.
NASA Astrophysics Data System (ADS)
Hirsch, Lea A.; Ciardi, David R.; Howard, Andrew W.; Everett, Mark E.; Furlan, Elise; Saylors, Mindy; Horch, Elliott P.; Howell, Steve B.; Teske, Johanna; Marcy, Geoffrey W.
2017-03-01
We report on 176 close (<2″) stellar companions detected with high-resolution imaging near 170 hosts of Kepler Objects of Interest (KOIs). These Kepler targets were prioritized for imaging follow-up based on the presence of small planets, so most of the KOIs in these systems (176 out of 204) have nominal radii <6 {R}\\oplus . Each KOI in our sample was observed in at least two filters with adaptive optics, speckle imaging, lucky imaging, or the Hubble Space Telescope. Multi-filter photometry provides color information on the companions, allowing us to constrain their stellar properties and assess the probability that the companions are physically bound. We find that 60%-80% of companions within 1″ are bound, and the bound fraction is >90% for companions within 0.″5 the bound fraction decreases with increasing angular separation. This picture is consistent with simulations of the binary and background stellar populations in the Kepler field. We also reassess the planet radii in these systems, converting the observed differential magnitudes to a contamination in the Kepler bandpass and calculating the planet radius correction factor, X R = R p (true)/R p (single). Under the assumption that planets in bound binaries are equally likely to orbit the primary or secondary, we find a mean radius correction factor for planets in stellar multiples of X R = 1.65. If stellar multiplicity in the Kepler field is similar to the solar neighborhood, then nearly half of all Kepler planets may have radii underestimated by an average of 65%, unless vetted using high-resolution imaging or spectroscopy.
NASA Technical Reports Server (NTRS)
Murakami, Naoshi; Nishikawa, Jun; Sakamoto, Moritsugu; Ise, Akitoshi; Oka, Kazuhiko; Baba, Naoshi; Murakami, Hiroshi; Tamura, Motohide; Traub, Wesley A.; Mawet, Dimitri;
2012-01-01
Photonic crystal, an artificial periodic nanostructure of refractive indices, is one of the attractive technologies for coronagraph focal-plane masks aiming at direct imaging and characterization of terrestrial extrasolar planets. We manufactured the eight-octant phase mask (8OPM) and the vector vortex mask (VVM) very precisely using the photonic crystal technology. Fully achromatic phase-mask coronagraphs can be realized by applying appropriate polarization filters to the masks. We carried out laboratory experiments of the polarization-filtered 8OPM coronagraph using the High-Contrast Imaging Testbed (HCIT), a state-of-the-art coronagraph simulator at the Jet Propulsion Laboratory (JPL). We report the experimental results of 10-8-level contrast across several wavelengths over 10% bandwidth around 800nm. In addition, we present future prospects and observational strategy for the photonic-crystal mask coronagraphs combined with differential imaging techniques to reach higher contrast. We proposed to apply a polarization-differential imaging (PDI) technique to the VVM coronagraph, in which we built a two-channel coronagraph using polarizing beam splitters to avoid a loss of intensity due to the polarization filters. We also proposed to apply an angular-differential imaging (ADI) technique to the 8OPM coronagraph. The 8OPM/ADI mode avoids an intensity loss due to a phase transition of the mask and provides a full field of view around central stars. We present results of preliminary laboratory demonstrations of the PDI and ADI observational modes with the phase-mask coronagraphs.
Photoacoustic imaging in both soft and hard biological tissue
NASA Astrophysics Data System (ADS)
Li, T.; Dewhurst, R. J.
2010-03-01
To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.
A high throughput spectral image microscopy system
NASA Astrophysics Data System (ADS)
Gesley, M.; Puri, R.
2018-01-01
A high throughput spectral image microscopy system is configured for rapid detection of rare cells in large populations. To overcome flow cytometry rates and use of fluorophore tags, a system architecture integrates sample mechanical handling, signal processors, and optics in a non-confocal version of light absorption and scattering spectroscopic microscopy. Spectral images with native contrast do not require the use of exogeneous stain to render cells with submicron resolution. Structure may be characterized without restriction to cell clusters of differentiation.
X-ray simulations method for the large field of view
NASA Astrophysics Data System (ADS)
Schelokov, I. A.; Grigoriev, M. V.; Chukalina, M. V.; Asadchikov, V. E.
2018-03-01
In the standard approach, X-ray simulation is usually limited to the step of spatial sampling to calculate the convolution of integrals of the Fresnel type. Explicitly the sampling step is determined by the size of the last Fresnel zone in the beam aperture. In other words, the spatial sampling is determined by the precision of integral convolution calculations and is not connected with the space resolution of an optical scheme. In the developed approach the convolution in the normal space is replaced by computations of the shear strain of ambiguity function in the phase space. The spatial sampling is then determined by the space resolution of an optical scheme. The sampling step can differ in various directions because of the source anisotropy. The approach was used to simulate original images in the X-ray Talbot interferometry and showed that the simulation can be applied to optimize the methods of postprocessing.
NASA Astrophysics Data System (ADS)
Gao, Ying; Lin, Qingyang; Bijeljic, Branko; Blunt, Martin J.
2017-12-01
We imaged the steady state flow of brine and decane in Bentheimer sandstone. We devised an experimental method based on differential imaging to examine how flow rate impacts impact the pore-scale distribution of fluids during coinjection. This allows us to elucidate flow regimes (connected, or breakup of the nonwetting phase pathways) for a range of fractional flows at two capillary numbers, Ca, namely 3.0 × 10-7 and 7.5 × 10-6. At the lower Ca, for a fixed fractional flow, the two phases appear to flow in connected unchanging subnetworks of the pore space, consistent with conventional theory. At the higher Ca, we observed that a significant fraction of the pore space contained sometimes oil and sometimes brine during the 1 h scan: this intermittent occupancy, which was interpreted as regions of the pore space that contained both fluid phases for some time, is necessary to explain the flow and dynamic connectivity of the oil phase; pathways of always oil-filled portions of the void space did not span the core. This phase was segmented from the differential image between the 30 wt % KI brine image and the scans taken at each fractional flow. Using the grey scale histogram distribution of the raw images, the oil proportion in the intermittent phase was calculated. The pressure drops at each fractional flow at low and high flow rates were measured by high-precision differential pressure sensors. The relative permeabilities and fractional flow obtained by our experiment at the mm-scale compare well with data from the literature on cm-scale samples.
Galloway, D.L.; Hoffmann, J.
2007-01-01
The application of satellite differential synthetic aperture radar (SAR) interferometry, principally coherent (InSAR) and to a lesser extent, persistent-scatterer (PSI) techniques to hydrogeologic studies has improved capabilities to map, monitor, analyze, and simulate groundwater flow, aquifer-system compaction and land subsidence. A number of investigations over the previous decade show how the spatially detailed images of ground displacements measured with InSAR have advanced hydrogeologic understanding, especially when a time series of images is used in conjunction with histories of changes in water levels and management practices. Important advances include: (1) identifying structural or lithostratigraphic boundaries (e.g. faults or transitional facies) of groundwater flow and deformation; (2) defining the material and hydraulic heterogeneity of deforming aquifer-systems; (3) estimating system properties (e.g. storage coefficients and hydraulic conductivities); and (4) constraining numerical models of groundwater flow, aquifer-system compaction, and land subsidence. As a component of an integrated approach to hydrogeologic monitoring and characterization of unconsolidated alluvial groundwater basins differential SAR interferometry contributes unique information that can facilitate improved management of groundwater resources. Future satellite SAR missions specifically designed for differential interferometry will enhance these contributions. ?? Springer-Verlag 2006.
Statistical image quantification toward optimal scan fusion and change quantification
NASA Astrophysics Data System (ADS)
Potesil, Vaclav; Zhou, Xiang Sean
2007-03-01
Recent advance of imaging technology has brought new challenges and opportunities for automatic and quantitative analysis of medical images. With broader accessibility of more imaging modalities for more patients, fusion of modalities/scans from one time point and longitudinal analysis of changes across time points have become the two most critical differentiators to support more informed, more reliable and more reproducible diagnosis and therapy decisions. Unfortunately, scan fusion and longitudinal analysis are both inherently plagued with increased levels of statistical errors. A lack of comprehensive analysis by imaging scientists and a lack of full awareness by physicians pose potential risks in clinical practice. In this paper, we discuss several key error factors affecting imaging quantification, studying their interactions, and introducing a simulation strategy to establish general error bounds for change quantification across time. We quantitatively show that image resolution, voxel anisotropy, lesion size, eccentricity, and orientation are all contributing factors to quantification error; and there is an intricate relationship between voxel anisotropy and lesion shape in affecting quantification error. Specifically, when two or more scans are to be fused at feature level, optimal linear fusion analysis reveals that scans with voxel anisotropy aligned with lesion elongation should receive a higher weight than other scans. As a result of such optimal linear fusion, we will achieve a lower variance than naïve averaging. Simulated experiments are used to validate theoretical predictions. Future work based on the proposed simulation methods may lead to general guidelines and error lower bounds for quantitative image analysis and change detection.
NASA Astrophysics Data System (ADS)
O'Connell, D.; Ruan, D.; Thomas, D. H.; Dou, T. H.; Lewis, J. H.; Santhanam, A.; Lee, P.; Low, D. A.
2018-02-01
Breathing motion modeling requires observation of tissues at sufficiently distinct respiratory states for proper 4D characterization. This work proposes a method to improve sampling of the breathing cycle with limited imaging dose. We designed and tested a prospective free-breathing acquisition protocol with a simulation using datasets from five patients imaged with a model-based 4DCT technique. Each dataset contained 25 free-breathing fast helical CT scans with simultaneous breathing surrogate measurements. Tissue displacements were measured using deformable image registration. A correspondence model related tissue displacement to the surrogate. Model residual was computed by comparing predicted displacements to image registration results. To determine a stopping criteria for the prospective protocol, i.e. when the breathing cycle had been sufficiently sampled, subsets of N scans where 5 ⩽ N ⩽ 9 were used to fit reduced models for each patient. A previously published metric was employed to describe the phase coverage, or ‘spread’, of the respiratory trajectories of each subset. Minimum phase coverage necessary to achieve mean model residual within 0.5 mm of the full 25-scan model was determined and used as the stopping criteria. Using the patient breathing traces, a prospective acquisition protocol was simulated. In all patients, phase coverage greater than the threshold necessary for model accuracy within 0.5 mm of the 25 scan model was achieved in six or fewer scans. The prospectively selected respiratory trajectories ranked in the (97.5 ± 4.2)th percentile among subsets of the originally sampled scans on average. Simulation results suggest that the proposed prospective method provides an effective means to sample the breathing cycle with limited free-breathing scans. One application of the method is to reduce the imaging dose of a previously published model-based 4DCT protocol to 25% of its original value while achieving mean model residual within 0.5 mm.
Wang, Chunhao; Yin, Fang-Fang; Kirkpatrick, John P; Chang, Zheng
2017-08-01
To investigate the feasibility of using undersampled k-space data and an iterative image reconstruction method with total generalized variation penalty in the quantitative pharmacokinetic analysis for clinical brain dynamic contrast-enhanced magnetic resonance imaging. Eight brain dynamic contrast-enhanced magnetic resonance imaging scans were retrospectively studied. Two k-space sparse sampling strategies were designed to achieve a simulated image acquisition acceleration factor of 4. They are (1) a golden ratio-optimized 32-ray radial sampling profile and (2) a Cartesian-based random sampling profile with spatiotemporal-regularized sampling density constraints. The undersampled data were reconstructed to yield images using the investigated reconstruction technique. In quantitative pharmacokinetic analysis on a voxel-by-voxel basis, the rate constant K trans in the extended Tofts model and blood flow F B and blood volume V B from the 2-compartment exchange model were analyzed. Finally, the quantitative pharmacokinetic parameters calculated from the undersampled data were compared with the corresponding calculated values from the fully sampled data. To quantify each parameter's accuracy calculated using the undersampled data, error in volume mean, total relative error, and cross-correlation were calculated. The pharmacokinetic parameter maps generated from the undersampled data appeared comparable to the ones generated from the original full sampling data. Within the region of interest, most derived error in volume mean values in the region of interest was about 5% or lower, and the average error in volume mean of all parameter maps generated through either sampling strategy was about 3.54%. The average total relative error value of all parameter maps in region of interest was about 0.115, and the average cross-correlation of all parameter maps in region of interest was about 0.962. All investigated pharmacokinetic parameters had no significant differences between the result from original data and the reduced sampling data. With sparsely sampled k-space data in simulation of accelerated acquisition by a factor of 4, the investigated dynamic contrast-enhanced magnetic resonance imaging pharmacokinetic parameters can accurately estimate the total generalized variation-based iterative image reconstruction method for reliable clinical application.
Three-Dimensional Imaging in Rhinoplasty: A Comparison of the Simulated versus Actual Result.
Persing, Sarah; Timberlake, Andrew; Madari, Sarika; Steinbacher, Derek
2018-05-22
Computer imaging has become increasingly popular for rhinoplasty. Three-dimensional (3D) analysis permits a more comprehensive view from multiple vantage points. However, the predictability and concordance between the simulated and actual result have not been morphometrically studied. The purpose of this study was to aesthetically and quantitatively compare the simulated to actual rhinoplasty result. A retrospective review of 3D images (VECTRA, Canfield) for rhinoplasty patients was performed. Images (preop, simulated, and actual) were randomized. A blinded panel of physicians rated the images (1 = poor, 5 = excellent). The image series considered "best" was also recorded. A quantitative assessment of nasolabial angle and tip projection was compared. Paired and two-sample t tests were performed for statistical analysis (P < 0.05 as significant). Forty patients were included. 67.5% of preoperative images were rated as poor (mean = 1.7). The simulation received a mean score of 2.9 (good in 60% of cases). 82.5% of actual cases were rated good to excellent (mean 3.4) (P < 0.001). Overall, the panel significantly preferred the actual postoperative result in 77.5% of cases compared to the simulation in 22.5% of cases (P < 0.001). The actual nasal tip was more projected compared to the simulations for both males and females. There was no significant difference in nasal tip rotation between simulated and postoperative groups. 3D simulation is a powerful communication and planning tool in rhinoplasty. In this study, the actual result was deemed more aesthetic than the simulated image. Surgeon experience is important to translate the plan and achieve favorable postoperative results. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
SAR image classification based on CNN in real and simulation datasets
NASA Astrophysics Data System (ADS)
Peng, Lijiang; Liu, Ming; Liu, Xiaohua; Dong, Liquan; Hui, Mei; Zhao, Yuejin
2018-04-01
Convolution neural network (CNN) has made great success in image classification tasks. Even in the field of synthetic aperture radar automatic target recognition (SAR-ATR), state-of-art results has been obtained by learning deep representation of features on the MSTAR benchmark. However, the raw data of MSTAR have shortcomings in training a SAR-ATR model because of high similarity in background among the SAR images of each kind. This indicates that the CNN would learn the hierarchies of features of backgrounds as well as the targets. To validate the influence of the background, some other SAR images datasets have been made which contains the simulation SAR images of 10 manufactured targets such as tank and fighter aircraft, and the backgrounds of simulation SAR images are sampled from the whole original MSTAR data. The simulation datasets contain the dataset that the backgrounds of each kind images correspond to the one kind of backgrounds of MSTAR targets or clutters and the dataset that each image shares the random background of whole MSTAR targets or clutters. In addition, mixed datasets of MSTAR and simulation datasets had been made to use in the experiments. The CNN architecture proposed in this paper are trained on all datasets mentioned above. The experimental results shows that the architecture can get high performances on all datasets even the backgrounds of the images are miscellaneous, which indicates the architecture can learn a good representation of the targets even though the drastic changes on background.
Zimmermann, R; Iturriaga, R; Becker-Birck, J
1978-01-01
The electron transport system of respiring organisms reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan. Respiring bacteria deposit accumulated INT-formazan intracellularly as dark red spots. Corresponding to electron transport system activity, these deposits attain a size and a degree of optical density which allows them to be examined by light microscopy. If polycarbonate filters and epifluorescence microscopy are applied to analyze an INT-treated water sample, it is possible to differentiate between respiring and apparently nonrespiring bacteria. This differentiation, which permits determinations of the total number of bacteria and the proportion thereof involved in respiration, is realized directly within one and the same microscopic image. Initial applications of the present method for hydrobiological purposes showed that the proportion of respiring aquatic bacteria ranged between 6 to 12% (samples taken from coastal areas of the Baltic Sea) and 5 to 36% (samples taken from freshwater lakes and ponds). Cells of 1.6 to 2.4 micrometer (freshwater) and 0.4 micrometer (Baltic Sea) account for the highest proportion of respiring bacteria. Images PMID:367268
Imaging complex objects using learning tomography
NASA Astrophysics Data System (ADS)
Lim, JooWon; Goy, Alexandre; Shoreh, Morteza Hasani; Unser, Michael; Psaltis, Demetri
2018-02-01
Optical diffraction tomography (ODT) can be described using the scattering process through an inhomogeneous media. An inherent nonlinearity exists relating the scattering medium and the scattered field due to multiple scattering. Multiple scattering is often assumed to be negligible in weakly scattering media. This assumption becomes invalid as the sample gets more complex resulting in distorted image reconstructions. This issue becomes very critical when we image a complex sample. Multiple scattering can be simulated using the beam propagation method (BPM) as the forward model of ODT combined with an iterative reconstruction scheme. The iterative error reduction scheme and the multi-layer structure of BPM are similar to neural networks. Therefore we refer to our imaging method as learning tomography (LT). To fairly assess the performance of LT in imaging complex samples, we compared LT with the conventional iterative linear scheme using Mie theory which provides the ground truth. We also demonstrate the capacity of LT to image complex samples using experimental data of a biological cell.
Differentiating fatty and non-fatty tissue using photoacoustic imaging
NASA Astrophysics Data System (ADS)
Pan, Leo; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo
2014-03-01
In this paper, we demonstrate a temporal-domain intensity-based photoacoustic imaging method that can differentiate between fatty and non-fatty tissues. PA pressure intensity is partly dependent on the tissue's speed of sound, which increases as temperature increases in non-fatty tissue and decreases in fatty tissue. Therefore, by introducing a temperature change in the tissue and subsequently monitoring the change of the PA intensity, it is possible to distinguish between the two types of tissue. A commercial ultrasound system with a 128-element 5-14 MHz linear array transducer and a tunable ND:YAG laser were used to produce PA images. Ex-vivo bovine fat and porcine liver tissues were precooled to below 10°C and then warmed to room-temperature over ~1 hour period. A thermocouple monitored the temperature rise while PA images were acquired at 0.5°C intervals. The averaged intensity of the illuminated tissue region at each temperature interval was plotted and linearly fitted. Liver samples showed a mean increase of 2.82 %/°C, whereas bovine fat had a mean decrease of 6.24 %/°C. These results demonstrate that this method has the potential to perform tissue differentiation in the temporal-domain.
NASA Astrophysics Data System (ADS)
Olles, Joseph; Garasi, Christopher; Ball, J. Patrick
2017-11-01
Electrically-pulsed wires undergo multiple phase changes including a postulated metastable phase resulting in explosive wire growth. Simulations using the MHD approximation attempt to account for the governing physics, but lack the material properties (equations-of-state and electrical conductivity) to accurately predict the phase evolution of the exploding (bursting) wire. To explore the dynamics of an exploding copper wire (in water), we employ a digital micro-Schlieren streak photography technique. This imaging quantifies wire expansion and shock waves emitted from the wire during phase changes. Using differential voltage probes, a Rogowski coil, and timing fiducials, the phase change of the wire is aligned with electrical power and energy deposition. Time-correlated electrical diagnostics and imaging allow for detailed validation of MHD simulations, comparing observed phases with phase change details found in the material property descriptions. In addition to streak imaging, a long exposure image is taken to capture axial striations along the length of the wire. These images are used to compare with results from 3D MHD simulations which propose that these perturbations impact the rate of wire expansion and temporal change in phases. If successful, the experimental data will identify areas for improvement in the material property models, and modeling results will provide insight into the details of phase change in the wire with correlation to variations in the electrical signals.
Indirect estimation of signal-dependent noise with nonadaptive heterogeneous samples.
Azzari, Lucio; Foi, Alessandro
2014-08-01
We consider the estimation of signal-dependent noise from a single image. Unlike conventional algorithms that build a scatterplot of local mean-variance pairs from either small or adaptively selected homogeneous data samples, our proposed approach relies on arbitrarily large patches of heterogeneous data extracted at random from the image. We demonstrate the feasibility of our approach through an extensive theoretical analysis based on mixture of Gaussian distributions. A prototype algorithm is also developed in order to validate the approach on simulated data as well as on real camera raw images.
NASA Astrophysics Data System (ADS)
Saxena, Nishank; Hows, Amie; Hofmann, Ronny; Alpak, Faruk O.; Freeman, Justin; Hunter, Sander; Appel, Matthias
2018-06-01
This study defines the optimal operating envelope of the Digital Rock technology from the perspective of imaging and numerical simulations of transport properties. Imaging larger volumes of rocks for Digital Rock Physics (DRP) analysis improves the chances of achieving a Representative Elementary Volume (REV) at which flow-based simulations (1) do not vary with change in rock volume, and (2) is insensitive to the choice of boundary conditions. However, this often comes at the expense of image resolution. This trade-off exists due to the finiteness of current state-of-the-art imaging detectors. Imaging and analyzing digital rocks that sample the REV and still sufficiently resolve pore throats is critical to ensure simulation quality and robustness of rock property trends for further analysis. We find that at least 10 voxels are needed to sufficiently resolve pore throats for single phase fluid flow simulations. If this condition is not met, additional analyses and corrections may allow for meaningful comparisons between simulation results and laboratory measurements of permeability, but some cases may fall outside the current technical feasibility of DRP. On the other hand, we find that the ratio of field of view and effective grain size provides a reliable measure of the REV for siliciclastic rocks. If this ratio is greater than 5, the coefficient of variation for single-phase permeability simulations drops below 15%. These imaging considerations are crucial when comparing digitally computed rock flow properties with those measured in the laboratory. We find that the current imaging methods are sufficient to achieve both REV (with respect to numerical boundary conditions) and required image resolution to perform digital core analysis for coarse to fine-grained sandstones.
Error simulation of paired-comparison-based scaling methods
NASA Astrophysics Data System (ADS)
Cui, Chengwu
2000-12-01
Subjective image quality measurement usually resorts to psycho physical scaling. However, it is difficult to evaluate the inherent precision of these scaling methods. Without knowing the potential errors of the measurement, subsequent use of the data can be misleading. In this paper, the errors on scaled values derived form paired comparison based scaling methods are simulated with randomly introduced proportion of choice errors that follow the binomial distribution. Simulation results are given for various combinations of the number of stimuli and the sampling size. The errors are presented in the form of average standard deviation of the scaled values and can be fitted reasonably well with an empirical equation that can be sued for scaling error estimation and measurement design. The simulation proves paired comparison based scaling methods can have large errors on the derived scaled values when the sampling size and the number of stimuli are small. Examples are also given to show the potential errors on actually scaled values of color image prints as measured by the method of paired comparison.
Turbulence characterization by studying laser beam wandering in a differential tracking motion setup
NASA Astrophysics Data System (ADS)
Pérez, Darío G.; Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Garavaglia, Mario
2009-09-01
The Differential Image Motion Monitor (DIMM) is a standard and widely used instrument for astronomical seeing measurements. The seeing values are estimated from the variance of the differential image motion over two equal small pupils some distance apart. The twin pupils are usually cut in a mask on the entrance pupil of the telescope. As a differential method, it has the advantage of being immune to tracking errors, eliminating erratic motion of the telescope. The Differential Laser Tracking Motion (DLTM) is introduced here inspired by the same idea. Two identical laser beams are propagated through a path of air in turbulent motion, at the end of it their wander is registered by two position sensitive detectors-at a count of 800 samples per second. Time series generated from the difference of the pair of centroid laser beam coordinates is then analyzed using the multifractal detrended fluctuation analysis. Measurements were performed at the laboratory with synthetic turbulence: changing the relative separation of the beams for different turbulent regimes. The dependence, with respect to these parameters, and the robustness of our estimators is compared with the non-differential method. This method is an improvement with respect to previous approaches that study the beam wandering.
Molecular dynamics and dynamic Monte-Carlo simulation of irradiation damage with focused ion beams
NASA Astrophysics Data System (ADS)
Ohya, Kaoru
2017-03-01
The focused ion beam (FIB) has become an important tool for micro- and nanostructuring of samples such as milling, deposition and imaging. However, this leads to damage of the surface on the nanometer scale from implanted projectile ions and recoiled material atoms. It is therefore important to investigate each kind of damage quantitatively. We present a dynamic Monte-Carlo (MC) simulation code to simulate the morphological and compositional changes of a multilayered sample under ion irradiation and a molecular dynamics (MD) simulation code to simulate dose-dependent changes in the backscattering-ion (BSI)/secondary-electron (SE) yields of a crystalline sample. Recent progress in the codes for research to simulate the surface morphology and Mo/Si layers intermixing in an EUV lithography mask irradiated with FIBs, and the crystalline orientation effect on BSI and SE yields relating to the channeling contrast in scanning ion microscopes, is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, J; Martin, T; Young, S
Purpose: CT neuro perfusion scans are one of the highest dose exams. Methods to reduce dose include decreasing the number of projections acquired per gantry rotation, however conventional reconstruction of such scans leads to sampling artifacts. In this study we investigated a projection view-sharing reconstruction algorithm used in dynamic MRI – “K-space Weighted Image Contrast” (KWIC) – applied to simulated perfusion exams and evaluated dose savings and impacts on perfusion metrics. Methods: A FORBILD head phantom containing simulated time-varying objects was developed and a set of parallel-beam CT projection data was created. The simulated scans were 60 seconds long, 1152more » projections per turn, with a rotation time of one second. No noise was simulated. 5mm, 10mm, and 50mm objects were modeled in the brain. A baseline, “full dose” simulation used all projections and reduced dose cases were simulated by downsampling the number of projections per turn from 1152 to 576 (50% dose), 288 (25% dose), and 144 (12.5% dose). KWIC was further evaluated at 72 projections per rotation (6.25%). One image per second was reconstructed using filtered backprojection (FBP) and KWIC. KWIC reconstructions utilized view cores of 36, 72, 144, and 288 views and 16, 8, 4, and 2 subapertures respectively. From the reconstructed images, time-to-peak (TTP), cerebral blood flow (CBF) and the FWHM of the perfusion curve were calculated and compared against reference values from the full-dose FBP data. Results: TTP, CBF, and the FWHM were unaffected by dose reduction (to 12.5%) and reconstruction method, however image quality was improved when using KWIC. Conclusion: This pilot study suggests that KWIC preserves image quality and perfusion metrics when under-sampling projections and that the unique contrast weighting of KWIC could provided substantial dose-savings for perfusion CT scans. Evaluation of KWIC in clinical CT data will be performed in the near future. R01 EB014922, NCI Grant U01 CA181156 (Quantitative Imaging Network), and Tobacco Related Disease Research Project grant 22RT-0131.« less
Estimation of signal-dependent noise level function in transform domain via a sparse recovery model.
Yang, Jingyu; Gan, Ziqiao; Wu, Zhaoyang; Hou, Chunping
2015-05-01
This paper proposes a novel algorithm to estimate the noise level function (NLF) of signal-dependent noise (SDN) from a single image based on the sparse representation of NLFs. Noise level samples are estimated from the high-frequency discrete cosine transform (DCT) coefficients of nonlocal-grouped low-variation image patches. Then, an NLF recovery model based on the sparse representation of NLFs under a trained basis is constructed to recover NLF from the incomplete noise level samples. Confidence levels of the NLF samples are incorporated into the proposed model to promote reliable samples and weaken unreliable ones. We investigate the behavior of the estimation performance with respect to the block size, sampling rate, and confidence weighting. Simulation results on synthetic noisy images show that our method outperforms existing state-of-the-art schemes. The proposed method is evaluated on real noisy images captured by three types of commodity imaging devices, and shows consistently excellent SDN estimation performance. The estimated NLFs are incorporated into two well-known denoising schemes, nonlocal means and BM3D, and show significant improvements in denoising SDN-polluted images.
Chintapalli, Mahati; Higa, Kenneth; Chen, X. Chelsea; ...
2016-12-19
A method is presented in this paper to relate local morphology and ionic conductivity in a solid, lamellar block copolymer electrolyte for lithium batteries, by simulating conductivity through transmission electron micrographs. The electrolyte consists of polystyrene-block-poly(ethylene oxide) mixed with lithium bis(trifluoromethanesulfonyl) imide salt (SEO/LiTFSI), where the polystyrene phase is structural phase and the poly(ethylene oxide)/LiTFSI phase is ionically conductive. The electric potential distribution is simulated in binarized micrographs by solving the Laplace equation with constant potential boundary conditions. A morphology factor, f, is reported for each image by calculating the effective conductivity relative to a homogenous conductor. Images from twomore » samples are examined, one annealed with large lamellar grains and one unannealed with small grains. The average value off is 0.45 ± 0.04 for the annealed sample, and 0.37 ± 0.03 for the unannealed sample, both close to the value predicted by effective medium theory, 1/2. Simulated conductivities are compared to published experimental conductivities. The value of f Unannealed/f Annealed is 0.82 for simulations and 6.2 for experiments. Simulation results correspond well to predictions by effective medium theory but do not explain the experimental measurements. Finally, observation of nanoscale morphology over length scales greater than the size of the micrographs (~1 μm) may be required to explain the experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chintapalli, Mahati; Higa, Kenneth; Chen, X. Chelsea
A method is presented in this paper to relate local morphology and ionic conductivity in a solid, lamellar block copolymer electrolyte for lithium batteries, by simulating conductivity through transmission electron micrographs. The electrolyte consists of polystyrene-block-poly(ethylene oxide) mixed with lithium bis(trifluoromethanesulfonyl) imide salt (SEO/LiTFSI), where the polystyrene phase is structural phase and the poly(ethylene oxide)/LiTFSI phase is ionically conductive. The electric potential distribution is simulated in binarized micrographs by solving the Laplace equation with constant potential boundary conditions. A morphology factor, f, is reported for each image by calculating the effective conductivity relative to a homogenous conductor. Images from twomore » samples are examined, one annealed with large lamellar grains and one unannealed with small grains. The average value off is 0.45 ± 0.04 for the annealed sample, and 0.37 ± 0.03 for the unannealed sample, both close to the value predicted by effective medium theory, 1/2. Simulated conductivities are compared to published experimental conductivities. The value of f Unannealed/f Annealed is 0.82 for simulations and 6.2 for experiments. Simulation results correspond well to predictions by effective medium theory but do not explain the experimental measurements. Finally, observation of nanoscale morphology over length scales greater than the size of the micrographs (~1 μm) may be required to explain the experimental results.« less
Research and implementation of simulation for TDICCD remote sensing in vibration of optical axis
NASA Astrophysics Data System (ADS)
Liu, Zhi-hong; Kang, Xiao-jun; Lin, Zhe; Song, Li
2013-12-01
During the exposure time, the charge transfer speed in the push-broom direction and the line-by-lines canning speed of the sensor are required to match each other strictly for a space-borne TDICCD push-broom camera. However, as attitude disturbance of satellite and vibration of camera are inevitable, it is impossible to eliminate the speed mismatch, which will make the signal of different targets overlay each other and result in a decline of image resolution. The effects of velocity mismatch will be visually observed and analyzed by simulating the degradation of image quality caused by the vibration of the optical axis, and it is significant for the evaluation of image quality and design of the image restoration algorithm. How to give a model in time domain and space domain during the imaging time is the problem needed to be solved firstly. As vibration information for simulation is usually given by a continuous curve, the pixels of original image matrix and sensor matrix are discrete, as a result, they cannot always match each other well. The effect of simulation will also be influenced by the discrete sampling in integration time. In conclusion, it is quite significant for improving simulation accuracy and efficiency to give an appropriate discrete modeling and simulation method. The paper analyses discretization schemes in time domain and space domain and presents a method to simulate the quality of image of the optical system in the vibration of the line of sight, which is based on the principle of TDICCD sensor. The gray value of pixels in sensor matrix is obtained by a weighted arithmetic, which solves the problem of pixels dismatch. The result which compared with the experiment of hardware test indicate that this simulation system performances well in accuracy and reliability.
Development of fast parallel multi-technique scanning X-ray imaging at Synchrotron Soleil
NASA Astrophysics Data System (ADS)
Medjoubi, K.; Leclercq, N.; Langlois, F.; Buteau, A.; Lé, S.; Poirier, S.; Mercère, P.; Kewish, C. M.; Somogyi, A.
2013-10-01
A fast multimodal scanning X-ray imaging scheme is prototyped at Soleil Synchrotron. It permits the simultaneous acquisition of complementary information on the sample structure, composition and chemistry by measuring transmission, differential phase contrast, small-angle scattering, and X-ray fluorescence by dedicated detectors with ms dwell time per pixel. The results of the proof of principle experiments are presented in this paper.
Evaluation of three-dimensional virtual perception of garments
NASA Astrophysics Data System (ADS)
Aydoğdu, G.; Yeşilpinar, S.; Erdem, D.
2017-10-01
In recent years, three-dimensional design, dressing and simulation programs came into prominence in the textile industry. By these programs, the need to produce clothing samples for every design in design process has been eliminated. Clothing fit, design, pattern, fabric and accessory details and fabric drape features can be evaluated easily. Also, body size of virtual mannequin can be adjusted so more realistic simulations can be created. Moreover, three-dimensional virtual garment images created by these programs can be used while presenting the product to end-user instead of two-dimensional photograph images. In this study, a survey was carried out to investigate the visual perception of consumers. The survey was conducted for three different garment types, separately. Questions about gender, profession etc. was asked to the participants and expected them to compare real samples and artworks or three-dimensional virtual images of garments. When survey results were analyzed statistically, it is seen that demographic situation of participants does not affect visual perception and three-dimensional virtual garment images reflect the real sample characteristics better than artworks for each garment type. Also, it is reported that there is no perception difference depending on garment type between t-shirt, sweatshirt and tracksuit bottom.
Designing image segmentation studies: Statistical power, sample size and reference standard quality.
Gibson, Eli; Hu, Yipeng; Huisman, Henkjan J; Barratt, Dean C
2017-12-01
Segmentation algorithms are typically evaluated by comparison to an accepted reference standard. The cost of generating accurate reference standards for medical image segmentation can be substantial. Since the study cost and the likelihood of detecting a clinically meaningful difference in accuracy both depend on the size and on the quality of the study reference standard, balancing these trade-offs supports the efficient use of research resources. In this work, we derive a statistical power calculation that enables researchers to estimate the appropriate sample size to detect clinically meaningful differences in segmentation accuracy (i.e. the proportion of voxels matching the reference standard) between two algorithms. Furthermore, we derive a formula to relate reference standard errors to their effect on the sample sizes of studies using lower-quality (but potentially more affordable and practically available) reference standards. The accuracy of the derived sample size formula was estimated through Monte Carlo simulation, demonstrating, with 95% confidence, a predicted statistical power within 4% of simulated values across a range of model parameters. This corresponds to sample size errors of less than 4 subjects and errors in the detectable accuracy difference less than 0.6%. The applicability of the formula to real-world data was assessed using bootstrap resampling simulations for pairs of algorithms from the PROMISE12 prostate MR segmentation challenge data set. The model predicted the simulated power for the majority of algorithm pairs within 4% for simulated experiments using a high-quality reference standard and within 6% for simulated experiments using a low-quality reference standard. A case study, also based on the PROMISE12 data, illustrates using the formulae to evaluate whether to use a lower-quality reference standard in a prostate segmentation study. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xue, Bo; Mao, Bingjing; Chen, Xiaomei; Ni, Guoqiang
2010-11-01
This paper renders a configurable distributed high performance computing(HPC) framework for TDI-CCD imaging simulation. It uses strategy pattern to adapt multi-algorithms. Thus, this framework help to decrease the simulation time with low expense. Imaging simulation for TDI-CCD mounted on satellite contains four processes: 1) atmosphere leads degradation, 2) optical system leads degradation, 3) electronic system of TDI-CCD leads degradation and re-sampling process, 4) data integration. Process 1) to 3) utilize diversity data-intensity algorithms such as FFT, convolution and LaGrange Interpol etc., which requires powerful CPU. Even uses Intel Xeon X5550 processor, regular series process method takes more than 30 hours for a simulation whose result image size is 1500 * 1462. With literature study, there isn't any mature distributing HPC framework in this field. Here we developed a distribute computing framework for TDI-CCD imaging simulation, which is based on WCF[1], uses Client/Server (C/S) layer and invokes the free CPU resources in LAN. The server pushes the process 1) to 3) tasks to those free computing capacity. Ultimately we rendered the HPC in low cost. In the computing experiment with 4 symmetric nodes and 1 server , this framework reduced about 74% simulation time. Adding more asymmetric nodes to the computing network, the time decreased namely. In conclusion, this framework could provide unlimited computation capacity in condition that the network and task management server are affordable. And this is the brand new HPC solution for TDI-CCD imaging simulation and similar applications.
Modeling laser speckle imaging of perfusion in the skin (Conference Presentation)
NASA Astrophysics Data System (ADS)
Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard
2016-02-01
Laser speckle imaging (LSI) enables visualization of relative blood flow and perfusion in the skin. It is frequently applied to monitor treatment of vascular malformations such as port wine stain birthmarks, and measure changes in perfusion due to peripheral vascular disease. We developed a computational Monte Carlo simulation of laser speckle contrast imaging to quantify how tissue optical properties, blood vessel depths and speeds, and tissue perfusion affect speckle contrast values originating from coherent excitation. The simulated tissue geometry consisted of multiple layers to simulate the skin, or incorporated an inclusion such as a vessel or tumor at different depths. Our simulation used a 30x30mm uniform flat light source to optically excite the region of interest in our sample to better mimic wide-field imaging. We used our model to simulate how dynamically scattered photons from a buried blood vessel affect speckle contrast at different lateral distances (0-1mm) away from the vessel, and how these speckle contrast changes vary with depth (0-1mm) and flow speed (0-10mm/s). We applied the model to simulate perfusion in the skin, and observed how different optical properties, such as epidermal melanin concentration (1%-50%) affected speckle contrast. We simulated perfusion during a systolic forearm occlusion and found that contrast decreased by 35% (exposure time = 10ms). Monte Carlo simulations of laser speckle contrast give us a tool to quantify what regions of the skin are probed with laser speckle imaging, and measure how the tissue optical properties and blood flow affect the resulting images.
Photoacoustic Non-Destructive Evaluation and Imaging of Caries in Dental Samples
NASA Astrophysics Data System (ADS)
Li, T.; Dewhurst, R. J.
2010-02-01
Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 °C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.
Ale, Angelique; Schulz, Ralf B; Sarantopoulos, Athanasios; Ntziachristos, Vasilis
2010-05-01
The performance is studied of two newly introduced and previously suggested methods that incorporate priors into inversion schemes associated with data from a recently developed hybrid x-ray computed tomography and fluorescence molecular tomography system, the latter based on CCD camera photon detection. The unique data set studied attains accurately registered data of high spatially sampled photon fields propagating through tissue along 360 degrees projections. Approaches that incorporate structural prior information were included in the inverse problem by adding a penalty term to the minimization function utilized for image reconstructions. Results were compared as to their performance with simulated and experimental data from a lung inflammation animal model and against the inversions achieved when not using priors. The importance of using priors over stand-alone inversions is also showcased with high spatial sampling simulated and experimental data. The approach of optimal performance in resolving fluorescent biodistribution in small animals is also discussed. Inclusion of prior information from x-ray CT data in the reconstruction of the fluorescence biodistribution leads to improved agreement between the reconstruction and validation images for both simulated and experimental data.
An Independent Orbit Determination Simulation for the OSIRIS-REx Asteroid Sample Return Mission
NASA Technical Reports Server (NTRS)
Getzandanner, Kenneth; Rowlands, David; Mazarico, Erwan; Antreasian, Peter; Jackman, Coralie; Moreau, Michael
2016-01-01
After arriving at the near-Earth asteroid (101955) Bennu in late 2018, the OSIRIS-REx spacecraft will execute a series of observation campaigns and orbit phases to accurately characterize Bennu and ultimately collect a sample of pristine regolith from its surface. While in the vicinity of Bennu, the OSIRIS-REx navigation team will rely on a combination of ground-based radiometric tracking data and optical navigation (OpNav) images to generate and deliver precision orbit determination products. Long before arrival at Bennu, the navigation team is performing multiple orbit determination simulations and thread tests to verify navigation performance and ensure interfaces between multiple software suites function properly. In this paper, we will summarize the results of an independent orbit determination simulation of the Orbit B phase of the mission performed to test the interface between the OpNav image processing and orbit determination software packages.
Habibollahi, Peiman; Shin, Benjamin; Shamchi, Sara P; Wachtel, Heather; Fraker, Douglas L; Trerotola, Scott O
2018-01-01
Parathyroid venous sampling (PAVS) is usually reserved for patients with persistent or recurrent hyperparathyroidism after parathyroidectomy with inconclusive noninvasive imaging studies. A retrospective study was performed to evaluate the diagnostic efficacy of super-selective PAVS (SSVS) in patients needing revision neck surgery with inconclusive imaging. Patients undergoing PAVS between 2005 and 2016 due to persistent or recurrent hyperparathyroidism following surgery were reviewed. PAVS was performed in all patients using super-selective technique. Single-value measurements within central neck veins performed as part of super-selective PAVS were used to simulate selective venous sampling (SVS) and allow for comparison to data, which might be obtained in a non-super-selective approach. 32 patients (mean age 51 ± 15 years; 8 men and 24 women) met inclusion and exclusion criteria. The sensitivity and positive predictive value (PPV) of SSVS for localizing the source of elevated PTH to a limited area in the neck or chest was 96 and 84%, respectively. Simulated SVS, on the other hand, had a sensitivity of 28% and a PPV of 89% based on the predefined gold standard. SSVS had a significantly higher sensitivity compared to simulated SVS (p < 0.001). SSVS is highly effective in localizing the source of hyperparathyroidism in patients undergoing revision surgery for hyperparathyroidism in whom noninvasive imaging studies are inconclusive. SSVS data had also markedly higher sensitivity for localizing disease in these patients compared to simulated SVS.
Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems.
Beentjes, Casper H L; Baker, Ruth E
2018-05-25
Quasi-Monte Carlo methods have proven to be effective extensions of traditional Monte Carlo methods in, amongst others, problems of quadrature and the sample path simulation of stochastic differential equations. By replacing the random number input stream in a simulation procedure by a low-discrepancy number input stream, variance reductions of several orders have been observed in financial applications. Analysis of stochastic effects in well-mixed chemical reaction networks often relies on sample path simulation using Monte Carlo methods, even though these methods suffer from typical slow [Formula: see text] convergence rates as a function of the number of sample paths N. This paper investigates the combination of (randomised) quasi-Monte Carlo methods with an efficient sample path simulation procedure, namely [Formula: see text]-leaping. We show that this combination is often more effective than traditional Monte Carlo simulation in terms of the decay of statistical errors. The observed convergence rate behaviour is, however, non-trivial due to the discrete nature of the models of chemical reactions. We explain how this affects the performance of quasi-Monte Carlo methods by looking at a test problem in standard quadrature.
Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng
2016-09-01
A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.
NASA Astrophysics Data System (ADS)
Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng
2016-09-01
A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.
Redefining the lower statistical limit in x-ray phase-contrast imaging
NASA Astrophysics Data System (ADS)
Marschner, M.; Birnbacher, L.; Willner, M.; Chabior, M.; Fehringer, A.; Herzen, J.; Noël, P. B.; Pfeiffer, F.
2015-03-01
Phase-contrast x-ray computed tomography (PCCT) is currently investigated and developed as a potentially very interesting extension of conventional CT, because it promises to provide high soft-tissue contrast for weakly absorbing samples. For data acquisition several images at different grating positions are combined to obtain a phase-contrast projection. For short exposure times, which are necessary for lower radiation dose, the photon counts in a single stepping position are very low. In this case, the currently used phase-retrieval does not provide reliable results for some pixels. This uncertainty results in statistical phase wrapping, which leads to a higher standard deviation in the phase-contrast projections than theoretically expected. For even lower statistics, the phase retrieval breaks down completely and the phase information is lost. New measurement procedures rely on a linear approximation of the sinusoidal phase stepping curve around the zero crossings. In this case only two images are acquired to obtain the phase-contrast projection. The approximation is only valid for small phase values. However, typically nearly all pixels are within this regime due to the differential nature of the signal. We examine the statistical properties of a linear approximation method and illustrate by simulation and experiment that the lower statistical limit can be redefined using this method. That means that the phase signal can be retrieved even with very low photon counts and statistical phase wrapping can be avoided. This is an important step towards enhanced image quality in PCCT with very low photon counts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berenguer de la Cuesta, Felisa; Wenger, Marco P.E.; Bean, Richard J.
Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patternsmore » from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.« less
Coherent X-ray diffraction from collagenous soft tissues
Berenguer de la Cuesta, Felisa; Wenger, Marco P. E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.
2009-01-01
Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60–70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the ‘speckled’ nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques. PMID:19706395
Coherent X-ray diffraction from collagenous soft tissues.
Berenguer de la Cuesta, Felisa; Wenger, Marco P E; Bean, Richard J; Bozec, Laurent; Horton, Michael A; Robinson, Ian K
2009-09-08
Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.
NASA Astrophysics Data System (ADS)
Choi, Ena
2015-10-01
The lives of galaxies and their supermassive black holes (SMBH) are probably intimately linked. Deep multi-wavelength surveys with HST are now providing detailed imaging of a statistically robust sample of obscured and unobscured AGN hosts, along with control samples of inactive galaxies, giving us an unprecedented opportunity to study the relationship between AGN and their hosts. However, so far these observations have uncovered more puzzles than they have resolved. Although mergers are considered a promising triggering mechanism for AGN activity, numerous studies have shown that AGN hosts are no more likely to appear morphologically disturbed than inactive galaxies. Studies of whether AGN hosts exhibit enhanced or suppressed star formation have also yielded conflicting results. We propose to run a suite of state-of-the-art simulations to study the AGN-host galaxy connection. These simulations will be post-processed with a radiative transfer code, a sub-grid model for torus-scale obscuration, and short timescale AGN variability. Using mock images created from the simulations, we will study the predicted morphologies and stellar populations of AGN hosts and normal galaxies with similar stellar masses. We will use our simulations to address two major science questions: (1) how is SMBH growth fueled and fed, and what triggers rapid feeding, and (2) how does AGN feedback regulate BH growth and the growth of the host galaxy? In addition, we will release our simulation outputs and mock images and catalogs to the community through MAST.
Li, Shuo; Zhu, Yanchun; Xie, Yaoqin; Gao, Song
2018-01-01
Dynamic magnetic resonance imaging (DMRI) is used to noninvasively trace the movements of organs and the process of drug delivery. The results can provide quantitative or semiquantitative pathology-related parameters, thus giving DMRI great potential for clinical applications. However, conventional DMRI techniques suffer from low temporal resolution and long scan time owing to the limitations of the k-space sampling scheme and image reconstruction algorithm. In this paper, we propose a novel DMRI sampling scheme based on a golden-ratio Cartesian trajectory in combination with a compressed sensing reconstruction algorithm. The results of two simulation experiments, designed according to the two major DMRI techniques, showed that the proposed method can improve the temporal resolution and shorten the scan time and provide high-quality reconstructed images.
Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.
Li, Liang; Wang, Bigong; Wang, Ge
2016-01-01
In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R; Albanese, K; Lakshmanan, M
Purpose: This study intends to characterize the spectral and spatial resolution limits of various fan beam geometries for differentiation of normal and neoplastic breast structures via coded aperture coherent scatter spectral imaging techniques. In previous studies, pencil beam raster scanning methods using coherent scatter computed tomography and selected volume tomography have yielded excellent results for tumor discrimination. However, these methods don’t readily conform to clinical constraints; primarily prolonged scan times and excessive dose to the patient. Here, we refine a fan beam coded aperture coherent scatter imaging system to characterize the tradeoffs between dose, scan time and image quality formore » breast tumor discrimination. Methods: An X-ray tube (125kVp, 400mAs) illuminated the sample with collimated fan beams of varying widths (3mm to 25mm). Scatter data was collected via two linear-array energy-sensitive detectors oriented parallel and perpendicular to the beam plane. An iterative reconstruction algorithm yields images of the sample’s spatial distribution and respective spectral data for each location. To model in-vivo tumor analysis, surgically resected breast tumor samples were used in conjunction with lard, which has a form factor comparable to adipose (fat). Results: Quantitative analysis with current setup geometry indicated optimal performance for beams up to 10mm wide, with wider beams producing poorer spatial resolution. Scan time for a fixed volume was reduced by a factor of 6 when scanned with a 10mm fan beam compared to a 1.5mm pencil beam. Conclusion: The study demonstrates the utility of fan beam coherent scatter spectral imaging for differentiation of normal and neoplastic breast tissues has successfully reduced dose and scan times whilst sufficiently preserving spectral and spatial resolution. Future work to alter the coded aperture and detector geometries could potentially allow the use of even wider fans, thereby making coded aperture coherent scatter imaging a clinically viable method for breast cancer detection. United States Department of Homeland Security; Duke University Medical Center - Department of Radiology; Carl E Ravin Advanced Imaging Laboratories; Duke University Medical Physics Graduate Program.« less
NASA Astrophysics Data System (ADS)
Chu, Qiuhui; Shen, Yijie; Yuan, Meng; Gong, Mali
2017-12-01
Segmented Planar Imaging Detector for Electro-Optical Reconnaissance (SPIDER) is a cutting-edge electro-optical imaging technology to realize miniaturization and complanation of imaging systems. In this paper, the principle of SPIDER has been numerically demonstrated based on the partially coherent light theory, and a novel concept of adjustable baseline pairing SPIDER system has further been proposed. Based on the results of simulation, it is verified that the imaging quality could be effectively improved by adjusting the Nyquist sampling density, optimizing the baseline pairing method and increasing the spectral channel of demultiplexer. Therefore, an adjustable baseline pairing algorithm is established for further enhancing the image quality, and the optimal design procedure in SPIDER for arbitrary targets is also summarized. The SPIDER system with adjustable baseline pairing method can broaden its application and reduce cost under the same imaging quality.
NASA Astrophysics Data System (ADS)
Wall, R. Andrew; Barton, Jennifer K.
2014-06-01
A side-viewing, 2.3-mm diameter oblique incidence reflectometry endoscope has been designed to obtain optical property measurements of turbid samples. Light from a single-mode fiber is relayed obliquely onto the tissue with a gradient index lens-based distal optics assembly and the resulting diffuse reflectance profile is imaged and collected with a 30,000 element, 0.72 mm clear aperture fiber bundle. Sampling the diffuse reflectance in two-dimensions allows for fitting of the reflected intensity profile to a well-known theoretical model, permitting the extraction of both absorption and reduced scattering coefficients of the tissue sample. Models and measurements of the endoscopic imaging system are presented in tissue phantoms and in vivo mouse colon, verifying the endoscope's capabilities to accurately measure effective attenuation coefficient and differentiate diseased from normal colon.
Diagnostic imaging of solitary tumors of the spine: what to do and say.
Rodallec, Mathieu H; Feydy, Antoine; Larousserie, Frédérique; Anract, Philippe; Campagna, Raphaël; Babinet, Antoine; Zins, Marc; Drapé, Jean-Luc
2008-01-01
Metastatic disease, myeloma, and lymphoma are the most common malignant spinal tumors. Hemangioma is the most common benign tumor of the spine. Other primary osseous lesions of the spine are more unusual but may exhibit characteristic imaging features that can help the radiologist develop a differential diagnosis. Radiologic evaluation of a patient who presents with osseous vertebral lesions often includes radiography, computed tomography (CT), and magnetic resonance (MR) imaging. Because of the complex anatomy of the vertebrae, CT is more useful than conventional radiography for evaluating lesion location and analyzing bone destruction and condensation. The diagnosis of spinal tumors is based on patient age, topographic features of the tumor, and lesion pattern as seen at CT and MR imaging. A systematic approach is useful for recognizing tumors of the spine with characteristic features such as bone island, osteoid osteoma, osteochondroma, chondrosarcoma, vertebral angioma, and aneurysmal bone cyst. In the remaining cases, the differential diagnosis may include other primary spinal tumors, vertebral metastases and major nontumoral lesions simulating a vertebral tumor, Paget disease, spondylitis, echinococcal infection, and aseptic osteitis. In many cases, vertebral biopsy is warranted to guide treatment.
NASA Technical Reports Server (NTRS)
Miller, James G.
1995-01-01
In this Progress Report, the author describes the continuing research to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. Images obtained using an unmodified medical ultrasonic imaging system of a bonded aluminum plate sample with a simulated disbond region are presented. The disbond region was produced by adhering a piece of plain white paper to a piece of cellophane tape and applying the paper-tape combination to one of the aluminum plates. Because the area under the paper was not adhesively bonded to the aluminum plate, this arrangement more closely simulates a disbond. Images are also presented for an aluminum plate sample with an epoxy strip adhered to one side to help provide information for the interpretation of the images of the bonded aluminum plate sample containing the disbond region. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to provide information regarding the nature of the disbonded region. The results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology. In Section 2 of this Progress Report, the preparation of the aluminum plate specimens is described. Section 3 describes the method of linear array imaging. Sections 4 and 5 present the linear array images and results from contact transducer measurements, respectively. A discussion of the results are presented in Section 6.
Malone, Emma; Jehl, Markus; Arridge, Simon; Betcke, Timo; Holder, David
2014-06-01
We investigate the application of multifrequency electrical impedance tomography (MFEIT) to imaging the brain in stroke patients. The use of MFEIT could enable early diagnosis and thrombolysis of ischaemic stroke, and therefore improve the outcome of treatment. Recent advances in the imaging methodology suggest that the use of spectral constraints could allow for the reconstruction of a one-shot image. We performed a simulation study to investigate the feasibility of imaging stroke in a head model with realistic conductivities. We introduced increasing levels of modelling errors to test the robustness of the method to the most common sources of artefact. We considered the case of errors in the electrode placement, spectral constraints, and contact impedance. The results indicate that errors in the position and shape of the electrodes can affect image quality, although our imaging method was successful in identifying tissues with sufficiently distinct spectra.
NASA Astrophysics Data System (ADS)
Gupta, Mousumi; Chatterjee, Somenath
2018-04-01
Surface texture is an important issue to realize the nature (crest and trough) of surfaces. Atomic force microscopy (AFM) image is a key analysis for surface topography. However, in nano-scale, the nature (i.e., deflection or crack) as well as quantification (i.e., height or depth) of deposited layers is essential information for material scientist. In this paper, a gradient-based K-means algorithm is used to differentiate the layered surfaces depending on their color contrast of as-obtained from AFM images. A transformation using wavelet decomposition is initiated to extract the information about deflection or crack on the material surfaces from the same images. Z-axis depth analysis from wavelet coefficients provides information about the crack present in the material. Using the above method corresponding surface information for the material is obtained. In addition, the Gaussian filter is applied to remove the unwanted lines, which occurred during AFM scanning. Few known samples are taken as input, and validity of the above approaches is shown.
Free-space optical channel simulator for weak-turbulence conditions.
Bykhovsky, Dima
2015-11-01
Free-space optical (FSO) communication may be severely influenced by the inevitable turbulence effect that results in channel gain fluctuations and fading. The objective of this paper is to provide a simple and effective simulator of the weak-turbulence FSO channel that emulates the influence of the temporal covariance effect. Specifically, the proposed model is based on lognormal distributed samples with a corresponding correlation time. The simulator is based on the solution of the first-order stochastic differential equation (SDE). The results of the provided SDE analysis reveal its efficacy for turbulent channel modeling.
NASA Astrophysics Data System (ADS)
Nikitaev, V. G.; Pronichev, A. N.; Polyakov, E. V.; Mozhenkova, A. V.; Tupitsin, N. N.; Frenkel, M. A.
2018-01-01
The paper describes the method of recognition of T - and B - variants of acute lymphoblastic leukemia in microscopic images of blood cells. The method is based on the use of texture characteristics of images. Experimental recognition accuracy evaluation is obtained from the sample of 38 patients (17 with T-ALL and 21 with B-ALL variants of acute lymphoblastic leukemia). The obtained results show the possibility of applying of the proposed approach to the differential diagnosis of T- and B- variants of acute lymphoblastic leukemia.
Wang, Wei; Heitschmidt, Gerald W; Windham, William R; Feldner, Peggy; Ni, Xinzhi; Chu, Xuan
2015-01-01
The feasibility of using a visible/near-infrared hyperspectral imaging system with a wavelength range between 400 and 1000 nm to detect and differentiate different levels of aflatoxin B1 (AFB1 ) artificially titrated on maize kernel surface was examined. To reduce the color effects of maize kernels, image analysis was limited to a subset of original spectra (600 to 1000 nm). Residual staining from the AFB1 on the kernels surface was selected as regions of interest for analysis. Principal components analysis (PCA) was applied to reduce the dimensionality of hyperspectral image data, and then a stepwise factorial discriminant analysis (FDA) was performed on latent PCA variables. The results indicated that discriminant factors F2 can be used to separate control samples from all of the other groups of kernels with AFB1 inoculated, whereas the discriminant factors F1 can be used to identify maize kernels with levels of AFB1 as low as 10 ppb. An overall classification accuracy of 98% was achieved. Finally, the peaks of β coefficients of the discrimination factors F1 and F2 were analyzed and several key wavelengths identified for differentiating maize kernels with and without AFB1 , as well as those with differing levels of AFB1 inoculation. Results indicated that Vis/NIR hyperspectral imaging technology combined with the PCA-FDA was a practical method to detect and differentiate different levels of AFB1 artificially inoculated on the maize kernels surface. However, indicated the potential to detect and differentiate naturally occurring toxins in maize kernel. © 2014 Institute of Food Technologists®
Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices
NASA Astrophysics Data System (ADS)
Uehara, Masato; Yashiro, Wataru; Momose, Atsushi
2013-10-01
It is difficult to inspect packaged devices such as IC packages and power modules because the devices contain various components, such as semiconductors, metals, ceramics, and resin. In this paper, we demonstrated the effectiveness of X-ray grating interferometry (XGI) using a laboratory X-ray tube for the industrial inspection of packaged devices. The obtained conventional absorption image showed heavy-elemental components such as metal wires and electrodes, but the image did not reveal the defects in the light-elemental components. On the other hand, the differential phase-contrast image obtained by XGI revealed microvoids and scars in the encapsulant of the samples. The visibility contrast image also obtained by XGI showed some cracks in the ceramic insulator of power module sample. In addition, the image showed the silicon plate surrounded by the encapsulant having the same X-ray absorption coefficient. While these defects and components are invisible in the conventional industrial X-ray imaging, XGI thus has an attractive potential for the industrial inspection of the packaged devices.
Deep UV Native Fluorescence Imaging of Antarctic Cryptoendolithic Communities
NASA Technical Reports Server (NTRS)
Storrie-Lombardi, M. C.; Douglas, S.; Sun, H.; McDonald, G. D.; Bhartia, R.; Nealson, K. H.; Hug, W. F.
2001-01-01
An interdisciplinary team at the Jet Propulsion Laboratory Center for Life Detection has embarked on a project to provide in situ chemical and morphological characterization of Antarctic cryptoendolithic microbial communities. We present here in situ deep ultraviolet (UV) native fluorescence and environmental scanning electron microscopy images transiting 8.5 mm into a sandstone sample from the Antarctic Dry Valleys. The deep ultraviolet imaging system employs 224.3, 248.6, and 325 nm lasers to elicit differential fluorescence and resonance Raman responses from biomolecules and minerals. The 224.3 and 248.6 nm lasers elicit a fluorescence response from the aromatic amino and nucleic acids. Excitation at 325 nm may elicit activity from a variety of biomolecules, but is more likely to elicit mineral fluorescence. The resultant fluorescence images provide in situ chemical and morphological maps of microorganisms and the associated organic matrix. Visible broadband reflectance images provide orientation against the mineral background. Environmental scanning electron micrographs provided detailed morphological information. The technique has made possible the construction of detailed fluorescent maps extending from the surface of an Antarctic sandstone sample to a depth of 8.5 mm. The images detect no evidence of microbial life in the superficial 0.2 mm crustal layer. The black lichen component between 0.3 and 0.5 mm deep absorbs all wavelengths of both laser and broadband illumination. Filamentous deep ultraviolet native fluorescent activity dominates in the white layer between 0.6 mm and 5.0 mm from the surface. These filamentous forms are fungi that continue into the red (iron-rich) region of the sample extending from 5.0 to 8.5 mm. Using differential image subtraction techniques it is possible to identify fungal nuclei. The ultraviolet response is markedly attenuated in this region, apparently from the absorption of ultraviolet light by iron-rich particles coating the filaments. Below 8.5 mm the filamentous morphology of the upper layers gives way to punctate 1-2 micron particles evidencing fluorescent activity following excitation at both deep ultraviolet wavelengths.
Numerical Simulation of Partially-Coherent Broadband Optical Imaging Using the FDTD Method
Çapoğlu, İlker R.; White, Craig A.; Rogers, Jeremy D.; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim
2012-01-01
Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from biophotonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband optical imaging system with partially-coherent and unpolarized illumination. The scattering of light from the sample is calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to and shown to agree well with broadband experimental microscopy results. PMID:21540939
Axelrod, Noel; Radko, Anna; Lewis, Aaron; Ben-Yosef, Nissim
2004-04-10
A methodology is described for phase restoration of an object function from differential interference contrast (DIC) images. The methodology involves collecting a set of DIC images in the same plane with different bias retardation between the two illuminating light components produced by a Wollaston prism. These images, together with one conventional bright-field image, allows for reduction of the phase deconvolution restoration problem from a highly complex nonlinear mathematical formulation to a set of linear equations that can be applied to resolve the phase for images with a relatively large number of pixels. Additionally, under certain conditions, an on-line atomic force imaging system that does not interfere with the standard DIC illumination modes resolves uncertainties in large topographical variations that generally lead to a basic problem in DIC imaging, i.e., phase unwrapping. Furthermore, the availability of confocal detection allows for a three-dimensional reconstruction with high accuracy of the refractive-index measurement of the object that is to be imaged. This has been applied to reconstruction of the refractive index of an arrayed waveguide in a region in which a defect in the sample is present. The results of this paper highlight the synergism of far-field microscopies integrated with scanned probe microscopies and restoration algorithms for phase reconstruction.
Optronic System Imaging Simulator (OSIS): imager simulation tool of the ECOMOS project
NASA Astrophysics Data System (ADS)
Wegner, D.; Repasi, E.
2018-04-01
ECOMOS is a multinational effort within the framework of an EDA Project Arrangement. Its aim is to provide a generally accepted and harmonized European computer model for computing nominal Target Acquisition (TA) ranges of optronic imagers operating in the Visible or thermal Infrared (IR). The project involves close co-operation of defense and security industry and public research institutes from France, Germany, Italy, The Netherlands and Sweden. ECOMOS uses two approaches to calculate Target Acquisition (TA) ranges, the analytical TRM4 model and the image-based Triangle Orientation Discrimination model (TOD). In this paper the IR imager simulation tool, Optronic System Imaging Simulator (OSIS), is presented. It produces virtual camera imagery required by the TOD approach. Pristine imagery is degraded by various effects caused by atmospheric attenuation, optics, detector footprint, sampling, fixed pattern noise, temporal noise and digital signal processing. Resulting images might be presented to observers or could be further processed for automatic image quality calculations. For convenience OSIS incorporates camera descriptions and intermediate results provided by TRM4. For input OSIS uses pristine imagery tied with meta information about scene content, its physical dimensions, and gray level interpretation. These images represent planar targets placed at specified distances to the imager. Furthermore, OSIS is extended by a plugin functionality that enables integration of advanced digital signal processing techniques in ECOMOS such as compression, local contrast enhancement, digital turbulence mitiga- tion, to name but a few. By means of this image-based approach image degradations and image enhancements can be investigated, which goes beyond the scope of the analytical TRM4 model.
Building Better Planet Populations for EXOSIMS
NASA Astrophysics Data System (ADS)
Garrett, Daniel; Savransky, Dmitry
2018-01-01
The Exoplanet Open-Source Imaging Mission Simulator (EXOSIMS) software package simulates ensembles of space-based direct imaging surveys to provide a variety of science and engineering yield distributions for proposed mission designs. These mission simulations rely heavily on assumed distributions of planetary population parameters including semi-major axis, planetary radius, eccentricity, albedo, and orbital orientation to provide heuristics for target selection and to simulate planetary systems for detection and characterization. The distributions are encoded in PlanetPopulation modules within EXOSIMS which are selected by the user in the input JSON script when a simulation is run. The earliest written PlanetPopulation modules available in EXOSIMS are based on planet population models where the planetary parameters are considered to be independent from one another. While independent parameters allow for quick computation of heuristics and sampling for simulated planetary systems, results from planet-finding surveys have shown that many parameters (e.g., semi-major axis/orbital period and planetary radius) are not independent. We present new PlanetPopulation modules for EXOSIMS which are built on models based on planet-finding survey results where semi-major axis and planetary radius are not independent and provide methods for sampling their joint distribution. These new modules enhance the ability of EXOSIMS to simulate realistic planetary systems and give more realistic science yield distributions.
NASA Astrophysics Data System (ADS)
Heaster, Tiffany M.; Walsh, Alex J.; Skala, Melissa C.
2016-03-01
Measurement of relative fluorescence intensities of NAD(P)H and FAD with fluorescence lifetime imaging (FLIM) allows metabolic characterization of cancerous populations and correlation to treatment response. However, quiescent populations of cancer cells introduce heterogeneity to the tumor and exhibit resistance to standard therapies, requiring a better understanding of this influence on treatment outcome. Significant differences were observed between proliferating and quiescent cell populations upon comparison of respective redox ratios (p<0.05) and FAD lifetimes (p<0.05) across monolayers and in mixed samples. These results demonstrate that metabolic activity may function as a marker for separation and characterization of proliferating and quiescent cancer cells within mixed samples, contributing to comprehensive investigation of heterogeneity-dependent drug resistance.
Pore-Scale X-ray Micro-CT Imaging and Analysis of Oil Shales
NASA Astrophysics Data System (ADS)
Saif, T.
2015-12-01
The pore structure and the connectivity of the pore space during the pyrolysis of oil shales are important characteristics which determine hydrocarbon flow behaviour and ultimate recovery. We study the effect of temperature on the evolution of pore space and subsequent permeability on five oil shale samples: (1) Vernal Utah United States, (2) El Lajjun Al Karak Jordan, (3) Gladstone Queensland Australia (4) Fushun China and (5) Kimmerdige United Kingdom. Oil Shale cores of 5mm in diameter were pyrolized at 300, 400 and 500 °C. 3D imaging of 5mm diameter core samples was performed at 1μm voxel resolution using X-ray micro computed tomography (CT) and the evolution of the pore structures were characterized. The experimental results indicate that the thermal decomposition of kerogen at high temperatures is a major factor causing micro-scale changes in the internal structure of oil shales. At the early stage of pyrolysis, micron-scale heterogeneous pores were formed and with a further increase in temperature, the pores expanded and became interconnected by fractures. Permeability for each oil shale sample at each temperature was computed by simulation directly on the image voxels and by pore network extraction and simulation. Future work will investigate different samples and pursue insitu micro-CT imaging of oil shale pyrolysis to characterize the time evolution of the pore space.
A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation.
Wang, Huafeng; Zhao, Tingting; Li, Lihong Connie; Pan, Haixia; Liu, Wanquan; Gao, Haoqi; Han, Fangfang; Wang, Yuehai; Qi, Yifan; Liang, Zhengrong
2018-01-01
The malignancy risk differentiation of pulmonary nodule is one of the most challenge tasks of computer-aided diagnosis (CADx). Most recently reported CADx methods or schemes based on texture and shape estimation have shown relatively satisfactory on differentiating the risk level of malignancy among the nodules detected in lung cancer screening. However, the existing CADx schemes tend to detect and analyze characteristics of pulmonary nodules from a statistical perspective according to local features only. Enlightened by the currently prevailing learning ability of convolutional neural network (CNN), which simulates human neural network for target recognition and our previously research on texture features, we present a hybrid model that takes into consideration of both global and local features for pulmonary nodule differentiation using the largest public database founded by the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI). By comparing three types of CNN models in which two of them were newly proposed by us, we observed that the multi-channel CNN model yielded the best discrimination in capacity of differentiating malignancy risk of the nodules based on the projection of distributions of extracted features. Moreover, CADx scheme using the new multi-channel CNN model outperformed our previously developed CADx scheme using the 3D texture feature analysis method, which increased the computed area under a receiver operating characteristic curve (AUC) from 0.9441 to 0.9702.
Khouj, Yasser; Dawson, Jeremy; Coad, James; Vona-Davis, Linda
2018-01-01
Hyperspectral imaging (HSI) is a non-invasive optical imaging modality that shows the potential to aid pathologists in breast cancer diagnoses cases. In this study, breast cancer tissues from different patients were imaged by a hyperspectral system to detect spectral differences between normal and breast cancer tissues. Tissue samples mounted on slides were identified from 10 different patients. Samples from each patient included both normal and ductal carcinoma tissue, both stained with hematoxylin and eosin stain and unstained. Slides were imaged using a snapshot HSI system, and the spectral reflectance differences were evaluated. Analysis of the spectral reflectance values indicated that wavelengths near 550 nm showed the best differentiation between tissue types. This information was used to train image processing algorithms using supervised and unsupervised data. The K-means method was applied to the hyperspectral data cubes, and successfully detected spectral tissue differences with sensitivity of 85.45%, and specificity of 94.64% with true negative rate of 95.8%, and false positive rate of 4.2%. These results were verified by ground-truth marking of the tissue samples by a pathologist. In the hyperspectral image analysis, the image processing algorithm, K-means, shows the greatest potential for building a semi-automated system that could identify and sort between normal and ductal carcinoma in situ tissues.
Face aging effect simulation model based on multilayer representation and shearlet transform
NASA Astrophysics Data System (ADS)
Li, Yuancheng; Li, Yan
2017-09-01
In order to extract detailed facial features, we build a face aging effect simulation model based on multilayer representation and shearlet transform. The face is divided into three layers: the global layer of the face, the local features layer, and texture layer, which separately establishes the aging model. First, the training samples are classified according to different age groups, and we use active appearance model (AAM) at the global level to obtain facial features. The regression equations of shape and texture with age are obtained by fitting the support vector machine regression, which is based on the radial basis function. We use AAM to simulate the aging of facial organs. Then, for the texture detail layer, we acquire the significant high-frequency characteristic components of the face by using the multiscale shearlet transform. Finally, we get the last simulated aging images of the human face by the fusion algorithm. Experiments are carried out on the FG-NET dataset, and the experimental results show that the simulated face images have less differences from the original image and have a good face aging simulation effect.
Sinkó, József; Kákonyi, Róbert; Rees, Eric; Metcalf, Daniel; Knight, Alex E.; Kaminski, Clemens F.; Szabó, Gábor; Erdélyi, Miklós
2014-01-01
Localization-based super-resolution microscopy image quality depends on several factors such as dye choice and labeling strategy, microscope quality and user-defined parameters such as frame rate and number as well as the image processing algorithm. Experimental optimization of these parameters can be time-consuming and expensive so we present TestSTORM, a simulator that can be used to optimize these steps. TestSTORM users can select from among four different structures with specific patterns, dye and acquisition parameters. Example results are shown and the results of the vesicle pattern are compared with experimental data. Moreover, image stacks can be generated for further evaluation using localization algorithms, offering a tool for further software developments. PMID:24688813
Teruel, Jose R; Goa, Pål E; Sjøbakk, Torill E; Østlie, Agnes; Fjøsne, Hans E; Bathen, Tone F
2016-11-01
Purpose To evaluate the relative change of the apparent diffusion coefficient (ADC) at low- and medium-b-value regimens as a surrogate marker of microcirculation, to study its correlation with dynamic contrast agent-enhanced (DCE) magnetic resonance (MR) imaging-derived parameters, and to assess its potential for differentiation between malignant and benign breast tumors. Materials and Methods Ethics approval and informed consent were obtained. From May 2013 to June 2015, 61 patients diagnosed with either malignant or benign breast tumors were prospectively recruited. All patients were scanned with a 3-T MR imager, including diffusion-weighted imaging (DWI) and DCE MR imaging. Parametric analysis of DWI and DCE MR imaging was performed, including a proposed marker, relative enhanced diffusivity (RED). Spearman correlation was calculated between DCE MR imaging and DWI parameters, and the potential of the different DWI-derived parameters for differentiation between malignant and benign breast tumors was analyzed by dividing the sample into equally sized training and test sets. Optimal cut-off values were determined with receiver operating characteristic curve analysis in the training set, which were then used to evaluate the independent test set. Results RED had a Spearman rank correlation of 0.61 with the initial area under the curve calculated from DCE MR imaging. Furthermore, RED differentiated cancers from benign tumors with an overall accuracy of 90% (27 of 30) on the test set with 88.2% (15 of 17) sensitivity and 92.3% (12 of 13) specificity. Conclusion This study presents promising results introducing a simplified approach to assess results from a DWI protocol sensitive to the intravoxel incoherent motion effect by using only three b values. This approach could potentially aid in the differentiation, characterization, and monitoring of breast pathologies. © RSNA, 2016 Online supplemental material is available for this article.
Advanced applications of cosmic-ray muon radiography
NASA Astrophysics Data System (ADS)
Perry, John
The passage of cosmic-ray muons through matter is dominated by the Coulomb interaction with electrons and atomic nuclei. The muon's interaction with electrons leads to continuous energy loss and stopping through the process of ionization. The muon's interaction with nuclei leads to angular diffusion. If a muon stops in matter, other processes unfold, as discussed in more detail below. These interactions provide the basis for advanced applications of cosmic-ray muon radiography discussed here, specifically: 1) imaging a nuclear reactor with near horizontal muons, and 2) identifying materials through the analysis of radiation lengths weighted by density and secondary signals that are induced by cosmic-ray muon trajectories. We have imaged a nuclear reactor, type AGN-201m, at the University of New Mexico, using data measured with a particle tracker built from a set of sealed drift tubes, the Mini Muon Tracker (MMT). Geant4 simulations were compared to the data for verification and validation. In both the data and simulation, we can identify regions of interest in the reactor including the core, moderator, and shield. This study reinforces our claims for using muon tomography to image reactors following an accident. Warhead and special nuclear materials (SNM) imaging is an important thrust for treaty verification and national security purposes. The differentiation of SNM from other materials, such as iron and aluminum, is useful for these applications. Several techniques were developed for material identification using cosmic-ray muons. These techniques include: 1) identifying the radiation length weighted by density of an object and 2) measuring the signals that can indicate the presence of fission and chain reactions. By combining the radiographic images created by tracking muons through a target plane with the additional fission neutron and gamma signature, we are able to locate regions that are fissionable from a single side. The following materials were imaged with this technique: aluminum, concrete, steel, lead, and uranium. Provided that there is sufficient mass, U-235 could be differentiated from U-238 through muon induced fission.
Multilattice sampling strategies for region of interest dynamic MRI.
Rilling, Gabriel; Tao, Yuehui; Marshall, Ian; Davies, Mike E
2013-08-01
A multilattice sampling approach is proposed for dynamic MRI with Cartesian trajectories. It relies on the use of sampling patterns composed of several different lattices and exploits an image model where only some parts of the image are dynamic, whereas the rest is assumed static. Given the parameters of such an image model, the methodology followed for the design of a multilattice sampling pattern adapted to the model is described. The multi-lattice approach is compared to single-lattice sampling, as used by traditional acceleration methods such as UNFOLD (UNaliasing by Fourier-Encoding the Overlaps using the temporal Dimension) or k-t BLAST, and random sampling used by modern compressed sensing-based methods. On the considered image model, it allows more flexibility and higher accelerations than lattice sampling and better performance than random sampling. The method is illustrated on a phase-contrast carotid blood velocity mapping MR experiment. Combining the multilattice approach with the KEYHOLE technique allows up to 12× acceleration factors. Simulation and in vivo undersampling results validate the method. Compared to lattice and random sampling, multilattice sampling provides significant gains at high acceleration factors. © 2012 Wiley Periodicals, Inc.
Sampling theory and automated simulations for vertical sections, applied to human brain.
Cruz-Orive, L M; Gelšvartas, J; Roberts, N
2014-02-01
In recent years, there have been substantial developments in both magnetic resonance imaging techniques and automatic image analysis software. The purpose of this paper is to develop stereological image sampling theory (i.e. unbiased sampling rules) that can be used by image analysts for estimating geometric quantities such as surface area and volume, and to illustrate its implementation. The methods will ideally be applied automatically on segmented, properly sampled 2D images - although convenient manual application is always an option - and they are of wide applicability in many disciplines. In particular, the vertical sections design to estimate surface area is described in detail and applied to estimate the area of the pial surface and of the boundary between cortex and underlying white matter (i.e. subcortical surface area). For completeness, cortical volume and mean cortical thickness are also estimated. The aforementioned surfaces were triangulated in 3D with the aid of FreeSurfer software, which provided accurate surface area measures that served as gold standards. Furthermore, a software was developed to produce digitized trace curves of the triangulated target surfaces automatically from virtual sections. From such traces, a new method (called the 'lambda method') is presented to estimate surface area automatically. In addition, with the new software, intersections could be counted automatically between the relevant surface traces and a cycloid test grid for the classical design. This capability, together with the aforementioned gold standard, enabled us to thoroughly check the performance and the variability of the different estimators by Monte Carlo simulations for studying the human brain. In particular, new methods are offered to split the total error variance into the orientations, sectioning and cycloid components. The latter prediction was hitherto unavailable--one is proposed here and checked by way of simulations on a given set of digitized vertical sections with automatically superimposed cycloid grids of three different sizes. Concrete and detailed recommendations are given to implement the methods. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nan; Gladders, Michael D.; Florian, Michael K.
2016-09-01
Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that ofmore » the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.« less
PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nan; Gladders, Michael D.; Rangel, Esteban M.
2016-08-29
Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that ofmore » the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.« less
Superficial Dosimetry Imaging of Čerenkov Emission in Electron Beam Radiotherapy of Phantoms
Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.
2014-01-01
Čerenkov emission is generated from ionizing radiation in tissue above 264keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6cm×6cm to 20cm×20cm, incident angles from 0 to 50 degrees, and energies from 6 to 18 MeV. The Čerenkov images were compared with estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2=0.97) with reference data of the known dose for energies from 6MeV to 18MeV. When orthogonal delivery was done, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2~4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50 degrees, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system (TPS) had at a larger error (OPT=±1~2%, Diode=±2~3%, TPS=±6~8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable way to superficial dosimetry imaging from incident radiotherapy beams of electrons. PMID:23880473
Impact of fitting algorithms on errors of parameter estimates in dynamic contrast-enhanced MRI
NASA Astrophysics Data System (ADS)
Debus, C.; Floca, R.; Nörenberg, D.; Abdollahi, A.; Ingrisch, M.
2017-12-01
Parameter estimation in dynamic contrast-enhanced MRI (DCE MRI) is usually performed by non-linear least square (NLLS) fitting of a pharmacokinetic model to a measured concentration-time curve. The two-compartment exchange model (2CXM) describes the compartments ‘plasma’ and ‘interstitial volume’ and their exchange in terms of plasma flow and capillary permeability. The model function can be defined by either a system of two coupled differential equations or a closed-form analytical solution. The aim of this study was to compare these two representations in terms of accuracy, robustness and computation speed, depending on parameter combination and temporal sampling. The impact on parameter estimation errors was investigated by fitting the 2CXM to simulated concentration-time curves. Parameter combinations representing five tissue types were used, together with two arterial input functions, a measured and a theoretical population based one, to generate 4D concentration images at three different temporal resolutions. Images were fitted by NLLS techniques, where the sum of squared residuals was calculated by either numeric integration with the Runge-Kutta method or convolution. Furthermore two example cases, a prostate carcinoma and a glioblastoma multiforme patient, were analyzed in order to investigate the validity of our findings in real patient data. The convolution approach yields improved results in precision and robustness of determined parameters. Precision and stability are limited in curves with low blood flow. The model parameter ve shows great instability and little reliability in all cases. Decreased temporal resolution results in significant errors for the differential equation approach in several curve types. The convolution excelled in computational speed by three orders of magnitude. Uncertainties in parameter estimation at low temporal resolution cannot be compensated by usage of the differential equations. Fitting with the convolution approach is superior in computational time, with better stability and accuracy at the same time.
Direct magnetocaloric characterization and simulation of thermomagnetic cycles
NASA Astrophysics Data System (ADS)
Porcari, G.; Buzzi, M.; Cugini, F.; Pellicelli, R.; Pernechele, C.; Caron, L.; Brück, E.; Solzi, M.
2013-07-01
An experimental setup for the direct measurement of the magnetocaloric effect capable of simulating high frequency magnetothermal cycles on laboratory-scale samples is described. The study of the magnetocaloric properties of working materials under operative conditions is fundamental for the development of innovative devices. Frequency and time dependent characterization can provide essential information on intrinsic features such as magnetic field induced fatigue in materials undergoing first order magnetic phase transitions. A full characterization of the adiabatic temperature change performed for a sample of Gadolinium across its Curie transition shows the good agreement between our results and literature data and in-field differential scanning calorimetry.
Determination of Differential Emission Measure from Solar Extreme Ultraviolet Images
NASA Astrophysics Data System (ADS)
Su, Yang; Veronig, Astrid M.; Hannah, Iain G.; Cheung, Mark C. M.; Dennis, Brian R.; Holman, Gordon D.; Gan, Weiqun; Li, Youping
2018-03-01
The Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) has been providing high-cadence, high-resolution, full-disk UV-visible/extreme ultraviolet (EUV) images since 2010, with the best time coverage among all the solar missions. A number of codes have been developed to extract plasma differential emission measures (DEMs) from AIA images. Although widely used, they cannot effectively constrain the DEM at flaring temperatures with AIA data alone. This often results in much higher X-ray fluxes than observed. One way to solve the problem is by adding more constraint from other data sets (such as soft X-ray images and fluxes). However, the spatial information of plasma DEMs are lost in many cases. In this Letter, we present a different approach to constrain the DEMs. We tested the sparse inversion code and show that the default settings reproduce X-ray fluxes that could be too high. Based on the tests with both simulated and observed AIA data, we provided recommended settings of basis functions and tolerances. The new DEM solutions derived from AIA images alone are much more consistent with (thermal) X-ray observations, and provide valuable information by mapping the thermal plasma from ∼0.3 to ∼30 MK. Such improvement is a key step in understanding the nature of individual X-ray sources, and particularly important for studies of flare initiation.
Quantitative phase imaging of retinal cells (Conference Presentation)
NASA Astrophysics Data System (ADS)
LaForest, Timothé; Carpentras, Dino; Kowalczuk, Laura; Behar-Cohen, Francine; Moser, Christophe
2017-02-01
Vision process is ruled by several cells layers of the retina. Before reaching the photoreceptors, light entering the eye has to pass through a few hundreds of micrometers thick layer of ganglion and neurons cells. Macular degeneration is a non-curable disease of themacula occurring with age. This disease can be diagnosed at an early stage by imaging neuronal cells in the retina and observing their death chronically. These cells are phase objects locatedon a background that presents an absorption pattern and so difficult to see with standard imagingtechniques in vivo. Phase imaging methods usually need the illumination system to be on the opposite side of the sample with respect to theimaging system. This is a constraintand a challenge for phase imaging in-vivo. Recently, the possibility of performing phase contrast imaging from one side using properties of scattering media has been shown. This phase contrast imaging is based on the back illumination generated by the sample itself. Here, we present a reflection phase imaging technique based on oblique back-illumination. The oblique back-illumination creates a dark field image of the sample. Generating asymmetric oblique illumination allows obtaining differential phase contrast image, which in turn can be processed to recover a quantitative phase image. In the case of the eye, a transcleral illumination can generate oblique incident light on the retina and the choroidal layer.The back reflected light is then collected by the eye lens to produce dark field image. We show experimental results of retinal phase imagesin ex vivo samples of human and pig retina.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matuttis, Hans-Georg; Wang, Xiaoxing
Decomposition methods of the Suzuki-Trotter type of various orders have been derived in different fields. Applying them both to classical ordinary differential equations (ODEs) and quantum systems allows to judge their effectiveness and gives new insights for many body quantum mechanics where reference data are scarce. Further, based on data for 6 × 6 system we conclude that sampling with sign (minus-sign problem) is probably detrimental to the accuracy of fermionic simulations with determinant algorithms.
Multi-Rate Digital Control Systems with Simulation Applications. Volume I. Technical Report
1980-09-01
108 45. A Pseudo Differentiation Configuration ........................ 110 46. Bode Plot, Pseudo Differentiation ...symbolically in Fig. 7a and for 11 x 2 in Fig. 7b. (* notation on x2is used here to indicate an "unconven- tional" sampling operation.) 115 TXi ,A! T...the general multi-rate/multiple-order open-loop system of Fig. 21 have a sine wave input. In Fig 2L, = (GIRj) (114) CT/N = [GGRt]T/N ( 115 ) where a, B
Galaxy Zoo: Morphological Classification of Galaxy Images from the Illustris Simulation
NASA Astrophysics Data System (ADS)
Dickinson, Hugh; Fortson, Lucy; Lintott, Chris; Scarlata, Claudia; Willett, Kyle; Bamford, Steven; Beck, Melanie; Cardamone, Carolin; Galloway, Melanie; Simmons, Brooke; Keel, William; Kruk, Sandor; Masters, Karen; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory F.
2018-02-01
Modern large-scale cosmological simulations model the universe with increasing sophistication and at higher spatial and temporal resolutions. These ongoing enhancements permit increasingly detailed comparisons between the simulation outputs and real observational data. Recent projects such as Illustris are capable of producing simulated images that are designed to be comparable to those obtained from local surveys. This paper tests the degree to which Illustris achieves this goal across a diverse population of galaxies using visual morphologies derived from Galaxy Zoo citizen scientists. Morphological classifications provided by these volunteers for simulated galaxies are compared with similar data for a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey. This paper investigates how simple morphological characterization by human volunteers asked to distinguish smooth from featured systems differs between simulated and real galaxy images. Significant differences are identified, which are most likely due to the limited resolution of the simulation, but which could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Specifically, for stellar masses {M}\\star ≲ {10}11 {M}ȯ , a substantially larger proportion of Illustris galaxies that exhibit disk-like morphology or visible substructure, relative to their SDSS counterparts. Toward higher masses, the visual morphologies for simulated and observed galaxies converge and exhibit similar distributions. The stellar mass threshold indicated by this divergent behavior confirms recent works using parametric measures of morphology from Illustris simulated images. When {M}\\star ≳ {10}11 {M}ȯ , the Illustris data set contains substantially fewer galaxies that classifiers regard as unambiguously featured. In combination, these results suggest that comparison between the detailed properties of observed and simulated galaxies, even when limited to reasonably massive systems, may be misleading.
A study on high NA and evanescent imaging with polarized illumination
NASA Astrophysics Data System (ADS)
Yang, Seung-Hune
Simulation techniques are developed for high NA polarized microscopy with Babinet's principle, partial coherence and vector diffraction for non-periodic geometries. A mathematical model for the Babinet approach is developed and interpreted. Simulation results of the Babinet's principle approach are compared with those of Rigorous Coupled Wave Theory (RCWT) for periodic structures to investigate the accuracy of this approach and its limitations. A microscope system using a special solid immersion lens (SIL) is introduced to image Blu-Ray (BD) optical disc samples without removing the protective cover layer. Aberration caused by the cover layer is minimized with a truncated SIL. Sub-surface imaging simulation is achieved by RCWT, partial coherence, vector diffraction and Babinet's Principle. Simulated results are compared with experimental images and atomic force microscopy (AFM) measurement. A technique for obtaining native and induced using a significant amount of evanescent energy is described for a solid immersion lens (SIL) microscope. Characteristics of native and induced polarization images for different object structures and materials are studied in detail. Experiments are conducted with a NA = 1.48 at lambda = 550nm microscope. Near-field images are simulated and analyzed with an RCWT approach. Contrast curve versus object spatial frequency calculations are compared with experimental measurements. Dependencies of contrast versus source polarization angles and air gap for native and induced polarization image profiles are evaluated. By using the relationship between induced polarization and topographical structure, an induced polarization image of an alternating phase shift mask (PSM) is converted into a topographical image, which shows very good agreement with AFM measurement. Images of other material structures include a dielectric grating, chrome-on-glass grating, silicon CPU structure, BD-R and BD-ROM.
On the importance of image formation optics in the design of infrared spectroscopic imaging systems
Mayerich, David; van Dijk, Thomas; Walsh, Michael; Schulmerich, Matthew; Carney, P. Scott
2014-01-01
Infrared spectroscopic imaging provides micron-scale spatial resolution with molecular contrast. While recent work demonstrates that sample morphology affects the recorded spectrum, considerably less attention has been focused on the effects of the optics, including the condenser and objective. This analysis is extremely important, since it will be possible to understand effects on recorded data and provides insight for reducing optical effects through rigorous microscope design. Here, we present a theoretical description and experimental results that demonstrate the effects of commonly-employed cassegranian optics on recorded spectra. We first combine an explicit model of image formation and a method for quantifying and visualizing the deviations in recorded spectra as a function of microscope optics. We then verify these simulations with measurements obtained from spatially heterogeneous samples. The deviation of the computed spectrum from the ideal case is quantified via a map which we call a deviation map. The deviation map is obtained as a function of optical elements by systematic simulations. Examination of deviation maps demonstrates that the optimal optical configuration for minimal deviation is contrary to prevailing practice in which throughput is maximized for an instrument without a sample. This report should be helpful for understanding recorded spectra as a function of the optics, the analytical limits of recorded data determined by the optical design, and potential routes for optimization of imaging systems. PMID:24936526
On the importance of image formation optics in the design of infrared spectroscopic imaging systems.
Mayerich, David; van Dijk, Thomas; Walsh, Michael J; Schulmerich, Matthew V; Carney, P Scott; Bhargava, Rohit
2014-08-21
Infrared spectroscopic imaging provides micron-scale spatial resolution with molecular contrast. While recent work demonstrates that sample morphology affects the recorded spectrum, considerably less attention has been focused on the effects of the optics, including the condenser and objective. This analysis is extremely important, since it will be possible to understand effects on recorded data and provides insight for reducing optical effects through rigorous microscope design. Here, we present a theoretical description and experimental results that demonstrate the effects of commonly-employed cassegranian optics on recorded spectra. We first combine an explicit model of image formation and a method for quantifying and visualizing the deviations in recorded spectra as a function of microscope optics. We then verify these simulations with measurements obtained from spatially heterogeneous samples. The deviation of the computed spectrum from the ideal case is quantified via a map which we call a deviation map. The deviation map is obtained as a function of optical elements by systematic simulations. Examination of deviation maps demonstrates that the optimal optical configuration for minimal deviation is contrary to prevailing practice in which throughput is maximized for an instrument without a sample. This report should be helpful for understanding recorded spectra as a function of the optics, the analytical limits of recorded data determined by the optical design, and potential routes for optimization of imaging systems.
NASA Astrophysics Data System (ADS)
Paudel, Hari P.; Jung, Yookyung; Raphael, Anthony; Alt, Clemens; Wu, Juwell; Runnels, Judith; Lin, Charles P.
2018-02-01
The present standard of blood cell analysis is an invasive procedure requiring the extraction of patient's blood, followed by ex-vivo analysis using a flow cytometer or a hemocytometer. We are developing a noninvasive optical technique that alleviates the need for blood extraction. For in-vivo blood analysis we need a high speed, high resolution and high contrast label-free imaging technique. In this proceeding report, we reported a label-free method based on differential epi-detection of forward scattered light, a method inspired by Jerome Mertz's oblique back-illumination microscopy (OBM) (Ford et al, Nat. Meth. 9(12) 2012). The differential epi-detection of forward light gives phase contrast image at diffraction-limited resolution. Unlike reflection confocal microscopy (RCM), which detects only sharp refractive index variation and suffers from speckle noise, this technique is suitable for detection of subtle variation of refractive index in biological tissue and it provides the shape and the size of cells. A custom built high speed electronic detection circuit board produces a real-time differential signal which yields image contrast based on phase gradient in the sample. We recorded blood flow in-vivo at 17.2k lines per second in line scan mode, or 30 frames per second (full frame), or 120 frame per second (quarter frame) in frame scan mode. The image contrast and speed of line scan data recording show the potential of the system for noninvasive blood cell analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suvorov, Alexey; Cai, Yong Q.
A concept of an inelastic x-ray scattering (IXS) spectrograph with an imaging analyzer was proposed recently and discussed in a number of publications (see e.g. Ref.1). The imaging analyzer as proposed combines x-ray lenses with highly dispersive crystal optics. It allows conversion of the x-ray energy spectrum into a spatial image with very high energy resolution. However, the presented theoretical analysis of the spectrograph did not take into account details of the scattered radiation source, i.e. sample, and its impact on the spectrograph performance. Using numerical simulations we investigated the influence of the finite sample thickness, the scattering angle andmore » the incident energy detuning on the analyzer image and the ultimate resolution.« less
Monte Carlo simulation of energy-dispersive x-ray fluorescence and applications
NASA Astrophysics Data System (ADS)
Li, Fusheng
Four key components with regards to Monte Carlo Library Least Squares (MCLLS) have been developed by the author. These include: a comprehensive and accurate Monte Carlo simulation code - CEARXRF5 with Differential Operators (DO) and coincidence sampling, Detector Response Function (DRF), an integrated Monte Carlo - Library Least-Squares (MCLLS) Graphical User Interface (GUI) visualization System (MCLLSPro) and a new reproducible and flexible benchmark experiment setup. All these developments or upgrades enable the MCLLS approach to be a useful and powerful tool for a tremendous variety of elemental analysis applications. CEARXRF, a comprehensive and accurate Monte Carlo code for simulating the total and individual library spectral responses of all elements, has been recently upgraded to version 5 by the author. The new version has several key improvements: input file format fully compatible with MCNP5, a new efficient general geometry tracking code, versatile source definitions, various variance reduction techniques (e.g. weight window mesh and splitting, stratifying sampling, etc.), a new cross section data storage and accessing method which improves the simulation speed by a factor of four and new cross section data, upgraded differential operators (DO) calculation capability, and also an updated coincidence sampling scheme which including K-L and L-L coincidence X-Rays, while keeping all the capabilities of the previous version. The new Differential Operators method is powerful for measurement sensitivity study and system optimization. For our Monte Carlo EDXRF elemental analysis system, it becomes an important technique for quantifying the matrix effect in near real time when combined with the MCLLS approach. An integrated visualization GUI system has been developed by the author to perform elemental analysis using iterated Library Least-Squares method for various samples when an initial guess is provided. This software was built on the Borland C++ Builder platform and has a user-friendly interface to accomplish all qualitative and quantitative tasks easily. That is to say, the software enables users to run the forward Monte Carlo simulation (if necessary) or use previously calculated Monte Carlo library spectra to obtain the sample elemental composition estimation within a minute. The GUI software is easy to use with user-friendly features and has the capability to accomplish all related tasks in a visualization environment. It can be a powerful tool for EDXRF analysts. A reproducible experiment setup has been built and experiments have been performed to benchmark the system. Two types of Standard Reference Materials (SRM), stainless steel samples from National Institute of Standards and Technology (NIST) and aluminum alloy samples from Alcoa Inc., with certified elemental compositions, are tested with this reproducible prototype system using a 109Cd radioisotope source (20mCi) and a liquid nitrogen cooled Si(Li) detector. The results show excellent agreement between the calculated sample compositions and their reference values and the approach is very fast.
NASA Astrophysics Data System (ADS)
Trattner, Sigal; Feigin, Micha; Greenspan, Hayit; Sochen, Nir
2008-03-01
The differential interference contrast (DIC) microscope is commonly used for the visualization of live biological specimens. It enables the view of the transparent specimens while preserving their viability, being a non-invasive modality. Fertility clinics often use the DIC microscope for evaluation of human embryos quality. Towards quantification and reconstruction of the visualized specimens, an image formation model for DIC imaging is sought and the interaction of light waves with biological matter is examined. In many image formation models the light-matter interaction is expressed via the first Born approximation. The validity region of this approximation is defined in a theoretical bound which limits its use to very small specimens with low dielectric contrast. In this work the Born approximation is investigated via the Helmholtz equation, which describes the interaction between the specimen and light. A solution on the lens field is derived using the Gaussian Legendre quadrature formulation. This numerical scheme is considered both accurate and efficient and has shortened significantly the computation time as compared to integration methods that required a great amount of sampling for satisfying the Whittaker - Shannon sampling theorem. By comparing the numerical results with the theoretical values it is shown that the theoretical bound is not directly relevant to microscopic imaging and is far too limiting. The numerical exhaustive experiments show that the Born approximation is inappropriate for modeling the visualization of thick human embryos.
Low energy X-ray grating interferometry at the Brazilian Synchrotron
NASA Astrophysics Data System (ADS)
Koch, F. J.; O'Dowd, F. P.; Cardoso, M. B.; Da Silva, R. R.; Cavicchioli, M.; Ribeiro, S. J. L.; Schröter, T. J.; Faisal, A.; Meyer, P.; Kunka, D.; Mohr, J.
2017-06-01
Grating based X-ray differential phase contrast imaging has found a large variety of applications in the last decade. Different types of samples call for different imaging energies, and efforts have been made to establish the technique all over the spectrum used for conventional X-ray imaging. Here we present a two-grating interferometer working at 8.3 keV, implemented at the bending magnet source of the IMX beamline of the Brazilian Synchrotron Light Laboratory. The low design energy is made possible by gratings fabricated on polymer substrates, and makes the interferometer mainly suited to the investigation of light and thin samples. We investigate polymer microspheres filled with Fe2O3 nanoparticles, and find that these particles give rise to a significant visibility reduction due to small angle scattering.
OSM-Classic : An optical imaging technique for accurately determining strain
NASA Astrophysics Data System (ADS)
Aldrich, Daniel R.; Ayranci, Cagri; Nobes, David S.
OSM-Classic is a program designed in MATLAB® to provide a method of accurately determining strain in a test sample using an optical imaging technique. Measuring strain for the mechanical characterization of materials is most commonly performed with extensometers, LVDT (linear variable differential transistors), and strain gauges; however, these strain measurement methods suffer from their fragile nature and it is not particularly easy to attach these devices to the material for testing. To alleviate these potential problems, an optical approach that does not require contact with the specimen can be implemented to measure the strain. OSM-Classic is a software that interrogates a series of images to determine elongation in a test sample and hence, strain of the specimen. It was designed to provide a graphical user interface that includes image processing with a dynamic region of interest. Additionally, the stain is calculated directly while providing active feedback during the processing.
Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T
2018-02-08
Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text
[Preparation of simulate craniocerebral models via three dimensional printing technique].
Lan, Q; Chen, A L; Zhang, T; Zhu, Q; Xu, T
2016-08-09
Three dimensional (3D) printing technique was used to prepare the simulate craniocerebral models, which were applied to preoperative planning and surgical simulation. The image data was collected from PACS system. Image data of skull bone, brain tissue and tumors, cerebral arteries and aneurysms, and functional regions and relative neural tracts of the brain were extracted from thin slice scan (slice thickness 0.5 mm) of computed tomography (CT), magnetic resonance imaging (MRI, slice thickness 1mm), computed tomography angiography (CTA), and functional magnetic resonance imaging (fMRI) data, respectively. MIMICS software was applied to reconstruct colored virtual models by identifying and differentiating tissues according to their gray scales. Then the colored virtual models were submitted to 3D printer which produced life-sized craniocerebral models for surgical planning and surgical simulation. 3D printing craniocerebral models allowed neurosurgeons to perform complex procedures in specific clinical cases though detailed surgical planning. It offered great convenience for evaluating the size of spatial fissure of sellar region before surgery, which helped to optimize surgical approach planning. These 3D models also provided detailed information about the location of aneurysms and their parent arteries, which helped surgeons to choose appropriate aneurismal clips, as well as perform surgical simulation. The models further gave clear indications of depth and extent of tumors and their relationship to eloquent cortical areas and adjacent neural tracts, which were able to avoid surgical damaging of important neural structures. As a novel and promising technique, the application of 3D printing craniocerebral models could improve the surgical planning by converting virtual visualization into real life-sized models.It also contributes to functional anatomy study.
Target Acquisition for Projectile Vision-Based Navigation
2014-03-01
Future Work 20 8. References 21 Appendix A. Simulation Results 23 Appendix B. Derivation of Ground Resolution for a Diffraction-Limited Pinhole Camera...results for visual acquisition (left) and target recognition (right). ..........19 Figure B-1. Differential object and image areas for pinhole camera...projectile and target (measured in terms of the angle ) will depend on target heading. In particular, because we have aligned the x axis along the
NASA Astrophysics Data System (ADS)
Dahal, Sudhir
During tumor removal surgery, due to the problems associated with obtaining high-resolution, real-time chemical images of where exactly the tumor ends and healthy tissue begins (tumor margining), it is often necessary to remove a much larger volume of tissue than the tumor itself. In the case of brain tumor surgery, however, it is extremely unsafe to remove excess tissue. Therefore, without an accurate image of the tumor margins, some of the tumor's finger-like projections are inevitably left behind in the surrounding parenchyma to grow again. For this reason, the development of techniques capable of providing high-resolution real-time images of tumor margins up to centimeters below the surface of a tissue is ideal for the diagnosis and treatment of tumors, as well as surgical guidance during brain tumor excision. A novel spectroscopic technique, non-resonant multiphoton photoacoustic spectroscopy (NMPPAS), is being developed with the capabilities of obtaining high-resolution subsurface chemical-based images of underlying tumors. This novel technique combines the strengths of multiphoton tissue spectroscopy and photoacoustic spectroscopy into a diagnostic methodology that will, ultimately, provide unparalleled chemical information and images to provide the state of sub-surface tissues. The NMPPAS technique employs near-infrared light (in the diagnostic window) to excite ultraviolet and/or visible light absorbing species deep below the tissue's surface. Once a multiphoton absorption event occurs, non-radiative relaxation processes generates a localized thermal expansion and subsequent acoustic wave that can be detected using a piezoelectric transducer. Since NMPPAS employs an acoustic detection modality, much deeper diagnoses can be performed than that is possible using current state of the art high-resolution chemical imaging techniques such as multiphoton fluorescence spectroscopy. NMPPAS was employed to differentiate between excised brain tumors (astrocytoma III) and healthy tissue with over 99% accuracy. NMPPAS spectral features showed evident differences between tumor and healthy tissues, and ratiometric analysis ensured that only a few wavelengths could be used for excitation instead of using numerous wavelength excitations to create spectra. This process would significantly reduce the analysis time while maintaining the same degree of accuracy. Tissue phantoms were fabricated in order to characterize the properties of NMPPAS. Scattering particles were doped into the phantoms to simulate their light scattering properties to real tissues. This allowed for better control over shape, size, reproducibility and doping in the sample while maintaining the light-tissue interaction properties of real tissue. To make NMPPAS viable for clinical applications, the technique was characterized to determine the spatial (lateral and longitudinal) resolution, depth of penetration and its ability to image in three-dimension through layers of tissue. Both resolutions were determined to be near-cellular level resolution (50-70 microm), obtained initially with the aid of the technique of multiphoton fluorescence, and later verified using NMPPAS imaging. Additionally, the maximum depth of penetration and detection was determined to be about 1.4cm, making the technique extremely suitable to margin tumors from underlying tissues in the brain. The capability of NMPPAS to detect and image layers that lie beneath other structures and blood vessels was also investigated. Three-dimensional images were obtained for the first time using NMPPAS. The images were obtained from different depths and structures were imaged through other layers of existing structures in the sample. This verified that NMPPAS was capable of detecting and imaging structures that lie embedded within the tissues. NMPPAS images of embedded structures were also obtained with the presence of hemoglobin, which is potentially the largest source of background in blood-perfused tissues, thus showing that the technique is capable of detecting and differentiating in blood-perfused samples.
Image reconstruction in cone-beam CT with a spherical detector using the BPF algorithm
NASA Astrophysics Data System (ADS)
Zuo, Nianming; Zou, Yu; Jiang, Tianzi; Pan, Xiaochuan
2006-03-01
Both flat-panel detectors and cylindrical detectors have been used in CT systems for data acquisition. The cylindrical detector generally offers a sampling of a transverse image plane more uniformly than does a flat-panel detector. However, in the longitudinal dimension, the cylindrical and flat-panel detectors offer similar sampling of the image space. In this work, we investigate a detector of spherical shape, which can yield uniform sampling of the 3D image space because the solid angle subtended by each individual detector bin remains unchanged. We have extended the backprojection-filtration (BPF) algorithm, which we have developed previously for cone-beam CT, to reconstruct images in cone-beam CT with a spherical detector. We also conduct computer-simulation studies to validate the extended BPF algorithm. Quantitative results in these numerical studies indicate that accurate images can be obtained from data acquired with a spherical detector by use of our extended BPF cone-beam algorithms.
Angular oversampling with temporally offset layers on multilayer detectors in computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjölin, Martin, E-mail: martin.sjolin@mi.physics.kth.se; Danielsson, Mats
2016-06-15
Purpose: Today’s computed tomography (CT) scanners operate at an increasingly high rotation speed in order to reduce motion artifacts and to fulfill the requirements of dynamic acquisition, e.g., perfusion and cardiac imaging, with lower angular sampling rate as a consequence. In this paper, a simple method for obtaining angular oversampling when using multilayer detectors in continuous rotation CT is presented. Methods: By introducing temporal offsets between the measurement periods of the different layers on a multilayer detector, the angular sampling rate can be increased by a factor equal to the number of layers on the detector. The increased angular samplingmore » rate reduces the risk of producing aliasing artifacts in the image. A simulation of a detector with two layers is performed to prove the concept. Results: The simulation study shows that aliasing artifacts from insufficient angular sampling are reduced by the proposed method. Specifically, when imaging a single point blurred by a 2D Gaussian kernel, the method is shown to reduce the strength of the aliasing artifacts by approximately an order of magnitude. Conclusions: The presented oversampling method is easy to implement in today’s multilayer detectors and has the potential to reduce aliasing artifacts in the reconstructed images.« less
Methods for imaging Shewanella oneidensis MR-1 nanofilaments.
Ray, R; Lizewski, S; Fitzgerald, L A; Little, B; Ringeisen, B R
2010-08-01
Nanofilament production by Shewanella oneidensis MR-1 was evaluated as a function of lifestyle (planktonic vs. sessile) under aerobic and anaerobic conditions using different sample preparation techniques prior to imaging with scanning electron microscopy. Nanofilaments could be imaged on MR-1 cells grown in biofilms or planktonically under both aerobic and anaerobic batch culture conditions after fixation, critical point drying and coating with a conductive metal. Critical point drying was a requirement for imaging nanofilaments attached to planktonically grown MR-1 cells, but not for cells grown in a biofilm. Techniques described in this paper cannot be used to differentiate nanowires from pili or flagella.
Ghadiri, H; Ay, M R; Shiran, M B; Soltanian-Zadeh, H
2013-01-01
Objective: Recently introduced energy-sensitive X-ray CT makes it feasible to discriminate different nanoparticulate contrast materials. The purpose of this work is to present a K-edge ratio method for differentiating multiple simultaneous contrast agents using spectral CT. Methods: The ratio of two images relevant to energy bins straddling the K-edge of the materials is calculated using an analytic CT simulator. In the resulting parametric map, the selected contrast agent regions can be identified using a thresholding algorithm. The K-edge ratio algorithm is applied to spectral images of simulated phantoms to identify and differentiate up to four simultaneous and targeted CT contrast agents. Results: We show that different combinations of simultaneous CT contrast agents can be identified by the proposed K-edge ratio method when energy-sensitive CT is used. In the K-edge parametric maps, the pixel values for biological tissues and contrast agents reach a maximum of 0.95, whereas for the selected contrast agents, the pixel values are larger than 1.10. The number of contrast agents that can be discriminated is limited owing to photon starvation. For reliable material discrimination, minimum photon counts corresponding to 140 kVp, 100 mAs and 5-mm slice thickness must be used. Conclusion: The proposed K-edge ratio method is a straightforward and fast method for identification and discrimination of multiple simultaneous CT contrast agents. Advances in knowledge: A new spectral CT-based algorithm is proposed which provides a new concept of molecular CT imaging by non-iteratively identifying multiple contrast agents when they are simultaneously targeting different organs. PMID:23934964
A novel scatter separation method for multi-energy x-ray imaging
NASA Astrophysics Data System (ADS)
Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.
2016-06-01
X-ray imaging coupled with recently emerged energy-resolved photon counting detectors provides the ability to differentiate material components and to estimate their respective thicknesses. However, such techniques require highly accurate images. The presence of scattered radiation leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in computed tomography (CT). The aim of the present study was to introduce and evaluate a partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. This evaluation was carried out with the aid of numerical simulations provided by an internal simulation tool, Sindbad-SFFD. A simplified numerical thorax phantom placed in a CT geometry was used. The attenuation images and CT slices obtained from corrected data showed a remarkable increase in local contrast and internal structure detectability when compared to uncorrected images. Scatter induced bias was also substantially decreased. In terms of quantitative performance, the developed approach proved to be quite accurate as well. The average normalized root-mean-square error between the uncorrected projections and the reference primary projections was around 23%. The application of PASSSA reduced this error to around 5%. Finally, in terms of voxel value accuracy, an increase by a factor >10 was observed for most inspected volumes-of-interest, when comparing the corrected and uncorrected total volumes.
PHOTOACOUSTIC NON-DESTRUCTIVE EVALUATION AND IMAGING OF CARIES IN DENTAL SAMPLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T.; Dewhurst, R. J.
Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 deg. C within live human teeth will causemore » pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.« less
Image gathering and processing - Information and fidelity
NASA Technical Reports Server (NTRS)
Huck, F. O.; Fales, C. L.; Halyo, N.; Samms, R. W.; Stacy, K.
1985-01-01
In this paper we formulate and use information and fidelity criteria to assess image gathering and processing, combining optical design with image-forming and edge-detection algorithms. The optical design of the image-gathering system revolves around the relationship among sampling passband, spatial response, and signal-to-noise ratio (SNR). Our formulations of information, fidelity, and optimal (Wiener) restoration account for the insufficient sampling (i.e., aliasing) common in image gathering as well as for the blurring and noise that conventional formulations account for. Performance analyses and simulations for ordinary optical-design constraints and random scences indicate that (1) different image-forming algorithms prefer different optical designs; (2) informationally optimized designs maximize the robustness of optimal image restorations and lead to the highest-spatial-frequency channel (relative to the sampling passband) for which edge detection is reliable (if the SNR is sufficiently high); and (3) combining the informationally optimized design with a 3 by 3 lateral-inhibitory image-plane-processing algorithm leads to a spatial-response shape that approximates the optimal edge-detection response of (Marr's model of) human vision and thus reduces the data preprocessing and transmission required for machine vision.
NASA Astrophysics Data System (ADS)
Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh M.; Meir, Rinat; Zalevsky, Zeev
2017-02-01
Optical sectioning microscopy can provide highly detailed three dimensional (3D) images of biological samples. However, it requires acquisition of many images per volume, and is therefore time consuming, and may not be suitable for live cell 3D imaging. We propose the use of the modified Gerchberg-Saxton phase retrieval algorithm to enable full 3D imaging of gold nanoparticles tagged sample using only two images. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. The proposed concept is then further enhanced also for tracking of single fluorescent particles within a three dimensional (3D) cellular environment based on image processing algorithms that can significantly increases localization accuracy of the 3D point spread function in respect to regular Gaussian fitting. All proposed concepts are validated both on simulated data as well as experimentally.
Flow and transport in digitized images of Berea sandstone: ergodicity, stationarity and upscaling
NASA Astrophysics Data System (ADS)
Puyguiraud, A.; Dentz, M.; Gouze, P.
2017-12-01
We perform Stokes flow simulations on digitized images of a Berea sandstone sample obtained through micro-tomography imaging and segmentation processes. We obtain accurate information on the transport using a streamline reconstruction algorithm which uses the velocity field obtained from the flow simulation as input data. This technique is based on the method proposed by Pollock (Groundwater, 1988) but employs a quadratic interpolation near the rock mesh cells of the domain similarly to Mostaghimi et al. (SPE, 2012). This allows an accurate resolution of the velocity field near the solid interface which plays an important role on the transport characteristics, such as the probability density of first arrival times and the growth of the mean squared displacement, among others, which exhibit non-Fickian behavior. We analyze Lagrangian and Eulerian velocity statistics and their relation, and then focus on the ergodicity and the stationarity properties of the transport.We analyze the temporal evolution of Lagrangian velocity statistics for different injection conditions, and findd quick convergence to a limiting velocity distribution, indicating the transport to be near-stationary. The equivalence between velocity samplings within and across streamlines, as well as the independency of the statistics on the number of sampled streamlines, lead as to conclude that the transport may be modeled as ergodic.These characteristics then allow us to upscale the 3-dimensional simulations using a 1-dimensional Continuous Time Random Walk model. This model, parametrized by the velocity results and the characteristic correlation length obtained from the above mentioned simulations, is able to efficiently reproduce the results and to predict larger scale behaviors.
Ghasemi Damavandi, Hamidreza; Sen Gupta, Ananya; Nelson, Robert K; Reddy, Christopher M
2016-01-01
Comprehensive two-dimensional gas chromatography [Formula: see text] provides high-resolution separations across hundreds of compounds in a complex mixture, thus unlocking unprecedented information for intricate quantitative interpretation. We exploit this compound diversity across the [Formula: see text] topography to provide quantitative compound-cognizant interpretation beyond target compound analysis with petroleum forensics as a practical application. We focus on the [Formula: see text] topography of biomarker hydrocarbons, hopanes and steranes, as they are generally recalcitrant to weathering. We introduce peak topography maps (PTM) and topography partitioning techniques that consider a notably broader and more diverse range of target and non-target biomarker compounds compared to traditional approaches that consider approximately 20 biomarker ratios. Specifically, we consider a range of 33-154 target and non-target biomarkers with highest-to-lowest peak ratio within an injection ranging from 4.86 to 19.6 (precise numbers depend on biomarker diversity of individual injections). We also provide a robust quantitative measure for directly determining "match" between samples, without necessitating training data sets. We validate our methods across 34 [Formula: see text] injections from a diverse portfolio of petroleum sources, and provide quantitative comparison of performance against established statistical methods such as principal components analysis (PCA). Our data set includes a wide range of samples collected following the 2010 Deepwater Horizon disaster that released approximately 160 million gallons of crude oil from the Macondo well (MW). Samples that were clearly collected following this disaster exhibit statistically significant match [Formula: see text] using PTM-based interpretation against other closely related sources. PTM-based interpretation also provides higher differentiation between closely correlated but distinct sources than obtained using PCA-based statistical comparisons. In addition to results based on this experimental field data, we also provide extentive perturbation analysis of the PTM method over numerical simulations that introduce random variability of peak locations over the [Formula: see text] biomarker ROI image of the MW pre-spill sample (sample [Formula: see text] in Additional file 4: Table S1). We compare the robustness of the cross-PTM score against peak location variability in both dimensions and compare the results against PCA analysis over the same set of simulated images. Detailed description of the simulation experiment and discussion of results are provided in Additional file 1: Section S8. We provide a peak-cognizant informational framework for quantitative interpretation of [Formula: see text] topography. Proposed topographic analysis enables [Formula: see text] forensic interpretation across target petroleum biomarkers, while including the nuances of lesser-known non-target biomarkers clustered around the target peaks. This allows potential discovery of hitherto unknown connections between target and non-target biomarkers.
Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials
NASA Astrophysics Data System (ADS)
Lee, Alex J.; Sakai, Yuki; Chelikowsky, James R.
2017-02-01
Atomic force microscopy (AFM) measurements have reported contrast inversions for systems such as Cu2N and graphene that can hamper image interpretation and characterization. Here, we apply a simulation method based on ab initio real-space pseudopotentials to gain an understanding of the tip-sample interactions that influence the inversion. We find that chemically reactive tips induce an attractive binding force that results in the contrast inversion. We find that the inversion is tip height dependent and not observed when using less reactive CO-functionalized tips.
Park, Hye-Sook; Dewald, E D; Glenzer, S; Kalantar, D H; Kilkenny, J D; MacGowan, B J; Maddox, B R; Milovich, J L; Prasad, R R; Remington, B A; Robey, H F; Thomas, C A
2010-10-01
Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes with four independent filter combinations to image entire Hohlraums with a magnification of 0.87× during the Hohlraum energetics campaign on NIF. Comparing our results with Hohlraum simulations indicates that the characteristic 10-40 keV hot electrons are mainly generated from backscattered laser-plasma interactions rather than from Hohlraum hydrodynamics.
NASA Astrophysics Data System (ADS)
Zabolotna, Natalia I.; Radchenko, Kostiantyn O.; Karas, Oleksandr V.
2018-01-01
A fibroadenoma diagnosing of breast using statistical analysis (determination and analysis of statistical moments of the 1st-4th order) of the obtained polarization images of Jones matrix imaginary elements of the optically thin (attenuation coefficient τ <= 0,1 ) blood plasma films with further intellectual differentiation based on the method of "fuzzy" logic and discriminant analysis were proposed. The accuracy of the intellectual differentiation of blood plasma samples to the "norm" and "fibroadenoma" of breast was 82.7% by the method of linear discriminant analysis, and by the "fuzzy" logic method is 95.3%. The obtained results allow to confirm the potentially high level of reliability of the method of differentiation by "fuzzy" analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, L; Fried, D; Fave, X
Purpose: To investigate how different image preprocessing techniques, their parameters, and the different boundary handling techniques can augment the information of features and improve feature’s differentiating capability. Methods: Twenty-seven NSCLC patients with a solid tumor volume and no visually obvious necrotic regions in the simulation CT images were identified. Fourteen of these patients had a necrotic region visible in their pre-treatment PET images (necrosis group), and thirteen had no visible necrotic region in the pre-treatment PET images (non-necrosis group). We investigated how image preprocessing can impact the ability of radiomics image features extracted from the CT to differentiate between twomore » groups. It is expected the histogram in the necrosis group is more negatively skewed, and the uniformity from the necrosis group is less. Therefore, we analyzed two first order features, skewness and uniformity, on the image inside the GTV in the intensity range [−20HU, 180HU] under the combination of several image preprocessing techniques: (1) applying the isotropic Gaussian or anisotropic diffusion smoothing filter with a range of parameter(Gaussian smoothing: size=11, sigma=0:0.1:2.3; anisotropic smoothing: iteration=4, kappa=0:10:110); (2) applying the boundaryadapted Laplacian filter; and (3) applying the adaptive upper threshold for the intensity range. A 2-tailed T-test was used to evaluate the differentiating capability of CT features on pre-treatment PT necrosis. Result: Without any preprocessing, no differences in either skewness or uniformity were observed between two groups. After applying appropriate Gaussian filters (sigma>=1.3) or anisotropic filters(kappa >=60) with the adaptive upper threshold, skewness was significantly more negative in the necrosis group(p<0.05). By applying the boundary-adapted Laplacian filtering after the appropriate Gaussian filters (0.5 <=sigma<=1.1) or anisotropic filters(20<=kappa <=50), the uniformity was significantly lower in the necrosis group (p<0.05). Conclusion: Appropriate selection of image preprocessing techniques allows radiomics features to extract more useful information and thereby improve prediction models based on these features.« less
Efficient space-time sampling with pixel-wise coded exposure for high-speed imaging.
Liu, Dengyu; Gu, Jinwei; Hitomi, Yasunobu; Gupta, Mohit; Mitsunaga, Tomoo; Nayar, Shree K
2014-02-01
Cameras face a fundamental trade-off between spatial and temporal resolution. Digital still cameras can capture images with high spatial resolution, but most high-speed video cameras have relatively low spatial resolution. It is hard to overcome this trade-off without incurring a significant increase in hardware costs. In this paper, we propose techniques for sampling, representing, and reconstructing the space-time volume to overcome this trade-off. Our approach has two important distinctions compared to previous works: 1) We achieve sparse representation of videos by learning an overcomplete dictionary on video patches, and 2) we adhere to practical hardware constraints on sampling schemes imposed by architectures of current image sensors, which means that our sampling function can be implemented on CMOS image sensors with modified control units in the future. We evaluate components of our approach, sampling function and sparse representation, by comparing them to several existing approaches. We also implement a prototype imaging system with pixel-wise coded exposure control using a liquid crystal on silicon device. System characteristics such as field of view and modulation transfer function are evaluated for our imaging system. Both simulations and experiments on a wide range of scenes show that our method can effectively reconstruct a video from a single coded image while maintaining high spatial resolution.
Photothermal technique in cell microscopy studies
NASA Astrophysics Data System (ADS)
Lapotko, Dmitry; Chebot'ko, Igor; Kutchinsky, Georgy; Cherenkevitch, Sergey
1995-01-01
Photothermal (PT) method is applied for a cell imaging and quantitative studies. The techniques for cell monitoring, imaging and cell viability test are developed. The method and experimental set up for optical and PT-image acquisition and analysis is described. Dual- pulsed laser set up combined with phase contrast illumination of a sample provides visualization of temperature field or absorption structure of a sample with spatial resolution 0.5 micrometers . The experimental optics, hardware and software are designed using the modular principle, so the whole set up can be adjusted for various experiments: PT-response monitoring or photothermal spectroscopy studies. Sensitivity of PT-method provides the imaging of the structural elements of live (non-stained) white blood cells. The results of experiments with normal and subnormal blood cells (red blood cells, lymphocytes, neutrophyles and lymphoblasts) are reported. Obtained PT-images are different from optical analogs and deliver additional information about cell structure. The quantitative analysis of images was used for cell population comparative diagnostic. The viability test for red blood cell differentiation is described. During the study of neutrophyles in norma and sarcoidosis disease the differences in PT-images of cells were found.
In Situ 3D Coherent X-ray Diffraction Imaging of Shock Experiments: Possible?
NASA Astrophysics Data System (ADS)
Barber, John
2011-03-01
In traditional coherent X-ray diffraction imaging (CXDI), a 2D or quasi-2D object is illuminated by a beam of coherent X-rays to produce a diffraction pattern, which is then manipulated via a process known as iterative phase retrieval to reconstruct an image of the original 2D sample. Recently, there have been dramatic advances in methods for performing fully 3D CXDI of a sample from a single diffraction pattern [Raines et al, Nature 463 214-7 (2010)], and these methods have been used to image samples tens of microns in size using soft X-rays. In this work, I explore the theoretical possibility of applying 3D CXDI techniques to the in situ imaging of the interaction between a shock front and a polycrystal, a far more stringent problem. A delicate trade-off is required between photon energy, spot size, imaging resolution, and the dimensions of the experimental setup. In this talk, I will outline the experimental and computational requirements for performing such an experiment, and I will present images and movies from simulations of one such hypothetical experiment, including both the time-resolved X-ray diffraction patterns and the time-resolved sample imagery.
Zierler, R Eugene; Leotta, Daniel F; Sansom, Kurt; Aliseda, Alberto; Anderson, Mark D; Sheehan, Florence H
2016-07-01
Duplex ultrasound scanning with B-mode imaging and both color Doppler and Doppler spectral waveforms is relied upon for diagnosis of vascular pathology and selection of patients for further evaluation and treatment. In most duplex ultrasound applications, classification of disease severity is based primarily on alterations in blood flow velocities, particularly the peak systolic velocity (PSV) obtained from Doppler spectral waveforms. We developed a duplex ultrasound simulator for training and assessment of scanning skills. Duplex ultrasound cases were prepared from 2-dimensional (2D) images of normal and stenotic carotid arteries by reconstructing the common carotid, internal carotid, and external carotid arteries in 3 dimensions and computationally simulating blood flow velocity fields within the lumen. The simulator displays a 2D B-mode image corresponding to transducer position on a mannequin, overlaid by color coding of velocity data. A spectral waveform is generated according to examiner-defined settings (depth and size of the Doppler sample volume, beam steering, Doppler beam angle, and pulse repetition frequency or scale). The accuracy of the simulator was assessed by comparing the PSV measured from the spectral waveforms with the true PSV which was derived from the computational flow model based on the size and location of the sample volume within the artery. Three expert examiners made a total of 36 carotid artery PSV measurements based on the simulated cases. The PSV measured by the examiners deviated from true PSV by 8% ± 5% (N = 36). The deviation in PSV did not differ significantly between artery segments, normal and stenotic arteries, or examiners. To our knowledge, this is the first simulation of duplex ultrasound that can create and display real-time color Doppler images and Doppler spectral waveforms. The results demonstrate that an examiner can measure PSV from the spectral waveforms using the settings on the simulator with a mean absolute error in the velocity measurement of less than 10%. With the addition of cases with a range of pathologies, this duplex ultrasound simulator will be a useful tool for training health-care providers in vascular ultrasound applications and for assessing their skills in an objective and quantitative manner. © The Author(s) 2016.
Image texture segmentation using a neural network
NASA Astrophysics Data System (ADS)
Sayeh, Mohammed R.; Athinarayanan, Ragu; Dhali, Pushpuak
1992-09-01
In this paper we use a neural network called the Lyapunov associative memory (LYAM) system to segment image texture into different categories or clusters. The LYAM system is constructed by a set of ordinary differential equations which are simulated on a digital computer. The clustering can be achieved by using a single tuning parameter in the simplest model. Pattern classes are represented by the stable equilibrium states of the system. Design of the system is based on synthesizing two local energy functions, namely, the learning and recall energy functions. Before the implementation of the segmentation process, a Gauss-Markov random field (GMRF) model is applied to the raw image. This application suitably reduces the image data and prepares the texture information for the neural network process. We give a simple image example illustrating the capability of the technique. The GMRF-generated features are also used for a clustering, based on the Euclidean distance.
Prototype Compton imager for special nuclear material
NASA Astrophysics Data System (ADS)
Wulf, Eric A.; Phlips, Bernard F.; Kurfess, James D.; Novikova, Elena I.; Fitzgerald, Carrie
2006-05-01
Compton imagers offer a method for passive detection of nuclear material over background radiation. A prototype Compton imager has been constructed using 8 layers of silicon detectors. Each layer consists of a 2×2 array of 2 mm thick cross-strip double-sided silicon detectors with active areas of 5.7 × 5.7 cm2 and 64 strips per side. The detectors are daisy-chained together in the array so that only 256 channels of electronics are needed to read-out each layer of the instrument. This imager is a prototype for a large, high-efficiency Compton imager that will meet operational requirements of Homeland Security for detection of shielded uranium. The instrument can differentiate between different radioisotopes using the reconstructed gamma-ray energy and can also show the location of the emissions with respect to the detector location. Results from the current instrument as well as simulations of the next generation instrument are presented.
TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badal, A; Zbijewski, W; Bolch, W
Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods,more » are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10{sup 7} xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to the virtual generation of medical images and accurate estimation of radiation dose and other imaging parameters. For this, detailed computational phantoms of the patient anatomy must be utilized and implemented within the radiation transport code. Computational phantoms presently come in one of three format types, and in one of four morphometric categories. Format types include stylized (mathematical equation-based), voxel (segmented CT/MR images), and hybrid (NURBS and polygon mesh surfaces). Morphometric categories include reference (small library of phantoms by age at 50th height/weight percentile), patient-dependent (larger library of phantoms at various combinations of height/weight percentiles), patient-sculpted (phantoms altered to match the patient's unique outer body contour), and finally, patient-specific (an exact representation of the patient with respect to both body contour and internal anatomy). The existence and availability of these phantoms represents a very important advance for the simulation of realistic medical imaging applications using Monte Carlo methods. New Monte Carlo simulation codes need to be thoroughly validated before they can be used to perform novel research. Ideally, the validation process would involve comparison of results with those of an experimental measurement, but accurate replication of experimental conditions can be very challenging. It is very common to validate new Monte Carlo simulations by replicating previously published simulation results of similar experiments. This process, however, is commonly problematic due to the lack of sufficient information in the published reports of previous work so as to be able to replicate the simulation in detail. To aid in this process, the AAPM Task Group 195 prepared a report in which six different imaging research experiments commonly performed using Monte Carlo simulations are described and their results provided. The simulation conditions of all six cases are provided in full detail, with all necessary data on material composition, source, geometry, scoring and other parameters provided. The results of these simulations when performed with the four most common publicly available Monte Carlo packages are also provided in tabular form. The Task Group 195 Report will be useful for researchers needing to validate their Monte Carlo work, and for trainees needing to learn Monte Carlo simulation methods. In this symposium we will review the recent advancements in highperformance computing hardware enabling the reduction in computational resources needed for Monte Carlo simulations in medical imaging. We will review variance reduction techniques commonly applied in Monte Carlo simulations of medical imaging systems and present implementation strategies for efficient combination of these techniques with GPU acceleration. Trade-offs involved in Monte Carlo acceleration by means of denoising and “sparse sampling” will be discussed. A method for rapid scatter correction in cone-beam CT (<5 min/scan) will be presented as an illustration of the simulation speeds achievable with optimized Monte Carlo simulations. We will also discuss the development, availability, and capability of the various combinations of computational phantoms for Monte Carlo simulation of medical imaging systems. Finally, we will review some examples of experimental validation of Monte Carlo simulations and will present the AAPM Task Group 195 Report. Learning Objectives: Describe the advances in hardware available for performing Monte Carlo simulations in high performance computing environments. Explain variance reduction, denoising and sparse sampling techniques available for reduction of computational time needed for Monte Carlo simulations of medical imaging. List and compare the computational anthropomorphic phantoms currently available for more accurate assessment of medical imaging parameters in Monte Carlo simulations. Describe experimental methods used for validation of Monte Carlo simulations in medical imaging. Describe the AAPM Task Group 195 Report and its use for validation and teaching of Monte Carlo simulations in medical imaging.« less
IUTA: a tool for effectively detecting differential isoform usage from RNA-Seq data.
Niu, Liang; Huang, Weichun; Umbach, David M; Li, Leping
2014-10-06
Most genes in mammals generate several transcript isoforms that differ in stability and translational efficiency through alternative splicing. Such alternative splicing can be tissue- and developmental stage-specific, and such specificity is sometimes associated with disease. Thus, detecting differential isoform usage for a gene between tissues or cell lines/types (differences in the fraction of total expression of a gene represented by the expression of each of its isoforms) is potentially important for cell and developmental biology. We present a new method IUTA that is designed to test each gene in the genome for differential isoform usage between two groups of samples. IUTA also estimates isoform usage for each gene in each sample as well as averaged across samples within each group. IUTA is the first method to formulate the testing problem as testing for equal means of two probability distributions under the Aitchison geometry, which is widely recognized as the most appropriate geometry for compositional data (vectors that contain the relative amount of each component comprising the whole). Evaluation using simulated data showed that IUTA was able to provide test results for many more genes than was Cuffdiff2 (version 2.2.0, released in Mar. 2014), and IUTA performed better than Cuffdiff2 for the limited number of genes that Cuffdiff2 did analyze. When applied to actual mouse RNA-Seq datasets from six tissues, IUTA identified 2,073 significant genes with clear patterns of differential isoform usage between a pair of tissues. IUTA is implemented as an R package and is available at http://www.niehs.nih.gov/research/resources/software/biostatistics/iuta/index.cfm. Both simulation and real-data results suggest that IUTA accurately detects differential isoform usage. We believe that our analysis of RNA-seq data from six mouse tissues represents the first comprehensive characterization of isoform usage in these tissues. IUTA will be a valuable resource for those who study the roles of alternative transcripts in cell development and disease.
Hydroshear Simulation Lab Test 2
Bauer, Steve
2014-08-01
This data file is for test 2. In this test a sample of granite with a pre cut (man made fracture) is confined, heated and differential stress is applied. max temperature in this this system development test is 95C. test details on the spreadsheets--note thta there are 2 spreadsheets
A Comparison of Strategies for Estimating Conditional DIF
ERIC Educational Resources Information Center
Moses, Tim; Miao, Jing; Dorans, Neil J.
2010-01-01
In this study, the accuracies of four strategies were compared for estimating conditional differential item functioning (DIF), including raw data, logistic regression, log-linear models, and kernel smoothing. Real data simulations were used to evaluate the estimation strategies across six items, DIF and No DIF situations, and four sample size…
NASA Astrophysics Data System (ADS)
Khodabakhshi, M.; Jafarpour, B.
2013-12-01
Characterization of complex geologic patterns that create preferential flow paths in certain reservoir systems requires higher-order geostatistical modeling techniques. Multipoint statistics (MPS) provides a flexible grid-based approach for simulating such complex geologic patterns from a conceptual prior model known as a training image (TI). In this approach, a stationary TI that encodes the higher-order spatial statistics of the expected geologic patterns is used to represent the shape and connectivity of the underlying lithofacies. While MPS is quite powerful for describing complex geologic facies connectivity, the nonlinear and complex relation between the flow data and facies distribution makes flow data conditioning quite challenging. We propose an adaptive technique for conditioning facies simulation from a prior TI to nonlinear flow data. Non-adaptive strategies for conditioning facies simulation to flow data can involves many forward flow model solutions that can be computationally very demanding. To improve the conditioning efficiency, we develop an adaptive sampling approach through a data feedback mechanism based on the sampling history. In this approach, after a short period of sampling burn-in time where unconditional samples are generated and passed through an acceptance/rejection test, an ensemble of accepted samples is identified and used to generate a facies probability map. This facies probability map contains the common features of the accepted samples and provides conditioning information about facies occurrence in each grid block, which is used to guide the conditional facies simulation process. As the sampling progresses, the initial probability map is updated according to the collective information about the facies distribution in the chain of accepted samples to increase the acceptance rate and efficiency of the conditioning. This conditioning process can be viewed as an optimization approach where each new sample is proposed based on the sampling history to improve the data mismatch objective function. We extend the application of this adaptive conditioning approach to the case where multiple training images are proposed to describe the geologic scenario in a given formation. We discuss the advantages and limitations of the proposed adaptive conditioning scheme and use numerical experiments from fluvial channel formations to demonstrate its applicability and performance compared to non-adaptive conditioning techniques.
Photoacoustic simulation study of chirp excitation response from different size absorbers
NASA Astrophysics Data System (ADS)
Jnawali, K.; Chinni, B.; Dogra, V.; Rao, N.
2017-03-01
Photoacoustic (PA) imaging is a hybrid imaging modality that integrates the strength of optical and ultrasound imaging. Nanosecond (ns) pulsed lasers used in current PA imaging systems are expensive, bulky and they often waste energy. We propose and evaluate, through simulations, the use of a continuous wave (CW) laser whose amplitude is linear frequency modulated (chirp) for PA imaging. The chirp signal provides signal-to-side-lobe ratio (SSR) improvement potential and full control over PA signal frequencies excited in the sample. The PA signal spectrum is a function of absorber size and the time frequencies present in the chirp. A mismatch between the input chirp spectrum and the output PA signal spectrum can affect the compressed pulse that is recovered from cross-correlating the two. We have quantitatively characterized this effect. The k-wave Matlab tool box was used to simulate PA signals in three dimensions for absorbers ranging in size from 0.1 mm to 0.6 mm, in response to laser excitation amplitude that is linearly swept from 0.5 MHz to 4 MHz. This sweep frequency range was chosen based on the spectrum analysis of a PA signal generated from ex-vivo human prostate tissue samples. In comparison, the energy wastage by a ns laser pulse was also estimated. For the chirp methodology, the compressed pulse peak amplitude, pulse width and side lobe structure parameters were extracted for different size absorbers. While the SSR increased 6 fold with absorber size, the pulse width decreased by 25%.
Paterno, Marta; Schiavina, Marcello; Aglieri, Giorgio; Ben Souissi, Jamila; Boscari, Elisa; Casagrandi, Renato; Chassanite, Aurore; Chiantore, Mariachiara; Congiu, Leonardo; Guarnieri, Giuseppe; Kruschel, Claudia; Macic, Vesna; Marino, Ilaria A M; Papetti, Chiara; Patarnello, Tomaso; Zane, Lorenzo; Melià, Paco
2017-04-01
Connectivity between populations influences both their dynamics and the genetic structuring of species. In this study, we explored connectivity patterns of a marine species with long-distance dispersal, the edible common sea urchin Paracentrotus lividus , focusing mainly on the Adriatic-Ionian basins (Central Mediterranean). We applied a multidisciplinary approach integrating population genomics, based on 1,122 single nucleotide polymorphisms (SNPs) obtained from 2b-RAD in 275 samples, with Lagrangian simulations performed with a biophysical model of larval dispersal. We detected genetic homogeneity among eight population samples collected in the focal Adriatic-Ionian area, whereas weak but significant differentiation was found with respect to two samples from the Western Mediterranean (France and Tunisia). This result was not affected by the few putative outlier loci identified in our dataset. Lagrangian simulations found a significant potential for larval exchange among the eight Adriatic-Ionian locations, supporting the hypothesis of connectivity of P. lividus populations in this area. A peculiar pattern emerged from the comparison of our results with those obtained from published P. lividus cytochrome b (cytb) sequences, the latter revealing genetic differentiation in the same geographic area despite a smaller sample size and a lower power to detect differences. The comparison with studies conducted using nuclear markers on other species with similar pelagic larval durations in the same Adriatic-Ionian locations indicates species-specific differences in genetic connectivity patterns and warns against generalizing single-species results to the entire community of rocky shore habitats.
Impact of Image Noise on Gamma Index Calculation
NASA Astrophysics Data System (ADS)
Chen, M.; Mo, X.; Parnell, D.; Olivera, G.; Galmarini, D.; Lu, W.
2014-03-01
Purpose: The Gamma Index defines an asymmetric metric between the evaluated image and the reference image. It provides a quantitative comparison that can be used to indicate sample-wised pass/fail on the agreement of the two images. The Gamma passing/failing rate has become an important clinical evaluation tool. However, the presence of noise in the evaluated and/or reference images may change the Gamma Index, hence the passing/failing rate, and further, clinical decisions. In this work, we systematically studied the impact of the image noise on the Gamma Index calculation. Methods: We used both analytic formulation and numerical calculations in our study. The numerical calculations included simulations and clinical images. Three different noise scenarios were studied in simulations: noise in reference images only, in evaluated images only, and in both. Both white and spatially correlated noises of various magnitudes were simulated. For clinical images of various noise levels, the Gamma Index of measurement against calculation, calculation against measurement, and measurement against measurement, were evaluated. Results: Numerical calculations for both the simulation and clinical data agreed with the analytic formulations, and the clinical data agreed with the simulations. For the Gamma Index of measurement against calculation, its distribution has an increased mean and an increased standard deviation as the noise increases. On the contrary, for the Gamma index of calculation against measurement, its distribution has a decreased mean and stabilized standard deviation as the noise increases. White noise has greater impact on the Gamma Index than spatially correlated noise. Conclusions: The noise has significant impact on the Gamma Index calculation and the impact is asymmetric. The Gamma Index should be reported along with the noise levels in both reference and evaluated images. Reporting of the Gamma Index with switched roles of the images as reference and evaluated images or some composite metrics would be a good practice.
Optical detection of Trypanosoma cruzi in blood samples for diagnosis purpose
NASA Astrophysics Data System (ADS)
Alanis, Elvio; Romero, Graciela; Alvarez, Liliana; Martinez, Carlos C.; Basombrio, Miguel A.
2004-10-01
An optical method for detection of Trypanosoma Cruzi (T. cruzi) parasites in blood samples of mice infected with Chagas disease is presented. The method is intended for use in human blood, for diagnosis purposes. A thin layer of blood infected by T. cruzi parasites, in small concentrations, is examined in an interferometric microscope in which the images of the vision field are taken by a CCD camera and temporarily stored in the memory of a host computer. The whole sample is scanned displacing the microscope plate by means of step motors driven by the computer. Several consecutive images of the same field are taken and digitally processed by means of image temporal differentiation in order to detect if a parasite is eventually present in the field. Each field of view is processed in the same fashion, until the full area of the sample is covered or until a parasite is detected, in which case an acoustical warning is activated and the corresponding image is displayed permitting the technician to corroborate the result visually. A discussion of the reliability of the method as well as a comparison with other well established techniques are presented.
Luma-chroma space filter design for subpixel-based monochrome image downsampling.
Fang, Lu; Au, Oscar C; Cheung, Ngai-Man; Katsaggelos, Aggelos K; Li, Houqiang; Zou, Feng
2013-10-01
In general, subpixel-based downsampling can achieve higher apparent resolution of the down-sampled images on LCD or OLED displays than pixel-based downsampling. With the frequency domain analysis of subpixel-based downsampling, we discover special characteristics of the luma-chroma color transform choice for monochrome images. With these, we model the anti-aliasing filter design for subpixel-based monochrome image downsampling as a human visual system-based optimization problem with a two-term cost function and obtain a closed-form solution. One cost term measures the luminance distortion and the other term measures the chrominance aliasing in our chosen luma-chroma space. Simulation results suggest that the proposed method can achieve sharper down-sampled gray/font images compared with conventional pixel and subpixel-based methods, without noticeable color fringing artifacts.
Three-dimensional imaging using phase retrieval with two focus planes
NASA Astrophysics Data System (ADS)
Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh; Meir, Rinat; Zalevsky, Zeev
2016-03-01
This work presents a technique for a full 3D imaging of biological samples tagged with gold-nanoparticles (GNPs) using only two images, rather than many images per volume as is currently needed for 3D optical sectioning microscopy. The proposed approach is based on the Gerchberg-Saxton (GS) phase retrieval algorithm. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. In addition, since the method requires the capturing of two images only, it can be suitable for 3D live cell imaging. The proposed concept is presented and validated both on simulated data as well as experimentally.
Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun
2014-01-01
A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046
Are patient specific meshes required for EIT head imaging?
Jehl, Markus; Aristovich, Kirill; Faulkner, Mayo; Holder, David
2016-06-01
Head imaging with electrical impedance tomography (EIT) is usually done with time-differential measurements, to reduce time-invariant modelling errors. Previous research suggested that more accurate head models improved image quality, but no thorough analysis has been done on the required accuracy. We propose a novel pipeline for creation of precise head meshes from magnetic resonance imaging and computed tomography scans, which was applied to four different heads. Voltages were simulated on all four heads for perturbations of different magnitude, haemorrhage and ischaemia, in five different positions and for three levels of instrumentation noise. Statistical analysis showed that reconstructions on the correct mesh were on average 25% better than on the other meshes. However, the stroke detection rates were not improved. We conclude that a generic head mesh is sufficient for monitoring patients for secondary strokes following head trauma.
Sklyar, Oleg; Träuble, Markus; Zhao, Chuan; Wittstock, Gunther
2006-08-17
The BEM algorithm developed earlier for steady-state experiments in the scanning electrochemical microscopy (SECM) feedback mode has been expanded to allow for the treatment of more than one independently diffusing species. This allows the treatment of substrate-generation/tip-collection SECM experiments. The simulations revealed the interrelation of sample layout, local kinetics, imaging conditions, and the quality of the obtained SECM images. Resolution in the SECM SG/TC images has been evaluated, and it depends on several factors. For most practical situations, the resolution is limited by the diffusion profiles of the sample. When a dissolved compound is converted at the sample (e.g., oxygen reduction or enzymatic reaction at the sample), the working distance should be significantly larger than in SECM feedback experiments (ca. 3 r(T) for RG = 5) in order to avoid diffusional shielding of the active regions on the sample by the UME body. The resolution ability also depends on the kinetics of the active regions. The best resolution can be expected if all the active regions cause the same flux. In one simulated example, which might mimic a possible scenario of a low-density protein array, considerable compromises in the resolving power, were noted when the flux from two neighboring spots differs by more than a factor of 2.
NASA Astrophysics Data System (ADS)
Burton, Dallas Jonathan
The field of laser-based diagnostics has been a topic of research in various fields, more specifically for applications in environmental studies, military defense technologies, and medicine, among many others. In this dissertation, a novel laser-based optical diagnostic method, differential laser-induced perturbation spectroscopy (DLIPS), has been implemented in a spectroscopy mode and expanded into an imaging mode in combination with fluorescence techniques. The DLIPS method takes advantage of deep ultraviolet (UV) laser perturbation at sub-ablative energy fluences to photochemically cleave bonds and alter fluorescence signal response before and after perturbation. The resulting difference spectrum or differential image adds more information about the target specimen, and can be used in combination with traditional fluorescence techniques for detection of certain materials, characterization of many materials and biological specimen, and diagnosis of various human skin conditions. The differential aspect allows for mitigation of patient or sample variation, and has the potential to develop into a powerful, noninvasive optical sensing tool. The studies in this dissertation encompass efforts to continue the fundamental research on DLIPS including expansion of the method to an imaging mode. Five primary studies have been carried out and presented. These include the use of DLIPS in a spectroscopy mode for analysis of nitrogen-based explosives on various substrates, classification of Caribbean fruit flies versus Caribbean fruit flies that have been irradiated with gamma rays, and diagnosis of human skin cancer lesions. The nitrogen-based explosives and Caribbean fruit flies have been analyzed with the DLIPS scheme using the imaging modality, providing complementary information to the spectroscopic scheme. In each study, a comparison between absolute fluorescence signals and DLIPS responses showed that DLIPS statistically outperformed traditional fluorescence techniques with regards to regression error and classification.
Postek, Michael T; Vladár, András E; Lowney, Jeremiah R; Keery, William J
2002-01-01
Traditional Monte Carlo modeling of the electron beam-specimen interactions in a scanning electron microscope (SEM) produces information about electron beam penetration and output signal generation at either a single beam-landing location, or multiple landing positions. If the multiple landings lie on a line, the results can be graphed in a line scan-like format. Monte Carlo results formatted as line scans have proven useful in providing one-dimensional information about the sample (e.g., linewidth). When used this way, this process is called forward line scan modeling. In the present work, the concept of image simulation (or the first step in the inverse modeling of images) is introduced where the forward-modeled line scan data are carried one step further to construct theoretical two-dimensional (2-D) micrographs (i.e., theoretical SEM images) for comparison with similar experimentally obtained micrographs. This provides an ability to mimic and closely match theory and experiment using SEM images. Calculated and/or measured libraries of simulated images can be developed with this technique. The library concept will prove to be very useful in the determination of dimensional and other properties of simple structures, such as integrated circuit parts, where the shape of the features is preferably measured from a single top-down image or a line scan. This paper presents one approach to the generation of 2-D simulated images and presents some suggestions as to their application to critical dimension metrology.
Comparison of two laboratory-based systems for evaluation of halos in intraocular lenses
Alexander, Elsinore; Wei, Xin; Lee, Shinwook
2018-01-01
Purpose Multifocal intraocular lenses (IOLs) can be associated with unwanted visual phenomena, including halos. Predicting potential for halos is desirable when designing new multifocal IOLs. Halo images from 6 IOL models were compared using the Optikos modulation transfer function bench system and a new high dynamic range (HDR) system. Materials and methods One monofocal, 1 extended depth of focus, and 4 multifocal IOLs were evaluated. An off-the-shelf optical bench was used to simulate a distant (>50 m) car headlight and record images. A custom HDR system was constructed using an imaging photometer to simulate headlight images and to measure quantitative halo luminance data. A metric was developed to characterize halo luminance properties. Clinical relevance was investigated by correlating halo measurements to visual outcomes questionnaire data. Results The Optikos system produced halo images useful for visual comparisons; however, measurements were relative and not quantitative. The HDR halo system provided objective and quantitative measurements used to create a metric from the area under the curve (AUC) of the logarithmic normalized halo profile. This proposed metric differentiated between IOL models, and linear regression analysis found strong correlations between AUC and subjective clinical ratings of halos. Conclusion The HDR system produced quantitative, preclinical metrics that correlated to patients’ subjective perception of halos. PMID:29503526
Mueller matrix imaging and analysis of cancerous cells
NASA Astrophysics Data System (ADS)
Fernández, A.; Fernández-Luna, J. L.; Moreno, F.; Saiz, J. M.
2017-08-01
Imaging polarimetry is a focus of increasing interest in diagnostic medicine because of its non-invasive nature and its potential for recognizing abnormal tissues. However, handling polarimetric images is not an easy task, and different intermediate steps have been proposed to introduce physical parameters that may be helpful to interpret results. In this work, transmission Mueller matrices (MM) corresponding to cancer cell samples have been experimentally obtained, and three different transformations have been applied: MM-Polar Decomposition, MM-Transformation and MM-Differential Decomposition. Special attention has been paid to diattenuation as a sensitive parameter to identify apoptosis processes induced by cisplatin and etoposide.
Reduced aliasing artifacts using shaking projection k-space sampling trajectory
NASA Astrophysics Data System (ADS)
Zhu, Yan-Chun; Du, Jiang; Yang, Wen-Chao; Duan, Chai-Jie; Wang, Hao-Yu; Gao, Song; Bao, Shang-Lian
2014-03-01
Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T2 imaging. They are less sensitive to flow and motion artifacts, and support fast imaging with short echo times. However, aliasing and streaking artifacts are two main sources which degrade radial imaging quality. For a given fixed number of k-space projections, data distributions along radial and angular directions will influence the level of aliasing and streaking artifacts. Conventional radial k-space sampling trajectory introduces an aliasing artifact at the first principal ring of point spread function (PSF). In this paper, a shaking projection (SP) k-space sampling trajectory was proposed to reduce aliasing artifacts in MR images. SP sampling trajectory shifts the projection alternately along the k-space center, which separates k-space data in the azimuthal direction. Simulations based on conventional and SP sampling trajectories were compared with the same number projections. A significant reduction of aliasing artifacts was observed using the SP sampling trajectory. These two trajectories were also compared with different sampling frequencies. A SP trajectory has the same aliasing character when using half sampling frequency (or half data) for reconstruction. SNR comparisons with different white noise levels show that these two trajectories have the same SNR character. In conclusion, the SP trajectory can reduce the aliasing artifact without decreasing SNR and also provide a way for undersampling reconstruction. Furthermore, this method can be applied to three-dimensional (3D) hybrid or spherical radial k-space sampling for a more efficient reduction of aliasing artifacts.
Gibb-Snyder, Emily; Gullett, Brian; Ryan, Shawn; Oudejans, Lukas; Touati, Abderrahmane
2006-08-01
Size-selective sampling of Bacillus anthracis surrogate spores from realistic, common aerosol mixtures was developed for analysis by laser-induced breakdown spectroscopy (LIBS). A two-stage impactor was found to be the preferential sampling technique for LIBS analysis because it was able to concentrate the spores in the mixtures while decreasing the collection of potentially interfering aerosols. Three common spore/aerosol scenarios were evaluated, diesel truck exhaust (to simulate a truck running outside of a building air intake), urban outdoor aerosol (to simulate common building air), and finally a protein aerosol (to simulate either an agent mixture (ricin/anthrax) or a contaminated anthrax sample). Two statistical methods, linear correlation and principal component analysis, were assessed for differentiation of surrogate spore spectra from other common aerosols. Criteria for determining percentages of false positives and false negatives via correlation analysis were evaluated. A single laser shot analysis of approximately 4 percent of the spores in a mixture of 0.75 m(3) urban outdoor air doped with approximately 1.1 x 10(5) spores resulted in a 0.04 proportion of false negatives. For that same sample volume of urban air without spores, the proportion of false positives was 0.08.
Search for life on Mars in surface samples: Lessons from the 1999 Marsokhod rover field experiment
Newsom, Horton E.; Bishop, J.L.; Cockell, C.; Roush, T.L.; Johnson, J. R.
2001-01-01
The Marsokhod 1999 field experiment in the Mojave Desert included a simulation of a rover-based sample selection mission. As part of this mission, a test was made of strategies and analytical techniques for identifying past or present life in environments expected to be present on Mars. A combination of visual clues from high-resolution images and the detection of an important biomolecule (chlorophyll) with visible/near-infrared (NIR) spectroscopy led to the successful identification of a rock with evidence of cryptoendolithic organisms. The sample was identified in high-resolution images (3 times the resolution of the Imager for Mars Pathfinder camera) on the basis of a green tinge and textural information suggesting the presence of a thin, partially missing exfoliating layer revealing the organisms. The presence of chlorophyll bands in similar samples was observed in visible/NIR spectra of samples in the field and later confirmed in the laboratory using the same spectrometer. Raman spectroscopy in the laboratory, simulating a remote measurement technique, also detected evidence of carotenoids in samples from the same area. Laboratory analysis confirmed that the subsurface layer of the rock is inhabited by a community of coccoid Chroococcidioposis cyanobacteria. The identification of minerals in the field, including carbonates and serpentine, that are associated with aqueous processes was also demonstrated using the visible/NIR spectrometer. Other lessons learned that are applicable to future rover missions include the benefits of web-based programs for target selection and for daily mission planning and the need for involvement of the science team in optimizing image compression schemes based on the retention of visual signature characteristics. Copyright 2000 by the American Geophysical Union.
Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging.
Mei, Xin; Chen, Yin-Sheng; Chen, Fu-Rong; Xi, Shao-Yan; Chen, Zhong-Ping
2017-08-01
Glioblastoma cell-initiated vascularization is an alternative angiogenesis called vasculogenic mimicry. However, current knowledge on the mechanism of de novo vessel formation from glioblastoma stem cells (GSCs) is limited. Sixty-four glioblastoma samples from patients and 10 fluorescent glioma xenograft samples were examined by immunofluorescence staining for endothelial marker (CD34 and CD31) and glial cell marker (glial fibrillary acidic protein [GFAP]) expression. GSCs were then isolated from human glioblastoma tissue and CD133+/Sox2+ red fluorescent protein-containing (RFP)-GSC-1 cells were established. The ability of these cells to form vascular structures was examined by live-cell imaging of 3D cultures. CD34-GFAP or CD31-GFAP coexpressing glioblastoma-derived endothelial cells (GDEC) were found in 30 of 64 (46.9%) of clinical glioblastoma samples. In those 30 samples, GDEC were found to form vessel structures in 21 (70%) samples. Among 21 samples with GDEC vessels, the CD34+ GDEC vessels and CD31+ GDEC vessels accounted for about 14.16% and 18.08% of total vessels, respectively. In the xenograft samples, CD34+ GDEC were found in 7 out of 10 mice, and 4 out of 7 mice had CD34+ GDEC vessels. CD31+ GDEC were also found in 7 mice, and 4 mice had CD31+ GDEC vessels (10 mice in total). Through live-cell imaging, we observed gradual CD34 expression when cultured with vascular endothelial growth factor in some glioma cells, and a dynamic increase in endothelial marker expression in RFP-GSC-1 in vitro was recorded. Cells expressed CD34 (9.46%) after 6 hours in culture. The results demonstrated that GSCs may differentiate into endothelial cells and promote angiogenesis in glioblastomas. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Fourier Plane Image Combination by Feathering
NASA Astrophysics Data System (ADS)
Cotton, W. D.
2017-09-01
Astronomical objects frequently exhibit structure over a wide range of scales whereas many telescopes, especially interferometer arrays, only sample a limited range of spatial scales. To properly image these objects, images from a set of instruments covering the range of scales may be needed. These images then must be combined in a manner to recover all spatial scales. This paper describes the feathering technique for image combination in the Fourier transform plane. Implementations in several packages are discussed and example combinations of single dish and interferometric observations of both simulated and celestial radio emission are given.
NASA Technical Reports Server (NTRS)
Jeffries, Martin; Morris, Kim; Liston, Glen
1996-01-01
Images taken by the ERS-1 synthetic aperture radar (SAR) were used to identify and to differentiate between the lakes that freeze completely to the bottom and those that do not, on the North Slope, in northwestern Alaska. The ice thickness at the time each lake froze completely is determined with numerical ice growth model that gives a maximum simulated thickness of 2.2 m. A method combining the ERS-1 SAR images and numerical ice growth model was used to determine the ice growth and the water availability in these regions.
Babusa, Bernadett; Czeglédi, Edit; Túry, Ferenc; Mayville, Stephen B; Urbán, Róbert
2015-01-01
Muscle dysmorphia (MD) is a body image disturbance characterized by a pathological preoccupation with muscularity. The study aimed to differentiate the levels of risk for MD among weightlifters and to define a tentative cut-off score for the Muscle Appearance Satisfaction Scale (MASS) for the identification of high risk MD cases. Hungarian male weightlifters (n=304) completed the MASS, the Exercise Addiction Inventory, and specific exercise and body image related questions. For the differentiation of MD, factor mixture modeling was performed, resulting in three independent groups: low-, moderate-, and high risk MD groups. The estimated prevalence of high risk MD in this sample of weightlifters was 15.1%. To determine a cut-off score for the MASS, sensitivity and specificity analyses were performed and a cut-off point of 63 was suggested. The proposed cut-off score for the MASS can be useful for the early detection of high risk MD. Copyright © 2014 Elsevier Ltd. All rights reserved.
Differentiation of arterioles from venules in mouse histology images using machine learning
NASA Astrophysics Data System (ADS)
Elkerton, J. S.; Xu, Yiwen; Pickering, J. G.; Ward, Aaron D.
2016-03-01
Analysis and morphological comparison of arteriolar and venular networks are essential to our understanding of multiple diseases affecting every organ system. We have developed and evaluated the first fully automatic software system for differentiation of arterioles from venules on high-resolution digital histology images of the mouse hind limb immunostained for smooth muscle α-actin. Classifiers trained on texture and morphologic features by supervised machine learning provided excellent classification accuracy for differentiation of arterioles and venules, achieving an area under the receiver operating characteristic curve of 0.90 and balanced false-positive and false-negative rates. Feature selection was consistent across cross-validation iterations, and a small set of three features was required to achieve the reported performance, suggesting potential generalizability of the system. This system eliminates the need for laborious manual classification of the hundreds of microvessels occurring in a typical sample, and paves the way for high-throughput analysis the arteriolar and venular networks in the mouse.
A novel 3D Cartesian random sampling strategy for Compressive Sensing Magnetic Resonance Imaging.
Valvano, Giuseppe; Martini, Nicola; Santarelli, Maria Filomena; Chiappino, Dante; Landini, Luigi
2015-01-01
In this work we propose a novel acquisition strategy for accelerated 3D Compressive Sensing Magnetic Resonance Imaging (CS-MRI). This strategy is based on a 3D cartesian sampling with random switching of the frequency encoding direction with other K-space directions. Two 3D sampling strategies are presented. In the first strategy, the frequency encoding direction is randomly switched with one of the two phase encoding directions. In the second strategy, the frequency encoding direction is randomly chosen between all the directions of the K-Space. These strategies can lower the coherence of the acquisition, in order to produce reduced aliasing artifacts and to achieve a better image quality after Compressive Sensing (CS) reconstruction. Furthermore, the proposed strategies can reduce the typical smoothing of CS due to the limited sampling of high frequency locations. We demonstrated by means of simulations that the proposed acquisition strategies outperformed the standard Compressive Sensing acquisition. This results in a better quality of the reconstructed images and in a greater achievable acceleration.
Erus, Guray; Zacharaki, Evangelia I; Davatzikos, Christos
2014-04-01
This paper presents a method for capturing statistical variation of normal imaging phenotypes, with emphasis on brain structure. The method aims to estimate the statistical variation of a normative set of images from healthy individuals, and identify abnormalities as deviations from normality. A direct estimation of the statistical variation of the entire volumetric image is challenged by the high-dimensionality of images relative to smaller sample sizes. To overcome this limitation, we iteratively sample a large number of lower dimensional subspaces that capture image characteristics ranging from fine and localized to coarser and more global. Within each subspace, a "target-specific" feature selection strategy is applied to further reduce the dimensionality, by considering only imaging characteristics present in a test subject's images. Marginal probability density functions of selected features are estimated through PCA models, in conjunction with an "estimability" criterion that limits the dimensionality of estimated probability densities according to available sample size and underlying anatomy variation. A test sample is iteratively projected to the subspaces of these marginals as determined by PCA models, and its trajectory delineates potential abnormalities. The method is applied to segmentation of various brain lesion types, and to simulated data on which superiority of the iterative method over straight PCA is demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.
Erus, Guray; Zacharaki, Evangelia I.; Davatzikos, Christos
2014-01-01
This paper presents a method for capturing statistical variation of normal imaging phenotypes, with emphasis on brain structure. The method aims to estimate the statistical variation of a normative set of images from healthy individuals, and identify abnormalities as deviations from normality. A direct estimation of the statistical variation of the entire volumetric image is challenged by the high-dimensionality of images relative to smaller sample sizes. To overcome this limitation, we iteratively sample a large number of lower dimensional subspaces that capture image characteristics ranging from fine and localized to coarser and more global. Within each subspace, a “target-specific” feature selection strategy is applied to further reduce the dimensionality, by considering only imaging characteristics present in a test subject’s images. Marginal probability density functions of selected features are estimated through PCA models, in conjunction with an “estimability” criterion that limits the dimensionality of estimated probability densities according to available sample size and underlying anatomy variation. A test sample is iteratively projected to the subspaces of these marginals as determined by PCA models, and its trajectory delineates potential abnormalities. The method is applied to segmentation of various brain lesion types, and to simulated data on which superiority of the iterative method over straight PCA is demonstrated. PMID:24607564
ImagingReso: A Tool for Neutron Resonance Imaging
Zhang, Yuxuan; Bilheux, Jean -Christophe
2017-11-01
ImagingReso is an open-source Python library that simulates the neutron resonance signal for neutron imaging measurements. By defining the sample information such as density, thickness in the neutron path, and isotopic ratios of the elemental composition of the material, this package plots the expected resonance peaks for a selected neutron energy range. Various sample types such as layers of single elements (Ag, Co, etc. in solid form), chemical compounds (UO 3, Gd 2O 3, etc.), or even multiple layers of both types can be plotted with this package. As a result, major plotting features include display of the transmission/attenuation inmore » wavelength, energy, and time scale, and show/hide elemental and isotopic contributions in the total resonance signal.« less
Radar Image Simulation: Validation of the Point Scattering Method. Volume 2
1977-09-01
the Engineer Topographic Labor - atory (ETL), Fort Belvoir, Virginia. This Radar Simulation Study was performed to validate the point tcattering radar...e.n For radar, the number of Independent samples in a given re.-olution cell is given by 5 ,: N L 2w (16) L Acoso where: 0 Radar incidence angle; w
Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering
Mars, Kamel; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro
2017-01-01
Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system. PMID:29120358
Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering.
Mars, Kamel; Lioe, De Xing; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru
2017-11-09
Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system.
Performance Simulations for a Spaceborne Methane Lidar Mission
NASA Technical Reports Server (NTRS)
Kiemle, C.; Kawa, Stephan Randolph; Quatrevalet, Mathieu; Browell, Edward V.
2014-01-01
Future spaceborne lidar measurements of key anthropogenic greenhouse gases are expected to close current observational gaps particularly over remote, polar, and aerosol-contaminated regions, where actual in situ and passive remote sensing observation techniques have difficulties. For methane, a "Methane Remote Lidar Mission" was proposed by Deutsches Zentrum fuer Luft- und Raumfahrt and Centre National d'Etudes Spatiales in the frame of a German-French climate monitoring initiative. Simulations assess the performance of this mission with the help of Moderate Resolution Imaging Spectroradiometer and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations of the earth's surface albedo and atmospheric optical depth. These are key environmental parameters for integrated path differential absorption lidar which uses the surface backscatter to measure the total atmospheric methane column. Results showthat a lidar with an average optical power of 0.45W at 1.6 µm wavelength and a telescope diameter of 0.55 m, installed on a low Earth orbit platform(506 km), will measure methane columns at precisions of 1.2%, 1.7%, and 2.1% over land, water, and snow or ice surfaces, respectively, for monthly aggregated measurement samples within areas of 50 × 50 km2. Globally, the mean precision for the simulated year 2007 is 1.6%, with a standard deviation of 0.7%. At high latitudes, a lower reflectance due to snow and ice is compensated by denser measurements, owing to the orbital pattern. Over key methane source regions such as densely populated areas, boreal and tropical wetlands, or permafrost, our simulations show that the measurement precision will be between 1 and 2%.
Dissolution-induced preferential flow in a limestone fracture.
Liu, Jishan; Polak, Amir; Elsworth, Derek; Grader, Avrami
2005-06-01
Flow in a rock fracture is surprisingly sensitive to the evolution of flow paths that develop as a result of dissolution. Net dissolution may either increase or decrease permeability uniformly within the fracture, or may form a preferential flow path through which most of the injected fluid flows, depending on the prevailing ambient mechanical and chemical conditions. A flow-through test was completed on an artificial fracture in limestone at room temperature under ambient confining stress of 3.5 MPa. The sample was sequentially circulated by water of two different compositions through the 1500 h duration of the experiment; the first 935 h by tap groundwater, followed by 555 h of distilled water. Measurements of differential pressures between the inlet and the outlet, fluid and dissolved mass fluxes, and concurrent X-ray CT imaging and sectioning were used to characterize the evolution of flow paths within the limestone fracture. During the initial circulation of groundwater, the differential pressure increased almost threefold, and was interpreted as a net reduction in permeability as the contacting asperities across the fracture are removed, and the fracture closes. With the circulation of distilled water, permeability initially reduces threefold, and ultimately increases by two orders of magnitude. This spontaneous switch from net decrease in permeability, to net increase occurred with no change in flow rate or applied effective stress, and is attributed to the evolving localization of flow path as evidenced by CT images. Based on the X-ray CT characterizations, a flow path-dependent flow model was developed to simulate the evolution of flow paths within the fracture and its influence on the overall flow behaviors of the injected fluid in the fracture.
Fast and accurate Monte Carlo sampling of first-passage times from Wiener diffusion models.
Drugowitsch, Jan
2016-02-11
We present a new, fast approach for drawing boundary crossing samples from Wiener diffusion models. Diffusion models are widely applied to model choices and reaction times in two-choice decisions. Samples from these models can be used to simulate the choices and reaction times they predict. These samples, in turn, can be utilized to adjust the models' parameters to match observed behavior from humans and other animals. Usually, such samples are drawn by simulating a stochastic differential equation in discrete time steps, which is slow and leads to biases in the reaction time estimates. Our method, instead, facilitates known expressions for first-passage time densities, which results in unbiased, exact samples and a hundred to thousand-fold speed increase in typical situations. In its most basic form it is restricted to diffusion models with symmetric boundaries and non-leaky accumulation, but our approach can be extended to also handle asymmetric boundaries or to approximate leaky accumulation.
Performance Review of Harmony Search, Differential Evolution and Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Mohan Pandey, Hari
2017-08-01
Metaheuristic algorithms are effective in the design of an intelligent system. These algorithms are widely applied to solve complex optimization problems, including image processing, big data analytics, language processing, pattern recognition and others. This paper presents a performance comparison of three meta-heuristic algorithms, namely Harmony Search, Differential Evolution, and Particle Swarm Optimization. These algorithms are originated altogether from different fields of meta-heuristics yet share a common objective. The standard benchmark functions are used for the simulation. Statistical tests are conducted to derive a conclusion on the performance. The key motivation to conduct this research is to categorize the computational capabilities, which might be useful to the researchers.
Static and dynamic light scattering by red blood cells: A numerical study.
Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard; Fedosov, Dmitry A
2017-01-01
Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods-multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring.
Static and dynamic light scattering by red blood cells: A numerical study
Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard
2017-01-01
Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods—multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring. PMID:28472125
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Y; Rottmann, J; Myronakis, M
2016-06-15
Purpose: The purpose of this study was to quantify the improvement in tumor tracking, with and without fiducial markers, afforded by employing a multi-layer (MLI) electronic portal imaging device (EPID) over the current state-of-the-art, single-layer, digital megavolt imager (DMI) architecture. Methods: An ideal observer signal-to-noise ratio (d’) approach was used to quantify the ability of an MLI EPID and a current, state-of-the-art DMI EPID to track lung tumors from the treatment beam’s-eye-view. Using each detector modulation transfer function (MTF) and noise power spectrum (NPS) as inputs, a detection task was employed with object functions describing simple three-dimensional Cartesian shapes (spheresmore » and cylinders). Marker-less tumor tracking algorithms often use texture discrimination to differentiate benign and malignant tissue. The performance of such algorithms is simulated by employing a discrimination task for the ideal observer, which measures the ability of a system to differentiate two image quantities. These were defined as the measured textures for benign and malignant lung tissue. Results: The NNPS of the MLI ∼25% of that of the DMI at the expense of decreased MTF at intermediate frequencies (0.25≤« less
NASA Astrophysics Data System (ADS)
Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.
2012-12-01
X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine CT images are resolved at 10-20 μm, while SEM images are resolved at 10-20 nm; grayscale values vary according to collection time and instrument sensitivity; and compositional sensitivities via EMP vary in interrogation volume and scale. We have so far successfully registered SEM imagery within a multimode tomographic volume and have used standard methods to isolate pore space within the volume. We are developing a three-dimensional solid-phase identification and registration method that is constrained by bulk-sample X-ray diffraction Rietveld refinements. The results of this project will prove useful in fields that require the fine-scale definition of solid-phase distributions and relationships, and could replace more inefficient methods for making these estimations.
NASA Astrophysics Data System (ADS)
Li, Ping; Wang, Weiwei; Zhang, Chenxi; An, Yong; Song, Zhijian
2016-07-01
Intraoperative brain retraction leads to a misalignment between the intraoperative positions of the brain structures and their previous positions, as determined from preoperative images. In vitro swine brain sample uniaxial tests showed that the mechanical response of brain tissue to compression and extension could be described by the hyper-viscoelasticity theory. The brain retraction caused by the mechanical process is a combination of brain tissue compression and extension. In this paper, we first constructed a hyper-viscoelastic framework based on the extended finite element method (XFEM) to simulate intraoperative brain retraction. To explore its effectiveness, we then applied this framework to an in vivo brain retraction simulation. The simulation strictly followed the clinical scenario, in which seven swine were subjected to brain retraction. Our experimental results showed that the hyper-viscoelastic XFEM framework is capable of simulating intraoperative brain retraction and improving the navigation accuracy of an image-guided neurosurgery system (IGNS).
Measurement and simulation for a complementary imaging with the neutron and X-ray beams
NASA Astrophysics Data System (ADS)
Hara, Kaoru Y.; Sato, Hirotaka; Kamiyama, Takashi; Shinohara, Takenao
2017-09-01
By using a composite source system, we measured radiographs of the thermal neutron and keV X-ray in the 45-MeV electron linear accelerator facility at Hokkaido University. The source system provides the alternative beam of neutron and X-ray by switching the production target onto the electron beam axis. In the measurement to demonstrate a complementary imaging, the detector based on a vacuum-tube type neutron color image intensifier was applied to the both beams for dual-purpose. On the other hand, for reducing background in a neutron transmission spectrum, test measurements using a gadolinium-type neutron grid were performed with a cold neutron source at Hokkaido University. In addition, the simulations of the neutron and X-ray transmissions for various substances were performed using the PHITS code. A data analysis procedure for estimating the substance of sample was investigated through the simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colby, Robert J.; Alsem, Daan H.; Liyu, Andrey V.
2015-06-01
The development of environmental transmission electron microscopy (TEM) has enabled in situ experiments in a gaseous environment with high resolution imaging and spectroscopy. Addressing scientific challenges in areas such as catalysis, corrosion, and geochemistry can require pressures much higher than the ~20 mbar achievable with a differentially pumped, dedicated environmental TEM. Gas flow stages, in which the environment is contained between two semi-transparent thin membrane windows, have been demonstrated at pressures of several atmospheres. While this constitutes significant progress towards operando measurements, the design of many current gas flow stages is such that the pressure at the sample cannot necessarilymore » be directly inferred from the pressure differential across the system. Small differences in the setup and design of the gas flow stage can lead to very different sample pressures. We demonstrate a method for measuring the gas pressure directly, using a combination of electron energy loss spectroscopy and TEM imaging. This method requires only two energy filtered TEM images, limiting the measurement time to a few seconds and can be performed during an ongoing experiment at the region of interest. This approach provides a means to ensure reproducibility between different experiments, and even between very differently designed gas flow stages.« less
Pulsed eddy current differential probe to detect the defects in a stainless steel pipe
NASA Astrophysics Data System (ADS)
Angani, C. S.; Park, D. G.; Kim, C. G.; Leela, P.; Kishore, M.; Cheong, Y. M.
2011-04-01
Pulsed eddy current (PEC) is an electromagnetic nondestructive technique widely used to detect and quantify the flaws in conducting materials. In the present study a differential Hall-sensor probe which is used in the PEC system has been fabricated for the detection of defects in stainless steel pipelines. The differential probe has an exciting coil with two Hall-sensors. A stainless steel test sample with electrical discharge machining (EDM) notches under different depths of 1-5 mm was made and the sample was laminated by plastic insulation having uniform thickness to simulate the pipelines in nuclear power plants (NPPs). The driving coil in the probe is excited by a rectangular current pulse and the resultant response, which is the difference of the two Hall-sensors, has been detected as the PEC probe signal. The discriminating time domain features of the detected pulse such as peak value and time to zero are used to interpret the experimental results with the defects in the test sample. A feature extraction technique such as spectral power density has been devised to infer the PEC response.
Digital image processing of nanometer-size metal particles on amorphous substrates
NASA Technical Reports Server (NTRS)
Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.
1989-01-01
The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.
Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging
Kim, Chulhong; Qin, Ruogu; Xu, Jeff S.; Wang, Lihong V.; Xu, Ronald
2010-01-01
We develop a novel dual-modal contrast agent—encapsulated-ink poly(lactic-co-glycolic acid) (PLGA) microbubbles and nanobubbles—for photoacoustic and ultrasound imaging. Soft gelatin phantoms with embedded tumor simulators of encapsulated-ink PLGA microbubbles and nanobubbles in various concentrations are clearly shown in both photoacoustic and ultrasound images. In addition, using photoacoustic imaging, we successfully image the samples positioned below 1.8-cm-thick chicken breast tissues. Potentially, simultaneous photoacoustic and ultrasound imaging enhanced by encapsulated-dye PLGA microbubbles or nanobubbles can be a valuable tool for intraoperative assessment of tumor boundaries and therapeutic margins. PMID:20210423
Multimodal computational microscopy based on transport of intensity equation
NASA Astrophysics Data System (ADS)
Li, Jiaji; Chen, Qian; Sun, Jiasong; Zhang, Jialin; Zuo, Chao
2016-12-01
Transport of intensity equation (TIE) is a powerful tool for phase retrieval and quantitative phase imaging, which requires intensity measurements only at axially closely spaced planes without a separate reference beam. It does not require coherent illumination and works well on conventional bright-field microscopes. The quantitative phase reconstructed by TIE gives valuable information that has been encoded in the complex wave field by passage through a sample of interest. Such information may provide tremendous flexibility to emulate various microscopy modalities computationally without requiring specialized hardware components. We develop a requisite theory to describe such a hybrid computational multimodal imaging system, which yields quantitative phase, Zernike phase contrast, differential interference contrast, and light field moment imaging, simultaneously. It makes the various observations for biomedical samples easy. Then we give the experimental demonstration of these ideas by time-lapse imaging of live HeLa cell mitosis. Experimental results verify that a tunable lens-based TIE system, combined with the appropriate postprocessing algorithm, can achieve a variety of promising imaging modalities in parallel with the quantitative phase images for the dynamic study of cellular processes.
Code Samples Used for Complexity and Control
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir G.; Reid, Darryn J.
2015-11-01
The following sections are included: * MathematicaⓇ Code * Generic Chaotic Simulator * Vector Differential Operators * NLS Explorer * 2C++ Code * C++ Lambda Functions for Real Calculus * Accelerometer Data Processor * Simple Predictor-Corrector Integrator * Solving the BVP with the Shooting Method * Linear Hyperbolic PDE Solver * Linear Elliptic PDE Solver * Method of Lines for a Set of the NLS Equations * C# Code * Iterative Equation Solver * Simulated Annealing: A Function Minimum * Simple Nonlinear Dynamics * Nonlinear Pendulum Simulator * Lagrangian Dynamics Simulator * Complex-Valued Crowd Attractor Dynamics * Freeform Fortran Code * Lorenz Attractor Simulator * Complex Lorenz Attractor * Simple SGE Soliton * Complex Signal Presentation * Gaussian Wave Packet * Hermitian Matrices * Euclidean L2-Norm * Vector/Matrix Operations * Plain C-Code: Levenberg-Marquardt Optimizer * Free Basic Code: 2D Crowd Dynamics with 3000 Agents
Imaging of blood cells based on snapshot Hyper-Spectral Imaging systems
NASA Astrophysics Data System (ADS)
Robison, Christopher J.; Kolanko, Christopher; Bourlai, Thirimachos; Dawson, Jeremy M.
2015-05-01
Snapshot Hyper-Spectral imaging systems are capable of capturing several spectral bands simultaneously, offering coregistered images of a target. With appropriate optics, these systems are potentially able to image blood cells in vivo as they flow through a vessel, eliminating the need for a blood draw and sample staining. Our group has evaluated the capability of a commercial Snapshot Hyper-Spectral imaging system, the Arrow system from Rebellion Photonics, in differentiating between white and red blood cells on unstained blood smear slides. We evaluated the imaging capabilities of this hyperspectral camera; attached to a microscope at varying objective powers and illumination intensity. Hyperspectral data consisting of 25, 443x313 hyperspectral bands with ~3nm spacing were captured over the range of 419 to 494nm. Open-source hyper-spectral data cube analysis tools, used primarily in Geographic Information Systems (GIS) applications, indicate that white blood cells features are most prominent in the 428-442nm band for blood samples viewed under 20x and 50x magnification over a varying range of illumination intensities. These images could potentially be used in subsequent automated white blood cell segmentation and counting algorithms for performing in vivo white blood cell counting.
NASA Technical Reports Server (NTRS)
Blonksi, Slawomir; Gasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki
2001-01-01
Multispectral data requirements for Earth science applications are not always studied rigorously studied before a new remote sensing system is designed. A study of the spatial resolution, spectral bandpasses, and radiometric sensitivity requirements of real-world applications would focus the design onto providing maximum benefits to the end-user community. To support systematic studies of multispectral data requirements, the Applications Research Toolbox (ART) has been developed at NASA's Stennis Space Center. The ART software allows users to create and assess simulated datasets while varying a wide range of system parameters. The simulations are based on data acquired by existing multispectral and hyperspectral instruments. The produced datasets can be further evaluated for specific end-user applications. Spectral synthesis of multispectral images from hyperspectral data is a key part of the ART software. In this process, hyperspectral image cubes are transformed into multispectral imagery without changes in spatial sampling and resolution. The transformation algorithm takes into account spectral responses of both the synthesized, broad, multispectral bands and the utilized, narrow, hyperspectral bands. To validate the spectral synthesis algorithm, simulated multispectral images are compared with images collected near-coincidentally by the Landsat 7 ETM+ and the EO-1 ALI instruments. Hyperspectral images acquired with the airborne AVIRIS instrument and with the Hyperion instrument onboard the EO-1 satellite were used as input data to the presented simulations.
None, None
2015-09-28
Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less
NASA Astrophysics Data System (ADS)
Steinbach, G.; Pawlak, K.; Pomozi, I.; Tóth, E. A.; Molnár, A.; Matkó, J.; Garab, G.
2014-03-01
Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.
DiffSplice: the genome-wide detection of differential splicing events with RNA-seq
Hu, Yin; Huang, Yan; Du, Ying; Orellana, Christian F.; Singh, Darshan; Johnson, Amy R.; Monroy, Anaïs; Kuan, Pei-Fen; Hammond, Scott M.; Makowski, Liza; Randell, Scott H.; Chiang, Derek Y.; Hayes, D. Neil; Jones, Corbin; Liu, Yufeng; Prins, Jan F.; Liu, Jinze
2013-01-01
The RNA transcriptome varies in response to cellular differentiation as well as environmental factors, and can be characterized by the diversity and abundance of transcript isoforms. Differential transcription analysis, the detection of differences between the transcriptomes of different cells, may improve understanding of cell differentiation and development and enable the identification of biomarkers that classify disease types. The availability of high-throughput short-read RNA sequencing technologies provides in-depth sampling of the transcriptome, making it possible to accurately detect the differences between transcriptomes. In this article, we present a new method for the detection and visualization of differential transcription. Our approach does not depend on transcript or gene annotations. It also circumvents the need for full transcript inference and quantification, which is a challenging problem because of short read lengths, as well as various sampling biases. Instead, our method takes a divide-and-conquer approach to localize the difference between transcriptomes in the form of alternative splicing modules (ASMs), where transcript isoforms diverge. Our approach starts with the identification of ASMs from the splice graph, constructed directly from the exons and introns predicted from RNA-seq read alignments. The abundance of alternative splicing isoforms residing in each ASM is estimated for each sample and is compared across sample groups. A non-parametric statistical test is applied to each ASM to detect significant differential transcription with a controlled false discovery rate. The sensitivity and specificity of the method have been assessed using simulated data sets and compared with other state-of-the-art approaches. Experimental validation using qRT-PCR confirmed a selected set of genes that are differentially expressed in a lung differentiation study and a breast cancer data set, demonstrating the utility of the approach applied on experimental biological data sets. The software of DiffSplice is available at http://www.netlab.uky.edu/p/bioinfo/DiffSplice. PMID:23155066
Mentally Simulating Narrative Perspective Is Not Universal or Necessary for Language Comprehension
ERIC Educational Resources Information Center
Brunyé, Tad T.; Ditman, Tali; Giles, Grace E.; Holmes, Amanda; Taylor, Holly A.
2016-01-01
Readers differentially adopt an agent's perspective as a function of pronouns encountered during reading. The present study assessed the reliability of this effect across narrative contexts and self-reported variation in levels of engagement during reading. Experiment 1 used an extended sample (N = 263) and replicated an interactive influence of…
Adaptive optics self-calibration using differential OTF (dOTF)
NASA Astrophysics Data System (ADS)
Rodack, Alexander T.; Knight, Justin M.; Codona, Johanan L.; Miller, Kelsey L.; Guyon, Olivier
2015-09-01
We demonstrate self-calibration of an adaptive optical system using differential OTF [Codona, JL; Opt. Eng. 0001; 52(9):097105-097105. doi:10.1117/1.OE.52.9.097105]. We use a deformable mirror (DM) along with science camera focal plane images to implement a closed-loop servo that both flattens the DM and corrects for non-common-path aberrations within the telescope. The pupil field modification required for dOTF measurement is introduced by displacing actuators near the edge of the illuminated pupil. Simulations were used to develop methods to retrieve the phase from the complex amplitude dOTF measurements for both segmented and continuous sheet MEMS DMs and tests were performed using a Boston Micromachines continuous sheet DM for verification. We compute the actuator correction updates directly from the phase of the dOTF measurements, reading out displacements and/or slopes at segment and actuator positions. Through simulation, we also explore the effectiveness of these techniques for a variety of photons collected in each dOTF exposure pair.
Differential Multiphoton Laser Scanning Microscopy
Field, Jeffrey J.; Sheetz, Kraig E.; Chandler, Eric V.; Hoover, Erich E.; Young, Michael D.; Ding, Shi-you; Sylvester, Anne W.; Kleinfeld, David; Squier, Jeff A.
2016-01-01
Multifocal multiphoton microscopy (MMM) in the biological and medical sciences has become an important tool for obtaining high resolution images at video rates. While current implementations of MMM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for MMM in which imaging detection is not necessary (single element point detection is implemented), and is therefore fully compatible for use in imaging through scattering media. Further, we demonstrate that this method leads to a new type of MMM wherein it is possible to simultaneously obtain multiple images and view differences in excitation parameters in a single shot. PMID:27390511
Correcting electrode modelling errors in EIT on realistic 3D head models.
Jehl, Markus; Avery, James; Malone, Emma; Holder, David; Betcke, Timo
2015-12-01
Electrical impedance tomography (EIT) is a promising medical imaging technique which could aid differentiation of haemorrhagic from ischaemic stroke in an ambulance. One challenge in EIT is the ill-posed nature of the image reconstruction, i.e., that small measurement or modelling errors can result in large image artefacts. It is therefore important that reconstruction algorithms are improved with regard to stability to modelling errors. We identify that wrongly modelled electrode positions constitute one of the biggest sources of image artefacts in head EIT. Therefore, the use of the Fréchet derivative on the electrode boundaries in a realistic three-dimensional head model is investigated, in order to reconstruct electrode movements simultaneously to conductivity changes. We show a fast implementation and analyse the performance of electrode position reconstructions in time-difference and absolute imaging for simulated and experimental voltages. Reconstructing the electrode positions and conductivities simultaneously increased the image quality significantly in the presence of electrode movement.
Post-processing images from the WFIRST-AFTA coronagraph testbed
NASA Astrophysics Data System (ADS)
Zimmerman, Neil T.; Ygouf, Marie; Pueyo, Laurent; Soummer, Remi; Perrin, Marshall D.; Mennesson, Bertrand; Cady, Eric; Mejia Prada, Camilo
2016-01-01
The concept for the exoplanet imaging instrument on WFIRST-AFTA relies on the development of mission-specific data processing tools to reduce the speckle noise floor. No instruments have yet functioned on the sky in the planet-to-star contrast regime of the proposed coronagraph (1E-8). Therefore, starlight subtraction algorithms must be tested on a combination of simulated and laboratory data sets to give confidence that the scientific goals can be reached. The High Contrast Imaging Testbed (HCIT) at Jet Propulsion Lab has carried out several technology demonstrations for the instrument concept, demonstrating 1E-8 raw (absolute) contrast. Here, we have applied a mock reference differential imaging strategy to HCIT data sets, treating one subset of images as a reference star observation and another subset as a science target observation. We show that algorithms like KLIP (Karhunen-Loève Image Projection), by suppressing residual speckles, enable the recovery of exoplanet signals at contrast of order 2E-9.
Andreev, Victor P; Gillespie, Brenda W; Helfand, Brian T; Merion, Robert M
2016-01-01
Unsupervised classification methods are gaining acceptance in omics studies of complex common diseases, which are often vaguely defined and are likely the collections of disease subtypes. Unsupervised classification based on the molecular signatures identified in omics studies have the potential to reflect molecular mechanisms of the subtypes of the disease and to lead to more targeted and successful interventions for the identified subtypes. Multiple classification algorithms exist but none is ideal for all types of data. Importantly, there are no established methods to estimate sample size in unsupervised classification (unlike power analysis in hypothesis testing). Therefore, we developed a simulation approach allowing comparison of misclassification errors and estimating the required sample size for a given effect size, number, and correlation matrix of the differentially abundant proteins in targeted proteomics studies. All the experiments were performed in silico. The simulated data imitated the expected one from the study of the plasma of patients with lower urinary tract dysfunction with the aptamer proteomics assay Somascan (SomaLogic Inc, Boulder, CO), which targeted 1129 proteins, including 330 involved in inflammation, 180 in stress response, 80 in aging, etc. Three popular clustering methods (hierarchical, k-means, and k-medoids) were compared. K-means clustering performed much better for the simulated data than the other two methods and enabled classification with misclassification error below 5% in the simulated cohort of 100 patients based on the molecular signatures of 40 differentially abundant proteins (effect size 1.5) from among the 1129-protein panel. PMID:27524871
Improving image quality in laboratory x-ray phase-contrast imaging
NASA Astrophysics Data System (ADS)
De Marco, F.; Marschner, M.; Birnbacher, L.; Viermetz, M.; Noël, P.; Herzen, J.; Pfeiffer, F.
2017-03-01
Grating-based X-ray phase-contrast (gbPC) is known to provide significant benefits for biomedical imaging. To investigate these benefits, a high-sensitivity gbPC micro-CT setup for small (≍ 5 cm) biological samples has been constructed. Unfortunately, high differential-phase sensitivity leads to an increased magnitude of data processing artifacts, limiting the quality of tomographic reconstructions. Most importantly, processing of phase-stepping data with incorrect stepping positions can introduce artifacts resembling Moiré fringes to the projections. Additionally, the focal spot size of the X-ray source limits resolution of tomograms. Here we present a set of algorithms to minimize artifacts, increase resolution and improve visual impression of projections and tomograms from the examined setup. We assessed two algorithms for artifact reduction: Firstly, a correction algorithm exploiting correlations of the artifacts and differential-phase data was developed and tested. Artifacts were reliably removed without compromising image data. Secondly, we implemented a new algorithm for flatfield selection, which was shown to exclude flat-fields with strong artifacts. Both procedures successfully improved image quality of projections and tomograms. Deconvolution of all projections of a CT scan can minimize blurring introduced by the finite size of the X-ray source focal spot. Application of the Richardson-Lucy deconvolution algorithm to gbPC-CT projections resulted in an improved resolution of phase-contrast tomograms. Additionally, we found that nearest-neighbor interpolation of projections can improve the visual impression of very small features in phase-contrast tomograms. In conclusion, we achieved an increase in image resolution and quality for the investigated setup, which may lead to an improved detection of very small sample features, thereby maximizing the setup's utility.
Evaluation of search strategies for microcalcifications and masses in 3D images
NASA Astrophysics Data System (ADS)
Eckstein, Miguel P.; Lago, Miguel A.; Abbey, Craig K.
2018-03-01
Medical imaging is quickly evolving towards 3D image modalities such as computed tomography (CT), magnetic resonance imaging (MRI) and digital breast tomosynthesis (DBT). These 3D image modalities add volumetric information but further increase the need for radiologists to search through the image data set. Although much is known about search strategies in 2D images less is known about the functional consequences of different 3D search strategies. We instructed readers to use two different search strategies: drillers had their eye movements restricted to a few regions while they quickly scrolled through the image stack, scanners explored through eye movements the 2D slices. We used real-time eye position monitoring to ensure observers followed the drilling or the scanning strategy while approximately preserving the percentage of the volumetric data covered by the useful field of view. We investigated search for two signals: a simulated microcalcification and a larger simulated mass. Results show an interaction between the search strategy and lesion type. In particular, scanning provided significantly better detectability for microcalcifications at the cost of 5 times more time to search while there was little change in the detectability for the larger simulated masses. Analyses of eye movements support the hypothesis that the effectiveness of a search strategy in 3D imaging arises from the interaction of the fixational sampling of visual information and the signals' visibility in the visual periphery.
Simulating Lattice Image of Suspended Graphene Taken by Helium Ion Microscopy
NASA Astrophysics Data System (ADS)
Miyamoto, Yoshiyuki; Zhang, Hong; Rubio, Angel
2013-03-01
Atomic scale image in nano-scale helps us to characterize property of graphene, and performance of high-resolution transmission electron microscopy (HRTEM) is significant, so far. While a tool without pre-treatment of samples is demanded in practice. Helium ion microscopy (HIM), firstly reported by Word et. al. in 2006, was applied for monitoring graphene in device structure (Lumme, et. al., 2009). Motivated by recent HIM explorations, we examined the possibility of taking lattice image of suspended graphene by HIM. The intensity of secondary emitted electron is recorded as a profile of scanned He+-beam in HIM measurement. We mimicked this situation by performing electron-ion dynamics based on the first-principles simulation within the time-dependent density functional theory. He+ ion collision on single graphene sheet at several impact points were simulated and we found that the amount of secondary emitted electron from graphene reflected the valence charge distribution of the graphene sheet. Therefore HIM using atomically thin He-beam should be able to provide the lattice image, and we propose that an experiment generating ultra-thin He+ ion beam (Rezeq et. al., 2006) should be combined with HIM technique. All calculations were performed by using the Earth Simulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terryn, Raymond J.; Sriraman, Krishnan; Olson, Joel A., E-mail: jolson@fit.edu
A new simulator for scanning tunneling microscopy (STM) is presented based on the linear combination of atomic orbitals molecular orbital (LCAO-MO) approximation for the effective tunneling Hamiltonian, which leads to the convolution integral when applied to the tip interaction with the sample. This approach intrinsically includes the structure of the STM tip. Through this mechanical emulation and the tip-inclusive convolution model, dI/dz images for molecular orbitals (which are closely associated with apparent barrier height, ϕ{sub ap}) are reported for the first time. For molecular adsorbates whose experimental topographic images correspond well to isolated-molecule quantum chemistry calculations, the simulator makes accuratemore » predictions, as illustrated by various cases. Distortions in these images due to the tip are shown to be in accord with those observed experimentally and predicted by other ab initio considerations of tip structure. Simulations of the tunneling current dI/dz images are in strong agreement with experiment. The theoretical framework provides a solid foundation which may be applied to LCAO cluster models of adsorbate–substrate systems, and is extendable to emulate several aspects of functional STM operation.« less
Detection of ochratoxin A contamination in stored wheat using near-infrared hyperspectral imaging
NASA Astrophysics Data System (ADS)
Senthilkumar, T.; Jayas, D. S.; White, N. D. G.; Fields, P. G.; Gräfenhan, T.
2017-03-01
Near-infrared (NIR) hyperspectral imaging system was used to detect five concentration levels of ochratoxin A (OTA) in contaminated wheat kernels. The wheat kernels artificially inoculated with two different OTA producing Penicillium verrucosum strains, two different non-toxigenic P. verrucosum strains, and sterile control wheat kernels were subjected to NIR hyperspectral imaging. The acquired three-dimensional data were reshaped into readable two-dimensional data. Principal Component Analysis (PCA) was applied to the two dimensional data to identify the key wavelengths which had greater significance in detecting OTA contamination in wheat. Statistical and histogram features extracted at the key wavelengths were used in the linear, quadratic and Mahalanobis statistical discriminant models to differentiate between sterile control, five concentration levels of OTA contamination in wheat kernels, and five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels. The classification models differentiated sterile control samples from OTA contaminated wheat kernels and non-OTA producing P. verrucosum inoculated wheat kernels with a 100% accuracy. The classification models also differentiated between five concentration levels of OTA contaminated wheat kernels and between five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels with a correct classification of more than 98%. The non-OTA producing P. verrucosum inoculated wheat kernels and OTA contaminated wheat kernels subjected to hyperspectral imaging provided different spectral patterns.
NASA Astrophysics Data System (ADS)
Söderman, Christina; Johnsson, Ã. se; Vikgren, Jenny; Rossi Norrlund, Rauni; Molnar, David; Mirzai, Maral; Svalkvist, Angelica; Mânsson, Lars Gunnar; Bâth, Magnus
2016-03-01
Chest tomosynthesis may be a suitable alternative to computed tomography for the clinical task of follow up of pulmonary nodules. The aim of the present study was to investigate the detection of pulmonary nodule growth suggestive of malignancy using chest tomosynthesis. Previous studies have indicated remained levels of detection of pulmonary nodules at dose levels corresponding to that of a conventional lateral radiograph, approximately 0.04 mSv, which motivated to perform the present study this dose level. Pairs of chest tomosynthesis image sets, where the image sets in each pair were acquired of the same patient at two separate occasions, were included in the study. Simulated nodules with original diameters of approximately 8 mm were inserted in the pairs of image sets, simulating situations where the nodule had remained stable in size or increased isotropically in size between the two different imaging occasions. Four different categories of nodule growth were included, corresponding to a volume increase of approximately 21 %, 68 %, 108 % and 250 %. All nodules were centered in the depth direction in the tomosynthesis images. All images were subjected to a simulated dose reduction, resulting in images corresponding to an effective dose of 0.04 mSv. Four observers were given the task of rating their confidence that the nodule was stable in size or not on a five-level rating scale. This was done both before any size measurements were made of the nodule as well as after measurements were performed. Using Receiver operating characteristic analysis, the rating data for the nodules that were stable in size was compared to the rating data for the nodules simulated to have increased in size. Statistically significant differences between the rating distributions for the stable nodules and all of the four nodule growth categories were found. For the three largest nodule growths, nearly perfect detection of nodule growth was seen. In conclusion, the present study indicates that during optimal imaging conditions and for nodules with diameters of approximately 8 mm that grow fairly symmetrically, chest tomosynthesis performed at a dose level corresponding to that of a lateral chest radiograph can, with high sensitivity, differentiate nodules stable in size from nodules growing at rates associated with fast growing malignant nodules.
Process simulation in digital camera system
NASA Astrophysics Data System (ADS)
Toadere, Florin
2012-06-01
The goal of this paper is to simulate the functionality of a digital camera system. The simulations cover the conversion from light to numerical signal and the color processing and rendering. We consider the image acquisition system to be linear shift invariant and axial. The light propagation is orthogonal to the system. We use a spectral image processing algorithm in order to simulate the radiometric properties of a digital camera. In the algorithm we take into consideration the transmittances of the: light source, lenses, filters and the quantum efficiency of a CMOS (complementary metal oxide semiconductor) sensor. The optical part is characterized by a multiple convolution between the different points spread functions of the optical components. We use a Cooke triplet, the aperture, the light fall off and the optical part of the CMOS sensor. The electrical part consists of the: Bayer sampling, interpolation, signal to noise ratio, dynamic range, analog to digital conversion and JPG compression. We reconstruct the noisy blurred image by blending different light exposed images in order to reduce the photon shot noise, also we filter the fixed pattern noise and we sharpen the image. Then we have the color processing blocks: white balancing, color correction, gamma correction, and conversion from XYZ color space to RGB color space. For the reproduction of color we use an OLED (organic light emitting diode) monitor. The analysis can be useful to assist students and engineers in image quality evaluation and imaging system design. Many other configurations of blocks can be used in our analysis.
O-space with high resolution readouts outperforms radial imaging.
Wang, Haifeng; Tam, Leo; Kopanoglu, Emre; Peters, Dana C; Constable, R Todd; Galiana, Gigi
2017-04-01
While O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts. A sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging. Experimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image. High resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging. Copyright © 2016 Elsevier Inc. All rights reserved.
A math model for high velocity sensoring with a focal plane shuttered camera.
NASA Technical Reports Server (NTRS)
Morgan, P.
1971-01-01
A new mathematical model is presented which describes the image produced by a focal plane shutter-equipped camera. The model is based upon the well-known collinearity condition equations and incorporates both the translational and rotational motion of the camera during the exposure interval. The first differentials of the model with respect to exposure interval, delta t, yield the general matrix expressions for image velocities which may be simplified to known cases. The exposure interval, delta t, may be replaced under certain circumstances with a function incorporating blind velocity and image position if desired. The model is tested using simulated Lunar Orbiter data and found to be computationally stable as well as providing excellent results, provided that some external information is available on the velocity parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltani, M; Sefidgar, M; Bazmara, H
2015-06-15
Purpose: In this study, a mathematical model is utilized to simulate FDG distribution in tumor tissue. In contrast to conventional compartmental modeling, tracer distributions across space and time are directly linked together (i.e. moving beyond ordinary differential equations (ODEs) to utilizing partial differential equations (PDEs) coupling space and time). The diffusion and convection transport mechanisms are both incorporated to model tracer distribution. We aimed to investigate the contributions of these two mechanisms on FDG distribution for various tumor geometries obtained from PET/CT images. Methods: FDG transport was simulated via a spatiotemporal distribution model (SDM). The model is based on amore » 5K compartmental model. We model the fact that tracer concentration in the second compartment (extracellular space) is modulated via convection and diffusion. Data from n=45 patients with pancreatic tumors as imaged using clinical FDG PET/CT imaging were analyzed, and geometrical information from the tumors including size, shape, and aspect ratios were classified. Tumors with varying shapes and sizes were assessed in order to investigate the effects of convection and diffusion mechanisms on FDG transport. Numerical methods simulating interstitial flow and solute transport in tissue were utilized. Results: We have shown the convection mechanism to depend on the shape and size of tumors whereas diffusion mechanism is seen to exhibit low dependency on shape and size. Results show that concentration distribution of FDG is relatively similar for the considered tumors; and that the diffusion mechanism of FDG transport significantly dominates the convection mechanism. The Peclet number which shows the ratio of convection to diffusion rates was shown to be of the order of 10−{sup 3} for all considered tumors. Conclusion: We have demonstrated that even though convection leads to varying tracer distribution profiles depending on tumor shape and size, the domination of the diffusion phenomenon prevents these factors from modulating FDG distribution.« less
Exploiting physical constraints for multi-spectral exo-planet detection
NASA Astrophysics Data System (ADS)
Thiébaut, Éric; Devaney, Nicholas; Langlois, Maud; Hanley, Kenneth
2016-07-01
We derive a physical model of the on-axis PSF for a high contrast imaging system such as GPI or SPHERE. This model is based on a multi-spectral Taylor series expansion of the diffraction pattern and predicts that the speckles should be a combination of spatial modes with deterministic chromatic magnification and weighting. We propose to remove most of the residuals by fitting this model on a set of images at multiple wavelengths and times. On simulated data, we demonstrate that our approach achieves very good speckle suppression without additional heuristic parameters. The residual speckles1, 2 set the most serious limitation in the detection of exo-planets in high contrast coronographic images provided by instruments such as SPHERE3 at the VLT, GPI4, 5 at Gemini, or SCExAO6 at Subaru. A number of post-processing methods have been proposed to remove as much as possible of the residual speckles while preserving the signal from the planets. These methods exploit the fact that the speckles and the planetary signal have different temporal and spectral behaviors. Some methods like LOCI7 are based on angular differential imaging8 (ADI), spectral differential imaging9, 10 (SDI), or on a combination of ADI and SDI.11 Instead of working on image differences, we propose to tackle the exo-planet detection as an inverse problem where a model of the residual speckles is fit on the set of multi-spectral images and, possibly, multiple exposures. In order to reduce the number of degrees of freedom, we impose specific constraints on the spatio-spectral distribution of stellar speckles. These constraints are deduced from a multi-spectral Taylor series expansion of the diffraction pattern for an on-axis source which implies that the speckles are a combination of spatial modes with deterministic chromatic magnification and weighting. Using simulated data, the efficiency of speckle removal by fitting the proposed multi-spectral model is compared to the result of using an approximation based on the singular value decomposition of the rescaled images. We show how the difficult problem to fitting a bilinear model on the can be solved in practise. The results are promising for further developments including application to real data and joint planet detection in multi-variate data (multi-spectral and multiple exposures images).
Image reconstructions from super-sampled data sets with resolution modeling in PET imaging.
Li, Yusheng; Matej, Samuel; Metzler, Scott D
2014-12-01
Spatial resolution in positron emission tomography (PET) is still a limiting factor in many imaging applications. To improve the spatial resolution for an existing scanner with fixed crystal sizes, mechanical movements such as scanner wobbling and object shifting have been considered for PET systems. Multiple acquisitions from different positions can provide complementary information and increased spatial sampling. The objective of this paper is to explore an efficient and useful reconstruction framework to reconstruct super-resolution images from super-sampled low-resolution data sets. The authors introduce a super-sampling data acquisition model based on the physical processes with tomographic, downsampling, and shifting matrices as its building blocks. Based on the model, we extend the MLEM and Landweber algorithms to reconstruct images from super-sampled data sets. The authors also derive a backprojection-filtration-like (BPF-like) method for the super-sampling reconstruction. Furthermore, they explore variant methods for super-sampling reconstructions: the separate super-sampling resolution-modeling reconstruction and the reconstruction without downsampling to further improve image quality at the cost of more computation. The authors use simulated reconstruction of a resolution phantom to evaluate the three types of algorithms with different super-samplings at different count levels. Contrast recovery coefficient (CRC) versus background variability, as an image-quality metric, is calculated at each iteration for all reconstructions. The authors observe that all three algorithms can significantly and consistently achieve increased CRCs at fixed background variability and reduce background artifacts with super-sampled data sets at the same count levels. For the same super-sampled data sets, the MLEM method achieves better image quality than the Landweber method, which in turn achieves better image quality than the BPF-like method. The authors also demonstrate that the reconstructions from super-sampled data sets using a fine system matrix yield improved image quality compared to the reconstructions using a coarse system matrix. Super-sampling reconstructions with different count levels showed that the more spatial-resolution improvement can be obtained with higher count at a larger iteration number. The authors developed a super-sampling reconstruction framework that can reconstruct super-resolution images using the super-sampling data sets simultaneously with known acquisition motion. The super-sampling PET acquisition using the proposed algorithms provides an effective and economic way to improve image quality for PET imaging, which has an important implication in preclinical and clinical region-of-interest PET imaging applications.
NASA Astrophysics Data System (ADS)
Zhu, Baolong; Zhang, Zhiping; Zhou, Ding; Ma, Jie; Li, Shunli
2017-08-01
This paper investigates the H∞ control problem of the attitude stabilisation of a rigid spacecraft with external disturbances using prediction-based sampled-data control strategy. Aiming to achieve a 'virtual' closed-loop system, a type of parameterised sampled-data controller is designed by introducing a prediction mechanism. The resultant closed-loop system is equivalent to a hybrid system featured by a continuous-time and an impulsive differential system. By using a time-varying Lyapunov functional, a generalised bounded real lemma (GBRL) is first established for a kind of impulsive differential system. Based on this GBRL and Lyapunov functional approach, a sufficient condition is derived to guarantee the closed-loop system to be asymptotically stable and to achieve a prescribed H∞ performance. In addition, the controller parameter tuning is cast into a convex optimisation problem. Simulation and comparative results are provided to illustrate the effectiveness of the developed control scheme.
Photoacoustic imaging of hidden dental caries by using a bundle of hollow optical fibers
NASA Astrophysics Data System (ADS)
Koyama, Takuya; Kakino, Satoko; Matsuura, Yuji
2018-02-01
Photoacoustic imaging system using a bundle of hollow-optical fibers to detect hidden dental caries is proposed. Firstly, we fabricated a hidden caries model with a brown pigment simulating a common color of caries lesion. It was found that high frequency ultrasonic waves are generated from hidden carious part when radiating Nd:YAG laser light with a 532 nm wavelength to occlusal surface of model tooth. We calculated by Fourier transform and found that the waveform from the carious part provides frequency components of approximately from 0.5 to 1.2 MHz. Then a photoacoustic imaging system using a bundle of hollow optical fiber was fabricated for clinical applications. From intensity map of frequency components in 0.5-1.2 MHz, photoacoustic images of hidden caries in the simulated samples were successfully obtained.
Histology and imaging of soft tissue sarcomas.
Kind, Michèle; Stock, Nathalie; Coindre, Jean Michel
2009-10-01
Imaging and histology are two complementary morphological techniques which play a fundamental role in the diagnosis and management of soft tissue sarcomas. Imaging allows to identify some pseudosarcomatous benign lesions such as myositis ossificans, intramuscular hemangioma, angiomyolipoma, intramuscular lipoma, giant cell tumour of tendon sheath, desmoid tumour and elastofibroma. There is no formal criterion for diagnosing a sarcoma on magnetic resonance imaging (MRI) but malignancy is strongly suspected with the presence of necrosis and vascular, bone or joint invasion. Imaging may also suggest some histological types of sarcoma such as well-differentiated liposarcoma, dedifferentiated liposarcoma, synovial sarcoma or extraskeletal osteosarcoma. Imaging is also extremely helpful in determining the appropriate kind of sampling to carry out and in guiding the performance of a microbiopsy. The appearance observed on imaging should always be taken into consideration for the interpretation of the microbiopsy by the pathologist.
NASA Astrophysics Data System (ADS)
Bai, Nan
A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have been performed to reveal the time dependent nature of scattering patterns. The experimental work has been compared with simulation results and demonstrated the feasibility of extending this technique for microcolony identification. Lastly, a quantitative phase imaging technique based on the phase gradient driven intensity variation has been studied and implemented to render the 2D phase map of the colony sample.
DRME: Count-based differential RNA methylation analysis at small sample size scenario.
Liu, Lian; Zhang, Shao-Wu; Gao, Fan; Zhang, Yixin; Huang, Yufei; Chen, Runsheng; Meng, Jia
2016-04-15
Differential methylation, which concerns difference in the degree of epigenetic regulation via methylation between two conditions, has been formulated as a beta or beta-binomial distribution to address the within-group biological variability in sequencing data. However, a beta or beta-binomial model is usually difficult to infer at small sample size scenario with discrete reads count in sequencing data. On the other hand, as an emerging research field, RNA methylation has drawn more and more attention recently, and the differential analysis of RNA methylation is significantly different from that of DNA methylation due to the impact of transcriptional regulation. We developed DRME to better address the differential RNA methylation problem. The proposed model can effectively describe within-group biological variability at small sample size scenario and handles the impact of transcriptional regulation on RNA methylation. We tested the newly developed DRME algorithm on simulated and 4 MeRIP-Seq case-control studies and compared it with Fisher's exact test. It is in principle widely applicable to several other RNA-related data types as well, including RNA Bisulfite sequencing and PAR-CLIP. The code together with an MeRIP-Seq dataset is available online (https://github.com/lzcyzm/DRME) for evaluation and reproduction of the figures shown in this article. Copyright © 2016 Elsevier Inc. All rights reserved.
Renosh, P R; Schmitt, Francois G; Loisel, Hubert
2015-01-01
Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics.
Cao, Zhipeng; Oh, Sukhoon; Otazo, Ricardo; Sica, Christopher T.; Griswold, Mark A.; Collins, Christopher M.
2014-01-01
Purpose Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency (PRF) shift temperature imaging for MRI induced radiofrequency (RF) heating evaluation. Methods A compressed sensing approach that exploits sparsity of the complex difference between post-heating and baseline images is proposed to accelerate PRF temperature mapping. The method exploits the intra- and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex-vivo and in-vivo studies by comparing performance with previously proposed techniques. Results The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local PRF temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo . Conclusion Complex difference based compressed sensing with utilization of a fully-sampled baseline image improves the reconstruction accuracy for accelerated PRF thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of RF heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance. PMID:24753099
Alternative techniques for high-resolution spectral estimation of spectrally encoded endoscopy
NASA Astrophysics Data System (ADS)
Mousavi, Mahta; Duan, Lian; Javidi, Tara; Ellerbee, Audrey K.
2015-09-01
Spectrally encoded endoscopy (SEE) is a minimally invasive optical imaging modality capable of fast confocal imaging of internal tissue structures. Modern SEE systems use coherent sources to image deep within the tissue and data are processed similar to optical coherence tomography (OCT); however, standard processing of SEE data via the Fast Fourier Transform (FFT) leads to degradation of the axial resolution as the bandwidth of the source shrinks, resulting in a well-known trade-off between speed and axial resolution. Recognizing the limitation of FFT as a general spectral estimation algorithm to only take into account samples collected by the detector, in this work we investigate alternative high-resolution spectral estimation algorithms that exploit information such as sparsity and the general region position of the bulk sample to improve the axial resolution of processed SEE data. We validate the performance of these algorithms using bothMATLAB simulations and analysis of experimental results generated from a home-built OCT system to simulate an SEE system with variable scan rates. Our results open a new door towards using non-FFT algorithms to generate higher quality (i.e., higher resolution) SEE images at correspondingly fast scan rates, resulting in systems that are more accurate and more comfortable for patients due to the reduced image time.
Henderson, Douglas; Silvestre-Alcantara, Whasington; Kaja, Monika; ...
2016-08-18
Here, the density functional theory is applied to a study of the structure and differential capacitance of a planar electric double layer formed by a valency asymmetric mixture of charged dimers and monomers. The dimer consists of two tangentially tethered hard spheres of equal diameters of which one is charged and the other is neutral, while the monomer is a charged hard sphere of the same size. The dimer electrolyte is next to a uniformly charged, smooth planar electrode. The electrode-particle singlet distributions, the mean electrostatic potential, and the differential capacitance for the model double layer are evaluated for amore » 2:1/1:2 valency electrolyte at a given concentration. Important consequences of asymmetry in charges and in ion shapes are (i) a finite, non-zero potential of zero charge, and (ii) asymmetric shaped 2:1 and 1:2 capacitance curves which are not mirror images of each other. Comparisons of the density functional results with the corresponding Monte Carlo simulations show the theoretical predictions to be in good agreement with the simulations overall except near zero surface charge.« less
Dual-energy micro-CT imaging for differentiation of iodine- and gold-based nanoparticles
NASA Astrophysics Data System (ADS)
Badea, C. T.; Johnston, S. M.; Qi, Y.; Ghaghada, K.; Johnson, G. A.
2011-03-01
Spectral CT imaging is expected to play a major role in the diagnostic arena as it provides material decomposition on an elemental basis. One fascinating possibility is the ability to discriminate multiple contrast agents targeting different biological sites. We investigate the feasibility of dual energy micro-CT for discrimination of iodine (I) and gold (Au) contrast agents when simultaneously present in the body. Simulations and experiments were performed to measure the CT enhancement for I and Au over a range of voltages from 40-to-150 kVp using a dual source micro-CT system. The selected voltages for dual energy micro-CT imaging of Au and I were 40 kVp and 80 kVp. On a massconcentration basis, the relative average enhancement of Au to I was 2.75 at 40 kVp and 1.58 at 80 kVp. We have demonstrated the method in a preclinical model of colon cancer to differentiate vascular architecture and extravasation. The concentration maps of Au and I allow quantitative measure of the bio-distribution of both agents. In conclusion, dual energy micro-CT can be used to discriminate probes containing I and Au with immediate impact in pre-clinical research.
Two-dimensional imaging via a narrowband MIMO radar system with two perpendicular linear arrays.
Wang, Dang-wei; Ma, Xiao-yan; Su, Yi
2010-05-01
This paper presents a system model and method for the 2-D imaging application via a narrowband multiple-input multiple-output (MIMO) radar system with two perpendicular linear arrays. Furthermore, the imaging formulation for our method is developed through a Fourier integral processing, and the parameters of antenna array including the cross-range resolution, required size, and sampling interval are also examined. Different from the spatial sequential procedure sampling the scattered echoes during multiple snapshot illuminations in inverse synthetic aperture radar (ISAR) imaging, the proposed method utilizes a spatial parallel procedure to sample the scattered echoes during a single snapshot illumination. Consequently, the complex motion compensation in ISAR imaging can be avoided. Moreover, in our array configuration, multiple narrowband spectrum-shared waveforms coded with orthogonal polyphase sequences are employed. The mainlobes of the compressed echoes from the different filter band could be located in the same range bin, and thus, the range alignment in classical ISAR imaging is not necessary. Numerical simulations based on synthetic data are provided for testing our proposed method.
Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation
NASA Astrophysics Data System (ADS)
Rehbinder, Jean; Haddad, Huda; Deby, Stanislas; Teig, Benjamin; Nazac, André; Novikova, Tatiana; Pierangelo, Angelo; Moreau, François
2016-07-01
Early detection through screening plays a major role in reducing the impact of cervical cancer on patients. When detected before the invasive stage, precancerous lesions can be eliminated with very limited surgery. Polarimetric imaging is a potential alternative to the standard screening methods currently used. In a previous proof-of-concept study, significant contrasts have been found in polarimetric images acquired for healthy and precancerous regions of excised cervical tissue. To quantify the ability of the technique to differentiate between healthy and precancerous tissue, polarimetric images of seventeen cervical conization specimens (cone-shaped or cylindrical wedges from the uterine cervix) are compared with results from histopathological diagnoses, which is considered to be the "gold standard." The sensitivity and specificity of the technique are calculated for images acquired at wavelengths of 450, 550, and 600 nm, aiming to differentiate between high-grade cervical intraepithelial neoplasia (CIN 2-3) and healthy squamous epithelium. To do so, a sliding threshold for the scalar retardance parameter was used for the sample zones, as labeled after histological diagnosis. An optimized value of ˜83% is achieved for both sensitivity and specificity for images acquired at 450 nm and for a threshold scalar retardance value of 10.6 deg. This study paves the way for an application of polarimetry in the clinic.
Colautti, Robert I; Lau, Jennifer A
2015-05-01
Biological invasions are 'natural' experiments that can improve our understanding of contemporary evolution. We evaluate evidence for population differentiation, natural selection and adaptive evolution of invading plants and animals at two nested spatial scales: (i) among introduced populations (ii) between native and introduced genotypes. Evolution during invasion is frequently inferred, but rarely confirmed as adaptive. In common garden studies, quantitative trait differentiation is only marginally lower (~3.5%) among introduced relative to native populations, despite genetic bottlenecks and shorter timescales (i.e. millennia vs. decades). However, differentiation between genotypes from the native vs. introduced range is less clear and confounded by nonrandom geographic sampling; simulations suggest this causes a high false-positive discovery rate (>50%) in geographically structured populations. Selection differentials (¦s¦) are stronger in introduced than in native species, although selection gradients (¦β¦) are not, consistent with introduced species experiencing weaker genetic constraints. This could facilitate rapid adaptation, but evidence is limited. For example, rapid phenotypic evolution often manifests as geographical clines, but simulations demonstrate that nonadaptive trait clines can evolve frequently during colonization (~two-thirds of simulations). Additionally, QST-FST studies may often misrepresent the strength and form of natural selection acting during invasion. Instead, classic approaches in evolutionary ecology (e.g. selection analysis, reciprocal transplant, artificial selection) are necessary to determine the frequency of adaptive evolution during invasion and its influence on establishment, spread and impact of invasive species. These studies are rare but crucial for managing biological invasions in the context of global change. © 2015 John Wiley & Sons Ltd.
Spatial-scanning hyperspectral imaging probe for bio-imaging applications
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2016-03-01
The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50 000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications.
Simulations and Experiments of Dynamic Granular Compaction in Non-ideal Geometries
NASA Astrophysics Data System (ADS)
Homel, Michael; Herbold, Eric; Lind, John; Crum, Ryan; Hurley, Ryan; Akin, Minta; Pagan, Darren; LLNL Team
2017-06-01
Accurately describing the dynamic compaction of granular materials is a persistent challenge in computational mechanics. Using a synchrotron x-ray source we have obtained detailed imaging of the evolving compaction front in synthetic olivine powder impacted at 300 - 600 m / s . To facilitate imaging, a non-traditional sample geometry is used, producing multiple load paths within the sample. We demonstrate that (i) commonly used models for porous compaction may produce inaccurate results for complex loading, even if the 1 - D , uniaxial-strain compaction response is reasonable, and (ii) the experimental results can be used along with simulations to determine parameters for sophisticated constitutive models that more accurately describe the strength, softening, bulking, and poroelastic response. Effects of experimental geometry and alternative configurations are discussed. Our understanding of the material response is further enhanced using mesoscale simulations that allow us to relate the mechanisms of grain fracture, contact, and comminution to the macroscale continuum response. Numerical considerations in both continuum and mesoscale simulations are described. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LDRD#16-ERD-010. LLNL-ABS-725113.
Omoumi, Patrick; Becce, Fabio; Racine, Damien; Ott, Julien G; Andreisek, Gustav; Verdun, Francis R
2015-12-01
In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been used successfully in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits; to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Omoumi, Patrick; Verdun, Francis R; Guggenberger, Roman; Andreisek, Gustav; Becce, Fabio
2015-12-01
In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been successfully used in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits, to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Automated quantitative cytological analysis using portable microfluidic microscopy.
Jagannadh, Veerendra Kalyan; Murthy, Rashmi Sreeramachandra; Srinivasan, Rajesh; Gorthi, Sai Siva
2016-06-01
In this article, a portable microfluidic microscopy based approach for automated cytological investigations is presented. Inexpensive optical and electronic components have been used to construct a simple microfluidic microscopy system. In contrast to the conventional slide-based methods, the presented method employs microfluidics to enable automated sample handling and image acquisition. The approach involves the use of simple in-suspension staining and automated image acquisition to enable quantitative cytological analysis of samples. The applicability of the presented approach to research in cellular biology is shown by performing an automated cell viability assessment on a given population of yeast cells. Further, the relevance of the presented approach to clinical diagnosis and prognosis has been demonstrated by performing detection and differential assessment of malaria infection in a given sample. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Golden-ratio rotated stack-of-stars acquisition for improved volumetric MRI.
Zhou, Ziwu; Han, Fei; Yan, Lirong; Wang, Danny J J; Hu, Peng
2017-12-01
To develop and evaluate an improved stack-of-stars radial sampling strategy for reducing streaking artifacts. The conventional stack-of-stars sampling strategy collects the same radial angle for every partition (slice) encoding. In an undersampled acquisition, such an aligned acquisition generates coherent aliasing patterns and introduces strong streaking artifacts. We show that by rotating the radial spokes in a golden-angle manner along the partition-encoding direction, the aliasing pattern is modified, resulting in improved image quality for gridding and more advanced reconstruction methods. Computer simulations were performed and phantom as well as in vivo images for three different applications were acquired. Simulation, phantom, and in vivo experiments confirmed that the proposed method was able to generate images with less streaking artifact and sharper structures based on undersampled acquisitions in comparison with the conventional aligned approach at the same acceleration factors. By combining parallel imaging and compressed sensing in the reconstruction, streaking artifacts were mostly removed with improved delineation of fine structures using the proposed strategy. We present a simple method to reduce streaking artifacts and improve image quality in 3D stack-of-stars acquisitions by re-arranging the radial spoke angles in the 3D partition direction, which can be used for rapid volumetric imaging. Magn Reson Med 78:2290-2298, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Exact-Differential Large-Scale Traffic Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanai, Masatoshi; Suzumura, Toyotaro; Theodoropoulos, Georgios
2015-01-01
Analyzing large-scale traffics by simulation needs repeating execution many times with various patterns of scenarios or parameters. Such repeating execution brings about big redundancy because the change from a prior scenario to a later scenario is very minor in most cases, for example, blocking only one of roads or changing the speed limit of several roads. In this paper, we propose a new redundancy reduction technique, called exact-differential simulation, which enables to simulate only changing scenarios in later execution while keeping exactly same results as in the case of whole simulation. The paper consists of two main efforts: (i) amore » key idea and algorithm of the exact-differential simulation, (ii) a method to build large-scale traffic simulation on the top of the exact-differential simulation. In experiments of Tokyo traffic simulation, the exact-differential simulation shows 7.26 times as much elapsed time improvement in average and 2.26 times improvement even in the worst case as the whole simulation.« less
Blom, Douglas A
2012-01-01
Multislice frozen phonon calculations were performed on a model structure of a complex oxide which has potential use as an ammoxidation catalyst. The structure has 11 cation sites in the framework, several of which exhibit mixed Mo/V substitution. In this paper the sensitivity of high-angle annular dark-field (HAADF) imaging to partial substitution of V for Mo in this structure is reported. While the relationship between the average V content in an atom column and the HAADF image intensity is not independent of thickness, it is a fairly weak function of thickness suggesting that HAADF STEM imaging in certain cases can provide a useful starting point for Rietveld refinements of mixed occupancy in complex materials. The thermal parameters of the various cations and oxygen anions in the model affect the amount of thermal diffuse scattering and therefore the intensity in the HAADF images. For complex materials where the structure has been derived via powder Rietveld refinement, the uncertainty in the thermal parameters may limit the accuracy of HAADF image simulations. With the current interest in quantitative microscopy, simulations need to accurately describe the electron scattering to the very high angles often subtended by a HAADF detector. For this system approximately 15% of the scattering occurs above 200 mrad at 200 kV. To simulate scattering to such high angles, very fine sampling of the projected potential is necessary which increases the computational cost of the simulation. Copyright © 2011 Elsevier B.V. All rights reserved.
Woehl, Taylor; Keller, Robert
2016-12-01
An annular dark field (ADF) detector was placed beneath a specimen in a field emission scanning electron microscope operated at 30kV to calibrate detector response to incident beam current, and to create transmission images of gold nanoparticles on silicon nitride (SiN) substrates of various thicknesses. Based on the linear response of the ADF detector diodes to beam current, we developed a method that allowed for direct determination of the percentage of that beam current forward scattered to the ADF detector from the sample, i.e. the transmitted electron (TE) yield. Collection angles for the ADF detector region were defined using a masking aperture above the detector and were systematically varied by changing the sample to detector distance. We found the contrast of the nanoparticles, relative to the SiN substrate, decreased monotonically with decreasing inner exclusion angle and increasing substrate thickness. We also performed Monte Carlo electron scattering simulations, which showed quantitative agreement with experimental contrast associated with the nanoparticles. Together, the experiments and Monte Carlo simulations revealed that the decrease in contrast with decreasing inner exclusion angle was due to a rapid increase in the TE yield of the low atomic number substrate. Nanoparticles imaged at low inner exclusion angles (<150mrad) and on thick substrates (>50nm) showed low image contrast in their centers surrounded by a bright high-contrast halo on their edges. This complex image contrast was predicted by Monte Carlo simulations, which we interpreted in terms of mixing of the nominally bright field (BF) and ADF electron signals. Our systematic investigation of inner exclusion angle and substrate thickness effects on ADF t-SEM imaging provides fundamental understanding of the contrast mechanisms for image formation, which in turn suggest practical limitations and optimal imaging conditions for different substrate thicknesses. Copyright © 2016. Published by Elsevier B.V.
Mauldin, F William; Owen, Kevin; Tiouririne, Mohamed; Hossack, John A
2012-06-01
The portability, low cost, and non-ionizing radiation associated with medical ultrasound suggest that it has potential as a superior alternative to X-ray for bone imaging. However, when conventional ultrasound imaging systems are used for bone imaging, clinical acceptance is frequently limited by artifacts derived from reflections occurring away from the main axis of the acoustic beam. In this paper, the physical source of off-axis artifacts and the effect of transducer geometry on these artifacts are investigated in simulation and experimental studies. In agreement with diffraction theory, the sampled linear-array geometry possessed increased off-axis energy compared with single-element piston geometry, and therefore, exhibited greater levels of artifact signal. Simulation and experimental results demonstrated that the linear-array geometry exhibited increased artifact signal when the center frequency increased, when energy off-axis to the main acoustic beam (i.e., grating lobes) was perpendicularly incident upon off-axis surfaces, and when off-axis surfaces were specular rather than diffusive. The simulation model used to simulate specular reflections was validated experimentally and a correlation coefficient of 0.97 between experimental and simulated peak reflection contrast was observed. In ex vivo experiments, the piston geometry yielded 4 and 6.2 dB average contrast improvement compared with the linear array when imaging the spinous process and interlaminar space of an animal spine, respectively. This work indicates that off-axis reflections are a major source of ultrasound image artifacts, particularly in environments comprising specular reflecting (i.e., bone or bone-like) objects. Transducer geometries with reduced sensitivity to off-axis surface reflections, such as a piston transducer geometry, yield significant reductions in image artifact.
Parasher, Arjun K; Kidwai, Sarah M; Schorn, Victor J; Goljo, Erden; Weinberg, Alan D; Richards-Kortum, Rebecca; Sikora, Andrew G; Iloreta, Alfred Marc; Govindaraj, Satish; Miles, Brett A
2015-12-01
High-resolution microendoscopy (HRME) enables real-time imaging of epithelial tissue. The utility of this novel imaging modality for inverted papilloma has not been previously described. This study examines the ability of otolaryngologists to differentiate between images of inverted papilloma and normal sinonasal mucosa obtained with a HRME. Inverted papilloma and normal sinonasal mucosa specimens were stained with a contrast agent, proflavine. HRME images were subsequently captured. Histopathological diagnosis was obtained for each sample. Quality-controlled images were used to assemble a training set. After reviewing the training images, 6 otolaryngologists without prior HRME experience reviewed and classified test images. Five samples of inverted papilloma and 2 normal sinonasal mucosa samples were collected. Four representative images from each specimen were used for the 28-image test set. The mean accuracy among all reviewers was 89.9% (95% confidence interval [CI], 84.3% to 94.0%). The sensitivity to correctly identify inverted papilloma was 86.7% (95% CI, 79.2% to 92.2%), and the specificity was 92.9% (95% CI, 89.0% to 100.0%). The Fleiss kappa interrater reliability score was 0.80 (95% CI, 0.70 to 0.89). Inverted papilloma and normal sinonasal mucosa have distinct HRME imaging characteristics. Otolaryngologists can be successfully trained to distinguish between inverted papilloma and normal sinonasal mucosa. HRME is a feasible tool for identification of inverted papilloma. By conducting future in vivo trials, HRME potentially may enable real-time surgical margin determination during surgical excision of inverted papilloma. © 2015 ARS-AAOA, LLC.
Various clinical application of phase contrast X-ray
NASA Astrophysics Data System (ADS)
Oh, Chilhwan; Park, Sangyong; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Je, Jungho
2008-02-01
In biomedical application study using phase contrast X-ray, both sample thickness or density and absorption difference are very important factors in aspects of contrast enhancement. We present experimental evidence that synchrotron hard X-ray are suitable for radiological imaging of biological samples down to the cellular level. We investigated the potential of refractive index radiology using un-monochromatized synchrotron hard X-rays for the imaging of cell and tissue in various diseases. Material had been adopted various medical field, such as apoE knockout mouse in cardiologic field, specimen from renal and prostatic carcinoma patient in urology, basal cell epithelioma in dermatology, brain tissue from autosy sample of pakinson's disease, artificially induced artilrtis tissue from rabbits and extracted tooth from patients of crack tooth syndrome. Formalin and paraffin fixed tissue blocks were cut in 3 mm thickness for the X-ray radiographic imaging. From adjacent areas, 4 μm thickness sections were also prepared for hematoxylin-eosin staining. Radiographic images of dissected tissues were obtained using the hard X-rays from the 7B2 beamline of the Pohang Light Source (PLS). The technique used for the study was the phase contrast images were compared with the optical microscopic images of corresponding histological slides. Radiographic images of various diseased tissues showed clear histological details of organelles in normal tissues. Most of cancerous lesions were well differentiated from adjacent normal tissues and detailed histological features of each tumor were clearly identified. Also normal microstructures were identifiable by the phase contrast imaging. Tissue in cancer or other disease showed clearly different findings from those of surrounding normal tissue. For the first time we successfully demonstrated that synchrotron hard X-rays can be used for radiological imaging of relatively thick tissue samples with great histological details.
NASA Astrophysics Data System (ADS)
Setlur Nagesh, S. V.; Khobragade, P.; Ionita, C.; Bednarek, D. R.; Rudin, S.
2015-03-01
Because x-ray based image-guided vascular interventions are minimally invasive they are currently the most preferred method of treating disorders such as stroke, arterial stenosis, and aneurysms; however, the x-ray exposure to the patient during long image-guided interventional procedures could cause harmful effects such as cancer in the long run and even tissue damage in the short term. ROI fluoroscopy reduces patient dose by differentially attenuating the incident x-rays outside the region-of-interest. To reduce the noise in the dose-reduced regions previously recursive temporal filtering was successfully demonstrated for neurovascular interventions. However, in cardiac interventions, anatomical motion is significant and excessive recursive filtering could cause blur. In this work the effects of three noise-reduction schemes, including recursive temporal filtering, spatial mean filtering, and a combination of spatial and recursive temporal filtering, were investigated in a simulated ROI dose-reduced cardiac intervention. First a model to simulate the aortic arch and its movement was built. A coronary stent was used to simulate a bioprosthetic valve used in TAVR procedures and was deployed under dose-reduced ROI fluoroscopy during the simulated heart motion. The images were then retrospectively processed for noise reduction in the periphery, using recursive temporal filtering, spatial filtering and a combination of both. Quantitative metrics for all three noise reduction schemes are calculated and are presented as results. From these it can be concluded that with significant anatomical motion, a combination of spatial and recursive temporal filtering scheme is best suited for reducing the excess quantum noise in the periphery. This new noise-reduction technique in combination with ROI fluoroscopy has the potential for substantial patient-dose savings in cardiac interventions.
On the theory and simulation of multiple Coulomb scattering of heavy-charged particles.
Striganov, S I
2005-01-01
The Moliere theory of multiple Coulomb scattering is modified to take into account the difference between processes of scattering off atomic nuclei and electrons. A simple analytical expression for angular distribution of charged particles passing through a thick absorber is found. It does not assume any special form for a differential scattering cross section and has a wider range of applicability than a gaussian approximation. A well-known method to simulate multiple Coulomb scatterings is based on treating 'soft' and 'hard' collisions differently. An angular deflection in a large number of 'soft' collisions is sampled using the proposed distribution function, a small number of 'hard' collision are simulated directly. A boundary between 'hard' and 'soft' collisions is defined, providing a precise sampling of a scattering angle (1% level) and a small number of 'hard' collisions. A corresponding simulating module takes into account projectile and nucleus charged distributions and exact kinematics of a projectile-electron interaction.
Imaging birefringent crystals using micro optical coherence tomography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sharma, Gargi; Singh, Kanwarpal; Gardecki, Joseph A.; Tearney, Guillermo J.
2017-02-01
Background: Uric acid crystals have recently been identified as a possible therapeutic target for coronary artery disease. Being subcellular in size, it is difficult to identify these crystals in situ. Micro optical coherence tomography (Micro-OCT) allows one to image subcellular structures with 1-micron resolution. Even though Micro-OCT should be capable of resolving urate crystals, it's difficult to differentiate these structures from other scattering particles within tissue. In this work we developed a novel polarization sensitive micro OCT (ps-Micro-OCT) system for identification of uric acid crystals. Methods: A spectrometer based ps-Micro-OCT system was developed using a broadband light source. The broadband input light was divided into reference and sample signals using a beam splitter. The reference signal was further divided into two polarized signals with different polarization states. Reflected reference and sample signals were combined and sent to a spectrometer that recorded the interference signal. Results: To test the performance of system, a mirror was used as sample and a quarter wave-plate was placed in the sample path. The measured quarter wave-plate angle values matched closely to actual angle values. Next we prepared uric acid crystals in our lab and imaged them using this system.We were able to image and identify these crystals based on polarization measurements. Conclusion: In this work we imaged and identified uric acid crystals using a newly developed ps-Micro-OCT system. The proposed technique will enable imaging uric acid crystals in coronary artery.
Veličković, Dušan; Chu, Rosalie K; Carrell, Alyssa A; Thomas, Mathew; Paša-Tolić, Ljiljana; Weston, David J; Anderton, Christopher R
2018-01-02
One critical aspect of mass spectrometry imaging (MSI) is the need to confidently identify detected analytes. While orthogonal tandem MS (e.g., LC-MS 2 ) experiments from sample extracts can assist in annotating ions, the spatial information about these molecules is lost. Accordingly, this could cause mislead conclusions, especially in cases where isobaric species exhibit different distributions within a sample. In this Technical Note, we employed a multimodal imaging approach, using matrix assisted laser desorption/ionization (MALDI)-MSI and liquid extraction surface analysis (LESA)-MS 2 I, to confidently annotate and localize a broad range of metabolites involved in a tripartite symbiosis system of moss, cyanobacteria, and fungus. We found that the combination of these two imaging modalities generated very congruent ion images, providing the link between highly accurate structural information onfered by LESA and high spatial resolution attainable by MALDI. These results demonstrate how this combined methodology could be very useful in differentiating metabolite routes in complex systems.
DNA origami-based shape IDs for single-molecule nanomechanical genotyping
NASA Astrophysics Data System (ADS)
Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai
2017-04-01
Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ~10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.
DNA origami-based shape IDs for single-molecule nanomechanical genotyping
Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai
2017-01-01
Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ∼10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level. PMID:28382928
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Tajima, T.; Seyama, M.
2018-02-01
We propose a differential photoacoustic spectroscopy (PAS), wherein two wavelengths of light with the same absorbance are selected, and differential signal is linearized by one of the two signals for a non-invasive blood glucose monitoring. PAS has the possibility to overcome the strong optical scattering in tissue, but there are still remaining issues: the water background and instability due to the variation in acoustic resonance conditions. A change in sample solution temperature is one of the causes of the variation in acoustic resonance conditions. Therefore, in this study, we investigated the sensitivity against glucose concentration under the condition where the temperature of the sample water solution ranges 30 to 40 °C. The glucose concentration change is simulated by shifting the wavelength of irradiated laser light, which can effectively change optical absorption. The temperature also affects optical absorption and the acoustic resonance condition (acoustic velocity). A distributed-feedback (DFB) laser, tunable wavelength laser (TWL) and an acoustic sensor were used to obtain the differential PAS signal. The wavelength of the DFB laser was 1.382 μm, and that of TWL was switched from 1.600 to 1.610 μm to simulate the glucose concentration change. Optical absorption by glucose occurs at around 1.600 μm. The sensitivities against temperature are almost the same: 1.9 and 1.8 %/°C for 1.600 and 1.610 μm. That is, the glucose dependence across the whole temperature range remains constant. This implies that temperature correction is available.
TH-A-18C-04: Ultrafast Cone-Beam CT Scatter Correction with GPU-Based Monte Carlo Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y; Southern Medical University, Guangzhou; Bai, T
2014-06-15
Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT). We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC) simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstructions within 30 seconds. Methods: The method consists of six steps: 1) FDK reconstruction using raw projection data; 2) Rigid Registration of planning CT to the FDK results; 3) MC scatter calculation at sparse view angles using the planning CT; 4) Interpolation of the calculated scatter signals to other angles; 5) Removal of scatter from the raw projections;more » 6) FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC scatter noise caused by low photon numbers. The method is validated on head-and-neck cases with simulated and clinical data. Results: We have studied impacts of photo histories, volume down sampling factors on the accuracy of scatter estimation. The Fourier analysis was conducted to show that scatter images calculated at 31 angles are sufficient to restore those at all angles with <0.1% error. For the simulated case with a resolution of 512×512×100, we simulated 10M photons per angle. The total computation time is 23.77 seconds on a Nvidia GTX Titan GPU. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU. Similar results were found for a real patient case. Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. The whole process of scatter correction and reconstruction is accomplished within 30 seconds. This study is supported in part by NIH (1R01CA154747-01), The Core Technology Research in Strategic Emerging Industry, Guangdong, China (2011A081402003)« less
Resolution Versus Error for Computational Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luzi, Lorenzo; Stevens, Andrew; Yang, Hao
Images that are collected via scanning transmission electron microscopy (STEM) can be undersampled to avoid damage to the specimen while maintaining resolution [1, 2]. We have used BPFA to impute missing data and reduce noise [3]. The reconstruction is typically evaluated using the peak signal-to-noise ratio (PSNR). This measure is too conservative for STEM images and we propose that the Fourier ring correlation (FRC) is used instead to evaluate the reconstruction. We are not concerned with exact reconstruction of the truth image, and therefore PSNR is a conservative estimation of the quality of the reconstruction. Instead, we are concerned withmore » the visual resolution of the image and whether atoms can be distinguished. We have evaluated the reconstruction of a simulated STEM image using the FRC and compared the results with the PSNR measurements. The FRC captures the resolution of the image and is not affected by a large MSE if the atom peaks are still distinguishable. The noisy and reconstructed images are shown in Figure 1. The simulated STEM image was sampled at 100%, 80%, 40%, and 20% of the original pixels to simulate an undersampled scan. The reconstruction was done using BPFA with a patch size of 10 x 10 and no overlapping patches. Not having overlapping patches produces inferior results but they are still acceptable. The dictionary size is 64 and 30 iterations were completed during each reconstruction. The 100% image was denoised instead of reconstructed. Poisson noise was applied to the simulated image with λ values of 500, 50, and 5 to simulate lower imaging dose. The original simulated STEM image was also included in our calculations and was generated using a dose of 1000. The simulated STEM image is 100 by 100 pixels and has essentially no high frequency components. The image reconstruction tends to smooth the data, also resulting in no high frequency components. This causes the FRC of the two images to be large at higher resolutions and may be misleading. For this reason, the BPFA has no overlap to avoid excessive smoothing. Moreover, the resolution of the simulated image is approximately 9.2 (1/nm), so we only look that far in the frequency domain when performing FRC. If the FRC curve does not crossover the threshold, a resolution value of 9.2 is used. We emphasize that our reported results are conservative. The FRC and PSNR values using the ground truth and the reconstructed images are shown in Tables 1 and 2. The left side show the metrics without using BPFA (missing pixels) and the right side show the metrics after using BPFA. When we did not use BPFA, the Fourier transform was estimated [4]. Some threshold curves have been studied [5], but they are derived for additive noise models. Since we have a Poisson noise model, we have used the more conservative threshold of 0.5 for our calculations. Ten images were used to construct each cell of tables in the form of the mean of the metric plus or minus its standard deviation. As expected, the PSNR dies off much quicker than the FRC values for the same image. For the 100% and 80% sampled versions of the truth image, the resolution only dies off when the dose is 5. However, the PSNR dies off rapidly as the dose is reduced. For the 1000, 500, and 50 dose images, the FRC is the maximum, or close, until we undersample at 20%. The PSNR for these values tapers down as we get into the bottom right hand corner of the table, even though the resolution remains high. Overall, we find that undersampled images can be reconstructed to acceptable resolution even when the dose per pixel is also reduced[6]. References: [1]A Stevens, H Yang, L Carin et al. Microscopy 63(1), (2014), pp. 41. [2]A Stevens, L Kovarik, P Abellan et al. Advanced Structural and Chemical Imaging 1(1), (2015), pp. 1. [3]M Zhou, H Chen, J Paisley et al. Image Processing, IEEE Transactions on 21(1), (2012), pp. 130. [4]V. Y. Liepin’sh. Automatic control and computer sciences 30(3), (1996), pp. 20.« less
Local sample thickness determination via scanning transmission electron microscopy defocus series.
Beyer, A; Straubinger, R; Belz, J; Volz, K
2016-05-01
The usable aperture sizes in (scanning) transmission electron microscopy ((S)TEM) have significantly increased in the past decade due to the introduction of aberration correction. In parallel with the consequent increase of convergence angle the depth of focus has decreased severely and optical sectioning in the STEM became feasible. Here we apply STEM defocus series to derive the local sample thickness of a TEM sample. To this end experimental as well as simulated defocus series of thin Si foils were acquired. The systematic blurring of high resolution high angle annular dark field images is quantified by evaluating the standard deviation of the image intensity for each image of a defocus series. The derived dependencies exhibit a pronounced maximum at the optimum defocus and drop to a background value for higher or lower values. The full width half maximum (FWHM) of the curve is equal to the sample thickness above a minimum thickness given by the size of the used aperture and the chromatic aberration of the microscope. The thicknesses obtained from experimental defocus series applying the proposed method are in good agreement with the values derived from other established methods. The key advantages of this method compared to others are its high spatial resolution and that it does not involve any time consuming simulations. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Optimal sampling and quantization of synthetic aperture radar signals
NASA Technical Reports Server (NTRS)
Wu, C.
1978-01-01
Some theoretical and experimental results on optimal sampling and quantization of synthetic aperture radar (SAR) signals are presented. It includes a description of a derived theoretical relationship between the pixel signal to noise ratio of processed SAR images and the number of quantization bits per sampled signal, assuming homogeneous extended targets. With this relationship known, a solution may be realized for the problem of optimal allocation of a fixed data bit-volume (for specified surface area and resolution criterion) between the number of samples and the number of bits per sample. The results indicate that to achieve the best possible image quality for a fixed bit rate and a given resolution criterion, one should quantize individual samples coarsely and thereby maximize the number of multiple looks. The theoretical results are then compared with simulation results obtained by processing aircraft SAR data.
Method of simulation and visualization of FDG metabolism based on VHP image
NASA Astrophysics Data System (ADS)
Cui, Yunfeng; Bai, Jing
2005-04-01
FDG ([18F] 2-fluoro-2-deoxy-D-glucose) is the typical tracer used in clinical PET (positron emission tomography) studies. The FDG-PET is an important imaging tool for early diagnosis and treatment of malignant tumor and functional disease. The main purpose of this work is to propose a method that represents FDG metabolism in human body through the simulation and visualization of 18F distribution process dynamically based on the segmented VHP (Visible Human Project) image dataset. First, the plasma time-activity curve (PTAC) and the tissues time-activity curves (TTAC) are obtained from the previous studies and the literatures. According to the obtained PTAC and TTACs, a set of corresponding values are assigned to the segmented VHP image, Thus a set of dynamic images are derived to show the 18F distribution in the concerned tissues for the predetermined sampling schedule. Finally, the simulated FDG distribution images are visualized in 3D and 2D formats, respectively, incorporated with principal interaction functions. As compared with original PET image, our visualization result presents higher resolution because of the high resolution of VHP image data, and show the distribution process of 18F dynamically. The results of our work can be used in education and related research as well as a tool for the PET operator to design their PET experiment program.
Spectroscopic thermoacoustic imaging of water and fat composition
NASA Astrophysics Data System (ADS)
Bauer, Daniel R.; Wang, Xiong; Vollin, Jeff; Xin, Hao; Witte, Russell S.
2012-07-01
During clinical studies, thermoacoustic imaging (TAI) failed to reliably identify malignant breast tissue. To increase detection capability, we propose spectroscopic TAI to differentiate samples based on the slope of their dielectric absorption. Phantoms composed of different ratios of water and fat were imaged using excitation frequencies between 2.7 and 3.1 GHz. The frequency-dependent slope of the TA signal was highly correlated with that of its absorption coefficient (R2 = 0.98 and p < 0.01), indicating spectroscopic TAI can distinguish materials based on their intrinsic dielectric properties. This approach potentially enhances cancer detection due to the increased water content of many tumors.
Caspi, Asaf; Amiaz, Revital; Davidson, Noa; Czerniak, Efrat; Gur, Eitan; Kiryati, Nahum; Harari, Daniel; Furst, Miriam; Stein, Daniel
2017-02-01
Body image disturbances are a prominent feature of eating disorders (EDs). Our aim was to test and evaluate a computerized assessment of body image (CABI), to compare the body image disturbances in different ED types, and to assess the factors affecting body image. The body image of 22 individuals undergoing inpatient treatment with restricting anorexia nervosa (AN-R), 22 with binge/purge AN (AN-B/P), 20 with bulimia nervosa (BN), and 41 healthy controls was assessed using the Contour Drawing Rating Scale (CDRS), the CABI, which simulated the participants' self-image in different levels of weight changes, and the Eating Disorder Inventory-2-Body Dissatisfaction (EDI-2-BD) scale. Severity of depression and anxiety was also assessed. Significant differences were found among the three scales assessing body image, although most of their dimensions differentiated between patients with EDs and controls. Our findings support the use of the CABI in the comparison of body image disturbances in patients with EDs vs. Moreover, the use of different assessment tools allows for a better understanding of the differences in body image disturbances in different ED types.
NASA Astrophysics Data System (ADS)
Xuan, Ruijiao; Zhao, Xinyan; Hu, Doudou; Jian, Jianbo; Wang, Tailing; Hu, Chunhong
2015-07-01
X-ray phase-contrast imaging (PCI) can substantially enhance contrast, and is particularly useful in differentiating biological soft tissues with small density differences. Combined with computed tomography (CT), PCI-CT enables the acquisition of accurate microstructures inside biological samples. In this study, liver microvasculature was visualized without contrast agents in vitro with PCI-CT using liver fibrosis samples induced by bile duct ligation (BDL) in rats. The histological section examination confirmed the correspondence of CT images with the microvascular morphology of the samples. By means of the PCI-CT and three-dimensional (3D) visualization technique, 3D microvascular structures in samples from different stages of liver fibrosis were clearly revealed. Different types of blood vessels, including portal veins and hepatic veins, in addition to ductular proliferation and bile ducts, could be distinguished with good sensitivity, excellent specificity and excellent accuracy. The study showed that PCI-CT could assess the morphological changes in liver microvasculature that result from fibrosis and allow characterization of the anatomical and pathological features of the microvasculature. With further development of PCI-CT technique, it may become a novel noninvasive imaging technique for the auxiliary analysis of liver fibrosis.
Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies
Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong
2014-01-01
Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS were found to be different due to the difference in the tomosynthesis image reconstruction algorithms. Conclusions: It is feasible to simultaneously generate x-ray differential phase contrast, phase contrast, and absorption contrast tomosynthesis images using a grating-based data acquisition setup. The method shows promise in improving the visibility of several low-density materials and therefore merits further investigation. PMID:24387511
Mass decomposition of galaxies using DECA software package
NASA Astrophysics Data System (ADS)
Mosenkov, A. V.
2014-01-01
The new DECA software package, which is designed to perform photometric analysis of the images of disk and elliptical galaxies having a regular structure, is presented. DECA is written in Python interpreted language and combines the capabilities of several widely used packages for astronomical data processing such as IRAF, SExtractor, and the GALFIT code used to perform two-dimensional decomposition of galaxy images into several photometric components (bulge+disk). DECA has the advantage that it can be applied to large samples of galaxies with different orientations with respect to the line of sight (including edge-on galaxies) and requires minimum human intervention. Examples of using the package to study a sample of simulated galaxy images and a sample of real objects are shown to demonstrate that DECA can be a reliable tool for the study of the structure of galaxies.
System reliability of randomly vibrating structures: Computational modeling and laboratory testing
NASA Astrophysics Data System (ADS)
Sundar, V. S.; Ammanagi, S.; Manohar, C. S.
2015-09-01
The problem of determination of system reliability of randomly vibrating structures arises in many application areas of engineering. We discuss in this paper approaches based on Monte Carlo simulations and laboratory testing to tackle problems of time variant system reliability estimation. The strategy we adopt is based on the application of Girsanov's transformation to the governing stochastic differential equations which enables estimation of probability of failure with significantly reduced number of samples than what is needed in a direct simulation study. Notably, we show that the ideas from Girsanov's transformation based Monte Carlo simulations can be extended to conduct laboratory testing to assess system reliability of engineering structures with reduced number of samples and hence with reduced testing times. Illustrative examples include computational studies on a 10-degree of freedom nonlinear system model and laboratory/computational investigations on road load response of an automotive system tested on a four-post test rig.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orea, Adrian; Betancourt, Minerba
aThe objective for this project was to use MINERvA data to tune the simulation models in order to obtain the precision needed for current and future neutrino experiments. In order to do this, the current models need to be validated and then improved.more » $$\\#10146$$; Validation was done by recreating figures that have been used in previous publications $$\\#61553$$; This was done by comparing data from the detector and the simulation model (GENIE) $$\\#10146$$; Additionally, a newer version of GENIE was compared to the GENIE used for the publications to validate the new version as well as to note any improvements Another objective was to add new samples into the NUISANCE framework, which was used to compare data from the detector and simulation models. $$\\#10146$$; Specifically, the added sample was the two dimensional histogram of the double differential cross section as a function of the transversal and z-direction momentum for Numu and Numubar $$\\#61553$$; Was also used for validation« less
Sangeetha, S; Sujatha, C M; Manamalli, D
2014-01-01
In this work, anisotropy of compressive and tensile strength regions of femur trabecular bone are analysed using quaternion wavelet transforms. The normal and abnormal femur trabecular bone radiographic images are considered for this study. The sub-anatomic regions, which include compressive and tensile regions, are delineated using pre-processing procedures. These delineated regions are subjected to quaternion wavelet transforms and statistical parameters are derived from the transformed images. These parameters are correlated with apparent porosity, which is derived from the strength regions. Further, anisotropy is also calculated from the transformed images and is analyzed. Results show that the anisotropy values derived from second and third phase components of quaternion wavelet transform are found to be distinct for normal and abnormal samples with high statistical significance for both compressive and tensile regions. These investigations demonstrate that architectural anisotropy derived from QWT analysis is able to differentiate normal and abnormal samples.
In vivo differentiation of complementary contrast media at dual-energy CT.
Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F; Gao, Dong-Wei; Yeh, Benjamin M
2012-10-01
To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase-enhanced CT scan simultaneously in a single examination. Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012.
In Vivo Differentiation of Complementary Contrast Media at Dual-Energy CT
Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F.; Gao, Dong-Wei
2012-01-01
Purpose: To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Materials and Methods: Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Results: Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase–enhanced CT scan simultaneously in a single examination. Conclusion: Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012 PMID:22778447
Face and construct validity of a computer-based virtual reality simulator for ERCP.
Bittner, James G; Mellinger, John D; Imam, Toufic; Schade, Robert R; Macfadyen, Bruce V
2010-02-01
Currently, little evidence supports computer-based simulation for ERCP training. To determine face and construct validity of a computer-based simulator for ERCP and assess its perceived utility as a training tool. Novice and expert endoscopists completed 2 simulated ERCP cases by using the GI Mentor II. Virtual Education and Surgical Simulation Laboratory, Medical College of Georgia. Outcomes included times to complete the procedure, reach the papilla, and use fluoroscopy; attempts to cannulate the papilla, pancreatic duct, and common bile duct; and number of contrast injections and complications. Subjects assessed simulator graphics, procedural accuracy, difficulty, haptics, overall realism, and training potential. Only when performance data from cases A and B were combined did the GI Mentor II differentiate novices and experts based on times to complete the procedure, reach the papilla, and use fluoroscopy. Across skill levels, overall opinions were similar regarding graphics (moderately realistic), accuracy (similar to clinical ERCP), difficulty (similar to clinical ERCP), overall realism (moderately realistic), and haptics. Most participants (92%) claimed that the simulator has definite training potential or should be required for training. Small sample size, single institution. The GI Mentor II demonstrated construct validity for ERCP based on select metrics. Most subjects thought that the simulated graphics, procedural accuracy, and overall realism exhibit face validity. Subjects deemed it a useful training tool. Study repetition involving more participants and cases may help confirm results and establish the simulator's ability to differentiate skill levels based on ERCP-specific metrics.
NASA Astrophysics Data System (ADS)
Grulke, Eric A.; Wu, Xiaochun; Ji, Yinglu; Buhr, Egbert; Yamamoto, Kazuhiro; Song, Nam Woong; Stefaniak, Aleksandr B.; Schwegler-Berry, Diane; Burchett, Woodrow W.; Lambert, Joshua; Stromberg, Arnold J.
2018-04-01
Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor. Nanorods could be distinguished from nanocubes using an elongational shape descriptor. A non-parametric statistical test showed that cumulative distributions of an elongational shape descriptor, that is, the aspect ratio, were statistically different between the two samples for all laboratories. While the scale parameters of size and shape distributions were similar for both samples, the width parameters of size and shape distributions were statistically different. This protocol fulfills an important need for a standardized approach to measure gold nanorod size and shape distributions for applications in which quantitative measurements and comparisons are important. Furthermore, the validated protocol workflow can be automated, thus providing consistent and rapid measurements of nanorod size and shape distributions for researchers, regulatory agencies, and industry.
In-flight edge response measurements for high-spatial-resolution remote sensing systems
NASA Astrophysics Data System (ADS)
Blonski, Slawomir; Pagnutti, Mary A.; Ryan, Robert; Zanoni, Vickie
2002-09-01
In-flight measurements of spatial resolution were conducted as part of the NASA Scientific Data Purchase Verification and Validation process. Characterization included remote sensing image products with ground sample distance of 1 meter or less, such as those acquired with the panchromatic imager onboard the IKONOS satellite and the airborne ADAR System 5500 multispectral instrument. Final image products were used to evaluate the effects of both the image acquisition system and image post-processing. Spatial resolution was characterized by full width at half maximum of an edge-response-derived line spread function. The edge responses were analyzed using the tilted-edge technique that overcomes the spatial sampling limitations of the digital imaging systems. As an enhancement to existing algorithms, the slope of the edge response and the orientation of the edge target were determined by a single computational process. Adjacent black and white square panels, either painted on a flat surface or deployed as tarps, formed the ground-based edge targets used in the tests. Orientation of the deployable tarps was optimized beforehand, based on simulations of the imaging system. The effects of such factors as acquisition geometry, temporal variability, Modulation Transfer Function compensation, and ground sample distance on spatial resolution were investigated.
Sparsely-sampled hyperspectral stimulated Raman scattering microscopy: a theoretical investigation
NASA Astrophysics Data System (ADS)
Lin, Haonan; Liao, Chien-Sheng; Wang, Pu; Huang, Kai-Chih; Bouman, Charles A.; Kong, Nan; Cheng, Ji-Xin
2017-02-01
A hyperspectral image corresponds to a data cube with two spatial dimensions and one spectral dimension. Through linear un-mixing, hyperspectral images can be decomposed into spectral signatures of pure components as well as their concentration maps. Due to this distinct advantage on component identification, hyperspectral imaging becomes a rapidly emerging platform for engineering better medicine and expediting scientific discovery. Among various hyperspectral imaging techniques, hyperspectral stimulated Raman scattering (HSRS) microscopy acquires data in a pixel-by-pixel scanning manner. Nevertheless, current image acquisition speed for HSRS is insufficient to capture the dynamics of freely moving subjects. Instead of reducing the pixel dwell time to achieve speed-up, which would inevitably decrease signal-to-noise ratio (SNR), we propose to reduce the total number of sampled pixels. Location of sampled pixels are carefully engineered with triangular wave Lissajous trajectory. Followed by a model-based image in-painting algorithm, the complete data is recovered for linear unmixing. Simulation results show that by careful selection of trajectory, a fill rate as low as 10% is sufficient to generate accurate linear unmixing results. The proposed framework applies to any hyperspectral beam-scanning imaging platform which demands high acquisition speed.
One step linear reconstruction method for continuous wave diffuse optical tomography
NASA Astrophysics Data System (ADS)
Ukhrowiyah, N.; Yasin, M.
2017-09-01
The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.
Cone beam x-ray luminescence computed tomography: a feasibility study.
Chen, Dongmei; Zhu, Shouping; Yi, Huangjian; Zhang, Xianghan; Chen, Duofang; Liang, Jimin; Tian, Jie
2013-03-01
The appearance of x-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging by x ray. In the previous XLCT system, the sample was irradiated by a sequence of narrow x-ray beams and the x-ray luminescence was measured by a highly sensitive charge coupled device (CCD) camera. This resulted in a relatively long sampling time and relatively low utilization of the x-ray beam. In this paper, a novel cone beam x-ray luminescence computed tomography strategy is proposed, which can fully utilize the x-ray dose and shorten the scanning time. The imaging model and reconstruction method are described. The validity of the imaging strategy has been studied in this paper. In the cone beam XLCT system, the cone beam x ray was adopted to illuminate the sample and a highly sensitive CCD camera was utilized to acquire luminescent photons emitted from the sample. Photons scattering in biological tissues makes it an ill-posed problem to reconstruct the 3D distribution of the x-ray luminescent sample in the cone beam XLCT. In order to overcome this issue, the authors used the diffusion approximation model to describe the photon propagation in tissues, and employed the sparse regularization method for reconstruction. An incomplete variables truncated conjugate gradient method and permissible region strategy were used for reconstruction. Meanwhile, traditional x-ray CT imaging could also be performed in this system. The x-ray attenuation effect has been considered in their imaging model, which is helpful in improving the reconstruction accuracy. First, simulation experiments with cylinder phantoms were carried out to illustrate the validity of the proposed compensated method. The experimental results showed that the location error of the compensated algorithm was smaller than that of the uncompensated method. The permissible region strategy was applied and reduced the reconstruction error to less than 2 mm. The robustness and stability were then evaluated from different view numbers, different regularization parameters, different measurement noise levels, and optical parameters mismatch. The reconstruction results showed that the settings had a small effect on the reconstruction. The nonhomogeneous phantom simulation was also carried out to simulate a more complex experimental situation and evaluated their proposed method. Second, the physical cylinder phantom experiments further showed similar results in their prototype XLCT system. With the discussion of the above experiments, it was shown that the proposed method is feasible to the general case and actual experiments. Utilizing numerical simulation and physical experiments, the authors demonstrated the validity of the new cone beam XLCT method. Furthermore, compared with the previous narrow beam XLCT, the cone beam XLCT could more fully utilize the x-ray dose and the scanning time would be shortened greatly. The study of both simulation experiments and physical phantom experiments indicated that the proposed method was feasible to the general case and actual experiments.
Dual function microscope for quantitative DIC and birefringence imaging
NASA Astrophysics Data System (ADS)
Li, Chengshuai; Zhu, Yizheng
2016-03-01
A spectral multiplexing interferometry (SXI) method is presented for integrated birefringence and phase gradient measurement on label-free biological specimens. With SXI, the retardation and orientation of sample birefringence are simultaneously encoded onto two separate spectral carrier waves, generated by a crystal retarder oriented at a specific angle. Thus sufficient information for birefringence determination can be obtained from a single interference spectrum, eliminating the need for multiple acquisitions with mechanical rotation or electrical modulation. In addition, with the insertion of a Nomarski prism, the setup can then acquire quantitative differential interference contrast images. Red blood cells infected by malaria parasites are imaged for birefringence retardation as well as phase gradient. The results demonstrate that the SXI approach can achieve both quantitative phase imaging and birefringence imaging with a single, high-sensitivity system.
Swimsuit issues: promoting positive body image in young women's magazines.
Boyd, Elizabeth Reid; Moncrieff-Boyd, Jessica
2011-08-01
This preliminary study reviews the promotion of healthy body image to young Australian women, following the 2009 introduction of the voluntary Industry Code of Conduct on Body Image. The Code includes using diverse sized models in magazines. A qualitative content analysis of the 2010 annual 'swimsuit issues' was conducted on 10 Australian young women's magazines. Pictorial and/or textual editorial evidence of promoting diverse body shapes and sizes was regarded as indicative of the magazines' upholding aspects of the voluntary Code of Conduct for Body Image. Diverse sized models were incorporated in four of the seven magazines with swimsuit features sampled. Body size differentials were presented as part of the swimsuit features in three of the magazines sampled. Tips for diverse body type enhancement were included in four of the magazines. All magazines met at least one criterion. One magazine displayed evidence of all three criteria. Preliminary examination suggests that more than half of young women's magazines are upholding elements of the voluntary Code of Conduct for Body Image, through representation of diverse-sized women in their swimsuit issues.
Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bootsma, G. J.; Verhaegen, F.; Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4
2013-11-15
Purpose: X-ray scatter is a source of significant image quality loss in cone-beam computed tomography (CBCT). The use of Monte Carlo (MC) simulations separating primary and scattered photons has allowed the structure and nature of the scatter distribution in CBCT to become better elucidated. This work seeks to quantify the structure and determine a suitable basis function for the scatter distribution by examining its spectral components using Fourier analysis.Methods: The scatter distribution projection data were simulated using a CBCT MC model based on the EGSnrc code. CBCT projection data, with separated primary and scatter signal, were generated for a 30.6more » cm diameter water cylinder [single angle projection with varying axis-to-detector distance (ADD) and bowtie filters] and two anthropomorphic phantoms (head and pelvis, 360 projections sampled every 1°, with and without a compensator). The Fourier transform of the resulting scatter distributions was computed and analyzed both qualitatively and quantitatively. A novel metric called the scatter frequency width (SFW) is introduced to determine the scatter distribution's frequency content. The frequency content results are used to determine a set basis functions, consisting of low-frequency sine and cosine functions, to fit and denoise the scatter distribution generated from MC simulations using a reduced number of photons and projections. The signal recovery is implemented using Fourier filtering (low-pass Butterworth filter) and interpolation. Estimates of the scatter distribution are used to correct and reconstruct simulated projections.Results: The spatial and angular frequencies are contained within a maximum frequency of 0.1 cm{sup −1} and 7/(2π) rad{sup −1} for the imaging scenarios examined, with these values varying depending on the object and imaging setup (e.g., ADD and compensator). These data indicate spatial and angular sampling every 5 cm and π/7 rad (∼25°) can be used to properly capture the scatter distribution, with reduced sampling possible depending on the imaging scenario. Using a low-pass Butterworth filter, tuned with the SFW values, to denoise the scatter projection data generated from MC simulations using 10{sup 6} photons resulted in an error reduction of greater than 85% for the estimating scatter in single and multiple projections. Analysis showed that the use of a compensator helped reduce the error in estimating the scatter distribution from limited photon simulations by more than 37% when compared to the case without a compensator for the head and pelvis phantoms. Reconstructions of simulated head phantom projections corrected by the filtered and interpolated scatter estimates showed improvements in overall image quality.Conclusions: The spatial frequency content of the scatter distribution in CBCT is found to be contained within the low frequency domain. The frequency content is modulated both by object and imaging parameters (ADD and compensator). The low-frequency nature of the scatter distribution allows for a limited set of sine and cosine basis functions to be used to accurately represent the scatter signal in the presence of noise and reduced data sampling decreasing MC based scatter estimation time. Compensator induced modulation of the scatter distribution reduces the frequency content and improves the fitting results.« less
Aircraft lightning-induced voltage test technique developments
NASA Technical Reports Server (NTRS)
Crouch, K. E.
1983-01-01
High voltage safety, fuels safety, simulation, and response/measurement techniques are discussed. Travelling wave transit times, return circuit conductor configurations, LC ladder network generators, and repetitive pulse techniques are also discussed. Differential conductive coaxial cable, analog fiber optic link, repetitive pulse sampled data instrumentation system, flash A/D optic link system, and an FM telemetry system are considered.
An edge preserving differential image coding scheme
NASA Technical Reports Server (NTRS)
Rost, Martin C.; Sayood, Khalid
1992-01-01
Differential encoding techniques are fast and easy to implement. However, a major problem with the use of differential encoding for images is the rapid edge degradation encountered when using such systems. This makes differential encoding techniques of limited utility, especially when coding medical or scientific images, where edge preservation is of utmost importance. A simple, easy to implement differential image coding system with excellent edge preservation properties is presented. The coding system can be used over variable rate channels, which makes it especially attractive for use in the packet network environment.
Wang, Xiao; Gu, Jinghua; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua
2017-01-15
The advent of high-throughput DNA methylation profiling techniques has enabled the possibility of accurate identification of differentially methylated genes for cancer research. The large number of measured loci facilitates whole genome methylation study, yet posing great challenges for differential methylation detection due to the high variability in tumor samples. We have developed a novel probabilistic approach, D: ifferential M: ethylation detection using a hierarchical B: ayesian model exploiting L: ocal D: ependency (DM-BLD), to detect differentially methylated genes based on a Bayesian framework. The DM-BLD approach features a joint model to capture both the local dependency of measured loci and the dependency of methylation change in samples. Specifically, the local dependency is modeled by Leroux conditional autoregressive structure; the dependency of methylation changes is modeled by a discrete Markov random field. A hierarchical Bayesian model is developed to fully take into account the local dependency for differential analysis, in which differential states are embedded as hidden variables. Simulation studies demonstrate that DM-BLD outperforms existing methods for differential methylation detection, particularly when the methylation change is moderate and the variability of methylation in samples is high. DM-BLD has been applied to breast cancer data to identify important methylated genes (such as polycomb target genes and genes involved in transcription factor activity) associated with breast cancer recurrence. A Matlab package of DM-BLD is available at http://www.cbil.ece.vt.edu/software.htm CONTACT: Xuan@vt.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Mikkelsen, Irene Klærke; Jones, P Simon; Ribe, Lars Riisgaard; Alawneh, Josef; Puig, Josep; Bekke, Susanne Lise; Tietze, Anna; Gillard, Jonathan H; Warburton, Elisabeth A; Pedraza, Salva; Baron, Jean-Claude; Østergaard, Leif; Mouridsen, Kim
2015-07-01
Lesion detection in acute stroke by computed-tomography perfusion (CTP) can be affected by incomplete bolus coverage in veins and hypoperfused tissue, so-called bolus truncation (BT), and low contrast-to-noise ratio (CNR). We examined the BT-frequency and hypothesized that image down-sampling and a vascular model (VM) for perfusion calculation would improve normo- and hypoperfused tissue classification. CTP datasets from 40 acute stroke patients were retrospectively analysed for BT. In 16 patients with hypoperfused tissue but no BT, repeated 2-by-2 image down-sampling and uniform filtering was performed, comparing CNR to perfusion-MRI levels and tissue classification to that of unprocessed data. By simulating reduced scan duration, the minimum scan-duration at which estimated lesion volumes came within 10% of their true volume was compared for VM and state-of-the-art algorithms. BT in veins and hypoperfused tissue was observed in 9/40 (22.5%) and 17/40 patients (42.5%), respectively. Down-sampling to 128 × 128 resolution yielded CNR comparable to MR data and improved tissue classification (p = 0.0069). VM reduced minimum scan duration, providing reliable maps of cerebral blood flow and mean transit time: 5 s (p = 0.03) and 7 s (p < 0.0001), respectively). BT is not uncommon in stroke CTP with 40-s scan duration. Applying image down-sampling and VM improve tissue classification. • Too-short imaging duration is common in clinical acute stroke CTP imaging. • The consequence is impaired identification of hypoperfused tissue in acute stroke patients. • The vascular model is less sensitive than current algorithms to imaging duration. • Noise reduction by image down-sampling improves identification of hypoperfused tissue by CTP.