Sample records for image synthesis method

  1. Patch Based Synthesis of Whole Head MR Images: Application to EPI Distortion Correction.

    PubMed

    Roy, Snehashis; Chou, Yi-Yu; Jog, Amod; Butman, John A; Pham, Dzung L

    2016-10-01

    Different magnetic resonance imaging pulse sequences are used to generate image contrasts based on physical properties of tissues, which provide different and often complementary information about them. Therefore multiple image contrasts are useful for multimodal analysis of medical images. Often, medical image processing algorithms are optimized for particular image contrasts. If a desirable contrast is unavailable, contrast synthesis (or modality synthesis) methods try to "synthesize" the unavailable constrasts from the available ones. Most of the recent image synthesis methods generate synthetic brain images, while whole head magnetic resonance (MR) images can also be useful for many applications. We propose an atlas based patch matching algorithm to synthesize T 2 -w whole head (including brain, skull, eyes etc) images from T 1 -w images for the purpose of distortion correction of diffusion weighted MR images. The geometric distortion in diffusion MR images due to in-homogeneous B 0 magnetic field are often corrected by non-linearly registering the corresponding b = 0 image with zero diffusion gradient to an undistorted T 2 -w image. We show that our synthetic T 2 -w images can be used as a template in absence of a real T 2 -w image. Our patch based method requires multiple atlases with T 1 and T 2 to be registeLowRes to a given target T 1 . Then for every patch on the target, multiple similar looking matching patches are found on the atlas T 1 images and corresponding patches on the atlas T 2 images are combined to generate a synthetic T 2 of the target. We experimented on image data obtained from 44 patients with traumatic brain injury (TBI), and showed that our synthesized T 2 images produce more accurate distortion correction than a state-of-the-art registration based image synthesis method.

  2. Comparison of texture synthesis methods for content generation in ultrasound simulation for training

    NASA Astrophysics Data System (ADS)

    Mattausch, Oliver; Ren, Elizabeth; Bajka, Michael; Vanhoey, Kenneth; Goksel, Orcun

    2017-03-01

    Navigation and interpretation of ultrasound (US) images require substantial expertise, the training of which can be aided by virtual-reality simulators. However, a major challenge in creating plausible simulated US images is the generation of realistic ultrasound speckle. Since typical ultrasound speckle exhibits many properties of Markov Random Fields, it is conceivable to use texture synthesis for generating plausible US appearance. In this work, we investigate popular classes of texture synthesis methods for generating realistic US content. In a user study, we evaluate their performance for reproducing homogeneous tissue regions in B-mode US images from small image samples of similar tissue and report the best-performing synthesis methods. We further show that regression trees can be used on speckle texture features to learn a predictor for US realism.

  3. Random forest regression for magnetic resonance image synthesis.

    PubMed

    Jog, Amod; Carass, Aaron; Roy, Snehashis; Pham, Dzung L; Prince, Jerry L

    2017-01-01

    By choosing different pulse sequences and their parameters, magnetic resonance imaging (MRI) can generate a large variety of tissue contrasts. This very flexibility, however, can yield inconsistencies with MRI acquisitions across datasets or scanning sessions that can in turn cause inconsistent automated image analysis. Although image synthesis of MR images has been shown to be helpful in addressing this problem, an inability to synthesize both T 2 -weighted brain images that include the skull and FLuid Attenuated Inversion Recovery (FLAIR) images has been reported. The method described herein, called REPLICA, addresses these limitations. REPLICA is a supervised random forest image synthesis approach that learns a nonlinear regression to predict intensities of alternate tissue contrasts given specific input tissue contrasts. Experimental results include direct image comparisons between synthetic and real images, results from image analysis tasks on both synthetic and real images, and comparison against other state-of-the-art image synthesis methods. REPLICA is computationally fast, and is shown to be comparable to other methods on tasks they are able to perform. Additionally REPLICA has the capability to synthesize both T 2 -weighted images of the full head and FLAIR images, and perform intensity standardization between different imaging datasets. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. PlenoPatch: Patch-Based Plenoptic Image Manipulation.

    PubMed

    Zhang, Fang-Lue; Wang, Jue; Shechtman, Eli; Zhou, Zi-Ye; Shi, Jia-Xin; Hu, Shi-Min

    2017-05-01

    Patch-based image synthesis methods have been successfully applied for various editing tasks on still images, videos and stereo pairs. In this work we extend patch-based synthesis to plenoptic images captured by consumer-level lenselet-based devices for interactive, efficient light field editing. In our method the light field is represented as a set of images captured from different viewpoints. We decompose the central view into different depth layers, and present it to the user for specifying the editing goals. Given an editing task, our method performs patch-based image synthesis on all affected layers of the central view, and then propagates the edits to all other views. Interaction is done through a conventional 2D image editing user interface that is familiar to novice users. Our method correctly handles object boundary occlusion with semi-transparency, thus can generate more realistic results than previous methods. We demonstrate compelling results on a wide range of applications such as hole-filling, object reshuffling and resizing, changing object depth, light field upscaling and parallax magnification.

  5. Multiple Representations-Based Face Sketch-Photo Synthesis.

    PubMed

    Peng, Chunlei; Gao, Xinbo; Wang, Nannan; Tao, Dacheng; Li, Xuelong; Li, Jie

    2016-11-01

    Face sketch-photo synthesis plays an important role in law enforcement and digital entertainment. Most of the existing methods only use pixel intensities as the feature. Since face images can be described using features from multiple aspects, this paper presents a novel multiple representations-based face sketch-photo-synthesis method that adaptively combines multiple representations to represent an image patch. In particular, it combines multiple features from face images processed using multiple filters and deploys Markov networks to exploit the interacting relationships between the neighboring image patches. The proposed framework could be solved using an alternating optimization strategy and it normally converges in only five outer iterations in the experiments. Our experimental results on the Chinese University of Hong Kong (CUHK) face sketch database, celebrity photos, CUHK Face Sketch FERET Database, IIIT-D Viewed Sketch Database, and forensic sketches demonstrate the effectiveness of our method for face sketch-photo synthesis. In addition, cross-database and database-dependent style-synthesis evaluations demonstrate the generalizability of this novel method and suggest promising solutions for face identification in forensic science.

  6. Object extraction method for image synthesis

    NASA Astrophysics Data System (ADS)

    Inoue, Seiki

    1991-11-01

    The extraction of component objects from images is fundamentally important for image synthesis. In TV program production, one useful method is the Video-Matte technique for specifying the necessary boundary of an object. This, however, involves some manually intricate and tedious processes. A new method proposed in this paper can reduce the needed level of operator skill and simplify object extraction. The object is automatically extracted by just a simple drawing of a thick boundary line. The basic principle involves a thinning of the thick boundary line binary image using the edge intensity of the original image. This method has many practical advantages, including the simplicity of specifying an object, the high accuracy of thinned-out boundary line, its ease of application to moving images, and the lack of any need for adjustment.

  7. Multi-exposure high dynamic range image synthesis with camera shake correction

    NASA Astrophysics Data System (ADS)

    Li, Xudong; Chen, Yongfu; Jiang, Hongzhi; Zhao, Huijie

    2017-10-01

    Machine vision plays an important part in industrial online inspection. Owing to the nonuniform illuminance conditions and variable working distances, the captured image tends to be over-exposed or under-exposed. As a result, when processing the image such as crack inspection, the algorithm complexity and computing time increase. Multiexposure high dynamic range (HDR) image synthesis is used to improve the quality of the captured image, whose dynamic range is limited. Inevitably, camera shake will result in ghost effect, which blurs the synthesis image to some extent. However, existed exposure fusion algorithms assume that the input images are either perfectly aligned or captured in the same scene. These assumptions limit the application. At present, widely used registration based on Scale Invariant Feature Transform (SIFT) is usually time consuming. In order to rapidly obtain a high quality HDR image without ghost effect, we come up with an efficient Low Dynamic Range (LDR) images capturing approach and propose a registration method based on ORiented Brief (ORB) and histogram equalization which can eliminate the illumination differences between the LDR images. The fusion is performed after alignment. The experiment results demonstrate that the proposed method is robust to illumination changes and local geometric distortion. Comparing with other exposure fusion methods, our method is more efficient and can produce HDR images without ghost effect by registering and fusing four multi-exposure images.

  8. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image.

    PubMed

    Xiang, Lei; Wang, Qian; Nie, Dong; Zhang, Lichi; Jin, Xiyao; Qiao, Yu; Shen, Dinggang

    2018-07-01

    Recently, more and more attention is drawn to the field of medical image synthesis across modalities. Among them, the synthesis of computed tomography (CT) image from T1-weighted magnetic resonance (MR) image is of great importance, although the mapping between them is highly complex due to large gaps of appearances of the two modalities. In this work, we aim to tackle this MR-to-CT synthesis task by a novel deep embedding convolutional neural network (DECNN). Specifically, we generate the feature maps from MR images, and then transform these feature maps forward through convolutional layers in the network. We can further compute a tentative CT synthesis from the midway of the flow of feature maps, and then embed this tentative CT synthesis result back to the feature maps. This embedding operation results in better feature maps, which are further transformed forward in DECNN. After repeating this embedding procedure for several times in the network, we can eventually synthesize a final CT image in the end of the DECNN. We have validated our proposed method on both brain and prostate imaging datasets, by also comparing with the state-of-the-art methods. Experimental results suggest that our DECNN (with repeated embedding operations) demonstrates its superior performances, in terms of both the perceptive quality of the synthesized CT image and the run-time cost for synthesizing a CT image. Copyright © 2018. Published by Elsevier B.V.

  9. Accurate color synthesis of three-dimensional objects in an image

    NASA Astrophysics Data System (ADS)

    Xin, John H.; Shen, Hui-Liang

    2004-05-01

    Our study deals with color synthesis of a three-dimensional object in an image; i.e., given a single image, a target color can be accurately mapped onto the object such that the color appearance of the synthesized object closely resembles that of the actual one. As it is almost impossible to acquire the complete geometric description of the surfaces of an object in an image, this study attempted to recover the implicit description of geometry for the color synthesis. The description was obtained from either a series of spectral reflectances or the RGB signals at different surface positions on the basis of the dichromatic reflection model. The experimental results showed that this implicit image-based representation is related to the object geometry and is sufficient for accurate color synthesis of three-dimensional objects in an image. The method established is applicable to the color synthesis of both rigid and deformable objects and should contribute to color fidelity in virtual design, manufacturing, and retailing.

  10. Extended sources near-field processing of experimental aperture synthesis data and application of the Gerchberg method for enhancing radiometric three-dimensional millimetre-wave images in security screening portals

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.

    2017-10-01

    Aperture synthesis for passive millimetre wave imaging provides a means to screen people for concealed threats in the extreme near-field configuration of a portal, a regime where the imager to subject distance is of the order of both the required depth-of-field and the field-of-view. Due to optical aberrations, focal plane array imagers cannot deliver the large depth-of-fields and field-of-views required in this regime. Active sensors on the other hand can deliver these but face challenges of illumination, speckle and multi-path issues when imaging canyon regions of the body. Fortunately an aperture synthesis passive millimetre wave imaging system can deliver large depth-of-fields and field-of-views, whilst having no speckle effects, as the radiometric emission from the human body is spatially incoherent. Furthermore, as in portal security screening scenarios the aperture synthesis imaging technique delivers a half-wavelength spatial resolution, it can effectively screen the whole of the human body. Some recent measurements are presented that demonstrate the three-dimensional imaging capability of extended sources using a 22 GHz aperture synthesis system. A comparison is made between imagery generated via the analytic Fourier transform and a gridding fast Fourier transform method. The analytic Fourier transform enables aliasing in the imagery to be more clearly identified. Some initial results are also presented of how the Gerchberg technique, an image enhancement algorithm used in radio astronomy, is adapted for three-dimensional imaging in security screening. This technique is shown to be able to improve the quality of imagery, without adding extra receivers to the imager. The requirements of a walk through security screening system for use at entrances to airport departure lounges are discussed, concluding that these can be met by an aperture synthesis imager.

  11. Nanoparticles for Biomedical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nune, Satish K.; Gunda, Padmaja; Thallapally, Praveen K.

    2009-11-01

    Background: Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 to 100 nm in diameter possess dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has further expanded the potential of nanoparticles as probes for molecular imaging. Objective: To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced non-specific uptake with increasedmore » spatial resolution containing stabilizers conjugated with targeting ligands. Methods: This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their applications in biomedical imaging. Conclusion: Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed. Keywords: nanoparticle synthesis, surface modification, targeting, molecular imaging, and biomedical imaging.« less

  12. Multi-atlas-based CT synthesis from conventional MRI with patch-based refinement for MRI-based radiotherapy planning

    NASA Astrophysics Data System (ADS)

    Lee, Junghoon; Carass, Aaron; Jog, Amod; Zhao, Can; Prince, Jerry L.

    2017-02-01

    Accurate CT synthesis, sometimes called electron density estimation, from MRI is crucial for successful MRI-based radiotherapy planning and dose computation. Existing CT synthesis methods are able to synthesize normal tissues but are unable to accurately synthesize abnormal tissues (i.e., tumor), thus providing a suboptimal solution. We propose a multiatlas- based hybrid synthesis approach that combines multi-atlas registration and patch-based synthesis to accurately synthesize both normal and abnormal tissues. Multi-parametric atlas MR images are registered to the target MR images by multi-channel deformable registration, from which the atlas CT images are deformed and fused by locally-weighted averaging using a structural similarity measure (SSIM). Synthetic MR images are also computed from the registered atlas MRIs by using the same weights used for the CT synthesis; these are compared to the target patient MRIs allowing for the assessment of the CT synthesis fidelity. Poor synthesis regions are automatically detected based on the fidelity measure and refined by a patch-based synthesis. The proposed approach was tested on brain cancer patient data, and showed a noticeable improvement for the tumor region.

  13. Multi-atlas-based CT synthesis from conventional MRI with patch-based refinement for MRI-based radiotherapy planning.

    PubMed

    Lee, Junghoon; Carass, Aaron; Jog, Amod; Zhao, Can; Prince, Jerry L

    2017-02-01

    Accurate CT synthesis, sometimes called electron density estimation, from MRI is crucial for successful MRI-based radiotherapy planning and dose computation. Existing CT synthesis methods are able to synthesize normal tissues but are unable to accurately synthesize abnormal tissues (i.e., tumor), thus providing a suboptimal solution. We propose a multi-atlas-based hybrid synthesis approach that combines multi-atlas registration and patch-based synthesis to accurately synthesize both normal and abnormal tissues. Multi-parametric atlas MR images are registered to the target MR images by multi-channel deformable registration, from which the atlas CT images are deformed and fused by locally-weighted averaging using a structural similarity measure (SSIM). Synthetic MR images are also computed from the registered atlas MRIs by using the same weights used for the CT synthesis; these are compared to the target patient MRIs allowing for the assessment of the CT synthesis fidelity. Poor synthesis regions are automatically detected based on the fidelity measure and refined by a patch-based synthesis. The proposed approach was tested on brain cancer patient data, and showed a noticeable improvement for the tumor region.

  14. The effect of texture granularity on texture synthesis quality

    NASA Astrophysics Data System (ADS)

    Golestaneh, S. Alireza; Subedar, Mahesh M.; Karam, Lina J.

    2015-09-01

    Natural and artificial textures occur frequently in images and in video sequences. Image/video coding systems based on texture synthesis can make use of a reliable texture synthesis quality assessment method in order to improve the compression performance in terms of perceived quality and bit-rate. Existing objective visual quality assessment methods do not perform satisfactorily when predicting the synthesized texture quality. In our previous work, we showed that texture regularity can be used as an attribute for estimating the quality of synthesized textures. In this paper, we study the effect of another texture attribute, namely texture granularity, on the quality of synthesized textures. For this purpose, subjective studies are conducted to assess the quality of synthesized textures with different levels (low, medium, high) of perceived texture granularity using different types of texture synthesis methods.

  15. Synthesis of the human insulin gene. Part III. Chemical synthesis of 5'-phosphomonoester group containing deoxyribooligonucleotides by the modified phosphotriester method. Its application in the synthesis of seventeen fragments constituting human insulin C-chain DNA.

    PubMed Central

    Hsiung, H M; Sung, W L; Brousseau, R; Wu, R; Narang, S A

    1980-01-01

    A method for phosphorylating a protected deoxyribooligonucleotide containing phosphotriester linkages is described. The modified phosphotriester method of chemical synthesis is further refined in terms of (i) better final deblocking conditions and (ii) new chromatography solvent systems containing acetone-water-ethyl acetate to yield pure oligomers. The effectiveness of these improvements has been demonstrated in the rapid and efficient synthesis of seventeen fragments constituting the sequence of human insulin C-chain DNA. Images PMID:7008029

  16. HDR video synthesis for vision systems in dynamic scenes

    NASA Astrophysics Data System (ADS)

    Shopovska, Ivana; Jovanov, Ljubomir; Goossens, Bart; Philips, Wilfried

    2016-09-01

    High dynamic range (HDR) image generation from a number of differently exposed low dynamic range (LDR) images has been extensively explored in the past few decades, and as a result of these efforts a large number of HDR synthesis methods have been proposed. Since HDR images are synthesized by combining well-exposed regions of the input images, one of the main challenges is dealing with camera or object motion. In this paper we propose a method for the synthesis of HDR video from a single camera using multiple, differently exposed video frames, with circularly alternating exposure times. One of the potential applications of the system is in driver assistance systems and autonomous vehicles, involving significant camera and object movement, non- uniform and temporally varying illumination, and the requirement of real-time performance. To achieve these goals simultaneously, we propose a HDR synthesis approach based on weighted averaging of aligned radiance maps. The computational complexity of high-quality optical flow methods for motion compensation is still pro- hibitively high for real-time applications. Instead, we rely on more efficient global projective transformations to solve camera movement, while moving objects are detected by thresholding the differences between the trans- formed and brightness adapted images in the set. To attain temporal consistency of the camera motion in the consecutive HDR frames, the parameters of the perspective transformation are stabilized over time by means of computationally efficient temporal filtering. We evaluated our results on several reference HDR videos, on synthetic scenes, and using 14-bit raw images taken with a standard camera.

  17. Wavelet-based adaptive thresholding method for image segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Tao, Yang; Chen, Xin; Griffis, Carl

    2001-05-01

    A nonuniform background distribution may cause a global thresholding method to fail to segment objects. One solution is using a local thresholding method that adapts to local surroundings. In this paper, we propose a novel local thresholding method for image segmentation, using multiscale threshold functions obtained by wavelet synthesis with weighted detail coefficients. In particular, the coarse-to- fine synthesis with attenuated detail coefficients produces a threshold function corresponding to a high-frequency- reduced signal. This wavelet-based local thresholding method adapts to both local size and local surroundings, and its implementation can take advantage of the fast wavelet algorithm. We applied this technique to physical contaminant detection for poultry meat inspection using x-ray imaging. Experiments showed that inclusion objects in deboned poultry could be extracted at multiple resolutions despite their irregular sizes and uneven backgrounds.

  18. Virtual view image synthesis for eye-contact in TV conversation system

    NASA Astrophysics Data System (ADS)

    Murayama, Daisuke; Kimura, Keiichi; Hosaka, Tadaaki; Hamamoto, Takayuki; Shibuhisa, Nao; Tanaka, Seiichi; Sato, Shunichi; Saito, Sakae

    2010-02-01

    Eye-contact plays an important role for human communications in the sense that it can convey unspoken information. However, it is highly difficult to realize eye-contact in teleconferencing systems because of camera configurations. Conventional methods to overcome this difficulty mainly resorted to space-consuming optical devices such as half mirrors. In this paper, we propose an alternative approach to achieve eye-contact by techniques of arbitrary view image synthesis. In our method, multiple images captured by real cameras are converted to the virtual viewpoint (the center of the display) by homography, and evaluation of matching errors among these projected images provides the depth map and the virtual image. Furthermore, we also propose a simpler version of this method by using a single camera to save the computational costs, in which the only one real image is transformed to the virtual viewpoint based on the hypothesis that the subject is located at a predetermined distance. In this simple implementation, eye regions are separately generated by comparison with pre-captured frontal face images. Experimental results of both the methods show that the synthesized virtual images enable the eye-contact favorably.

  19. Recursive search method for the image elements of functionally defined surfaces

    NASA Astrophysics Data System (ADS)

    Vyatkin, S. I.

    2017-05-01

    This paper touches upon the synthesis of high-quality images in real time and the technique for specifying three-dimensional objects on the basis of perturbation functions. The recursive search method for the image elements of functionally defined objects with the use of graphics processing units is proposed. The advantages of such an approach over the frame-buffer visualization method are shown.

  20. Synthesis of Water-Dispersible Mn2+ Functionalized Silicon Nanoparticles under Room Temperature and Atmospheric Pressure for Fluorescence and Magnetic Resonance Dual-Modality Imaging.

    PubMed

    Dou, Ya-Kun; Chen, Yang; He, Xi-Wen; Li, Wen-You; Li, Yu-Hao; Zhang, Yu-Kui

    2017-11-07

    Silicon nanoparticles (Si NPs) have been widely used in fluorescence imaging. However, rigorous synthesis conditions and the single modality imaging limit the further development of Si NPs in the field of biomedical imaging. Here, we reported a method for synthesizing water-dispersible Mn 2+ functionalized Si NPs (Mn-Si NPs) under mild experimental conditions for fluorescence and magnetic resonance dual-modality imaging. The whole synthesis process was completed under room temperature and atmospheric pressure, and no special and expensive equipment was required. The synthetic nanoparticles, with favorable pH stability, NaCl stability, photostability, and low toxicity, emitted green fluorescence (512 nm). At the same time, the nanoparticles also demonstrated excellent magnetic resonance imaging ability. In vitro, their T 1 -weighted magnetic resonance imaging effect was obvious, and the value of longitudinal relaxation degree r 1 reached 4.25 mM -1 s -1 . On the basis of their good biocompatibility, Mn-Si NPs were successfully used for the fluorescence imaging as well as magnetic resonance imaging in vivo.

  1. Cross-Modality Image Synthesis via Weakly Coupled and Geometry Co-Regularized Joint Dictionary Learning.

    PubMed

    Huang, Yawen; Shao, Ling; Frangi, Alejandro F

    2018-03-01

    Multi-modality medical imaging is increasingly used for comprehensive assessment of complex diseases in either diagnostic examinations or as part of medical research trials. Different imaging modalities provide complementary information about living tissues. However, multi-modal examinations are not always possible due to adversary factors, such as patient discomfort, increased cost, prolonged scanning time, and scanner unavailability. In additionally, in large imaging studies, incomplete records are not uncommon owing to image artifacts, data corruption or data loss, which compromise the potential of multi-modal acquisitions. In this paper, we propose a weakly coupled and geometry co-regularized joint dictionary learning method to address the problem of cross-modality synthesis while considering the fact that collecting the large amounts of training data is often impractical. Our learning stage requires only a few registered multi-modality image pairs as training data. To employ both paired images and a large set of unpaired data, a cross-modality image matching criterion is proposed. Then, we propose a unified model by integrating such a criterion into the joint dictionary learning and the observed common feature space for associating cross-modality data for the purpose of synthesis. Furthermore, two regularization terms are added to construct robust sparse representations. Our experimental results demonstrate superior performance of the proposed model over state-of-the-art methods.

  2. Robust image registration for multiple exposure high dynamic range image synthesis

    NASA Astrophysics Data System (ADS)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  3. Intermediate view synthesis algorithm using mesh clustering for rectangular multiview camera system

    NASA Astrophysics Data System (ADS)

    Choi, Byeongho; Kim, Taewan; Oh, Kwan-Jung; Ho, Yo-Sung; Choi, Jong-Soo

    2010-02-01

    A multiview video-based three-dimensional (3-D) video system offers a realistic impression and a free view navigation to the user. The efficient compression and intermediate view synthesis are key technologies since 3-D video systems deal multiple views. We propose an intermediate view synthesis using a rectangular multiview camera system that is suitable to realize 3-D video systems. The rectangular multiview camera system not only can offer free view navigation both horizontally and vertically but also can employ three reference views such as left, right, and bottom for intermediate view synthesis. The proposed view synthesis method first represents the each reference view to meshes and then finds the best disparity for each mesh element by using the stereo matching between reference views. Before stereo matching, we separate the virtual image to be synthesized into several regions to enhance the accuracy of disparities. The mesh is classified into foreground and background groups by disparity values and then affine transformed. By experiments, we confirm that the proposed method synthesizes a high-quality image and is suitable for 3-D video systems.

  4. Synthesis of the human insulin gene. Part II. Further improvements in the modified phosphotriester method and the synthesis of seventeen deoxyribooligonucleotide fragments constituting human insulin chains B and mini-CDNA.

    PubMed Central

    Sung, W L; Hsiung, H M; Brousseau, R; Michniewicz, J; Wu, R; Narang, S A

    1979-01-01

    The purification of protected deoxyribooligonucleotides containing phosphotriester internucleotidic linkages has been improved by developing a deactivated silica gel chromatographic technique. The efficiency of this technique as applied in the modified phosphotriester approach has been demonstrated in the rapid synthesis of seventeen pure fragments constituting the sequence of human insulin B and mini-C DNA. The sequence of each oligomer was confirmed by the two-dimensional mobility shift method of fingerprinting. Images PMID:230464

  5. Color appearance for photorealistic image synthesis

    NASA Astrophysics Data System (ADS)

    Marini, Daniele; Rizzi, Alessandro; Rossi, Maurizio

    2000-12-01

    Photorealistic Image Synthesis is a relevant research and application field in computer graphics, whose aim is to produce synthetic images that are undistinguishable from real ones. Photorealism is based upon accurate computational models of light material interaction, that allow us to compute the spectral intensity light field of a geometrically described scene. The fundamental methods are ray tracing and radiosity. While radiosity allows us to compute the diffuse component of the emitted and reflected light, applying ray tracing in a two pass solution we can also cope with non diffuse properties of the model surfaces. Both methods can be implemented to generate an accurate photometric distribution of light of the simulated environment. A still open problem is the visualization phase, whose purpose is to display the final result of the simulated mode on a monitor screen or on a printed paper. The tone reproduction problem consists of finding the best solution to compress the extended dynamic range of the computed light field into the limited range of the displayable colors. Recently some scholars have addressed this problem considering the perception stage of image formation, so including a model of the human visual system in the visualization process. In this paper we present a working hypothesis to solve the tone reproduction problem of synthetic image generation, integrating Retinex perception model into the photo realistic image synthesis context.

  6. Automatic view synthesis by image-domain-warping.

    PubMed

    Stefanoski, Nikolce; Wang, Oliver; Lang, Manuel; Greisen, Pierre; Heinzle, Simon; Smolic, Aljosa

    2013-09-01

    Today, stereoscopic 3D (S3D) cinema is already mainstream, and almost all new display devices for the home support S3D content. S3D distribution infrastructure to the home is already established partly in the form of 3D Blu-ray discs, video on demand services, or television channels. The necessity to wear glasses is, however, often considered as an obstacle, which hinders broader acceptance of this technology in the home. Multiviewautostereoscopic displays enable a glasses free perception of S3D content for several observers simultaneously, and support head motion parallax in a limited range. To support multiviewautostereoscopic displays in an already established S3D distribution infrastructure, a synthesis of new views from S3D video is needed. In this paper, a view synthesis method based on image-domain-warping (IDW) is presented that automatically synthesizes new views directly from S3D video and functions completely. IDW relies on an automatic and robust estimation of sparse disparities and image saliency information, and enforces target disparities in synthesized images using an image warping framework. Two configurations of the view synthesizer in the scope of a transmission and view synthesis framework are analyzed and evaluated. A transmission and view synthesis system that uses IDW is recently submitted to MPEG's call for proposals on 3D video technology, where it is ranked among the four best performing proposals.

  7. AGILIS: Agile Guided Interferometer for Longbaseline Imaging Synthesis. Demonstration and concepts of reconfigurable optical imaging interferometers

    NASA Astrophysics Data System (ADS)

    Woillez, Julien; Lai, Olivier; Perrin, Guy; Reynaud, François; Baril, Marc; Dong, Yue; Fédou, Pierre

    2017-06-01

    Context. In comparison to the radio and sub-millimetric domains, imaging with optical interferometry is still in its infancy. Due to the limited number of telescopes in existing arrays, image generation is a demanding process that relies on time-consuming reconfiguration of the interferometer array and super-synthesis. Aims: Using single mode optical fibres for the coherent transport of light from the collecting telescopes to the focal plane, a new generation of interferometers optimized for imaging can be designed. Methods: To support this claim, we report on the successful completion of the `OHANA Iki project: an end-to-end, on-sky demonstration of a two-telescope interferometer, built around near-infrared single mode fibres, carried out as part of the `OHANA project. Results: Having demonstrated that coherent transport by single-mode fibres is feasible, we explore the concepts, performances, and limitations of a new imaging facility with single mode fibres at its heart: Agile Guided Interferometer for Longbaseline Imaging Synthesis (AGILIS). Conclusions: AGILIS has the potential of becoming a next generation facility or a precursor to a much larger project like the Planet Formation Imager (PFI).

  8. Method of synthesis of abstract images with high self-similarity

    NASA Astrophysics Data System (ADS)

    Matveev, Nikolay V.; Shcheglov, Sergey A.; Romanova, Galina E.; Koneva, Ð.¢atiana A.

    2017-06-01

    Abstract images with high self-similarity could be used for drug-free stress therapy. This based on the fact that a complex visual environment has a high affective appraisal. To create such an image we can use the setup based on the three laser sources of small power and different colors (Red, Green, Blue), the image is the pattern resulting from the reflecting and refracting by the complicated form object placed into the laser ray paths. The images were obtained experimentally which showed the good therapy effect. However, to find and to choose the object which gives needed image structure is very difficult and requires many trials. The goal of the work is to develop a method and a procedure of finding the object form which if placed into the ray paths can provide the necessary structure of the image In fact the task means obtaining the necessary irradiance distribution on the given surface. Traditionally such problems are solved using the non-imaging optics methods. In the given case this task is very complicated because of the complicated structure of the illuminance distribution and its high non-linearity. Alternative way is to use the projected image of a mask with a given structure. We consider both ways and discuss how they can help to speed up the synthesis procedure for the given abstract image of the high self-similarity for the setups of drug-free therapy.

  9. Robust digital image inpainting algorithm in the wireless environment

    NASA Astrophysics Data System (ADS)

    Karapetyan, G.; Sarukhanyan, H. G.; Agaian, S. S.

    2014-05-01

    Image or video inpainting is the process/art of retrieving missing portions of an image without introducing undesirable artifacts that are undetectable by an ordinary observer. An image/video can be damaged due to a variety of factors, such as deterioration due to scratches, laser dazzling effects, wear and tear, dust spots, loss of data when transmitted through a channel, etc. Applications of inpainting include image restoration (removing laser dazzling effects, dust spots, date, text, time, etc.), image synthesis (texture synthesis), completing panoramas, image coding, wireless transmission (recovery of the missing blocks), digital culture protection, image de-noising, fingerprint recognition, and film special effects and production. Most inpainting methods can be classified in two key groups: global and local methods. Global methods are used for generating large image regions from samples while local methods are used for filling in small image gaps. Each method has its own advantages and limitations. For example, the global inpainting methods perform well on textured image retrieval, whereas the classical local methods perform poorly. In addition, some of the techniques are computationally intensive; exceeding the capabilities of most currently used mobile devices. In general, the inpainting algorithms are not suitable for the wireless environment. This paper presents a new and efficient scheme that combines the advantages of both local and global methods into a single algorithm. Particularly, it introduces a blind inpainting model to solve the above problems by adaptively selecting support area for the inpainting scheme. The proposed method is applied to various challenging image restoration tasks, including recovering old photos, recovering missing data on real and synthetic images, and recovering the specular reflections in endoscopic images. A number of computer simulations demonstrate the effectiveness of our scheme and also illustrate the main properties and implementation steps of the presented algorithm. Furthermore, the simulation results show that the presented method is among the state-of-the-art and compares favorably against many available methods in the wireless environment. Robustness in the wireless environment with respect to the shape of the manually selected "marked" region is also illustrated. Currently, we are working on the expansion of this work to video and 3-D data.

  10. Clean image synthesis and target numerical marching for optical imaging with backscattering light

    PubMed Central

    Pu, Yang; Wang, Wubao

    2011-01-01

    Scanning backscattering imaging and independent component analysis (ICA) are used to probe targets hidden in the subsurface of a turbid medium. A new correction procedure is proposed and used to synthesize a “clean” image of a homogeneous host medium numerically from a set of raster-scanned “dirty” backscattering images of the medium with embedded targets. The independent intensity distributions on the surface of the medium corresponding to individual targets are then unmixed using ICA of the difference between the set of dirty images and the clean image. The target positions are localized by a novel analytical method, which marches the target to the surface of the turbid medium until a match with the retrieved independent component is accomplished. The unknown surface property of the turbid medium is automatically accounted for by this method. Employing clean image synthesis and target numerical marching, three-dimensional (3D) localization of objects embedded inside a turbid medium using independent component analysis in a backscattering geometry is demonstrated for the first time, using as an example, imaging a small piece of cancerous prostate tissue embedded in a host consisting of normal prostate tissue. PMID:21483608

  11. Direct observation of the effects of cellulose synthesis inhibitors using live cell imaging of Cellulose Synthase (CESA) in Physcomitrella patens.

    PubMed

    Tran, Mai L; McCarthy, Thomas W; Sun, Hao; Wu, Shu-Zon; Norris, Joanna H; Bezanilla, Magdalena; Vidali, Luis; Anderson, Charles T; Roberts, Alison W

    2018-01-15

    Results from live cell imaging of fluorescently tagged Cellulose Synthase (CESA) proteins in Cellulose Synthesis Complexes (CSCs) have enhanced our understanding of cellulose biosynthesis, including the mechanisms of action of cellulose synthesis inhibitors. However, this method has been applied only in Arabidopsis thaliana and Brachypodium distachyon thus far. Results from freeze fracture electron microscopy of protonemal filaments of the moss Funaria hygrometrica indicate that a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), fragments CSCs and clears them from the plasma membrane. This differs from Arabidopsis, in which DCB causes CSC accumulation in the plasma membrane and a different cellulose synthesis inhibitor, isoxaben, clears CSCs from the plasma membrane. In this study, live cell imaging of the moss Physcomitrella patens indicated that DCB and isoxaben have little effect on protonemal growth rates, and that only DCB causes tip rupture. Live cell imaging of mEGFP-PpCESA5 and mEGFP-PpCESA8 showed that DCB and isoxaben substantially reduced CSC movement, but had no measureable effect on CSC density in the plasma membrane. These results suggest that DCB and isoxaben have similar effects on CSC movement in P. patens and Arabidopsis, but have different effects on CSC intracellular trafficking, cell growth and cell integrity in these divergent plant lineages.

  12. Efficient synthesis of highly fluorescent carbon dots by microreactor method and their application in Fe3+ ion detection.

    PubMed

    Rao, Longshi; Tang, Yong; Li, Zongtao; Ding, Xinrui; Liang, Guanwei; Lu, Hanguang; Yan, Caiman; Tang, Kairui; Yu, Binhai

    2017-12-01

    Rapidly obtaining strong photoluminescence (PL) of carbon dots with high stability is crucial in all practical applications of carbon dots, such as cell imaging and biological detection. In this study, we proposed a rapid, continuous carbon dots synthesis technique by using a microreactor method. By taking advantage of the microreactor, we were able to rapidly synthesized CDs at a large scale in less than 5min, and a high quantum yield of 60.1% was achieved. This method is faster and more efficient than most of the previously reported methods. To explore the relationship between the microreactor structure and CDs PL properties, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were carried out. The results show the surface functional groups and element contents influence the PL emission. Subsequent ion detection experiments indicated that CDs are very suitable for use as nanoprobes for Fe 3+ ion detection, and the lowest detection limit for Fe 3+ is 0.239μM, which is superior to many other research studies. This rapid and simple synthesis method will not only aid the development of the quantum dots industrialization but also provide a powerful and portable tool for the rapid and continuous online synthesis of quantum dots supporting their application in cell imaging and safety detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Total Radiosynthesis: Thinking outside "the box".

    PubMed

    Liang, Steven H; Vasdev, Neil

    2015-09-01

    The logic of total synthesis transformed a stagnant state of medicinal and synthetic organic chemistry when there was a paucity of methods and reagents to synthesize drug molecules and/or natural products. Molecular imaging by positron emission tomography (PET) is now experiencing a renaissance in the way radiopharmaceuticals for molecular imaging are synthesized, however, a paradigm shift is desperately needed in the discovery pipeline to accelerate in vivo imaging studies. A significant challenge in radiochemistry is the limited choice of labeled reagents (or building blocks) available for the synthesis of novel radiopharmaceuticals with the most commonly used short-lived radionuclides carbon-11 ( 11 C; half-life ~20 minutes) and fluorine-18 ( 18 F; half-life ~2 hours). In fact, most drugs cannot be labeled with 11 C or 18 F due to a lack of efficient and diverse radiosynthetic methods. In general, routine radiopharmaceutical production relies on the incorporation of the isotope at the last or penultimate step of synthesis, ideally within one half-life of the radionuclide, to maximize radiochemical yields and specific activities thereby reducing losses due to radioactive decay. Reliance on radiochemistry conducted within the constraints of an automated synthesis unit ("box") has stifled the exploration of multi-step reactions with short-lived radionuclides. Radiopharmaceutical synthesis can be transformed by considering logic of total synthesis to develop novel approaches for 11 C- and 18 F-radiolabeling complex molecules via retrosynthetic analysis and multi-step reactions. As a result of such exploration, new methods, reagents and radiopharmaceuticals for in vivo imaging studies are discovered. A new avenue to develop radiotracers that were previously unattainable due to the lack of efficient radiosynthetic methods is necessary to work towards our ultimate, albeit impossible goal - the concept we term total radiosynthesis - to radiolabel virtually any molecule. As with the vast majority of drugs, most radiotracers also fail, therefore expeditious evaluation of tracers in preclinical models prior to optimization or derivatization of the lead molecules/drugs is necessary. Furthermore the exact position of the 11 C and 18 F radionuclide in tracers is often critical for metabolic considerations, and flexible methodologies to introduce the radiolabel are needed. Using the principles of total synthesis our laboratory and others have shown that multi-step radiochemical reactions are indeed suitable for preclinical and even clinical use. As the goal of total synthesis is to be concise, we have also simplified the syntheses of radiopharmaceuticals. We are presently developing new strategies via [ 11 C]CO 2 fixation which has enabled library radiosynthesis as well as labeling non-activated arenes using [ 18 F]fluoride via iodonium ylides. Both of which have proven to be suitable for human PET imaging. We concurrently utilize state-of-the-art automation technologies including microfluidic flow chemistry and rapid purification strategies for radiopharmaceutical production. In this account we highlight how total radiosynthesis has impacted our radiochemistry program, with prominent examples from others, focusing on its impact towards preclinical and clinical research studies.

  14. Total Radiosynthesis: Thinking outside “the box”

    PubMed Central

    Liang, Steven H.; Vasdev, Neil

    2016-01-01

    The logic of total synthesis transformed a stagnant state of medicinal and synthetic organic chemistry when there was a paucity of methods and reagents to synthesize drug molecules and/or natural products. Molecular imaging by positron emission tomography (PET) is now experiencing a renaissance in the way radiopharmaceuticals for molecular imaging are synthesized, however, a paradigm shift is desperately needed in the discovery pipeline to accelerate in vivo imaging studies. A significant challenge in radiochemistry is the limited choice of labeled reagents (or building blocks) available for the synthesis of novel radiopharmaceuticals with the most commonly used short-lived radionuclides carbon-11 (11C; half-life ~20 minutes) and fluorine-18 (18F; half-life ~2 hours). In fact, most drugs cannot be labeled with 11C or 18F due to a lack of efficient and diverse radiosynthetic methods. In general, routine radiopharmaceutical production relies on the incorporation of the isotope at the last or penultimate step of synthesis, ideally within one half-life of the radionuclide, to maximize radiochemical yields and specific activities thereby reducing losses due to radioactive decay. Reliance on radiochemistry conducted within the constraints of an automated synthesis unit (“box”) has stifled the exploration of multi-step reactions with short-lived radionuclides. Radiopharmaceutical synthesis can be transformed by considering logic of total synthesis to develop novel approaches for 11C- and 18F-radiolabeling complex molecules via retrosynthetic analysis and multi-step reactions. As a result of such exploration, new methods, reagents and radiopharmaceuticals for in vivo imaging studies are discovered. A new avenue to develop radiotracers that were previously unattainable due to the lack of efficient radiosynthetic methods is necessary to work towards our ultimate, albeit impossible goal – the concept we term total radiosynthesis - to radiolabel virtually any molecule. As with the vast majority of drugs, most radiotracers also fail, therefore expeditious evaluation of tracers in preclinical models prior to optimization or derivatization of the lead molecules/drugs is necessary. Furthermore the exact position of the 11C and 18F radionuclide in tracers is often critical for metabolic considerations, and flexible methodologies to introduce the radiolabel are needed. Using the principles of total synthesis our laboratory and others have shown that multi-step radiochemical reactions are indeed suitable for preclinical and even clinical use. As the goal of total synthesis is to be concise, we have also simplified the syntheses of radiopharmaceuticals. We are presently developing new strategies via [11C]CO2 fixation which has enabled library radiosynthesis as well as labeling non-activated arenes using [18F]fluoride via iodonium ylides. Both of which have proven to be suitable for human PET imaging. We concurrently utilize state-of-the-art automation technologies including microfluidic flow chemistry and rapid purification strategies for radiopharmaceutical production. In this account we highlight how total radiosynthesis has impacted our radiochemistry program, with prominent examples from others, focusing on its impact towards preclinical and clinical research studies. PMID:27512156

  15. Synthesis, characterization and cells and tissues imaging of carbon quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Li, Qilong; Zhou, JingE.; Wang, Yiting; Yu, Lei; Peng, Hui; Zhu, Jianzhong

    2017-10-01

    Compare to other quantum dots, carbon quantum dots have its own incomparable advantages, such as low cell toxicity, favorable biocompatibility, cheap production cost, mild reaction conditions, easy to large-scale synthesis and functionalization. In this thesis, we took citric acid monohydrate and diethylene glycol bis (3-aMinopropyl) ether as materials, used decomposition method to acquire carbon quantum dots (CQDs) which can emission blue fluorescence under ultraviolet excitation. In the aspect of application, we achieved the biological imaging of CQDs in vivo and in vitro.

  16. Synthesis method from low-coherence digital holograms for improvement of image quality in holographic display.

    PubMed

    Mori, Yutaka; Nomura, Takanori

    2013-06-01

    In holographic displays, it is undesirable to observe the speckle noises with the reconstructed images. A method for improvement of reconstructed image quality by synthesizing low-coherence digital holograms is proposed. It is possible to obtain speckleless reconstruction of holograms due to low-coherence digital holography. An image sensor records low-coherence digital holograms, and the holograms are synthesized by computational calculation. Two approaches, the threshold-processing and the picking-a-peak methods, are proposed in order to reduce random noise of low-coherence digital holograms. The reconstructed image quality by the proposed methods is compared with the case of high-coherence digital holography. Quantitative evaluation is given to confirm the proposed methods. In addition, the visual evaluation by 15 people is also shown.

  17. Multi exposure image fusion algorithm based on YCbCr space

    NASA Astrophysics Data System (ADS)

    Yang, T. T.; Fang, P. Y.

    2018-05-01

    To solve the problem that scene details and visual effects are difficult to be optimized in high dynamic image synthesis, we proposes a multi exposure image fusion algorithm for processing low dynamic range images in YCbCr space, and weighted blending of luminance and chromatic aberration components respectively. The experimental results show that the method can retain color effect of the fused image while balancing details of the bright and dark regions of the high dynamic image.

  18. High dynamic range image acquisition based on multiplex cameras

    NASA Astrophysics Data System (ADS)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  19. Compressed domain indexing of losslessly compressed images

    NASA Astrophysics Data System (ADS)

    Schaefer, Gerald

    2001-12-01

    Image retrieval and image compression have been pursued separately in the past. Only little research has been done on a synthesis of the two by allowing image retrieval to be performed directly in the compressed domain of images without the need to uncompress them first. In this paper methods for image retrieval in the compressed domain of losslessly compressed images are introduced. While most image compression techniques are lossy, i.e. discard visually less significant information, lossless techniques are still required in fields like medical imaging or in situations where images must not be changed due to legal reasons. The algorithms in this paper are based on predictive coding methods where a pixel is encoded based on the pixel values of its (already encoded) neighborhood. The first method is based on an understanding that predictively coded data is itself indexable and represents a textural description of the image. The second method operates directly on the entropy encoded data by comparing codebooks of images. Experiments show good image retrieval results for both approaches.

  20. Synthetic aperture imaging in astronomy and aerospace: introduction.

    PubMed

    Creech-Eakman, Michelle J; Carney, P Scott; Buscher, David F; Shao, Michael

    2017-05-01

    Aperture synthesis methods allow the reconstruction of images with the angular resolutions exceeding that of extremely large monolithic apertures by using arrays of smaller apertures together in combination. In this issue we present several papers with techniques relevant to amplitude interferometry, laser radar, and intensity interferometry applications.

  1. A Multi Directional Perfect Reconstruction Filter Bank Designed with 2-D Eigenfilter Approach: Application to Ultrasound Speckle Reduction.

    PubMed

    Nagare, Mukund B; Patil, Bhushan D; Holambe, Raghunath S

    2017-02-01

    B-Mode ultrasound images are degraded by inherent noise called Speckle, which creates a considerable impact on image quality. This noise reduces the accuracy of image analysis and interpretation. Therefore, reduction of speckle noise is an essential task which improves the accuracy of the clinical diagnostics. In this paper, a Multi-directional perfect-reconstruction (PR) filter bank is proposed based on 2-D eigenfilter approach. The proposed method used for the design of two-dimensional (2-D) two-channel linear-phase FIR perfect-reconstruction filter bank. In this method, the fan shaped, diamond shaped and checkerboard shaped filters are designed. The quadratic measure of the error function between the passband and stopband of the filter has been used an objective function. First, the low-pass analysis filter is designed and then the PR condition has been expressed as a set of linear constraints on the corresponding synthesis low-pass filter. Subsequently, the corresponding synthesis filter is designed using the eigenfilter design method with linear constraints. The newly designed 2-D filters are used in translation invariant pyramidal directional filter bank (TIPDFB) for reduction of speckle noise in ultrasound images. The proposed 2-D filters give better symmetry, regularity and frequency selectivity of the filters in comparison to existing design methods. The proposed method is validated on synthetic and real ultrasound data which ensures improvement in the quality of ultrasound images and efficiently suppresses the speckle noise compared to existing methods.

  2. TiO{sub 2} synthesized by microwave assisted solvothermal method: Experimental and theoretical evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moura, K.F.; Maul, J.; Albuquerque, A.R.

    2014-02-15

    In this study, a microwave assisted solvothermal method was used to synthesize TiO{sub 2} with anatase structure. The synthesis was done using Ti (IV) isopropoxide and ethanol without templates or alkalinizing agents. Changes in structural features were observed with increasing time of synthesis and evaluated using periodic quantum chemical calculations. The anatase phase was obtained after only 1 min of reaction besides a small amount of brookite phase. Experimental Raman spectra are in accordance with the theoretical one. Micrometric spheres constituted by nanometric particles were obtained for synthesis from 1 to 30 min, while spheres and sticks were observed aftermore » 60 min. - Graphical abstract: FE-SEM images of anatase obtained with different periods of synthesis associated with the order–disorder degree. Display Omitted - Highlights: • Anatase microspheres were obtained by the microwave assisted hydrothermal method. • Only ethanol and titanium isopropoxide were used as precursors during the synthesis. • Raman spectra and XRD patterns were compared with quantum chemical calculations. • Time of synthesis increased the short-range disorder in one direction and decreased in another.« less

  3. Clinician, patient and general public beliefs about diagnostic imaging for low back pain: protocol for a qualitative evidence synthesis.

    PubMed

    Traeger, Adrian C; Reed, Benjamin J; O'Connor, Denise A; Hoffmann, Tammy C; Machado, Gustavo C; Bonner, Carissa; Maher, Chris G; Buchbinder, Rachelle

    2018-02-10

    Little is known about how to reduce unnecessary imaging for low back pain. Understanding clinician, patient and general public beliefs about imaging is critical to developing strategies to reduce overuse. To synthesise qualitative research that has explored clinician, patient or general public beliefs about diagnostic imaging for low back pain. We will perform a qualitative evidence synthesis of relevant qualitative research exploring clinician, patient and general public beliefs about diagnostic imaging for low back pain. Exclusions will be studies not using qualitative methods and studies not published in English. Studies will be identified using sensitive search strategies in MEDLINE, EMBASE, CINAHL, AMED and PsycINFO. Two reviewers will independently apply inclusion and exclusion criteria, extract data, and use the Critical Appraisal Skills Programme quality assessment tool to assess the quality of included studies. To synthesise the data we will use a narrative synthesis approach that involves developing a theoretical model, conducting a preliminary synthesis, exploring relations in the data, and providing a structured summary. We will code the data using NVivo. At least two reviewers will independently apply the thematic framework to extracted data. Confidence in synthesis findings will be evaluated using the GRADE Confidence in the Evidence from Reviews of Qualitative Research tool. Ethical approval is not required to conduct this review. We will publish the results in a peer-reviewed journal. CRD42017076047. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Learning implicit brain MRI manifolds with deep learning

    NASA Astrophysics Data System (ADS)

    Bermudez, Camilo; Plassard, Andrew J.; Davis, Larry T.; Newton, Allen T.; Resnick, Susan M.; Landman, Bennett A.

    2018-03-01

    An important task in image processing and neuroimaging is to extract quantitative information from the acquired images in order to make observations about the presence of disease or markers of development in populations. Having a low-dimensional manifold of an image allows for easier statistical comparisons between groups and the synthesis of group representatives. Previous studies have sought to identify the best mapping of brain MRI to a low-dimensional manifold, but have been limited by assumptions of explicit similarity measures. In this work, we use deep learning techniques to investigate implicit manifolds of normal brains and generate new, high-quality images. We explore implicit manifolds by addressing the problems of image synthesis and image denoising as important tools in manifold learning. First, we propose the unsupervised synthesis of T1-weighted brain MRI using a Generative Adversarial Network (GAN) by learning from 528 examples of 2D axial slices of brain MRI. Synthesized images were first shown to be unique by performing a cross-correlation with the training set. Real and synthesized images were then assessed in a blinded manner by two imaging experts providing an image quality score of 1-5. The quality score of the synthetic image showed substantial overlap with that of the real images. Moreover, we use an autoencoder with skip connections for image denoising, showing that the proposed method results in higher PSNR than FSL SUSAN after denoising. This work shows the power of artificial networks to synthesize realistic imaging data, which can be used to improve image processing techniques and provide a quantitative framework to structural changes in the brain.

  5. Fpga based hardware synthesis for automatic segmentation of retinal blood vessels in diabetic retinopathy images.

    PubMed

    Sivakamasundari, J; Kavitha, G; Sujatha, C M; Ramakrishnan, S

    2014-01-01

    Diabetic Retinopathy (DR) is a disorder that affects the structure of retinal blood vessels due to long-standing diabetes mellitus. Real-Time mass screening system for DR is vital for timely diagnosis and periodic screening to prevent the patient from severe visual loss. Human retinal fundus images are widely used for an automated segmentation of blood vessel and diagnosis of various blood vessel disorders. In this work, an attempt has been made to perform hardware synthesis of Kirsch template based edge detection for segmentation of blood vessels. This method is implemented using LabVIEW software and is synthesized in field programmable gate array board to yield results in real-time application. The segmentation of blood vessels using Kirsch based edge detection is compared with other edge detection methods such as Sobel, Prewitt and Canny. The texture features such as energy, entropy, contrast, mean, homogeneity and structural feature namely ratio of vessel to vessel free area are obtained from the segmented images. The performance of segmentation is analysed in terms of sensitivity, specificity and accuracy. It is observed from the results that the Kirsch based edge detection technique segmented the edges of blood vessels better than other edge detection techniques. The ratio of vessel to vessel free area classified the normal and DR affected retinal images more significantly than other texture based features. FPGA based hardware synthesis of Kirsch edge detection method is able to differentiate normal and diseased images with high specificity (93%). This automated segmentation of retinal blood vessels system could be used in computer-assisted diagnosis for diabetic retinopathy screening in real-time application.

  6. Multimodal Translation System Using Texture-Mapped Lip-Sync Images for Video Mail and Automatic Dubbing Applications

    NASA Astrophysics Data System (ADS)

    Morishima, Shigeo; Nakamura, Satoshi

    2004-12-01

    We introduce a multimodal English-to-Japanese and Japanese-to-English translation system that also translates the speaker's speech motion by synchronizing it to the translated speech. This system also introduces both a face synthesis technique that can generate any viseme lip shape and a face tracking technique that can estimate the original position and rotation of a speaker's face in an image sequence. To retain the speaker's facial expression, we substitute only the speech organ's image with the synthesized one, which is made by a 3D wire-frame model that is adaptable to any speaker. Our approach provides translated image synthesis with an extremely small database. The tracking motion of the face from a video image is performed by template matching. In this system, the translation and rotation of the face are detected by using a 3D personal face model whose texture is captured from a video frame. We also propose a method to customize the personal face model by using our GUI tool. By combining these techniques and the translated voice synthesis technique, an automatic multimodal translation can be achieved that is suitable for video mail or automatic dubbing systems into other languages.

  7. Synthesis of macrocyclic polyaminocarboxylates and their use for preparing stable radiometal antibody immunoconjugates for therapy, spect and pet imaging

    DOEpatents

    Mease, Ronnie C.; Mausner, Leonard F.; Srivastava, Suresh C.

    1995-06-27

    A simple method for the synthesis of 1,4,7,10-tetraazacyclododecane N,N'N",N'"-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N',N",N'"-tetraacetic acid involves cyanomethylating 1,4,7,10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy.

  8. Improving the time efficiency of the Fourier synthesis method for slice selection in magnetic resonance imaging.

    PubMed

    Tahayori, B; Khaneja, N; Johnston, L A; Farrell, P M; Mareels, I M Y

    2016-01-01

    The design of slice selective pulses for magnetic resonance imaging can be cast as an optimal control problem. The Fourier synthesis method is an existing approach to solve these optimal control problems. In this method the gradient field as well as the excitation field are switched rapidly and their amplitudes are calculated based on a Fourier series expansion. Here, we provide a novel insight into the Fourier synthesis method via representing the Bloch equation in spherical coordinates. Based on the spherical Bloch equation, we propose an alternative sequence of pulses that can be used for slice selection which is more time efficient compared to the original method. Simulation results demonstrate that while the performance of both methods is approximately the same, the required time for the proposed sequence of pulses is half of the original sequence of pulses. Furthermore, the slice selectivity of both sequences of pulses changes with radio frequency field inhomogeneities in a similar way. We also introduce a measure, referred to as gradient complexity, to compare the performance of both sequences of pulses. This measure indicates that for a desired level of uniformity in the excited slice, the gradient complexity for the proposed sequence of pulses is less than the original sequence. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Solvothermal Synthesis of Magnetic Spinel Ferrites

    PubMed Central

    Rafienia, Mohammad; Bigham, Ashkan; Hassanzadeh-Tabrizi, Seyed Ali

    2018-01-01

    At present, solvothermal fabrication method has widely been applied in the synthesis of spinel ferrite nanoparticles (SFNs), which is mainly because of its great advantages such as precise control over size, shape distribution, and high crystallinity that do not require postannealing treatment. Among various SFNs, Fe3O4 nanoparticles have attracted tremendous attention because of their favorable physical and structural properties which are advantageous, especially in biomedical applications, among which the vast application of these materials as targeted drug delivery systems, hyperthermia, and imaging agents in cancer therapy can be mentioned. The main focus of this study is to present an introduction to solvothermal method and key synthesis parameters of SFNs through this synthesis route. Moreover, most recent progress on the potential applications of Fe3O4 nanoparticles as the most important compound among the spinel ferrites family members is discussed. PMID:29928636

  10. Optimization of Immunolabeled Plasmonic Nanoparticles for Cell Surface Receptor Analysis

    PubMed Central

    Seekell, Kevin; Price, Hillel; Marinakos, Stella; Wax, Adam

    2011-01-01

    Noble metal nanoparticles hold great potential as optical contrast agents due to a unique feature, known as the plasmon resonance, which produces enhanced scattering and absorption at specific frequencies. The plasmon resonance also provides a spectral tunability that is not often found in organic fluorophores or other labeling methods. The ability to functionalize these nanoparticles with antibodies has led to their development as contrast agents for molecular optical imaging. In this review article, we present methods for optimizing the spectral agility of these labels. We discuss synthesis of gold nanorods, a plasmonic nanoparticle in which the plasmonic resonance can be tuned during synthesis to provide imaging within the spectral window commonly utilized in biomedical applications. We describe recent advances in our group to functionalize gold and silver nanoparticles using distinct antibodies, including EGFR, HER-2 and IGF-1, selected for their relevance to tumor imaging. Finally, we present characterization of these nanoparticle labels to verify their spectral properties and molecular specificity. PMID:21911063

  11. Clean synthesis of YOF:Er3+, Yb3+ upconversion colloidal nanoparticles in water through liquid phase pulsed laser ablation for imaging applications

    NASA Astrophysics Data System (ADS)

    Anjana, R.; Kurias, K. M.; Jayaraj, M. K.

    2017-10-01

    Upconversion luminescent nanomaterials have great outlook towards imaging applications. These materials have high chemical and thermal stability, low auto fluorescence, high photo stability and IR excitation does not cause photo damage to living cells and penetrate deeply into tissue. Most of the reported nanoparticles are synthesized through chemical methods in which surface modification is needed for dispersing nanoparticles in water. In this paper we report clean and simple synthesis of upconversion luminescent yttrium oxyfluoride (YOF) nanoparticles through laser ablation in deionized water. YOF:Er3+, Yb3+ pellets were used for ablation. Er3+ is the emission centre Yb3+ is the sensitizer. Obtained colloidal solution is transparent to day light and showing red emission on exciting with 980 nm IR laser. By controlling ablation parameters particles of size less than 10 nm dispersed uniformly in water can be obtained through this surfactant free method. The synthesized nanoparticles can be used for cell imaging.

  12. Combinatorial synthesis of phosphors using arc-imaging furnace

    PubMed Central

    Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo

    2011-01-01

    We have applied a novel ‘melt synthesis technique’ rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10–60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1–5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10–60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions. PMID:27877432

  13. Combinatorial synthesis of phosphors using arc-imaging furnace

    NASA Astrophysics Data System (ADS)

    Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo

    2011-10-01

    We have applied a novel 'melt synthesis technique' rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10-60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1-5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10-60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions.

  14. Synthesis of immunotargeted magneto-plasmonic nanoclusters.

    PubMed

    Wu, Chun-Hsien; Sokolov, Konstantin

    2014-08-22

    Magnetic and plasmonic properties combined in a single nanoparticle provide a synergy that is advantageous in a number of biomedical applications including contrast enhancement in novel magnetomotive imaging modalities, simultaneous capture and detection of circulating tumor cells (CTCs), and multimodal molecular imaging combined with photothermal therapy of cancer cells. These applications have stimulated significant interest in development of protocols for synthesis of magneto-plasmonic nanoparticles with optical absorbance in the near-infrared (NIR) region and a strong magnetic moment. Here, we present a novel protocol for synthesis of such hybrid nanoparticles that is based on an oil-in-water microemulsion method. The unique feature of the protocol described herein is synthesis of magneto-plasmonic nanoparticles of various sizes from primary blocks which also have magneto-plasmonic characteristics. This approach yields nanoparticles with a high density of magnetic and plasmonic functionalities which are uniformly distributed throughout the nanoparticle volume. The hybrid nanoparticles can be easily functionalized by attaching antibodies through the Fc moiety leaving the Fab portion that is responsible for antigen binding available for targeting.

  15. Morphology filter bank for extracting nodular and linear patterns in medical images.

    PubMed

    Hashimoto, Ryutaro; Uchiyama, Yoshikazu; Uchimura, Keiichi; Koutaki, Gou; Inoue, Tomoki

    2017-04-01

    Using image processing to extract nodular or linear shadows is a key technique of computer-aided diagnosis schemes. This study proposes a new method for extracting nodular and linear patterns of various sizes in medical images. We have developed a morphology filter bank that creates multiresolution representations of an image. Analysis bank of this filter bank produces nodular and linear patterns at each resolution level. Synthesis bank can then be used to perfectly reconstruct the original image from these decomposed patterns. Our proposed method shows better performance based on a quantitative evaluation using a synthesized image compared with a conventional method based on a Hessian matrix, often used to enhance nodular and linear patterns. In addition, experiments show that our method can be applied to the followings: (1) microcalcifications of various sizes in mammograms can be extracted, (2) blood vessels of various sizes in retinal fundus images can be extracted, and (3) thoracic CT images can be reconstructed while removing normal vessels. Our proposed method is useful for extracting nodular and linear shadows or removing normal structures in medical images.

  16. Synthesis of image sequences for Korean sign language using 3D shape model

    NASA Astrophysics Data System (ADS)

    Hong, Mun-Ho; Choi, Chang-Seok; Kim, Chang-Seok; Jeon, Joon-Hyeon

    1995-05-01

    This paper proposes a method for offering information and realizing communication to the deaf-mute. The deaf-mute communicates with another person by means of sign language, but most people are unfamiliar with it. This method enables to convert text data into the corresponding image sequences for Korean sign language (KSL). Using a general 3D shape model of the upper body leads to generating the 3D motions of KSL. It is necessary to construct the general 3D shape model considering the anatomical structure of the human body. To obtain a personal 3D shape model, this general model is to adjust to the personal base images. Image synthesis for KSL consists of deforming a personal 3D shape model and texture-mapping the personal images onto the deformed model. The 3D motions for KSL have the facial expressions and the 3D movements of the head, trunk, arms and hands and are parameterized for easily deforming the model. These motion parameters of the upper body are extracted from a skilled signer's motion for each KSL and are stored to the database. Editing the parameters according to the inputs of text data yields to generate the image sequences of 3D motions.

  17. Cross contrast multi-channel image registration using image synthesis for MR brain images.

    PubMed

    Chen, Min; Carass, Aaron; Jog, Amod; Lee, Junghoon; Roy, Snehashis; Prince, Jerry L

    2017-02-01

    Multi-modal deformable registration is important for many medical image analysis tasks such as atlas alignment, image fusion, and distortion correction. Whereas a conventional method would register images with different modalities using modality independent features or information theoretic metrics such as mutual information, this paper presents a new framework that addresses the problem using a two-channel registration algorithm capable of using mono-modal similarity measures such as sum of squared differences or cross-correlation. To make it possible to use these same-modality measures, image synthesis is used to create proxy images for the opposite modality as well as intensity-normalized images from each of the two available images. The new deformable registration framework was evaluated by performing intra-subject deformation recovery, intra-subject boundary alignment, and inter-subject label transfer experiments using multi-contrast magnetic resonance brain imaging data. Three different multi-channel registration algorithms were evaluated, revealing that the framework is robust to the multi-channel deformable registration algorithm that is used. With a single exception, all results demonstrated improvements when compared against single channel registrations using the same algorithm with mutual information. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Enhanced Imaging of Building Interior for Portable MIMO Through-the-wall Radar

    NASA Astrophysics Data System (ADS)

    Song, Yongping; Zhu, Jiahua; Hu, Jun; Jin, Tian; Zhou, Zhimin

    2018-01-01

    Portable multi-input multi-output (MIMO) radar system is able to imaging the building interior through aperture synthesis. However, significant grating lobes are invoked in the directly imaging results, which may deteriorate the imaging quality of other targets and influence the detail information extraction of imaging scene. In this paper, a two-stage coherence factor (CF) weighting method is proposed to enhance the imaging quality. After obtaining the sub-imaging results of each spatial sampling position using conventional CF approach, a window function is employed to calculate the proposed “enhanced CF” adaptive to the spatial variety effect behind the wall for the combination of these sub-images. The real data experiment illustrates the better performance of proposed method on grating lobes suppression and imaging quality enhancement compare to the traditional radar imaging approach.

  19. An exploratory study on the driving method of speech synthesis based on the human eye reading imaging data

    NASA Astrophysics Data System (ADS)

    Gao, Pei-pei; Liu, Feng

    2016-10-01

    With the development of information technology and artificial intelligence, speech synthesis plays a significant role in the fields of Human-Computer Interaction Techniques. However, the main problem of current speech synthesis techniques is lacking of naturalness and expressiveness so that it is not yet close to the standard of natural language. Another problem is that the human-computer interaction based on the speech synthesis is too monotonous to realize mechanism of user subjective drive. This thesis introduces the historical development of speech synthesis and summarizes the general process of this technique. It is pointed out that prosody generation module is an important part in the process of speech synthesis. On the basis of further research, using eye activity rules when reading to control and drive prosody generation was introduced as a new human-computer interaction method to enrich the synthetic form. In this article, the present situation of speech synthesis technology is reviewed in detail. Based on the premise of eye gaze data extraction, using eye movement signal in real-time driving, a speech synthesis method which can express the real speech rhythm of the speaker is proposed. That is, when reader is watching corpora with its eyes in silent reading, capture the reading information such as the eye gaze duration per prosodic unit, and establish a hierarchical prosodic pattern of duration model to determine the duration parameters of synthesized speech. At last, after the analysis, the feasibility of the above method is verified.

  20. Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging.

    PubMed

    Wang, Weiping; Lu, Ya-Chun; Huang, Hong; Feng, Jiu-Ju; Chen, Jian-Rong; Wang, Ai-Jun

    2014-04-07

    A simple, facile and green hydrothermal method was developed in the synthesis of water-soluble nitrogen-doped carbon dots (N-CDs) from streptomycin. The as-prepared N-CDs displayed bright blue fluorescence under the irradiation of UV light, together with a high quantum yield of 7.6% and good biocompatibility as demonstrated by the cell viability assay. Thus, the N-CDs can be used as fluorescent probes for cell imaging, which have potential applications in bioimaging and related fields. This strategy opens a new way for the preparation of fluorescent carbon nanomaterials using small molecules as carbon sources.

  1. Biomimetic one-pot synthesis of gold nanoclusters/nanoparticles for targeted tumor cellular dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Zhou, Zhijun; Li, Zhiming; Zhang, Chunlei; Wang, Xiansong; Wang, Kan; Gao, Guo; Huang, Peng; Cui, Daxiang

    2013-04-01

    Biomimetic synthesis has become a promising green pathway to prepare nanomaterials. In this study, bovine serum albumin (BSA)-conjugated gold nanoclusters/nanoparticles were successfully synthesized in water at room temperature by a protein-directed, solution-phase, green synthetic method. The synthesized BSA-Au nanocomplexes have fluorescence emission (588 nm) of gold nanoclusters and surface plasmon resonance of gold nanoparticles. The BSA-Au nanocomplexes display non-cytotoxicity and excellent biocompatibility on MGC803 gastric cancer cells. After conjugation of folic acid molecules, the obtained BSA-Au nanocomplexes showed highly selective targeting for MGC803 cells and dual-modality dark-field and fluorescence imaging.

  2. Simulation of the pulse propagation by the interacting mode parabolic equation method

    NASA Astrophysics Data System (ADS)

    Trofimov, M. Yu.; Kozitskiy, S. B.; Zakharenko, A. D.

    2018-07-01

    A broadband modeling of pulses has been performed by using the previously derived interacting mode parabolic equation through the Fourier synthesis. Test examples on the wedge with the angle 2.86∘ (known as the ASA benchmark) show excellent agreement with the source images method.

  3. Iterative framework for the joint segmentation and CT synthesis of MR images: application to MRI-only radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Burgos, Ninon; Guerreiro, Filipa; McClelland, Jamie; Presles, Benoît; Modat, Marc; Nill, Simeon; Dearnaley, David; deSouza, Nandita; Oelfke, Uwe; Knopf, Antje-Christin; Ourselin, Sébastien; Cardoso, M. Jorge

    2017-06-01

    To tackle the problem of magnetic resonance imaging (MRI)-only radiotherapy treatment planning (RTP), we propose a multi-atlas information propagation scheme that jointly segments organs and generates pseudo x-ray computed tomography (CT) data from structural MR images (T1-weighted and T2-weighted). As the performance of the method strongly depends on the quality of the atlas database composed of multiple sets of aligned MR, CT and segmented images, we also propose a robust way of registering atlas MR and CT images, which combines structure-guided registration, and CT and MR image synthesis. We first evaluated the proposed framework in terms of segmentation and CT synthesis accuracy on 15 subjects with prostate cancer. The segmentations obtained with the proposed method were compared using the Dice score coefficient (DSC) to the manual segmentations. Mean DSCs of 0.73, 0.90, 0.77 and 0.90 were obtained for the prostate, bladder, rectum and femur heads, respectively. The mean absolute error (MAE) and the mean error (ME) were computed between the reference CTs (non-rigidly aligned to the MRs) and the pseudo CTs generated with the proposed method. The MAE was on average 45.7+/- 4.6 HU and the ME -1.6+/- 7.7 HU. We then performed a dosimetric evaluation by re-calculating plans on the pseudo CTs and comparing them to the plans optimised on the reference CTs. We compared the cumulative dose volume histograms (DVH) obtained for the pseudo CTs to the DVH obtained for the reference CTs in the planning target volume (PTV) located in the prostate, and in the organs at risk at different DVH points. We obtained average differences of -0.14 % in the PTV for {{D}98 % } , and between -0.14 % and 0.05% in the PTV, bladder, rectum and femur heads for D mean and {{D}2 % } . Overall, we demonstrate that the proposed framework is able to automatically generate accurate pseudo CT images and segmentations in the pelvic region, potentially bypassing the need for CT scan for accurate RTP.

  4. Synthesis and identification of three-dimensional faces from image(s) and three-dimensional generic models

    NASA Astrophysics Data System (ADS)

    Liu, Zexi; Cohen, Fernand

    2017-11-01

    We describe an approach for synthesizing a three-dimensional (3-D) face structure from an image or images of a human face taken at a priori unknown poses using gender and ethnicity specific 3-D generic models. The synthesis process starts with a generic model, which is personalized as images of the person become available using preselected landmark points that are tessellated to form a high-resolution triangular mesh. From a single image, two of the three coordinates of the model are reconstructed in accordance with the given image of the person, while the third coordinate is sampled from the generic model, and the appearance is made in accordance with the image. With multiple images, all coordinates and appearance are reconstructed in accordance with the observed images. This method allows for accurate pose estimation as well as face identification in 3-D rendering of a difficult two-dimensional (2-D) face recognition problem into a much simpler 3-D surface matching problem. The estimation of the unknown pose is achieved using the Levenberg-Marquardt optimization process. Encouraging experimental results are obtained in a controlled environment with high-resolution images under a good illumination condition, as well as for images taken in an uncontrolled environment under arbitrary illumination with low-resolution cameras.

  5. Synthese et modelisation des proprietes optiques de nanoparticules d'alliage or-argent et leur application en imagerie hyperspectrale

    NASA Astrophysics Data System (ADS)

    Rioux, David

    Metallic nanoparticles (NPs) constitute a research area that has been booming in the recent decades. Among them the plasmonic NPs, which are composed of noble metals such as gold and silver, are the best known and possess extraordinary optical properties. Their ability to strongly absorb and scatter light on a specific band in the visible wavelengths gives them a very intense coloration. Moreover, these structures strongly concentrate the light near their surface upon illumination. These properties can be exploited in a variety of applications from biomedical imaging to detection and even for improving the performance of solar cells. Although gold and silver are the most widely used materials for plasmonic NPs, it has long been known that their alloys have optical properties equally interesting with the added benefit that their color can be controlled by the gold-silver ratio of the alloy. Nevertheless, the gold-silver alloy NPs are not frequently used in different applications. The main reason is probably that the synthesis of these NPs with good size control has not been demonstrated yet. Many applications, including imaging, require NPs which strongly scatter light. Large NPs (50 nm and more) are often required since they scatter light more efficiently. However, the different synthesis methods used until now to produce gold-silver alloy NPs result in sizes smaller than 30 nm or very polydisperse samples, making them unattractive for these applications. The potential to use gold-silver alloy NPs is therefore based on the ability to manufacture them with a sufficiently large diameter and with good size control. It is also important to be able to predict in advance the optical properties of gold-silver alloy nanostructures, to help guide the design of these structures depending on the intended properties. This requires knowledge of the dielectric function of the alloys according to their composition. Although the dielectric function was measured experimentally several times, tabular data are often limited to a few specific compositions and an analytical model would be more interesting. This thesis focuses on the study and modeling of the optical properties of gold-silver alloy NPs, on their synthesis as well as an application example; using these NPs as cell markers for multiplexed scattering imaging. The first part of this thesis deals with a study of the dielectric function of gold-silver alloys in order to develop an analytical model to calculate the dielectric function for an arbitrary composition of the alloy. This model considers the contribution of the free and bound electrons of the metal to the dielectric function. The contribution of free electrons is calculated using the Drude model while the contribution of bound electrons was modeled by studying the shape of the interband transitions from the study of the gold and silver band structures. A parameterized model incorporating these two contributions was developed and composition dependence comes from the evolution of these parameters depending on the composition. The model was validated by comparing the spectra of experimental extinctions alloy NPs with the spectra calculated by the Mie theory using the dielectric functions determined from this model. This model has also been very useful to predict the optical properties and characterize NPs produced by a new synthesis method developed during this PhD project. This method allowed the synthesis of spherical gold-silver alloy NPs with controlled size and composition while maintaining a small size distribution. This technique relies on the combination of two known methods. The first, being used for the synthesis of small alloy NPs, is based on the chemical co-reduction of gold and silver salts in aqueous solution. The second, used for the synthesis of gold or silver NPs of controlled size, is the seed-mediated growth method. Using this new approach, the synthesis sized gold-silver alloy NPs with sizes controlled between 30 and 150 nm has been demonstrated. The synthesized NPs do not have a homogeneous composition with a gold-rich core and a silver-rich surface. This non-homogeneous composition affects the optical properties for the smallest particles (˜ 30 nm) by broadening the plasmon peak and making it asymmetrical, but its effect is considerably less important for larger particles (˜ 60 nm and more) where the measured plasmon peak is similar to that predicted for a homogeneous particle. This new synthesis method thus provides the ability to synthesize high quality alloy NPs for applications requiring controlled size and a precise plasmon peak position. These NPs were used in scattering imaging and their potential as cell markers was studied. It has been shown that the darkfield imaging, a standard technique for scattering imaging, is not optimal for the observation of NPs on cells because of the strong scattering signal of the latter. An alternative approach based on the detection of the backscattering of the NPs was proposed. This approach provides better contrast for the NPs as their backscatter signal is much stronger than that of the cells. In this thesis, a semi-quantitative study of the contrast of the NPs relative to cells explain why the backscattering approach is more promising than the darkfield imaging for cell labeling. Overall, this thesis covers many aspects of the gold-silver alloy NPs, either theoretical understanding of the optical properties, the development of the synthesis method and an application example. It also paves the way for many other avenues of research in the optimization of the method of synthesis of the particles as well as in their use in imaging applications and others.

  6. Synthesis of macrocyclic polyaminocarboxylates and their use for preparing stable radiometal antibody immunoconjugates for therapy, SPECT and PET imaging

    DOEpatents

    Mease, R.C.; Mausner, L.F.; Srivastava, S.C.

    1995-06-27

    A simple method for the synthesis of 1,4,7,10-tetraazacyclododecane N,N{prime}N{double_prime},N{prime}{double_prime}-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N{prime},N{double_prime},N{prime}{double_prime}-tetraacetic acid involves cyanomethylating 1,4,7,10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy. 4 figs.

  7. Machine-Vision Aids for Improved Flight Operations

    NASA Technical Reports Server (NTRS)

    Menon, P. K.; Chatterji, Gano B.

    1996-01-01

    The development of machine vision based pilot aids to help reduce night approach and landing accidents is explored. The techniques developed are motivated by the desire to use the available information sources for navigation such as the airport lighting layout, attitude sensors and Global Positioning System to derive more precise aircraft position and orientation information. The fact that airport lighting geometry is known and that images of airport lighting can be acquired by the camera, has lead to the synthesis of machine vision based algorithms for runway relative aircraft position and orientation estimation. The main contribution of this research is the synthesis of seven navigation algorithms based on two broad families of solutions. The first family of solution methods consists of techniques that reconstruct the airport lighting layout from the camera image and then estimate the aircraft position components by comparing the reconstructed lighting layout geometry with the known model of the airport lighting layout geometry. The second family of methods comprises techniques that synthesize the image of the airport lighting layout using a camera model and estimate the aircraft position and orientation by comparing this image with the actual image of the airport lighting acquired by the camera. Algorithms 1 through 4 belong to the first family of solutions while Algorithms 5 through 7 belong to the second family of solutions. Algorithms 1 and 2 are parameter optimization methods, Algorithms 3 and 4 are feature correspondence methods and Algorithms 5 through 7 are Kalman filter centered algorithms. Results of computer simulation are presented to demonstrate the performance of all the seven algorithms developed.

  8. Synthesis of sub-millimeter calcite from aqueous solution

    NASA Astrophysics Data System (ADS)

    Reimi, M. A.; Morrison, J. M.; Burns, P. C.

    2011-12-01

    A novel aqueous synthesis that leads to the formation of calcite (CaCO3) crystals, up to 500μm in diameter, will be used to facilitate the study of contaminant transport in aqueous environmental systems. Existing processes tend to be complicated and often yield nanometer-sized or amorphous CaCO3. The synthesis method presented here, which involves slow mixing of concentrated solutions of CaCl2 ¬and (NH4)2CO3, produces single crystals of rhombohedral calcite in 2 to 4 days. Variations on the experimental method, including changes in pH and solution concentration, were explored to optimize the synthesis. Scanning Electron Microscope images show the differences in size and purity observed when the crystals are grown at pH values ranging from 2 to 6. The crystals grown from solutions of pH 2 were large (up to 500 micrometers in diameter) with minimal polycrystalline calcium carbonate, while crystals grown from solutions with pH values beyond 4 were smaller (up to 100 micrometers in diameter) with significant polycrystalline calcium carbonate. The synthesis method, materials characterization, and use in future actinide contaminant studies will be discussed.

  9. Synthesis of Immunotargeted Magneto-plasmonic Nanoclusters

    PubMed Central

    Wu, Chun-Hsien; Sokolov, Konstantin

    2014-01-01

    Magnetic and plasmonic properties combined in a single nanoparticle provide a synergy that is advantageous in a number of biomedical applications including contrast enhancement in novel magnetomotive imaging modalities, simultaneous capture and detection of circulating tumor cells (CTCs), and multimodal molecular imaging combined with photothermal therapy of cancer cells. These applications have stimulated significant interest in development of protocols for synthesis of magneto-plasmonic nanoparticles with optical absorbance in the near-infrared (NIR) region and a strong magnetic moment. Here, we present a novel protocol for synthesis of such hybrid nanoparticles that is based on an oil-in-water microemulsion method. The unique feature of the protocol described herein is synthesis of magneto-plasmonic nanoparticles of various sizes from primary blocks which also have magneto-plasmonic characteristics. This approach yields nanoparticles with a high density of magnetic and plasmonic functionalities which are uniformly distributed throughout the nanoparticle volume. The hybrid nanoparticles can be easily functionalized by attaching antibodies through the Fc moiety leaving the Fab portion that is responsible for antigen binding available for targeting. PMID:25177973

  10. A Toolbox for Imaging Stellar Surfaces

    NASA Astrophysics Data System (ADS)

    Young, John

    2018-04-01

    In this talk I will review the available algorithms for synthesis imaging at visible and infrared wavelengths, including both gray and polychromatic methods. I will explain state-of-the-art approaches to constraining the ill-posed image reconstruction problem, and selecting an appropriate regularisation function and strength of regularisation. The reconstruction biases that can follow from non-optimal choices will be discussed, including their potential impact on the physical interpretation of the results. This discussion will be illustrated with example stellar surface imaging results from real VLTI and COAST datasets.

  11. Synthesis of Poly(N-isopropylacrylamide) Microcapsules for Drug Delivery Applications via UV Aerosol Photopolymerization

    NASA Astrophysics Data System (ADS)

    Roberson, Nicole; Denmark, Daniel; Witanachchi, Sarath

    Hybrid drug delivery systems composed of thermoresponsive polymers and magnetic nanoparticles have been developed using chemical methods to deliver controlled amounts of a biotherapeutic to target tissue. These methods can be expensive, time intensive, and produce impure composites due to the use of surfactants during polymer synthesis. In this study, UV aerosol photopolymerization is used to synthesize N-isoplopylacrylamide (NIPAM) monomers, N,N-methylenebisacrylamide (MBA) crosslinker, and irgacure 2959 photoinitiator into the transporting microcapsule for drug delivery. The method of UV aerosol photopolymerization allows for the continuous, cost effective, and time efficient synthesis of a high concentration of pure polymers in a short amount of time; toxic surfactants are not necessary. Optimal NIPAM monomer, MBA crosslinker, and irgacure 2959 photoinitiator concentrations were tested and analyzed to synthesize a microcapsule with optimal conditions for controlled drug delivery. Scanning Electron Microscope (SEM) imaging reveals that synthesis of polymer microcapsules of about 30 micrometers in size is effective through UV aerosol photopolymerization. Findings will contribute greatly to the field of emergency medicine. This work was supported by the United States Army (Grant No. W81XWH1020101/3349).

  12. Hologlyphics: volumetric image synthesis performance system

    NASA Astrophysics Data System (ADS)

    Funk, Walter

    2008-02-01

    This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.

  13. Synthesis and in vitro evaluation of bone-seeking superparamagnetic iron oxide nanoparticles as contrast agents for imaging bone metabolic activity.

    PubMed

    Panahifar, Arash; Mahmoudi, Morteza; Doschak, Michael R

    2013-06-12

    In this article, we report the synthesis and in vitro evaluation of a new class of nonionizing bone-targeting contrast agents based on bisphosphonate-conjugated superparamagnetic iron oxide nanoparticles (SPIONs), for use in imaging of bone turnover with magnetic resonance imaging (MRI). Similar to bone-targeting (99m)Technetium medronate, our novel contrast agent uses bisphosphonates to impart bone-seeking properties, but replaces the former radioisotope with nonionizing SPIONs which enables their subsequent detection using MRI. Our reported method is relatively simple, quick and cost-effective and results in BP-SPIONs with a final nanoparticle size of 17 nm under electron microscopy technique (i.e., TEM). In-vitro binding studies of our novel bone tracer have shown selective binding affinity (around 65%) for hydroxyapatite, the principal mineral of bone. Bone-targeting SPIONs offer the potential for use as nonionizing MRI contrast agents capable of imaging dynamic bone turnover, for use in the diagnosis and monitoring of metabolic bone diseases and related bone pathology.

  14. Fully automated synthesis of [(18) F]fluoro-dihydrotestosterone ([(18) F]FDHT) using the FlexLab module.

    PubMed

    Ackermann, Uwe; Lewis, Jason S; Young, Kenneth; Morris, Michael J; Weickhardt, Andrew; Davis, Ian D; Scott, Andrew M

    2016-08-01

    Imaging of androgen receptor expression in prostate cancer using F-18 FDHT is becoming increasingly popular. With the radiolabelling precursor now commercially available, developing a fully automated synthesis of [(18) F] FDHT is important. We have fully automated the synthesis of F-18 FDHT using the iPhase FlexLab module using only commercially available components. Total synthesis time was 90 min, radiochemical yields were 25-33% (n = 11). Radiochemical purity of the final formulation was > 99% and specific activity was > 18.5 GBq/µmol for all batches. This method can be up-scaled as desired, thus making it possible to study multiple patients in a day. Furthermore, our procedure uses 4 mg of precursor only and is therefore cost-effective. The synthesis has now been validated at Austin Health and is currently used for [(18) F]FDHT studies in patients. We believe that this method can easily adapted by other modules to further widen the availability of [(18) F]FDHT. Copyright © 2016 John Wiley & Sons, Ltd.

  15. 11C-L-methyl methionine dynamic PET/CT of skeletal muscle: response to protein supplementation compared to L-[ring 13C6] phenylalanine infusion with serial muscle biopsy.

    PubMed

    Arentson-Lantz, Emily J; Saeed, Isra H; Frassetto, Lynda A; Masharani, Umesh; Harnish, Roy J; Seo, Youngho; VanBrocklin, Henry F; Hawkins, Randall A; Mari-Aparici, Carina; Pampaloni, Miguel H; Slater, James; Paddon-Jones, Douglas; Lang, Thomas F

    2017-05-01

    The objective of this study was to determine if clinical dynamic PET/CT imaging with 11 C-L-methyl-methionine ( 11 C-MET) in healthy older women can provide an estimate of tissue-level post-absorptive and post-prandial skeletal muscle protein synthesis that is consistent with the more traditional method of calculating fractional synthesis rate (FSR) of muscle protein synthesis from skeletal muscle biopsies obtained during an infusion of L-[ring 13 C 6 ] phenylalanine ( 13 C 6 -Phe). Healthy older women (73 ± 5 years) completed both dynamic PET/CT imaging with 11 C-MET and a stable isotope infusion of 13 C 6 -Phe with biopsies to measure the skeletal muscle protein synthetic response to 25 g of a whey protein supplement. Graphical estimation of the Patlak coefficient K i from analysis of the dynamic PET/CT images was employed as a measure of incorporation of 11 C-MET in the mid-thigh muscle bundle. Post-prandial values [mean ± standard error of the mean (SEM)] were higher than post-absorptive values for both K i (0.0095 ± 0.001 vs. 0.00785 ± 0.001 min -1 , p < 0.05) and FSR (0.083 ± 0.008 vs. 0.049 ± 0.006%/h, p < 0.001) in response to the whey protein supplement. The percent increase in K i and FSR in response to the whey protein supplement was significantly correlated (r = 0.79, p = 0.015). Dynamic PET/CT imaging with 11 C-MET provides an estimate of the post-prandial anabolic response that is consistent with a traditional, invasive stable isotope, and muscle biopsy approach. These results support the potential future use of 11 C-MET imaging as a non-invasive method for assessing conditions affecting skeletal muscle protein synthesis.

  16. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    NASA Astrophysics Data System (ADS)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  17. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    NASA Astrophysics Data System (ADS)

    Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.

    2016-02-01

    We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.

  18. In situ synthesis of alkenyl tetrazines for highly fluorogenic bioorthogonal live-cell imaging probes.

    PubMed

    Wu, Haoxing; Yang, Jun; Šečkutė, Jolita; Devaraj, Neal K

    2014-06-02

    In spite of the wide application potential of 1,2,4,5-tetrazines, particularly in live-cell and in vivo imaging, a major limitation has been the lack of practical synthetic methods. Here we report the in situ synthesis of (E)-3-substituted 6-alkenyl-1,2,4,5-tetrazine derivatives through an elimination-Heck cascade reaction. By using this strategy, we provide 24 examples of π-conjugated tetrazine derivatives that can be conveniently prepared from tetrazine building blocks and related halides. These include tetrazine analogs of biological small molecules, highly conjugated buta-1,3-diene-substituted tetrazines, and a diverse array of fluorescent probes suitable for live-cell imaging. These highly conjugated probes show very strong fluorescence turn-on (up to 400-fold) when reacted with dienophiles such as cyclopropenes and trans-cyclooctenes, and we demonstrate their application for live-cell imaging. This work provides an efficient and practical synthetic methodology for tetrazine derivatives and will facilitate the application of conjugated tetrazines, particularly as fluorogenic probes for live-cell imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Optimal aperture synthesis radar imaging

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Chau, J. L.

    2006-03-01

    Aperture synthesis radar imaging has been used to investigate coherent backscatter from ionospheric plasma irregularities at Jicamarca and elsewhere for several years. Phenomena of interest include equatorial spread F, 150-km echoes, the equatorial electrojet, range-spread meteor trails, and mesospheric echoes. The sought-after images are related to spaced-receiver data mathematically through an integral transform, but direct inversion is generally impractical or suboptimal. We instead turn to statistical inverse theory, endeavoring to utilize fully all available information in the data inversion. The imaging algorithm used at Jicamarca is based on an implementation of the MaxEnt method developed for radio astronomy. Its strategy is to limit the space of candidate images to those that are positive definite, consistent with data to the degree required by experimental confidence limits; smooth (in some sense); and most representative of the class of possible solutions. The algorithm was improved recently by (1) incorporating the antenna radiation pattern in the prior probability and (2) estimating and including the full error covariance matrix in the constraints. The revised algorithm is evaluated using new 28-baseline electrojet data from Jicamarca.

  20. Synthesis and antitumour activity of 4-aminoquinazoline derivatives

    NASA Astrophysics Data System (ADS)

    Lipunova, G. N.; Nosova, E. V.; Charushin, V. N.; Chupakhin, O. N.

    2016-07-01

    Pieces of data on the synthesis and antitumour activity of 4-aminoquinazolines are summarized and analyzed. Key methods for the synthesis of these compounds are considered, primarily cyclocondensation of carboxylic acid derivatives, as well as the oxidation of quinazolines and the cyclization of disubstituted thioureas. Improvements of synthetic schemes for erlotinib, gefitinib and lapatinib, which are the best-known pharmaceuticals based on compounds of the title class, are also considered. Synthetic strategies and biological activities for new 4-aminoquinazoline derivatives that are EGFR-tyrosine kinase inhibitors, multiactive compounds, and labelled compounds for use as positron emission tomography (PET) imaging agents are discussed. The bibliography includes 263 references.

  1. A convenient Simple Method for Synthesis of Meta-iodobenzylguanidine (MIBG).

    PubMed

    Sheikholislam, Zahra; Soleimani, Zohreh; Moghimi, Abolghasem; Shahhosseini, Soraya

    2013-01-01

    Radioiodinated meta-iodobenzylguanidine (MIBG) is one of the important radiopharmaceuticals in Nuclear Medicine. [(123/131)I] MIBG is used for imaging of Adrenal medulla, studying heart sympathetic nerves, treatment of pheochromacytoma and neuroblastoma. For clinical application, radioiodinated MIBG is prepared through isotopic exchange method, which includes replacement of radioactive iodine in a nucleophilic substitution reaction with cold iodine ((127)I). The unlabelled MIBG hemisulfate is synthesized by the procedure described by Wieland et al. (1980). The availability of a more practical and cost-effective procedure for MIBG preparation encouraged us to study the MIBG synthesis methods. In this study the preparation of MIBG through different methods were evaluated and a new method, which is one step, simple and cost-effective is introduced. The method has ability to be scaled up for production of unlabelled MIBG.

  2. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang

    2017-04-01

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  3. Implicit prosody mining based on the human eye image capture technology

    NASA Astrophysics Data System (ADS)

    Gao, Pei-pei; Liu, Feng

    2013-08-01

    The technology of eye tracker has become the main methods of analyzing the recognition issues in human-computer interaction. Human eye image capture is the key problem of the eye tracking. Based on further research, a new human-computer interaction method introduced to enrich the form of speech synthetic. We propose a method of Implicit Prosody mining based on the human eye image capture technology to extract the parameters from the image of human eyes when reading, control and drive prosody generation in speech synthesis, and establish prosodic model with high simulation accuracy. Duration model is key issues for prosody generation. For the duration model, this paper put forward a new idea for obtaining gaze duration of eyes when reading based on the eye image capture technology, and synchronous controlling this duration and pronunciation duration in speech synthesis. The movement of human eyes during reading is a comprehensive multi-factor interactive process, such as gaze, twitching and backsight. Therefore, how to extract the appropriate information from the image of human eyes need to be considered and the gaze regularity of eyes need to be obtained as references of modeling. Based on the analysis of current three kinds of eye movement control model and the characteristics of the Implicit Prosody reading, relative independence between speech processing system of text and eye movement control system was discussed. It was proved that under the same text familiarity condition, gaze duration of eyes when reading and internal voice pronunciation duration are synchronous. The eye gaze duration model based on the Chinese language level prosodic structure was presented to change previous methods of machine learning and probability forecasting, obtain readers' real internal reading rhythm and to synthesize voice with personalized rhythm. This research will enrich human-computer interactive form, and will be practical significance and application prospect in terms of disabled assisted speech interaction. Experiments show that Implicit Prosody mining based on the human eye image capture technology makes the synthesized speech has more flexible expressions.

  4. Synthesis of TiS2 nanodiscs for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Parvaz, M.; Ahmed, Sultan; Khan, Mohd Bilal; Rahul, Ahmad, Sultan; Khan, Zishan H.

    2018-05-01

    Titanium disulfide, being one of the popular transition-metal dichalcogenide (TMD) materials, shows great properties. TiS2 nanodiscs have been synthesized by solid state reaction (SSR) method. FESEM images confirm the synthesis of TiS2 nanodiscs. XRD spectra suggest the crystalline structure of as-prepared TiS2 nanodiscs. Electrochemical properties of the synthesized nanodiscs were studied in 6 M KOH aqueous solution. The observed results indicates the promisibilty of TiS2 as electrode material in energy storage devices.

  5. Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) and Its Application to Inverse Problems.

    PubMed

    Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A

    2017-12-01

    The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction.

  6. Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) and Its Application to Inverse Problems

    PubMed Central

    Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A.

    2017-01-01

    The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction. PMID:29376111

  7. Sparse Feature Extraction for Pose-Tolerant Face Recognition.

    PubMed

    Abiantun, Ramzi; Prabhu, Utsav; Savvides, Marios

    2014-10-01

    Automatic face recognition performance has been steadily improving over years of research, however it remains significantly affected by a number of factors such as illumination, pose, expression, resolution and other factors that can impact matching scores. The focus of this paper is the pose problem which remains largely overlooked in most real-world applications. Specifically, we focus on one-to-one matching scenarios where a query face image of a random pose is matched against a set of gallery images. We propose a method that relies on two fundamental components: (a) A 3D modeling step to geometrically correct the viewpoint of the face. For this purpose, we extend a recent technique for efficient synthesis of 3D face models called 3D Generic Elastic Model. (b) A sparse feature extraction step using subspace modeling and ℓ1-minimization to induce pose-tolerance in coefficient space. This in return enables the synthesis of an equivalent frontal-looking face, which can be used towards recognition. We show significant performance improvements in verification rates compared to commercial matchers, and also demonstrate the resilience of the proposed method with respect to degrading input quality. We find that the proposed technique is able to match non-frontal images to other non-frontal images of varying angles.

  8. Multispectral code excited linear prediction coding and its application in magnetic resonance images.

    PubMed

    Hu, J H; Wang, Y; Cahill, P T

    1997-01-01

    This paper reports a multispectral code excited linear prediction (MCELP) method for the compression of multispectral images. Different linear prediction models and adaptation schemes have been compared. The method that uses a forward adaptive autoregressive (AR) model has been proven to achieve a good compromise between performance, complexity, and robustness. This approach is referred to as the MFCELP method. Given a set of multispectral images, the linear predictive coefficients are updated over nonoverlapping three-dimensional (3-D) macroblocks. Each macroblock is further divided into several 3-D micro-blocks, and the best excitation signal for each microblock is determined through an analysis-by-synthesis procedure. The MFCELP method has been applied to multispectral magnetic resonance (MR) images. To satisfy the high quality requirement for medical images, the error between the original image set and the synthesized one is further specified using a vector quantizer. This method has been applied to images from 26 clinical MR neuro studies (20 slices/study, three spectral bands/slice, 256x256 pixels/band, 12 b/pixel). The MFCELP method provides a significant visual improvement over the discrete cosine transform (DCT) based Joint Photographers Expert Group (JPEG) method, the wavelet transform based embedded zero-tree wavelet (EZW) coding method, and the vector tree (VT) coding method, as well as the multispectral segmented autoregressive moving average (MSARMA) method we developed previously.

  9. Synthesis, Characterization, and Handling of Eu(II)-Containing Complexes for Molecular Imaging Applications

    NASA Astrophysics Data System (ADS)

    Basal, Lina A.; Allen, Matthew J.

    2018-03-01

    Considerable research effort has focused on the in vivo use of responsive imaging probes that change imaging properties upon reacting with oxygen because hypoxia is relevant to diagnosing, treating, and monitoring diseases. One promising class of compounds for oxygen-responsive imaging is Eu(II)-containing complexes because the Eu(II/III) redox couple enables imaging with multiple modalities including magnetic resonance and photoacoustic imaging. The use of Eu(II) requires care in handling to avoid unintended oxidation during synthesis and characterization. This review describes recent advances in the field of imaging agents based on discrete Eu(II)-containing complexes with specific focus on the synthesis, characterization, and handling of aqueous Eu(II)-containing complexes.

  10. Synthesis of fluorine-18 radio-labeled serum albumins for PET blood pool imaging.

    PubMed

    Basuli, Falguni; Li, Changhui; Xu, Biying; Williams, Mark; Wong, Karen; Coble, Vincent L; Vasalatiy, Olga; Seidel, Jurgen; Green, Michael V; Griffiths, Gary L; Choyke, Peter L; Jagoda, Elaine M

    2015-03-01

    We sought to develop a practical, reproducible and clinically translatable method of radiolabeling serum albumins with fluorine-18 for use as a PET blood pool imaging agent in animals and man. Fluorine-18 radiolabeled fluoronicotinic acid-2,3,5,6-tetrafluorophenyl ester, [(18)F]F-Py-TFP was prepared first by the reaction of its quaternary ammonium triflate precursor with [(18)F]tetrabutylammonium fluoride ([(18)F]TBAF) according to a previously published method for peptides, with minor modifications. The incubation of [(18)F]F-Py-TFP with rat serum albumin (RSA) in phosphate buffer (pH9) for 15 min at 37-40 °C produced fluorine-18-radiolabeled RSA and the product was purified using a mini-PD MiniTrap G-25 column. The overall radiochemical yield of the reaction was 18-35% (n=30, uncorrected) in a 90-min synthesis. This procedure, repeated with human serum albumin (HSA), yielded similar results. Fluorine-18-radiolabeled RSA demonstrated prolonged blood retention (biological half-life of 4.8 hours) in healthy awake rats. The distribution of major organ radioactivity remained relatively unchanged during the 4 hour observation periods either by direct tissue counting or by dynamic PET whole-body imaging except for a gradual accumulation of labeled metabolic products in the bladder. This manual method for synthesizing radiolabeled serum albumins uses fluorine-18, a widely available PET radionuclide, and natural protein available in both pure and recombinant forms which could be scaled up for widespread clinical applications. These preclinical biodistribution and PET imaging results indicate that [(18)F]RSA is an effective blood pool imaging agent in rats and might, as [(18)F]HSA, prove similarly useful as a clinical imaging agent. Published by Elsevier Inc.

  11. Saliency detection algorithm based on LSC-RC

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Tian, Weiye; Wang, Ding; Luo, Xin; Wu, Yingfei; Zhang, Yu

    2018-02-01

    Image prominence is the most important region in an image, which can cause the visual attention and response of human beings. Preferentially allocating the computer resources for the image analysis and synthesis by the significant region is of great significance to improve the image area detecting. As a preprocessing of other disciplines in image processing field, the image prominence has widely applications in image retrieval and image segmentation. Among these applications, the super-pixel segmentation significance detection algorithm based on linear spectral clustering (LSC) has achieved good results. The significance detection algorithm proposed in this paper is better than the regional contrast ratio by replacing the method of regional formation in the latter with the linear spectral clustering image is super-pixel block. After combining with the latest depth learning method, the accuracy of the significant region detecting has a great promotion. At last, the superiority and feasibility of the super-pixel segmentation detection algorithm based on linear spectral clustering are proved by the comparative test.

  12. Image multiplexing and authentication based on double phase retrieval in fresnel transform domain

    NASA Astrophysics Data System (ADS)

    Chang, Hsuan-Ting; Lin, Che-Hsian; Chen, Chien-Yue

    2017-04-01

    An image multiplexing and authentication method based on the double-phase retrieval algorithm (DPRA) with the manipulations of wavelength and position in the Fresnel transform (FrT) domain is proposed in this study. The DPRA generates two matched phase-only functions (POFs) in the different planes so that the corresponding image can be reconstructed at the output plane. Given a number of target images, all the sets of matched POFs are used to generate the phase-locked system through the phase modulation and synthesis to achieve the multiplexing purpose. To reconstruct a target image, the corresponding phase key and all the correct parameters in the FrT are required. Therefore, the authentication system with high-level security can be achieved. The computer simulation verifies the validity of the proposed method and also shows good resistance to the crosstalk among the reconstructed images.

  13. Availability and performance of image/video-based vital signs monitoring methods: a systematic review protocol.

    PubMed

    Harford, Mirae; Catherall, Jacqueline; Gerry, Stephen; Young, Duncan; Watkinson, Peter

    2017-10-25

    For many vital signs, monitoring methods require contact with the patient and/or are invasive in nature. There is increasing interest in developing still and video image-guided monitoring methods that are non-contact and non-invasive. We will undertake a systematic review of still and video image-based monitoring methods. We will perform searches in multiple databases which include MEDLINE, Embase, CINAHL, Cochrane library, IEEE Xplore and ACM Digital Library. We will use OpenGrey and Google searches to access unpublished or commercial data. We will not use language or publication date restrictions. The primary goal is to summarise current image-based vital signs monitoring methods, limited to heart rate, respiratory rate, oxygen saturations and blood pressure. Of particular interest will be the effectiveness of image-based methods compared to reference devices. Other outcomes of interest include the quality of the method comparison studies with respect to published reporting guidelines, any limitations of non-contact non-invasive technology and application in different populations. To the best of our knowledge, this is the first systematic review of image-based non-contact methods of vital signs monitoring. Synthesis of currently available technology will facilitate future research in this highly topical area. PROSPERO CRD42016029167.

  14. Adaptive Texture Synthesis for Large Scale City Modeling

    NASA Astrophysics Data System (ADS)

    Despine, G.; Colleu, T.

    2015-02-01

    Large scale city models textured with aerial images are well suited for bird-eye navigation but generally the image resolution does not allow pedestrian navigation. One solution to face this problem is to use high resolution terrestrial photos but it requires huge amount of manual work to remove occlusions. Another solution is to synthesize generic textures with a set of procedural rules and elementary patterns like bricks, roof tiles, doors and windows. This solution may give realistic textures but with no correlation to the ground truth. Instead of using pure procedural modelling we present a method to extract information from aerial images and adapt the texture synthesis to each building. We describe a workflow allowing the user to drive the information extraction and to select the appropriate texture patterns. We also emphasize the importance to organize the knowledge about elementary pattern in a texture catalogue allowing attaching physical information, semantic attributes and to execute selection requests. Roofs are processed according to the detected building material. Façades are first described in terms of principal colours, then opening positions are detected and some window features are computed. These features allow selecting the most appropriate patterns from the texture catalogue. We experimented this workflow on two samples with 20 cm and 5 cm resolution images. The roof texture synthesis and opening detection were successfully conducted on hundreds of buildings. The window characterization is still sensitive to the distortions inherent to the projection of aerial images onto the facades.

  15. Radiolabeling of DOTA-like conjugated peptides with generator-produced 68Ga and using NaCl-based cationic elution method

    PubMed Central

    Mueller, Dirk; Breeman, Wouter A P; Klette, Ingo; Gottschaldt, Michael; Odparlik, Andreas; Baehre, Manfred; Tworowska, Izabela; Schultz, Michael K

    2017-01-01

    Gallium-68 (68Ga) is a generator-produced radionuclide with a short half-life (t½ = 68 min) that is particularly well suited for molecular imaging by positron emission tomography (PET). Methods have been developed to synthesize 68Ga-labeled imaging agents possessing certain drawbacks, such as longer synthesis time because of a required final purification step, the use of organic solvents or concentrated hydrochloric acid (HCl). In our manuscript, we provide a detailed protocol for the use of an advantageous sodium chloride (NaCl)-based method for radiolabeling of chelator-modified peptides for molecular imaging. By working in a lead-shielded hot-cell system, 68Ga3+ of the generator eluate is trapped on a cation exchanger cartridge (100 mg, ∼8 mm long and 5 mm diameter) and then eluted with acidified 5 M NaCl solution directly into a sodium acetate-buffered solution containing a DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) or DOTA-like chelator-modified peptide. The main advantages of this procedure are the high efficiency and the absence of organic solvents. It can be applied to a variety of peptides, which are stable in 1 M NaCl solution at a pH value of 3–4 during reaction. After labeling, neutralization, sterile filtration and quality control (instant thin-layer chromatography (iTLC), HPLC and pH), the radiopharmaceutical can be directly administered to patients, without determination of organic solvents, which reduces the overall synthesis-to-release time. This procedure has been adapted easily to automated synthesis modules, which leads to a rapid preparation of 68Ga radiopharmaceuticals (12–16 min). PMID:27172166

  16. Radiolabeling of DOTA-like conjugated peptides with generator-produced (68)Ga and using NaCl-based cationic elution method.

    PubMed

    Mueller, Dirk; Breeman, Wouter A P; Klette, Ingo; Gottschaldt, Michael; Odparlik, Andreas; Baehre, Manfred; Tworowska, Izabela; Schultz, Michael K

    2016-06-01

    Gallium-68 ((68)Ga) is a generator-produced radionuclide with a short half-life (t½ = 68 min) that is particularly well suited for molecular imaging by positron emission tomography (PET). Methods have been developed to synthesize (68)Ga-labeled imaging agents possessing certain drawbacks, such as longer synthesis time because of a required final purification step, the use of organic solvents or concentrated hydrochloric acid (HCl). In our manuscript, we provide a detailed protocol for the use of an advantageous sodium chloride (NaCl)-based method for radiolabeling of chelator-modified peptides for molecular imaging. By working in a lead-shielded hot-cell system,(68)Ga(3+) of the generator eluate is trapped on a cation exchanger cartridge (100 mg, ∼8 mm long and 5 mm diameter) and then eluted with acidified 5 M NaCl solution directly into a sodium acetate-buffered solution containing a DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) or DOTA-like chelator-modified peptide. The main advantages of this procedure are the high efficiency and the absence of organic solvents. It can be applied to a variety of peptides, which are stable in 1 M NaCl solution at a pH value of 3-4 during reaction. After labeling, neutralization, sterile filtration and quality control (instant thin-layer chromatography (iTLC), HPLC and pH), the radiopharmaceutical can be directly administered to patients, without determination of organic solvents, which reduces the overall synthesis-to-release time. This procedure has been adapted easily to automated synthesis modules, which leads to a rapid preparation of (68)Ga radiopharmaceuticals (12-16 min).

  17. Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data.

    PubMed

    Huang, Jinhong; Guo, Li; Feng, Qianjin; Chen, Wufan; Feng, Yanqiu

    2015-07-21

    Image reconstruction from undersampled k-space data accelerates magnetic resonance imaging (MRI) by exploiting image sparseness in certain transform domains. Employing image patch representation over a learned dictionary has the advantage of being adaptive to local image structures and thus can better sparsify images than using fixed transforms (e.g. wavelets and total variations). Dictionary learning methods have recently been introduced to MRI reconstruction, and these methods demonstrate significantly reduced reconstruction errors compared to sparse MRI reconstruction using fixed transforms. However, the synthesis sparse coding problem in dictionary learning is NP-hard and computationally expensive. In this paper, we present a novel sparsity-promoting orthogonal dictionary updating method for efficient image reconstruction from highly undersampled MRI data. The orthogonality imposed on the learned dictionary enables the minimization problem in the reconstruction to be solved by an efficient optimization algorithm which alternately updates representation coefficients, orthogonal dictionary, and missing k-space data. Moreover, both sparsity level and sparse representation contribution using updated dictionaries gradually increase during iterations to recover more details, assuming the progressively improved quality of the dictionary. Simulation and real data experimental results both demonstrate that the proposed method is approximately 10 to 100 times faster than the K-SVD-based dictionary learning MRI method and simultaneously improves reconstruction accuracy.

  18. Application of Palladium-Mediated 18F-Fluorination to PET Radiotracer Development: Overcoming Hurdles to Translation

    PubMed Central

    Kamlet, Adam S.; Neumann, Constanze N.; Lee, Eunsung; Carlin, Stephen M.; Moseley, Christian K.; Stephenson, Nickeisha; Hooker, Jacob M.; Ritter, Tobias

    2013-01-01

    New chemistry methods for the synthesis of radiolabeled small molecules have the potential to impact clinical positron emission tomography (PET) imaging, if they can be successfully translated. However, progression of modern reactions from the stage of synthetic chemistry development to the preparation of radiotracer doses ready for use in human PET imaging is challenging and rare. Here we describe the process of and the successful translation of a modern palladium-mediated fluorination reaction to non-human primate (NHP) baboon PET imaging–an important milestone on the path to human PET imaging. The method, which transforms [18F]fluoride into an electrophilic fluorination reagent, provides access to aryl–18F bonds that would be challenging to synthesize via conventional radiochemistry methods. PMID:23554994

  19. An improved green synthesis method and Escherichia coli antibacterial activity of silver nanoparticles.

    PubMed

    Van Viet, Pham; Sang, Truong Tan; Bich, Nguyen Ho Ngoc; Thi, Cao Minh

    2018-05-01

    Silver nanoparticles (Ag NPs) were synthesized by an improved green synthesis method via a photo-reduction process using low-power UV light in the presence of poly (vinyl pyrrolidone) (PVP) as the surface stabilizer. The effective synthesis process was achieved by optimized synthesis parameters such as C 2 H 5 OH: H 2 O ratio, AgNO 3 : PVP ratio, pH value, and reducing time. The formation of Ag NPs was identified by Ultraviolet-visible (UV-vis) absorption spectra, X-ray diffraction pattern (XRD) and Fourier transform infrared spectroscopy (FTIR) spectra. Ag NPs were crystallized according to (111), (200), and (220) planes of the face-centered cubic. The transmission electron microscopy (TEM) image showed that the morphology of Ag NPs was uniform spherical with the average particle size of 16 ± 2 nm. The results of XRD pattern, TEM image, and dynamic light scattering (DLS) analysis proved that Ag crystals with uniform size were formed after the reduction process. The mechanism of the formation of Ag NPs was proposed and confirmed by FTIR spectra. The antibacterial activity of Ag NPs against Escherichia coli (E. coli) was tested and approximately 100% of E. coli was eliminated by Ag NPs 35 ppm. In the future, this study can become a new process for the application of Ag NPs as an antibiotic in the industrial scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Image synthesis for SAR system, calibration and processor design

    NASA Technical Reports Server (NTRS)

    Holtzman, J. C.; Abbott, J. L.; Kaupp, V. H.; Frost, V. S.

    1978-01-01

    The Point Scattering Method of simulating radar imagery rigorously models all aspects of the imaging radar phenomena. Its computational algorithms operate on a symbolic representation of the terrain test site to calculate such parameters as range, angle of incidence, resolution cell size, etc. Empirical backscatter data and elevation data are utilized to model the terrain. Additionally, the important geometrical/propagation effects such as shadow, foreshortening, layover, and local angle of incidence are rigorously treated. Applications of radar image simulation to a proposed calibrated SAR system are highlighted: soil moisture detection and vegetation discrimination.

  1. 4-haloethenylphenyl tropane:serotonin transporter imaging agents

    DOEpatents

    Goodman, Mark M.; Martarello, Laurent

    2005-01-18

    A series of compounds in the 4-fluoroalkyl-3-halophenyl nortropanes and 4-haloethenylphenyl tropane families are described as diagnostic and therapeutic agents for diseases associated with serotonin transporter dysfunction. These compounds bind to serotonin transporter protein with high affinity and selectivity. The invention provides methods of synthesis which incorporate radioisotopic halogens at a last step which permit high radiochemical yield and maximum usable product life. The radiolabeled compounds of the invention are useful as imaging agents for visualizing the location and density of serotonin transporter by PET and SPECT imaging.

  2. First imagery generated by near-field real-time aperture synthesis passive millimetre wave imagers at 94 GHz and 183 GHz

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.; Mason, Ian; Wilkinson, Peter; Taylor, Chris; Scicluna, Peter

    2010-10-01

    The first passive millimetre wave (PMMW) imagery is presented from two proof-of-concept aperture synthesis demonstrators, developed to investigate the use of aperture synthesis for personnel security screening and all weather flying at 94 GHz, and satellite based earth observation at 183 GHz [1]. Emission from point noise sources and discharge tubes are used to examine the coherence on system baselines and to measure the point spread functions, making comparisons with theory. Image quality is examined using near field aperture synthesis and G-matrix calibration imaging algorithms. The radiometric sensitivity is measured using the emission from absorbers at elevated temperatures acting as extended sources and compared with theory. Capabilities of the latest Field Programmable Gate Arrays (FPGA) technologies for aperture synthesis PMMW imaging in all-weather and security screening applications are examined.

  3. Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wasly, H. S.; El-Sadek, M. S. Abd; Henini, Mohamed

    2018-01-01

    Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV-visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30-40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90-3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles.

  4. The Desired Image of a Science Writer.

    ERIC Educational Resources Information Center

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    This study attempted to establish a desired image of an expert science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this desired image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a…

  5. Iron Oxide Nanoparticle-Micelles (ION-Micelles) for Sensitive (Molecular) Magnetic Particle Imaging and Magnetic Resonance Imaging

    PubMed Central

    Starmans, Lucas W. E.; Burdinski, Dirk; Haex, Nicole P. M.; Moonen, Rik P. M.; Strijkers, Gustav J.; Nicolay, Klaas; Grüll, Holger

    2013-01-01

    Background Iron oxide nanoparticles (IONs) are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI) was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. Methods and Results IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles). Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS) measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem) and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles) bound to blood clots. Conclusions The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular) MPI and warrants further investigation of the FibPep-ION-Micelle platform for in vivo, non-invasive imaging of fibrin in preclinical disease models of thrombus-related pathologies and atherosclerosis. PMID:23437371

  6. Bridges between multiple-point geostatistics and texture synthesis: Review and guidelines for future research

    NASA Astrophysics Data System (ADS)

    Mariethoz, Gregoire; Lefebvre, Sylvain

    2014-05-01

    Multiple-Point Simulations (MPS) is a family of geostatistical tools that has received a lot of attention in recent years for the characterization of spatial phenomena in geosciences. It relies on the definition of training images to represent a given type of spatial variability, or texture. We show that the algorithmic tools used are similar in many ways to techniques developed in computer graphics, where there is a need to generate large amounts of realistic textures for applications such as video games and animated movies. Similarly to MPS, these texture synthesis methods use training images, or exemplars, to generate realistic-looking graphical textures. Both domains of multiple-point geostatistics and example-based texture synthesis present similarities in their historic development and share similar concepts. These disciplines have however remained separated, and as a result significant algorithmic innovations in each discipline have not been universally adopted. Texture synthesis algorithms present drastically increased computational efficiency, patterns reproduction and user control. At the same time, MPS developed ways to condition models to spatial data and to produce 3D stochastic realizations, which have not been thoroughly investigated in the field of texture synthesis. In this paper we review the possible links between these disciplines and show the potential and limitations of using concepts and approaches from texture synthesis in MPS. We also provide guidelines on how recent developments could benefit both fields of research, and what challenges remain open.

  7. Multi-viewpoint Image Array Virtual Viewpoint Rapid Generation Algorithm Based on Image Layering

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Piao, Yan

    2018-04-01

    The use of multi-view image array combined with virtual viewpoint generation technology to record 3D scene information in large scenes has become one of the key technologies for the development of integrated imaging. This paper presents a virtual viewpoint rendering method based on image layering algorithm. Firstly, the depth information of reference viewpoint image is quickly obtained. During this process, SAD is chosen as the similarity measure function. Then layer the reference image and calculate the parallax based on the depth information. Through the relative distance between the virtual viewpoint and the reference viewpoint, the image layers are weighted and panned. Finally the virtual viewpoint image is rendered layer by layer according to the distance between the image layers and the viewer. This method avoids the disadvantages of the algorithm DIBR, such as high-precision requirements of depth map and complex mapping operations. Experiments show that, this algorithm can achieve the synthesis of virtual viewpoints in any position within 2×2 viewpoints range, and the rendering speed is also very impressive. The average result proved that this method can get satisfactory image quality. The average SSIM value of the results relative to real viewpoint images can reaches 0.9525, the PSNR value can reaches 38.353 and the image histogram similarity can reaches 93.77%.

  8. Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method

    NASA Astrophysics Data System (ADS)

    Chongad, L. S.; Sharma, A.; Banerjee, M.; Jain, A.

    2016-10-01

    Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H2S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD.

  9. One-pot synthesis and biodistribution of fluorine-18 labeled serum albumin for vascular imaging.

    PubMed

    Basuli, Falguni; Zhang, Xiang; Williams, Mark R; Seidel, Jurgen; Green, Michael V; Choyke, Peter L; Swenson, Rolf E; Jagoda, Elaine M

    2018-05-30

    Equilibrium single-photon radionuclide imaging methods for assessing cardiac function and the integrity of the vascular system have long been in use for both clinical and research purposes. However, positron-emitting blood pool agents that could provide PET equivalents to these (and other) clinical procedures have not yet been adopted despite technical imaging advantages offered by PET. Our goal was to develop a PET blood pool tracer that not only meets necessary in vivo biological requirements but can be produced with an uncomplicated and rapid synthesis method which would facilitate clinical translation. Herein, albumin labeled with fluorine-18 was synthesized using a one-pot method and evaluated in vitro and in vivo in rats. A ligand (NODA-Bz-TFPE), containing NODA attached to a tetrafluorophenylester (TFPE) via a phenyl linker (Bz), was labeled with aluminum fluoride (Al[ 18 F]F). Conjugation of the serum albumin with the ligand (Al[ 18 F]F-NODA-Bz-TFPE), followed by purification (size exclusion chromatography), yielded the final product (Al[ 18 F]F-NODA-Bz-RSA/HSA). In vitro stability was evaluated in human serum albumin by HPLC. Rat biodistributions and whole-body PET imaging over a 4 h time course were used for the in vivo evaluation. This synthesis exhibited an overall radiochemical yield of 45 ± 10% (n = 30), a 50-min radiolabeling time, a radiochemical purity >99% and apparent stability up to 4 h in human serum. Blood had the highest retention of Al[ 18 F]F-NODA-Bz-RSA at all times with a blood half-life of 5.2 h in rats. Al[ 18 F]F-NODA-Bz-RSA distribution in most rat tissues remained relatively constant for up to 1 h, indicating that the tissue radioactivity content represents the respective tissue plasma volume. Dynamic whole-body PET images were in agreement with these findings. A new ligand has been developed and radiolabeled with Al[ 18 F]F that allows rapid (50-min) preparation of fluorine-18 serum albumin in one-pot. In addition to increased synthetic efficiency, the construct appears to be metabolically stable in rats. This method could encourage wider use of PET to quantify cardiac function and tissue vascular integrity in both research and clinical settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Low-redundancy linear arrays in mirrored interferometric aperture synthesis.

    PubMed

    Zhu, Dong; Hu, Fei; Wu, Liang; Li, Jun; Lang, Liang

    2016-01-15

    Mirrored interferometric aperture synthesis (MIAS) is a novel interferometry that can improve spatial resolution compared with that of conventional IAS. In one-dimensional (1-D) MIAS, antenna array with low redundancy has the potential to achieve a high spatial resolution. This Letter presents a technique for the direct construction of low-redundancy linear arrays (LRLAs) in MIAS and derives two regular analytical patterns that can yield various LRLAs in short computation time. Moreover, for a better estimation of the observed scene, a bi-measurement method is proposed to handle the rank defect associated with the transmatrix of those LRLAs. The results of imaging simulation demonstrate the effectiveness of the proposed method.

  11. Dem Reconstruction Using Light Field and Bidirectional Reflectance Function from Multi-View High Resolution Spatial Images

    NASA Astrophysics Data System (ADS)

    de Vieilleville, F.; Ristorcelli, T.; Delvit, J.-M.

    2016-06-01

    This paper presents a method for dense DSM reconstruction from high resolution, mono sensor, passive imagery, spatial panchromatic image sequence. The interest of our approach is four-fold. Firstly, we extend the core of light field approaches using an explicit BRDF model from the Image Synthesis community which is more realistic than the Lambertian model. The chosen model is the Cook-Torrance BRDF which enables us to model rough surfaces with specular effects using specific material parameters. Secondly, we extend light field approaches for non-pinhole sensors and non-rectilinear motion by using a proper geometric transformation on the image sequence. Thirdly, we produce a 3D volume cost embodying all the tested possible heights and filter it using simple methods such as Volume Cost Filtering or variational optimal methods. We have tested our method on a Pleiades image sequence on various locations with dense urban buildings and report encouraging results with respect to classic multi-label methods such as MIC-MAC, or more recent pipelines such as S2P. Last but not least, our method also produces maps of material parameters on the estimated points, allowing us to simplify building classification or road extraction.

  12. Performance evaluation of infrared imaging system in field test

    NASA Astrophysics Data System (ADS)

    Wang, Chensheng; Guo, Xiaodong; Ren, Tingting; Zhang, Zhi-jie

    2014-11-01

    Infrared imaging system has been applied widely in both military and civilian fields. Since the infrared imager has various types and different parameters, for system manufacturers and customers, there is great demand for evaluating the performance of IR imaging systems with a standard tool or platform. Since the first generation IR imager was developed, the standard method to assess the performance has been the MRTD or related improved methods which are not perfect adaptable for current linear scanning imager or 2D staring imager based on FPA detector. For this problem, this paper describes an evaluation method based on the triangular orientation discrimination metric which is considered as the effective and emerging method to evaluate the synthesis performance of EO system. To realize the evaluation in field test, an experiment instrument is developed. And considering the importance of operational environment, the field test is carried in practical atmospheric environment. The test imagers include panoramic imaging system and staring imaging systems with different optics and detectors parameters (both cooled and uncooled). After showing the instrument and experiment setup, the experiment results are shown. The target range performance is analyzed and discussed. In data analysis part, the article gives the range prediction values obtained from TOD method, MRTD method and practical experiment, and shows the analysis and results discussion. The experimental results prove the effectiveness of this evaluation tool, and it can be taken as a platform to give the uniform performance prediction reference.

  13. Development of a large peptoid-DOTA combinatorial library.

    PubMed

    Singh, Jaspal; Lopes, Daniel; Gomika Udugamasooriya, D

    2016-09-01

    Conventional one-bead one-compound (OBOC) library synthesis is typically used to identify molecules with therapeutic value. The design and synthesis of OBOC libraries that contain molecules with imaging or even potentially therapeutic and diagnostic capacities (e.g. theranostic agents) has been overlooked. The development of a therapeutically active molecule with a built-in imaging component for a certain target is a daunting task, and structure-based rational design might not be the best approach. We hypothesize to develop a combinatorial library with potentially therapeutic and imaging components fused together in each molecule. Such molecules in the library can be used to screen, identify, and validate as direct theranostic candidates against targets of interest. As the first step in achieving that aim, we developed an on-bead library of 153,600 Peptoid-DOTA compounds in which the peptoids are the target-recognizing and potentially therapeutic components and the DOTA is the imaging component. We attached the DOTA scaffold to TentaGel beads using one of the four arms of DOTA, and we built a diversified 6-mer peptoid library on the remaining three arms. We evaluated both the synthesis and the mass spectrometric sequencing capacities of the test compounds and of the final library. The compounds displayed unique ionization patterns including direct breakages of the DOTA scaffold into two units, allowing clear decoding of the sequences. Our approach provides a facile synthesis method for the complete on-bead development of large peptidomimetic-DOTA libraries for screening against biological targets for the identification of potential theranostic agents in the future. © 2016 The Authors. Biopolymers Published by Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 673-684, 2016. © 2016 The Authors. Biopolymers Published by Wiley Periodicals, Inc.

  14. One-Pot Synthesis of Fe3O4@PS@P(AEMH-FITC) Magnetic Fluorescent Nanocomposites for Bimodal Imaging.

    PubMed

    Wang, Xuandong; Liu, Huiyu; Jun, Ren; Fu, Changhui; Li, Linlin; Li, Tianlong; Tang, Fangqiong; Meng, Xianwei

    2016-03-01

    Magnetic fluorescent nanocomposites have attracted much attention because of their merging magnetic and fluorescent properties for biomedical application. However, the procedure of synthesis of magnetic fluorescent nanocomposites is always complicated. In addition, the properties of fluorescent component could be easily influenced by magnetic component, retaining both of the magnetic and fluorescent properties into one single nanoparticle considered to be a significant challenge. Herein, we report one-pot method to synthesize multifunctional magnetic fluorescent Fe3O4@PS@P(AEMH-FITC) nanocomposites for bimodal imaging. The asprepared Fe3O4@PS@P(AEMH-FITC) nanocomposites with well-define spherical core/shell structure were stable properties. Moreover, the Fe3O4@PS@P(AEMH-FITC) nanocomposites displayed efficient fluorescent and magnetic properties, respectively. Meanwhile, the magnetic resonance imaging (MRI) and HePG2 cancer cell fluorescent images experiment results suggested that Fe3O4@PS@P(AEMH-FITC) nanocomposites could be used as MRI contrast agents and Fluorescence Imaging (FLI) agents for bioimaging application. Our investigation paves a facile avenue for synthesized magnetic fluorescent nanostructures with well biocompatibility for potential bioimaging application in MRI and FLI.

  15. Nano-graphene oxide composite for in vivo imaging

    PubMed Central

    Oh, Seo Yeong; Vilian, AT Ezhil; Lee, Ilsong; Han, Young-Kyu; Park, Jeong Hoon; Roh, Changhyun; Huh, Yun Suk

    2018-01-01

    Introduction Positron emission tomography (PET) tracers has the potential to revolutionize cancer imaging and diagnosis. PET tracers offer non-invasive quantitative imaging in biotechnology and biomedical applications, but it requires radioisotopes as radioactive imaging tracers or radiopharmaceuticals. Method This paper reports the synthesis of 18F-nGO-PEG by covalently functionalizing PEG with nano-graphene oxide, and its excellent stability in physiological solutions. Using a green synthesis route, nGO is then functionalized with a biocompatible PEG polymer to acquire high stability in PBS and DMEM. Results and discussion The radiochemical safety of 18F-nGO-PEG was measured by a reactive oxygen species and cell viability test. The biodistribution of 18F-nGO-PEG could be observed easily by PET, which suggested the significantly high sensitivity tumor uptake of 18F-nGO-PEG and in a tumor bearing CT-26 mouse compared to the control. 18F-nGO-PEG was applied successfully as an efficient radiotracer or drug agent in vivo using PET imaging. This article is expected to assist many researchers in the fabrication of 18F-labeled graphene-based bio-conjugates with high reproducibility for applications in the biomedicine field. PMID:29379283

  16. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity

    NASA Astrophysics Data System (ADS)

    Aswathy Aromal, S.; Philip, Daizy

    2012-11-01

    The development of new synthesis methods for monodispersed nanocrystals using cheap and nontoxic chemicals, environmentally benign solvents and renewable materials remains a challenge to the scientific community. Most of the current methods involve known protocols which may be potentially harmful to either environment or human health. Recent research has been focused on green synthesis methods to produce new nanomaterials, ecofriendly and safer with sustainable commercial viability. The present work reports the green synthesis of gold nanoparticles using the aqueous extract of fenugreek (Trigonella foenum-graecum) as reducing and protecting agent. The pathway is based on the reduction of AuCl4- by the extract of fenugreek. This method is simple, efficient, economic and nontoxic. Gold nanoparticles having different sizes in the range from 15 to 25 nm could be obtained by controlling the synthesis parameters. The nanoparticles have been characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles is evident from clear lattice fringes in the HRTEM images, bright circular spots in the SAED pattern and peaks in the XRD pattern. FTIR spectrum indicates the presence of different functional groups present in the biomolecule capping the nanoparticles. The synthesized gold nanoparticles show good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol by excess NaBH4. The catalytic activity is found to be size-dependent, the smaller nanoparticles showing faster activity.

  17. Rapid One-step Enzymatic Synthesis and All-aqueous Purification of Trehalose Analogues.

    PubMed

    Meints, Lisa M; Poston, Anne W; Piligian, Brent F; Olson, Claire D; Badger, Katherine S; Woodruff, Peter J; Swarts, Benjamin M

    2017-02-17

    Chemically modified versions of trehalose, or trehalose analogues, have applications in biology, biotechnology, and pharmaceutical science, among other fields. For instance, trehalose analogues bearing detectable tags have been used to detect Mycobacterium tuberculosis and may have applications as tuberculosis diagnostic imaging agents. Hydrolytically stable versions of trehalose are also being pursued due to their potential for use as non-caloric sweeteners and bioprotective agents. Despite the appeal of this class of compounds for various applications, their potential remains unfulfilled due to the lack of a robust route for their production. Here, we report a detailed protocol for the rapid and efficient one-step biocatalytic synthesis of trehalose analogues that bypasses the problems associated with chemical synthesis. By utilizing the thermostable trehalose synthase (TreT) enzyme from Thermoproteus tenax, trehalose analogues can be generated in a single step from glucose analogues and uridine diphosphate glucose in high yield (up to quantitative conversion) in 15-60 min. A simple and rapid non-chromatographic purification protocol, which consists of spin dialysis and ion exchange, can deliver many trehalose analogues of known concentration in aqueous solution in as little as 45 min. In cases where unreacted glucose analogue still remains, chromatographic purification of the trehalose analogue product can be performed. Overall, this method provides a "green" biocatalytic platform for the expedited synthesis and purification of trehalose analogues that is efficient and accessible to non-chemists. To exemplify the applicability of this method, we describe a protocol for the synthesis, all-aqueous purification, and administration of a trehalose-based click chemistry probe to mycobacteria, all of which took less than 1 hour and enabled fluorescence detection of mycobacteria. In the future, we envision that, among other applications, this protocol may be applied to the rapid synthesis of trehalose-based probes for tuberculosis diagnostics. For instance, short-lived radionuclide-modified trehalose analogues (e.g., 18 F-modified trehalose) could be used for advanced clinical imaging modalities such as positron emission tomography-computed tomography (PET-CT).

  18. Fluorescence imaging host pathogen interactions: fifteen years benefit of hindsight….

    PubMed

    Aulner, Nathalie; Danckaert, Anne; Fernandes, Julien; Nicola, Marie-Anne; Roux, Pascal; Salles, Audrey; Tinevez, Jean-Yves; Shorte, Spencer L

    2018-03-19

    We consider in review current state-of-the-art fluorescence microscopy for investigating the host-pathogen interface. Our perspective is honed from years with literally thousands of microbiologists using the variety of imaging technologies available within our dedicated BSL2/BSL3 optical imaging research service facilities at the Institut Pasteur Paris founded from scratch in 2001. During fifteen years learning from the success and failures of introducing different fluorescence imaging technologies, methods, and technical development strategies we provide here a synopsis review of our experience to date and a synthesis of how we see the future in perspective for fluorescence imaging at the host-pathogen interface. Copyright © 2018. Published by Elsevier Ltd.

  19. Microstructure of wave propagation during combustion synthesis of advanced materials: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Hwang, Stephen

    Combustion synthesis (CS) is an attractive method for producing advanced materials, including ceramics, intermetallics, and composites. In this process, after initiation by an external heat source, a highly exothermic reaction propagates through the sample in a self-sustained combustion wave. The process offers the possibility of producing materials with novel structures and properties. At conventional magnifications and imaging rates, the combustion wave appears to propagate in a planar, steady manner. However, using higher magnifications (>400X) and imaging rates (1000 frames/sec), fluctuations in the shape and propagation of the combustion front were observed. These variations in local conditions (i.e., the microstructure of the combustion wave) can influence the microstructure and properties of materials produced by combustion synthesis. In this work, the microstructure of wave propagation during combustion synthesis is investigated experimentally and theoretically. Using microscopic high-speed imaging, the spatial and temporal fluctuations of the combustion front shape and propagation were investigated. New image analysis methods were developed to characterize the heterogeneity of the combustion front quantitatively. The initial organization of the reaction medium was found to affect the heterogeneity of the combustion wave. Moreover, at the microscopic level, two different regimes of combustion propagation were observed. In the quasihomogeneous mechanism, the microstructure of the combustion wave resembles what is viewed macroscopically, and steady, planar propagation is observed. In the relay-race mechanism, while planar at the macroscopic level, the combustion front profiles are irregularly shaped, with arc-shaped convexities and concavities at the microscopic level. Also, the reaction front propagates as a series of rapid jumps and hesitations. Based on the combustion wave microstructure, new criteria were developed to determine the boundaries between quasihomogeneous and relay-race mechanisms, as functions of the initial organization of the reaction medium (i.e. particle size and porosity). In conjunction with the experiments, a microheterogeneous cell model was developed that simulates the local propagation of the combustion wave. Accounting for the stochastically organized medium with non-uniform properties, calculated results for the microstructural parameters of the combustion wave, and their dependence on density and reactant particle size, were in good qualitative agreement with experimental data.

  20. Fast downscaled inverses for images compressed with M-channel lapped transforms.

    PubMed

    de Queiroz, R L; Eschbach, R

    1997-01-01

    Compressed images may be decompressed and displayed or printed using different devices at different resolutions. Full decompression and rescaling in space domain is a very expensive method. We studied downscaled inverses where the image is decompressed partially, and a reduced inverse transform is used to recover the image. In this fashion, fewer transform coefficients are used and the synthesis process is simplified. We studied the design of fast inverses, for a given forward transform. General solutions are presented for M-channel finite impulse response (FIR) filterbanks, of which block and lapped transforms are a subset. Designs of faster inverses are presented for popular block and lapped transforms.

  1. Quantitative Method of Measuring Metastatic Activity

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1999-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated uroldnase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  2. Optically stimulated luminescence in an imaging plate using BaFi:Eu.

    PubMed

    Nanto, H; Araki, T; Daimon, M; Kusano, E; Kinbara, A; Kawabata, K; Nakano, Y

    2002-01-01

    BaFI:Eu phosphors are fabricated using a new method of synthesis: liquid phase synthesis, in which the phosphor particles are formed through the association of Ba2+ ions, F-ions and Eu2+ ions in solution. An intense optically stimulated luminescence (OSL) peak at about 410 nm is observed by stimulating X ray irradiated BaFI:Eu phosphor with about 550-750 nm light. It is found that the peak wavelength of the optically stimulation spectrum is about 690 nm. This result suggests that the semiconductor laser can be used as the stimulating light source. It is also found that the OSL intensity is increased with increasing the X ray dose. The BaFI:Eu phosphor as a photostimulable material for the imaging plate of a computed radiography system provides the following advantages; (1) high X ray absorption coefficient, (2) high monodispersion in size which would contribute to sharp images, (3) high OSL and thus low luminescence mottle and (4) high DQE (detective quantum efficiency).

  3. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  4. Parallel Computer System for 3D Visualization Stereo on GPU

    NASA Astrophysics Data System (ADS)

    Al-Oraiqat, Anas M.; Zori, Sergii A.

    2018-03-01

    This paper proposes the organization of a parallel computer system based on Graphic Processors Unit (GPU) for 3D stereo image synthesis. The development is based on the modified ray tracing method developed by the authors for fast search of tracing rays intersections with scene objects. The system allows significant increase in the productivity for the 3D stereo synthesis of photorealistic quality. The generalized procedure of 3D stereo image synthesis on the Graphics Processing Unit/Graphics Processing Clusters (GPU/GPC) is proposed. The efficiency of the proposed solutions by GPU implementation is compared with single-threaded and multithreaded implementations on the CPU. The achieved average acceleration in multi-thread implementation on the test GPU and CPU is about 7.5 and 1.6 times, respectively. Studying the influence of choosing the size and configuration of the computational Compute Unified Device Archi-tecture (CUDA) network on the computational speed shows the importance of their correct selection. The obtained experimental estimations can be significantly improved by new GPUs with a large number of processing cores and multiprocessors, as well as optimized configuration of the computing CUDA network.

  5. On-Chip Synthesis of Protein Microarrays from DNA Microarrays Via Coupled In Vitro Transcription and Translation for Surface Plasmon Resonance Imaging Biosensor Applications

    PubMed Central

    Seefeld, Ting H.; Halpern, Aaron R.; Corn, Robert M.

    2012-01-01

    Protein microarrays are fabricated from double-stranded DNA (dsDNA) microarrays by a one-step, multiplexed enzymatic synthesis in an on-chip microfluidic format and then employed for antibody biosensing measurements with surface plasmon resonance imaging (SPRI). A microarray of dsDNA elements (denoted as generator elements) that encode either a His-tagged green fluorescent protein (GFP) or a His-tagged luciferase protein is utilized to create multiple copies of messenger RNA (mRNA) in a surface RNA polymerase reaction; the mRNA transcripts are then translated into proteins by cell-free protein synthesis in a microfluidic format. The His-tagged proteins diffuse to adjacent Cu(II)-NTA microarray elements (denoted as detector elements) and are specifically adsorbed. The net result is the on-chip, cell-free synthesis of a protein microarray that can be used immediately for SPRI protein biosensing. The dual element format greatly reduces any interference from the nonspecific adsorption of enzyme or proteins. SPRI measurements for the detection of the antibodies anti-GFP and anti-luciferase were used to verify the formation of the protein microarray. This convenient on-chip protein microarray fabrication method can be implemented for multiplexed SPRI biosensing measurements in both clinical and research applications. PMID:22793370

  6. Synthesis and Characterization of a Magnetically Active 19F Molecular Beacon.

    PubMed

    Dempsey, Megan E; Marble, Hetal D; Shen, Tun-Li; Fawzi, Nicolas L; Darling, Eric M

    2018-02-21

    Gene expression is used extensively to describe cellular characteristics and behaviors; however, most methods of assessing gene expression are unsuitable for living samples, requiring destructive processes such as fixation or lysis. Recently, molecular beacons have become a viable tool for live-cell imaging of mRNA molecules in situ. Historically, beacon-mediated imaging has been limited to fluorescence-based approaches. We propose the design and synthesis of a novel molecular beacon for magnetic resonance detection of any desired target nucleotide sequence. The biologically compatible synthesis incorporates commonly used bioconjugation reactions in aqueous conditions and is accessible for laboratories without extensive synthesis capabilities. The resulting beacon uses fluorine ( 19 F) as a reporter, which is broadened, or turned "off", via paramagnetic relaxation enhancement from a stabilized nitroxide radical spin label when the beacon is not bound to its nucleic acid target. Therefore, the 19 F NMR signal of the beacon is quenched in its hairpin conformation when the spin label and the 19 F substituent are held in proximity, but the signal is recovered upon beacon hybridization to its specific complementary nucleotide sequence by physical separation of the radical from the 19 F reporter. This study establishes a path for magnetic resonance-based assessment of specific mRNA expression, providing new possibilities for applying molecular beacon technology in living systems.

  7. Bioorthogonal Chemical Imaging for Biomedicine

    NASA Astrophysics Data System (ADS)

    Min, Wei

    2017-06-01

    Innovations in light microscopy have tremendously revolutionized the way researchers study biological systems with subcellular resolution. Although fluorescence microscopy is currently the method of choice for cellular imaging, it faces fundamental limitations for studying the vast number of small biomolecules. This is because relatively bulky fluorescent labels could introduce considerable perturbation to or even completely alter the native functions of vital small biomolecules. Hence, despite their immense functional importance, these small biomolecules remain largely undetectable by fluorescence microscopy. To address this challenge, we have developed a bioorthogonal chemical imaging platform. By coupling stimulated Raman scattering (SRS) microscopy, an emerging nonlinear Raman microscopy technique, with tiny and Raman-active vibrational probes (e.g., alkynes, nitriles and stable isotopes including 2H and 13C), bioorthogonal chemical imaging exhibits superb sensitivity, specificity, multiplicity and biocompatibility for imaging small biomolecules in live systems including tissues and organisms. Exciting biomedical applications such as imaging fatty acid metabolism related to lipotoxicity, glucose uptake and metabolism, drug trafficking, protein synthesis, DNA replication, protein degradation, RNA synthesis and tumor metabolism will be presented. This bioorthogonal chemical imaging platform is compatible with live-cell biology, thus allowing real-time imaging of small-molecule dynamics. Moreover, further chemical and spectroscopic strategies allow for multicolor bioorthogonal chemical imaging, a valuable technique in the era of "omics". We envision that the coupling of SRS microscopy with vibrational probes would do for small biomolecules what fluorescence microscopy of fluorophores has done for larger molecular species, bringing small molecules under the illumination of modern light microscopy.

  8. One-pot green synthesis of zinc oxide nano rice and its application as sonocatalyst for degradation of organic dye and synthesis of 2-benzimidazole derivatives

    NASA Astrophysics Data System (ADS)

    Paul, Bappi; Vadivel, Sethumathavan; Dhar, Siddhartha Sankar; Debbarma, Shyama; Kumaravel, M.

    2017-05-01

    In this paper, we report novel and green approach for one-pot biosynthesis of zinc oxide (ZnO) nanoparticles (NPs). Highly stable and hexagonal phase ZnO nanoparticles were synthesized using seeds extract from the tender pods of Parkia roxburghii and characterized by XRD, FT-IR, EDX, TEM, and N2 adsorption-desorption (BET) studies. The present method of synthesis of ZnO NPs is very efficient and cost effective. The powder XRD pattern furnished evidence for the formation of hexagonal close packing structure of ZnO NPs having average crystallite size 25.6 nm. The TEM image reveals rice shapes ZnO NPs are with an average diameter of 40-60 nm. The as-synthesized ZnO NPs has proved to be an excellent sonocatalysts for degradation of organic dye and synthesis of 2-benzimidazole derivatives.

  9. 4-fluoroalkyl-3-halophenyl nortropanes

    DOEpatents

    Goodman, Mark M.; Chen, Ping

    2002-06-04

    A series of compounds in the 4-fluoroalkyl-3-halophenyl nortropanes family are described as diagnostic and therapeutic agents for diseases associated with serotonin transporter dysfunction. These compounds bind to serotonin transporter protein with high affinity and selectivity. The invention provides methods of synthesis which incorporate radioisotopic halogens at a last step which permit high radiochemical yield and maximum usable product life. The radiolabeled compounds of the invention are useful as imaging agents for visualizing the location and density of serotonin transporter by PET and SPECT imaging.

  10. Quantitative method of measuring cancer cell urokinase and metastatic potential

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1993-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated urokinase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  11. Semantic photo synthesis

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew; Brostow, G. J.; Shotton, J.; Kwatra, V.; Cipolla, R.

    2007-02-01

    Composite images are synthesized from existing photographs by artists who make concept art, e.g. storyboards for movies or architectural planning. Current techniques allow an artist to fabricate such an image by digitally splicing parts of stock photographs. While these images serve mainly to "quickly" convey how a scene should look, their production is laborious. We propose a technique that allows a person to design a new photograph with substantially less effort. This paper presents a method that generates a composite image when a user types in nouns, such as "boat" and "sand." The artist can optionally design an intended image by specifying other constraints. Our algorithm formulates the constraints as queries to search an automatically annotated image database. The desired photograph, not a collage, is then synthesized using graph-cut optimization, optionally allowing for further user interaction to edit or choose among alternative generated photos. Our results demonstrate our contributions of (1) a method of creating specific images with minimal human effort, and (2) a combined algorithm for automatically building an image library with semantic annotations from any photo collection.

  12. Image Based Synthesis for Airborne Minefield Data

    DTIC Science & Technology

    2005-12-01

    Jia, and C-K. Tang, "Image repairing: robust image synthesis by adaptive ND tensor voting ", Proceedings of the IEEE, Computer Society Conference on...utility is capable to synthesize a single frame data as well as list of frames along a flight path. The application is developed in MATLAB -6.5 using the

  13. Synthesis of atmospheric turbulence point spread functions by sparse and redundant representations

    NASA Astrophysics Data System (ADS)

    Hunt, Bobby R.; Iler, Amber L.; Bailey, Christopher A.; Rucci, Michael A.

    2018-02-01

    Atmospheric turbulence is a fundamental problem in imaging through long slant ranges, horizontal-range paths, or uplooking astronomical cases through the atmosphere. An essential characterization of atmospheric turbulence is the point spread function (PSF). Turbulence images can be simulated to study basic questions, such as image quality and image restoration, by synthesizing PSFs of desired properties. In this paper, we report on a method to synthesize PSFs of atmospheric turbulence. The method uses recent developments in sparse and redundant representations. From a training set of measured atmospheric PSFs, we construct a dictionary of "basis functions" that characterize the atmospheric turbulence PSFs. A PSF can be synthesized from this dictionary by a properly weighted combination of dictionary elements. We disclose an algorithm to synthesize PSFs from the dictionary. The algorithm can synthesize PSFs in three orders of magnitude less computing time than conventional wave optics propagation methods. The resulting PSFs are also shown to be statistically representative of the turbulence conditions that were used to construct the dictionary.

  14. Diffraction-limited imaging with very large telescopes; Proceedings of the NATO Advanced Study Institute, Cargese, France, Sept. 13-23, 1988

    NASA Astrophysics Data System (ADS)

    Alloin, D. M.; Mariotti, J.-M.

    Recent advances in optics and observation techniques for very large astronomical telescopes are discussed in reviews and reports. Topics addressed include Fourier optics and coherence, optical propagation and image formation through a turbulent atmosphere, radio telescopes, continuously deformable telescopes for optical interferometry (I), amplitude estimation from speckle I, noise calibration of speckle imagery, and amplitude estimation from diluted-array I. Consideration is given to first-order imaging methods, speckle imaging with the PAPA detector and the Knox-Thompson algorithm, phase-closure imaging, real-time wavefront sensing and adaptive optics, differential I, astrophysical programs for high-angular-resolution optical I, cophasing telescope arrays, aperture synthesis for space observatories, and lunar occultations for marcsec resolution.

  15. The fast method of Cu-porphyrin complex synthesis for potential use in positron emission tomography imaging

    NASA Astrophysics Data System (ADS)

    Kilian, Krzysztof; Pęgier, Maria; Pyrzyńska, Krystyna

    2016-04-01

    Porphyrin based photosensitizers are useful agents for photodynamic therapy and fluorescence imaging of cancer. Additionally, porphyrins are excellent metal chelators, forming stable metalo-complexes and 64Cu isotope can serve as a positron emitter (t1/2 = 12.7 h). The other advantage of 64Cu is its decay characteristics that facilitates the use of 64Cu-porphyrin complex as a therapeutic agent. Thus, 64Cu chelation with porphyrin photosensitizer may become a simple and versatile labeling strategy for clinical positron emission tomography. The present study reports a convenient method for the synthesis of Cu complex with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The experimental conditions for labeling, such as the metal-to-ligand molar ratio, pH and time of reaction were optimized to achieve a high complexation efficiency in a short period of time as possible. In order to accelerate the metallation, the use of substitution reactions of cadmium or lead porphyrin and the presence of reducing agent, such as ascorbic acid, hydroxylamine and flavonoid - morin, were evaluated. The optimum conditions for the synthesis of the copper complex were borate buffer at pH 9 with the addition of 10-fold molar excess, with respect to Cu2 + ions and TCPP and ascorbic acid which resulted in reduction of the reaction time from 30 min to below 1 min.

  16. A CLEAN-based method for mosaic deconvolution

    NASA Astrophysics Data System (ADS)

    Gueth, F.; Guilloteau, S.; Viallefond, F.

    1995-03-01

    Mosaicing may be used in aperture synthesis to map large fields of view. So far, only MEM techniques have been used to deconvolve mosaic images (Cornwell (1988)). A CLEAN-based method has been developed, in which the components are located in a modified expression. This allows a better utilization of the information and consequent noise reduction in the overlapping regions. Simulations show that this method gives correct clean maps and recovers most of the flux of the sources. The introduction of the short-spacing visibilities in the data set is strongly required. Their absence actually introduces artificial lack of structures on the corresponding scale in the mosaic images. The formation of ``stripes'' in clean maps may also occur, but this phenomenon can be significantly reduced by using the Steer-Dewdney-Ito algorithm (Steer, Dewdney & Ito (1984)) to identify the CLEAN components. Typical IRAM interferometer pointing errors do not have a significant effect on the reconstructed images.

  17. The Cognitive Content of the World of Symbols in a Language

    ERIC Educational Resources Information Center

    Zhirenov, Sayan A.; Satemirova, Darikha A.; Ibraeva, Aizat D.; Tanzharikova, Alua V.

    2016-01-01

    The purpose of this study is to analyze the meaning of symbols, the symbolic world in linguistics. Using the methods of observation, analysis, synthesis and interpretation, the author determines the category of symbols in linguistic-cognitive research. The study delineates connection between linguistic image of the universe and symbolic categories…

  18. Synthesis multi-projector content for multi-projector three dimension display using a layered representation

    NASA Astrophysics Data System (ADS)

    Qin, Chen; Ren, Bin; Guo, Longfei; Dou, Wenhua

    2014-11-01

    Multi-projector three dimension display is a promising multi-view glass-free three dimension (3D) display technology, can produce full colour high definition 3D images on its screen. One key problem of multi-projector 3D display is how to acquire the source images of projector array while avoiding pseudoscopic problem. This paper analysis the displaying characteristics of multi-projector 3D display first and then propose a projector content synthetic method using tetrahedral transform. A 3D video format that based on stereo image pair and associated disparity map is presented, it is well suit for any type of multi-projector 3D display and has advantage in saving storage usage. Experiment results show that our method solved the pseudoscopic problem.

  19. Description of textures by a structural analysis.

    PubMed

    Tomita, F; Shirai, Y; Tsuji, S

    1982-02-01

    A structural analysis system for describing natural textures is introduced. The analyzer automatically extracts the texture elements in an input image, measures their properties, classifies them into some distinctive classes (one ``ground'' class and some ``figure'' classes), and computes the distributions of the gray level, the shape, and the placement of the texture elements in each class. These descriptions are used for classification of texture images. An analysis-by-synthesis method for evaluating texture analyzers is also presented. We propose a synthesizer which generates a texture image based on the descriptions. By comparing the reconstructed image with the original one, we can see what information is preserved and what is lost in the descriptions.

  20. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciancalepore, Corrado, E-mail: corrado.sciancalepore@unimore.it; Bondioli, Federica; INSTM Consortium, Via G. Giusti 9, 51121 Firenze

    2015-02-15

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals wasmore » followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe{sub 3}O{sub 4} nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis.« less

  1. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes

    NASA Astrophysics Data System (ADS)

    Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh

    2018-04-01

    Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.

  2. Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wong, Ray M.

    2011-12-01

    Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.

  3. Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging.

    PubMed

    Paik, Taejong; Chacko, Ann-Marie; Mikitsh, John L; Friedberg, Joseph S; Pryma, Daniel A; Murray, Christopher B

    2015-09-22

    Isotopically labeled nanomaterials have recently attracted much attention in biomedical research, environmental health studies, and clinical medicine because radioactive probes allow the elucidation of in vitro and in vivo cellular transport mechanisms, as well as the unambiguous distribution and localization of nanomaterials in vivo. In addition, nanocrystal-based inorganic materials have a unique capability of customizing size, shape, and composition; with the potential to be designed as multimodal imaging probes. Size and shape of nanocrystals can directly influence interactions with biological systems, hence it is important to develop synthetic methods to design radiolabeled nanocrystals with precise control of size and shape. Here, we report size- and shape-controlled synthesis of rare earth fluoride nanocrystals doped with the β-emitting radioisotope yttrium-90 ((90)Y). Size and shape of nanocrystals are tailored via tight control of reaction parameters and the type of rare earth hosts (e.g., Gd or Y) employed. Radiolabeled nanocrystals are synthesized in high radiochemical yield and purity as well as excellent radiolabel stability in the face of surface modification with different polymeric ligands. We demonstrate the Cerenkov radioluminescence imaging and magnetic resonance imaging capabilities of (90)Y-doped GdF3 nanoplates, which offer unique opportunities as a promising platform for multimodal imaging and targeted therapy.

  4. Light-controlled synthesis of gold nanoparticles using a rigid, photoresponsive surfactant

    NASA Astrophysics Data System (ADS)

    Huang, Youju; Kim, Dong-Hwan

    2012-09-01

    We report a new strategy for shape control over the synthesis of gold nanoparticles (AuNPs) by using a photoresponsive surfactant based on a modified seed growth method. Owing to photoresponsive properties of the azo group, the designed surfactant, N1,N3,N5-tris[(4'-azobenzene-4-sulphonic acid)phenyl]benzene-1,3,5-tricarboxamide, exhibits a distinctive molecular configuration under light leading to different growth processes of AuNPs. As a result, the blackberry-like, spherical AuNPs and multilayered Au plates were successfully prepared in high yield under visible and UV light. The size and morphological control of Au nanocrystals are described and the synthesized Au nanocrystals are evaluated for SERS applications.We report a new strategy for shape control over the synthesis of gold nanoparticles (AuNPs) by using a photoresponsive surfactant based on a modified seed growth method. Owing to photoresponsive properties of the azo group, the designed surfactant, N1,N3,N5-tris[(4'-azobenzene-4-sulphonic acid)phenyl]benzene-1,3,5-tricarboxamide, exhibits a distinctive molecular configuration under light leading to different growth processes of AuNPs. As a result, the blackberry-like, spherical AuNPs and multilayered Au plates were successfully prepared in high yield under visible and UV light. The size and morphological control of Au nanocrystals are described and the synthesized Au nanocrystals are evaluated for SERS applications. Electronic supplementary information (ESI) available: The UV-vis spectra, representative field-emission scanning electron microscopy (FESEM) images and size distributions of Au seeds (18 nm) and spherical AuNPs (50 nm), photograph images of AuNPs solution and TEM images of blackberry-like AuNPs. See DOI: 10.1039/c2nr31717f

  5. Synthesis of goethite in solutions of artificial seawater and amino acids: a prebiotic chemistry study

    NASA Astrophysics Data System (ADS)

    Carneiro, Cristine E. A.; Ivashita, Flávio F.; de Souza, Ivan Granemann; de Souza, Cláudio M. D.; Paesano, Andrea; da Costa, Antonio C. S.; di Mauro, Eduardo; de Santana, Henrique; Zaia, Cássia T. B. V.; Zaia, Dimas A. M.

    2013-04-01

    This study investigated the synthesis of goethite under conditions resembling those of the prebiotic Earth. The artificial seawater used contains all the major elements as well as amino acids (α-Ala, β-Ala, Gly, Cys, AIB) that could be found on the prebiotic Earth. The spectroscopic methods (FT-IR, EPR, Raman), scanning electron microscopy (SEM) and X-ray diffraction showed that in any condition Gly and Cys favoured the formation of goethite, artificial seawater plus β-Ala and distilled water plus AIB favoured the formation of hematite and for the other synthesis a mixture of goethite and hematite were obtained. Thus in general no protein amino acids (β-Ala, AIB) favoured the formation of hematite. As shown by surface enhanced Raman spectroscopy (SERS) spectra the interaction between Cys and Fe3+ of goethite is very complex, involving decomposition of Cys producing sulphur, as well as interaction of carboxylic group with Fe3+. SERS spectra also showed that amino/CN and C-CH3 groups of α-Ala are interacting with Fe3+ of goethite. For the other samples the shifting of several bands was observed. However, it was not possible to say which amino acid groups are interacting with Fe3+. The pH at point of zero charge of goethites increased with artificial seawater and decreased with amino acids. SEM images showed when only goethite was synthesized the images of the samples were acicular and when only hematite was synthesized the images of the samples were spherical. SEM images for the synthesis of goethite with Cys were spherical crystal aggregates with radiating acicular crystals. The highest resonance line intensities were obtained for the samples where only hematite was obtained. Electron paramagnetic resonance (EPR) and Mössbauer spectra showed for the synthesis of goethite with artificial seawater an isomorphic substitution of iron by seawater cations. Mössbauer spectra also showed that for the synthesis goethite in distilled water plus Gly only goethite was synthesized and in artificial seawater plus Cys a doublet due to interaction of iron with artificial seawater/Cys was observed. It should be pointed out that EPR spectroscopy did not show the interaction of iron with artificial seawater/Cys.

  6. Synthesis and structural properties of Ba(1-x)LaxTiO3 perovskite nanoparticles fabricated by solvothermal synthesis route

    NASA Astrophysics Data System (ADS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Elupula, Ravinder; Molugu, Sudheer; Shipman, Josh; Chrisey, Douglas B.

    2017-05-01

    We report the successful synthesis and structural characterization of barium lanthanum titanate Ba(1-x)LaxTiO3 (x=0.003,0.006,0.010) nanoparticles. The colloidal nanoparticles were prepared with high yield by a solvothermal method at temperatures as low as 150°C for 24h. The as-prepared nanopowders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The XRD studies revealed pseudo-cubic crystalline structure, with no impurity phases at room temperature. However ferroelectric tetragonal modes were clearly observed using Raman spectroscopy measurements. From TEM measurements, uniformly sized BLT nanoparticles were observed. Selected area diffraction TEM images revealed polycrystalline perovskite ring patterns, identified as corresponding to the tetragonal phase.

  7. ImSyn: photonic image synthesis applied to synthetic aperture radar, microscopy, and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Turpin, Terry M.; Lafuse, James L.

    1993-02-01

    ImSynTM is an image synthesis technology, developed and patented by Essex Corporation. ImSynTM can provide compact, low cost, and low power solutions to some of the most difficult image synthesis problems existing today. The inherent simplicity of ImSynTM enables the manufacture of low cost and reliable photonic systems for imaging applications ranging from airborne reconnaissance to doctor's office ultrasound. The initial application of ImSynTM technology has been to SAR processing; however, it has a wide range of applications such as: image correlation, image compression, acoustic imaging, x-ray tomographic (CAT, PET, SPECT), magnetic resonance imaging (MRI), microscopy, range- doppler mapping (extended TDOA/FDOA). This paper describes ImSynTM in terms of synthetic aperture microscopy and then shows how the technology can be extended to ultrasound and synthetic aperture radar. The synthetic aperture microscope (SAM) enables high resolution three dimensional microscopy with greater dynamic range than real aperture microscopes. SAM produces complex image data, enabling the use of coherent image processing techniques. Most importantly SAM produces the image data in a form that is easily manipulated by a digital image processing workstation.

  8. The synthesis of high yield Au nanoplate and optimized optical properties

    NASA Astrophysics Data System (ADS)

    Ni, Yuan; Kan, Caixia; Xu, Juan; Liu, Yang

    2018-02-01

    The applications of Au nanoplates based on the tunable plasmon properties and enhanced electromagnetic field at the sharp tip and straight edges, have generated a great deal of interest in recent years, especially in the fields of the bio-chemical sensing and imaging. In this review, we focus on the synthesis of nanoscale platelike structures by multiple synthetic strategies (such as thermal solution method, seed-mediated method, seedless method, and some greener methods), and explore corresponding growth mechanism in different synthetic approaches. Other than to review the fabrication of Au nanoplates, the purification strategies are also discussed in order to support the applications in various fields. Modifying synthetic method to obtain well-defined nanoplates can tuned optical absorption from visible to near-infrared region. Moreover, the Au nanoplate dimers (vertex-to-vertex and edge-by-edge assemblies) can induce more specific plasmon properties and stronger localized field due to coupling of interparticles. Compared with 0D quasi-spherical nanoparticles and 1D nanorods, the 2D nanoplates can be applied as a good surface-enhanced Raman scattering (SERS) substrate because of the sharp corners and straight edges. This review will provide background information for the controllable synthesis of anisotropic nanoparticles and advance the application of coupled nanostructures.

  9. A novel metallogel based approach to synthesize (Mn, Cu) doped ZnS quantum dots and labeling of MCF-7 cancer cells.

    PubMed

    Bhowal, Soumya; Ghosh, Arijit; Chowdhuri, Srijita Paul; Mondal, Raju; Das, Benu Brata

    2018-05-08

    The present study aims to formulate a common synthetic strategy for preparing quantum dots (QDs) in a greener way by using combination of popular methods, viz. a colloidal method with suitable capping agent and low molecular weight gel based synthesis. Pyridine dicarboxylic acid (PDC) in presence of AlCl3 forms a stable metallogel, which serves as an excellent medium for selective ZnS QD synthesis. The aromatic pyridine moiety, well known for being a capping agent, indeed plays its part in the run up to QD synthesis. To the best of our knowledge, this is the first example of a metallogel based doped ZnS QD synthesis. Altering the doping material and its composition changes the properties of the QDs, but herein we also tried to establish how these changes affect the gel morphology and stability of both gel and QDs. We further demonstrate, by using live cell confocal microscopy, the delivery of QDs Cu ZnS and MnZnS nanomaterials in the nucleus and the cytoplasm of human breast cancer cells (MCF7), implicating the use of metallogel based QDs for bio-imaging and bio-labeling.

  10. Concept of dual-resolution light field imaging using an organic photoelectric conversion film for high-resolution light field photography.

    PubMed

    Sugimura, Daisuke; Kobayashi, Suguru; Hamamoto, Takayuki

    2017-11-01

    Light field imaging is an emerging technique that is employed to realize various applications such as multi-viewpoint imaging, focal-point changing, and depth estimation. In this paper, we propose a concept of a dual-resolution light field imaging system to synthesize super-resolved multi-viewpoint images. The key novelty of this study is the use of an organic photoelectric conversion film (OPCF), which is a device that converts spectra information of incoming light within a certain wavelength range into an electrical signal (pixel value), for light field imaging. In our imaging system, we place the OPCF having the green spectral sensitivity onto the micro-lens array of the conventional light field camera. The OPCF allows us to acquire the green spectra information only at the center viewpoint with the full resolution of the image sensor. In contrast, the optical system of the light field camera in our imaging system captures the other spectra information (red and blue) at multiple viewpoints (sub-aperture images) but with low resolution. Thus, our dual-resolution light field imaging system enables us to simultaneously capture information about the target scene at a high spatial resolution as well as the direction information of the incoming light. By exploiting these advantages of our imaging system, our proposed method enables the synthesis of full-resolution multi-viewpoint images. We perform experiments using synthetic images, and the results demonstrate that our method outperforms other previous methods.

  11. “Synthesis-on” and “synthesis-off” modes of carbon arc operation during synthesis of carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatom, Shurik; Selinsky, Rachel S.; Koel, Bruce E.

    Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, weremore » characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.« less

  12. “Synthesis-on” and “synthesis-off” modes of carbon arc operation during synthesis of carbon nanotubes

    DOE PAGES

    Yatom, Shurik; Selinsky, Rachel S.; Koel, Bruce E.; ...

    2017-09-09

    Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, weremore » characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.« less

  13. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics

    DOE PAGES

    He, Shuqing; Song, Jun; Qu, Junle; ...

    2018-01-01

    Recent advances in the chemical design and synthesis of fluorophores in the second near-infrared biological window (NIR-II) for multimodal imaging and theranostics are summarized and highlighted in this review article.

  14. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shuqing; Song, Jun; Qu, Junle

    Recent advances in the chemical design and synthesis of fluorophores in the second near-infrared biological window (NIR-II) for multimodal imaging and theranostics are summarized and highlighted in this review article.

  15. Generative Adversarial Networks: An Overview

    NASA Astrophysics Data System (ADS)

    Creswell, Antonia; White, Tom; Dumoulin, Vincent; Arulkumaran, Kai; Sengupta, Biswa; Bharath, Anil A.

    2018-01-01

    Generative adversarial networks (GANs) provide a way to learn deep representations without extensively annotated training data. They achieve this through deriving backpropagation signals through a competitive process involving a pair of networks. The representations that can be learned by GANs may be used in a variety of applications, including image synthesis, semantic image editing, style transfer, image super-resolution and classification. The aim of this review paper is to provide an overview of GANs for the signal processing community, drawing on familiar analogies and concepts where possible. In addition to identifying different methods for training and constructing GANs, we also point to remaining challenges in their theory and application.

  16. Visual difference metric for realistic image synthesis

    NASA Astrophysics Data System (ADS)

    Bolin, Mark R.; Meyer, Gary W.

    1999-05-01

    An accurate and efficient model of human perception has been developed to control the placement of sample in a realistic image synthesis algorithm. Previous sampling techniques have sought to spread the error equally across the image plane. However, this approach neglects the fact that the renderings are intended to be displayed for a human observer. The human visual system has a varying sensitivity to error that is based upon the viewing context. This means that equivalent optical discrepancies can be very obvious in one situation and imperceptible in another. It is ultimately the perceptibility of this error that governs image quality and should be used as the basis of a sampling algorithm. This paper focuses on a simplified version of the Lubin Visual Discrimination Metric (VDM) that was developed for insertion into an image synthesis algorithm. The sampling VDM makes use of a Haar wavelet basis for the cortical transform and a less severe spatial pooling operation. The model was extended for color including the effects of chromatic aberration. Comparisons are made between the execution time and visual difference map for the original Lubin and simplified visual difference metrics. Results for the realistic image synthesis algorithm are also presented.

  17. A Transmetalation Reaction Enables the Synthesis of [18F]5-Fluorouracil from [18F]Fluoride for Human PET Imaging

    PubMed Central

    2016-01-01

    Translation of new 18F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [18F]fluoride of human doses of [18F]5-fluorouracil, a PET tracer for cancer imaging in humans. The first preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [18F]5-fluorouracil precursor. Routine production of >10 mCi doses of [18F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [18F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18F-fluorination. PMID:27087736

  18. A Transmetalation Reaction Enables the Synthesis of [18F]5-Fluorouracil from [18F]Fluoride for Human PET Imaging.

    PubMed

    Hoover, Andrew J; Lazari, Mark; Ren, Hong; Narayanam, Maruthi Kumar; Murphy, Jennifer M; van Dam, R Michael; Hooker, Jacob M; Ritter, Tobias

    2016-04-11

    Translation of new 18 F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18 F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18 F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [ 18 F]fluoride of human doses of [ 18 F]5-fluorouracil, a PET tracer for cancer imaging in humans. The first preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [ 18 F]5-fluorouracil precursor. Routine production of >10 mCi doses of [ 18 F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [ 18 F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18 F-fluorination.

  19. A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications.

    PubMed

    Wagner, Darcy E; Eisenmann, Kathryn M; Nestor-Kalinoski, Andrea L; Bhaduri, Sarit B

    2013-09-01

    Biocompatible nanoparticles possessing fluorescent properties offer attractive possibilities for multifunctional bioimaging and/or drug and gene delivery applications. Many of the limitations with current imaging systems center on the properties of the optical probes in relation to equipment technical capabilities. Here we introduce a novel high aspect ratio and highly crystalline europium-doped calcium phosphate nanowhisker produced using a simple microwave-assisted solution combustion synthesis method for use as a multifunctional bioimaging probe. X-ray diffraction confirmed the material phase as europium-doped hydroxyapatite. Fluorescence emission and excitation spectra and their corresponding peaks were identified using spectrofluorimetry and validated with fluorescence, confocal and multiphoton microscopy. The nanowhiskers were found to exhibit red and far red wavelength fluorescence under ultraviolet excitation with an optimal peak emission of 696 nm achieved with a 350 nm excitation. Relatively narrow emission bands were observed, which may permit their use in multicolor imaging applications. Confocal and multiphoton microscopy confirmed that the nanoparticles provide sufficient intensity to be utilized in imaging applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure.

    PubMed

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao

    2017-05-11

    Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.

  1. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure

    PubMed Central

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao

    2017-01-01

    Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures. PMID:28772879

  2. Synthesis and preliminary in vitro biological evaluation of new carbon-11-labeled celecoxib derivatives as candidate PET tracers for imaging of COX-2 expression in cancer.

    PubMed

    Gao, Mingzhang; Wang, Min; Miller, Kathy D; Zheng, Qi-Huang

    2011-09-01

    The enzyme cyclooxygenase-2 (COX-2) is overexpressed in a variety of malignant tumors. This study was designed to develop new radiotracers for imaging of COX-2 in cancer using biomedical imaging technique positron emission tomography (PET). Carbon-11-labeled celecoxib derivatives, [(11)C]4a-c and [(11)C]8a-d, were prepared by O-[(11)C] methylation of their corresponding precursors using [(11)C]CH(3)OTf under basic conditions and isolated by a simplified solid-phase extraction (SPE) method in 52 ± 2% (n = 5) and 57 ± 3% (n = 5) radiochemical yields based on [(11)C]CO(2) and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 23 min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 277.5 ± 92.5 GBq/μmol (n = 5). The IC(50) values to block COX-2 for known compounds celecoxib (4d), 4a and 4c were 40, 290 and 8 nM, respectively, and preliminary findings from in vitro biological assay indicated that the synthesized new compounds 4b and 8a-d display similar strong inhibitory effectiveness in the MDA-MB-435 human cancer cell line in comparison with the parent compound 4d. These results encourage further in vivo evaluation of carbon-11-labeled celecoxib derivatives as new potential PET radiotracers for imaging of COX-2 expression in cancer. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  3. Fusion of digital breast tomosynthesis images via wavelet synthesis for improved lesion conspicuity

    NASA Astrophysics Data System (ADS)

    Hariharan, Harishwaran; Pomponiu, Victor; Zheng, Bin; Whiting, Bruce; Gur, David

    2014-03-01

    Full-field digital mammography (FFDM) is the most common screening procedure for detecting early breast cancer. However, due to complications such as overlapping breast tissue in projection images, the efficacy of FFDM reading is reduced. Recent studies have shown that digital breast tomosynthesis (DBT), in combination with FFDM, increases detection sensitivity considerably while decreasing false-positive, recall rates. There is a huge interest in creating diagnostically accurate 2-D interpretations from the DBT slices. Most of the 2-D syntheses rely on visualizing the maximum intensities (brightness) from each slice through different methods. We propose a wavelet based fusion method, where we focus on preserving holistic information from larger structures such as masses while adding high frequency information that is relevant and helpful for diagnosis. This method enables the spatial generation of a 2D image from a series of DBT images, each of which contains both smooth and coarse structures distributed in the wavelet domain. We believe that the wavelet-synthesized images, generated from their DBT image datasets, provide radiologists with improved lesion and micro-calcification conspicuity as compared with FFDM images. The potential impact of this fusion method is (1) Conception of a device-independent, data-driven modality that increases the conspicuity of lesions, thereby facilitating early detection and potentially reducing recall rates; (2) Reduction of the accompanying radiation dose to the patient.

  4. View synthesis using parallax invariance

    NASA Astrophysics Data System (ADS)

    Dornaika, Fadi

    2001-06-01

    View synthesis becomes a focus of attention of both the computer vision and computer graphics communities. It consists of creating novel images of a scene as it would appear from novel viewpoints. View synthesis can be used in a wide variety of applications such as video compression, graphics generation, virtual reality and entertainment. This paper addresses the following problem. Given a dense disparity map between two reference images, we would like to synthesize a novel view of the same scene associated with a novel viewpoint. Most of the existing work is relying on building a set of 3D meshes which are then projected onto the new image (the rendering process is performed using texture mapping). The advantages of our view synthesis approach are as follows. First, the novel view is specified by a rotation and a translation which are the most natural way to express the virtual location of the camera. Second, the approach is able to synthesize highly realistic images whose viewing position is significantly far away from the reference viewpoints. Third, the approach is able to handle the visibility problem during the synthesis process. Our developed framework has two main steps. The first step (analysis step) consists of computing the homography at infinity, the epipoles, and thus the parallax field associated with the reference images. The second step (synthesis step) consists of warping the reference image into a new one, which is based on the invariance of the computed parallax field. The analysis step is working directly on the reference views, and only need to be performed once. Examples of synthesizing novel views using either feature correspondences or dense disparity map have demonstrated the feasibility of the proposed approach.

  5. Macrocyclic polyaminocarboxylates for stable radiometal antibody conjugates for therapy, spect and pet imaging

    DOEpatents

    Mease, Ronnie C.; Mausner, Leonard F.; Srivastava, Suresh C.

    1997-06-17

    A simple method for the synthesis of 1,4,7, 10-tetraazacyclododecane N,N'N",N'"-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N',N",N'"-tetraacetic acid involves cyanomethylating 1,4,7, 10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy.

  6. Techniques of noninvasive optical tomographic imaging

    NASA Astrophysics Data System (ADS)

    Rosen, Joseph; Abookasis, David; Gokhler, Mark

    2006-01-01

    Recently invented methods of optical tomographic imaging through scattering and absorbing media are presented. In one method, the three-dimensional structure of an object hidden between two biological tissues is recovered from many noisy speckle pictures obtained on the output of a multi-channeled optical imaging system. Objects are recovered from many speckled images observed by a digital camera through two stereoscopic microlens arrays. Each microlens in each array generates a speckle image of the object buried between the layers. In the computer each image is Fourier transformed jointly with an image of the speckled point-like source captured under the same conditions. A set of the squared magnitudes of the Fourier-transformed pictures is accumulated to form a single average picture. This final picture is again Fourier transformed, resulting in the three-dimensional reconstruction of the hidden object. In the other method, the effect of spatial longitudinal coherence is used for imaging through an absorbing layer with different thickness, or different index of refraction, along the layer. The technique is based on synthesis of multiple peak spatial degree of coherence. This degree of coherence enables us to scan simultaneously different sample points on different altitudes, and thus decreases the acquisition time. The same multi peak degree of coherence is also used for imaging through the absorbing layer. Our entire experiments are performed with a quasi-monochromatic light source. Therefore problems of dispersion and inhomogeneous absorption are avoided.

  7. First video rate imagery from a 32-channel 22-GHz aperture synthesis passive millimetre wave imager

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.; Macpherson, Rod; Harvey, Andy; Hall, Peter; Hayward, Steve; Wilkinson, Peter; Taylor, Chris

    2011-11-01

    The first video rate imagery from a proof-of-concept 32-channel 22 GHz aperture synthesis imager is reported. This imager has been brought into operation over the first half of year 2011. Receiver noise temperatures have been measured to be ~453 K, close to original specifications, and the measured radiometric sensitivity agrees with the theoretical predictions for aperture synthesis imagers (2 K for a 40 ms integration time). The short term (few seconds) magnitude stability in the cross-correlations expressed as a fraction was measured to have a mean of 3.45×10-4 with a standard deviation of ~2.30×10-4, whilst the figure for the phase was found to have a mean of essentially zero with a standard deviation of 0.0181°. The susceptibility of the system to aliasing for point sources in the scene was examined and found to be well understood. The system was calibrated and security-relevant indoor near-field and out-door far-field imagery was created, at frame rates ranging from 1 to 200 frames per second. The results prove that an aperture synthesis imager can generate imagery in the near-field regime, successfully coping with the curved wave-fronts. The original objective of the project, to deliver a Technology Readiness Level (TRL) 4 laboratory demonstrator for aperture synthesis passive millimetre wave (PMMW) imaging, has been achieved. The project was co-funded by the Technology Strategy Board and the Royal Society of the United Kingdom.

  8. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  9. High-Throughput Synthesis and Structure of Zeolite ZSM-43 with Two-Directional 8-Ring Channels.

    PubMed

    Willhammar, Tom; Su, Jie; Yun, Yifeng; Zou, Xiaodong; Afeworki, Mobae; Weston, Simon C; Vroman, Hilda B; Lonergan, William W; Strohmaier, Karl G

    2017-08-07

    The aluminosilicate zeolite ZSM-43 (where ZSM = Zeolite Socony Mobil) was first synthesized more than 3 decades ago, but its chemical structure remained unsolved because of its poor crystallinity and small crystal size. Here we present optimization of the ZSM-43 synthesis using a high-throughput approach and subsequent structure determination by the combination of electron crystallographic methods and powder X-ray diffraction. The synthesis required the use of a combination of both inorganic (Cs + and K + ) and organic (choline) structure-directing agents. High-throughput synthesis enabled a screening of the synthesis conditions, which made it possible to optimize the synthesis, despite its complexity, in order to obtain a material with significantly improved crystallinity. When both rotation electron diffraction and high-resolution transmission electron microscopy imaging techniques are applied, the structure of ZSM-43 could be determined. The structure of ZSM-43 is a new zeolite framework type and possesses a unique two-dimensional channel system limited by 8-ring channels. ZSM-43 is stable upon calcination, and sorption measurements show that the material is suitable for adsorption of carbon dioxide as well as methane.

  10. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports

    NASA Astrophysics Data System (ADS)

    Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R.

    2017-12-01

    Supported nanoparticles containing more than one metal have a variety of applications in sensing, catalysis, and biomedicine. Common synthesis techniques for this type of material often result in large, unalloyed nanoparticles that lack the interactions between the two metals that give the particles their desired characteristics. We demonstrate a relatively simple, effective, generalizable method to produce highly dispersed, well-alloyed bimetallic nanoparticles. Ten permutations of noble and base metals (platinum, palladium, copper, nickel, and cobalt) were synthesized with average particle sizes from 0.9 to 1.4 nanometers, with tight size distributions. High-resolution imaging and x-ray analysis confirmed the homogeneity of alloying in these ultrasmall nanoparticles.

  11. Exploring three faint source detections methods for aperture synthesis radio images

    NASA Astrophysics Data System (ADS)

    Peracaula, M.; Torrent, A.; Masias, M.; Lladó, X.; Freixenet, J.; Martí, J.; Sánchez-Sutil, J. R.; Muñoz-Arjonilla, A. J.; Paredes, J. M.

    2015-04-01

    Wide-field radio interferometric images often contain a large population of faint compact sources. Due to their low intensity/noise ratio, these objects can be easily missed by automated detection methods, which have been classically based on thresholding techniques after local noise estimation. The aim of this paper is to present and analyse the performance of several alternative or complementary techniques to thresholding. We compare three different algorithms to increase the detection rate of faint objects. The first technique consists of combining wavelet decomposition with local thresholding. The second technique is based on the structural behaviour of the neighbourhood of each pixel. Finally, the third algorithm uses local features extracted from a bank of filters and a boosting classifier to perform the detections. The methods' performances are evaluated using simulations and radio mosaics from the Giant Metrewave Radio Telescope and the Australia Telescope Compact Array. We show that the new methods perform better than well-known state of the art methods such as SEXTRACTOR, SAD and DUCHAMP at detecting faint sources of radio interferometric images.

  12. ASM Based Synthesis of Handwritten Arabic Text Pages

    PubMed Central

    Al-Hamadi, Ayoub; Elzobi, Moftah; El-etriby, Sherif; Ghoneim, Ahmed

    2015-01-01

    Document analysis tasks, as text recognition, word spotting, or segmentation, are highly dependent on comprehensive and suitable databases for training and validation. However their generation is expensive in sense of labor and time. As a matter of fact, there is a lack of such databases, which complicates research and development. This is especially true for the case of Arabic handwriting recognition, that involves different preprocessing, segmentation, and recognition methods, which have individual demands on samples and ground truth. To bypass this problem, we present an efficient system that automatically turns Arabic Unicode text into synthetic images of handwritten documents and detailed ground truth. Active Shape Models (ASMs) based on 28046 online samples were used for character synthesis and statistical properties were extracted from the IESK-arDB database to simulate baselines and word slant or skew. In the synthesis step ASM based representations are composed to words and text pages, smoothed by B-Spline interpolation and rendered considering writing speed and pen characteristics. Finally, we use the synthetic data to validate a segmentation method. An experimental comparison with the IESK-arDB database encourages to train and test document analysis related methods on synthetic samples, whenever no sufficient natural ground truthed data is available. PMID:26295059

  13. ASM Based Synthesis of Handwritten Arabic Text Pages.

    PubMed

    Dinges, Laslo; Al-Hamadi, Ayoub; Elzobi, Moftah; El-Etriby, Sherif; Ghoneim, Ahmed

    2015-01-01

    Document analysis tasks, as text recognition, word spotting, or segmentation, are highly dependent on comprehensive and suitable databases for training and validation. However their generation is expensive in sense of labor and time. As a matter of fact, there is a lack of such databases, which complicates research and development. This is especially true for the case of Arabic handwriting recognition, that involves different preprocessing, segmentation, and recognition methods, which have individual demands on samples and ground truth. To bypass this problem, we present an efficient system that automatically turns Arabic Unicode text into synthetic images of handwritten documents and detailed ground truth. Active Shape Models (ASMs) based on 28046 online samples were used for character synthesis and statistical properties were extracted from the IESK-arDB database to simulate baselines and word slant or skew. In the synthesis step ASM based representations are composed to words and text pages, smoothed by B-Spline interpolation and rendered considering writing speed and pen characteristics. Finally, we use the synthetic data to validate a segmentation method. An experimental comparison with the IESK-arDB database encourages to train and test document analysis related methods on synthetic samples, whenever no sufficient natural ground truthed data is available.

  14. Intrinsically Radioactive [64Cu]CuInS/ZnS Quantum Dots for PET and Optical Imaging: Improved Radiochemical Stability and Controllable Cerenkov Luminescence

    PubMed Central

    2015-01-01

    Functionalized quantum dots (QDs) have been widely explored for multimodality bioimaging and proven to be versatile agents. Attaching positron-emitting radioisotopes onto QDs not only endows their positron emission tomography (PET) functionality, but also results in self-illuminating QDs, with no need for an external light source, by Cerenkov resonance energy transfer (CRET). Traditional chelation methods have been used to incorporate the radionuclide, but these methods are compromised by the potential for loss of radionuclide due to cleavage of the linker between particle and chelator, decomplexation of the metal, and possible altered pharmacokinetics of nanomaterials. Herein, we described a straightforward synthesis of intrinsically radioactive [64Cu]CuInS/ZnS QDs by directly incorporating 64Cu into CuInS/ZnS nanostructure with 64CuCl2 as synthesis precursor. The [64Cu]CuInS/ZnS QDs demonstrated excellent radiochemical stability with less than 3% free 64Cu detected even after exposure to serum containing EDTA (5 mM) for 24 h. PEGylation can be achieved in situ during synthesis, and the PEGylated radioactive QDs showed high tumor uptake (10.8% ID/g) in a U87MG mouse xenograft model. CRET efficiency was studied as a function of concentration and 64Cu radioactivity concentration. These [64Cu]CuInS/ZnS QDs were successfully applied as an efficient PET/self-illuminating luminescence in vivo imaging agents. PMID:25549258

  15. Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence.

    PubMed

    Guo, Weisheng; Sun, Xiaolian; Jacobson, Orit; Yan, Xuefeng; Min, Kyunghyun; Srivatsan, Avinash; Niu, Gang; Kiesewetter, Dale O; Chang, Jin; Chen, Xiaoyuan

    2015-01-27

    Functionalized quantum dots (QDs) have been widely explored for multimodality bioimaging and proven to be versatile agents. Attaching positron-emitting radioisotopes onto QDs not only endows their positron emission tomography (PET) functionality, but also results in self-illuminating QDs, with no need for an external light source, by Cerenkov resonance energy transfer (CRET). Traditional chelation methods have been used to incorporate the radionuclide, but these methods are compromised by the potential for loss of radionuclide due to cleavage of the linker between particle and chelator, decomplexation of the metal, and possible altered pharmacokinetics of nanomaterials. Herein, we described a straightforward synthesis of intrinsically radioactive [(64)Cu]CuInS/ZnS QDs by directly incorporating (64)Cu into CuInS/ZnS nanostructure with (64)CuCl2 as synthesis precursor. The [(64)Cu]CuInS/ZnS QDs demonstrated excellent radiochemical stability with less than 3% free (64)Cu detected even after exposure to serum containing EDTA (5 mM) for 24 h. PEGylation can be achieved in situ during synthesis, and the PEGylated radioactive QDs showed high tumor uptake (10.8% ID/g) in a U87MG mouse xenograft model. CRET efficiency was studied as a function of concentration and (64)Cu radioactivity concentration. These [(64)Cu]CuInS/ZnS QDs were successfully applied as an efficient PET/self-illuminating luminescence in vivo imaging agents.

  16. Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging

    PubMed Central

    Oza, Goldie; Ravichandran, M.; Merupo, Victor-Ishrayelu; Shinde, Sachin; Mewada, Ashmi; Ramirez, Jose Tapia; Velumani, S.; Sharon, Madhuri; Sharon, Maheshwar

    2016-01-01

    A green method for an efficient synthesis of water-soluble carbon nanoparticles (CNPs), graphitic shell encapsulated carbon nanocubes (CNCs), Carbon dots (CDs) using Camphor (Cinnamomum camphora) is demonstrated. Here, we describe a competent molecular fusion and fission route for step-wise synthesis of CDs. Camphor on acidification and carbonization forms CNPs, which on alkaline hydrolysis form CNCs that are encapsulated by thick graphitic layers and on further reduction by sodium borohydride yielded CDs. Though excitation wavelength dependent photoluminescence is observed in all the three carbon nanostructures, CDs possess enhanced photoluminescent properties due to more defective carbonaceous structures. The surface hydroxyl and carboxyl functional groups make them water soluble in nature. They possess excellent photostability, higher quantum yield, increased absorption, decreased cytotoxicity and hence can be utilized as a proficient bio imaging agent. PMID:26905737

  17. Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging

    NASA Astrophysics Data System (ADS)

    Oza, Goldie; Ravichandran, M.; Merupo, Victor-Ishrayelu; Shinde, Sachin; Mewada, Ashmi; Ramirez, Jose Tapia; Velumani, S.; Sharon, Madhuri; Sharon, Maheshwar

    2016-02-01

    A green method for an efficient synthesis of water-soluble carbon nanoparticles (CNPs), graphitic shell encapsulated carbon nanocubes (CNCs), Carbon dots (CDs) using Camphor (Cinnamomum camphora) is demonstrated. Here, we describe a competent molecular fusion and fission route for step-wise synthesis of CDs. Camphor on acidification and carbonization forms CNPs, which on alkaline hydrolysis form CNCs that are encapsulated by thick graphitic layers and on further reduction by sodium borohydride yielded CDs. Though excitation wavelength dependent photoluminescence is observed in all the three carbon nanostructures, CDs possess enhanced photoluminescent properties due to more defective carbonaceous structures. The surface hydroxyl and carboxyl functional groups make them water soluble in nature. They possess excellent photostability, higher quantum yield, increased absorption, decreased cytotoxicity and hence can be utilized as a proficient bio imaging agent.

  18. Polymer support oligonucleotide synthesis XVIII: use of beta-cyanoethyl-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product.

    PubMed Central

    Sinha, N D; Biernat, J; McManus, J; Köster, H

    1984-01-01

    Various 5'O-N-protected deoxynucleoside-3'-O-beta-cyanoethyl-N,N-dialkylamino-/N- morpholinophosphoramidites were prepared from beta-cyanoethyl monochlorophosphoramidites of N,N-dimethylamine, N,N-diisopropylamine and N-morpholine. These active deoxynucleoside phosphates have successfully been used for oligodeoxynucleotide synthesis on controlled pore glass as polymer support and are very suitable for automated DNA-synthesis due to their stability in solution. The intermediate dichloro-beta- cyanoethoxyphosphine can easily be prepared free from any PC1(3) contamination. The active monomers obtained from beta-cyanoethyl monochloro N,N- diisopropylaminophosphoramidites are favoured. Cleavage of the oligonucleotide chain from the polymer support, N-deacylation and deprotection of beta-cyanoethyl group from the phosphate triester moiety can be performed in one step with concentrated aqueous ammonia. Mixed oligodeoxynucleotides are characterized by the sequencing method of Maxam and Gilbert. Images PMID:6547529

  19. Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective

    PubMed Central

    Soni, Shringika; Ruhela, Rakesh Kumar; Medhi, Bikash

    2016-01-01

    Purpose: For the past few decades central nervous system disorders were considered as a major strike on human health and social system of developing countries. The natural therapeutic methods for CNS disorders limited for many patients. Moreover, nanotechnology-based drug delivery to the brain may an exciting and promising platform to overcome the problem of BBB crossing. In this review, first we focused on the role of the blood-brain barrier in drug delivery; and second, we summarized synthesis methods of nanomedicine and their role in different CNS disorder. Method: We reviewed the PubMed databases and extracted several kinds of literature on neuro nanomedicines using keywords, CNS disorders, nanomedicine, and nanotechnology. The inclusion criteria included chemical and green synthesis methods for synthesis of nanoparticles encapsulated drugs and, their in-vivo and in-vitro studies. We excluded nanomedicine gene therapy and nanomaterial in brain imaging. Results: In this review, we tried to identify a highly efficient method for nanomedicine synthesis and their efficacy in neuronal disorders. SLN and PNP encapsulated drugs reported highly efficient by easily crossing BBB. Although, these neuro-nanomedicine play significant role in therapeutics but some metallic nanoparticles reported the adverse effect on developing the brain. Conclusion: Although impressive advancement has made via innovative potential drug development, but their efficacy is still moderate due to limited brain permeability. To overcome this constraint,powerful tool in CNS therapeutic intervention provided by nanotechnology-based drug delivery methods. Due to its small and biofunctionalization characteristics, nanomedicine can easily penetrate and facilitate the drug through the barrier. But still, understanding of their toxicity level, optimization and standardization are a long way to go. PMID:27766216

  20. Image Based Hair Segmentation Algorithm for the Application of Automatic Facial Caricature Synthesis

    PubMed Central

    Peng, Zhenyun; Zhang, Yaohui

    2014-01-01

    Hair is a salient feature in human face region and are one of the important cues for face analysis. Accurate detection and presentation of hair region is one of the key components for automatic synthesis of human facial caricature. In this paper, an automatic hair detection algorithm for the application of automatic synthesis of facial caricature based on a single image is proposed. Firstly, hair regions in training images are labeled manually and then the hair position prior distributions and hair color likelihood distribution function are estimated from these labels efficiently. Secondly, the energy function of the test image is constructed according to the estimated prior distributions of hair location and hair color likelihood. This energy function is further optimized according to graph cuts technique and initial hair region is obtained. Finally, K-means algorithm and image postprocessing techniques are applied to the initial hair region so that the final hair region can be segmented precisely. Experimental results show that the average processing time for each image is about 280 ms and the average hair region detection accuracy is above 90%. The proposed algorithm is applied to a facial caricature synthesis system. Experiments proved that with our proposed hair segmentation algorithm the facial caricatures are vivid and satisfying. PMID:24592182

  1. Synthesis and Ligand-Exchange Reactions of a Tri-Tungsten Cluster with Applications in Biomedical Imaging

    ERIC Educational Resources Information Center

    Noey, Elizabeth; Curtis, Jeff C.; Tam, Sylvia; Pham, David M.; Jones, Ella F.

    2011-01-01

    In this experiment students are exposed to concepts in inorganic synthesis and various spectroscopies as applied to a tri-tungsten cluster with applications in biomedical imaging. The tungsten-acetate cluster, Na[W[superscript 3](mu-O)[subscript 2](CH[superscript 3]COO)[superscript 9

  2. Controlled synthesis of bright and compatible lanthanide-doped upconverting nanocrystals

    DOEpatents

    Cohen, Bruce E.; Ostrowski, Alexis D.; Chan, Emory M.; Gargas, Daniel J.; Katz, Elan M.; Schuck, P. James; Milliron, Delia J.

    2017-01-31

    Certain nanocrystals possess exceptional optical properties that may make them valuable probes for biological imaging, but rendering these nanoparticles biocompatible requires that they be small enough not to perturb cellular systems. This invention describes a phosphorescent upconverting sub-10 nm nanoparticle comprising a lanthanide-doped hexagonal .beta.-phase NaYF.sub.4 nanocrystal and methods for making the same.

  3. Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging.

    PubMed

    Nadeau, Kyle P; Rice, Tyler B; Durkin, Anthony J; Tromberg, Bruce J

    2015-11-01

    We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI.

  4. Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging

    PubMed Central

    Nadeau, Kyle P.; Rice, Tyler B.; Durkin, Anthony J.; Tromberg, Bruce J.

    2015-01-01

    Abstract. We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI. PMID:26524682

  5. Method and apparatus for synthesis of arrays of DNA probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerrina, Francesco; Sussman, Michael R.; Blattner, Frederick R.

    The synthesis of arrays of DNA probes sequences, polypeptides, and the like is carried out using a patterning process on an active surface of a substrate. An image is projected onto the active surface of the substrate utilizing an image former that includes a light source that provides light to a micromirror device comprising an array of electronically addressable micromirrors, each of which can be selectively tilted between one of at least two positions. Projection optics receives the light reflected from the micromirrors along an optical axis and precisely images the micromirrors onto the active surface of the substrate, whichmore » may be used to activate the surface of the substrate. The first level of bases may then be applied to the substrate, followed by development steps, and subsequent exposure of the substrate utilizing a different pattern of micromirrors, with further repeats until the elements of a two dimensional array on the substrate surface have an appropriate base bound thereto. The micromirror array can be controlled in conjunction with a DNA synthesizer supplying appropriate reagents to a flow cell containing the active substrate to control the sequencing of images presented by the micromirror array in coordination of the reagents provided to the substrate.« less

  6. Synthesis of Multispectral Bands from Hyperspectral Data: Validation Based on Images Acquired by AVIRIS, Hyperion, ALI, and ETM+

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Glasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki

    2003-01-01

    Spectral band synthesis is a key step in the process of creating a simulated multispectral image from hyperspectral data. In this step, narrow hyperspectral bands are combined into broader multispectral bands. Such an approach has been used quite often, but to the best of our knowledge accuracy of the band synthesis simulations has not been evaluated thus far. Therefore, the main goal of this paper is to provide validation of the spectral band synthesis algorithm used in the ART software. The next section contains a description of the algorithm and an example of its application. Using spectral responses of AVIRIS, Hyperion, ALI, and ETM+, the following section shows how the synthesized spectral bands compare with actual bands, and it presents an evaluation of the simulation accuracy based on results of MODTRAN modeling. In the final sections of the paper, simulated images are compared with data acquired by actual satellite sensors. First, a Landsat 7 ETM+ image is simulated using an AVIRIS hyperspectral data cube. Then, two datasets collected with the Hyperion instrument from the EO-1 satellite are used to simulate multispectral images from the ALI and ETM+ sensors.

  7. In situ synthesis of ultra-fine, porous, tin oxide-carbon nanocomposites via a molten salt method for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Guo, Zai Ping; Du, Guodong; Nuli, Yanna; Hassan, Mohd Faiz; Jia, Dianzeng

    Ultra-fine, porous, tin oxide-carbon (SnO 2/C) nanocomposites are fabricated by a molten salt method at 300 °C, and malic acid is decomposed as the carbon source. In situ synthesis is favourable for the combination of carbon and SnO 2. The structure and morphology are confirmed by X-ray diffraction analysis, specific surface-area measurements, and transmission electron microscopy (TEM). Examination of TEM images reveals that the SnO 2 nanoparticles are embedded in the carbon matrix, with sizes between 2 and 5 nm. The electrochemical measurements show that the nanocomposite delivers a high capacity with good capacity retention as an anode material for lithium-ion batteries, due to the combination of the ultra-fine porous structure and the carbon component.

  8. Synthesis and Structural Characterization of CdFe2O4 Nanostructures

    NASA Astrophysics Data System (ADS)

    Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.

    The synthesis of CdFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from the inorganic precursor, [CdFe2(cin)3(N2H4)3], which was obtained by a simple precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. On appropriate annealing, [CdFe2(cin)3(N2H4)3] yielded CdFe2O4 nanoparticles. The XRD studies showed that the crystallite size of the particles was 13nm. The results of HRTEM studies also agreed well with those of XRD. SAED pattern of the sample established the polycrystalline nature of the nanoparticles. SEM images displayed a random distribution of grains in the sample.

  9. Experimental demonstration of tri-aperture Differential Synthetic Aperture Ladar

    NASA Astrophysics Data System (ADS)

    Zhao, Zhilong; Huang, Jianyu; Wu, Shudong; Wang, Kunpeng; Bai, Tao; Dai, Ze; Kong, Xinyi; Wu, Jin

    2017-04-01

    A tri-aperture Differential Synthetic Aperture Ladar (DSAL) is demonstrated in laboratory, which is configured by using one common aperture to transmit the illuminating laser and another two along-track receiving apertures to collect back-scattered laser signal for optical heterodyne detection. The image formation theory on this tri-aperture DSAL shows that there are two possible methods to reconstruct the azimuth Phase History Data (PHD) for aperture synthesis by following standard DSAL principle, either method resulting in a different matched filter as well as an azimuth image resolution. The experimental setup of the tri-aperture DSAL adopts a frequency chirped laser of about 40 mW in 1550 nm wavelength range as the illuminating source and an optical isolator composed of a polarizing beam-splitter and a quarter wave plate to virtually line the three apertures in the along-track direction. Various DSAL images up to target distance of 12.9 m are demonstrated using both PHD reconstructing methods.

  10. Highly precise acoustic calibration method of ring-shaped ultrasound transducer array for plane-wave-based ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Terada, Takahide; Yamanaka, Kazuhiro; Suzuki, Atsuro; Tsubota, Yushi; Wu, Wenjing; Kawabata, Ken-ichi

    2017-07-01

    Ultrasound computed tomography (USCT) is promising for a non-invasive, painless, operator-independent and quantitative system for breast-cancer screening. Assembly error, production tolerance, and aging-degradation variations of the hardwire components, particularly of plane-wave-based USCT systems, may hamper cost effectiveness, precise imaging, and robust operation. The plane wave is transmitted from a ring-shaped transducer array for receiving the signal at a high signal-to-noise-ratio and fast aperture synthesis. There are four signal-delay components: response delays in the transmitters and receivers and propagation delays depending on the positions of the transducer elements and their directivity. We developed a highly precise calibration method for calibrating these delay components and evaluated it with our prototype plane-wave-based USCT system. Our calibration method was found to be effective in reducing delay errors. Gaps and curves were eliminated from the plane wave, and echo images of wires were sharpened in the entire imaging area.

  11. The Application of Nanoparticles in Gene Therapy and Magnetic Resonance Imaging

    PubMed Central

    HERRANZ, FERNANDO; ALMARZA, ELENA; RODRÍGUEZ, IGNACIO; SALINAS, BEATRIZ; ROSELL, YAMILKA; DESCO, MANUEL; BULTE, JEFF W.; RUIZ-CABELLO, JESÚS

    2012-01-01

    The combination of nanoparticles, gene therapy, and medical imaging has given rise to a new field known as gene theranostics, in which a nanobioconjugate is used to diagnose and treat the disease. The process generally involves binding between a vector carrying the genetic information and a nanoparticle, which provides the signal for imaging. The synthesis of this probe generates a synergic effect, enhancing the efficiency of gene transduction and imaging contrast. We discuss the latest approaches in the synthesis of nanoparticles for magnetic resonance imaging, gene therapy strategies, and their conjugation and in vivo application. PMID:21484943

  12. Fly-through viewpoint video system for multi-view soccer movie using viewpoint interpolation

    NASA Astrophysics Data System (ADS)

    Inamoto, Naho; Saito, Hideo

    2003-06-01

    This paper presents a novel method for virtual view generation that allows viewers to fly through in a real soccer scene. A soccer match is captured by multiple cameras at a stadium and images of arbitrary viewpoints are synthesized by view-interpolation of two real camera images near the given viewpoint. In the proposed method, cameras do not need to be strongly calibrated, but epipolar geometry between the cameras is sufficient for the view-interpolation. Therefore, it can easily be applied to a dynamic event even in a large space, because the efforts for camera calibration can be reduced. A soccer scene is classified into several regions and virtual view images are generated based on the epipolar geometry in each region. Superimposition of the images completes virtual views for the whole soccer scene. An application for fly-through observation of a soccer match is introduced as well as the algorithm of the view-synthesis and experimental results..

  13. SyMRI of the Brain

    PubMed Central

    Hagiwara, Akifumi; Warntjes, Marcel; Hori, Masaaki; Andica, Christina; Nakazawa, Misaki; Kumamaru, Kanako Kunishima; Abe, Osamu; Aoki, Shigeki

    2017-01-01

    Abstract Conventional magnetic resonance images are usually evaluated using the image signal contrast between tissues and not based on their absolute signal intensities. Quantification of tissue parameters, such as relaxation rates and proton density, would provide an absolute scale; however, these methods have mainly been performed in a research setting. The development of rapid quantification, with scan times in the order of 6 minutes for full head coverage, has provided the prerequisites for clinical use. The aim of this review article was to introduce a specific quantification method and synthesis of contrast-weighted images based on the acquired absolute values, and to present automatic segmentation of brain tissues and measurement of myelin based on the quantitative values, along with application of these techniques to various brain diseases. The entire technique is referred to as “SyMRI” in this review. SyMRI has shown promising results in previous studies when used for multiple sclerosis, brain metastases, Sturge-Weber syndrome, idiopathic normal pressure hydrocephalus, meningitis, and postmortem imaging. PMID:28257339

  14. Incoherent coincidence imaging of space objects

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Gu, Guohua

    2016-10-01

    Incoherent Coincidence Imaging (ICI), which is based on the second or higher order correlation of fluctuating light field, has provided great potentialities with respect to standard conventional imaging. However, the deployment of reference arm limits its practical applications in the detection of space objects. In this article, an optical aperture synthesis with electronically connected single-pixel photo-detectors was proposed to remove the reference arm. The correlation in our proposed method is the second order correlation between the intensity fluctuations observed by any two detectors. With appropriate locations of single-pixel detectors, this second order correlation is simplified to absolute-square Fourier transform of source and the unknown object. We demonstrate the image recovery with the Gerchberg-Saxton-like algorithms and investigate the reconstruction quality of our approach. Numerical experiments has been made to show that both binary and gray-scale objects can be recovered. This proposed method provides an effective approach to promote detection of space objects and perhaps even the exo-planets.

  15. Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata.

    PubMed

    Joseph, Siby; Mathew, Beena

    2015-02-05

    Herein, we report a simple microwave assisted method for the green synthesis of silver and gold nanoparticles by the reduction of aqueous metal salt solutions using leaf extract of the medicinal plant Aerva lanata. UV-vis., FTIR, XRD, and HR-TEM studies were conducted to assure the formation of nanoparticles. XRD studies clearly confirmed the crystalline nature of the synthesized nanoparticles. From the HR-TEM images, the silver nanoparticles (AgNPs) were found to be more or less spherical and gold nanoparticles (AuNPs) were observed to be of different morphology with an average diameter of 18.62nm for silver and 17.97nm for gold nanoparticles. In order to evaluate the effect of microwave heating upon rate of formation, the synthesis was also conducted under ambient condition without the assistance of microwave radiation and the former method was found to be much faster than the later. The synthesized nanoparticles were used as nanocatalysts in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods.

    PubMed

    Usman, Muhammad Sani; Ibrahim, Nor Azowa; Shameli, Kamyar; Zainuddin, Norhazlin; Yunus, Wan Md Zin Wan

    2012-12-14

    Herein we report a synthesis of copper nanoparticles (Cu-NPs) in chitosan (Cts) media via a chemical reaction method. The nanoparticles were synthesized in an aqueous solution in the presence of Cts as stabilizer and CuSO(4)·5H(2)O precursor. The synthesis proceeded with addition of NaOH as pH moderator, ascorbic acid as antioxidant and hydrazine( )as the reducing agent. The characterization of the prepared NPs was done using ultraviolet-visible spectroscopy, which showed a 593 nm copper band. The Field Emission Scanning Electron Microscope (FESEM) images were also observed, and found to be in agreement with the UV-Vis result, confirming the formation of metallic Cu-NPs. The mean size of the Cu-NPs was estimated to be in the range of 35-75 nm using X-ray diffraction. XRD was also used in analysis of the crystal structure of the NPs. The interaction between the chitosan and the synthesized NPs was studied using Fourier transform infrared (FT-IR) spectroscopy, which showed the capping of the NPs by Cts.

  17. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf

    NASA Astrophysics Data System (ADS)

    Philip, Daizy

    2010-11-01

    This paper reports the rapid biological synthesis of spherical gold nanoparticles at room temperature using fresh/dry leaf extract of Mangifera indica. This is a simple, cost-effective, stable for long time and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au nanoparticles of size ˜20 nm and 17 nm. The nanoparticles were obtained within 2 min of addition of the extract to the solution of HAuCl 4·3H 2O and the colloid is found to be stable for more than 5 months. Smaller and more uniformly distributed particles could be obtained with dried leaf extract. The nanoparticles obtained are characterized by UV-vis, transmission electron microscopy (TEM) and X-ray diffraction (XRD). Crystalline nature of the nanoparticles in the fcc structure is confirmed by the peaks in the XRD pattern corresponding to (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2) planes, bright circular spots in the selected area electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. The possible biomolecules responsible for efficient stabilization are suggested by studying the FTIR spectrum of the sample. This environmentally benign method provides much faster synthesis and colloidal stability comparable to those of chemical reduction.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connatser, Raynella M; Prokes, Sharka M.; Glembocki, Orest

    Exposure to light or heat, or simply a dearth of fingerprint material, renders some latent fingerprints undetectable using conventional methods. We begin to address such elusive fingerprints using detection targeting photo- and thermally stable fingerprint constituents: surface-enhanced Raman spectroscopy (SERS). SERS can give descriptive vibrational spectra of amino acids, among other robust fingerprint constituents, and good sensitivity can be attained by improving metal-dielectric nanoparticle substrates. With SERS chemical imaging, vibrational bands intensities recreate a visual of fingerprint topography. The impact of nanoparticle synthesis route, dispersal methodology-deposition solvent, and laser wavelength are discussed, as are data from enhanced vibrational spectra ofmore » fingerprint components. SERS and Raman chemical images of fingerprints and realistic contaminants are shown. To our knowledge, this represents the first SERS imaging of fingerprints. In conclusion, this work progresses toward the ultimate goal of vibrationally detecting latent prints that would otherwise remain undetected using traditional development methods.« less

  19. Examination of biogenic selenium-containing nanosystems based on polyelectrolyte complexes by atomic force, Kelvin probe force and electron microscopy methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukhanova, T. E., E-mail: tat-sukhanova@mail.ru; Vylegzhanina, M. E.; Valueva, S. V.

    The morphology and electrical properties of biogenic selenium-containing nanosystems based on polyelectrolyte complexes (PECs) were examined using AFM, Kelvin Probe Force and electron microscopy methods. It has been found, that prepared nanostructures significantly differed in their morphological types and parameters. In particular, multilayers capsules can be produced via varying synthesis conditions, especially, the selenium–PEC mass ratio ν. At the “special point” (ν = 0.1), filled and hollow nano- and microcapsules are formed in the system. The multilayer character of the capsules walls is visible in the phase images. Kelvin Probe Force images showed the inhomogeneity of potential distribution in capsulesmore » and outside them.« less

  20. Green preparation of carbon dots with mangosteen pulp for the selective detection of Fe3+ ions and cell imaging

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Guo, Xiangfeng; Jia, Lihua; Zhang, Yu; Zhao, Zhenlong; Lonshakov, Fedor

    2017-11-01

    A simple method was developed in the synthesis of fluorescent carbon dots (referred to as M-CDs), calcined treatment of mangosteen pulp in air, without the assistance of any chemical reagent. The M-CDs possess good-solubility, satisfactory chemical stability and can be applied as the fluorescent temperature probe. More strikingly, the fluorescence of M-CDs can be fleetly and selectively quenched by Fe3+ ions. The phenomenon was used to develop a fluorescent method for facile detection of Fe3+ with a linear range of 0-0.18 mM and a detection limit of 52 nM. Eventually, the M-CDs were applied for cell imaging, demonstrating their potential toward diverse applications.

  1. Gd3+-DTPA-bis (N-methylamine) - anionic linear globular Dendrimer-G1; a more efficient MRI contrast media.

    PubMed

    Ghalandarlaki, N; Mohammadi, T D; Agha Babaei, R; Tabasi, M A; Keyhanvar, P; Mehravi, B; Yaghmaei, P; Cohan, R A; Ardestani, M S

    2014-02-01

    By advancing of molecular imaging techniques, magnetic resonance imaging (MRI) is becoming an increasingly important tool in early diagnosis. Researchers have found new ways to increase contrast of MRI images.Therefore some types of drug known as contrast media are produced. Contrast media improve the visibility of internal body structures in MRI images. Gadodiamide (Omniscan®) is one of these contrast media which is produced commercially and used clinically. In this study Gadodiamide was first synthesized and then qualitative and quantitative methods were carried out to ensure the proper synthesis of this drug then to increase the efficiency of this contrast medium use dendrimer that is one kind of nano particle. This dendrimer has a polyethylene glycol (PEG) core and citric acid branches. After dendrimer attached to Gadodiamide to ensure the proper efficient connection between them the stability studies were carried out and cytotoxicity of the drug was evaluated. Finally, after ensuring the non-toxicity of the drug, in vivo studies (injected into mice) MR imaging was performed to examine the impact of synthesis drug on the resolution of image.The result obtained from this study demonstrated that the attachment of Gadodiamide to dendrimer reduces its cytotoxicity and also improved resolution of image. Also the new contrast media (Gd3+-DTPA- bis [N-methylamine] - Dendrimer) - unlike Omniscan® - is biodegradable and able to enter the HEPG2 cell line. The results confirm the hypothesis that using dendrimer to synthesize this new nano contrast medium increases its effectiveness. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Training-based descreening.

    PubMed

    Siddiqui, Hasib; Bouman, Charles A

    2007-03-01

    Conventional halftoning methods employed in electrophotographic printers tend to produce Moiré artifacts when used for printing images scanned from printed material, such as books and magazines. We present a novel approach for descreening color scanned documents aimed at providing an efficient solution to the Moiré problem in practical imaging devices, including copiers and multifunction printers. The algorithm works by combining two nonlinear image-processing techniques, resolution synthesis-based denoising (RSD), and modified smallest univalue segment assimilating nucleus (SUSAN) filtering. The RSD predictor is based on a stochastic image model whose parameters are optimized beforehand in a separate training procedure. Using the optimized parameters, RSD classifies the local window around the current pixel in the scanned image and applies filters optimized for the selected classes. The output of the RSD predictor is treated as a first-order estimate to the descreened image. The modified SUSAN filter uses the output of RSD for performing an edge-preserving smoothing on the raw scanned data and produces the final output of the descreening algorithm. Our method does not require any knowledge of the screening method, such as the screen frequency or dither matrix coefficients, that produced the printed original. The proposed scheme not only suppresses the Moiré artifacts, but, in addition, can be trained with intrinsic sharpening for deblurring scanned documents. Finally, once optimized for a periodic clustered-dot halftoning method, the same algorithm can be used to inverse halftone scanned images containing stochastic error diffusion halftone noise.

  3. Forward and backward tone mapping of high dynamic range images based on subband architecture

    NASA Astrophysics Data System (ADS)

    Bouzidi, Ines; Ouled Zaid, Azza

    2015-01-01

    This paper presents a novel High Dynamic Range (HDR) tone mapping (TM) system based on sub-band architecture. Standard wavelet filters of Daubechies, Symlets, Coiflets and Biorthogonal were used to estimate the proposed system performance in terms of Low Dynamic Range (LDR) image quality and reconstructed HDR image fidelity. During TM stage, the HDR image is firstly decomposed in sub-bands using symmetrical analysis-synthesis filter bank. The transform coefficients are then rescaled using a predefined gain map. The inverse Tone Mapping (iTM) stage is straightforward. Indeed, the LDR image passes through the same sub-band architecture. But, instead of reducing the dynamic range, the LDR content is boosted to an HDR representation. Moreover, in our TM sheme, we included an optimization module to select the gain map components that minimize the reconstruction error, and consequently resulting in high fidelity HDR content. Comparisons with recent state-of-the-art methods have shown that our method provides better results in terms of visual quality and HDR reconstruction fidelity using objective and subjective evaluations.

  4. Nanoparticle imaging. 3D structure of individual nanocrystals in solution by electron microscopy.

    PubMed

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A; Zettl, A; Alivisatos, A Paul

    2015-07-17

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale. Copyright © 2015, American Association for the Advancement of Science.

  5. A Fully-automated One-pot Synthesis of [18F]Fluoromethylcholine with Reduced Dimethylaminoethanol Contamination via [18F]Fluoromethyl Tosylate

    PubMed Central

    Rodnick, Melissa E.; Brooks, Allen F.; Hockley, Brian G.; Henderson, Bradford D.; Scott, Peter J. H.

    2013-01-01

    Introduction A novel one-pot method for preparing [18F]fluoromethylcholine ([18F]FCH) via in situ generation of [18F]fluoromethyl tosylate ([18F]FCH2OTs), and subsequent [18F]fluoromethylation of dimethylaminoethanol (DMAE), has been developed. Methods [18F]FCH was prepared using a GE TRACERlab FXFN, although the method should be readily adaptable to any other fluorine-18 synthesis module. Initially ditosylmethane was fluorinated to generate [18F]FCH2OTs. DMAE was then added and the reaction was heated at 120°C for 10 min to generate [18F]FCH. After this time, reaction solvent was evaporated, and the crude reaction mixture was purified by solid-phase extraction using C18-Plus and CM-Light Sep-Pak cartridges to provide [18F]FCH formulated in USP saline. The formulated product was passed through a 0.22 μm filter into a sterile dose vial, and submitted for quality control testing. Total synthesis time was 1.25 hours from end-of-bombardment. Results Typical non-decay-corrected yields of [18F]FCH prepared using this method were 91 mCi (7% non-decay corrected based upon ~1.3 Ci [18F]fluoride), and doses passed all other quality control (QC) tests. Conclusion A one-pot liquid-phase synthesis of [18F]FCH has been developed. Doses contain extremely low levels of residual DMAE (31.6 μg / 10 mL dose or ~3 ppm) and passed all other requisite QC testing, confirming their suitability for use in clinical imaging studies. PMID:23665261

  6. VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone

    NASA Technical Reports Server (NTRS)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; hide

    2016-01-01

    The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three-dimensional hydrodynamical, radiative transfer models of the massive interacting winds of Eta Car.

  7. Synthesis of carbon nanospheres using fallen willow leaves and adsorption of Rhodamine B and heavy metals by them.

    PubMed

    Qu, Jiao; Zhang, Qian; Xia, Yunsheng; Cong, Qiao; Luo, Chunqiu

    2015-01-01

    This paper focuses on the synthesis of carbon nanospheres (CNSs) using fallen willow leaves as a low-cost precursor. The scanning electron microscopy (SEM) image and transmission electron microscopy (TEM) image demonstrated that the structure of synthesized CNSs was spherical, with a diameter of 100 nm. The crystal structure and chemical information were characterized by Raman spectrum and energy-dispersive spectrum (EDS), respectively. BET results showed that the CNSs had a larger specific surface area of 294.32 m(2) g(-1), which makes it a potentially superior adsorbent. Rh-B and heavy metal ions such as Cu(2+), Zn(2+), and Cr(6+) were used as targets to investigate the adsorption capacity of the CNSs. The effects of adsorption parameters such as adsorption equilibrium time, dose of CNSs, adsorption kinetics, and effect factors were also studied. These findings not only established a cost-effective method of synthesizing CNSs using fallen willow leaves but also broadened the potential application range of these CNSs.

  8. A Transmetalation Reaction Enables the Synthesis of [ 18F]5-Fluorouracil from [ 18F]Fluoride for Human PET Imaging

    DOE PAGES

    Hoover, Andrew J.; Lazari, Mark; Ren, Hong; ...

    2016-02-14

    Translation of new 18F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [ 18F]fluoride of human doses of [ 18F]5-fluorouracil, a PET tracer for cancer imaging in humans. Here, the firstmore » preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [ 18F]5-fluorouracil precursor. Routine production of >10 mCi doses of [ 18F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [ 18F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18F-fluorination.« less

  9. A Transmetalation Reaction Enables the Synthesis of [ 18F]5-Fluorouracil from [ 18F]Fluoride for Human PET Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoover, Andrew J.; Lazari, Mark; Ren, Hong

    Translation of new 18F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [ 18F]fluoride of human doses of [ 18F]5-fluorouracil, a PET tracer for cancer imaging in humans. Here, the firstmore » preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [ 18F]5-fluorouracil precursor. Routine production of >10 mCi doses of [ 18F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [ 18F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18F-fluorination.« less

  10. Green Synthesis of Bifunctional Fluorescent Carbon Dots from Garlic for Cellular Imaging and Free Radical Scavenging.

    PubMed

    Zhao, Shaojing; Lan, Minhuan; Zhu, Xiaoyue; Xue, Hongtao; Ng, Tsz-Wai; Meng, Xiangmin; Lee, Chun-Sing; Wang, Pengfei; Zhang, Wenjun

    2015-08-12

    Nitrogen and sulfur codoped carbon dots (CDs) were prepared from garlic by a hydrothermal method. The as-prepared CDs possess good water dispersibility, strong blue fluorescence emission with a fluorescent quantum yield of 17.5%, and excellent photo and pH stabilities. It is also demonstrated that the fluorescence of CDs are resistant to the interference of metal ions, biomolecules, and high ionic strength environments. Combining with low cytotoxicity properties, CDs could be used as an excellent fluorescent probe for cellular multicolor imaging. Moreover, the CDs were also demonstrated to exhibit favorable radical scavenging activity.

  11. Shot noise limits to sensitivity of optical interferometry

    NASA Technical Reports Server (NTRS)

    Prasad, Sudhakar

    1992-01-01

    By arguing that the limiting noise is the photoelectron shot noise, we show that the sensitivity of image synthesis by an ideal optical interferometer is independent of the details of beam-splitting and recombination. The signal-to-noise ratio of the synthesized image is proportional to the square root of the total number of photoelectrons detected by the entire array. For non-ideal interferometers, which are forced to employ a closure-phase method of indirect inference of the visibility data, essentially the same result holds for strong sources, but at weak light levels beam-splitting degrades sensitivity.

  12. Long-baseline optical intensity interferometry. Laboratory demonstration of diffraction-limited imaging

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-08-01

    Context. A long-held vision has been to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, and reveal interacting gas flows in binary systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and also used for intensity interferometry. Second-order spatial coherence of light is obtained by cross correlating intensity fluctuations measured in different pairs of telescopes. With no optical links between them, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are approximately one meter, making the method practically immune to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Aims: Previous theoretical modeling has shown that full images should be possible to retrieve from observations with such telescope arrays. This project aims at verifying diffraction-limited imaging experimentally with groups of detached and independent optical telescopes. Methods: In a large optics laboratory, artificial stars (single and double, round and elliptic) were observed by an array of small telescopes. Using high-speed photon-counting solid-state detectors and real-time electronics, intensity fluctuations were cross-correlated over up to 180 baselines between pairs of telescopes, producing coherence maps across the interferometric Fourier-transform plane. Results: These interferometric measurements were used to extract parameters about the simulated stars, and to reconstruct their two-dimensional images. As far as we are aware, these are the first diffraction-limited images obtained from an optical array only linked by electronic software, with no optical connections between the telescopes. Conclusions: These experiments serve to verify the concepts for long-baseline aperture synthesis in the optical, somewhat analogous to radio interferometry.

  13. Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Azizian, Gholamreza; Riyahi-Alam, Nader; Haghgoo, Soheila; Moghimi, Hamid Reza; Zohdiaghdam, Reza; Rafiei, Behrooz; Gorji, Ensieh

    2012-10-01

    Despite its good resolution, magnetic resonance imaging intrinsically has low sensitivity. Recently, contrast agent nanoparticles have been used as sensitivity and contrast enhancer. The aim of this study was to investigate a new controlled synthesis method for gadolinium oxide-based nanoparticle preparation. For this purpose, diethyleneglycol coating of gadolinium oxide (Gd2O3-DEG) was performed using new supervised polyol route, and small particulate gadolinium oxide (SPGO) PEGylation was obtained with methoxy-polyethylene-glycol-silane (550 and 2,000 Da) coatings as SPGO-mPEG-silane550 and 2,000, respectively. Physicochemical characterization and magnetic properties of these three contrast agents in comparison with conventional Gd-DTPA were verified by dynamic light scattering transmission electron microscopy, Fourier transform infrared spectroscopy, inductively coupled plasma, X-ray diffraction, vibrating sample magnetometer, and the signal intensity and relaxivity measurements were performed using 1.5-T MRI scanner. As a result, the nanoparticle sizes of Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000 could be reached to 5.9, 51.3, 194.2 nm, respectively. The image signal intensity and longitudinal ( r 1) and transverse relaxivity ( r 2) measurements in different concentrations (0.3 to approximately 2.5 mM), revealed the r 2/ r 1 ratios of 1.13, 0.89, 33.34, and 33.72 for Gd-DTPA, Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000, respectively. The achievement of new synthesis route of Gd2O3-DEG resulted in lower r 2/ r 1 ratio for Gd2O3-DEG than Gd-DTPA and other previous synthesized methods by this and other groups. The smaller r 2/ r 1 ratios of two PEGylated-SPGO contrast agents in our study in comparison with r 2/ r 1 ratio of previous PEGylation ( r 2/ r 1 = 81.9 for mPEG-silane 6,000 MW) showed that these new three introduced contrast agents could potentially be proper contrast enhancers for cellular and molecular MR imaging.

  14. Racemic protein crystallography.

    PubMed

    Yeates, Todd O; Kent, Stephen B H

    2012-01-01

    Although natural proteins are chiral and are all of one "handedness," their mirror image forms can be prepared by chemical synthesis. This opens up new opportunities for protein crystallography. A racemic mixture of the enantiomeric forms of a protein molecule can crystallize in ways that natural proteins cannot. Recent experimental data support a theoretical prediction that this should make racemic protein mixtures highly amenable to crystallization. Crystals obtained from racemic mixtures also offer advantages in structure determination strategies. The relevance of these potential advantages is heightened by advances in synthetic methods, which are extending the size limit for proteins that can be prepared by chemical synthesis. Recent ideas and results in the area of racemic protein crystallography are reviewed.

  15. Synthesis-Structure-Activity Relationships in Co3O4 Catalyzed CO Oxidation

    NASA Astrophysics Data System (ADS)

    Mingle, Kathleen; Lauterbach, Jochen

    2018-05-01

    In this work, a statistical design and analysis platform was used to develop cobalt oxide based oxidation catalysts prepared via one pot metal salt reduction. An emphasis was placed upon understanding the effects of synthesis conditions, such as heating regimen and Co2+ concentration on the metal salt reduction mechanism, the resultant nanomaterial properties (i.e. size, crystal structure, and crystal faceting), and the catalytic activity in CO oxidation. This was accomplished by carrying out XRD, TEM, and FTIR studies on synthesis intermediates and products. Additionally, high-throughput experimentation was employed to study the performance of Co3O4 oxidation catalysts over a wide range of reaction conditions using a 16-channel fixed bed reactor equipped with a parallel infrared imaging system. Specifically, Co3O4 nanomaterials of varying properties were evaluated for their performance as CO oxidation catalysts. Figure-of-merits including light-off temperatures and activation energies were measured and mapped back to the catalyst properties and synthesis conditions. Statistical analysis methods were used to elucidate significant property-activity relationships as well as the design rules relevant in the synthesis of active catalysts. It was found that CO oxidation light off temperatures could be decreased to <90°C by utilizing the discovered synthesis-structure-activity relationships.

  16. Increasing reconstruction quality of diffractive optical elements displayed with LC SLM

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.

    2015-03-01

    Phase liquid crystal (LC) spatial light modulators (SLM) are actively used in various applications. However, majority of scientific applications require stable phase modulation which might be hard to achieve with commercially available SLM due to its consumer origin. The use of digital voltage addressing scheme leads to phase temporal fluctuations, which results in lower diffraction efficiency and reconstruction quality of displayed diffractive optical elements (DOE). Due to high periodicity of fluctuations it should be possible to use knowledge of these fluctuations during DOE synthesis to minimize negative effect. We synthesized DOE using accurately measured phase fluctuations of phase LC SLM "HoloEye PLUTO VIS" to minimize its negative impact on displayed DOE reconstruction. Synthesis was conducted with versatile direct search with random trajectory (DSRT) method in the following way. Before DOE synthesis begun, two-dimensional dependency of SLM phase shift on addressed signal level and time from frame start was obtained. Then synthesis begins. First, initial phase distribution is created. Second, random trajectory of consecutive processing of all DOE elements is generated. Then iterative process begins. Each DOE element sequentially has its value changed to one that provides better value of objective criterion, e.g. lower deviation of reconstructed image from original one. If current element value provides best objective criterion value then it left unchanged. After all elements are processed, iteration repeats until stagnation is reached. It is demonstrated that application of SLM phase fluctuations knowledge in DOE synthesis with DSRT method leads to noticeable increase of DOE reconstruction quality.

  17. Iron oxide nanoparticle-micelles (ION-micelles) for sensitive (molecular) magnetic particle imaging and magnetic resonance imaging.

    PubMed

    Starmans, Lucas W E; Burdinski, Dirk; Haex, Nicole P M; Moonen, Rik P M; Strijkers, Gustav J; Nicolay, Klaas; Grüll, Holger

    2013-01-01

    Iron oxide nanoparticles (IONs) are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI) was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles). Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS) measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem) and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles) bound to blood clots. The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular) MPI and warrants further investigation of the FibPep-ION-Micelle platform for in vivo, non-invasive imaging of fibrin in preclinical disease models of thrombus-related pathologies and atherosclerosis.

  18. Propagation phasor approach for holographic image reconstruction

    PubMed Central

    Luo, Wei; Zhang, Yibo; Göröcs, Zoltán; Feizi, Alborz; Ozcan, Aydogan

    2016-01-01

    To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears. PMID:26964671

  19. Facile combustion synthesis of ZnO nanoparticles using Cajanus cajan (L.) and its multidisciplinary applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjunath, K.; Ravishankar, T.N.; Kumar, Dhanith

    Graphical abstract: Facile combustion synthesis of ZnO nanoparticles using Cajanuscajan (L.) and its multidisciplinary applications.Zinc oxide nanoparticles were successfully synthesized by solution combustion method (SCM) using pigeon pea as a combustible fuel for the first time. The as-prepared product shows good photocatalytic, dielectric, antibacterial, electrochemical properties. - Highlights: • ZnO Nps were synthesized via combustion method using pigeon pea as a fuel. • The structure of the product was confirmed by XRD technique. • The morphology was confirmed by SEM and TEM images. • The as-prepared product shown good photocatalytic activity, dielectric property. • It has also shown good antibacterialmore » and electrochemical properties. - Abstract: Zinc oxide nanoparticles (ZnO Nps) were successfully synthesized by solution combustion method (SCM) using pigeon pea as a fuel for the first time. X-Ray diffraction pattern reveals that the product belongs to hexagonal system. FTIR spectrum of ZnO Nps shows the band at 420 cm{sup −1} associated with the characteristic vibration of Zn–O. TEM images show that the nanoparticles are found to be ∼40–80 nm. Furthermore, the as-prepared ZnO Nps exhibits good photocatalytic activity for the photodegradation of methylene blue (MB), indicating that they are indeed a promising photocatalytic semiconductor. The antibacterial properties of ZnO nanopowders were investigated by their bactericidal activity against four bacterial strains.« less

  20. Two-photon absorbing porphyrins for oxygen microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Esipova, Tatiana V.; Vinogradov, Sergei A.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is invaluable for many areas of the biomedical science, including ophthalmology, neuroscience, cancer and stem biology. An optical method based on oxygen-dependent quenching of phosphorescence is being developed, that allows quantitative minimally invasive real-time imaging of partial pressure of oxygen (pO2) in tissue. In the past, dendritically protected phosphorescent oxygen probes with controllable quenching parameters and defined bio-distributions have been developed. More recently our probe strategy has extended to encompass two-photon excitable oxygen probes, which brought about first demonstrations of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new valuable information for neuroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as low brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. Here we present an approach to new bright phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to novel proves for 2PLM. In addition to substantial increase in performance, the new probes can be synthesized by much more efficient methods, thereby greatly reducing the cost of the synthesis and making the technique accessible to a broader range of researchers across different fields.

  1. Semantic attributes based texture generation

    NASA Astrophysics Data System (ADS)

    Chi, Huifang; Gan, Yanhai; Qi, Lin; Dong, Junyu; Madessa, Amanuel Hirpa

    2018-04-01

    Semantic attributes are commonly used for texture description. They can be used to describe the information of a texture, such as patterns, textons, distributions, brightness, and so on. Generally speaking, semantic attributes are more concrete descriptors than perceptual features. Therefore, it is practical to generate texture images from semantic attributes. In this paper, we propose to generate high-quality texture images from semantic attributes. Over the last two decades, several works have been done on texture synthesis and generation. Most of them focusing on example-based texture synthesis and procedural texture generation. Semantic attributes based texture generation still deserves more devotion. Gan et al. proposed a useful joint model for perception driven texture generation. However, perceptual features are nonobjective spatial statistics used by humans to distinguish different textures in pre-attentive situations. To give more describing information about texture appearance, semantic attributes which are more in line with human description habits are desired. In this paper, we use sigmoid cross entropy loss in an auxiliary model to provide enough information for a generator. Consequently, the discriminator is released from the relatively intractable mission of figuring out the joint distribution of condition vectors and samples. To demonstrate the validity of our method, we compare our method to Gan et al.'s method on generating textures by designing experiments on PTD and DTD. All experimental results show that our model can generate textures from semantic attributes.

  2. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials.

    PubMed

    Gurunathan, Sangiliyandi; Kim, Jin-Hoi

    2016-01-01

    Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications.

  3. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials

    PubMed Central

    Gurunathan, Sangiliyandi; Kim, Jin-Hoi

    2016-01-01

    Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications. PMID:27226713

  4. Low temperature synthesis and sintering of d-UO2 nanoparticles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenoff, Tina Maria; Ferreira, Summer Rhodes; Robinson, David B.

    We report on the novel room temperature method of synthesizing advanced nuclear fuels; a method that virtually eliminates any volatility of components. This process uses radiolysis to form stable nanoparticle (NP) nuclear transuranic (TRU) fuel surrogates and in-situ heated stage TEM to sinter the NPs. The radiolysis is performed at Sandia's Gamma Irradiation Facility (GIF) 60Co source (3 x 10{sup 6} rad/hr). Using this method, sufficient quantities of fuels for research purposes can be produced for accelerated advanced nuclear fuel development. We are focused on both metallic and oxide alloy nanoparticles of varying compositions, in particular d-U, d-U/La alloys andmore » d-UO2 NPs. We present detailed descriptions of the synthesis procedures, the characterization of the NPs, the sintering of the NPs, and their stability with temperature. We have employed UV-vis, HRTEM, HAADF-STEM imaging, single particle EDX and EFTEM mapping characterization techniques to confirm the composition and alloying of these NPs.« less

  5. A review of the magnetic properties, synthesis methods and applications of maghemite

    NASA Astrophysics Data System (ADS)

    Shokrollahi, H.

    2017-03-01

    It must be pointed out that maghemite (γ-Fe2O3) with a cubic spinel structure is a crucial material for various applications, including spin electronic devices, high-density magnetic recording, nano-medicines and biosensors. This paper has to do with a review study on the synthesis methods, magnetic properties and application of maghemite in the form of one-dimensional (1D) nanostructured materials, such as nanoparticles, nanotubes, nano-rods, and nanowires, as well as two-dimensional (2D) thin films. The results revealed that maghemite is widely used in the biomedical applications (hyperthermia, magnetic resonance imaging and drug delivery) and magnetic recording devices. The unmodified and Co/Mn modified maghemite thin films prepared by the dc-reactive magnetron sputtering show the excellent values of coercivity 2100 Oe and 3900 Oe, respectively, for the magnetic storage application. The super-paramagnetic particles with 7 nm size and the saturation magnetization of 80 emu/g prepared by the established thermolysis method are good candidates for bio-medical applications.

  6. Synthesis strategy: building a culturally sensitive mid-range theory of risk perception using literary, quantitative, and qualitative methods.

    PubMed

    Siaki, Leilani A; Loescher, Lois J; Trego, Lori L

    2013-03-01

    This article presents a discussion of development of a mid-range theory of risk perception. Unhealthy behaviours contribute to the development of health inequalities worldwide. The link between perceived risk and successful health behaviour change is inconclusive, particularly in vulnerable populations. This may be attributed to inattention to culture. The synthesis strategy of theory building guided the process using three methods: (1) a systematic review of literature published between 2000-2011 targeting perceived risk in vulnerable populations; (2) qualitative and (3) quantitative data from a study of Samoan Pacific Islanders at high risk of cardiovascular disease and diabetes. Main concepts of this theory include risk attention, appraisal processes, cognition, and affect. Overarching these concepts is health-world view: cultural ways of knowing, beliefs, values, images, and ideas. This theory proposes the following: (1) risk attention varies based on knowledge of the health risk in the context of health-world views; (2) risk appraisals are influenced by affect, health-world views, cultural customs, and protocols that intersect with the health risk; (3) strength of cultural beliefs, values, and images (cultural identity) mediate risk attention and risk appraisal influencing the likelihood that persons will engage in health-promoting behaviours that may contradict cultural customs/protocols. Interventions guided by a culturally sensitive mid-range theory may improve behaviour-related health inequalities in vulnerable populations. The synthesis strategy is an intensive process for developing a culturally sensitive mid-range theory. Testing of the theory will ascertain its usefulness for reducing health inequalities in vulnerable groups. © 2012 Blackwell Publishing Ltd.

  7. Synthesis of heterocycles: Indolo (2,1-a) isoquinolines, renewables, and aptamer ligands for cellular imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beasley, Jonathan

    2013-01-01

    In this thesis, we explore both total syntheses and methodologies of several aromatic heterocyclic molecules. Extensions of the Kraus indole synthesis toward 2-substituted and 2,3-disubstituted indoles, as well as biologically attractive indolo[2,1-a]isoquinolines are described. Recent renewable efforts directed to commodity maleic acid and the first reported furan-based ionic liquids are described. Our total synthesis of mRNA aptamer ligand PDC-Gly, and its dye coupled forms, plus aminoglycoside dye coupled ligands used in molecular imaging, are described.

  8. Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization.

    PubMed

    Sheng, Jia; Hassan, Abdalla E A; Zhang, Wen; Zhou, Jianfeng; Xu, Bingqian; Soares, Alexei S; Huang, Zhen

    2011-05-01

    We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation. © The Author(s) 2011. Published by Oxford University Press.

  9. Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization

    PubMed Central

    Sheng, Jia; Hassan, Abdalla E. A.; Zhang, Wen; Zhou, Jianfeng; Xu, Bingqian; Soares, Alexei S.; Huang, Zhen

    2011-01-01

    We report here the first synthesis of 5-phenyl–telluride–thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation. PMID:21245037

  10. Synthesis Structure and Imaging of Oligodeoxyribonucleotides with Tellurium-nucleobase Derivatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Sheng; A Hassan; W Zhang

    2011-12-31

    We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNAmore » duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.« less

  11. Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, J.; Soares, A.; Hassan, A. E. A.

    2011-05-01

    We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNAmore » duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.« less

  12. Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis.

    PubMed

    Ferguson, Angelica; Wang, Leyi; Altman, Roger B; Terry, Daniel S; Juette, Manuel F; Burnett, Benjamin J; Alejo, Jose L; Dass, Randall A; Parks, Matthew M; Vincent, C Theresa; Blanchard, Scott C

    2015-11-05

    The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome, demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule fluorescence resonance energy transfer (smFRET) methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Aqueous synthesis of high bright and tunable near-infrared AgInSe2-ZnSe quantum dots for bioimaging.

    PubMed

    Che, Dongchen; Zhu, Xiaoxu; Wang, Hongzhi; Duan, Yourong; Zhang, Qinghong; Li, Yaogang

    2016-02-01

    Efficient synthetic methods for near-infrared quantum dots with good biophysical properties as bioimaging agents are urgently required. In this work, a simple and fast synthesis of highly luminescent, near-infrared AgInSe2-ZnSe quantum dots (QDs) with tunable emissions in aqueous media is reported. This method avoids high temperature and pressure and organic solvents to directly generate water-dispersible AgInSe2-ZnSe QDs. The photoluminescence emission peak of the AgInSe2-ZnSe QDs ranged from 625 to 940nm, with quantum yields up to 31%. The AgInSe2-ZnSe QDs with high quantum yield, near-infrared and low cytotoxic could be used as good cell labels, showing great potential applications in bio-imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Synthesis of hollow silica spheres with hierarchical shell structure by the dual action of liquid indium microbeads in vapor-liquid-solid growth.

    PubMed

    Wang, Jian-Tao; Wang, Hui; Ou, Xue-Mei; Lee, Chun-Sing; Zhang, Xiao-Hong

    2011-07-05

    Geometry-based adhesion arising from hierarchical surface structure enables microspheres to adhere to cells strongly, which is essential for inorganic microcapsules that function as drug delivery or diagnostic imaging agents. However, constructing a hierarchical structure on the outer shell of the products via the current microcapsule synthesis method is difficult. This work presents a novel approach to fabricating hollow microspheres with a hierarchical shell structure through the vapor-liquid-solid (VLS) process in which liquid indium droplets act as both templates for the formation of silica capsules and catalysts for the growth of hierarchical shell structure. This hierarchical shell structure offers the hollow microsphere an enhanced geometry-based adhesion. The results provide a facile method for fabricating hollow spheres and enriching their function through tailoring the geometry of their outer shells. © 2011 American Chemical Society

  15. Functional dynamics within the human ribosome regulate the rate of active protein synthesis

    PubMed Central

    Ferguson, Angelica; Wang, Leyi; Altman, Roger B.; Terry, Daniel S.; Juette, Manuel F.; Burnett, Benjamin J.; Alejo, Jose L.; Dass, Randall A.; Parks, Matthew M.; Vincent, Theresa C.; Blanchard, Scott C.

    2015-01-01

    SUMMARY The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule FRET methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. PMID:26593721

  16. Carbon Nanotube based Nanotechnolgy

    NASA Astrophysics Data System (ADS)

    Meyyappan, M.

    2000-10-01

    Carbon nanotube(CNT) was discovered in the early 1990s and is an off-spring of C60(the fullerene or buckyball). CNT, depending on chirality and diameter, can be metallic or semiconductor and thus allows formation of metal-semiconductor and semiconductor-semiconductor junctions. CNT exhibits extraordinary electrical and mechanical properties and offers remarkable potential for revolutionary applications in electronics devices, computing and data storage technology, sensors, composites, storage of hydrogen or lithium for battery development, nanoelectromechanical systems(NEMS), and as tip in scanning probe microscopy(SPM) for imaging and nanolithography. Thus the CNT synthesis, characterization and applications touch upon all disciplines of science and engineering. A common growth method now is based on CVD though surface catalysis is key to synthesis, in contrast to many CVD applications common in microelectronics. A plasma based variation is gaining some attention. This talk will provide an overview of CNT properties, growth methods, applications, and research challenges and opportunities ahead.

  17. Preparation and characterization of alginate based-fluorescent magnetic nanoparticles for fluorescence/magnetic resonance multimodal imaging applications

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong

    2018-06-01

    Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.

  18. One-pot synthesis of magnetic nanoclusters enabling atherosclerosis-targeted magnetic resonance imaging.

    PubMed

    Kukreja, Aastha; Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Lee, Taeksu; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2014-01-01

    In this study, dextran-encrusted magnetic nanoclusters (DMNCs) were synthesized using a one-pot solution phase method for detection of atherosclerosis by magnetic resonance imaging. Pyrenyl dextran was used as a surfactant because of its electron-stabilizing effect and its amphiphilic nature, rendering the DMNCs stable and water-dispersible. The DMNCs were 65.6±4.3 nm, had a narrow size distribution, and were superparamagnetic with a high magnetization value of 60.1 emu/g. Further, they showed biocompatibility and high cellular uptake efficiency, as indicated by a strong interaction between dextran and macrophages. In vivo magnetic resonance imaging demonstrated the ability of DMNCs to act as an efficient magnetic resonance imaging contrast agent capable of targeted detection of atherosclerosis. In view of these findings, it is concluded that DMNCs can be used as magnetic resonance imaging contrast agents to detect inflammatory disease.

  19. Volumetric image interpretation in radiology: scroll behavior and cognitive processes.

    PubMed

    den Boer, Larissa; van der Schaaf, Marieke F; Vincken, Koen L; Mol, Chris P; Stuijfzand, Bobby G; van der Gijp, Anouk

    2018-05-16

    The interpretation of medical images is a primary task for radiologists. Besides two-dimensional (2D) images, current imaging technologies allow for volumetric display of medical images. Whereas current radiology practice increasingly uses volumetric images, the majority of studies on medical image interpretation is conducted on 2D images. The current study aimed to gain deeper insight into the volumetric image interpretation process by examining this process in twenty radiology trainees who all completed four volumetric image cases. Two types of data were obtained concerning scroll behaviors and think-aloud data. Types of scroll behavior concerned oscillations, half runs, full runs, image manipulations, and interruptions. Think-aloud data were coded by a framework of knowledge and skills in radiology including three cognitive processes: perception, analysis, and synthesis. Relating scroll behavior to cognitive processes showed that oscillations and half runs coincided more often with analysis and synthesis than full runs, whereas full runs coincided more often with perception than oscillations and half runs. Interruptions were characterized by synthesis and image manipulations by perception. In addition, we investigated relations between cognitive processes and found an overall bottom-up way of reasoning with dynamic interactions between cognitive processes, especially between perception and analysis. In sum, our results highlight the dynamic interactions between these processes and the grounding of cognitive processes in scroll behavior. It suggests, that the types of scroll behavior are relevant to describe how radiologists interact with and manipulate volumetric images.

  20. A Radiosity Approach to Realistic Image Synthesis

    DTIC Science & Technology

    1992-12-01

    AD-A259 082 AFIT/GCE/ENG/92D-09 A RADIOSITY APPROACH TO REALISTIC IMAGE SYNTHESIS THESIS Richard L. Remington Captain, USAF fl ECTE AFIT/GCE/ENG/92D...09 SJANl 1993U 93-00134 Approved for public release; distribution unlimited 93& 1! A -A- AFIT/GCE/ENG/92D-09 A RADIOSITY APPROACH TO REALISTIC IMAGE...assistance in creating the input geometry file for the AWACS aircraft interior. Without his assistance, a good model for the diffuse radiosity implementation

  1. Doppler Imaging and Chemical Abundance Analysis of EK Dra: Capabilities of Small Telescopes

    NASA Astrophysics Data System (ADS)

    Kilicoglu, Tolgahan; Senavci, H. V.; Bahar, E.; Isik, E.; Montes, D.; Hussain, G. A. J.

    2018-04-01

    We investigate the chromospheric and spot activity behaviour of the young Solar-like star EK Dra via Doppler imaging and spectral synthesis methods, using mid-resolution time series spectra of the system. We also present the atmospheric parameters and detailed elemental photospheric abundances of the star. The chemical abundance pattern of EK Dra do not suggest any remarkable peculiarities except few elements. The Titanium Oxide (TiO) bandheads at 7000 - 7100 A region also give clues about the spot temperature that may be cooler than 4000 K. In addition, we also discuss the capabilities of small telescopes (40 cm in our case) and medium resolution spectrographs in terms of Doppler imaging and chemical abundance analysis.

  2. Dynamic multiphoton imaging of acellular dermal matrix scaffolds seeded with mesenchymal stem cells in diabetic wound healing.

    PubMed

    Chu, Jing; Shi, Panpan; Deng, Xiaoyuan; Jin, Ying; Liu, Hao; Chen, Maosheng; Han, Xue; Liu, Hanping

    2018-03-25

    Significantly effective therapies need to be developed for chronic nonhealing diabetic wounds. In this work, the topical transplantation of mesenchymal stem cell (MSC) seeded on an acellular dermal matrix (ADM) scaffold is proposed as a novel therapeutic strategy for diabetic cutaneous wound healing. GFP-labeled MSCs were cocultured with an ADM scaffold that was decellularized from normal mouse skin. These cultures were subsequently transplanted as a whole into the full-thickness cutaneous wound site in streptozotocin-induced diabetic mice. Wounds treated with MSC-ADM demonstrated an increased percentage of wound closure. The treatment of MSC-ADM also greatly increased angiogenesis and rapidly completed the reepithelialization of newly formed skin on diabetic mice. More importantly, multiphoton microscopy was used for the intravital and dynamic monitoring of collagen type I (Col-I) fibers synthesis via second harmonic generation imaging. The synthesis of Col-I fibers during diabetic wound healing is of great significance for revealing wound repair mechanisms. In addition, the activity of GFP-labeled MSCs during wound healing was simultaneously traced via two-photon excitation fluorescence imaging. Our research offers a novel advanced nonlinear optical imaging method for monitoring the diabetic wound healing process while the ADM and MSCs interact in situ. Schematic of dynamic imaging of ADM scaffolds seeded with mesenchymal stem cells in diabetic wound healing using multiphoton microscopy. PMT, photo-multiplier tube. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Vibrational spectroscopy for imaging single microbial cells in complex biological samples

    DOE PAGES

    Harrison, Jesse P.; Berry, David

    2017-04-13

    Here, vibrational spectroscopy is increasingly used for the rapid and non-destructive imaging of environmental and medical samples. Both Raman and Fourier-transform infrared (FT-IR) imaging have been applied to obtain detailed information on the chemical composition of biological materials, ranging from single microbial cells to tissues. Due to its compatibility with methods such as stable isotope labeling for the monitoring of cellular activities, vibrational spectroscopy also holds considerable power as a tool in microbial ecology. Chemical imaging of undisturbed biological systems (such as live cells in their native habitats) presents unique challenges due to the physical and chemical complexity of themore » samples, potential for spectral interference, and frequent need for real-time measurements. This Mini Review provides a critical synthesis of recent applications of Raman and FT-IR spectroscopy for characterizing complex biological samples, with a focus on developments in single-cell imaging. We also discuss how new spectroscopic methods could be used to overcome current limitations of singlecell analyses. Given the inherent complementarity of Raman and FT-IR spectroscopic methods, we discuss how combining these approaches could enable us to obtain new insights into biological activities either in situ or under conditions that simulate selected properties of the natural environment.« less

  4. Vibrational spectroscopy for imaging single microbial cells in complex biological samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Jesse P.; Berry, David

    Here, vibrational spectroscopy is increasingly used for the rapid and non-destructive imaging of environmental and medical samples. Both Raman and Fourier-transform infrared (FT-IR) imaging have been applied to obtain detailed information on the chemical composition of biological materials, ranging from single microbial cells to tissues. Due to its compatibility with methods such as stable isotope labeling for the monitoring of cellular activities, vibrational spectroscopy also holds considerable power as a tool in microbial ecology. Chemical imaging of undisturbed biological systems (such as live cells in their native habitats) presents unique challenges due to the physical and chemical complexity of themore » samples, potential for spectral interference, and frequent need for real-time measurements. This Mini Review provides a critical synthesis of recent applications of Raman and FT-IR spectroscopy for characterizing complex biological samples, with a focus on developments in single-cell imaging. We also discuss how new spectroscopic methods could be used to overcome current limitations of singlecell analyses. Given the inherent complementarity of Raman and FT-IR spectroscopic methods, we discuss how combining these approaches could enable us to obtain new insights into biological activities either in situ or under conditions that simulate selected properties of the natural environment.« less

  5. Validation of various adaptive threshold methods of segmentation applied to follicular lymphoma digital images stained with 3,3’-Diaminobenzidine&Haematoxylin

    PubMed Central

    2013-01-01

    The comparative study of the results of various segmentation methods for the digital images of the follicular lymphoma cancer tissue section is described in this paper. The sensitivity and specificity and some other parameters of the following adaptive threshold methods of segmentation: the Niblack method, the Sauvola method, the White method, the Bernsen method, the Yasuda method and the Palumbo method, are calculated. Methods are applied to three types of images constructed by extraction of the brown colour information from the artificial images synthesized based on counterpart experimentally captured images. This paper presents usefulness of the microscopic image synthesis method in evaluation as well as comparison of the image processing results. The results of thoughtful analysis of broad range of adaptive threshold methods applied to: (1) the blue channel of RGB, (2) the brown colour extracted by deconvolution and (3) the ’brown component’ extracted from RGB allows to select some pairs: method and type of image for which this method is most efficient considering various criteria e.g. accuracy and precision in area detection or accuracy in number of objects detection and so on. The comparison shows that the White, the Bernsen and the Sauvola methods results are better than the results of the rest of the methods for all types of monochromatic images. All three methods segments the immunopositive nuclei with the mean accuracy of 0.9952, 0.9942 and 0.9944 respectively, when treated totally. However the best results are achieved for monochromatic image in which intensity shows brown colour map constructed by colour deconvolution algorithm. The specificity in the cases of the Bernsen and the White methods is 1 and sensitivities are: 0.74 for White and 0.91 for Bernsen methods while the Sauvola method achieves sensitivity value of 0.74 and the specificity value of 0.99. According to Bland-Altman plot the Sauvola method selected objects are segmented without undercutting the area for true positive objects but with extra false positive objects. The Sauvola and the Bernsen methods gives complementary results what will be exploited when the new method of virtual tissue slides segmentation be develop. Virtual Slides The virtual slides for this article can be found here: slide 1: http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=13617947952577 and slide 2: http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=13617948230017. PMID:23531405

  6. Validation of various adaptive threshold methods of segmentation applied to follicular lymphoma digital images stained with 3,3'-Diaminobenzidine&Haematoxylin.

    PubMed

    Korzynska, Anna; Roszkowiak, Lukasz; Lopez, Carlos; Bosch, Ramon; Witkowski, Lukasz; Lejeune, Marylene

    2013-03-25

    The comparative study of the results of various segmentation methods for the digital images of the follicular lymphoma cancer tissue section is described in this paper. The sensitivity and specificity and some other parameters of the following adaptive threshold methods of segmentation: the Niblack method, the Sauvola method, the White method, the Bernsen method, the Yasuda method and the Palumbo method, are calculated. Methods are applied to three types of images constructed by extraction of the brown colour information from the artificial images synthesized based on counterpart experimentally captured images. This paper presents usefulness of the microscopic image synthesis method in evaluation as well as comparison of the image processing results. The results of thoughtful analysis of broad range of adaptive threshold methods applied to: (1) the blue channel of RGB, (2) the brown colour extracted by deconvolution and (3) the 'brown component' extracted from RGB allows to select some pairs: method and type of image for which this method is most efficient considering various criteria e.g. accuracy and precision in area detection or accuracy in number of objects detection and so on. The comparison shows that the White, the Bernsen and the Sauvola methods results are better than the results of the rest of the methods for all types of monochromatic images. All three methods segments the immunopositive nuclei with the mean accuracy of 0.9952, 0.9942 and 0.9944 respectively, when treated totally. However the best results are achieved for monochromatic image in which intensity shows brown colour map constructed by colour deconvolution algorithm. The specificity in the cases of the Bernsen and the White methods is 1 and sensitivities are: 0.74 for White and 0.91 for Bernsen methods while the Sauvola method achieves sensitivity value of 0.74 and the specificity value of 0.99. According to Bland-Altman plot the Sauvola method selected objects are segmented without undercutting the area for true positive objects but with extra false positive objects. The Sauvola and the Bernsen methods gives complementary results what will be exploited when the new method of virtual tissue slides segmentation be develop. The virtual slides for this article can be found here: slide 1: http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=13617947952577 and slide 2: http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=13617948230017.

  7. One-pot synthesis of polyamines improved magnetism and fluorescence Fe3O4-carbon dots hybrid NPs for dual modal imaging.

    PubMed

    Li, Bo; Wang, Xudong; Guo, Yali; Iqbal, Anam; Dong, Yaping; Li, Wu; Liu, Weisheng; Qin, Wenwu; Chen, Shizhen; Zhou, Xin; Yang, Yunhuang

    2016-04-07

    A one-step hydrothermal method was developed to fabricate Fe3O4-carbon dots (Fe3O4-CDs) magnetic-fluorescent hybrid nanoparticles (NPs). Ferric ammonium citrate (FAC) was used as a cheap and nontoxic iron precursor and as the carbon source. Moreover, triethylenetetramine (TETA) was used to improve the adhesive strength of CDs on Fe3O4 and the fluorescence intensity of CDs. The prepared water-soluble hybrid NPs not only exhibit excellent superparamagnetic properties (Ms = 56.8 emu g(-1)), but also demonstrate excitation-independent photoluminescence for down-conversion and up-conversion at 445 nm. Moreover, the prepared water-soluble Fe3O4-CDs hybrid NPs have a dual modal imaging ability for both magnetic resonance imaging (MRI) and fluorescence imaging.

  8. A near-infrared BSA coated DNA-AgNCs for cellular imaging.

    PubMed

    Mu, Wei-Yu; Yang, Rui; Robertson, Akrofi; Chen, Qiu-Yun

    2018-02-01

    Near-infrared silver nanoclusters, have potential applications in the field of biosensing and biological imaging. However, less stability of most DNA-AgNCs limits their application. To obtain stable near-infrared fluorescence DNA-AgNCs for biological imaging, a new kind of near-infrared fluorescent DNA-Ag nanoclusters was constructed using the C3A rich aptamer as a synthesis template, GAG as the enhancer. In particular, a new DNA-AgNCs-Trp@BSA was obtained based on the self-assembly of bovine serum albumin (BSA) and tryptophan loaded DNA-AgNCs by hydrophobic interaction. This self-assembly method can be used to stabilize DNAn-Ag (n = 1-3) nanoclusters. Hence, the near-infrared fluorescence DNA-AgNCs-Trp@BSA was applied in cellular imaging of HepG-2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Oxygen-doped carbon nanotubes for near-infrared fluorescent labels and imaging probes.

    PubMed

    Iizumi, Yoko; Yudasaka, Masako; Kim, Jaeho; Sakakita, Hajime; Takeuchi, Tsukasa; Okazaki, Toshiya

    2018-04-19

    Chemical modification of carbon nanotube surface can controllably modulate their optical properties. Here we report a simple and effective synthesis method of oxygen-doped single-walled carbon nanotubes (o-SWCNTs), in which a thin film of SWCNTs is just irradiated under the UV light for a few minutes in air. By using this method, the epoxide-type oxygen-adducts (ep-SWCNTs) were produced in addition to the ether-type oxygen-adducts (eth-SWCNTs). The Treated (6, 5) ep-SWCNTs show a red-shifted luminescence at ~1280 nm, which corresponds to the most transparent regions for bio-materials. Immunoassay, fluorescence vascular angiography and observation of the intestinal contractile activity of mice were demonstrated by using the produced o-SWCNTs as infrared fluorescent labels and imaging agents.

  10. A 360-degree floating 3D display based on light field regeneration.

    PubMed

    Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong

    2013-05-06

    Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method.

  11. High efficient perovskite solar cell material CH3NH3PbI3: Synthesis of films and their characterization

    NASA Astrophysics Data System (ADS)

    Bera, Amrita Mandal; Wargulski, Dan Ralf; Unold, Thomas

    2018-04-01

    Hybrid organometal perovskites have been emerged as promising solar cell material and have exhibited solar cell efficiency more than 20%. Thin films of Methylammonium lead iodide CH3NH3PbI3 perovskite materials have been synthesized by two different (one step and two steps) methods and their morphological properties have been studied by scanning electron microscopy and optical microscope imaging. The morphology of the perovskite layer is one of the most important parameters which affect solar cell efficiency. The morphology of the films revealed that two steps method provides better surface coverage than the one step method. However, the grain sizes were smaller in case of two steps method. The films prepared by two steps methods on different substrates revealed that the grain size also depend on the substrate where an increase of the grain size was found from glass substrate to FTO with TiO2 blocking layer to FTO without any change in the surface coverage area. Present study reveals that an improved quality of films can be obtained by two steps method by an optimization of synthesis processes.

  12. Associative Memory Synthesis, Performance, Storage Capacity And Updating: New Heteroassociative Memory Results

    NASA Astrophysics Data System (ADS)

    Casasent, David; Telfer, Brian

    1988-02-01

    The storage capacity, noise performance, and synthesis of associative memories for image analysis are considered. Associative memory synthesis is shown to be very similar to that of linear discriminant functions used in pattern recognition. These lead to new associative memories and new associative memory synthesis and recollection vector encodings. Heteroassociative memories are emphasized in this paper, rather than autoassociative memories, since heteroassociative memories provide scene analysis decisions, rather than merely enhanced output images. The analysis of heteroassociative memories has been given little attention. Heteroassociative memory performance and storage capacity are shown to be quite different from those of autoassociative memories, with much more dependence on the recollection vectors used and less dependence on M/N. This allows several different and preferable synthesis techniques to be considered for associative memories. These new associative memory synthesis techniques and new techniques to update associative memories are included. We also introduce a new SNR performance measure that is preferable to conventional noise standard deviation ratios.

  13. SAR Polarimetry

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2012-01-01

    Radar Scattering includes: Surface Characteristics, Geometric Properties, Dielectric Properties, Rough Surface Scattering, Geometrical Optics and Small Perturbation Method Solutions, Integral Equation Method, Magellan Image of Pancake Domes on Venus, Dickinson Impact Crater on Venus (Magellan), Lakes on Titan (Cassini Radar, Longitudinal Dunes on Titan (Cassini Radar), Rough Surface Scattering: Effect of Dielectric Constant, Vegetation Scattering, Effect of Soil Moisture. Polarimetric Radar includes: Principles of Polarimetry: Field Descriptions, Wave Polarizations: Geometrical Representations, Definition of Ellipse Orientation Angles, Scatter as Polarization Transformer, Scattering Matrix, Coordinate Systems, Scattering Matrix, Covariance Matrix, Pauli Basis and Coherency Matrix, Polarization Synthesis, Polarimeter Implementation.

  14. Medical image enhancement using resolution synthesis

    NASA Astrophysics Data System (ADS)

    Wong, Tak-Shing; Bouman, Charles A.; Thibault, Jean-Baptiste; Sauer, Ken D.

    2011-03-01

    We introduce a post-processing approach to improve the quality of CT reconstructed images. The scheme is adapted from the resolution-synthesis (RS)1 interpolation algorithm. In this approach, we consider the input image, scanned at a particular dose level, as a degraded version of a high quality image scanned at a high dose level. Image enhancement is achieved by predicting the high quality image by classification based linear regression. To improve the robustness of our scheme, we also apply the minimum description length principle to determine the optimal number of predictors to use in the scheme, and the ridge regression to regularize the design of the predictors. Experimental results show that our scheme is effective in reducing the noise in images reconstructed from filtered back projection without significant loss of image details. Alternatively, our scheme can also be applied to reduce dose while maintaining image quality at an acceptable level.

  15. Flow “Fine” Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods

    PubMed Central

    2015-01-01

    Abstract The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828

  16. Mechanistic Insights into Growth of Surface‐Mounted Metal‐Organic Framework Films Resolved by Infrared (Nano‐) Spectroscopy

    PubMed Central

    Delen, Guusje; Ristanović, Zoran; Mandemaker, Laurens D. B.

    2017-01-01

    Abstract Control over assembly, orientation, and defect‐free growth of metal‐organic framework (MOF) films is crucial for their future applications. A layer‐by‐layer approach is considered a suitable method to synthesize highly oriented films of numerous MOF topologies, but the initial stages of the film growth remain poorly understood. Here we use a combination of infrared (IR) reflection absorption spectroscopy and atomic force microscopy (AFM)‐IR imaging to investigate the assembly and growth of a surface mounted MOF (SURMOF) film, specifically HKUST‐1. IR spectra of the films were measured with monolayer sensitivity and <10 nm spatial resolution. In contrast to the common knowledge of LbL SURMOF synthesis, we find evidence for the surface‐hindered growth and large presence of copper acetate precursor species in the produced MOF thin‐films. The growth proceeds via a solution‐mediated mechanism where the presence of weakly adsorbed copper acetate species leads to the formation of crystalline agglomerates with a size that largely exceeds theoretical growth limits. We report the spectroscopic characterization of physisorbed copper acetate surface species and find evidence for the large presence of unexchanged and mixed copper‐paddle‐wheels. Based on these insights, we were able to optimize and automatize synthesis methods and produce (100) oriented HKUST‐1 thin‐films with significantly shorter synthesis times, and additionally use copper nitrate as an effective synthesis precursor. PMID:29164720

  17. Vibration response imaging: protocol for a systematic review.

    PubMed

    Berry, Marc P; Camporota, Luigi; Ntoumenopoulos, George

    2013-09-25

    The concept of lung sounds conveying information regarding lung physiology has been used extensively in clinical practice, particularly with physical auscultation using a stethoscope. Advances in computer technology have facilitated the construction of dynamic visual images derived from recorded lung sounds. Arguably, the most significant progress in this field was the development of the commercially available vibration response imaging (VRI) (Deep Breeze Ltd, Or-Akiva, Israel). This device provides a non-invasive, dynamic image of both lungs constructed from sounds detected from the lungs using surface sensors. In the literature, VRI has been utilized in a multitude of clinical and research settings. This systematic review aims to address three study questions relating to whether VRI can be used as an evaluative device, whether the images generated can be characterized, and which tools and measures have been used to assess these images. This systematic review will involve implementing search strategies in five online journal databases in order to extract articles relating to the application of VRI. Appropriate articles will be identified against a set of pre-determined eligibility criteria and assessed for methodological quality using a standardized scale. Included articles will have data extracted by the reviewers using a standardized evidence table. A narrative synthesis based on a standardized framework will be conducted, clustering evidence into three main groups; one for each of the study questions. A meta-analysis will be conducted if two or more research articles meet pre-determined criteria that allow quantitative synthesis to take place. This systematic review aims to provide a complete overview of the scope of VRI in the clinical and research settings, as well as to discuss methods to interpret the data obtained from VRI. The systematic review intends to help clinicians to make informed decisions on the clinical applicability of the device, to allow researchers to identify further potential avenues of investigation, and to provide methods for the evaluation and interpretation of dynamic and static images. The publication and registration of this review with PROSPERO provides transparency and accountability, and facilitates the appraisal of the proposed systematic review against the original design. PROSPERO registration number: CRD42013003751.

  18. Calibrationless parallel magnetic resonance imaging: a joint sparsity model.

    PubMed

    Majumdar, Angshul; Chaudhury, Kunal Narayan; Ward, Rabab

    2013-12-05

    State-of-the-art parallel MRI techniques either explicitly or implicitly require certain parameters to be estimated, e.g., the sensitivity map for SENSE, SMASH and interpolation weights for GRAPPA, SPIRiT. Thus all these techniques are sensitive to the calibration (parameter estimation) stage. In this work, we have proposed a parallel MRI technique that does not require any calibration but yields reconstruction results that are at par with (or even better than) state-of-the-art methods in parallel MRI. Our proposed method required solving non-convex analysis and synthesis prior joint-sparsity problems. This work also derives the algorithms for solving them. Experimental validation was carried out on two datasets-eight channel brain and eight channel Shepp-Logan phantom. Two sampling methods were used-Variable Density Random sampling and non-Cartesian Radial sampling. For the brain data, acceleration factor of 4 was used and for the other an acceleration factor of 6 was used. The reconstruction results were quantitatively evaluated based on the Normalised Mean Squared Error between the reconstructed image and the originals. The qualitative evaluation was based on the actual reconstructed images. We compared our work with four state-of-the-art parallel imaging techniques; two calibrated methods-CS SENSE and l1SPIRiT and two calibration free techniques-Distributed CS and SAKE. Our method yields better reconstruction results than all of them.

  19. Synthesis of tumor necrosis factor α for use as a mirror-image phage display target.

    PubMed

    Petersen, Mark E; Jacobsen, Michael T; Kay, Michael S

    2016-06-21

    Tumor Necrosis Factor alpha (TNFα) is an inflammatory cytokine that plays a central role in the pathogenesis of chronic inflammatory disease. Here we describe the chemical synthesis of l-TNFα along with the mirror-image d-protein for use as a phage display target. The synthetic strategy utilized native chemical ligation and desulfurization to unite three peptide segments, followed by oxidative folding to assemble the 52 kDa homotrimeric protein. This synthesis represents the foundational step for discovering an inhibitory d-peptide with the potential to improve current anti-TNFα therapeutic strategies.

  20. Synthesis of long T₁ silicon nanoparticles for hyperpolarized ²⁹Si magnetic resonance imaging.

    PubMed

    Atkins, Tonya M; Cassidy, Maja C; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M; Kauzlarich, Susan M

    2013-02-26

    We describe the synthesis, materials characterization, and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na₄Si₄) and silicon tetrachloride (SiCl₄) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ∼10 nm with long size-adjusted ²⁹Si spin-lattice relaxation (T₁) times (>600 s), which are retained after hyperpolarization by low-temperature DNP.

  1. Synthesis of Long-T1 Silicon Nanoparticles for Hyperpolarized 29Si Magnetic Resonance Imaging

    PubMed Central

    Atkins, Tonya M.; Cassidy, Maja C.; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M.; Kauzlarich, Susan M.

    2013-01-01

    We describe the synthesis, materials characterization and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na4Si4) and silicon tetrachloride (SiCl4) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ~10 nm with long size-adjusted 29Si spin lattice relaxation (T1) times (> 600 s), which are retained after hyperpolarization by low temperature DNP. PMID:23350651

  2. LiMn2O4–yBryNanoparticles Synthesized by a Room Temperature Solid-State Coordination Method

    PubMed Central

    2009-01-01

    LiMn2O4–yBrynanoparticles were synthesized successfully for the first time by a room temperature solid-state coordination method. X-ray diffractometry patterns indicated that the LiMn2O4–yBrypowders were well-crystallized pure spinel phase. Transmission electron microscopy images showed that the LiMn2O4–yBrypowders consisted of small and uniform nanosized particles. Synthesis conditions such as the calcination temperature and the content of Br−were investigated to optimize the ideal condition for preparing LiMn2O4–yBrywith the best electrochemical performances. The optimized synthesis condition was found in this work; the calcination temperature is 800 °C and the content of Br−is 0.05. The initial discharge capacity of LiMn2O3.95Br0.05obtained from the optimized synthesis condition was 134 mAh/g, which is far higher than that of pure LiMn2O4, indicating introduction of Br−in LiMn2O4is quite effective in improving the initial discharge capacity. PMID:20628635

  3. Toward surface-enhanced Raman imaging of latent fingerprints.

    PubMed

    Connatser, R Maggie; Prokes, Sharka M; Glembocki, Orest J; Schuler, Rebecca L; Gardner, Charles W; Lewis, Samuel A; Lewis, Linda A

    2010-11-01

    Exposure to light or heat, or simply a dearth of fingerprint material, renders some latent fingerprints undetectable using conventional methods. We begin to address such elusive fingerprints using detection targeting photo- and thermally stable fingerprint constituents: surface-enhanced Raman spectroscopy (SERS). SERS can give descriptive vibrational spectra of amino acids, among other robust fingerprint constituents, and good sensitivity can be attained by improving metal-dielectric nanoparticle substrates. With SERS chemical imaging, vibrational bands' intensities recreate a visual of fingerprint topography. The impact of nanoparticle synthesis route, dispersal methodology-deposition solvent, and laser wavelength are discussed, as are data from enhanced vibrational spectra of fingerprint components. SERS and Raman chemical images of fingerprints and realistic contaminants are shown. To our knowledge, this represents the first SERS imaging of fingerprints. In conclusion, this work progresses toward the ultimate goal of vibrationally detecting latent prints that would otherwise remain undetected using traditional development methods. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.

  4. Numerical simulations of imaging satellites with optical interferometry

    NASA Astrophysics Data System (ADS)

    Ding, Yuanyuan; Wang, Chaoyan; Chen, Zhendong

    2015-08-01

    Optical interferometry imaging system, which is composed of multiple sub-apertures, is a type of sensor that can break through the aperture limit and realize the high resolution imaging. This technique can be utilized to precisely measure the shapes, sizes and position of astronomical objects and satellites, it also can realize to space exploration and space debris, satellite monitoring and survey. Fizeau-Type optical aperture synthesis telescope has the advantage of short baselines, common mount and multiple sub-apertures, so it is feasible for instantaneous direct imaging through focal plane combination.Since 2002, the researchers of Shanghai Astronomical Observatory have developed the study of optical interferometry technique. For array configurations, there are two optimal array configurations proposed instead of the symmetrical circular distribution: the asymmetrical circular distribution and the Y-type distribution. On this basis, two kinds of structure were proposed based on Fizeau interferometric telescope. One is Y-type independent sub-aperture telescope, the other one is segmented mirrors telescope with common secondary mirror.In this paper, we will give the description of interferometric telescope and image acquisition. Then we will mainly concerned the simulations of image restoration based on Y-type telescope and segmented mirrors telescope. The Richardson-Lucy (RL) method, Winner method and the Ordered Subsets Expectation Maximization (OS-EM) method are studied in this paper. We will analyze the influence of different stop rules too. At the last of the paper, we will present the reconstruction results of images of some satellites.

  5. MR to CT registration of brains using image synthesis

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-03-01

    Computed tomography (CT) is the preferred imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  6. Principal component analysis for surface reflection components and structure in facial images and synthesis of facial images for various ages

    NASA Astrophysics Data System (ADS)

    Hirose, Misa; Toyota, Saori; Ojima, Nobutoshi; Ogawa-Ochiai, Keiko; Tsumura, Norimichi

    2017-08-01

    In this paper, principal component analysis is applied to the distribution of pigmentation, surface reflectance, and landmarks in whole facial images to obtain feature values. The relationship between the obtained feature vectors and the age of the face is then estimated by multiple regression analysis so that facial images can be modulated for woman aged 10-70. In a previous study, we analyzed only the distribution of pigmentation, and the reproduced images appeared to be younger than the apparent age of the initial images. We believe that this happened because we did not modulate the facial structures and detailed surfaces, such as wrinkles. By considering landmarks and surface reflectance over the entire face, we were able to analyze the variation in the distributions of facial structures and fine asperity, and pigmentation. As a result, our method is able to appropriately modulate the appearance of a face so that it appears to be the correct age.

  7. Star-shaped Polymers through Simple Wavelength-Selective Free-Radical Photopolymerization.

    PubMed

    Eibel, Anna; Fast, David E; Sattelkow, Jürgen; Zalibera, Michal; Wang, Jieping; Huber, Alex; Müller, Georgina; Neshchadin, Dmytro; Dietliker, Kurt; Plank, Harald; Grützmacher, Hansjörg; Gescheidt, Georg

    2017-11-06

    Star-shaped polymers represent highly desired materials in nanotechnology and life sciences, including biomedical applications (e.g., diagnostic imaging, tissue engineering, and targeted drug delivery). Herein, we report a straightforward synthesis of wavelength-selective multifunctional photoinitiators (PIs) that contain a bisacylphosphane oxide (BAPO) group and an α-hydroxy ketone moiety within one molecule. By using three different wavelengths, these photoactive groups can be selectively addressed and activated, thereby allowing the synthesis of ABC-type miktoarm star polymers through a simple, highly selective, and robust free-radical polymerization method. The photochemistry of these new initiators and the feasibility of this concept were investigated in unprecedented detail by using various spectroscopic techniques. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Macrocyclic polyaminocarboxylates for stable radiometal antibody conjugates for therapy, SPECT and PET imaging

    DOEpatents

    Mease, R.C.; Mausner, L.F.; Srivastava, S.C.

    1997-06-17

    A simple method for the synthesis of 1,4,7, 10-tetraazacyclododecane N,N{prime}N{double_prime},N{prime}{double_prime}-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N{prime},N{double_prime},N{prime}{double_prime}-tetraacetic acid involves cyanomethylating 1,4,7,10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy. 4 figs.

  9. No-carrier-added [1.sup.11 c]putrescine

    DOEpatents

    McPherson, Daniel W.; Fowler, Joanna S.; Wolf, Alfred P.

    1989-01-01

    The invention relates to a new radiolabeled imaging agent, no-carrier-added [1-.sup.11 C]putrescine, and to the use of this very pure material as a radiotracer with positron emission tomography for imaging brain tumors. The invention further relates to the synthesis of no-carrier-added [1-.sup.11 C]putrescine based on the Michael addition of potassium .sup.11 C-labeled cyanide to acrylonitrile followed by reduction of the .sup.11 C-labeled dinitrile. The new method is rapid and efficient and provides radiotracer with a specific activity greater than 1.4 curies per millimol and in a purity greater than 95%.

  10. A fully-automated one-pot synthesis of [18F]fluoromethylcholine with reduced dimethylaminoethanol contamination via [18F]fluoromethyl tosylate.

    PubMed

    Rodnick, Melissa E; Brooks, Allen F; Hockley, Brian G; Henderson, Bradford D; Scott, Peter J H

    2013-08-01

    A novel one-pot method for preparing [(18)F]fluoromethylcholine ([(18)F]FCH) via in situ generation of [(18)F]fluoromethyl tosylate ([(18)F]FCH2OTs), and subsequent [(18)F]fluoromethylation of dimethylaminoethanol (DMAE), has been developed. [(18)F]FCH was prepared using a GE TRACERlab FXFN, although the method should be readily adaptable to any other fluorine-(18) synthesis module. Initially ditosylmethane was fluorinated to generate [(18)F]FCH2OTs. DMAE was then added and the reaction was heated at 120 °C for 10 min to generate [(18)F]FCH. After this time, reaction solvent was evaporated, and the crude reaction mixture was purified by solid-phase extraction using C(18)-Plus and CM-Light Sep-Pak cartridges to provide [(18)F]FCH formulated in USP saline. The formulated product was passed through a 0.22 µm filter into a sterile dose vial, and submitted for quality control testing. Total synthesis time was 1.25 h from end-of-bombardment. Typical non-decay-corrected yields of [(18)F]FCH prepared using this method were 91 mCi (7% non-decay corrected based upon ~1.3 Ci [(18)F]fluoride), and doses passed all other quality control (QC) tests. A one-pot liquid-phase synthesis of [(18)F]FCH has been developed. Doses contain extremely low levels of residual DMAE (31.6 µg/10 mL dose or ~3 ppm) and passed all other requisite QC testing, confirming their suitability for use in clinical imaging studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Effect of Synthesis Parameter on Crystal Structures and Magnetic Properties of Magnesium Nickel Ferrite (Mg0.5Ni0.5Fe2O4) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Maulia, R.; Putra, R. A.; Suharyadi, E.

    2017-05-01

    Mg0.5Ni0.5Fe2O4 nanoparticles have been successfully synthesized by using co-precipitation method and varying the synthesis parameter, i.e. synthesis temperature and NaOH concentration. X-ray Diffraction (XRD) pattern showed that nanoparticles have cubic spinel structures with an additional phase of γ-Fe2O3 and particle size varies within the range of 4.3 - 6.7 nm. This variation is due to the effect of various synthesis parameters. Transmission Electron Microscopy (TEM) image showed that the nanoparticles exhibited agglomeration. The observed diffraction ring from selected area electron diffraction showed that the sample was polycrystalline and confirmed the peak appearing in XRD. The coercivities showed an increasing trend with an increase in particle size from 44.7 Oe to 49.6 Oe for variation of NaOH concentration, and a decreasing trend with an increase in particle size from 46.8 to 45.1 Oe for variation of synthesis temperature. The maximum magnetization showed an increasing trend with an increase in the ferrite phase from 3.7 emu/g to 5.4 emu/g possessed in the sample with variations on NaOH concentration. The maximum magnetization for the sample with variations on synthesis temperature varied from 4.4 emu/g to 5.7 emu/g due to its crystal structures.

  12. Gold nanoparticles mediated coloring of fabrics and leather for antibacterial activity.

    PubMed

    Velmurugan, Palanivel; Shim, Jaehong; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-07-01

    Metal gold nanoparticles (AuNPs) were synthesized in situ onto leather, silk and cotton fabrics by three different modules, including green, chemical, and a composite of green and chemical synthesis. Green synthesis was employed using Ginkgo biloba Linn leaf powder extract and HAuCl4 with the fabrics, and chemical synthesis was done with KBH4 and HAuCl4. For composite synthesis, G. biloba extract and KBH4 were used to color and embed AuNPs in the fabrics. The colored fabrics were tested for color coordination and fastness properties. To validate the green synthesis of AuNPs, various instrumental techniques were used including UV-Vis spectrophotometry, HR-TEM, FTIR, and XRD. The chemical and composite methods reduce Au(+) onto leather, silk and cotton fabrics upon heating, and alkaline conditions are required for bonding to fibers; these conditions are not used in the green synthesis protocol. FE-SEM image revealed the binding nature of the AuNPs to the fabrics. The AuNPs that were synthesized in situ on the fabrics were tested against a skin pathogen, Brevibacterium linens using LIVE/DEAD BacLight Bacterial Viability testing. This study represents an initial route for coloring and bio-functionalization of various fabrics with green technologies, and, accordingly, should open new avenues for innovation in the textile and garment sectors. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. L-Cysteine capped CdTe-CdS core-shell quantum dots: preparation, characterization and immuno-labeling of HeLa cells.

    PubMed

    Zhang, Hongyan; Sun, Pan; Liu, Chang; Gao, Huanyu; Xu, Linru; Fang, Jin; Wang, Meng; Liu, Jinling; Xu, Shukun

    2011-01-01

    Functionalized CdTe-CdS core-shell quantum dots (QDs) were synthesized in aqueous solution via water-bathing combined hydrothermal method using L-cysteine (L-Cys) as a stabilizer. This method possesses both the advantages of water-bathing and hydrothermal methods for preparing high-quality QDs with markedly reduced synthesis time, and better stability than a lone hydrothermal method. The QDs were characterized by transmission electronic microscopy and powder X-ray diffraction and X-ray photoelectron spectroscopy. The CdTe-CdS QDs with core-shell structure showed both enhanced fluorescence and better photo stability than nude CdTe QDs. After conjugating with antibody rabbit anti-CEACAM8 (CD67), the as-prepared l-Cys capped CdTe-CdS QDs were successfully used as fluorescent probes for the direct immuno-labeling and imaging of HeLa cells. It was indicated that this kind of QD would have application potential in bio-labeling and cell imaging. Copyright © 2009 John Wiley & Sons, Ltd.

  14. Room acoustics analysis using circular arrays: an experimental study based on sound field plane-wave decomposition.

    PubMed

    Torres, Ana M; Lopez, Jose J; Pueo, Basilio; Cobos, Maximo

    2013-04-01

    Plane-wave decomposition (PWD) methods using microphone arrays have been shown to be a very useful tool within the applied acoustics community for their multiple applications in room acoustics analysis and synthesis. While many theoretical aspects of PWD have been previously addressed in the literature, the practical advantages of the PWD method to assess the acoustic behavior of real rooms have been barely explored so far. In this paper, the PWD method is employed to analyze the sound field inside a selected set of real rooms having a well-defined purpose. To this end, a circular microphone array is used to capture and process a number of impulse responses at different spatial positions, providing angle-dependent data for both direct and reflected wavefronts. The detection of reflected plane waves is performed by means of image processing techniques applied over the raw array response data and over the PWD data, showing the usefulness of image-processing-based methods for room acoustics analysis.

  15. Anti-epidermal growth factor receptor (anti-EGFR) antibody conjugated fluorescent nanoparticles probe for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Hun, Xu; Zhang, Zhujun

    2009-10-01

    Fluorescent nanoparticles (FNs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. In this study, anti-EGFR antibody conjugated fluorescent nanoparticles (FNs) (anti-EGFR antibody conjugated FNs) probe was used to detect breast cancer cells. FNs with excellent character such as non-toxicity and photostability were first synthesized with a simple, cost-effective and environmentally friendly modified Stőber synthesis method, and then successfully modified with anti-EGFR antibody. This kind of fluorescence probe based on the anti-EGFR antibody conjugated FNs has been used to detect breast cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-EGFR antibody conjugated FNs can effectively recognize breast cancer cells and exhibited good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of breast cancer cells and offer a new method in detecting EGFR.

  16. Optical aperture synthesis: limitations and interest for the earth observation

    NASA Astrophysics Data System (ADS)

    Brouard, Laurent; Safa, Frederic; Crombez, Vincent; Laubier, David

    2017-11-01

    For very large telescope diameters, typically above 4 meters, monolithic telescopes can hardly be envisaged for space applications. Optical aperture synthesis can be envisaged in the future for improving the image resolution from high altitude orbits by co-phasing several individual telescopes of smaller size and reconstituting an aperture of large surface. The telescopes can be deployed on a single spacecraft or distributed on several spacecrafts in free flying formation. Several future projects are based on optical aperture synthesis for science or earth observation. This paper specifically discusses the limitations and interest of aperture synthesis technique for Earth observation from high altitude orbits, in particular geostationary orbit. Classical Fizeau and Michelson configurations are recalled, and system design aspects are investigated: synthesis of the Modulation Transfer Function (MTF), integration time and imaging procedure are first discussed then co-phasing strategies and instrument metrology are developed. The discussion is supported by specific designs made at EADS Astrium. As example, a telescope design is presented with a surface of only 6.6 m2 for the primary mirror for an external diameter of 10.6 m allowing a theoretical resolution of 1.2 m from geostationary orbit with a surface lower than 10% of the overall surface. The impact is that the integration time is increasing leading to stringent satellite attitude requirements. Image simulation results are presented. The practical implementation of the concept is evaluated in terms of system impacts in particular spacecraft attitude control, spacecraft operations and imaging capability limitations.

  17. Radiolabeled 5-Iodo-3′-O-(17β-succinyl-5α-androstan-3-one)-2′-deoxyuridine and Its 5′-Monophosphate for Imaging and Therapy of Androgen Receptor-Positive Cancers: Synthesis and Biological Evaluation

    PubMed Central

    Kortylewicz, Zbigniew P.; Nearman, Jessica; Baranowska-Kortylewicz, Janina

    2014-01-01

    High levels of androgen receptor (AR) are often indicative of recurrent, advanced, or metastatic cancers. These conditions are also characterized by a high proliferative fraction. 5-Radioiodo-3′-O-(17β-succinyl-5α-androstan-3-one)-2′-deoxyuridine 8 and 5-radioiodo-3′-O-(17β-succinyl-5α-androstan-3-one)-2′-deoxyuridin-5′-yl monophosphate 13 target AR. They are also degraded intracellularly to 5-radioiodo-2′-deoxyuridine 1 and its monophosphate 20, respectively, which can participate in the DNA synthesis. Both drugs were prepared at the no-carrier-added level. Precursors and methods are readily adaptable to radiolabeling with various radiohalides suitable for SPECT and PET imaging, as well as endoradiotherapy. In vitro and in vivo studies confirm the AR-dependent interactions. Both drugs bind to sex hormone binding globulin. This binding significantly improves their stability in serum. Biodistribution and imaging studies show preferential uptake and retention of 8 and 13 in ip xenografts of human ovarian adenocarcinoma cells NIH:OVCAR-3, which overexpress AR. When these drugs are administered at therapeutic dose levels, a significant tumor growth arrest is observed. PMID:19653647

  18. Synthesis, biological targeting and photophysics of quantum dots

    NASA Astrophysics Data System (ADS)

    Clarke, Samuel Jon

    Quantum dots (QDs) are inorganic nanoparticles that have exceptional optical properties. Currently, QDs have failed to reach their potential as fluorescent probes in live cells, due to the nontrivial requirements for biological interfacing. The goal of this thesis is to address technical hurdles related to the reproducible synthesis of QDs, strategies for the specific targeting of QDs to biological cells and to understanding and exploitation of the photophysical properties. High quality QDs of varying composition (CdSe, CdTe and core/shell CdSe/ZnS) were synthesized with an organometallic method. To prepare biocompatible QDs, three strategies were used. The simplest strategy used small mercaptocarboxylic acids, while performance improvements were realized with engineered-peptide and lipid-micelle coatings. For specific biological targeting of the QDs, conjugation strategies were devised to attach biomolecules, while spectroscopic characterization methods were developed to assess conjugation efficiencies. To target gram-negative bacterial cells, an electrostatic self-assembly method was used to attach an antibiotic selective for this class of bacteria, polymyxin B. To target dopamine neurotransmitter receptor, a covalent conjugation method was used to attach dopamine, the endogenous ligand for that receptor. It was shown that dopamine molecule enabled electron transfer to QDs and the photophysics was studied in detail. A novel conjugation and targeting strategy was explored to enable the selective binding of QDs to polyhistidine epitopes on membrane proteins. Epifluorescence microscopy was used to evaluate the biological activity of the three QD probes. Combined, they add to the QD 'toolkit' for live-cell imaging. Finally, due to its negative implications in biological imaging, the fluorescent intermittency (blinking) of CdTe QDs was investigated. It was shown that mercaptocarboxylic acids contribute to the blinking suppression of the QDs, results that may aid in the design of nonblinking QDs. Overall, these findings should be useful in the future design of QDs for biological imaging and biosensing applications.

  19. Multispectral Wavefronts Retrieval in Digital Holographic Three-Dimensional Imaging Spectrometry

    NASA Astrophysics Data System (ADS)

    Yoshimori, Kyu

    2010-04-01

    This paper deals with a recently developed passive interferometric technique for retrieving a set of spectral components of wavefronts that are propagating from a spatially incoherent, polychromatic object. The technique is based on measurement of 5-D spatial coherence function using a suitably designed interferometer. By applying signal processing, including aperture synthesis and spectral decomposition, one may obtains a set of wavefronts of different spectral bands. Since each wavefront is equivalent to the complex Fresnel hologram at a particular spectrum of the polychromatic object, application of the conventional Fresnel transform yields 3-D image of different spectrum. Thus, this technique of multispectral wavefronts retrieval provides a new type of 3-D imaging spectrometry based on a fully passive interferometry. Experimental results are also shown to demonstrate the validity of the method.

  20. Imaging Complex Protein Metabolism in Live Organisms by Stimulated Raman Scattering Microscopy with Isotope Labeling

    PubMed Central

    2016-01-01

    Protein metabolism, consisting of both synthesis and degradation, is highly complex, playing an indispensable regulatory role throughout physiological and pathological processes. Over recent decades, extensive efforts, using approaches such as autoradiography, mass spectrometry, and fluorescence microscopy, have been devoted to the study of protein metabolism. However, noninvasive and global visualization of protein metabolism has proven to be highly challenging, especially in live systems. Recently, stimulated Raman scattering (SRS) microscopy coupled with metabolic labeling of deuterated amino acids (D-AAs) was demonstrated for use in imaging newly synthesized proteins in cultured cell lines. Herein, we significantly generalize this notion to develop a comprehensive labeling and imaging platform for live visualization of complex protein metabolism, including synthesis, degradation, and pulse–chase analysis of two temporally defined populations. First, the deuterium labeling efficiency was optimized, allowing time-lapse imaging of protein synthesis dynamics within individual live cells with high spatial–temporal resolution. Second, by tracking the methyl group (CH3) distribution attributed to pre-existing proteins, this platform also enables us to map protein degradation inside live cells. Third, using two subsets of structurally and spectroscopically distinct D-AAs, we achieved two-color pulse–chase imaging, as demonstrated by observing aggregate formation of mutant hungtingtin proteins. Finally, going beyond simple cell lines, we demonstrated the imaging ability of protein synthesis in brain tissues, zebrafish, and mice in vivo. Hence, the presented labeling and imaging platform would be a valuable tool to study complex protein metabolism with high sensitivity, resolution, and biocompatibility for a broad spectrum of systems ranging from cells to model animals and possibly to humans. PMID:25560305

  1. A synthesis of fluorescent starch based on carbon nanoparticles for fingerprints detection

    NASA Astrophysics Data System (ADS)

    Li, Hongren; Guo, Xingjia; Liu, Jun; Li, Feng

    2016-10-01

    A pyrolysis method for synthesizing carbon nanoparticles (CNPs) were developed by using malic acid and ammonium oxalate as raw materials. The incorporation of a minor amount of carbon nanoparticles into starch powder imparts remarkable color-tunability. Based on this phenomenon, an environment friendly fluorescent starch powder for detecting latent fingerprints in non-porous surfaces was prepared. The fingerprints on different non-porous surfaces developed with this powder showed very good fluorescent images under ultraviolet excitation. The method using fluorescent starch powder as fluorescent marks is simple, rapid and green. Experimental results illustrated the effectiveness of proposed methods, enabling its practical applications in forensic sciences.

  2. Large-Scale Fabrication of Carbon Nanotube Probe Tips For Atomic Force Microscopy Critical Dimension Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi Laura; Cassell, Alan M.; Stevens, Ramsey M.; Meyyappan, Meyya; Li, Jun; Han, Jie; Liu, Hongbing; Chao, Gordon

    2004-01-01

    Carbon nanotube (CNT) probe tips for atomic force microscopy (AFM) offer several advantages over Si/Si3N4 probe tips, including improved resolution, shape, and mechanical properties. This viewgraph presentation discusses these advantages, and the drawbacks of existing methods for fabricating CNT probe tips for AFM. The presentation introduces a bottom up wafer scale fabrication method for CNT probe tips which integrates catalyst nanopatterning and nanomaterials synthesis with traditional silicon cantilever microfabrication technology. This method makes mass production of CNT AFM probe tips feasible, and can be applied to the fabrication of other nanodevices with CNT elements.

  3. Conjugation of antibodies to gold nanorods through Fc portion: synthesis and molecular specific imaging

    PubMed Central

    Joshi, Pratixa P.; Yoon, Soon Joon; Hardin, William G.; Emelianov, Stanislav; Sokolov, Konstantin V.

    2013-01-01

    Anisotropic gold nanorods provide a convenient combination of properties, such as tunability of plasmon resonances and strong extinction cross-sections in the near-infrared to red spectral region. These properties have created significant interest in the development of antibody conjugation methods for synthesis of targeted nanorods for a number of biomedical applications, including molecular specific imaging and therapy. Previously published conjugation approaches have achieved molecular specificity. However, the current conjugation methods have several downsides including low stability and potential cytotoxicity of bioconjugates that are produced by electrostatic interactions as well as lack of control over antibody orientation during covalent conjugation. Here we addressed these shortcomings by introducing directional antibody conjugation to the gold nanorod surface. The directional conjugation is achieved through the carbohydrate moiety, which is located on one of the heavy chains of the Fc portion of most antibodies. The carbohydrate is oxidized under mild conditions to a hydrazide reactive aldehyde group. Then, a heterofunctional linker with hydrazide and dithiol groups is used to attach antibodies to gold nanorods. The directional conjugation approach was characterized using electron microscopy, zeta potential and extinction spectra. We also determined spectral changes associated with nanorod aggregation; these spectral changes can be used as a convenient quality control of nanorod bioconjugates. Molecular specificity of the synthesized antibody targeted nanorods was demonstrated using hyperspectral optical and photoacoustic imaging of cancer cell culture models. Additionally, we observed characteristic changes in optical spectra of molecular specific nanorods after their interactions with cancer cells; the observed spectral signatures can be explored for sensitive cancer detection. PMID:23631707

  4. Developing Xenopus Laevis as a Model to Screen Drugs for Fragile X Syndrome

    DTIC Science & Technology

    2014-06-01

    demonstrated the capacity to rescue the decreased FMRP expression by gene delivery. We characterized an innate visually-guided avoidance behavior in tadpoles ... tadpole is a unique model system that allows easy access to the nervous system at early stages of development, is amenable to in vivo gene...established quantitative in vivo imaging methods to knockdown and assay synthesis of FMRP in Xenopus tadpole brains. We also established 2 behavioral

  5. Synthesis and optical characterization of SrHfO 3:Ce and SrZrO 3:Ce nanoparticles

    NASA Astrophysics Data System (ADS)

    Rétot, H.; Bessière, A.; Kahn-Harari, A.; Viana, B.

    2008-03-01

    Nanoparticles have recently found application fields in various scopes, such as imaging (luminescent nanosensors), or for the production of laser or scintillating transparent ceramics. This work is related to this last field, with the target of medical imaging (positron emission tomography). Very dense rare earth doped mixed oxides were studied: SrZrO 3:Ce and SrHfO 3:Ce, which are particularly adapted to this application. The phase transformations and the very high melting points of these materials (respectively 2646 °C and 2730 °C) led us to study their synthesis as nanoparticles. Using the combustion method we have obtained, at temperatures less than 1000 °C, particles of very small dimensions (10-100 nm) without impurities. First characterization of the optical properties (under UV irradiation) of the cerium ion in these perovskite matrixes, realized on the nanopowders (absorption, emission and lifetime of the cerium ion), is presented here: for both compounds, an emission at 430 nm is observed under UV irradiation, with a short decay time; these particles prepared by combustion are thus interesting precursors for ceramic scintillators.

  6. Patterned synthesis of ZnO nanorod arrays for nanoplasmonic waveguide applications

    NASA Astrophysics Data System (ADS)

    Lamson, Thomas L.; Khan, Sahar; Wang, Zhifei; Zhang, Yun-Kai; Yu, Yong; Chen, Zhe-Sheng; Xu, Huizhong

    2018-03-01

    We report the patterned synthesis of ZnO nanorod arrays of diameters between 50 nm and 130 nm and various spacings. This was achieved by patterning hole arrays in a polymethyl methacrylate layer with electron beam lithography, followed by chemical synthesis of ZnO nanorods in the patterned holes using the hydrothermal method. The fabrication of ZnO nanorod waveguide arrays is also demonstrated by embedding the nanorods in a silver film using the electroplating process. Optical transmission measurement through the nanorod waveguide arrays is performed and strong resonant transmission of visible light is observed. We have found the resonance shifts to a longer wavelength with increasing nanorod diameter. Furthermore, the resonance wavelength is independent of the nanowaveguide array period, indicating the observed resonant transmission is the effect of a single ZnO nanorod waveguide. These nanorod waveguides may be used in single-molecule imaging and sensing as a result of the nanoscopic profile of the light transmitted through the nanorods and the controlled locations of these nanoscale light sources.

  7. The role of aqueous leaf extract of Tinospora crispa as reducing and capping agents for synthesis of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Apriandanu, D. O. B.; Yulizar, Y.

    2017-04-01

    Environmentally friendly method for green synthesis of Au nanoparticles (AuNP) using aqueous leaf extract of Tinospora crispa (TLE) was reported. TLE has the ability for reducing and capping AuNP. Identification of active compounds in aqueous leaf extract was obtained by phytochemical analysis and Fourier transform infrared spectroscopy (FTIR). The AuNP-TLE growth was characterized using UV-Vis spectrophotometer. The particle size and the distribution of AuNP were confirmed by particle size analyzer (PSA). AuNP-TLE formation was optimized by varying the extract concentration and time of the synthesis process. UV-Vis absorption spectrum of optimum AuNP formation displayed by the surface plasmon resonance at maximum wavelength of λmax 536 nm. The PSA result showed that AuNP has size distribution of 80.60 nm and stable up to 21 days. TEM images showed that the size of the AuNP is ± 25 nm.

  8. Optica aperture synthesis

    NASA Astrophysics Data System (ADS)

    van der Avoort, Casper

    2006-05-01

    Optical long baseline stellar interferometry is an observational technique in astronomy that already exists for over a century, but is truly blooming during the last decades. The undoubted value of stellar interferometry as a technique to measure stellar parameters beyond the classical resolution limit is more and more spreading to the regime of synthesis imaging. With optical aperture synthesis imaging, the measurement of parameters is extended to the reconstruction of high resolution stellar images. A number of optical telescope arrays for synthesis imaging are operational on Earth, while space-based telescope arrays are being designed. For all imaging arrays, the combination of the light collected by the telescopes in the array can be performed in a number of ways. In this thesis, methods are introduced to model these methods of beam combination and compare their effectiveness in the generation of data to be used to reconstruct the image of a stellar object. One of these methods of beam combination is to be applied in a future space telescope. The European Space Agency is developing a mission that can valuably be extended with an imaging beam combiner. This mission is labeled Darwin, as its main goal is to provide information on the origin of life. The primary objective is the detection of planets around nearby stars - called exoplanets- and more precisely, Earth-like exoplanets. This detection is based on a signal, rather than an image. With an imaging mode, designed as described in this thesis, Darwin can make images of, for example, the planetary system to which the detected exoplanet belongs or, as another example, of the dust disk around a star out of which planets form. Such images will greatly contribute to the understanding of the formation of our own planetary system and of how and when life became possible on Earth. The comparison of beam combination methods for interferometric imaging occupies most of the pages of this thesis. Additional chapters will treat related subjects, being experimental work on beam combination optics, a description of a novel formalism for aberration retrieval and experimental work on nulling interferometry. The Chapters on interferometric imaging are organized in such a way that not only the physical principles behind a stellar interferometer are clear, but these chapters also form a basis for the method of analysis applied to the interferometers - -or rather beam combination methods- under consideration. The imaging process in a stellar interferometer will be treated as the inversion of a linear system of equations. The definition of interferometric imaging in this thesis can be stated to be the reconstruction of a luminosity distribution function on the sky, that is, in angular measure, larger than the angular diffraction limited spot size -or Point-Spread Function (PSF)- of a single telescope in the array and that contains, again in angular measure, spatial structure that is much smaller than the PSF of a single telescope. This reconstruction has to be based on knowledge of the dimensions of the telescope array and the detector. The detector collects intensity data that is formed by observation of the polychromatic luminosity distribution on the sky and is deteriorated by the quantum-nature of light and an imperfect electronic detection process. Therefore, the imaging study presented in this thesis can be regarded to be a study on the signal characteristics of various interferometers while imaging a polychromatic wide-field stellar source. The collection of beam combination methods under consideration consists of four types. Among these are two well-known types, having either co-axially combined beams as in the Michelson-Morley experiment to demonstrate the existence of ether, or beams that follow optical paths as if an aperture mask were placed in front of a telescope, making the beams combine in the focus of that telescope, as suggested by Fizeau. For separated apertures rather than an aperture mask, these optical paths are stated to be homothetic. In short, these two types will be addressed as the Michelson or the Homothetic type. The other two types are addressed as Densified and Staircase. The first one is short for densified pupil imaging, an imaging technique very similar to the Homothetic type, be it that the natural course of light after the aperture mask is altered. However, the combination of the beams of light is again in focus. The Staircase method is an alternative to the co-axial Michelson method and lends its name from the fact that a staircase-shaped mirror is placed in an intermediate focal plane after each telescope in the array, before combining the beams of light co-axially. This addition allows stellar imaging as with the Michelson type, with the advantage of covering a large field-of-view. The details of these methods will intensively be discussed in this thesis, but the introduction of them at this point allows a short list of results, found by comparing them for equal imaging tasks. Homothetic imagers are best suited for covering a wide field-of-view, considering the information content of the interferometric signals these arrays produce. The large number of detectors does not seem to limit the imaging performance in the presence of noise, due to the high ratio of coherent versus incoherent information in the detector signal. The imaging efficiency of a Michelson type array is also high, although -considering only polychromatic wide-field imaging tasks- the ratio of coherent versus incoherent information in the detected signals is very low. This results in very large observation times needed to produce images comparable to those obtained with a Homothetic array. A detailed presentation of the characteristics of the detected signals in a co-axial Michelson array reveal that such signals, obtained by polychromatic observation of extended sources, have fringe envelope functions that do not allow Fourier-spectroscopy to obtain high-resolution spectroscopic information about such a source. For the Densified case, it is found that this method can indeed provide an interferometric PSF that is more favorable than a homothetic PSF, but only for narrow-angle observations. For polychromatic wide-field observations, the Densified-PSF is field-dependent, for which the image reconstruction process can account. Wide-field imaging using the favorable properties of the Densified-PSF can be performed, by using special settings of the delay or optical path length difference between interferometer arms and including observations with several settings of delay in the observation data. The Staircase method is the second best method for the imaging task under consideration. The discontinuous nature of the staircase-shaped mirrors does not give rise to a discontinuous reconstructed luminosity distribution or non-uniformly covered spatial frequencies. The intrinsic efficiency of the interferometric signal in this type of interferometer is worse than that of the other co-axial method, although the ratio of coherent versus incoherent signal in the data -the length of the fringe packet in one intensity trace-e- is nearly ultimate. The inefficiency is overwhelmingly compensated for by the very short observation time needed. Besides numerical studies of interferometer arrays, one interferometric imager was also studied experimentally. A homothetic imager was built, comprising three telescopes with fully separated beam relay optics. The pointing direction, the location and the optical path length of two of the three beams are electronically controllable. The beams can be focused together to interfere, via a beam combiner consisting of curved surfaces. This set-up allows to measure the required accuracies at which certain optical elements have to be positioned. Moreover, this set-up demonstrates that without knowledge of the initial pointing directions, locations and optical path lengths of the beams, the situation of homothesis can be attained, solely based on information from the focal plane of the set-up. Further experiments show that the approximation of exact homothesis is limited by the optical quality of the beam combiner optics. Parallel to the experiments on homothesis, a study was performed to evaluate the use of the Extended Nijboer-Zernike (ENZ) formalism for analysis of multiple aperture optical systems. It is envisaged that an aberration retrieval algorithm, provided with the common focus of a homothetic array, can be used to detect misalignment of or even aberrations in the sub-apertures of the sparse synthetic aperture. The ENZ formalism is a powerful tool to describe the focal intensity profile in an optical imaging system, imaging a monochromatic point source through a pupil that is allowed to have a certain transmission profile and phase aberration function over the pupil. Moreover, the formalism allows calculation of intensity profiles outside the best-focus plane. With the intensity information of several through-focus planes, enough information is available to reconstruct the pupil function from it. The formalism is described, including the reconstruction algorithm. Although very good results are obtained for general pupil functions, the results for synthetic pupil functions are not very promising. The detailed description of the ENZ-aberration retrieval reveals the origin of the breakdown of the retrieval process. Finally, a description of experiments on nulling interferometry is given, starting with the presentation of an experimental set-up for three-beam nulling. A novel strategy for polychromatic nulling is treated here, with the goal of relieving the tight phase constraint on the spectra in the individual beams. This theoretically allows broad band-nulling with a high rejection ratio without using achromatic phase shifters. The disappointing results led to an investigation of the spectra of the individual beams. The origin of the unsatisfactory level of the rejection ratio is found in the spectral unbalance of the beams. Before branching off, the beams have an equal spectrum. Then, the encounter of different optical elements with individually applied coatings, the control of beam-power per beam and finally the beam coupling into a single-mode fiber, apparently alter the spectra in such a way that the theoretically achievable level of the rejection ratio cannot be reached. The research described in this thesis provides onsets for research in several areas of interest related to aperture synthesis and guidelines concerning the design of synthetic telescopes for imaging. As such, this research contributes to the improvement of instrumentation for observational astronomy, in particular for stellar interferometry. While nulling interferometry is the detection technique that allows a space telescope array such as ESA-Darwin to identify exoplanets, optical aperture synthesis imaging is the technique that can make images of the planetary systems to which these exoplanets belong. Moreover, many objects can be observed that represent earlier versions of our planetary system, our Sun and even our galaxy, the Milky Way. Observing these objects might answer questions about the origins of the Earth itself and the life on it.

  9. Knowledge synthesis methods for integrating qualitative and quantitative data: a scoping review reveals poor operationalization of the methodological steps.

    PubMed

    Tricco, Andrea C; Antony, Jesmin; Soobiah, Charlene; Kastner, Monika; MacDonald, Heather; Cogo, Elise; Lillie, Erin; Tran, Judy; Straus, Sharon E

    2016-05-01

    To describe and compare, through a scoping review, emerging knowledge synthesis methods for integrating qualitative and quantitative evidence in health care, in terms of expertise required, similarities, differences, strengths, limitations, and steps involved in using the methods. Electronic databases (e.g., MEDLINE) were searched, and two reviewers independently selected studies and abstracted data for qualitative analysis. In total, 121 articles reporting seven knowledge synthesis methods (critical interpretive synthesis, integrative review, meta-narrative review, meta-summary, mixed studies review, narrative synthesis, and realist review) were included after screening of 17,962 citations and 1,010 full-text articles. Common similarities among methods related to the entire synthesis process, while common differences related to the research question and eligibility criteria. The most common strength was a comprehensive synthesis providing rich contextual data, whereas the most common weakness was a highly subjective method that was not reproducible. For critical interpretive synthesis, meta-narrative review, meta-summary, and narrative synthesis, guidance was not provided for some steps of the review process. Some of the knowledge synthesis methods provided guidance on all steps, whereas other methods were missing guidance on the synthesis process. Further work is needed to clarify these emerging knowledge synthesis methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Cell-free protein synthesis and assembly on a biochip

    NASA Astrophysics Data System (ADS)

    Heyman, Yael; Buxboim, Amnon; Wolf, Sharon G.; Daube, Shirley S.; Bar-Ziv, Roy H.

    2012-06-01

    Biologically active complexes such as ribosomes and bacteriophages are formed through the self-assembly of proteins and nucleic acids. Recapitulating these biological self-assembly processes in a cell-free environment offers a way to develop synthetic biodevices. To visualize and understand the assembly process, a platform is required that enables simultaneous synthesis, assembly and imaging at the nanoscale. Here, we show that a silicon dioxide grid, used to support samples in transmission electron microscopy, can be modified into a biochip to combine in situ protein synthesis, assembly and imaging. Light is used to pattern the biochip surface with genes that encode specific proteins, and antibody traps that bind and assemble the nascent proteins. Using transmission electron microscopy imaging we show that protein nanotubes synthesized on the biochip surface in the presence of antibody traps efficiently assembled on these traps, but pre-assembled nanotubes were not effectively captured. Moreover, synthesis of green fluorescent protein from its immobilized gene generated a gradient of captured proteins decreasing in concentration away from the gene source. This biochip could be used to create spatial patterns of proteins assembled on surfaces.

  11. Controllable synthesis of a novel magnetic core-shell nanoparticle for dual-modal imaging and pH-responsive drug delivery

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Zhang, Cheng; Wang, Yingxi; Li, Liu; Li, Ling; Whittaker, Andrew K.

    2017-12-01

    In this study, novel magnetic core-shell nanoparticles Fe3O4@La-BTC/GO have been synthesized by the layer-by-layer self-assembly (LBL) method and further modified by attachment of amino-modified PEG chains. The nanoparticles were thoroughly characterized by x-ray diffraction, FTIR, scanning electron microscopy and transmission electron microscopy. The core-shell structure was shown to be controlled by the LBL method. The drug loading of doxorubicin (DOX) within the Fe3O4@La-BTC/GO-PEG nanoparticles with different numbers of deposited layers was investigated. It was found that DOX loading increased with increasing number of metal organic framework coating layers, indicating that the drug loading can be controlled through the controllable LBL method. Cytotoxicity assays indicated that the Fe3O4@La-BTC/GO-PEG nanoparticles were biocompatible. The DOX was released rapidly at pH 3.8 and pH 5.8, but at pH 7.4 the rate and extent of release was greatly attenuated. The nanoparticles therefore demonstrate an excellent pH-triggered drug release. In addition, the particles could be tracked by magnetic resonance imaging (MRI) and fluorescence optical imaging (FOI). A clear dose-dependent contrast enhancement in T 2-weighted MR images and fluorescence images indicate the potential of these nanoparticles as dual-mode MRI/FOI contrast agents.

  12. A Microwell-Printing Fabrication Strategy for the On-Chip Templated Biosynthesis of Protein Microarrays for Surface Plasmon Resonance Imaging

    PubMed Central

    Manuel, Gerald; Lupták, Andrej; Corn, Robert M.

    2017-01-01

    A two-step templated, ribosomal biosynthesis/printing method for the fabrication of protein microarrays for surface plasmon resonance imaging (SPRI) measurements is demonstrated. In the first step, a sixteen component microarray of proteins is created in microwells by cell free on chip protein synthesis; each microwell contains both an in vitro transcription and translation (IVTT) solution and 350 femtomoles of a specific DNA template sequence that together are used to create approximately 40 picomoles of a specific hexahistidine-tagged protein. In the second step, the protein microwell array is used to contact print one or more protein microarrays onto nitrilotriacetic acid (NTA)-functionalized gold thin film SPRI chips for real-time SPRI surface bioaffinity adsorption measurements. Even though each microwell array element only contains approximately 40 picomoles of protein, the concentration is sufficiently high for the efficient bioaffinity adsorption and capture of the approximately 100 femtomoles of hexahistidine-tagged protein required to create each SPRI microarray element. As a first example, the protein biosynthesis process is verified with fluorescence imaging measurements of a microwell array containing His-tagged green fluorescent protein (GFP), yellow fluorescent protein (YFP) and mCherry (RFP), and then the fidelity of SPRI chips printed from this protein microwell array is ascertained by measuring the real-time adsorption of various antibodies specific to these three structurally related proteins. This greatly simplified two-step synthesis/printing fabrication methodology eliminates most of the handling, purification and processing steps normally required in the synthesis of multiple protein probes, and enables the rapid fabrication of SPRI protein microarrays from DNA templates for the study of protein-protein bioaffinity interactions. PMID:28706572

  13. Engineered magnetic core shell nanoprobes: Synthesis and applications to cancer imaging and therapeutics.

    PubMed

    Mandal, Samir; Chaudhuri, Keya

    2016-02-26

    Magnetic core shell nanoparticles are composed of a highly magnetic core material surrounded by a thin shell of desired drug, polymer or metal oxide. These magnetic core shell nanoparticles have a wide range of applications in biomedical research, more specifically in tissue imaging, drug delivery and therapeutics. The present review discusses the up-to-date knowledge on the various procedures for synthesis of magnetic core shell nanoparticles along with their applications in cancer imaging, drug delivery and hyperthermia or cancer therapeutics. Literature in this area shows that magnetic core shell nanoparticle-based imaging, drug targeting and therapy through hyperthermia can potentially be a powerful tool for the advanced diagnosis and treatment of various cancers.

  14. Antibacterial Carbon Nanotubes by Impregnation with Copper Nanostructures

    NASA Astrophysics Data System (ADS)

    Palza, Humberto; Saldias, Natalia; Arriagada, Paulo; Palma, Patricia; Sanchez, Jorge

    2017-08-01

    The addition of metal-based nanoparticles on carbon nanotubes (CNT) is a relevant method producing multifunctional materials. In this context, CNT were dispersed in an ethanol/water solution containing copper acetate for their impregnation with different copper nanostructures by either a non-thermal or a thermal post-synthesis treatment. Our simple method is based on pure CNT in an air atmosphere without any other reagents. Particles without thermal treatment were present as a well-dispersed layered copper hydroxide acetate nanostructures on CNT, as confirmed by scanning and transmission (TEM) electron microscopies, and showing a characteristic x-ray diffraction peak at 6.6°. On the other hand, by thermal post-synthesis treatment at 300°C, these layered nanostructures became Cu2O nanoparticles of around 20 nm supported on CNT, as confirmed by TEM images and x-ray diffraction peaks. These copper nanostructures present on the CNT surface rendered antibacterial behavior to the resulting hybrid materials against both Staphylococcus aureus and Escherichia coli. These findings present for the first time a simple method for producing antibacterial CNT by direct impregnation of copper nanostructures.

  15. Biomimetic synthesis of highly biocompatible gold nanoparticles with amino acid-dithiocarbamate as a precursor for SERS imaging

    NASA Astrophysics Data System (ADS)

    Li, Li; Liu, Jianbo; Yang, Xiaohai; Huang, Jin; He, Dinggeng; Guo, Xi; Wan, Lan; He, Xiaoxiao; Wang, Kemin

    2016-03-01

    Amino acid-dithiocarbamate (amino acid-DTC) was developed as both the reductant and ligand stabilizer for biomimetic synthesis of gold nanoparticles (AuNPs), which served as an excellent surface-enhanced Raman scattering (SERS) contrast nanoprobe for cell imaging. Glycine (Gly), glutamic acid (Glu), and histidine (His) with different isoelectric points were chosen as representative amino acid candidates to synthesize corresponding amino acid-DTC compounds through mixing with carbon disulfide (CS2), respectively. The pyrogenic decomposition of amino acid-DTC initiated the reduction synthesis of AuNPs, and the strong coordinating dithiocarbamate group of amino acid-DTC served as a stabilizer that grafted onto the surface of the AuNPs, which rendered the as-prepared nanoparticles a negative surface charge and high colloidal stability. MTT cell viability assay demonstrated that the biomimetic AuNPs possessed neglectful toxicity to the human hepatoma cell, which guaranteed them good biocompatibility for biomedical application. Meanwhile, the biomimetic AuNPs showed a strong SERS effect with an enhancement factor of 9.8 × 105 for the sensing of Rhodamine 6G, and two distinct Raman peaks located at 1363 and 1509 cm-1 could be clearly observed in the cell-imaging experiments. Therefore, biomimetic AuNPs can be explored as an excellent SERS contrast nanoprobe for biomedical imaging, and the amino acid-DTC mediated synthesis of the AuNPs has a great potential in bio-engineering and biomedical imaging applications.

  16. The 2016 interferometric imaging beauty contest

    NASA Astrophysics Data System (ADS)

    Sanchez-Bermudez, J.; Thiébaut, E.; Hofmann, K.-H.; Heininger, M.; Schertl, D.; Weigelt, G.; Millour, F.; Schutz, A.; Ferrari, A.; Vannier, M.; Mary, D.; Young, J.

    2016-08-01

    Image reconstruction in optical interferometry has gained considerable importance for astrophysical studies during the last decade. This has been mainly due to improvements in the imaging capabilities of existing interferometers and the expectation of new facilities in the coming years. However, despite the advances made so far, image synthesis in optical interferometry is still an open field of research. Since 2004, the community has organized a biennial contest to formally test the different methods and algorithms for image reconstruction. In 2016, we celebrated the 7th edition of the "Interferometric Imaging Beauty Contest". This initiative represented an open call to participate in the reconstruction of a selected set of simulated targets with a wavelength-dependent morphology as they could be observed by the 2nd generation of VLTI instruments. This contest represents a unique opportunity to benchmark, in a systematic way, the current advances and limitations in the field, as well as to discuss possible future approaches. In this contribution, we summarize: (a) the rules of the 2016 contest; (b) the different data sets used and the selection procedure; (c) the methods and results obtained by each one of the participants; and (d) the metric used to select the best reconstructed images. Finally, we named Karl-Heinz Hofmann and the group of the Max-Planck-Institut fur Radioastronomie as winners of this edition of the contest.

  17. Parallel ICA and its hardware implementation in hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Du, Hongtao; Qi, Hairong; Peterson, Gregory D.

    2004-04-01

    Advances in hyperspectral images have dramatically boosted remote sensing applications by providing abundant information using hundreds of contiguous spectral bands. However, the high volume of information also results in excessive computation burden. Since most materials have specific characteristics only at certain bands, a lot of these information is redundant. This property of hyperspectral images has motivated many researchers to study various dimensionality reduction algorithms, including Projection Pursuit (PP), Principal Component Analysis (PCA), wavelet transform, and Independent Component Analysis (ICA), where ICA is one of the most popular techniques. It searches for a linear or nonlinear transformation which minimizes the statistical dependence between spectral bands. Through this process, ICA can eliminate superfluous but retain practical information given only the observations of hyperspectral images. One hurdle of applying ICA in hyperspectral image (HSI) analysis, however, is its long computation time, especially for high volume hyperspectral data sets. Even the most efficient method, FastICA, is a very time-consuming process. In this paper, we present a parallel ICA (pICA) algorithm derived from FastICA. During the unmixing process, pICA divides the estimation of weight matrix into sub-processes which can be conducted in parallel on multiple processors. The decorrelation process is decomposed into the internal decorrelation and the external decorrelation, which perform weight vector decorrelations within individual processors and between cooperative processors, respectively. In order to further improve the performance of pICA, we seek hardware solutions in the implementation of pICA. Until now, there are very few hardware designs for ICA-related processes due to the complicated and iterant computation. This paper discusses capacity limitation of FPGA implementations for pICA in HSI analysis. A synthesis of Application-Specific Integrated Circuit (ASIC) is designed for pICA-based dimensionality reduction in HSI analysis. The pICA design is implemented using standard-height cells and aimed at TSMC 0.18 micron process. During the synthesis procedure, three ICA-related reconfigurable components are developed for the reuse and retargeting purpose. Preliminary results show that the standard-height cell based ASIC synthesis provide an effective solution for pICA and ICA-related processes in HSI analysis.

  18. Perovskite Quantum Dots with Near Unity Solution and Neat-Film Photoluminescent Quantum Yield by Novel Spray Synthesis.

    PubMed

    Dai, Shu-Wen; Hsu, Bo-Wei; Chen, Chien-Yu; Lee, Chia-An; Liu, Hsiao-Yun; Wang, Hsiao-Fang; Huang, Yu-Ching; Wu, Tien-Lin; Manikandan, Arumugam; Ho, Rong-Ming; Tsao, Cheng-Si; Cheng, Chien-Hong; Chueh, Yu-Lun; Lin, Hao-Wu

    2018-02-01

    In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W -1 , and extraordinary forward-direction luminescence of 8 500 000 cd m -2 . The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Film grain synthesis and its application to re-graining

    NASA Astrophysics Data System (ADS)

    Schallauer, Peter; Mörzinger, Roland

    2006-01-01

    Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.

  20. Salt-assistant combustion synthesis of nanocrystalline Nd{sub 2}(Zr{sub 1-x}Sn{sub x}){sub 2}O{sub 7} (0 {<=} x {<=} 1) solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong Yuping, E-mail: huabeitong@yahoo.cn; Wang Yanping

    2009-11-15

    Nanocrystalline Nd{sub 2}(Zr{sub 1-x}Sn{sub x}){sub 2}O{sub 7} series solid solutions were prepared by a convenient salt-assisted combustion process using glycine as fuel. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The results showed the Zr ion can be partially replaced by Sn ion. The partial substituted products were still single-phase solid solutions and the crystal form remained unchanged. TEM images reveal that the products are composed of well-dispersed square-shaped nanocrystals. The method provides a convenient and low-cost route for the synthesis of nanostructures of oxide materials.

  1. Synthesis, characterization and antibacterial property of ZnO:Mg nanoparticles

    NASA Astrophysics Data System (ADS)

    Kompany, A.; Madahi, P.; Shahtahmasbi, N.; Mashreghi, M.

    2012-09-01

    Sol-gel method was successfully used for the synthesis of ZnO nanoparticles (NPs) doped with different concentrations of Mg and the structural, optical and antibacterial properties of the nanoparticles were studied. The synthesized ZnO:Mg powders were characterized using x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transformation Infrared (FTIR) and UV-Vis spectroscopy. It was revealed that the samples have hexagonal Wurtzite structure, and the phase segregation takes place for 15% Mg content. TEM images show that the average size of the particles is about 50 nm. Also, the antibacterial activities of the nanoparticles were tested against Escherichia coli (Gram negative) cultures. ZnO:Mg nanofluid showed good antibacterial activity which increases with the increase of NPs concentration, and decreases slightly with the amount of Mg.

  2. Wide-Field Imaging Interferometry Spatial-Spectral Image Synthesis Algorithms

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Leisawitz, David T.; Rinehart, Stephen A.; Memarsadeghi, Nargess; Sinukoff, Evan J.

    2012-01-01

    Developed is an algorithmic approach for wide field of view interferometric spatial-spectral image synthesis. The data collected from the interferometer consists of a set of double-Fourier image data cubes, one cube per baseline. These cubes are each three-dimensional consisting of arrays of two-dimensional detector counts versus delay line position. For each baseline a moving delay line allows collection of a large set of interferograms over the 2D wide field detector grid; one sampled interferogram per detector pixel per baseline. This aggregate set of interferograms, is algorithmically processed to construct a single spatial-spectral cube with angular resolution approaching the ratio of the wavelength to longest baseline. The wide field imaging is accomplished by insuring that the range of motion of the delay line encompasses the zero optical path difference fringe for each detector pixel in the desired field-of-view. Each baseline cube is incoherent relative to all other baseline cubes and thus has only phase information relative to itself. This lost phase information is recovered by having point, or otherwise known, sources within the field-of-view. The reference source phase is known and utilized as a constraint to recover the coherent phase relation between the baseline cubes and is key to the image synthesis. Described will be the mathematical formalism, with phase referencing and results will be shown using data collected from NASA/GSFC Wide-Field Imaging Interferometry Testbed (WIIT).

  3. Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in-situ synthesis of cauliflower-like CuO nanoparticles.

    PubMed

    Rezaie, Ali Bashiri; Montazer, Majid; Rad, Mahnaz Mahmoudi

    2017-11-01

    In this paper, a facile environmentally friendly method is introduced for in-situ synthesis and fabrication of cauliflower-like CuO nanoparticles on the polyester fabric to produce photo and biocatalytic activities with UV protection properties on polyester fabric. The ash of burnt leaves and stems of Seidlitzia rosmarinus plant called Keliab was used as a natural and nontoxic alkaline source for simultaneous synthesis of CuO nanoparticles and surface modification of polyester without using any other compounds. The images of field-emission scanning electron microscopy, patterns of energy-dispersive spectroscopy, UV-visible spectrum and X-ray diffraction confirmed successful synthesis and loading of CuO nanoparticles on the polyester fabric. The treated fabrics showed very good antibacterial activities toward two pathogen bacteria including Staphylococcus aureus as a Gram-positive and Escherichia coli as a Gram-negative bacteria with no adverse effects on human dermal fibroblasts based on MTT test. The treated fabrics confirmed significant photocatalytic activity for degradation of methylene blue under sunlight, self-cleaning properties under UV light and also UV protection properties. Further a colorant effect along with an improvement in the wettability and mechanical properties of the treated fabrics were indicated. Overall, this method can be applied as a clean route for producing photo and bio active textiles protecting against UV irradiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis† †Electronic supplementary information (ESI) available: Detailed procedures for each method, catalytic performance, STEM-EDX images, detailed characterization. See DOI: 10.1039/c6sc02382g Click here for additional data file.

    PubMed Central

    Imamura, Kazuya; Kawano, Yukiko; Miyahara, Shin-ichiro; Yamamoto, Tomokazu; Matsumura, Syo

    2017-01-01

    Ammonia is a crucial chemical feedstock for fertilizer production and is a potential energy carrier. However, the current method of synthesizing ammonia, the Haber–Bosch process, consumes a great deal of energy. To reduce energy consumption, a process and a substance that can catalyze ammonia synthesis under mild conditions (low temperature and low pressure) are strongly needed. Here we show that Ru/Pr2O3 without any dopant catalyzes ammonia synthesis under mild conditions at 1.8 times the rates reported with other highly active catalysts. Scanning transmission electron micrograph observations and energy dispersive X-ray analyses revealed the formation of low-crystalline nano-layers of ruthenium on the surface of Pr2O3. Furthermore, CO2 temperature-programmed desorption revealed that the catalyst was strongly basic. These unique structural and electronic characteristics are considered to synergistically accelerate the rate-determining step of NH3 synthesis, cleavage of the N 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 N bond. We expect that the use of this catalyst will be a starting point for achieving efficient ammonia synthesis. PMID:28451216

  5. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim

    2016-02-01

    Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g-1). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM-1 s-1 and 185.58 mM-1 s-1 respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed.Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g-1). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM-1 s-1 and 185.58 mM-1 s-1 respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03867g

  6. Synthesis of Nitrogen- and Chlorine-Doped Graphene Quantum Dots for Cancer Cell Imaging.

    PubMed

    Nafiujjaman, Md; Joon, Hwang; Kwak, Kwang Soo; Lee, Yong-Kyu

    2018-06-01

    In this study, we synthesized high quantum yield nitrogen and chlorine-doped graphene quantum dots (Cl-GQDs-N) for cancer cell imaging using simple and high production yield hydrothermal method from low-cost fructose. Prepared Cl-GQDs-N are about 30 nm in diameter and these Cl-GQDs-N display powerful blue color photoluminescence under the 365 nm UV lamp. We have further investigated their optical performances under various conditions. In vitro study shows no toxicity effect in normal and cancer cells treated with Cl-GQDs-N. Finally, we believe that our synthesized Cl-GQDs-N will bring more application opportunities in the field of bioimaging, optoelectronics and beyond.

  7. Robust, Globally Consistent, and Fully-automatic Multi-image Registration and Montage Synthesis for 3-D Multi-channel Images

    PubMed Central

    Tsai, Chia-Ling; Lister, James P.; Bjornsson, Christopher J; Smith, Karen; Shain, William; Barnes, Carol A.; Roysam, Badrinath

    2013-01-01

    The need to map regions of brain tissue that are much wider than the field of view of the microscope arises frequently. One common approach is to collect a series of overlapping partial views, and align them to synthesize a montage covering the entire region of interest. We present a method that advances this approach in multiple ways. Our method (1) produces a globally consistent joint registration of an unorganized collection of 3-D multi-channel images with or without stage micrometer data; (2) produces accurate registrations withstanding changes in scale, rotation, translation and shear by using a 3-D affine transformation model; (3) achieves complete automation, and does not require any parameter settings; (4) handles low and variable overlaps (5 – 15%) between adjacent images, minimizing the number of images required to cover a tissue region; (5) has the self-diagnostic ability to recognize registration failures instead of delivering incorrect results; (6) can handle a broad range of biological images by exploiting generic alignment cues from multiple fluorescence channels without requiring segmentation; and (7) is computationally efficient enough to run on desktop computers regardless of the number of images. The algorithm was tested with several tissue samples of at least 50 image tiles, involving over 5,000 image pairs. It correctly registered all image pairs with an overlap greater than 7%, correctly recognized all failures, and successfully joint-registered all images for all tissue samples studied. This algorithm is disseminated freely to the community as included with the FARSIGHT toolkit for microscopy (www.farsight-toolkit.org). PMID:21361958

  8. Growth hormone stimulation test - series (image)

    MedlinePlus

    ... skeletal growth in children. In adults, GH stimulates protein synthesis in muscle and the release of fatty acids ... acids. The amino acids are used in the synthesis of proteins, and the muscle shifts to using fatty acids ...

  9. EISCAT Aperture Synthesis Imaging (EASI _3D) for the EISCAT_3D Project

    NASA Astrophysics Data System (ADS)

    La Hoz, Cesar; Belyey, Vasyl

    2012-07-01

    Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. The underlying physico-mathematical principles of the technique are the same as the technique employed in radioastronomy to image stellar objects; both require sophisticated inversion techniques to obtain reliable images.

  10. Live-Cell Imaging of Filoviruses.

    PubMed

    Schudt, Gordian; Dolnik, Olga; Becker, Stephan

    2017-01-01

    Observation of molecular processes inside living cells is fundamental to a deeper understanding of virus-host interactions in filoviral-infected cells. These observations can provide spatiotemporal insights into protein synthesis, protein-protein interaction dynamics, and transport processes of these highly pathogenic viruses. Thus, live-cell imaging provides the possibility for antiviral screening in real time and gives mechanistic insights into understanding filovirus assembly steps that are dependent on cellular factors, which then represent potential targets against this highly fatal disease. Here we describe analysis of living filovirus-infected cells under maximum biosafety (i.e., BSL4) conditions using plasmid-driven expression of fluorescently labeled viral and cellular proteins and/or viral genome-encoded expression of fluorescently labeled proteins. Such multiple-color and multidimensional time-lapse live-cell imaging analyses are a powerful method to gain a better understanding of the filovirus infection cycle.

  11. Thioesters for the in vitro evaluation of agents to image brain cholinesterases.

    PubMed

    Macdonald, Ian R; Jollymore, Courtney T; Reid, G Andrew; Pottie, Ian R; Martin, Earl; Darvesh, Sultan

    2013-06-01

    Cholinesterases are associated with pathology characteristic of conditions such as Alzheimer's disease and are therefore, considered targets for neuroimaging. Ester derivatives of N-methylpiperidinol are promising potential imaging agents; however, methodology is lacking for evaluating these compounds in vitro. Here, we report the synthesis and evaluation of a series of N-methylpiperidinyl thioesters, possessing comparable properties to their corresponding esters, which can be directly evaluated for cholinesterase kinetics and histochemical distribution in human brain tissue. N-methylpiperidinyl esters and thioesters were synthesized and they demonstrated comparable cholinesterase kinetics. Furthermore, thioesters were capable, using histochemical method, to visualize cholinesterase activity in human brain tissue. N-methylpiperidinyl thioesters can be rapidly evaluated for cholinesterase kinetics and visualization of enzyme distribution in brain tissue which may facilitate development of cholinesterase imaging agents for application to conditions such as Alzheimer's disease.

  12. An Anion-Induced Hydrothermal Oriented-Explosive Strategy for the Synthesis of Porous Upconversion Nanocrystals

    PubMed Central

    Qiu, Peiyu; Sun, Rongjin; Gao, Guo; Zhang, Chunlei; Chen, Bin; Yan, Naishun; Yin, Ting; Liu, Yanlei; Zhang, Jingjing; Yang, Yao; Cui, Daxiang

    2015-01-01

    Rare-earth (RE)-doped upconversion nanocrystals (UCNCs) are deemed as the promising candidates of luminescent nanoprobe for biological imaging and labeling. A number of methods have been used for the fabrication of UCNCs, but their assembly into porous architectures with desired size, shape and crystallographic phase remains a long-term challenging task. Here we report a facile, anion-induced hydrothermal oriented-explosive method to simultaneously control size, shape and phase of porous UCNCs. Our results confirmed the anion-induced hydrothermal oriented-explosion porous structure, size and phase transition for the cubic/hexagonal phase of NaLuF4 and NaGdF4 nanocrystals with various sizes and shapes. This general method is very important not only for successfully preparing lanthanide doped porous UCNCs, but also for clarifying the formation process of porous UCNCs in the hydrothermal system. The synthesized UCNCs were used for in vitro and in vivo CT imaging, and could be acted as the potential CT contrast agents. PMID:25767613

  13. Generation of realistic scene using illuminant estimation and mixed chromatic adaptation

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Chul; Hong, Sang-Gi; Kim, Dong-Ho; Park, Jong-Hyun

    2003-12-01

    The algorithm of combining a real image with a virtual model was proposed to increase the reality of synthesized images. Currently, synthesizing a real image with a virtual model facilitated the surface reflection model and various geometric techniques. In the current methods, the characteristics of various illuminants in the real image are not sufficiently considered. In addition, despite the chromatic adaptation plays a vital role for accommodating different illuminants in the two media viewing conditions, it is not taken into account in the existing methods. Thus, it is hardly to get high-quality synthesized images. In this paper, we proposed the two-phase image synthesis algorithm. First, the surface reflectance of the maximum high-light region (MHR) was estimated using the three eigenvectors obtained from the principal component analysis (PCA) applied to the surface reflectances of 1269 Munsell samples. The combined spectral value, i.e., the product of surface reflectance and the spectral power distributions (SPDs) of an illuminant, of MHR was then estimated using the three eigenvectors obtained from PCA applied to the products of surface reflectances of Munsell 1269 samples and the SPDs of four CIE Standard Illuminants (A, C, D50, D65). By dividing the average combined spectral values of MHR by the average surface reflectances of MHR, we could estimate the illuminant of a real image. Second, the mixed chromatic adaptation (S-LMS) using an estimated and an external illuminants was applied to the virtual-model image. For evaluating the proposed algorithm, experiments with synthetic and real scenes were performed. It was shown that the proposed method was effective in synthesizing the real and the virtual scenes under various illuminants.

  14. Multi-GPU maximum entropy image synthesis for radio astronomy

    NASA Astrophysics Data System (ADS)

    Cárcamo, M.; Román, P. E.; Casassus, S.; Moral, V.; Rannou, F. R.

    2018-01-01

    The maximum entropy method (MEM) is a well known deconvolution technique in radio-interferometry. This method solves a non-linear optimization problem with an entropy regularization term. Other heuristics such as CLEAN are faster but highly user dependent. Nevertheless, MEM has the following advantages: it is unsupervised, it has a statistical basis, it has a better resolution and better image quality under certain conditions. This work presents a high performance GPU version of non-gridding MEM, which is tested using real and simulated data. We propose a single-GPU and a multi-GPU implementation for single and multi-spectral data, respectively. We also make use of the Peer-to-Peer and Unified Virtual Addressing features of newer GPUs which allows to exploit transparently and efficiently multiple GPUs. Several ALMA data sets are used to demonstrate the effectiveness in imaging and to evaluate GPU performance. The results show that a speedup from 1000 to 5000 times faster than a sequential version can be achieved, depending on data and image size. This allows to reconstruct the HD142527 CO(6-5) short baseline data set in 2.1 min, instead of 2.5 days that takes a sequential version on CPU.

  15. Solid-phase submonomer synthesis of peptoid polymers and their self-assembly into highly-ordered nanosheets.

    PubMed

    Tran, Helen; Gael, Sarah L; Connolly, Michael D; Zuckermann, Ronald N

    2011-11-02

    Peptoids are a novel class of biomimetic, non-natural, sequence-specific heteropolymers that resist proteolysis, exhibit potent biological activity, and fold into higher order nanostructures. Structurally similar to peptides, peptoids are poly N-substituted glycines, where the side chains are attached to the nitrogen rather than the alpha-carbon. Their ease of synthesis and structural diversity allows testing of basic design principles to drive de novo design and engineering of new biologically-active and nanostructured materials. Here, a simple manual peptoid synthesis protocol is presented that allows the synthesis of long chain polypeptoids (up to 50mers) in excellent yields. Only basic equipment, simple techniques (e.g. liquid transfer, filtration), and commercially available reagents are required, making peptoids an accessible addition to many researchers' toolkits. The peptoid backbone is grown one monomer at a time via the submonomer method which consists of a two-step monomer addition cycle: acylation and displacement. First, bromoacetic acid activated in situ with N,N'-diisopropylcarbodiimide acylates a resin-bound secondary amine. Second, nucleophilic displacement of the bromide by a primary amine follows to introduce the side chain. The two-step cycle is iterated until the desired chain length is reached. The coupling efficiency of this two-step cycle routinely exceeds 98% and enables the synthesis of peptoids as long as 50 residues. Highly tunable, precise and chemically diverse sequences are achievable with the submonomer method as hundreds of readily available primary amines can be directly incorporated. Peptoids are emerging as a versatile biomimetic material for nanobioscience research because of their synthetic flexibility, robustness, and ordering at the atomic level. The folding of a single-chain, amphiphilic, information-rich polypeptoid into a highly-ordered nanosheet was recently demonstrated. This peptoid is a 36-mer that consists of only three different commercially available monomers: hydrophobic, cationic and anionic. The hydrophobic phenylethyl side chains are buried in the nanosheet core whereas the ionic amine and carboxyl side chains align on the hydrophilic faces. The peptoid nanosheets serve as a potential platform for membrane mimetics, protein mimetics, device fabrication, and sensors. Methods for peptoid synthesis, sheet formation, and microscopy imaging are described and provide a simple method to enable future peptoid nanosheet designs.

  16. Automated synthesis of N-(2-[18 F]Fluoropropionyl)-l-glutamic acid as an amino acid tracer for tumor imaging on a modified [18 F]FDG synthesis module.

    PubMed

    Liu, Shaoyu; Sun, Aixia; Zhang, Zhanwen; Tang, Xiaolan; Nie, Dahong; Ma, Hui; Jiang, Shende; Tang, Ganghua

    2017-06-15

    N-(2-[ 18 F]Fluoropropionyl)-l-glutamic acid ([ 18 F]FPGLU) is a potential amino acid tracer for tumor imaging with positron emission tomography. However, due to the complicated multistep synthesis, the routine production of [ 18 F]FPGLU presents many challenging laboratory requirements. To simplify the synthesis process of this interesting radiopharmaceutical, an efficient automated synthesis of [ 18 F]FPGLU was performed on a modified commercial fluorodeoxyglucose synthesizer via a 2-step on-column hydrolysis procedure, including 18 F-fluorination and on-column hydrolysis reaction. [ 18 F]FPGLU was synthesized in 12 ± 2% (n = 10, uncorrected) radiochemical yield based on [ 18 F]fluoride using the tosylated precursor 2. The radiochemical purity was ≥98%, and the overall synthesis time was 35 minutes. To further optimize the radiosynthesis conditions of [ 18 F]FPGLU, a brominated precursor 3 was also used for the preparation of [ 18 F]FPGLU, and the improved radiochemical yield was up to 20 ± 3% (n = 10, uncorrected) in 35 minutes. Moreover, all these results were achieved using the similar on-column hydrolysis procedure on the modified fluorodeoxyglucose synthesis module. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Plasma in-liquid method for reduction of zinc oxide in zinc nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Amaliyah, Novriany; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi; Kitamae, Tomohide

    2015-02-01

    Metal air-batteries with high-energy density are expected to be increasingly applied in electric vehicles. This will require a method of recycling air batteries, and reduction of metal oxide by generating plasma in liquid has been proposed as a possible method. Microwave-induced plasma is generated in ethanol as a reducing agent in which zinc oxide is dispersed. Analysis by energy-dispersive x-ray spectrometry (EDS) and x-ray diffraction (XRD) reveals the reduction of zinc oxide. According to images by transmission electron microscopy (TEM), cubic and hexagonal metallic zinc particles are formed in sizes of 30 to 200 nm. Additionally, spherical fiber flocculates approximately 180 nm in diameter are present.

  18. A mitochondria-selective near-infrared-emitting fluorescent dye for cellular imaging studies.

    PubMed

    Choi, Peter; Noguchi, Katsuya; Ishiyama, Munetaka; Denny, William A; Jose, Jiney

    2018-05-03

    This communication details the synthesis, evaluation of photophysical properties, and cellular imaging studies of cyanine chromophore based fluorescent dye 1 as a selective imaging agent for mitochondria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A review on green synthesis of silver nanoparticles and their applications.

    PubMed

    Rafique, Muhammad; Sadaf, Iqra; Rafique, M Shahid; Tahir, M Bilal

    2017-11-01

    Development of reliable and eco-accommodating methods for the synthesis of nanoparticles is a vital step in the field of nanotechnology. Silver nanoparticles are important because of their exceptional chemical, physical, and biological properties, and hence applications. In the last decade, numerous efforts were made to develop green methods of synthesis to avoid the hazardous byproducts. This review describes the methods of green synthesis for Ag-NPs and their numerous applications. It also describes the comparison of efficient synthesis methods via green routes over physical and chemical methods, which provide strong evidence for the selection of suitable method for the synthesis of Ag-NPs.

  20. Magneto-optical nanoparticles for cyclic magnetomotive photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Arnal, Bastien; Yoon, Soon Joon; Li, Junwei; Gao, Xiaohu; O'Donnell, Matthew

    2018-05-01

    Photoacoustic imaging is a highly promising tool to visualize molecular events with deep tissue penetration. Like most other modalities, however, image contrast under in vivo conditions is far from optimal due to background signals from tissue. Using iron oxide-gold core-shell nanoparticles, we previously demonstrated that magnetomotive photoacoustic (mmPA) imaging can dramatically reduce the influence of background signals and produce high-contrast molecular images. Here we report two significant advances toward clinical translation of this technology. First, we introduce a new class of compact, uniform, magneto-optically coupled core-shell nanoparticle, prepared through localized copolymerization of polypyrrole (PPy) on an iron oxide nanoparticle surface. The resulting iron oxide-PPy nanoparticles solve the photo-instability and small-scale synthesis problems previously encountered by the gold coating approach, and extend the large optical absorption coefficient of the particles beyond 1000 nm in wavelength. In parallel, we have developed a new generation of mmPA imaging featuring cyclic magnetic motion and ultrasound speckle tracking, with an image capture frame rate several hundred times faster than the photoacoustic speckle tracking method demonstrated previously. These advances enable robust artifact elimination caused by physiologic motion and first application of the mmPA technology in vivo for sensitive tumor imaging.

  1. Age synthesis and estimation via faces: a survey.

    PubMed

    Fu, Yun; Guo, Guodong; Huang, Thomas S

    2010-11-01

    Human age, as an important personal trait, can be directly inferred by distinct patterns emerging from the facial appearance. Derived from rapid advances in computer graphics and machine vision, computer-based age synthesis and estimation via faces have become particularly prevalent topics recently because of their explosively emerging real-world applications, such as forensic art, electronic customer relationship management, security control and surveillance monitoring, biometrics, entertainment, and cosmetology. Age synthesis is defined to rerender a face image aesthetically with natural aging and rejuvenating effects on the individual face. Age estimation is defined to label a face image automatically with the exact age (year) or the age group (year range) of the individual face. Because of their particularity and complexity, both problems are attractive yet challenging to computer-based application system designers. Large efforts from both academia and industry have been devoted in the last a few decades. In this paper, we survey the complete state-of-the-art techniques in the face image-based age synthesis and estimation topics. Existing models, popular algorithms, system performances, technical difficulties, popular face aging databases, evaluation protocols, and promising future directions are also provided with systematic discussions.

  2. Preparation of a Nile Red-Pd-based fluorescent CO probe and its imaging applications in vitro and in vivo.

    PubMed

    Liu, Keyin; Kong, Xiuqi; Ma, Yanyan; Lin, Weiying

    2018-05-01

    Carbon monoxide (CO) is a key gaseous signaling molecule in living cells and organisms. This protocol illustrates the synthesis of a highly sensitive Nile Red (NR)-Pd-based fluorescent probe, NR-PdA, and its applications for detecting endogenous CO in tissue culture cells, ex vivo organs, and zebrafish embryos. In the NR-PdA synthesis process, 3-diethylamine phenol reacts with sodium nitrite in the acidic condition to afford 5-(diethylamino)-2-nitrosophenol hydrochloride (compound 1), which is further treated with 1-naphthalenol at a high temperature to provide the NR dye via a cyclization reaction. Finally, NR is reacted with palladium acetate to obtain the desired Pd-based fluorescent probe NR-PdA. NR-PdA possesses excellent two-photon excitation and near-IR emission properties, high stability, low background fluorescence, and a low detection limit. In addition to the chemical synthesis procedures, we provide step-by-step procedures for imaging endogenous CO in RAW 264.7 cells, mouse organs ex vivo, and live zebrafish embryos. The synthesis process for the probe requires ∼4 d, and the biological imaging experiments take ∼14 d.

  3. A comparative synthesis and physicochemical characterizations of Ni/Al2O3-MgO nanocatalyst via sequential impregnation and sol-gel methods used for CO2 reforming of methane.

    PubMed

    Aghamohammadi, Sogand; Haghighi, Mohammad; Karimipour, Samira

    2013-07-01

    Carbon dioxide reforming of methane is an interesting route for synthesis gas production especially over nano-sized catalysts. The present research deals with catalyst development for dry reforming of methane with the aim of reaching the most stable catalyst. Effect of preparation method, one of the most significant variables, on the properties of the catalysts was taken in to account. The Ni/Al2O3-MgO catalysts were prepared via sol-gel and sequential impregnation methods and characterized with XRD, FESEM, EDAX, BET and FTIR techniques. The reforming reactions were carried out using different feed ratios, gas hourly space velocities (GHSV) and reaction temperatures to identify the influence of operational variables. FESEM images indicate uniform particle size distribution for the sample synthesized with sol-gel method. It has been found that the sol-gel method has the potential to improve catalyst desired properties especially metal surface enrichment resulting in catalytic performance enhancement. The highest yield of products was obtained at 850 degrees C for both of the catalysts. During the 10 h stability test, CH4 and CO2 conversions gained higher values in the case of sol-gel made catalyst compared to impregnated one.

  4. A Direction Finding Method with A 3-D Array Based on Aperture Synthesis

    NASA Astrophysics Data System (ADS)

    Li, Shiwen; Chen, Liangbing; Gao, Zhaozhao; Ma, Wenfeng

    2018-01-01

    Direction finding for electronic warfare application should provide a wider field of view as possible. But the maximum unambiguous field of view for conventional direction finding methods is a hemisphere. It cannot distinguish the direction of arrival of the signals from the back lobe of the array. In this paper, a full 3-D direction finding method based on aperture synthesis radiometry is proposed. The model of the direction finding system is illustrated, and the fundamentals are presented. The relationship between the outputs of the measurements of a 3-D array and the 3-D power distribution of the point sources can be represented by a 3-D Fourier transform, and then the 3-D power distribution of the point sources can be reconstructed by an inverse 3-D Fourier transform. And in order to display the 3-D power distribution of the point sources conveniently, the whole spherical distribution is represented by two 2-D circular distribution images, one of which is for the upper hemisphere, and the other is for the lower hemisphere. Then a numeric simulation is designed and conducted to demonstrate the feasibility of the method. The results show that the method can estimate the arbitrary direction of arrival of the signals in the 3-D space correctly.

  5. Imaging modalities for the in vivo surveillance of mesenchymal stromal cells.

    PubMed

    Hossain, Mohammad Ayaz; Chowdhury, Tina; Bagul, Atul

    2015-11-01

    Bone marrow stromal cells exist as mesenchymal stromal cells (MSCs) and have the capacity to differentiate into multiple tissue types when subjected to appropriate culture conditions. This property of MSCs creates therapeutic opportunities in regenerative medicine for the treatment of damage to neural, cardiac and musculoskeletal tissues or acute kidney injury. The prerequisite for successful cell therapy is delivery of cells to the target tissue. Assessment of therapeutic outcomes utilize traditional methods to examine cell function of MSC populations involving routine biochemical or histological analysis for cell proliferation, protein synthesis and gene expression. However, these methods do not provide sufficient spatial and temporal information. In vivo surveillance of MSC migration to the site of interest can be performed through a variety of imaging modalities such as the use of radiolabelling, fluc protein expression bioluminescence imaging and paramagnetic nanoparticle magnetic resonance imaging. This review will outline the current methods of in vivo surveillance of exogenously administered MSCs in regenerative medicine while addressing potential technological developments. Furthermore, nanoparticles and microparticles for cellular labelling have shown that migration of MSCs can be spatially and temporally monitored. In vivo surveillance therefore permits time-stratified assessment in animal models without disruption of the target organ. In vivo tracking of MSCs is non-invasive, repeatable and non-toxic. Despite the excitement that nanoparticles for tracking MSCs offer, delivery methods are difficult because of the challenges with imaging three-dimensional systems. The current advances and growth in MSC research, is likely to provide a wealth of evidence overcoming these issues. Copyright © 2014 John Wiley & Sons, Ltd.

  6. One-step synthesis of highly-biocompatible spherical gold nanoparticles using Artocarpus heterophyllus Lam. (jackfruit) fruit extract and its effect on pathogens.

    PubMed

    Basavegowda, Nagaraj; Dhanya Kumar, Gowri; Tyliszczak, Bozena; Wzorek, Zbigniew; Sobczak-Kupiec, Agnieszka

    2015-01-01

    Novel approaches for the synthesis of gold nanoparticles (AuNPs) are of great importance due to its vast spectrum of applications in diverse fields, including medical diagnostics and therapeutics. Te presented study reports the successful AuNPs' synthesis using Artocarpus heterophyllus Lam. extract, and provides detailed characterization and evaluation of its antibacterial potential. The aim was to develop a cost-effective and environmentally friendly synthesis method of gold nanoparticles using aqueous fruit extract of Artocarpus heterophyllus Lam. as a reducing and capping agent, which has proven activity against human pathogens, such as microbial species E.coli and Streptobacillus sps. Characterizations were carried out using ultraviolet-visible (UV-Vis) spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and Fourier-Transform infra-red spectroscopy (FT-IR). SEM images showed the formation of gold nanoparticles with an average size of 20-25 nm. Spectra collected while infra-red analysis contained broad peaks in ranges from 4000-400 cm -1 . It can be concluded that the fruit of Artocarpus heterophyllus Lam. can be good source for synthesis of gold nanoparticles which showed antimicrobial activity against investigated microbes, in particul E. coli, and Streptobacillus. An important outcome of this study will be the development of value-added products from the medicinal plant Artocarpus heterophyllus Lam. for the biomedical and nanotechnology-based industries.

  7. Advancements in Research Synthesis Methods: From a Methodologically Inclusive Perspective

    ERIC Educational Resources Information Center

    Suri, Harsh; Clarke, David

    2009-01-01

    The dominant literature on research synthesis methods has positivist and neo-positivist origins. In recent years, the landscape of research synthesis methods has changed rapidly to become inclusive. This article highlights methodologically inclusive advancements in research synthesis methods. Attention is drawn to insights from interpretive,…

  8. Evaluation of nucleus segmentation in digital pathology images through large scale image synthesis

    NASA Astrophysics Data System (ADS)

    Zhou, Naiyun; Yu, Xiaxia; Zhao, Tianhao; Wen, Si; Wang, Fusheng; Zhu, Wei; Kurc, Tahsin; Tannenbaum, Allen; Saltz, Joel; Gao, Yi

    2017-03-01

    Digital histopathology images with more than 1 Gigapixel are drawing more and more attention in clinical, biomedical research, and computer vision fields. Among the multiple observable features spanning multiple scales in the pathology images, the nuclear morphology is one of the central criteria for diagnosis and grading. As a result it is also the mostly studied target in image computing. Large amount of research papers have devoted to the problem of extracting nuclei from digital pathology images, which is the foundation of any further correlation study. However, the validation and evaluation of nucleus extraction have yet been formulated rigorously and systematically. Some researches report a human verified segmentation with thousands of nuclei, whereas a single whole slide image may contain up to million. The main obstacle lies in the difficulty of obtaining such a large number of validated nuclei, which is essentially an impossible task for pathologist. We propose a systematic validation and evaluation approach based on large scale image synthesis. This could facilitate a more quantitatively validated study for current and future histopathology image analysis field.

  9. Digital Sequences and a Time Reversal-Based Impact Region Imaging and Localization Method

    PubMed Central

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Qian, Weifeng

    2013-01-01

    To reduce time and cost of damage inspection, on-line impact monitoring of aircraft composite structures is needed. A digital monitor based on an array of piezoelectric transducers (PZTs) is developed to record the impact region of impacts on-line. It is small in size, lightweight and has low power consumption, but there are two problems with the impact alarm region localization method of the digital monitor at the current stage. The first one is that the accuracy rate of the impact alarm region localization is low, especially on complex composite structures. The second problem is that the area of impact alarm region is large when a large scale structure is monitored and the number of PZTs is limited which increases the time and cost of damage inspections. To solve the two problems, an impact alarm region imaging and localization method based on digital sequences and time reversal is proposed. In this method, the frequency band of impact response signals is estimated based on the digital sequences first. Then, characteristic signals of impact response signals are constructed by sinusoidal modulation signals. Finally, the phase synthesis time reversal impact imaging method is adopted to obtain the impact region image. Depending on the image, an error ellipse is generated to give out the final impact alarm region. A validation experiment is implemented on a complex composite wing box of a real aircraft. The validation results show that the accuracy rate of impact alarm region localization is approximately 100%. The area of impact alarm region can be reduced and the number of PZTs needed to cover the same impact monitoring region is reduced by more than a half. PMID:24084123

  10. Anisotropic noble metal nanoparticles: Synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics.

    PubMed

    Paramasivam, Gokul; Kayambu, Namitharan; Rabel, Arul Maximus; Sundramoorthy, Ashok K; Sundaramurthy, Anandhakumar

    2017-02-01

    Anisotropic nanoparticles have fascinated scientists and engineering communities for over a century because of their unique physical and chemical properties. In recent years, continuous advances in design and fabrication of anisotropic nanoparticles have opened new avenues for application in various areas of biology, chemistry and physics. Anisotropic nanoparticles have the plasmon absorption in the visible as well as near-infrared (NIR) region, which enables them to be used for crucial applications such as biological imaging, medical diagnostics and therapy ("theranostics"). Here, we describe the progress in anisotropic nanoparticles achieved since the millennium in the area of preparation including various shapes and modification of the particle surface, and in areas of application by providing examples of applications in biosensing, bio-imaging, drug delivery and theranostics. Furthermore, we also explain various mechanisms involved in cellular uptake of anisotropic nanoparticles, and conclude with our opinion on various obstacles that limit their applications in biomedical field. Anisotropy at the molecular level has always fascinated scientists and engineering communities for over a century, however, the research on novel methods through which shape and size of nanoparticles can be precisely controlled has opened new avenues for anisotropic nanoparticles in various areas of biology, chemistry and physics. In this manuscript, we describe progress achieved since the millennium in the areas of preparation of various shapes of anisotropic nanoparticles, investigate various methods involved in modifying the surface of these NPs, and provide examples of applications in biosensing and bio-imaging, drug delivery and theranostics. We also present mechanisms involved in cellular uptake of nanoparticles, describe different methods of preparation of anisotropic nanoparticles including biomimetic and photochemical synthesis, and conclude with our opinion on various obstacles that limit their applications in biomedical field. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Convenient and Efficient Method for Quality Control Analysis of 18F-Fluorocholine: For a Small Scale GMP-based Radiopharmaceuticals Laboratory Set-up.

    PubMed

    Hassan, Hishar; Abu Bakar, Suharzelim; Halim, Khairul Najah Che A; Idris, Jaleezah; Nordin, Abdul Jalil

    2016-01-01

    Prostate cancer continues to be the most prevalent cancer in men in Malaysia. As time progresses, the prospect of PET imaging modality in diagnosis of prostate cancer is promising, with on-going improvement on novel tracers. Among all tracers, 18F-Fluorocholine is reported to be a reputable tracer and reliable diagnostic technique for prostate imaging. Nonetheless, only 18F-Fluorodeoxyglucose (18F-FDG) is available and used in most oncology cases in Malaysia. With a small scale GMP-based radiopharmaceuticals laboratory set-up, initial efforts have been taken to put Malaysia on 18F-Fluorocholine map. This article presents a convenient, efficient and reliable method for quality control analysis of 18F-Fluorocholine. Besides, the aim of this research work is to assist local GMP radiopharmaceuticals laboratories and local authority in Malaysia for quality control analysis of 18F-Fluorocholine guideline. In this study, prior to synthesis, quality control analysis method for 18F-Fluorocholine was developed and validated, by adapting the equipment set-up used in 18F-Fluorodeoxyglucose (18FFDG) routine production. Quality control on the 18F-Fluorocholine was performed by means of pH, radionuclidic identity, radio-high performance liquid chromatography equipped with ultraviolet, radio- thin layer chromatography, gas chromatography and filter integrity test. Post-synthesis; the pH of 18F-Fluorocholine was 6.42 ± 0.04, with half-life of 109.5 minutes (n = 12). The radiochemical purity was consistently higher than 99%, both in radio-high performance liquid chromatography equipped with ultraviolet (r-HPLC; SCX column, 0.25 M NaH2PO4: acetonitrile) and radio-thin layer chromatography method (r-TLC). The calculated relative retention time (RRT) in r-HPLC was 1.02, whereas the retention factor (Rf) in r-TLC was 0.64. Potential impurities from 18F-Fluorocholine synthesis such as ethanol, acetonitrile, dimethylethanolamine and dibromomethane were determined in gas chromatography. Using our parameters, (capillary column: DB-200, 30 m x 0.53 mm x 1 um) and oven temperature of 35°C (isothermal), all compounds were well resolved and eluted within 3 minutes. Level of ethanol and acetonitrile in 18F-Fluorocholine were detected below threshold limit; less than 5 mg/ml and 0.41 mg/ml respectively. Meanwhile, dimethylethanolamine and dibromomethane were undetectable. A convenient, efficient and reliable quality control analysis work-up procedure for 18FFluorocholine has been established and validated to comply all the release criteria. The convenient method of quality control analysis may provide a guideline to local GMP radiopharmaceutical laboratories to start producing 18F-Fluorocholine as a tracer for prostate cancer imaging.

  12. Synthesis of Multispectral Bands from Hyperspectral Data: Validation Based on Images Acquired by AVIRIS, Hyperion, ALI, and ETM+

    NASA Technical Reports Server (NTRS)

    Blonksi, Slawomir; Gasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki

    2001-01-01

    Multispectral data requirements for Earth science applications are not always studied rigorously studied before a new remote sensing system is designed. A study of the spatial resolution, spectral bandpasses, and radiometric sensitivity requirements of real-world applications would focus the design onto providing maximum benefits to the end-user community. To support systematic studies of multispectral data requirements, the Applications Research Toolbox (ART) has been developed at NASA's Stennis Space Center. The ART software allows users to create and assess simulated datasets while varying a wide range of system parameters. The simulations are based on data acquired by existing multispectral and hyperspectral instruments. The produced datasets can be further evaluated for specific end-user applications. Spectral synthesis of multispectral images from hyperspectral data is a key part of the ART software. In this process, hyperspectral image cubes are transformed into multispectral imagery without changes in spatial sampling and resolution. The transformation algorithm takes into account spectral responses of both the synthesized, broad, multispectral bands and the utilized, narrow, hyperspectral bands. To validate the spectral synthesis algorithm, simulated multispectral images are compared with images collected near-coincidentally by the Landsat 7 ETM+ and the EO-1 ALI instruments. Hyperspectral images acquired with the airborne AVIRIS instrument and with the Hyperion instrument onboard the EO-1 satellite were used as input data to the presented simulations.

  13. Screening of a virtual mirror-image library of natural products.

    PubMed

    Noguchi, Taro; Oishi, Shinya; Honda, Kaori; Kondoh, Yasumitsu; Saito, Tamio; Ohno, Hiroaki; Osada, Hiroyuki; Fujii, Nobutaka

    2016-06-08

    We established a facile access to an unexplored mirror-image library of chiral natural product derivatives using d-protein technology. In this process, two chemical syntheses of mirror-image substances including a target protein and hit compound(s) allow the lead discovery from a virtual mirror-image library without the synthesis of numerous mirror-image compounds.

  14. Self-heating and failure in scalable graphene devices

    DOE PAGES

    Beechem, Thomas E.; Shaffer, Ryan A.; Nogan, John; ...

    2016-06-09

    Self-heating induced failure of graphene devices synthesized from both chemical vapor deposition (CVD) and epitaxial means is compared using a combination of infrared thermography and Raman imaging. Despite a larger thermal resistance, CVD devices dissipate >3x the amount of power before failure than their epitaxial counterparts. The discrepancy arises due to morphological irregularities implicit to the graphene synthesis method that induce localized heating. As a result, morphology, rather than thermal resistance, therefore dictates power handling limits in graphene devices.

  15. Synthesis of silver nanowires using hydrothermal technique for flexible transparent electrode application

    NASA Astrophysics Data System (ADS)

    Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.; Jayaraj, M. K.

    2016-05-01

    Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.

  16. Synthesis of silver nanowires using hydrothermal technique for flexible transparent electrode application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.

    2016-05-23

    Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.

  17. One-pot production of 18F-biotin by conjugation with 18F-FDG for pre-targeted imaging: synthesis and radio-labelling of a PEGylated precursor.

    PubMed

    Simpson, Michael; Trembleau, Laurent; Cheyne, Richard W; Smith, Tim A D

    2011-02-01

    The biotin-avidin affinity system is exploited in pre-targeted imaging using avidin-conjugated antibodies. (18)F-FDG is available at all PET centres. (18)F-FDG forms oximes by reaction with oxyamine. Herein we describe the synthesis of oxyamine-funtionalised biotin, its (18)F-labelling by conjugation with (18)F-FDG and confirm its ability to interact with avidin. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Investigation of radio astronomy image processing techniques for use in the passive millimetre-wave security screening environment

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher T.; Hutchinson, Simon; Salmon, Neil A.; Wilkinson, Peter N.; Cameron, Colin D.

    2014-06-01

    Image processing techniques can be used to improve the cost-effectiveness of future interferometric Passive MilliMetre Wave (PMMW) imagers. The implementation of such techniques will allow for a reduction in the number of collecting elements whilst ensuring adequate image fidelity is maintained. Various techniques have been developed by the radio astronomy community to enhance the imaging capability of sparse interferometric arrays. The most prominent are Multi- Frequency Synthesis (MFS) and non-linear deconvolution algorithms, such as the Maximum Entropy Method (MEM) and variations of the CLEAN algorithm. This investigation focuses on the implementation of these methods in the defacto standard for radio astronomy image processing, the Common Astronomy Software Applications (CASA) package, building upon the discussion presented in Taylor et al., SPIE 8362-0F. We describe the image conversion process into a CASA suitable format, followed by a series of simulations that exploit the highlighted deconvolution and MFS algorithms assuming far-field imagery. The primary target application used for this investigation is an outdoor security scanner for soft-sided Heavy Goods Vehicles. A quantitative analysis of the effectiveness of the aforementioned image processing techniques is presented, with thoughts on the potential cost-savings such an approach could yield. Consideration is also given to how the implementation of these techniques in CASA might be adapted to operate in a near-field target environment. This may enable a much wider usability by the imaging community outside of radio astronomy and thus would be directly relevant to portal screening security systems in the microwave and millimetre wave bands.

  19. Photocontrol of Anthocyanin Synthesis

    PubMed Central

    Mancinelli, A. L.; Yang, Chia-Ping Huang; Lindquist, P.; Anderson, O. R.; Rabino, I.

    1975-01-01

    Streptomycin enhances the synthesis of anthocyanins and inhibits the synthesis of chlorophylls and the development of chloroplasts in dark-grown seedlings of cabbage (Brassica oleracea), mustard (Sinapis alba), tomato (Lycopersicon esculentum), and turnip (Brassica rapa) exposed to prolonged periods of irradiation in various spectral regions. These results suggest that the contribution of photosynthesis to light-dependent high irradiance reaction anthocyanin synthesis in seedlings of cabbage, mustard, tomato, and turnip is minimal, if any at all. So far, phytochrome is the only photoreceptor whose action in the control of light-dependent anthocyanin synthesis in seedlings of cabbage, mustard, tomato, and turnip has been satisfactorily demonstrated. Images PMID:16659061

  20. Facile and green synthesis of fluorescent carbon dots with tunable emission for sensors and cells imaging.

    PubMed

    Diao, Haipeng; Li, Tingting; Zhang, Rong; Kang, Yu; Liu, Wen; Cui, Yanhua; Wei, Shuangyan; Wang, Ning; Li, Lihong; Wang, Haojiang; Niu, Weifen; Sun, Tijian

    2018-07-05

    Most carbon dots (CDs) conventional fabrication approaches produce single colored fluorescent materials, different methods are required to synthesize distinct carbon dots for specific optical applications. Herein, using one-pot hydrothermal treatment of Syringa obtata Lindl, a facile, low-cost and green assay is achieved in the controllable synthesis of blue and green fluorescent carbon dots. The fluorescent emission of CDs can be well-tuned by adding sodium hydroxide in the precursor solution. Blue fluorescent CDs are applied to Fe 3+ sensing with a low detection limit of 0.11 μM of linear range from 0.5 to 80 μM, and then further extended to analysis river water samples. Green fluorescent CDs can be applied to pH detection, which show a remarkable linear enhancement in the green fluorescence emission region when the pH is increased from 1.98 to 8.95. Eventually, the detection of Fe 3+ and pH are applied for the living cells fluorescent images in MCF-7 cells are achieved successfully, indicating as-synthesized CDs potential toward diverse application as promising candidate. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. One-step synthesis of NaLu80-xGdxF4:Yb183+/Er23+(Tm3+) upconversion nanoparticles for in vitro cell imaging.

    PubMed

    Gerelkhuu, Zayakhuu; Huy, Bui The; Sharipov, Mirkomil; Jung, Dasom; Phan, The-Long; Conte, Eric D; Lee, Yong-Ill

    2018-05-01

    Upconversion nanoparticles (UCNPs) possess a unique type of photoluminescence (PL) in which lower-energy excitation is converted into higher-energy emission via multi-photon absorption processes. In this work, we have used a facile one-step hydrothermal method promoted water solubility to synthesis NaLuGdF 4 :Yb 3+ /Er 3+ (Tm 3+ ) UCNPs coated with malonic acid (MA). Scanning electron microscopy images and X-ray diffraction patterns reveal sphere-shaped UCNPs with an average size of ~80nm crystallized in the cubic NaLuF 4 structure. The characteristic vibrations of cubic UCNPs have been taken into account by using Fourier-transform infrared spectroscopy. Based on PL studies, we have determined an optimal concentration of Gd 3+ doping. The dependence of upconversion PL intensity on Gd 3+ concentration is discussed via the results of magnetization measurements, which is related to the coupling/uncoupling of Gd 3+ ions. Particularly, our study reveals that carboxyl-functionalized NaLuGdF 4 :Yb 3+ /Er 3+ (Tm 3+ ) UCNPs have a relatively high cell viability with HeLa cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Green synthesis and characterization of graphene nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Farnosh; Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir; Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran

    Highlights: • For the first time, we have synthesized graphene nanosheets in the presence of pomegranate juice. • Here pomegranate juice was used not only as reductant but also as capping agent. • FT-IR, XRD, SEM, EDS and TEM were used to characterize the samples. • According to TEM image, graphene nanosheet is individually exfoliated after stirring for 24 h. • As shown in the TEM image, graphene monolayer is obtained. - Abstract: For the first time, we have successfully synthesized graphene nanosheets in the presence of pomegranate juice. In this approach, pomegranate juice was used not only as reductantmore » but also as capping agent to form graphene nanosheets. At first, the improved Hummer method to oxidize graphite for the synthesis of graphene oxide (GO) was applied, and then the as-produced graphene oxide was reduced by pomegranate juice to form graphene nanosheets. Fourier transformed infrared (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and raman were used to characterize the samples. The results obtained from the characterization techniques proved high purity of the final products.« less

  3. Impact of labile metal nanoparticles on cellular homeostasis. Current developments in imaging, synthesis and applications.

    PubMed

    Chevallet, Mireille; Veronesi, Giulia; Fuchs, Alexandra; Mintz, Elisabeth; Michaud-Soret, Isabelle; Deniaud, Aurélien

    2017-06-01

    The use of nanomaterials is constantly increasing in electronics, cosmetics, food additives, and is emerging in advanced biomedical applications such as theranostics, bio-imaging and therapeutics. However their safety raises concerns and requires appropriate methods to analyze their fate in vivo. In this review, we describe the current knowledge about the toxicity of labile metal (ZnO, CuO and Ag) nanoparticles (NPs) both at the organism and cellular levels, and describe the pathways that are triggered to maintain cellular homeostasis. We also describe advanced elemental imaging approaches to analyze intracellular NP fate. Finally, we open the discussion by presenting recent developments in terms of synthesis and applications of Ag and CuO NPs. Labile metal nanoparticles (MeNPs) release metal ions that trigger a cellular response involving biomolecules binding to the ions followed by regulation of the redox balance. In addition, specific mechanisms are set up by the cell in response to physiological ions such as Cu(I) and Zn(II). Among all types of NPs, labile MeNPs induce the strongest inflammatory responses which are most probably due to the combined effects of the NPs and of its released ions. Interestingly, recent developments in imaging technologies enable the intracellular visualization of both the NPs and their ions and promise new insights into nanoparticle fate and toxicity. The exponential use of nanotechnologies associated with the difficulties of assessing their impact on health and the environment has prompted scientists to develop novel methodologies to characterize these nanoobjects in a biological context. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Cellular imaging using BODIPY-, pyrene- and phthalocyanine-based conjugates.

    PubMed

    Bizet, Faustine; Ipuy, Martin; Bernhard, Yann; Lioret, Vivian; Winckler, Pascale; Goze, Christine; Perrier-Cornet, Jean-Marie; Decréau, Richard A

    2018-01-15

    Fluorescent Probes aimed at absorbing in the blue/green region of the spectrum and emitting in the green/red have been synthesized (as the form of dyads-pentads), studied by spectrofluorimetry, and used for cellular imaging. The synthesis of phthalocyanine-pyrene 1 was achieved by cyclotetramerization of pyrenyldicyanobenzene, whereas phthalocyanine-BODIPY 2c was synthesized by Sonogashira coupling between tetraiodophthalocyanine and meso-alkynylBODIPY. The standard four-steps BODIPY synthesis was applied to the BODIPY-pyrene dyad 3 starting from pyrenecarbaldehyde and dimethylpyrrole. 1 H, 13 C, 19 F, 11 BNMR, ICP, MS, and UV/Vis spectroscopic analyses demonstrated that 2c is a mixture of BODIPY-Pc conjugates corresponding to an average ratio of 2.5 BODIPY per Pc unit, where its bis, tris, tetrakis components could not be separated. Fluorescence emission studies (μM concentration in THF) showed that the design of the probes allowed excitation of their antenna (pyrene, BODIPY) in the blue/green region of the spectrum, and subsequent transfer to the acceptor platform (BODIPY, phthalocyanine) followed by its emission in the green/red (with up to 140-350 nm overall Stokes shifts). The fluorescent probes were used for cellular imaging of B16F10 melanoma cells upon solubilization in 1% DMSO containing RPMI or upon encapsulation in liposomes (injection method). Probes were used at 1-10 μM concentrations, cells were fixed with methanol and imaged by biphoton and/or confocal microscopy, showing that probes could achieve the staining of cells membranes and not the nucleus. Copyright © 2017. Published by Elsevier Ltd.

  5. Composite-Nanoparticles Thermal History Sensors

    DTIC Science & Technology

    2014-05-01

    al. Lead Telluride and Selenide Nanostructures Under Different Hydrothermal Synthesis Conditions Fig. 5. SEM image of PbTe solid nano- and micro-cubes...Lead Telluride and Selenide Nanostructures Under Different Hydrothermal Synthesis Conditions For the preparation of PbSe microflowers, a similar pro...R C H A R TIC LE Poudel et al. Lead Telluride and Selenide Nanostructures Under Different Hydrothermal Synthesis Conditions For the preparation of

  6. AMBER-NACO aperture-synthesis imaging of the half-obscured central star and the edge-on disk of the red giant L2 Puppis

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.; Schertl, D.; Hofmann, K.-H.; Weigelt, G.

    2015-09-01

    Aims: The red giant L2 Pup started a dimming event in 1994, which is considered to be caused by the ejection of dust clouds. We present near-IR aperture-synthesis imaging of L2 Pup achieved by combining data from VLT/NACO and the AMBER instrument of the Very Large Telescope Interferometer (VLTI). Our aim is to spatially resolve the innermost region of the circumstellar environment. Methods: We carried out speckle interferometric observations at 2.27 μm with VLT/NACO and long-baseline interferometric observations with VLTI/AMBER at 2.2-2.35 μm with baselines of 15-81 m. We also extracted an 8.7 μm image from the mid-IR VLTI instrument MIDI. Results: The diffraction-limited image obtained by bispectrum speckle interferometry with NACO with a spatial resolution of 57 mas shows an elongated component. The aperture-synthesis imaging combining the NACO speckle data and AMBER data with a spatial resolution of 5.6 × 7.3 mas further resolves not only this elongated component, but also the central star. The reconstructed image reveals that the elongated component is a nearly edge-on disk with a size of ~180 × 50 mas lying in the E-W direction, and furthermore, that the southern hemisphere of the central star is severely obscured by the equatorial dust lane of the disk. The angular size of the disk is consistent with the distance that the dust clouds that were ejected at the onset of the dimming event should have traveled by the time of our observations, if we assume that the dust clouds moved radially. This implies that the formation of the disk may be responsible for the dimming event. The 8.7 μm image with a spatial resolution of 220 mas extracted from the MIDI data taken in 2004 (seven years before the AMBER and NACO observations) shows an approximately spherical envelope without a signature of the disk. This suggests that the mass loss before the dimming event may have been spherical. Based on AMBER, NACO, and MIDI observations made with the Very Large Telescope and Very Large Telescope Interferometer of the European Southern Observatory. Program ID: 074.D-0075(A), 074.D-0101(A), 074.D-0198(B), 088.D-0150(A/B), and 288.D-5041(A). Appendices are available in electronic form at http://www.aanda.org

  7. Multi-wavelengths digital holography: reconstruction, synthesis and display of holograms using adaptive transformation.

    PubMed

    Memmolo, P; Finizio, A; Paturzo, M; Ferraro, P; Javidi, B

    2012-05-01

    A method based on spatial transformations of multiwavelength digital holograms and the correlation matching of their numerical reconstructions is proposed, with the aim to improve superimposition of different color reconstructed images. This method is based on an adaptive affine transform of the hologram that permits management of the physical parameters of numerical reconstruction. In addition, we present a procedure to synthesize a single digital hologram in which three different colors are multiplexed. The optical reconstruction of the synthetic hologram by a spatial light modulator at one wavelength allows us to display all color features of the object, avoiding loss of details.

  8. Molecular Origin of Color Variation in Firefly (Beetle) Bioluminescence: A Chemical Basis for Biological Imaging.

    PubMed

    Hirano, Takashi

    2016-01-01

    Firefly shows bioluminescence by "luciferin-luciferase" (L-L) reaction using luciferin, luciferase, ATP and O2. The chemical photon generation by an enzymatic reaction is widely utilized for analytical methods including biological imaging in the life science fields. To expand photondetecting analyses with firefly bioluminescence, it is important for users to understand the chemical basis of the L-L reaction. In particular, the emission color variation of the L-L reaction is one of the distinguishing characteristics for multicolor luciferase assay and in vivo imaging. From the viewpoint of fundamental chemistry, this review explains the recent progress in the studies on the molecular mechanism of emission color variation after showing the outline of the reaction mechanism of the whole L-L reaction. On the basis of the mechanism, the progresses in organic synthesis of luciferin analogs modulating their emission colors are also presented to support further developments of red/near infrared in vivo biological imaging utility of firefly bioluminescence.

  9. Calibrators measurement system for headlamp tester of motor vehicle base on machine vision

    NASA Astrophysics Data System (ADS)

    Pan, Yue; Zhang, Fan; Xu, Xi-ping; Zheng, Zhe

    2014-09-01

    With the development of photoelectric detection technology, machine vision has a wider use in the field of industry. The paper mainly introduces auto lamps tester calibrator measuring system, of which CCD image sampling system is the core. Also, it shows the measuring principle of optical axial angle and light intensity, and proves the linear relationship between calibrator's facula illumination and image plane illumination. The paper provides an important specification of CCD imaging system. Image processing by MATLAB can get flare's geometric midpoint and average gray level. By fitting the statistics via the method of the least square, we can get regression equation of illumination and gray level. It analyzes the error of experimental result of measurement system, and gives the standard uncertainty of synthesis and the resource of optical axial angle. Optical axial angle's average measuring accuracy is controlled within 40''. The whole testing process uses digital means instead of artificial factors, which has higher accuracy, more repeatability and better mentality than any other measuring systems.

  10. Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications

    NASA Astrophysics Data System (ADS)

    Liu, Fuyao; He, Xiuxia; Chen, Hongda; Zhang, Junping; Zhang, Huimao; Wang, Zhenxin

    2015-08-01

    An ultrasmall hydrodynamic diameter is a critical factor for the renal clearance of nanoparticles from the body within a reasonable timescale. However, the integration of diagnostic and therapeutic components into a single ultrasmall nanoparticle remains challenging. In this study, pH-activated nanodots (termed Fe-CPNDs) composed of coordination polymers were synthesized via a simple and scalable method based on coordination reactions among Fe3+, gallic acid and poly(vinylpyrrolidone) at ambient conditions. The Fe-CPNDs exhibited ultrasmall (5.3 nm) hydrodynamic diameters and electrically neutral surfaces. The Fe-CPNDs also exhibited pH-activatable magnetic resonance imaging contrast and outstanding photothermal performance. The features of Fe-CPNDs greatly increased the tumour-imaging sensitivity and facilitated renal clearance after injection in animal models in vivo. Magnetic resonance imaging-guided photothermal therapy using Fe-CPNDs completely suppressed tumour growth. These findings demonstrate that Fe-CPNDs constitute a new class of renal clearable nanomedicine for photothermal therapy and molecular imaging.

  11. Facile synthesis of a silver nanoparticles/polypyrrole nanocomposite for non-enzymatic glucose determination.

    PubMed

    Poletti Papi, Maurício A; Caetano, Fabio R; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2017-06-01

    The present work describes the synthesis of a new conductive nanocomposite based on polypyrrole (PPy) and silver nanoparticles (PPy-AgNP) based on a facile reverse microemulsion method and its application as a non-enzymatic electrochemical sensor for glucose detection. Focusing on the best sensor performance, all experimental parameters used in the synthesis of nanocomposite were optimized based on its electrochemical response for glucose. Characterization of the optimized material by FT-IR, cyclic voltammetry, and DRX measurements and TEM images showed good monodispersion of semispherical Ag nanoparticles capped by PPy structure, with size average of 12±5nm. Under the best analytical conditions, the proposed sensor exhibited glucose response in linear dynamic range of 25 to 2500μmolL -1 , with limit of detection of 3.6μmolL -1 . Recovery studies with human saliva samples varying from 99 to 105% revealed the accuracy and feasibility of a non-enzymatic electrochemical sensor for glucose determination by easy construction and low-cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI

    PubMed Central

    Bar-Shir, Amnon; Liu, Guanshu; Greenberg, Marc M; Bulte, Jeff W M; Gilad, Assaf A

    2013-01-01

    In experiments involving transgenic animals or animals treated with transgenic cells, it is important to have a method to monitor the expression of the relevant genes longitudinally and noninvasively. An MRI-based reporter gene enables monitoring of gene expression in the deep tissues of living subjects. This information can be co-registered with detailed high-resolution anatomical and functional information. We describe here the synthesis of the reporter probe, 5-methyl-5,6-dihydrothymidine (5-MDHT), which can be used for imaging of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene expression in rodents by MRI. The protocol also includes data acquisition and data processing routines customized for chemical exchange saturation transfer (CEST) contrast mechanisms. The dihydropyrimidine 5-MDHT is synthesized through a catalytic hydrogenation of the 5,6-double bond of thymidine to yield 5,6-dihydrothymidine, which is methylated on the C-5 position of the resulting saturated pyrimidine ring. The synthesis of 5-MDHT can be completed within 5 d, and the compound is stable for more than 1 year. PMID:24177294

  13. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis

    NASA Astrophysics Data System (ADS)

    Philip, Daizy

    2010-03-01

    Biological synthesis of gold and silver nanoparticles of various shapes using the leaf extract of Hibiscus rosa sinensis is reported. This is a simple, cost-effective, stable for long time and reproducible aqueous room temperature synthesis method to obtain a self-assembly of Au and Ag nanoparticles. The size and shape of Au nanoparticles are modulated by varying the ratio of metal salt and extract in the reaction medium. Variation of pH of the reaction medium gives silver nanoparticles of different shapes. The nanoparticles obtained are characterized by UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR spectroscopy. Crystalline nature of the nanoparticles in the fcc structure are confirmed by the peaks in the XRD pattern corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes, bright circular spots in the selected area electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. From FTIR spectra it is found that the Au nanoparticles are bound to amine groups and the Ag nanoparticles to carboxylate ion groups.

  14. Markov source model for printed music decoding

    NASA Astrophysics Data System (ADS)

    Kopec, Gary E.; Chou, Philip A.; Maltz, David A.

    1995-03-01

    This paper describes a Markov source model for a simple subset of printed music notation. The model is based on the Adobe Sonata music symbol set and a message language of our own design. Chord imaging is the most complex part of the model. Much of the complexity follows from a rule of music typography that requires the noteheads for adjacent pitches to be placed on opposite sides of the chord stem. This rule leads to a proliferation of cases for other typographic details such as dot placement. We describe the language of message strings accepted by the model and discuss some of the imaging issues associated with various aspects of the message language. We also point out some aspects of music notation that appear problematic for a finite-state representation. Development of the model was greatly facilitated by the duality between image synthesis and image decoding. Although our ultimate objective was a music image model for use in decoding, most of the development proceeded by using the evolving model for image synthesis, since it is computationally far less costly to image a message than to decode an image.

  15. GASPACHO: a generic automatic solver using proximal algorithms for convex huge optimization problems

    NASA Astrophysics Data System (ADS)

    Goossens, Bart; Luong, Hiêp; Philips, Wilfried

    2017-08-01

    Many inverse problems (e.g., demosaicking, deblurring, denoising, image fusion, HDR synthesis) share various similarities: degradation operators are often modeled by a specific data fitting function while image prior knowledge (e.g., sparsity) is incorporated by additional regularization terms. In this paper, we investigate automatic algorithmic techniques for evaluating proximal operators. These algorithmic techniques also enable efficient calculation of adjoints from linear operators in a general matrix-free setting. In particular, we study the simultaneous-direction method of multipliers (SDMM) and the parallel proximal algorithm (PPXA) solvers and show that the automatically derived implementations are well suited for both single-GPU and multi-GPU processing. We demonstrate this approach for an Electron Microscopy (EM) deconvolution problem.

  16. Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Pugazhendhi, S.; Palanisamy, P. K.; Jayavel, R.

    2018-05-01

    Green synthesis techniques are developing as more simplistic and eco-friendly approach for the synthesis of metal nanoparticles compared to chemical reduction methods. Herein we report Synthesis of highly stable silver nanoparticles using Mirabillis jalapa seed extract as a reducing and capping agent. The as-prepared silver nanoparticles were characterized by UV-vis spectroscopy (UV-vis) to confirm the formation of silver nanoparticles by its characteristic surface plasmon resonance peak observed at 420 nm. The Powder X-ray diffraction (P-XRD) revealed the structure and crystalline nature of synthesized silver nanoparticles, The Fourier transform infra-red spectroscopic (FT-IR) revealed the presence of the biomolecules in the extract that acted as reducing as well stabilizing agent. The high resolution transmission electron microscopic (HRTEM) images divulged that the synthesized silver nanoparticles were spherical in shape and poly dispersed. The energy dispersive X-ray diffraction (EDX) profile revealed the elements present in the as-synthesized colloidal silver nanoparticles and its percentages. The Zeta potential measured for silver nanoparticles evidenced that the prepared silver nanoparticles owned high stability in room temperature itself. The as-synthesized silver nanoparticles (AgNPs) in colloidal form were showed good antimicrobial effects and it's were found to exhibit third order optical nonlinearity as studied by Z-scan technique using 532 nm Nd:YAG (SHG) CW laser beam (COHERENT-Compass 215 M-50 diode pumped) output as source. The negative nonlinearity observed was well utilized for the study of optical limiting behavior of the silver nanoparticles.

  17. How to Perform a Systematic Review and Meta-analysis of Diagnostic Imaging Studies.

    PubMed

    Cronin, Paul; Kelly, Aine Marie; Altaee, Duaa; Foerster, Bradley; Petrou, Myria; Dwamena, Ben A

    2018-05-01

    A systematic review is a comprehensive search, critical evaluation, and synthesis of all the relevant studies on a specific (clinical) topic that can be applied to the evaluation of diagnostic and screening imaging studies. It can be a qualitative or a quantitative (meta-analysis) review of available literature. A meta-analysis uses statistical methods to combine and summarize the results of several studies. In this review, a 12-step approach to performing a systematic review (and meta-analysis) is outlined under the four domains: (1) Problem Formulation and Data Acquisition, (2) Quality Appraisal of Eligible Studies, (3) Statistical Analysis of Quantitative Data, and (4) Clinical Interpretation of the Evidence. This review is specifically geared toward the performance of a systematic review and meta-analysis of diagnostic test accuracy (imaging) studies. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Synthesis of biocompatible SiO2 coated ZnO quantum dots for cell imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Wang, Qian; Chen, Haiyan; Gu, Yueqing

    2014-09-01

    Quantum dots (QDs) is a promising candidate for biomedical imaging. However, the bio-toxicity of traditional quantum dots obstructed their further application seriously. In this work, a simple solution growth method was utilized to synthesize ZnO QDs. However, their self-assemble feature makes them unstable in aqueous solution. Furthermore, (3-Aminopropyl) triethoxysilane was selected as a capping agent to stabilize ZnO QDs and then ZnO@SiO2 nanoparticles were obtained. They dispersed excellently in water and exhibited favorable fluorescence properties owing to the protection of silane. The biocompatability of ZnO@SiO2 nanoparticles was verified by MTT assy. The cell affinity studies demonstrated that ZnO@SiO2 nanoparticles could be uptaken by cells efficiently. Therefore, the as-prepared ZnO@SiO2 nanoparticles is a promising candidate for applications in cell imaging.

  19. Facial Age Synthesis Using Sparse Partial Least Squares (The Case of Ben Needham).

    PubMed

    Bukar, Ali M; Ugail, Hassan

    2017-09-01

    Automatic facial age progression (AFAP) has been an active area of research in recent years. This is due to its numerous applications which include searching for missing. This study presents a new method of AFAP. Here, we use an active appearance model (AAM) to extract facial features from available images. An aging function is then modelled using sparse partial least squares regression (sPLS). Thereafter, the aging function is used to render new faces at different ages. To test the accuracy of our algorithm, extensive evaluation is conducted using a database of 500 face images with known ages. Furthermore, the algorithm is used to progress Ben Needham's facial image that was taken when he was 21 months old to the ages of 6, 14, and 22 years. The algorithm presented in this study could potentially be used to enhance the search for missing people worldwide. © 2017 American Academy of Forensic Sciences.

  20. Software-based high-level synthesis design of FPGA beamformers for synthetic aperture imaging.

    PubMed

    Amaro, Joao; Yiu, Billy Y S; Falcao, Gabriel; Gomes, Marco A C; Yu, Alfred C H

    2015-05-01

    Field-programmable gate arrays (FPGAs) can potentially be configured as beamforming platforms for ultrasound imaging, but a long design time and skilled expertise in hardware programming are typically required. In this article, we present a novel approach to the efficient design of FPGA beamformers for synthetic aperture (SA) imaging via the use of software-based high-level synthesis techniques. Software kernels (coded in OpenCL) were first developed to stage-wise handle SA beamforming operations, and their corresponding FPGA logic circuitry was emulated through a high-level synthesis framework. After design space analysis, the fine-tuned OpenCL kernels were compiled into register transfer level descriptions to configure an FPGA as a beamformer module. The processing performance of this beamformer was assessed through a series of offline emulation experiments that sought to derive beamformed images from SA channel-domain raw data (40-MHz sampling rate, 12 bit resolution). With 128 channels, our FPGA-based SA beamformer can achieve 41 frames per second (fps) processing throughput (3.44 × 10(8) pixels per second for frame size of 256 × 256 pixels) at 31.5 W power consumption (1.30 fps/W power efficiency). It utilized 86.9% of the FPGA fabric and operated at a 196.5 MHz clock frequency (after optimization). Based on these findings, we anticipate that FPGA and high-level synthesis can together foster rapid prototyping of real-time ultrasound processor modules at low power consumption budgets.

  1. Synthesis and photocatalytic property of Zinc Oxide (ZnO) fine particle using flame spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Widiyandari, Hendri; Ayu Ketut Umiati, Ngurah; Dwi Herdianti, Rizki

    2018-05-01

    Advance oxidation process (AOP) using photocatalysis constitute a promising technology for the treatment of wastewaters containing non-easily removable organic compound. Zinc oxide (ZnO) is one of efficient photocatalyst materials. This research reported synthesis of ZnO fine particle from zinc nitrate hexahydrate using Flame Spray Pyrolysis (FSP) method. In this method, oxygen (O2) gas were used as oxidizer and LPG (liquid petroleum gas) were used as fuel. The effect of O2 gas flow rate during ZnO particle fabrication to the microstructure, optical and photocatalytic properties were systematically discussed. The photocatalytic activity of ZnO was tested for the degradation of amaranth dye with initial concentration of 10 ppm under irradiation of solar simulator. The rate of decrease in amaranth concentration was measured using UV-Visible spectrophotometer. The ZnO synthesized using FSP has a hexagonal crystalline structure. Scanning electron microscope images showed that ZnO has a spherical formed which was the mixture of solid and hollow particles. The optimum condition for amaranth degradation was shown by ZnO produced at a flow rate of 1.5 L/min which able to degrade amaranth dye up to 95,3 % at 75 minutes irradiation.

  2. In-vitro bio-fabrication of silver nanoparticle using Adhathoda vasica leaf extract and its anti-microbial activity

    NASA Astrophysics Data System (ADS)

    Nazeruddin, G. M.; Prasad, N. R.; Prasad, S. R.; Garadkar, K. M.; Nayak, Arpan Kumar

    2014-07-01

    It is well known that on treating the metallic salt solution with some plant extracts, a rapid reduction occurs leading to the formation of highly stable metal nanoparticles. Extracellular synthesis of metal nanoparticles using extracts of plants like Azadirachta indica (Neem), and Zingiber officinale (Ginger) has been reported to be successfully carried out. In this study we have developed a novel method to synthesize silver nanoparticles by mixing silver salt solution with leaf extract of Adhathoda vasica (Adulsa) without using any surfactant or external energy. By this method physiologically stable, bio-compatible Ag nanoparticles were formed which could be used for a variety of applications such as targeted drug delivery which ensures enhanced therapeutic efficacy and minimal side effects. With this method rapid synthesis of nanoparticles was observed to occur; i.e. reaction time was 1-2 h as compared to 2-4 days required by microorganisms. These nanoparticles were analyzed by various characterization techniques to reveal their morphology, chemical composition, and antimicrobial activity. TEM image of these NPs indicated the formation of spherical, non-uniform, poly-dispersed nanoparticles. A detailed study of anti-microbial activity of nanoparticles was carried out.

  3. Embedded Implementation of VHR Satellite Image Segmentation

    PubMed Central

    Li, Chao; Balla-Arabé, Souleymane; Ginhac, Dominique; Yang, Fan

    2016-01-01

    Processing and analysis of Very High Resolution (VHR) satellite images provide a mass of crucial information, which can be used for urban planning, security issues or environmental monitoring. However, they are computationally expensive and, thus, time consuming, while some of the applications, such as natural disaster monitoring and prevention, require high efficiency performance. Fortunately, parallel computing techniques and embedded systems have made great progress in recent years, and a series of massively parallel image processing devices, such as digital signal processors or Field Programmable Gate Arrays (FPGAs), have been made available to engineers at a very convenient price and demonstrate significant advantages in terms of running-cost, embeddability, power consumption flexibility, etc. In this work, we designed a texture region segmentation method for very high resolution satellite images by using the level set algorithm and the multi-kernel theory in a high-abstraction C environment and realize its register-transfer level implementation with the help of a new proposed high-level synthesis-based design flow. The evaluation experiments demonstrate that the proposed design can produce high quality image segmentation with a significant running-cost advantage. PMID:27240370

  4. Multifunctional gold nanorods for image-guided surgery and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Barriere, Clement; Qi, Ji; Garcia-Allende, P. Beatriz; Newton, Richard; Elson, Daniel S.

    2012-03-01

    Nanoparticles are viewed as a promising tool for numerous medical applications, for instance imaging and photothermal therapy (PTT) has been proposed using gold nanorods. We are developing multi-functional gold nanorods (m-GNRs) which have potential for image guided endoscopic surgery of tumour tissue with a modified laparoscope system. A new synthesis method potentially allows any useful acid functionalised molecules to be bonded at the surface. We have created fluorescent m-GNRs which can be used for therapy as they absorb light in the infrared, which may penetrate deep into the tissue and produce localised heating. We have performed a tissue based experiment to demonstrate the feasibility of fluorescence guided PTT using m- GNRs. Ex vivo tests were performed using sheep heart. This measurement, correlated with the fluorescence signal of the m-GNRs measured by the laparoscope allows the clear discrimination of the artery system containing m-GNRs. A laser diode was used to heat the m-GNRs and a thermal camera was able to record the heat distribution. These images were compared to the fluorescence images for validation.

  5. Richard Schrock, Robert Grubbs, and Metathesis Method in Organic Synthesis

    Science.gov Websites

    Organic Synthesis Resources with Additional Information Richard R. Schrock of the Massachusetts Institute Nobel Prize in Chemistry "for the development of the metathesis method in organic synthesis" ] Chauvin, Grubbs and Schrock "for the development of the metathesis method in organic synthesis,"

  6. Composite-Nanoparticles Thermal History Sensors

    DTIC Science & Technology

    2014-05-01

    Nanostructures Under Different Hydrothermal Synthesis Conditions Fig. 5. SEM image of PbTe solid nano- and micro-cubes obtained at 100 !C (a) and 160 !C (b...Nanostructures Under Different Hydrothermal Synthesis Conditions For the preparation of PbSe microflowers, a similar pro- cedure was followed with NaTeO3...Telluride and Selenide Nanostructures Under Different Hydrothermal Synthesis Conditions For the preparation of PbSe microflowers, a similar pro- cedure

  7. Feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.

    1991-01-01

    The following subject areas are covered: General Reflector Antenna Systems Program version 7(GRASP7); Multiple Reflector Analysis Program for Cylindrical Antennas (MRAPCA); Tri-Reflector 2D Synthesis Code (TRTDS); a geometrical optics and a physical optics synthesis techniques; beam scanning reflector, the type 2 and 6 reflectors, spherical reflector, and multiple reflector imaging systems; and radiometric array design.

  8. Evaluation of Pan-Sharpening Methods for Automatic Shadow Detection in High Resolution Images of Urban Areas

    NASA Astrophysics Data System (ADS)

    de Azevedo, Samara C.; Singh, Ramesh P.; da Silva, Erivaldo A.

    2017-04-01

    Finer spatial resolution of areas with tall objects within urban environment causes intense shadows that lead to wrong information in urban mapping. Due to the shadows, automatic detection of objects (such as buildings, trees, structures, towers) and to estimate the surface coverage from high spatial resolution is difficult. Thus, automatic shadow detection is the first necessary preprocessing step to improve the outcome of many remote sensing applications, particularly for high spatial resolution images. Efforts have been made to explore spatial and spectral information to evaluate such shadows. In this paper, we have used morphological attribute filtering to extract contextual relations in an efficient multilevel approach for high resolution images. The attribute selected for the filtering was the area estimated from shadow spectral feature using the Normalized Saturation-Value Difference Index (NSVDI) derived from pan-sharpening images. In order to assess the quality of fusion products and the influence on shadow detection algorithm, we evaluated three pan-sharpening methods - Intensity-Hue-Saturation (IHS), Principal Components (PC) and Gran-Schmidt (GS) through the image quality measures: Correlation Coefficient (CC), Root Mean Square Error (RMSE), Relative Dimensionless Global Error in Synthesis (ERGAS) and Universal Image Quality Index (UIQI). Experimental results over Worldview II scene from São Paulo city (Brazil) show that GS method provides good correlation with original multispectral bands with no radiometric and contrast distortion. The automatic method using GS method for NSDVI generation clearly provide a clear distinction of shadows and non-shadows pixels with an overall accuracy more than 90%. The experimental results confirm the effectiveness of the proposed approach which could be used for further shadow removal and reliable for object recognition, land-cover mapping, 3D reconstruction, etc. especially in developing countries where land use and land cover are rapidly changing with tall objects within urban areas.

  9. A genetically encoded fluorescent tRNA is active in live-cell protein synthesis

    PubMed Central

    Masuda, Isao; Igarashi, Takao; Sakaguchi, Reiko; Nitharwal, Ram G.; Takase, Ryuichi; Han, Kyu Young; Leslie, Benjamin J.; Liu, Cuiping; Gamper, Howard; Ha, Taekjip; Sanyal, Suparna

    2017-01-01

    Abstract Transfer RNAs (tRNAs) perform essential tasks for all living cells. They are major components of the ribosomal machinery for protein synthesis and they also serve in non-ribosomal pathways for regulation and signaling metabolism. We describe the development of a genetically encoded fluorescent tRNA fusion with the potential for imaging in live Escherichia coli cells. This tRNA fusion carries a Spinach aptamer that becomes fluorescent upon binding of a cell-permeable and non-toxic fluorophore. We show that, despite having a structural framework significantly larger than any natural tRNA species, this fusion is a viable probe for monitoring tRNA stability in a cellular quality control mechanism that degrades structurally damaged tRNA. Importantly, this fusion is active in E. coli live-cell protein synthesis allowing peptidyl transfer at a rate sufficient to support cell growth, indicating that it is accommodated by translating ribosomes. Imaging analysis shows that this fusion and ribosomes are both excluded from the nucleoid, indicating that the fusion and ribosomes are in the cytosol together possibly engaged in protein synthesis. This fusion methodology has the potential for developing new tools for live-cell imaging of tRNA with the unique advantage of both stoichiometric labeling and broader application to all cells amenable to genetic engineering. PMID:27956502

  10. Purkinje image eyetracking: A market survey

    NASA Technical Reports Server (NTRS)

    Christy, L. F.

    1979-01-01

    The Purkinje image eyetracking system was analyzed to determine the marketability of the system. The eyetracking system is a synthesis of two separate instruments, the optometer that measures the refractive power of the eye and the dual Purkinje image eyetracker that measures the direction of the visual axis.

  11. Synthesis of Speaker Facial Movement to Match Selected Speech Sequences

    NASA Technical Reports Server (NTRS)

    Scott, K. C.; Kagels, D. S.; Watson, S. H.; Rom, H.; Wright, J. R.; Lee, M.; Hussey, K. J.

    1994-01-01

    A system is described which allows for the synthesis of a video sequence of a realistic-appearing talking human head. A phonic based approach is used to describe facial motion; image processing rather than physical modeling techniques are used to create video frames.

  12. One-step Melt Synthesis of Water Soluble, Photoluminescent, Surface-Oxidized Silicon Nanoparticles for Cellular Imaging Applications

    PubMed Central

    Manhat, Beth A.; Brown, Anna L.; Black, Labe A.; Ross, J.B. Alexander; Fichter, Katye; Vu, Tania; Richman, Erik

    2012-01-01

    We have developed a versatile, one-step melt synthesis of water-soluble, highly emissive silicon nanoparticles using bi-functional, low-melting solids (such as glutaric acid) as reaction media. Characterization through transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy shows that the one-step melt synthesis produces nanoscale Si cores surrounded by a silicon oxide shell. Analysis of the nanoparticle surface using FT-IR, zeta potential, and gel electrophoresis indicates that the bi-functional ligand used in the one-step synthesis is grafted onto the nanoparticle, which allows for tuning of the particle surface charge, solubility, and functionality. Photoluminescence spectra of the as-prepared glutaric acid-synthesized silicon nanoparticles show an intense blue-green emission with a short (ns) lifetime suitable for biological imaging. These nanoparticles are found to be stable in biological media and have been used to examine cellular uptake and distribution in live N2a cells. PMID:23139440

  13. Women's experiences of their pregnancy and postpartum body image: a systematic review and meta-synthesis.

    PubMed

    Hodgkinson, Emma L; Smith, Debbie M; Wittkowski, Anja

    2014-09-23

    Pregnancy-related physical changes can have a significant impact on a woman's body image. There is no synthesis of existing literature to describe the intricacies of women's experiences of their body, and relevant clinical implications. Four electronic databases were searched in February 2014 using predefined search terms. English-language, qualitative studies published between January 1992 and December 2013 exploring pregnancy and postpartum body image were included. Following quality appraisal, 17 papers were synthesised using the interpretive thematic synthesis approach within a social constructionist framework. Three themes were highlighted: "Public Event: 'Fatness' vs. Pregnancy", "Control: Nature vs. Self", and "Role: Woman vs. Mother". Women perceived the pregnant body to be out of their control and as transgressing the socially constructed ideal, against which they tried to protect their body image satisfaction. Women perceived the physical manifestation of the mothering role as incongruent to their other roles as a wife or partner, or working woman. Body dissatisfaction dominated the postpartum period. Women's perception of their pregnancy body image is varied and depends on the strategies they use to protect against social constructions of female beauty. Women have unrealistic expectations for their postpartum body, highlighting this as an area where women need better support. Attending to women's narratives about their pregnant body may identify at-risk women and provide an opportunity for health professionals to provide support to either address or accept body image dissatisfaction. Clinical communication training may enable health professionals to explore body image concerns with women and guide them in identifying ways of accepting or reducing any dissatisfaction.

  14. Knowledge synthesis methods for generating or refining theory: a scoping review reveals that little guidance is available.

    PubMed

    Tricco, Andrea C; Antony, Jesmin; Soobiah, Charlene; Kastner, Monika; Cogo, Elise; MacDonald, Heather; D'Souza, Jennifer; Hui, Wing; Straus, Sharon E

    2016-05-01

    To describe and compare, through a scoping review, emerging knowledge synthesis methods for generating and refining theory, in terms of expertise required, similarities, differences, strengths, limitations, and steps involved in using the methods. Electronic databases (e.g., MEDLINE) were searched, and two reviewers independently selected studies and abstracted data for qualitative analysis. In total, 287 articles reporting nine knowledge synthesis methods (concept synthesis, critical interpretive synthesis, integrative review, meta-ethnography, meta-interpretation, meta-study, meta-synthesis, narrative synthesis, and realist review) were included after screening of 17,962 citations and 1,010 full-text articles. Strengths of the methods included comprehensive synthesis providing rich contextual data and suitability for identifying gaps in the literature, informing policy, aiding in clinical decisions, addressing complex research questions, and synthesizing patient preferences, beliefs, and values. However, many of the methods were highly subjective and not reproducible. For integrative review, meta-ethnography, and realist review, guidance was provided on all steps of the review process, whereas meta-synthesis had guidance on the fewest number of steps. Guidance for conducting the steps was often vague and sometimes absent. Further work is needed to provide direction on operationalizing these methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Engineering CNDP's of dendrimers containing phosphorous interior compositions to produce new emerging properties

    NASA Astrophysics Data System (ADS)

    Caminade, Anne-Marie; Majoral, Jean-Pierre

    2018-03-01

    Phosphorus-containing dendrimers are defined as dendrimers having at least one phosphorus atom at each branching point. In this review, we will show how phosphorhydrazone dendrimers can be modified at will at the level of the core and of the branches, to afford specific properties, such as fluorescence to image biological events. Accelerated methods of synthesis of phosphorus (one step for one generation) will be also displayed, as well as the specific reactivity of P=N-P=S linkages obtained in most of these accelerated method of synthesis, which has led to particularly original dendritic architectures, such as dendrons included in dendrimers. Finally, we will display how modifications of the internal structure of a series of dendrimers having the same type and number of terminal functions can deeply modify their biological anti-inflammatory properties. Among the six critical nanoscale design parameters (CNDP), we will show how two of them, i.e., architecture and elemental composition, have been particularly engineered to modify phosphorus-containing dendrimers, in order to fulfill the desired properties.

  16. On-bead combinatorial synthesis and imaging of chemical exchange saturation transfer magnetic resonance imaging agents to identify factors that influence water exchange.

    PubMed

    Napolitano, Roberta; Soesbe, Todd C; De León-Rodríguez, Luis M; Sherry, A Dean; Udugamasooriya, D Gomika

    2011-08-24

    The sensitivity of magnetic resonance imaging (MRI) contrast agents is highly dependent on the rate of water exchange between the inner sphere of a paramagnetic ion and bulk water. Normally, identifying a paramagnetic complex that has optimal water exchange kinetics is done by synthesizing and testing one compound at a time. We report here a rapid, economical on-bead combinatorial synthesis of a library of imaging agents. Eighty different 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA)-tetraamide peptoid derivatives were prepared on beads using a variety of charged, uncharged but polar, hydrophobic, and variably sized primary amines. A single chemical exchange saturation transfer image of the on-bead library easily distinguished those compounds having the most favorable water exchange kinetics. This combinatorial approach will allow rapid screening of libraries of imaging agents to identify the chemical characteristics of a ligand that yield the most sensitive imaging agents. This technique could be automated and readily adapted to other types of MRI or magnetic resonance/positron emission tomography agents as well.

  17. Creating wavelet-based models for real-time synthesis of perceptually convincing environmental sounds

    NASA Astrophysics Data System (ADS)

    Miner, Nadine Elizabeth

    1998-09-01

    This dissertation presents a new wavelet-based method for synthesizing perceptually convincing, dynamic sounds using parameterized sound models. The sound synthesis method is applicable to a variety of applications including Virtual Reality (VR), multi-media, entertainment, and the World Wide Web (WWW). A unique contribution of this research is the modeling of the stochastic, or non-pitched, sound components. This stochastic-based modeling approach leads to perceptually compelling sound synthesis. Two preliminary studies conducted provide data on multi-sensory interaction and audio-visual synchronization timing. These results contributed to the design of the new sound synthesis method. The method uses a four-phase development process, including analysis, parameterization, synthesis and validation, to create the wavelet-based sound models. A patent is pending for this dynamic sound synthesis method, which provides perceptually-realistic, real-time sound generation. This dissertation also presents a battery of perceptual experiments developed to verify the sound synthesis results. These experiments are applicable for validation of any sound synthesis technique.

  18. Yb3+/Ho3+ Co-Doped Apatite Upconversion Nanoparticles to Distinguish Implanted Material from Bone Tissue.

    PubMed

    Li, Xiyu; Chen, Haifeng

    2016-10-07

    The exploration of bone reconstruction with time requires the combination of a biological method and a chemical technique. Lanthanide Yb 3+ and Ho 3+ co-doped fluorapatite (FA:Yb 3+ /Ho 3+ ) and hydroxyapatite (HA:Yb 3+ /Ho 3+ ) particles with varying dopant concentrations were prepared by hydrothermal synthesis and thermal activation. Controllable green and red upconversion emissions were generated under 980 nm near-infrared excitation; the FA:Yb 3+ /Ho 3+ particles resulted in superior green luminescence, while HA:Yb 3+ /Ho 3+ dominated in red emission. The difference in the green and red emission behavior was dependent on the lattice structure and composition. Two possible lattice models were proposed for Yb 3+ /Ho 3+ co-doped HA and FA along the hydroxyl channel and fluorine channel of the apatite crystal structure. We first reported the use of the upconversion apatite particles to clearly distinguish implanted material from bone tissue on stained histological sections of harvested in vivo samples. The superposition of the tissue image and material image is a creative method to show the material-tissue distribution and interrelation. The upconversion apatite particles and image superposition method provide a novel strategy for long-term discriminable fluorescence tracking of implanted material or scaffold during bone regeneration.

  19. Computational gestalts and perception thresholds.

    PubMed

    Desolneux, Agnès; Moisan, Lionel; Morel, Jean-Michel

    2003-01-01

    In 1923, Max Wertheimer proposed a research programme and method in visual perception. He conjectured the existence of a small set of geometric grouping laws governing the perceptual synthesis of phenomenal objects, or "gestalt" from the atomic retina input. In this paper, we review this set of geometric grouping laws, using the works of Metzger, Kanizsa and their schools. In continuation, we explain why the Gestalt theory research programme can be translated into a Computer Vision programme. This translation is not straightforward, since Gestalt theory never addressed two fundamental matters: image sampling and image information measurements. Using these advances, we shall show that gestalt grouping laws can be translated into quantitative laws allowing the automatic computation of gestalts in digital images. From the psychophysical viewpoint, a main issue is raised: the computer vision gestalt detection methods deliver predictable perception thresholds. Thus, we are set in a position where we can build artificial images and check whether some kind of agreement can be found between the computationally predicted thresholds and the psychophysical ones. We describe and discuss two preliminary sets of experiments, where we compared the gestalt detection performance of several subjects with the predictable detection curve. In our opinion, the results of this experimental comparison support the idea of a much more systematic interaction between computational predictions in Computer Vision and psychophysical experiments.

  20. Structure tracking aided design and synthesis of Li 3V 2(PO 4) 3 nanocrystals as high-power cathodes for lithium ion batteries

    DOE PAGES

    Wang, Liping; Bai, Jianming; Gao, Peng; ...

    2015-07-30

    In this study, preparing new electrode materials with synthetic control of phases and electrochemical properties is desirable for battery applications but hardly achievable without knowing how the synthesis reaction proceeds. Herein, we report on structure tracking-aided design and synthesis of single-crystalline Li 3V 2(PO 4) 3 (LVP) nanoparticles with extremely high rate capability. A comprehensive investigation was made to the local structural orderings of the involved phases and their evolution toward forming LVP phase using in situ/ex situ synchrotron X-ray and electron-beam diffraction, spectroscopy, and imaging techniques. The results shed light on the thermodynamics and kinetics of synthesis reactions andmore » enabled the design of a cost-efficient synthesis protocol to make nanocrystalline LVP, wherein solvothermal treatment is a crucial step leading to an amorphous intermediate with local structural ordering resembling that of LVP, which, upon calcination at moderate temperatures, rapidly transforms into the desired LVP phase. The obtained LVP particles are about 50 nm, coated with a thin layer of amorphous carbon and featured with excellent cycling stability and rate capability – 95% capacity retention after 200 cycles and 66% theoretical capacity even at a current rate of 10 C. The structure tracking based method we developed in this work offers a new way of designing battery electrodes with synthetic control of material phases and properties.« less

  1. Synthesis of nanostructured barium phosphate and its application in micro-computed tomography of mouse brain vessels in ex vivo

    NASA Astrophysics Data System (ADS)

    Zhu, Bangshang; Yuan, Falei; Yuan, Xiaoya; Bo, Yang; Wang, Yongting; Yang, Guo-Yuan; Drummen, Gregor P. C.; Zhu, Xinyuan

    2014-02-01

    Micro-computed tomography (micro-CT) is a powerful tool for visualizing the vascular systems of tissues, organs, or entire small animals. Vascular contrast agents play a vital role in micro-CT imaging in order to obtain clear and high-quality images. In this study, a new kind of nanostructured barium phosphate was fabricated and used as a contrast agent for ex vivo micro-CT imaging of blood vessels in the mouse brain. Nanostructured barium phosphate was synthesized through a simple wet precipitation method using Ba(NO3)2, and (NH4)2HPO4 as starting materials. The physiochemical properties of barium phosphate were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermal analysis. Furthermore, the impact of the produced nanostructures on cell viability was evaluated via the MTT assay, which generally showed low to moderate cytotoxicity. Finally, the animal test images demonstrated that the use of nanostructured barium phosphate as a contrast agent in Micro-CT imaging produced sharp images with excellent contrast. Both major vessels and the microvasculature were clearly observable in the imaged mouse brain. Overall, the results indicate that nanostructured barium phosphate is a potential and useful vascular contrast agent for micro-CT imaging.

  2. NIR-Cyanine Dye Linker: a Promising Candidate for Isochronic Fluorescence Imaging in Molecular Cancer Diagnostics and Therapy Monitoring.

    PubMed

    Komljenovic, Dorde; Wiessler, Manfred; Waldeck, Waldemar; Ehemann, Volker; Pipkorn, Ruediger; Schrenk, Hans-Hermann; Debus, Jürgen; Braun, Klaus

    2016-01-01

    Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the Cy7 molecule whose indolenine-N residues were substituted with a propylene linker are described. Methylating agent temozolomide is functionalized with a tetrazine as a diene component whereas Cy7-cell penetrating peptide conjugate acts as a dienophilic reaction partner for the inverse Diels-Alder click chemistry-mediated ligation route yielding a theranostic conjugate, 3-mercapto-propionic-cyclohexenyl-Cy7-bis-temozolomide-bromide-cell penetrating peptide. Synthesis route described here may facilitate targeted delivery of the therapeutic compound to achieve sufficient local concentrations at the target site or tissue. Its versatility allows a choice of adequate imaging tags applicable in e.g. PET, SPECT, CT, near-infrared imaging, and therapeutic substances including cytotoxic agents. Imaging tags and therapeutics may be simultaneously bound to the conjugate applying click chemistry. Theranostic compound presented here offers a solid basis for a further improvement of cancer management in a precise, patient-specific manner.

  3. NIR-Cyanine Dye Linker: a Promising Candidate for Isochronic Fluorescence Imaging in Molecular Cancer Diagnostics and Therapy Monitoring

    PubMed Central

    Komljenovic, Dorde; Wiessler, Manfred; Waldeck, Waldemar; Ehemann, Volker; Pipkorn, Ruediger; Schrenk, Hans-Hermann; Debus, Jürgen; Braun, Klaus

    2016-01-01

    Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the Cy7 molecule whose indolenine-N residues were substituted with a propylene linker are described. Methylating agent temozolomide is functionalized with a tetrazine as a diene component whereas Cy7-cell penetrating peptide conjugate acts as a dienophilic reaction partner for the inverse Diels-Alder click chemistry-mediated ligation route yielding a theranostic conjugate, 3-mercapto-propionic-cyclohexenyl-Cy7-bis-temozolomide-bromide-cell penetrating peptide. Synthesis route described here may facilitate targeted delivery of the therapeutic compound to achieve sufficient local concentrations at the target site or tissue. Its versatility allows a choice of adequate imaging tags applicable in e.g. PET, SPECT, CT, near-infrared imaging, and therapeutic substances including cytotoxic agents. Imaging tags and therapeutics may be simultaneously bound to the conjugate applying click chemistry. Theranostic compound presented here offers a solid basis for a further improvement of cancer management in a precise, patient-specific manner. PMID:26722379

  4. Development of an ultra wide band microwave radar based footwear scanning system

    NASA Astrophysics Data System (ADS)

    Rezgui, Nacer Ddine; Bowring, Nicholas J.; Andrews, David A.; Harmer, Stuart W.; Southgate, Matthew J.; O'Reilly, Dean

    2013-10-01

    At airports, security screening can cause long delays. In order to speed up screening a solution to avoid passengers removing their shoes to have them X-ray scanned is required. To detect threats or contraband items hidden within the shoe, a method of screening using frequency swept signals between 15 to 40 GHz has been developed, where the scan is carried out whilst the shoes are being worn. Most footwear is transparent to microwaves to some extent in this band. The scans, data processing and interpretation of the 2D image of the cross section of the shoe are completed in a few seconds. Using safe low power UWB radar, scattered signals from the shoe can be observed which are caused by changes in material properties such as cavities, dielectric or metal objects concealed within the shoe. By moving the transmission horn along the length of the shoe a 2D image corresponding to a cross section through the footwear is built up, which can be interpreted by the user, or automatically, to reveal the presence of concealed threat within the shoe. A prototype system with a resolution of 6 mm or less has been developed and results obtained for a wide range of commonly worn footwear, some modified by the inclusion of concealed material. Clear differences between the measured images of modified and unmodified shoes are seen. Procedures for enhancing the image through electronic image synthesis techniques and image processing methods are discussed and preliminary performance data presented.

  5. Imaging Collagen in Scar Tissue: Developments in Second Harmonic Generation Microscopy for Biomedical Applications

    PubMed Central

    Mostaço-Guidolin, Leila; Rosin, Nicole L.; Hackett, Tillie-Louise

    2017-01-01

    The ability to respond to injury with tissue repair is a fundamental property of all multicellular organisms. The extracellular matrix (ECM), composed of fibrillar collagens as well as a number of other components is dis-regulated during repair in many organs. In many tissues, scaring results when the balance is lost between ECM synthesis and degradation. Investigating what disrupts this balance and what effect this can have on tissue function remains an active area of research. Recent advances in the imaging of fibrillar collagen using second harmonic generation (SHG) imaging have proven useful in enhancing our understanding of the supramolecular changes that occur during scar formation and disease progression. Here, we review the physical properties of SHG, and the current nonlinear optical microscopy imaging (NLOM) systems that are used for SHG imaging. We provide an extensive review of studies that have used SHG in skin, lung, cardiovascular, tendon and ligaments, and eye tissue to understand alterations in fibrillar collagens in scar tissue. Lastly, we review the current methods of image analysis that are used to extract important information about the role of fibrillar collagens in scar formation. PMID:28809791

  6. Theory of Image Analysis and Recognition.

    DTIC Science & Technology

    1983-01-24

    Stanley M. Dunn, "Texture Classification with Change Point Statistics," TR- 1082 , July 1981. 97. R. Chellappa, "Synthesis of Textures Using Simultane...July 1981. 96. Stanley M. Dunn, "Texture Classification with Change Point Statistics," TR- 1082 , July 1981. * 97. R. Chellappa, "Synthesis of Textures

  7. Synthesis of mesoporous zeolite single crystals with cheap porogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao Haixiang; Li Changlin; Ren Jiawen

    2011-07-15

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystalmore » pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.« less

  8. Waveform synthesis for imaging and ranging applications

    DOEpatents

    Doerry, Armin W.; Dudley, Peter A.; Dubert, Dale F.; Tise, Bertice L.

    2004-12-07

    Frequency dependent corrections are provided for quadrature imbalance and Local Oscillator (LO) feed-through. An operational procedure filters imbalance and LO feed-through effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver; unwanted energies, such as LO feed-through and/or imbalance energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of LO feed-through and imbalance can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.

  9. Synthesis of methoxy-X04 derivatives and their evaluation in Alzheimer's disease pathology.

    PubMed

    Boländer, Alexander; Kieser, Daniel; Scholz, Christoph; Heyny-von Haußen, Roland; Mall, Gerhard; Goetschy, Valérie; Czech, Christian; Schmidt, Boris

    2014-01-01

    Alzheimer's disease is characterized by two notorious protein aggregates in the brain: extracellular senile plaques mainly consisting of amyloid-β peptides and tau-protein-derived intracellular paired helical filaments. The diagnosis of Alzheimer's disease is impaired by insufficient sensitivity and specificity of diagnostic methods to visualize these pathological hallmarks over all disease stages. The established fluorescence marker methoxy-X04 stains plaques, tau tangles and amyloid-derived angiopathies with good specificity, yet it is limited by slow elimination in vivo. Since the need for new markers is high, we prepared methoxy-X04 derivatives and evaluated their potential as imaging agents in Alzheimer's disease pathology. In this study, we describe an improved synthesis for methoxy-X04 and its derivatives and their affinity determination for the respective protein targets by immunohistology and a displacement assay. This resulted in the identification of new derivatives of methoxy-X04 with improved binding affinity.

  10. Synthesis of 2'-deoxy-2'-[.sup.18F]fluoro-5-methyl-1-B-D-arabinofuranosyluracil (.sup.18F-FMAU)

    DOEpatents

    Li, Zibo; Cai, Hancheng; Conti, Peter S

    2014-12-16

    The present invention relates to methods of synthesizing .sup.18F-FMAU. In particular, .sup.18F-FMAU is synthesized using one-pot reaction conditions in the presence of Friedel-Crafts catalysts. The one-pot reaction conditions are incorporated into a fully automated cGMP-compliant radiosynthesis module, which results in a reduction in synthesis time and simplifies reaction conditions. The one-pot reaction conditions are also suitable for the production of 5-substituted thymidine or cytidine analogs. The products from the one-pot reaction (e.g. the labeled thymidine or cytidine analogs) can be used as probes for imaging tumor proliferative activity. More specifically, these [.sup.18F]-labeled thymidine or cytidine analogs can be used as a PET tracer for certain medical conditions, including, but not limited to, cancer disease, autoimmunity inflammation, and bone marrow transplant.

  11. Novel digital imaging techniques to assess the outcome in oral rehabilitation with dental implants: a narrative review.

    PubMed

    Benic, Goran I; Elmasry, Moustafa; Hämmerle, Christoph H F

    2015-09-01

    To examine the literature on novel digital imaging techniques for the assessment of outcomes in oral rehabilitation with dental implants. An electronic search of Medline and Embase databases including studies published prior to 28th December 2014 was performed and supplemented by a manual search. A synthesis of the publications was presented describing the use of computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography, optical scanning, spectrophotometry or optical coherence tomography (OCT) related to the outcome measures in implant therapy. Most of the digital imaging techniques have not yet sufficiently been validated to be used for outcome measures in implant dentistry. In clinical research, cone beam CT (CBCT) is increasingly being used for 3D assessment of bone and soft tissue following augmentation procedures and implant placement. Currently, there are no effective methods for the reduction of artifacts around implants in CBCT. Optical scanning is being used for the 3D assessment of changes in the soft tissue contour. The combination of optical scan with pre-operative CBCT allows the determination of the implant position and its spatial relation to anatomical structures. Spectrophotometry is the method most commonly used to objectively assess the color match of reconstructions and peri-implant mucosa to natural dentition and gingiva. New optical imaging techniques may be considered possible approaches for monitoring peri-implant soft tissue health. MRI and ultrasonography appear promising non-ionizing radiation imaging modalities for the assessment of soft tissue and bone defect morphologies. Optical scanners and OCT may represent efficient clinical methods for accurate assessment of the misfit between the reconstructions and the implants. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Synthesis and biological studies of positron-emitting radiopharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dischino, D.D.

    The development and clinical evaluation of two-positron emitting radiopharmaceuticals designed to image myelin in humans is reported. Carbon-11-labeled benzyl methyl ether was synthesized by the reaction of carbon-11-labeled methanol and benzyl chloride in dimethyl sulfoxide containing powdered potassium hydroxide in a radiochemical yield of 43% and a synthesis and purification time of 40 minutes. Carbon-11-labeled diphenylmethanol was synthesized by the reaction of carbon-11-labeled carbon dioxide and phenyllithium followed by the reduction of the carbon-11-labeled intermediate to diphenylmethanol via lithium aluminum hydride in a radiochemical yield of 71% and a synthesis and purification time of 38 minutes. Carbon-11-labeled benzyl methyl ethermore » and diphenylmethanol were each evaluated as myelin imaging agents in three patients with multiple sclerosis via positron-emission tomography. In two out of three patients studied with carbon-11-labeled benzyl methyl ether, the distribution of activity in the brain was not consistent with local lipid content. A new synthesis of carbon-11-labeled-DL-phenylalanine labeled in the benzylic position and the synthesis of fluorine-18-labeled 1-(2-nitro-1-imidazolyl)-3-fluoro-2-propanol, a potential in vivo marker of hypoxic tissue, are reported.« less

  13. Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.

    2014-03-15

    The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describemore » our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).« less

  14. “Best fit” framework synthesis: refining the method

    PubMed Central

    2013-01-01

    Background Following publication of the first worked example of the “best fit” method of evidence synthesis for the systematic review of qualitative evidence in this journal, the originators of the method identified a need to specify more fully some aspects of this particular derivative of framework synthesis. Methods and Results We therefore present a second such worked example in which all techniques are defined and explained, and their appropriateness is assessed. Specified features of the method include the development of new techniques to identify theories in a systematic manner; the creation of an a priori framework for the synthesis; and the “testing” of the synthesis. An innovative combination of existing methods of quality assessment, analysis and synthesis is used to complete the process. This second worked example was a qualitative evidence synthesis of employees’ views of workplace smoking cessation interventions, in which the “best fit” method was found to be practical and fit for purpose. Conclusions The method is suited to producing context-specific conceptual models for describing or explaining the decision-making and health behaviours of patients and other groups. It offers a pragmatic means of conducting rapid qualitative evidence synthesis and generating programme theories relating to intervention effectiveness, which might be of relevance both to researchers and policy-makers. PMID:23497061

  15. Analysis of autostereoscopic three-dimensional images using multiview wavelets.

    PubMed

    Saveljev, Vladimir; Palchikova, Irina

    2016-08-10

    We propose that multiview wavelets can be used in processing multiview images. The reference functions for the synthesis/analysis of multiview images are described. The synthesized binary images were observed experimentally as three-dimensional visual images. The symmetric multiview B-spline wavelets are proposed. The locations recognized in the continuous wavelet transform correspond to the layout of the test objects. The proposed wavelets can be applied to the multiview, integral, and plenoptic images.

  16. Regularization Parameter Selection for Nonlinear Iterative Image Restoration and MRI Reconstruction Using GCV and SURE-Based Methods

    PubMed Central

    Ramani, Sathish; Liu, Zhihao; Rosen, Jeffrey; Nielsen, Jon-Fredrik; Fessler, Jeffrey A.

    2012-01-01

    Regularized iterative reconstruction algorithms for imaging inverse problems require selection of appropriate regularization parameter values. We focus on the challenging problem of tuning regularization parameters for nonlinear algorithms for the case of additive (possibly complex) Gaussian noise. Generalized cross-validation (GCV) and (weighted) mean-squared error (MSE) approaches (based on Stein's Unbiased Risk Estimate— SURE) need the Jacobian matrix of the nonlinear reconstruction operator (representative of the iterative algorithm) with respect to the data. We derive the desired Jacobian matrix for two types of nonlinear iterative algorithms: a fast variant of the standard iterative reweighted least-squares method and the contemporary split-Bregman algorithm, both of which can accommodate a wide variety of analysis- and synthesis-type regularizers. The proposed approach iteratively computes two weighted SURE-type measures: Predicted-SURE and Projected-SURE (that require knowledge of noise variance σ2), and GCV (that does not need σ2) for these algorithms. We apply the methods to image restoration and to magnetic resonance image (MRI) reconstruction using total variation (TV) and an analysis-type ℓ1-regularization. We demonstrate through simulations and experiments with real data that minimizing Predicted-SURE and Projected-SURE consistently lead to near-MSE-optimal reconstructions. We also observed that minimizing GCV yields reconstruction results that are near-MSE-optimal for image restoration and slightly sub-optimal for MRI. Theoretical derivations in this work related to Jacobian matrix evaluations can be extended, in principle, to other types of regularizers and reconstruction algorithms. PMID:22531764

  17. Noise estimation for hyperspectral imagery using spectral unmixing and synthesis

    NASA Astrophysics Data System (ADS)

    Demirkesen, C.; Leloglu, Ugur M.

    2014-10-01

    Most hyperspectral image (HSI) processing algorithms assume a signal to noise ratio model in their formulation which makes them dependent on accurate noise estimation. Many techniques have been proposed to estimate the noise. A very comprehensive comparative study on the subject is done by Gao et al. [1]. In a nut-shell, most techniques are based on the idea of calculating standard deviation from assumed-to-be homogenous regions in the image. Some of these algorithms work on a regular grid parameterized with a window size w, while others make use of image segmentation in order to obtain homogenous regions. This study focuses not only to the statistics of the noise but to the estimation of the noise itself. A noise estimation technique motivated from a recent HSI de-noising approach [2] is proposed in this study. The denoising algorithm is based on estimation of the end-members and their fractional abundances using non-negative least squares method. The end-members are extracted using the well-known simplex volume optimization technique called NFINDR after manual selection of number of end-members and the image is reconstructed using the estimated endmembers and abundances. Actually, image de-noising and noise estimation are two sides of the same coin: Once we denoise an image, we can estimate the noise by calculating the difference of the de-noised image and the original noisy image. In this study, the noise is estimated as described above. To assess the accuracy of this method, the methodology in [1] is followed, i.e., synthetic images are created by mixing end-member spectra and noise. Since best performing method for noise estimation was spectral and spatial de-correlation (SSDC) originally proposed in [3], the proposed method is compared to SSDC. The results of the experiments conducted with synthetic HSIs suggest that the proposed noise estimation strategy outperforms the existing techniques in terms of mean and standard deviation of absolute error of the estimated noise. Finally, it is shown that the proposed technique demonstrated a robust behavior to the change of its single parameter, namely the number of end-members.

  18. Optimal image alignment with random projections of manifolds: algorithm and geometric analysis.

    PubMed

    Kokiopoulou, Effrosyni; Kressner, Daniel; Frossard, Pascal

    2011-06-01

    This paper addresses the problem of image alignment based on random measurements. Image alignment consists of estimating the relative transformation between a query image and a reference image. We consider the specific problem where the query image is provided in compressed form in terms of linear measurements captured by a vision sensor. We cast the alignment problem as a manifold distance minimization problem in the linear subspace defined by the measurements. The transformation manifold that represents synthesis of shift, rotation, and isotropic scaling of the reference image can be given in closed form when the reference pattern is sparsely represented over a parametric dictionary. We show that the objective function can then be decomposed as the difference of two convex functions (DC) in the particular case where the dictionary is built on Gaussian functions. Thus, the optimization problem becomes a DC program, which in turn can be solved globally by a cutting plane method. The quality of the solution is typically affected by the number of random measurements and the condition number of the manifold that describes the transformations of the reference image. We show that the curvature, which is closely related to the condition number, remains bounded in our image alignment problem, which means that the relative transformation between two images can be determined optimally in a reduced subspace.

  19. One-step hydrothermal synthesis of hexangular starfruit-like vanadium oxide for high power aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Li, Xinyong; Qu, Qunting; Zheng, Honghe

    2012-12-01

    Homogenous hexangular starfruit-like vanadium oxide was prepared for the first time by a one-step hydrothermal method. The assembly process of hexangular starfruit-like structure was observed from TEM images. The electrochemical performance of starfruit-like vanadium oxide was examined by cyclic voltammetry and galvanostatic charge/discharge. The obtained starfruit-like vanadium oxide exhibits a high power capability (19 Wh kg-1 at the specific power of 3.4 kW kg-1) and good cycling stability for supercapacitors application.

  20. Mechanochemical synthesis of fluorescent carbon dots from cellulose powders

    NASA Astrophysics Data System (ADS)

    Chae, Ari; Ram Choi, Bo; Choi, Yujin; Jo, Seongho; Kang, Eun Bi; Lee, Hyukjin; Park, Sung Young; In, Insik

    2018-04-01

    A novel mechanochemical method was firstly developed to synthesize carbon nanodots (CNDs) or carbon nano-onions (CNOs) through high-pressure homogenization of cellulose powders as naturally abundant resource depending on the treatment times. While CNDs (less than 5 nm in size) showed spherical and amorphous morphology, CNOs (10-50 nm in size) presented polyhedral shape, and onion-like outer lattice structure, graphene-like interlattice spacing of 0.36 nm. CNOs showed blue emissions, moderate dispersibility in aqueous media, and high cell viability, which enables efficient fluorescence imaging of cellular media.

  1. Quantitative gene expression analysis in Caenorhabditis elegans using single molecule RNA FISH.

    PubMed

    Bolková, Jitka; Lanctôt, Christian

    2016-04-01

    Advances in fluorescent probe design and synthesis have allowed the uniform in situ labeling of individual RNA molecules. In a technique referred to as single molecule RNA FISH (smRNA FISH), the labeled RNA molecules can be imaged as diffraction-limited spots and counted using image analysis algorithms. Single RNA counting has provided valuable insights into the process of gene regulation. This microscopy-based method has often revealed a high cell-to-cell variability in expression levels, which has in turn led to a growing interest in investigating the biological significance of gene expression noise. Here we describe the application of the smRNA FISH technique to samples of Caenorhabditis elegans, a well-characterized model organism. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Simple synthesis of carbon-11 labeled styryl dyes as new potential PET RNA-specific, living cell imaging probes.

    PubMed

    Wang, Min; Gao, Mingzhang; Miller, Kathy D; Sledge, George W; Hutchins, Gary D; Zheng, Qi-Huang

    2009-05-01

    A new type of styryl dyes have been developed as RNA-specific, live cell imaging probes for fluorescent microscopy technology to study nuclear structure and function. This study was designed to develop carbon-11 labeled styryl dyes as new probes for biomedical imaging technique positron emission tomography (PET) imaging of RNA in living cells. Precursors (E)-2-(2-(1-(triisopropylsilyl)-1H-indol-3-yl)vinyl)quinoline (2), (E)-2-(2,4,6-trimethoxystyryl)quinoline (3) and (E)-4-(2-(6-methoxyquinolin-2-yl)vinyl)-N,N-diemthylaniline (4), and standards styryl dyes E36 (6), E144 (7) and F22 (9) were synthesized in multiple steps with moderate to high chemical yields. Precursor 2 was labeled by [(11)C]CH(3)OTf, trapped on a cation-exchange CM Sep-Pak cartridge following a quick deprotecting reaction by addition of (n-Bu)(4)NF in THF, and isolated by solid-phase extraction (SPE) purification to provide target tracer [(11)C]E36 ([(11)C]6) in 40-50% radiochemical yields, decay corrected to end of bombardment (EOB), based on [(11)C]CO(2). The target tracers [(11)C]E144 ([(11)C]7) and [(11)C]F22 ([(11)C]9) were prepared by N-[(11)C]methylation of the precursors 3 and 4, respectively, using [(11)C]CH(3)OTf and isolated by SPE method in 50-70% radiochemical yields at EOB. The specific activity of the target tracers [(11)C]6, [(11)C]7 and [(11)C]9 was in a range of 74-111GBq/mumol at the end of synthesis (EOS).

  3. Facile synthesis of carbon dots with superior sensing ability

    NASA Astrophysics Data System (ADS)

    Jin, Lin; Li, Jingguo; Liu, Liyun; Wang, Zhenling; Zhang, Xingcai

    2018-04-01

    Carbon dots (CDs) have various applications in biomedical and environmental field, such as bio-imaging, bio-sensing and heavy metal detection. In this study, a novel class of CDs were synthesized using a one-step hydrothermal method. The fabricated CDs displayed stable photoluminescence, good water solubility, and photo stability. Moreover, the functional groups (carboxylic acid moieties and hydroxyls) on the surface of the obtained CDs enable it with superior sensing ability (e.g., very low detectable concentration for Pb2+: 5 nmol/L). With superior detection sensitivity, excellent fluorescent properties and facile fabrication method, the as-obtained CDs can find practical applications as cost-effective and sensitive chemo-sensors in water and food safety field.

  4. A facile synthesis of novel self-assembled gold nanorods designed for near-infrared imaging.

    PubMed

    Pan, Dipanjan; Pramanik, Manojit; Senpan, Angana; Wickline, Samuel A; Wang, Lihong V; Lanza, Gregory M

    2010-12-01

    Molecular imaging techniques now allow recognition of early biochemical, physiological, and anatomical changes before manifestation of gross pathological changes. Photoacoustic imaging represents a novel non-ionizing detection technique that combines the advantages of optical and ultrasound imaging. Noninvasive photoacoustic tomography (PAT) imaging in combination with nanoparticle-based contrast agents show promise in improved detection and diagnosis of cardiovascular and cancer related diseases. In this report, a novel strategy is introduced to achieve self-assembled colloidal gold nanorods, which are constrained to the vasculature. Gold nanorods (2-4 nm) were incorporated into the core of self-assembled lipid-encapsulated nanoparticles (sGNR) (approximately 130 nm), providing more than hundreds of gold atoms per nanoparticle of 20% colloid suspension. The physico-chemical characterization in solution and anhydrous state with analytical techniques demonstrated that the particles were spherical and highly mono dispersed. In addition to the synthesis and characterization, sensitive near-infrared photoacoustic detection was impressively demonstrated in vitro.

  5. A Facile Synthesis of Novel Self-Assembled Gold Nanorods Designed for Near-Infrared Imaging

    PubMed Central

    Pramanik, Manojit; Senpan, Angana; Wickline, Samuel A.; Lanza, Gregory M.

    2011-01-01

    Molecular imaging techniques now allow recognition of early biochemical, physiological, and anatomical Changes before manifestation of gross pathological changes. Photoacoustic imaging represents a novel non-ionizing detection technique that combines the advantages of optical and ultrasound imaging Noninvasive photoacoustic tomography (PAT) imaging in combination with nanoparticle-based contrast agents show promise in improved detection and diagnosis of cardio-vascular and cancer related diseases. In this report, a novel strategy is introduced to achieve self-assembled colloidal gold nanorods, which are constrained to the vasculature. Gold nanorods (2–4 nm) were incorporated into the core of self-assembled lipid-encapsulated nanoparticles (sGNR)(~130 nm), providing more than hundreds of gold atoms per nanoparticle of 20% colloid suspension. The physico-chemical characterization in solution and anhydrous state with analytical techniques demonstrated that the particles were spherical and highly mono dispersed. In addition to the synthesis and characterization, sensitive near-infrared photoacoustic detection was impressively demonstrated in vitro. PMID:21121304

  6. The Synthesis and Characterization of Gold-Core/LDH-Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rearick, Colton

    In recent years, the field of nanomedicine has progressed at an astonishing rate, particularly with respect to applications in cancer treatment and molecular imaging. Although organic systems have been the frontrunners, inorganic systems have also begun to show promise, especially those based upon silica and magnetic nanoparticles (NPs). Many of these systems are being designed for simultaneous therapeutic and diagnostic capabilities, thus coining the term, theranostics. A unique class of inorganic systems that shows great promise as theranostics is that of layered double hydroxides (LDH). By synthesis of a core/shell structures, e.g. a gold nanoparticle (NP) core and LDH shell, the multifunctional theranostic may be developed without a drastic increase in the structural complexity. To demonstrate initial proof-of-concept of a potential (inorganic) theranostic platform, a Au-core/LDH-shell nanovector has been synthesized and characterized. The LDH shell was heterogeneously nucleated and grown on the surface of silica coated gold NPs via a coprecipitation method. Polyethylene glycol (PEG) was introduced in the initial synthesis steps to improve crystallinity and colloidal stability. Additionally, during synthesis, fluorescein isothiocyanate (FITC) was intercalated into the interlayer spacing of the LDH. In contrast to the PEG stabilization, a post synthesis citric acid treatment was used as a method to control the size and short-term stability. The heterogeneous core-shell system was characterized with scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), dynamic light scattering (DLS), and powder x-ray diffraction (PXRD). A preliminary in vitro study carried out with the assistance of Dr. Kaushal Rege's group at Arizona State University was to demonstrate the endocytosis capability of homogeneously-grown LDH NPs. The DLS measurements of the core-shell NPs indicated an average particle size of 212nm. The PXRD analysis showed that PEG greatly improved the crystallinity of the system while simultaneously preventing aggregation of the NPs. The preliminary in vitro fluorescence microscopy revealed a moderate uptake of homogeneous LDH NPs into the cells.

  7. Synthesis of CeO2 nanoparticles: Photocatalytic and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Reddy Yadav, L. S.; Lingaraju, K.; Daruka Prasad, B.; Kavitha, C.; Banuprakash, G.; Nagaraju, G.

    2017-05-01

    We have successfully synthesized CeO2 nanoparticles (Nps) via the solution combustion method using sugarcane juice as a novel combustible fuel. The structural features, optical properties and morphology of the nanoparticles were characterized using XRD, FTIR, and Raman spectroscopy, UV-Vis, SEM and TEM. Structural characterization of the product shows cubic phase CeO2 . FTIR and Raman spectrum show characteristic peaks due to the presence of Ce-O vibration. SEM images show a porous structure and, from TEM images, the size of the nanoparticles were found to be ˜ 50 nm. The photocatalytic degradation of the methylene blue (MB) dye was examined using CeO2 Nps under solar irradiation as well as UV light irradiation and we studied the effect of p H, catalytic load and concentration on the degradation of the MB dye. Furthermore, the antibacterial properties of CeO2 Nps were investigated against Gram+ve and Gram- ve pathogenic bacterial strains using the agar well diffusion method.

  8. ERTS: A multispectral image analysis contribution for the geomorphological evaluation of southern Maracaibo Lake Basin. [geological survey and drainage patterns

    NASA Technical Reports Server (NTRS)

    Salas, F.; Cabello, O.; Alarcon, F.; Ferrer, C.

    1974-01-01

    Multispectral analysis of ERTS-A images at scales of 1:1,000,000 and 1:500,000 has been conducted with conventional photointerpretation methods. Specific methods have been developed for the geomorphological analysis of southern Maracaibo Lake Basin which comprises part of the Venezuelan Andean Range, Perija Range, the Tachira gap and the Southern part of the Maracaibo Lake depression. A steplike analysis was conducted to separate macroforms, landscapes and relief units as well as drainage patterns and tectonic features, which permitted the delineation of tectonic provinces, stratigraphic units, geomorphologic units and geomorphologic positions. The geomorphologic synthesis obtained compares favorably with conventional analysis made on this area for accuracy of 1:100,000 scale, and in some features with details obtained through conventional analysis for accuracy of 1:15,000 and field work. Geomorphological units in the mountains were identified according to changes in tone, texture, forms orientation of interfluves and tectonic characteristics which control interfluvial disimetrics.

  9. Preparation of ⁶⁸Ga-labelled DOTA-peptides using a manual labelling approach for small-animal PET imaging.

    PubMed

    Romero, Eduardo; Martínez, Alfonso; Oteo, Marta; García, Angel; Morcillo, Miguel Angel

    2016-01-01

    (68)Ga-DOTA-peptides are a promising PET radiotracers used in the detection of different tumours types due to their ability for binding specifically receptors overexpressed in these. Furthermore, (68)Ga can be produced by a (68)Ge/(68)Ga generator on site which is a very good alternative to cyclotron-based PET isotopes. Here, we describe a manual labelling approach for the synthesis of (68)Ga-labelled DOTA-peptides based on concentration and purification of the commercial (68)Ga/(68)Ga generator eluate using an anion exchange-cartridge. (68)Ga-DOTA-TATE was used to image a pheochromocytoma xenograft mouse model by a microPET/CT scanner. The method described provides satisfactory results, allowing the subsequent (68)Ga use to label DOTA-peptides. The simplicity of the method along with its implementation reduced cost, makes it useful in preclinical PET studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Synthesis and cell imaging applications of fluorescent mono/di/tri-heterocyclyl-2,6-dicyanoanilines.

    PubMed

    Pisal, Mahesh M; Annadate, Ritesh A; Athalye, Meghana C; Kumar, Deepak; Chavan, Subhash P; Sarkar, Dhiman; Borate, Hanumant B

    2017-02-15

    Synthesis of 3,4,5-triheterocyclyl-2,6-dicyanoanilines, starting from heterocyclic aldehydes and 1,2-diheterocycle-substituted ethanones, is described. 2,6-Dicyanoanilines with one or two heterocyclic substituents have also been synthesized. It was found that some of these molecules have selective cell-staining properties useful for cell imaging applications. The compounds 1g, 10f and 11 were found to stain cytoplasm of the cells in contact but not the nucleus while the compound 12 showed affinity to apoptotic cells resulting in blue fluorescence. The cell imaging results with compound 12 were similar to Annexin V-FITC, a known reagent containing recombinant Annexin V conjugated to green-fluorescent FITC dye, used for detection of apoptotic cells. These compounds were found to be non-cytotoxic and have potential application as cell imaging agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. High-sensitivity chemical imaging for biomedicine by SRS microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Min, Wei

    2017-02-01

    Innovations in spectroscopy principles and microscopy technology have significantly impacted modern biology and medicine. While most of the contemporary bio-imaging modalities harness electronic transition, nuclear spin or radioactivity, vibrational spectroscopy has not been widely used yet. Here we will discuss an emerging chemical imaging platform, stimulated Raman scattering (SRS) microscopy, which can enhance the otherwise feeble spontaneous Raman eight orders of magnitude by virtue of stimulated emission. When coupled with stable isotopes (e.g., deuterium and 13C) or bioorthogonal chemical moieties (e.g., alkynes), SRS microscopy is well suited for probing in vivo metabolic dynamics of small bio-molecules which cannot be labeled by bulky fluorophores. Physical principle of the underlying optical spectroscopy and exciting biomedical applications such as imaging lipid metabolism, protein synthesis, DNA replication, protein degradation, RNA synthesis, glucose uptake, drug trafficking and tumor metabolism will be presented.

  12. DESIGN, SYNTHESIS, AND APPLICATION OF THE TRIMETHOPRIM-BASED CHEMICAL TAG FOR LIVE CELL IMAGING

    PubMed Central

    Jing, Chaoran; Cornish, Virginia W.

    2013-01-01

    Over the past decade chemical tags have been developed to complement the use of fluorescent proteins in live cell imaging. Chemical tags retain the specificity of protein labeling achieved with fluorescent proteins through genetic encoding, but provide smaller, more robust tags and modular use of organic fluorophores with high photon-output and tailored functionalities. The trimethoprim-based chemical tag (TMP-tag) was initially developed based on the high affinity interaction between E.coli dihydrofolatereductase and the antibiotic trimethoprim and subsequently rendered covalent and fluorogenic via proximity-induced protein labeling reactions. To date, the TMP-tag is one of the few chemical tags that enable intracellular protein labeling and high-resolution live cell imaging. Here we describe the general design, chemical synthesis, and application of TMP-tag for live cell imaging. Alternative protocols for synthesizing and using the covalent and the fluorogenic TMP-tags are also included. PMID:23839994

  13. Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy.

    PubMed

    Mieszawska, Aneta J; Kim, YongTae; Gianella, Anita; van Rooy, Inge; Priem, Bram; Labarre, Matthew P; Ozcan, Canturk; Cormode, David P; Petrov, Artiom; Langer, Robert; Farokhzad, Omid C; Fayad, Zahi A; Mulder, Willem J M

    2013-09-18

    For advanced treatment of diseases such as cancer, multicomponent, multifunctional nanoparticles hold great promise. In the current study we report the synthesis of a complex nanoparticle (NP) system with dual drug loading as well as diagnostic properties. To that aim we present a methodology where chemically modified poly(lactic-co-glycolic) acid (PLGA) polymer is formulated into a polymer-lipid NP that contains a cytotoxic drug doxorubicin (DOX) in the polymeric core and an anti-angiogenic drug sorafenib (SRF) in the lipidic corona. The NP core also contains gold nanocrystals (AuNCs) for imaging purposes and cyclodextrin molecules to maximize the DOX encapsulation in the NP core. In addition, a near-infrared (NIR) Cy7 dye was incorporated in the coating. To fabricate the NP we used a microfluidics-based technique that offers unique NP synthesis conditions, which allowed for encapsulation and fine-tuning of optimal ratios of all the NP components. NP phantoms could be visualized with computed tomography (CT) and near-infrared (NIR) fluorescence imaging. We observed timed release of the encapsulated drugs, with fast release of the corona drug SRF and delayed release of a core drug DOX. In tumor bearing mice intravenously administered NPs were found to accumulate at the tumor site by fluorescence imaging.

  14. Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nixon, B. Tracy; Mansouri, Katayoun; Singh, Abhishek

    A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individualmore » lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In conclusion, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains.« less

  15. Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex

    DOE PAGES

    Nixon, B. Tracy; Mansouri, Katayoun; Singh, Abhishek; ...

    2016-06-27

    A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individualmore » lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In conclusion, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains.« less

  16. Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases in the Plant Cellulose Synthesis Complex

    PubMed Central

    Nixon, B. Tracy; Mansouri, Katayoun; Singh, Abhishek; Du, Juan; Davis, Jonathan K.; Lee, Jung-Goo; Slabaugh, Erin; Vandavasi, Venu Gopal; O’Neill, Hugh; Roberts, Eric M.; Roberts, Alison W.; Yingling, Yaroslava G.; Haigler, Candace H.

    2016-01-01

    A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individual lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In summary, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains. PMID:27345599

  17. Optical system design for a Lunar Optical Interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. M.; Shao, M.; Hines, B. E.; Levine, B. M.; Gershman, R.

    1991-01-01

    The moon offers particular advantages for interferometry, including a vacuum environment, a large stable base on which to assemble multi-kilometer baselines, and a cold nighttime temperature to allow for passive cooling of optics for high IR sensitivity. A baseline design for a Lunar Optical Interferometer (LOI) which exploits these features is presented. The instrument operates in the visible to mid-IL region, and is designed for both astrometry and synthesis imaging. The design uses a Y-shaped array of 12 siderostats, with maximum arm lengths of about 1 km. The inner siderostats are monitored in three dimensions from a central laser metrology structure to allow for high precision astrometry. The outer siderostats, used primarily for synthesis imaging, exploit the availability of bright reference stars in order to determine the instrument geometry. The path delay function is partitioned into coarse and fine components, the former accomplished with switched banks of range mirrors monitored with an absolute laser metrology system, and the latter with a short cat's eye delay line. The back end of the instrument is modular, allowing for beam combiners for astrometry, visible and IR synthesis imaging, and direct planet detection. With 1 m apertures, the instrument will have a point-source imaging sensitivity of about 29 mag; with the laser metrology system, astrometry at the microarcsecond level will be possible.

  18. Fluorinase: a tool for the synthesis of ¹⁸F-labeled sugars and nucleosides for PET.

    PubMed

    Onega, Mayca; Winkler, Margit; O'Hagan, David

    2009-08-01

    There is an increasing interest in the preparation of (18)F-labeled radiopharmaceuticals with potential applications in PET for medicinal imaging. Appropriate synthetic methods require a quick and efficient route in which to incorporate the (18)F into a ligand, due to the relatively short half-life of the (18)F isotope. Enzymatic methods are rare in this area; however, the discovery of a fluorinating enzyme from Streptomyces cattleya (EC 2.5.1.63) has opened up the possibility of the enzymatic synthesis and formation of C-(18)F bonds from the [(18)F]fluoride ion. In this article, the development of enzymatic preparations of (18)F-labeled sugars and nucleosides as potential radiotracers using the fluorinase from S. cattleya for PET applications is reviewed. Enzymatic reactions are not traditional in PET synthesis, but this enzyme has some attractive features. The enzyme is available in an overexpressed form from Escherichia coli and it is relatively stable and can be easily purified and manipulated. Most notably, it utilizes [(18)F] fluoride, the form of the isotope normally generated by the cyclotron and usually in very high specific radioactivity. The disadvantage with the enzyme is that it is substrate specific; however, when the fluorinase is used in combination biotransformations with a second or third enzyme, then a range of radiolabeled nucleosides and ribose sugars can be prepared. The fluorinase enzyme has emerged as a curiosity from biosynthesis studies, but it now has some potential as a new catalyst for (18)F incorporation for PET syntheses. The focus is now on delivering a user-friendly catalyst to the PET synthesis community and establishing a clinical role for some of the (18)F-labeled molecules available using this technology.

  19. Digital Sound Synthesis Algorithms: a Tutorial Introduction and Comparison of Methods

    NASA Astrophysics Data System (ADS)

    Lee, J. Robert

    The objectives of the dissertation are to provide both a compendium of sound-synthesis methods with detailed descriptions and sound examples, as well as a comparison of the relative merits of each method based on ease of use, observed sound quality, execution time, and data storage requirements. The methods are classified under the general headings of wavetable-lookup synthesis, additive synthesis, subtractive synthesis, nonlinear methods, and physical modelling. The nonlinear methods comprise a large group that ranges from the well-known frequency-modulation synthesis to waveshaping. The final category explores computer modelling of real musical instruments and includes numerical and analytical solutions to the classical wave equation of motion, along with some of the more sophisticated time -domain models that are possible through the prudent combination of simpler synthesis techniques. The dissertation is intended to be understandable by a musician who is mathematically literate but who does not necessarily have a background in digital signal processing. With this limitation in mind, a brief and somewhat intuitive description of digital sampling theory is provided in the introduction. Other topics such as filter theory are discussed as the need arises. By employing each of the synthesis methods to produce the same type of sound, interesting comparisons can be made. For example, a struck string sound, such as that typical of a piano, can be produced by algorithms in each of the synthesis classifications. Many sounds, however, are peculiar to a single algorithm and must be examined independently. Psychoacoustic studies were conducted as an aid in the comparison of the sound quality of several implementations of the synthesis algorithms. Other psychoacoustic experiments were conducted to supplement the established notions of which timbral issues are important in the re -synthesis of the sounds of acoustic musical instruments.

  20. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  1. Image improvement and three-dimensional reconstruction using holographic image processing

    NASA Technical Reports Server (NTRS)

    Stroke, G. W.; Halioua, M.; Thon, F.; Willasch, D. H.

    1977-01-01

    Holographic computing principles make possible image improvement and synthesis in many cases of current scientific and engineering interest. Examples are given for the improvement of resolution in electron microscopy and 3-D reconstruction in electron microscopy and X-ray crystallography, following an analysis of optical versus digital computing in such applications.

  2. Chimenea and other tools: Automated imaging of multi-epoch radio-synthesis data with CASA

    NASA Astrophysics Data System (ADS)

    Staley, T. D.; Anderson, G. E.

    2015-11-01

    In preparing the way for the Square Kilometre Array and its pathfinders, there is a pressing need to begin probing the transient sky in a fully robotic fashion using the current generation of radio telescopes. Effective exploitation of such surveys requires a largely automated data-reduction process. This paper introduces an end-to-end automated reduction pipeline, AMIsurvey, used for calibrating and imaging data from the Arcminute Microkelvin Imager Large Array. AMIsurvey makes use of several component libraries which have been packaged separately for open-source release. The most scientifically significant of these is chimenea, which implements a telescope-agnostic algorithm for automated imaging of pre-calibrated multi-epoch radio-synthesis data, of the sort typically acquired for transient surveys or follow-up. The algorithm aims to improve upon standard imaging pipelines by utilizing iterative RMS-estimation and automated source-detection to avoid so called 'Clean-bias', and makes use of CASA subroutines for the underlying image-synthesis operations. At a lower level, AMIsurvey relies upon two libraries, drive-ami and drive-casa, built to allow use of mature radio-astronomy software packages from within Python scripts. While targeted at automated imaging, the drive-casa interface can also be used to automate interaction with any of the CASA subroutines from a generic Python process. Additionally, these packages may be of wider technical interest beyond radio-astronomy, since they demonstrate use of the Python library pexpect to emulate terminal interaction with an external process. This approach allows for rapid development of a Python interface to any legacy or externally-maintained pipeline which accepts command-line input, without requiring alterations to the original code.

  3. Serotonin synthesis rate and the tryptophan hydroxylase-2: G-703T polymorphism in social anxiety disorder.

    PubMed

    Furmark, Tomas; Marteinsdottir, Ina; Frick, Andreas; Heurling, Kerstin; Tillfors, Maria; Appel, Lieuwe; Antoni, Gunnar; Hartvig, Per; Fischer, Håkan; Långström, Bengt; Eriksson, Elias; Fredrikson, Mats

    2016-10-01

    It is disputed whether anxiety disorders, like social anxiety disorder, are characterized by serotonin over- or underactivity. Here, we evaluated whether our recent finding of elevated neural serotonin synthesis rate in patients with social anxiety disorder could be reproduced in a separate cohort, and whether allelic variation in the tryptophan hydroxylase-2 (TPH2) G-703T polymorphism relates to differences in serotonin synthesis assessed with positron emission tomography. Eighteen social anxiety disorder patients and six healthy controls were scanned during 60 minutes in a resting state using positron emission tomography and 5-hydroxy-L-[β -(11)C]tryptophan, [(11)C]5-HTP, a substrate of the second enzymatic step in serotonin synthesis. Parametric images were generated, using the reference Patlak method, and analysed using Statistical Parametric Mapping (SPM8). Blood samples for genotyping of the TPH2 G-703T polymorphism were obtained from 16 social anxiety disorder patients (T carriers: n=5, GG carriers: n=11). A significantly elevated [(11)C]5-HTP accumulation rate, indicative of enhanced decarboxylase activity and thereby serotonin synthesis capacity, was detected in social anxiety disorder patients compared with controls in the hippocampus and basal ganglia nuclei and, at a more lenient (uncorrected) statistical threshold, in the amygdala and anterior cingulate cortex. In patients, the serotonin synthesis rate in the amygdala and anterior cingulate cortex was significantly elevated in TPH2 T carriers in comparison with GG homozygotes. Our results support that social anxiety disorder entails an overactive presynaptic serotonergic system that, in turn, seems functionally influenced by the TPH2 G-703T polymorphism in emotionally relevant brain regions. © The Author(s) 2016.

  4. Developing national on-line services to annotate and analyse underwater imagery in a research cloud

    NASA Astrophysics Data System (ADS)

    Proctor, R.; Langlois, T.; Friedman, A.; Davey, B.

    2017-12-01

    Fish image annotation data is currently collected by various research, management and academic institutions globally (+100,000's hours of deployments) with varying degrees of standardisation and limited formal collaboration or data synthesis. We present a case study of how national on-line services, developed within a domain-oriented research cloud, have been used to annotate habitat images and synthesise fish annotation data sets collected using Autonomous Underwater Vehicles (AUVs) and baited remote underwater stereo-video (stereo-BRUV). Two developing software tools have been brought together in the marine science cloud to provide marine biologists with a powerful service for image annotation. SQUIDLE+ is an online platform designed for exploration, management and annotation of georeferenced images & video data. It provides a flexible annotation framework allowing users to work with their preferred annotation schemes. We have used SQUIDLE+ to sample the habitat composition and complexity of images of the benthos collected using stereo-BRUV. GlobalArchive is designed to be a centralised repository of aquatic ecological survey data with design principles including ease of use, secure user access, flexible data import, and the collection of any sampling and image analysis information. To easily share and synthesise data we have implemented data sharing protocols, including Open Data and synthesis Collaborations, and a spatial map to explore global datasets and filter to create a synthesis. These tools in the science cloud, together with a virtual desktop analysis suite offering python and R environments offer an unprecedented capability to deliver marine biodiversity information of value to marine managers and scientists alike.

  5. Coupled Dictionary Learning for the Detail-Enhanced Synthesis of 3-D Facial Expressions.

    PubMed

    Liang, Haoran; Liang, Ronghua; Song, Mingli; He, Xiaofei

    2016-04-01

    The desire to reconstruct 3-D face models with expressions from 2-D face images fosters increasing interest in addressing the problem of face modeling. This task is important and challenging in the field of computer animation. Facial contours and wrinkles are essential to generate a face with a certain expression; however, these details are generally ignored or are not seriously considered in previous studies on face model reconstruction. Thus, we employ coupled radius basis function networks to derive an intermediate 3-D face model from a single 2-D face image. To optimize the 3-D face model further through landmarks, a coupled dictionary that is related to 3-D face models and their corresponding 3-D landmarks is learned from the given training set through local coordinate coding. Another coupled dictionary is then constructed to bridge the 2-D and 3-D landmarks for the transfer of vertices on the face model. As a result, the final 3-D face can be generated with the appropriate expression. In the testing phase, the 2-D input faces are converted into 3-D models that display different expressions. Experimental results indicate that the proposed approach to facial expression synthesis can obtain model details more effectively than previous methods can.

  6. Synthesis and characterization of α-NaYF{sub 4}: Yb, Er nanoparticles by reverse microemulsion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunaseelan, M.; Senthilselvan, J., E-mail: jsselvan@hotmail.com

    2016-05-06

    A simple and cost effective reverse microemulsion system was newly designed to synthesis NaYF{sub 4}:20%Yb,2%Er upconverting luminescent nanoparticles. XRD results confirms the cubic structure of NaYF{sub 4} nanophosphor in the as prepared condition without any other impurity phases. The as-prepared sample itself having highly crystalline nanoparticle with well dispersed uniform morphology is the advantage of this reverse microemulsion process. HRTEM images of as prepared and calcined samples revealed spherical nanoclusters morphology with size of ~210 nm and ~245 nm respectively. The characteristic absorption wavelength that occurs at 980 nm due to transition of energy levels {sup 2}F{sub 5/2} to {sup 2}F{sub 7/2} formore » Yb{sup 3+} rare earth ion in as prepared and calcined upconversion nanoparticle confirms the presence of Yb{sup 3+} by UV-Visible spectroscopy which can act as a sensitizer for photonic upconversion. Therefore the absorption at NIR region and emission spectrum at visible region suggests that NaYF{sub 4}:20%Yb,2%Er is suitable for upcoversion process, due to its optical property and chemical stability this material also be useful for bio imaging applications.« less

  7. X-ray physico-chemical imaging during activation of cobalt-based Fischer-Tropsch synthesis catalysts

    NASA Astrophysics Data System (ADS)

    Beale, Andrew M.; Jacques, Simon D. M.; Di Michiel, Marco; Mosselmans, J. Frederick W.; Price, Stephen W. T.; Senecal, Pierre; Vamvakeros, Antonios; Paterson, James

    2017-11-01

    The imaging of catalysts and other functional materials under reaction conditions has advanced significantly in recent years. The combination of the computed tomography (CT) approach with methods such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) now enables local chemical and physical state information to be extracted from within the interiors of intact materials which are, by accident or design, inhomogeneous. In this work, we follow the phase evolution during the initial reduction step(s) to form Co metal, for Co-containing particles employed as Fischer-Tropsch synthesis (FTS) catalysts; firstly, working at small length scales (approx. micrometre spatial resolution), a combination of sample size and density allows for transmission of comparatively low energy signals enabling the recording of `multimodal' tomography, i.e. simultaneous XRF-CT, XANES-CT and XRD-CT. Subsequently, we show high-energy XRD-CT can be employed to reveal extent of reduction and uniformity of crystallite size on millimetre-sized TiO2 trilobes. In both studies, the CoO phase is seen to persist or else evolve under particular operating conditions and we speculate as to why this is observed. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  8. Image Reconstruction in Radio Astronomy with Non-Coplanar Synthesis Arrays

    NASA Astrophysics Data System (ADS)

    Goodrick, L.

    2015-03-01

    Traditional radio astronomy imaging techniques assume that the interferometric array is coplanar, with a small field of view, and that the two-dimensional Fourier relationship between brightness and visibility remains valid, allowing the Fast Fourier Transform to be used. In practice, to acquire more accurate data, the non-coplanar baseline effects need to be incorporated, as small height variations in the array plane introduces the w spatial frequency component. This component adds an additional phase shift to the incoming signals. There are two approaches to account for the non-coplanar baseline effects: either the full three-dimensional brightness and visibility model can be used to reconstruct an image, or the non-coplanar effects can be removed, reducing the three dimensional relationship to that of the two-dimensional one. This thesis describes and implements the w-projection and w-stacking algorithms. The aim of these algorithms is to account for the phase error introduced by non-coplanar synthesis arrays configurations, making the recovered visibilities more true to the actual brightness distribution model. This is done by reducing the 3D visibilities to a 2D visibility model. The algorithms also have the added benefit of wide-field imaging, although w-stacking supports a wider field of view at the cost of more FFT bin support. For w-projection, the w-term is accounted for in the visibility domain by convolving it out of the problem with a convolution kernel, allowing the use of the two-dimensional Fast Fourier Transform. Similarly, the w-Stacking algorithm applies a phase correction in the image domain to image layers to produce an intensity model that accounts for the non-coplanar baseline effects. This project considers the KAT7 array for simulation and analysis of the limitations and advantages of both the algorithms. Additionally, a variant of the Högbom CLEAN algorithm was used which employs contour trimming for extended source emission flagging. The CLEAN algorithm is an iterative two-dimensional deconvolution method that can further improve image fidelity by removing the effects of the point spread function which can obscure source data.

  9. 3D structure of individual nanocrystals in solution by electron microscopy

    NASA Astrophysics Data System (ADS)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T.; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A.; Zettl, A.; Alivisatos, A. Paul

    2015-07-01

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.

  10. Information analysis of hyperspectral images from the hyperion satellite

    NASA Astrophysics Data System (ADS)

    Puzachenko, Yu. G.; Sandlersky, R. B.; Krenke, A. N.; Puzachenko, M. Yu.

    2017-07-01

    A new method of estimating the outgoing radiation spectra data obtained from the Hyperion EO-1 satellite is considered. In theoretical terms, this method is based on the nonequilibrium thermodynamics concept with corresponding estimates of the entropy and the Kullbak information. The obtained information estimates make it possible to assess the effective work of the landscape cover both in general and for its various types and to identify the spectrum ranges primarily responsible for the information increment and, accordingly, for the effective work. The information is measured in the frequency band intervals corresponding to the peaks of solar radiation absorption by different pigments, mesophyll, and water to evaluate the system operation by their synthesis and moisture accumulation. This method is assumed to be effective in investigation of ecosystem functioning by hyperspectral remote sensing.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, Daisuke; Kinemuchi, Yoshiaki, E-mail: y.kinemuchi@aist.go.jp; Suzuki, Kazuyuki

    Alpha″-Fe{sub 16}N{sub 2} nanoparticles (NPs) with high magnetic crystalline anisotropy are useful for practical applications such as recording media. However, due to their strongly aggregated and/or sintered form, which occurs during synthesis, the utilization of the NPs has been limited thus far. Here, we report a method for synthesizing highly dispersive α″-Fe{sub 16}N{sub 2} NPs using hydroxyapatite (HAp). The chemically and thermally stable structure of the HAp coating results in the isolation of individual NPs, such that sintering is prevented during synthesis. Additionally, the acicular shape of the HAp crystal did not hinder gas diffusion during the gas reaction. Finally,more » HAp can be removed by a chelating agent without deteriorating the magnetic properties, resulting in highly dispersive α″-Fe{sub 16}N{sub 2} NPs. - Graphical abstract: Synthesis process of highly dispersive α″-Fe{sub 16}N{sub 2} particles using hydroxyapatite coating and SEM images of nanoparticles. - Highlights: • Highly dispersed α″-Fe{sub 16}N{sub 2} NPs were synthesized using hydroxyapatite (HAp). • HAp coating was stable chemically and thermally during gas reaction of α″-Fe{sub 16}N{sub 2} synthesis. • The magnetic property of the resultant Fe{sub 16}N{sub 2} NPs are M{sub s} of 170 emu/g and H{sub C} of 2450 Oe.« less

  12. The design of multirate digital control systems

    NASA Technical Reports Server (NTRS)

    Berg, M. C.

    1986-01-01

    The successive loop closures synthesis method is the only method for multirate (MR) synthesis in common use. A new method for MR synthesis is introduced which requires a gradient-search solution to a constrained optimization problem. Some advantages of this method are that the control laws for all control loops are synthesized simultaneously, taking full advantage of all cross-coupling effects, and that simple, low-order compensator structures are easily accomodated. The algorithm and associated computer program for solving the constrained optimization problem are described. The successive loop closures , optimal control, and constrained optimization synthesis methods are applied to two example design problems. A series of compensator pairs are synthesized for each example problem. The succesive loop closure, optimal control, and constrained optimization synthesis methods are compared, in the context of the two design problems.

  13. Synthesis of carbon-11-labeled bivalent β-carbolines as new PET agents for imaging of cholinesterase in Alzheimer's disease.

    PubMed

    Wang, Min; Zheng, David X; Gao, Mingzhang; Hutchins, Gary D; Zheng, Qi-Huang

    2011-04-01

    Carbon-11-labeled bivalent β-carbolines, 9,9'-(pentane-1,5-diyl)bis(2-[(11)C]methyl-9H-pyrido[3,4-b]indol-2-ium)iodide ([(11)C]2a), 9,9'-(nonane-1,9-diyl)bis(2-[(11)C]methyl-9H-pyrido[3,4-b]indol-2-ium)iodide ([(11)C]2b), 9,9'-(dodecane-1,12-diyl)bis(2-[(11)C]methyl-9H-pyrido[3,4-b]indol-2-ium)iodide ([(11)C]2c) and 1,9-bis(2-[(11)C]methyl-3,4-dihydro-1H-pyrido[3,4-b]indol-9(2H)-yl)nonane ([(11)C]3), were prepared by N-[(11)C]methylation of their corresponding amine precursors using [(11)C]CH(3)I and isolated by either a simplified solid-phase extraction (SPE) method or HPLC in 40-60% radiochemical yields based on [(11)C]CO(2) and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 20-30min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 185-370 GBq/μmol. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. A General Method for the Chemical Synthesis of Large-Scale, Seamless Transition Metal Dichalcogenide Electronics.

    PubMed

    Li, Li; Guo, Yichuan; Sun, Yuping; Yang, Long; Qin, Liang; Guan, Shouliang; Wang, Jinfen; Qiu, Xiaohui; Li, Hongbian; Shang, Yuanyuan; Fang, Ying

    2018-03-01

    The capability to directly build atomically thin transition metal dichalcogenide (TMD) devices by chemical synthesis offers important opportunities to achieve large-scale electronics and optoelectronics with seamless interfaces. Here, a general approach for the chemical synthesis of a variety of TMD (e.g., MoS 2 , WS 2 , and MoSe 2 ) device arrays over large areas is reported. During chemical vapor deposition, semiconducting TMD channels and metallic TMD/carbon nanotube (CNT) hybrid electrodes are simultaneously formed on CNT-patterned substrate, and then coalesce into seamless devices. Chemically synthesized TMD devices exhibit attractive electrical and mechanical properties. It is demonstrated that chemically synthesized MoS 2 -MoS 2 /CNT devices have Ohmic contacts between MoS 2 /CNT hybrid electrodes and MoS 2 channels. In addition, MoS 2 -MoS 2 /CNT devices show greatly enhanced mechanical stability and photoresponsivity compared with conventional gold-contacted devices, which makes them suitable for flexible optoelectronics. Accordingly, a highly flexible pixel array based on chemically synthesized MoS 2 -MoS 2 /CNT photodetectors is applied for image sensing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity

    NASA Astrophysics Data System (ADS)

    Zare, Elham; Pourseyedi, Shahram; Khatami, Mehrdad; Darezereshki, Esmaeel

    2017-10-01

    Nanoparticles with antimicrobial activity, especially as a new class of biomedical materials for use in increasing the level of public health in daily life have emerged. In this study, green synthesis of zinc oxide) ZnO(nanoparticles was studied by Cuminum cyminum (cumin) as novel natural source and zinc nitrate [Zn(NO3)2] as Zn2+ source. The results showed that parameters such as concentration, time, temperature and pH have a direct impact on the synthesis of zinc nanoparticles and change in any of the factors causing the change in the process of synthesis. The properties of synthesized nanoparticles were examined by UV-visible Spectrophotometer, X-ray diffraction spectroscopy and transmission electron microscopy (TEM). The UV-visible spectroscopy presented the absorption peak in the range of 370 nm. Transmission electron microscopy images of synthesized nanoparticles are mainly spherical or oval with an average size of about 7 nm. The effect of antimicrobial nanoparticles calculated using disk diffusion method and broth MIC and MBC in different strains of bacteria, which showed that gram positive and negative were sensitive to zinc oxide nanoparticles. The sensitivity of gram-negative bacteria was more.

  16. Facile green in situ synthesis of Mg/CuO core/shell nanoenergetic arrays with a superior heat-release property and long-term storage stability.

    PubMed

    Zhou, Xiang; Xu, Daguo; Zhang, Qiaobao; Lu, Jian; Zhang, Kaili

    2013-08-14

    We report a facile green method for the in situ synthesis of Mg/CuO core/shell nanoenergetic arrays on silicon, with Mg nanorods as the core and CuO as the shell. Mg nanorods are first prepared by glancing angle deposition. CuO is then deposited around the Mg nanorods by reactive magnetron sputtering to realize the core/shell structure. Various characterization techniques are used to investigate the prepared Mg/CuO core/shell nanoenergetic arrays, including scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, X-ray diffraction, and thermal analysis. Uniform mixing and intimate contact between the Mg nanorods and CuO are confirmed from both visual inspection of the morphological images and analyses of the heat-release curves. The nanoenergetic arrays exhibit a low-onset reaction temperature (∼300 °C) and high heat of reaction (∼3400 J/g). Most importantly, the nanoenergetic arrays possess long-term storage stability resulting from the stable CuO shell. This study provides a potential general strategy for the synthesis of various Mg nanorod-based stable nanoenergetic arrays.

  17. Method of sound synthesis

    DOEpatents

    Miner, Nadine E.; Caudell, Thomas P.

    2004-06-08

    A sound synthesis method for modeling and synthesizing dynamic, parameterized sounds. The sound synthesis method yields perceptually convincing sounds and provides flexibility through model parameterization. By manipulating model parameters, a variety of related, but perceptually different sounds can be generated. The result is subtle changes in sounds, in addition to synthesis of a variety of sounds, all from a small set of models. The sound models can change dynamically according to changes in the simulation environment. The method is applicable to both stochastic (impulse-based) and non-stochastic (pitched) sounds.

  18. Component analysis and synthesis of dark circles under the eyes using a spectral image

    NASA Astrophysics Data System (ADS)

    Akaho, Rina; Hirose, Misa; Ojima, Nobutoshi; Igarashi, Takanori; Tsumura, Norimichi

    2017-02-01

    This paper proposes to apply nonlinear estimation of chromophore concentrations: melanin, oxy-hemoglobin, deoxyhemoglobin and shading to the real hyperspectral image of skin. Skin reflectance is captured in the wavelengths between 400nm and 700nm by hyperspectral scanner. Five-band wavelengths data are selected from skin reflectance. By using the cubic function which obtained by Monte Carlo simulation of light transport in multi-layered tissue, chromophore concentrations and shading are determined by minimize residual sum of squares of reflectance. When dark circles are appeared under the eyes, the subject looks tired and older. Therefore, woman apply cosmetic cares to remove dark circles. It is not clear about the relationship between color and chromophores distribution in the dark circles. Here, we applied the separation method of the skin four components to hyperspectral image of dark circle, and the separated components are modulated and synthesized. The synthesized images are evaluated to know which components are contributed into the appearance of dark circles. Result of the evaluation shows that the cause of dark circles for the one subject was mainly melanin pigmentation.

  19. Imaging Pancreatic Cancer Using Bioconjugated InP Quantum Dots

    PubMed Central

    Yong, Ken-Tye; Ding, Hong; Roy, Indrajit; Law, Wing-Cheung; Bergey, Earl J.; Maitra, Anirban; Prasad, Paras N.

    2009-01-01

    In this paper, we report the successful use of non-cadmium based quantum dots (QDs) as highly efficient and non-toxic optical probes for imaging live pancreatic cancer cells. Indium phosphide (core)-zinc sulphide (shell), or InP/ZnS, QDs with high quality and bright luminescence were prepared by a hot colloidal synthesis method in non-aqueous media. The surfaces of these QDs were then functionalized with mercaptosuccinic acid to make them highly dispersible in aqueous media. Further bioconjugation with pancreatic cancer specific monoclonal antibodies, such as anti-claudin 4 and anti-prostate stem cell antigen (anti-PSCA), to the functionalized InP/ZnS QDs, allowed specific in vitro targeting of pancreatic cancer cell lines (both immortalized and low passage ones). The receptor mediated delivery of the bioconjugates was further confirmed by the observation of poor in vitro targeting in non-pancreatic cancer based cell lines which are negative for the claudin-4-receptor. These observations suggest the immense potential of InP/ZnS QDs as non-cadmium based safe and efficient optical imaging nanoprobes in diagnostic imaging, particularly for early detection of cancer. PMID:19243145

  20. Imaging pancreatic cancer using bioconjugated InP quantum dots.

    PubMed

    Yong, Ken-Tye; Ding, Hong; Roy, Indrajit; Law, Wing-Cheung; Bergey, Earl J; Maitra, Anirban; Prasad, Paras N

    2009-03-24

    In this paper, we report the successful use of non-cadmium-based quantum dots (QDs) as highly efficient and nontoxic optical probes for imaging live pancreatic cancer cells. Indium phosphide (core)-zinc sulfide (shell), or InP/ZnS, QDs with high quality and bright luminescence were prepared by a hot colloidal synthesis method in nonaqueous media. The surfaces of these QDs were then functionalized with mercaptosuccinic acid to make them highly dispersible in aqueous media. Further bioconjugation with pancreatic cancer specific monoclonal antibodies, such as anticlaudin 4 and antiprostate stem cell antigen (anti-PSCA), to the functionalized InP/ZnS QDs, allowed specific in vitro targeting of pancreatic cancer cell lines (both immortalized and low passage ones). The receptor-mediated delivery of the bioconjugates was further confirmed by the observation of poor in vitro targeting in nonpancreatic cancer based cell lines which are negative for the claudin-4-receptor. These observations suggest the immense potential of InP/ZnS QDs as non-cadmium-based safe and efficient optical imaging nanoprobes in diagnostic imaging, particularly for early detection of cancer.

  1. Synthesis and optical properties of water-soluble biperylene-based dendrimers.

    PubMed

    Shao, Pin; Jia, Ningyang; Zhang, Shaojuan; Bai, Mingfeng

    2014-05-30

    We report the synthesis and photophysical properties of three biperylene-based dendrimers, which show red fluorescence in water. A fluorescence microscopy study demonstrated uptake of biperylene-based dendrimers in living cells. Our results indicate that these biperylene-based dendrimers are promising candidates in fluorescence imaging applications with the potential as therapeutic carriers.

  2. Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour

    NASA Astrophysics Data System (ADS)

    Nakhjavani, Maryam; Nikkhah, V.; Sarafraz, M. M.; Shoja, Saeed; Sarafraz, Marzieh

    2017-10-01

    In this paper, silver nanoparticles are produced via green synthesis method using green tea leaves. The introduced method is cost-effective and available, which provides condition to manipulate and control the average nanoparticle size. The produced particles were characterized using x-ray diffraction, scanning electron microscopic images, UV visualization, digital light scattering, zeta potential measurement and thermal conductivity measurement. Results demonstrated that the produced samples of silver nanoparticles are pure in structure (based on the x-ray diffraction test), almost identical in terms of morphology (spherical and to some extent cubic) and show longer stability when dispersed in deionized water. The UV-visualization showed a peak in 450 nm, which is in accordance with the previous studies reported in the literature. Results also showed that small particles have higher thermal and antimicrobial performance. As green tea leaves are used for extracting the silver nanoparticles, the method is eco-friendly. The thermal behaviour of silver nanoparticle was also analysed by dispersing the nanoparticles inside the deionized water. Results showed that thermal conductivity of the silver nano-fluid is higher than that of obtained for the deionized water. Activity of Ag nanoparticles against some bacteria was also examined to find the suitable antibacterial application for the produced particles.

  3. Measurement of protein synthesis: in vitro comparison of (68)Ga-DOTA-puromycin, [ (3)H]tyrosine, and 2-fluoro-[ (3)H]tyrosine.

    PubMed

    Eigner, Sebastian; Beckford Vera, Denis R; Fellner, Marco; Loktionova, Natalia S; Piel, Markus; Melichar, Frantisek; Rösch, Frank; Roß, Tobias L; Lebeda, Ondrej; Henke, Katerina Eigner

    2013-01-01

    Puromycin has played an important role in our understanding of the eukaryotic ribosome and protein synthesis. It has been known for more than 40 years that this antibiotic is a universal protein synthesis inhibitor that acts as a structural analog of an aminoacyl-transfer RNA (aa-tRNA) in eukaryotic ribosomes. Due to the role of enzymes and their synthesis in situations of need (DNA damage, e.g., after chemo- or radiation therapy), determination of protein synthesis is important for control of antitumor therapy, to enhance long-term survival of tumor patients, and to minimize side-effects of therapy. Multiple attempts to reach this goal have been made through the last decades, mostly using radiolabeled amino acids, with limited or unsatisfactory success. The aim of this study is to estimate the possibility of determining protein synthesis ratios by using (68)Ga-DOTA-puromycin ((68)Ga-DOTA-Pur), [(3)H]tyrosine, and 2-fluoro-[(3)H]tyrosine and to estimate the possibility of different pathways due to the fluorination of tyrosine. DOTA-puromycin was synthesized using a puromycin-tethered controlled-pore glass (CPG) support by the usual protocol for automated DNA and RNA synthesis following our design. (68)Ga was obtained from a (68)Ge/(68)Ga generator as described previously by Zhernosekov et al. (J Nucl Med 48:1741-1748, 2007). The purified eluate was used for labeling of DOTA-puromycin at 95°C for 20 min. [(3)H]Tyrosine and 2-fluoro-[(3)H]tyrosine of the highest purity available were purchased from Moravek (Bera, USA) or Amersham Biosciences (Hammersmith, UK). In vitro uptake and protein incorporation as well as in vitro inhibition experiments using cycloheximide to inhibit protein synthesis were carried out for all three substances in DU145 prostate carcinoma cells (ATCC, USA). (68)Ga-DOTA-Pur was additionally used for μPET imaging of Walker carcinomas and AT1 tumors in rats. Dynamic scans were performed for 45 min after IV application (tail vein) of 20-25 MBq (68)Ga-DOTA-Pur. No significant differences in the behavior of [(3)H]tyrosine and 2-fluoro-[(3)H]tyrosine were observed. Uptake of both tyrosine derivatives was decreased by inhibition of protein synthesis, but only to a level of 45-55% of initial uptake, indicating no direct link between tyrosine uptake and protein synthesis. In contrast, (68)Ga-DOTA-Pur uptake was directly linked to ribosomal activity and, therefore, to protein synthesis. (68)Ga-DOTA-Pur μPET imaging in rats revealed high tumor-to-background ratios and clearly defined regions of interest in the investigated tumors. Whereas the metabolic pathway of (68)Ga-DOTA-Pur is directly connected with the process of protein synthesis and shows high tumor uptake during μPET imaging, neither [(3)H]tyrosine nor 2-fluoro-[(3)H]tyrosine can be considered useful for determination of protein synthesis.

  4. Targeting Aldehyde Dehydrogenase: a Potential Approach for Cell labeling

    PubMed Central

    Vaidyanathan, Ganesan; Song, Haijing; Affleck, Donna; McDougald, Darryl L.; Storms, Robert W.; Zalutksy, Michael R.; Chin, Bennett B.

    2009-01-01

    Introduction To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative, and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods We developed schemes for the synthesis of two 3radioiodinated aldehdyes—N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)—at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results The average radiochemical yields for the synthesis [125I]FMIC and [125I]DEIBA were 70 ± 5% and 47 ± 14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells. PMID:19875048

  5. IMAGES: A digital computer program for interactive modal analysis and gain estimation for eigensystem synthesis

    NASA Technical Reports Server (NTRS)

    Jones, R. L.

    1984-01-01

    An interactive digital computer program for modal analysis and gain estimation for eigensystem synthesis was written. Both mathematical and operation considerations are described; however, the mathematical presentation is limited to those concepts essential to the operational capability of the program. The program is capable of both modal and spectral synthesis of multi-input control systems. It is user friendly, has scratchpad capability and dynamic memory, and can be used to design either state or output feedback systems.

  6. Alpha-V Integrin Targeted PET Imagining of Breast Cancer Angiogenesis and Lose-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    DTIC Science & Technology

    2005-08-01

    Chen X, Plasencia C, Hou Y, Neamati N. Synthesis and Biological Evaluation of Dimeric RGD Peptide-Paclitaxel Conjugate as Model for Integrin Targeted...Plasencia C, Hou Y, Neamati N. Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug...Targeted Imaging of Lung Cancer. Neoplasia 2005;7:271-279. 6. Chen X, Plasencia C, Hou Y, Neamati N. Synthesis and Biological Evaluation of Dimeric RGD

  7. A direct method for the synthesis of orthogonally protected furyl- and thienyl- amino acids.

    PubMed

    Hudson, Alex S; Caron, Laurent; Colgin, Neil; Cobb, Steven L

    2015-04-01

    The synthesis of unnatural amino acids plays a key part in expanding the potential application of peptide-based drugs and in the total synthesis of peptide natural products. Herein, we report a direct method for the synthesis of orthogonally protected 5-membered heteroaromatic amino acids.

  8. Image Reconstruction for Interferometric Imaging of Geosynchronous Satellites

    NASA Astrophysics Data System (ADS)

    DeSantis, Zachary J.

    Imaging distant objects at a high resolution has always presented a challenge due to the diffraction limit. Larger apertures improve the resolution, but at some point the cost of engineering, building, and correcting phase aberrations of large apertures become prohibitive. Interferometric imaging uses the Van Cittert-Zernike theorem to form an image from measurements of spatial coherence. This effectively allows the synthesis of a large aperture from two or more smaller telescopes to improve the resolution. We apply this method to imaging geosynchronous satellites with a ground-based system. Imaging a dim object from the ground presents unique challenges. The atmosphere creates errors in the phase measurements. The measurements are taken simultaneously across a large bandwidth of light. The atmospheric piston error, therefore, manifests as a linear phase error across the spectral measurements. Because the objects are faint, many of the measurements are expected to have a poor signal-to-noise ratio (SNR). This eliminates possibility of use of commonly used techniques like closure phase, which is a standard technique in astronomical interferometric imaging for making partial phase measurements in the presence of atmospheric error. The bulk of our work has been focused on forming an image, using sub-Nyquist sampled data, in the presence of these linear phase errors without relying on closure phase techniques. We present an image reconstruction algorithm that successfully forms an image in the presence of these linear phase errors. We demonstrate our algorithm’s success in both simulation and in laboratory experiments.

  9. Automatic regional analysis of myocardial native T1 values: left ventricle segmentation and AHA parcellations.

    PubMed

    Huang, Hsiao-Hui; Huang, Chun-Yu; Chen, Chiao-Ning; Wang, Yun-Wen; Huang, Teng-Yi

    2018-01-01

    Native T1 value is emerging as a reliable indicator of abnormal heart conditions related to myocardial fibrosis. Investigators have extensively used the standardized myocardial segmentation of the American Heart Association (AHA) to measure regional T1 values of the left ventricular (LV) walls. In this paper, we present a fully automatic system to analyze modified Look-Locker inversion recovery images and to report regional T1 values of AHA segments. Ten healthy individuals participated in the T1 mapping study with a 3.0 T scanner after providing informed consent. First, we obtained masks of an LV blood-pool region and LV walls by using an image synthesis method and a layer-growing method. Subsequently, the LV walls were divided into AHA segments by identifying the boundaries of the septal regions and by using a radial projection method. The layer-growing method significantly enhanced the accuracy of the derived myocardium mask. We compared the T1 values that were obtained using manual region of interest selections and those obtained using the automatic system. The average T1 difference of the calculated segments was 4.6 ± 1.5%. This study demonstrated a practical and robust method of obtaining native T1 values of AHA segments in LV walls.

  10. Specialized Computer Systems for Environment Visualization

    NASA Astrophysics Data System (ADS)

    Al-Oraiqat, Anas M.; Bashkov, Evgeniy A.; Zori, Sergii A.

    2018-06-01

    The need for real time image generation of landscapes arises in various fields as part of tasks solved by virtual and augmented reality systems, as well as geographic information systems. Such systems provide opportunities for collecting, storing, analyzing and graphically visualizing geographic data. Algorithmic and hardware software tools for increasing the realism and efficiency of the environment visualization in 3D visualization systems are proposed. This paper discusses a modified path tracing algorithm with a two-level hierarchy of bounding volumes and finding intersections with Axis-Aligned Bounding Box. The proposed algorithm eliminates the branching and hence makes the algorithm more suitable to be implemented on the multi-threaded CPU and GPU. A modified ROAM algorithm is used to solve the qualitative visualization of reliefs' problems and landscapes. The algorithm is implemented on parallel systems—cluster and Compute Unified Device Architecture-networks. Results show that the implementation on MPI clusters is more efficient than Graphics Processing Unit/Graphics Processing Clusters and allows real-time synthesis. The organization and algorithms of the parallel GPU system for the 3D pseudo stereo image/video synthesis are proposed. With realizing possibility analysis on a parallel GPU-architecture of each stage, 3D pseudo stereo synthesis is performed. An experimental prototype of a specialized hardware-software system 3D pseudo stereo imaging and video was developed on the CPU/GPU. The experimental results show that the proposed adaptation of 3D pseudo stereo imaging to the architecture of GPU-systems is efficient. Also it accelerates the computational procedures of 3D pseudo-stereo synthesis for the anaglyph and anamorphic formats of the 3D stereo frame without performing optimization procedures. The acceleration is on average 11 and 54 times for test GPUs.

  11. Structural and luminescence properties of self-yellow emitting undoped and (Ca, Ba, Sr)-doped Zn2V2O7 phosphors synthesized by combustion method

    NASA Astrophysics Data System (ADS)

    Foka, Kewele E.; Dejene, Birhanu F.; Koao, Lehlohonolo F.; Swart, Hendrik C.

    2018-04-01

    A self-activated yellow emitting Zn2V2O7 was synthesized by combustion method. The influence of the processing parameters such as synthesis temperature and dopants concentration on the structure, morphology and luminescence properties was investigated. The X-ray diffraction (XRD) analysis confirmed that the samples have a tetragonal structure and no significant structural change was observed in varying both the synthesis temperature and the dopants concentration. The estimated average crystallite size was 78 nm for the undoped samples synthesized at different temperatures and 77 nm for the doped samples. Scanning electron microscope (SEM) images showed agglomerated hexagonal-shaped particles with straight edges at low temperatures and the shape of the particles changed to cylindrical structures at moderate temperatures. At higher temperatures, the morphology changed completely. However, the morphologies of the doped samples looked alike. The photoluminescence (PL) of the product exhibited broad emission bands ranging from 400 to 800 nm. The best luminescence intensity was observed for the undoped Zn2V2O7 samples and those synthesized at 600 ℃ . Any further increase in synthesis temperature, type and concentration of dopants led to a decrease in the luminescence intensity. The broad band emission peak of Zn2V2O7 consisted of two broad bands corresponding to emissions from the Em1 (3T2→1A1) and Em2 (3T1→1A1) transitions.

  12. Catalytic Degradation of Dichlorvos Using Biosynthesized Zero Valent Iron Nanoparticles.

    PubMed

    Mehrotra, Neha; Tripathi, Ravi Mani; Zafar, Fahmina; Singh, Manoj Pratap

    2017-06-01

    The removal of dichlorvos contamination from water is a challenging task because of the presence of direct carbon to phosphorous covalent bond, which makes them resistant to chemical and thermal degradation. Although there have been reports in the literature for degradation of dichlorvos using nanomaterials, those are based on photocatalysis. In this paper, we report a simple and rapid method for catalytic degradation of dichlorvos using protein-capped zero valent iron nanoparticles (FeNPs). We have developed an unprecedented reliable, clean, nontoxic, eco-friendly, and cost-effective biological method for the synthesis of uniformly distributed FeNPs. Yeast extract was used as reducing and capping agent in the synthesis of FeNPs, and synthesized particles were characterized by the UV-visible spectroscopy, X -ray diffraction, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). TEM micrographs reveal that the nanoparticles size is distributed in the range of 2-10 nm. Selected area electron diffraction pattern shows the polycrystalline rings of FeNPs. The mean size was found to be 5.006 nm from ImageJ. FTIR spectra depicted the presence of biomolecules, which participated in the synthesis and stabilization of nanoparticles. As synthesized, FeNPs were used for the catalytic degradation of dichlorvos in aqueous medium. The degradation activity of the FeNPs has been investigated by the means of incubation time effect, oxidant effect, and nanoparticle concentration effect. The ammonium molybdate test was used to confirm the release of phosphate ions during the interaction of dichlorvos with FeNPs.

  13. Smsynth: AN Imagery Synthesis System for Soil Moisture Retrieval

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Xu, L.; Peng, J.

    2018-04-01

    Soil moisture (SM) is a important variable in various research areas, such as weather and climate forecasting, agriculture, drought and flood monitoring and prediction, and human health. An ongoing challenge in estimating SM via synthetic aperture radar (SAR) is the development of the retrieval SM methods, especially the empirical models needs as training samples a lot of measurements of SM and soil roughness parameters which are very difficult to acquire. As such, it is difficult to develop empirical models using realistic SAR imagery and it is necessary to develop methods to synthesis SAR imagery. To tackle this issue, a SAR imagery synthesis system based on the SM named SMSynth is presented, which can simulate radar signals that are realistic as far as possible to the real SAR imagery. In SMSynth, SAR backscatter coefficients for each soil type are simulated via the Oh model under the Bayesian framework, where the spatial correlation is modeled by the Markov random field (MRF) model. The backscattering coefficients simulated based on the designed soil parameters and sensor parameters are added into the Bayesian framework through the data likelihood where the soil parameters and sensor parameters are set as realistic as possible to the circumstances on the ground and in the validity range of the Oh model. In this way, a complete and coherent Bayesian probabilistic framework is established. Experimental results show that SMSynth is capable of generating realistic SAR images that suit the needs of a large amount of training samples of empirical models.

  14. Synthesis of cytocompatible Fe3O4@ZSM-5 nanocomposite as magnetic resonance imaging contrast agent

    NASA Astrophysics Data System (ADS)

    Atashi, Zahra; Divband, Baharak; Keshtkar, Ahmad; Khatamian, Maasoumeh; Farahmand-Zahed, Farzane; Nazarlo, Ali Kiani; Gharehaghaji, Nahideh

    2017-09-01

    In this study, ZSM-5 nano zeolite was used as a support material for iron oxide nanoparticles and the potential ability of the nanocomposite for magnetic resonance imaging (MRI) contrast agent was investigated. The nanocomposite was synthesized by hydrothermal method and characterized using X-ray diffraction and scanning electron microscopy. MRI was carried out by use of a 1.5 Tesla clinical scanner. The T2 weighted images were prepared and the r2 relaxivity was calculated. The sizes of Fe3O4 nanoparticles and related nanocomposite were 13-24 nm and 80-150 nm, respectively. Results of MTT assay confirmed that the prepared nanocomposite is cytocompatible. The r2 relaxivity of the Fe3O4@ZSM-5 nanocomposite was 457.1 mM-1 s-1. This study suggests that the Fe3O4@ZSM-5 nanocomposite has potential to use as an MRI T2 contrast agent.

  15. Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells.

    PubMed

    Goreham, Renee V; Schroeder, Kathryn L; Holmes, Amy; Bradley, Siobhan J; Nann, Thomas

    2018-01-24

    The authors describe the synthesis of water-soluble and fluorescent graphene oxide quantum dots via acid exfoliation of graphite nanoparticles. The resultant graphene oxide quantum dots (GoQDs) were then modified with folic acid. Folic acid receptors are overexpressed in cancer cells and hence can bind to functionalized graphene oxide quantum dots. On excitation at 305 nm, the GoQDs display green fluorescence with a peak wavelength at ~520 nm. The modified GoQDs are non-toxic to macrophage cells even after prolonged exposure and high concentrations. Fluorescence lifetime imaging and multiphoton microscopy was used (in combination) to image HeCaT cells exposed to GoQDs, resulting in a superior method for bioimaging. Graphical abstract Schematic representation of graphene oxide quantum dots, folic acid modified graphene oxide quantum dots (red), and the use of fluorescence lifetime to discriminate against green auto-fluorescence of HeCaT cells.

  16. Worked examples of alternative methods for the synthesis of qualitative and quantitative research in systematic reviews

    PubMed Central

    Lucas, Patricia J; Baird, Janis; Arai, Lisa; Law, Catherine; Roberts, Helen M

    2007-01-01

    Background The inclusion of qualitative studies in systematic reviews poses methodological challenges. This paper presents worked examples of two methods of data synthesis (textual narrative and thematic), used in relation to one review, with the aim of enabling researchers to consider the strength of different approaches. Methods A systematic review of lay perspectives of infant size and growth was conducted, locating 19 studies (including both qualitative and quantitative). The data extracted from these were synthesised using both a textual narrative and a thematic synthesis. Results The processes of both methods are presented, showing a stepwise progression to the final synthesis. Both methods led us to similar conclusions about lay views toward infant size and growth. Differences between methods lie in the way they dealt with study quality and heterogeneity. Conclusion On the basis of the work reported here, we consider textual narrative and thematic synthesis have strengths and weaknesses in relation to different research questions. Thematic synthesis holds most potential for hypothesis generation, but may obscure heterogeneity and quality appraisal. Textual narrative synthesis is better able to describe the scope of existing research and account for the strength of evidence, but is less good at identifying commonality. PMID:17224044

  17. Multishaker modal testing

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.

    1985-01-01

    A component mode synthesis method for damped structures was developed and modal test methods were explored which could be employed to determine the relevant parameters required by the component mode synthesis method. Research was conducted on the following topics: (1) Development of a generalized time-domain component mode synthesis technique for damped systems; (2) Development of a frequency-domain component mode synthesis method for damped systems; and (3) Development of a system identification algorithm applicable to general damped systems. Abstracts are presented of the major publications which have been previously issued on these topics.

  18. Positron Emission Tomography Imaging Using Radiolabeled Inorganic Nanomaterials

    PubMed Central

    Sun, Xiaolian; Cai, Weibo; Chen, Xiaoyuan

    2015-01-01

    CONSPECTUS Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy. Although being fast and specific, only a few combinations of isotopes and nanoparticles have been explored. Since the applications of radiolabeled nanoparticles are based on the premise that the radioisotopes are stably attached to the nanomaterials, stability (colloidal and radiochemical) assessment of radiolabeled nanoparticles is also highlighted. Despite the fact that thousands of nanomaterials have been developed for clinical research, only very few have moved to humans. One major reason is the lack of understanding of the biological behavior of nanomaterials. We discuss specific examples of using PET imaging to monitor the in vivo fate of radiolabeled nanoparticles, emphasizing the importance of labeling strategies and caution in interpreting PET data. Design considerations for radiolabeled nanoplatforms for multimodal molecular imaging are also illustrated, with a focus on strategies to combine the strengths of different imaging modalities and to prolong the circulation time. PMID:25635467

  19. Novel DOTA-based prochelator for divalent peptide vectorization: synthesis of dimeric bombesin analogues for multimodality tumor imaging and therapy.

    PubMed

    Abiraj, Keelara; Jaccard, Hugues; Kretzschmar, Martin; Helm, Lothar; Maecke, Helmut R

    2008-07-28

    Dimeric peptidic vectors, obtained by the divalent grafting of bombesin analogues on a newly synthesized DOTA-based prochelator, showed improved qualities as tumor targeted imaging probes in comparison to their monomeric analogues.

  20. An azodye-rhodamine-based fluorescent and colorimetric probe specific for the detection of Pd(2+) in aqueous ethanolic solution: synthesis, XRD characterization, computational studies and imaging in live cells.

    PubMed

    Mahapatra, Ajit Kumar; Manna, Saikat Kumar; Maiti, Kalipada; Mondal, Sanchita; Maji, Rajkishor; Mandal, Debasish; Mandal, Sukhendu; Uddin, Md Raihan; Goswami, Shyamaprosad; Quah, Ching Kheng; Fun, Hoong-Kun

    2015-02-21

    Azodye-rhodamine hybrid colorimetric fluorescent probe (L) has been designed and synthesized. The structure of L has been established based on single crystal XRD. It has been shown to act as a selective turn-on fluorescent chemosensor for Pd(2+) with >40 fold enhancement by exhibiting red emission among the other 27 cations studied in aqueous ethanol. The coordination features of the species of recognition have been computationally evaluated by DFT methods and found to have a distorted tetrahedral Pd(2+) center in the binding core. The probe (L) has been shown to detect Pd up to 0.45 μM at pH 7.4. Furthermore, the probe can be used to image Pd(2+) in living cells.

  1. Synthesis and characterization of Na(Gd0.5Lu0.5)F4: Nd3+,a core-shell free multifunctional contrast agent.

    PubMed

    Mimun, L Christopher; Ajithkumar, G; Rightsell, Chris; Langloss, Brian W; Therien, Michael J; Sardar, Dhiraj K

    2017-02-25

    Compared to conventional core-shell structures, core-shell free nanoparticles with multiple functionalities offer several advantages such as minimal synthetic complexity and low production cost. In this paper, we present the synthesis and characterization of Nd 3+ doped Na(Gd 0.5 Lu 0.5 )F 4 as a core-shell free nanoparticle system with three functionalities. Nanocrystals with 20 nm diameter, high crystallinity and a narrow particle size distributions were synthesized by the solvothermal method and characterized by various analytical techniques to understand their phase and morphology. Fluorescence characteristics under near infrared (NIR) excitation at 808 nm as well as X-ray excitation were studied to explore their potential in NIR optical and X-ray imaging. At 1.0 mol% Nd concentration, we observed a quantum yield of 25% at 1064 nm emission with 13 W/cm 2 excitation power density which is sufficiently enough for imaging applications. Under 130 kVp (5 mA) power of X-ray excitation, Nd 3+ doped Na(Gd 0.5 Lu 0.5 )F 4 shows the characteristic emission bands of Gd 3+ and Nd 3+ with the strongest emission peak at 1064 nm due to Nd 3+ . Furthermore, magnetization measurements show that the nanocrystals are paramagnetic in nature with a calculated magnetic moment per particle of ~570 μB at 2T. These preliminary results support the suitability of the present nanophosphor as a multimodal contrast agent with three imaging features viz. optical, magnetic and X-ray.

  2. Y3Fe5O12 nanoparticulate garnet ferrites: Comprehensive study on the synthesis and characterization fabricated by various routes

    NASA Astrophysics Data System (ADS)

    Niaz Akhtar, Majid; Azhar Khan, Muhammad; Ahmad, Mukhtar; Murtaza, G.; Raza, Rizwan; Shaukat, S. F.; Asif, M. H.; Nasir, Nadeem; Abbas, Ghazanfar; Nazir, M. S.; Raza, M. R.

    2014-11-01

    The effects of synthesis methods such as sol-gel (SG), self combustion (SC) and modified conventional mixed oxide (MCMO) on the structure, morphology and magnetic properties of the (Y3Fe5O12) garnet ferrites have been studied in the present work. The samples of Y3Fe5O12 were sintered at 950 °C and 1150 °C (by SG and SC methods). For MCMO route the sintering was done at 1350 °C for 6 h. Synthesized samples prepared by various routes were investigated using X-ray diffraction (XRD) analysis, Field emission scanning electron microscopy (FESEM), Impedance network analyzer and transmission electron microscopy (TEM). The structural analysis reveals that the samples are of single phase structure and shows variations in the particle sizes and cells volumes, prepared by various routes. FESEM and TEM images depict that grain size increases with the increase of sintering temperature from 40 nm to 100 nm.Magnetic measurements reveal that garnet ferrite synthesized by sol gel method has high initial permeability (60.22) and low magnetic loss (0.0004) as compared to other garnet ferrite samples, which were synthesized by self combustion and MCMO methods. The M-H loops exhibit very low coercivity which enables the use of these materials in relays and switching devices fabrications. Thus, the garnet nanoferrites with low magnetic loss prepared by different methods may open new horizon for electronic industry for their use in high frequency applications.

  3. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    NASA Astrophysics Data System (ADS)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  4. One-dimensional growth of hexagonal rods of metastable h-MoO3 using one-pot, rapid and environmentally benign supercritical fluid processing

    NASA Astrophysics Data System (ADS)

    Thangasamy, Pitchai; Shanmugapriya, Vadivel; Sathish, Marappan

    2018-05-01

    A facile and one-pot supercritical fluid method was demonstrated for the synthesis of phase pure crystalline h-MoO3 microrods within a short reaction time of 5 min at 400 °C. The formation of h-MoO3 was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and Raman spectroscopic analysis. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) images clearly revealed the formation of hexagonal h-MoO3 rods. Further, photoluminescence emission peaks corresponding to band to band transition was observed in the h-MoO3 microrods. It was observed that when increasing the reaction time from 5 min to 30 min at 400 °C, h-MoO3 microrods undergoes disintegration to α-MoO3 thin nanorods. Interestingly, h-MoO3 microrods were also formed in a reaction time of 30 min at 400 °C when reducing the volume of nitric acid from 1 mL to ∼0.5 mL. The short reaction time and simple synthetic strategy makes this method can be suitable for the synthesis of other semiconductor nanomaterials for diverse applications.

  5. Revealing the face of an ancient Egyptian: synthesis of current and traditional approaches to evidence-based facial approximation.

    PubMed

    Lindsay, Kaitlin E; Rühli, Frank J; Deleon, Valerie Burke

    2015-06-01

    The technique of forensic facial approximation, or reconstruction, is one of many facets of the field of mummy studies. Although far from a rigorous scientific technique, evidence-based visualization of antemortem appearance may supplement radiological, chemical, histological, and epidemiological studies of ancient remains. Published guidelines exist for creating facial approximations, but few approximations are published with documentation of the specific process and references used. Additionally, significant new research has taken place in recent years which helps define best practices in the field. This case study records the facial approximation of a 3,000-year-old ancient Egyptian woman using medical imaging data and the digital sculpting program, ZBrush. It represents a synthesis of current published techniques based on the most solid anatomical and/or statistical evidence. Through this study, it was found that although certain improvements have been made in developing repeatable, evidence-based guidelines for facial approximation, there are many proposed methods still awaiting confirmation from comprehensive studies. This study attempts to assist artists, anthropologists, and forensic investigators working in facial approximation by presenting the recommended methods in a chronological and usable format. © 2015 Wiley Periodicals, Inc.

  6. Green synthesis of Silver and Gold Nanoparticles for Enhanced catalytic and bactericidal activity

    NASA Astrophysics Data System (ADS)

    Naraginti, S.; Tiwari, N.; Sivakumar, A.

    2017-11-01

    A rapid one step green synthetic method using kiwi fruit extract was employed for preparation of silver and gold nanoparticles. The synthesized nanoparticles were successfully used as green catalysts for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB). They also exhibited excellent antimicrobial activity against clinically isolated Pseudomonas aeruginosa (P.aeruginosa) and Staphylococcus aureus (S.aureus). It was noticed that with increase in concentration of the aqueous silver and gold solutions, particle size of the Ag and Au NPS showed increase as evidenced from UV-Visible spectroscopy and TEM micrograph. The method employed for the synthesis required only a few minutes for more than 90% formation of nanoparticles when the temperature was raised to 80°C. It was also noticed that the catalytic activity of nanoparticles depends upon the size of the particles. These nanoparticles were observed to be crystalline from the clear lattice fringes in the transmission electron microscopic (TEM) images, bright circular spots in the selected area electron diffraction (SAED) pattern and peaks in the X-ray diffraction (XRD) pattern. The Fourier-transform infrared (FTIR) spectrum indicated the presence of different functional groups in the biomolecule capping the nanoparticles.

  7. Synthesis of a potent and selective (18)F-labeled delta-opioid receptor antagonist derived from the Dmt-Tic pharmacophore for positron emission tomography imaging.

    PubMed

    Ryu, Eun Kyoung; Wu, Zhanhong; Chen, Kai; Lazarus, Lawrence H; Marczak, Ewa D; Sasaki, Yusuke; Ambo, Akihiro; Salvadori, Severo; Ren, Chuancheng; Zhao, Heng; Balboni, Gianfranco; Chen, Xiaoyuan

    2008-03-27

    Identification and pharmacological characterization of two new selective delta-opioid receptor antagonists, derived from the Dmt-Tic pharmacophore, of potential utility in positron emission tomography (PET) imaging are described. On the basis of its high delta selectivity, H-Dmt-Tic--Lys(Z)-OH (reference compound 1) is a useful starting point for the synthesis of (18)F-labeled compounds prepared by the coupling of N-succinimidyl 4-[ (18)F]fluorobenzoate ([(18)F]SFB) with Boc-Dmt-Tic--Lys(Z)-OH under slightly basic conditions at 37 degrees C for 15 min, deprotection with TFA, and HPLC purification. The total synthesis time was 120 min, and the decay-corrected radiochemical yield of [(18)F]- 1 was about 25-30% ( n = 5) starting from [(18)F]SFB ( n = 5) with an effective specific activity about 46 GBq/micromol. In vitro autoradiography studies showed prominent uptake of [ (18)F]- 1 in the striatum and cortex with significant blocking by 1 and UFP-501 (selective delta-opioid receptor antagonist), suggesting high specific binding of [(18)F]- 1 to delta-opioid receptors. Noninvasive microPET imaging studies revealed the absence of [(18)F]- 1 in rat brain, since it fails to cross the blood-brain barrier. This study demonstrates the suitability of [ (18)F]- 1 for imaging peripheral delta-opioid receptors.

  8. Easy access to heterobimetallic complexes for medical imaging applications via microwave-enhanced cycloaddition.

    PubMed

    Desbois, Nicolas; Pacquelet, Sandrine; Dubois, Adrien; Michelin, Clément; Gros, Claude P

    2015-01-01

    The Cu(I)-catalysed Huisgen cycloaddition, known as "click" reaction, has been applied to the synthesis of a range of triazole-linked porphyrin/corrole to DOTA/NOTA derivatives. Microwave irradiation significantly accelerates the reaction. The synthesis of heterobimetallic complexes was easily achieved in up to 60% isolated yield. Heterobimetallic complexes were easily prepared as potential MRI/PET (SPECT) bimodal contrast agents incorporating one metal (Mn, Gd) for the enhancement of contrast for MRI applications and one "cold" metal (Cu, Ga, In) for future radionuclear imaging applications. Preliminary relaxivity measurements showed that the reported complexes are promising contrast agents (CA) in MRI.

  9. Easy access to heterobimetallic complexes for medical imaging applications via microwave-enhanced cycloaddition

    PubMed Central

    Desbois, Nicolas; Pacquelet, Sandrine; Dubois, Adrien; Michelin, Clément

    2015-01-01

    Summary The Cu(I)-catalysed Huisgen cycloaddition, known as “click” reaction, has been applied to the synthesis of a range of triazole-linked porphyrin/corrole to DOTA/NOTA derivatives. Microwave irradiation significantly accelerates the reaction. The synthesis of heterobimetallic complexes was easily achieved in up to 60% isolated yield. Heterobimetallic complexes were easily prepared as potential MRI/PET (SPECT) bimodal contrast agents incorporating one metal (Mn, Gd) for the enhancement of contrast for MRI applications and one “cold” metal (Cu, Ga, In) for future radionuclear imaging applications. Preliminary relaxivity measurements showed that the reported complexes are promising contrast agents (CA) in MRI. PMID:26664643

  10. A series of fluorene-based two-photon absorbing molecules: synthesis, linear and nonlinear characterization, and bioimaging

    PubMed Central

    Andrade, Carolina D.; Yanez, Ciceron O.; Rodriguez, Luis; Belfield, Kevin D.

    2010-01-01

    The synthesis, structural, and photophysical characterization of a series of new fluorescent donor–acceptor and acceptor-acceptor molecules, based on the fluorenyl ring system, with two-photon absorbing properties is described. These new compounds exhibited large Stokes shifts, high fluorescent quantum yields, and, significantly, high two-photon absorption cross sections, making them well suited for two-photon fluorescence microscopy (2PFM) imaging. Confocal and two-photon fluorescence microscopy imaging of COS-7 and HCT 116 cells incubated with probe I showed endosomal selectivity, demonstrating the potential of this class of fluorescent probes in multiphoton fluorescence microscopy. PMID:20481596

  11. A hybrid continuous-wave terahertz imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolganova, Irina N., E-mail: in.dolganova@gmail.com; Zaytsev, Kirill I., E-mail: kirzay@gmail.ru; Metelkina, Anna A.

    2015-11-15

    A hybrid (active-passive mode) terahertz (THz) imaging system and an algorithm for imaging synthesis are proposed to enhance the THz image quality. The concept of image contrast is used to compare active and passive THz imaging. Combining the measurement of the self-emitted radiation of the object with the back-scattered source radiation measurement, it becomes possible to use the THz image to retrieve maximum information about the object. The experimental results confirm the advantages of hybrid THz imaging systems, which can be generalized for a wide range of applications in the material sciences, chemical physics, bio-systems, etc.

  12. Synthesis and characterization of a glycine-modified heptamethine indocyanine dye for in vivo cancer-targeted near-infrared imaging

    PubMed Central

    Liu, Tao; Luo, Shenglin; Wang, Yang; Tan, Xu; Qi, Qingrong; Shi, Chunmeng

    2014-01-01

    Near-infrared (NIR) fluorescent sensors have emerged as promising molecular tools for cancer imaging and detection in living systems. However, cancer NIR fluorescent sensors are very challenging to develop because they are required to exhibit good specificity and low toxicity as an eligible contrast agent. Here, we describe the synthesis of a new heptamethine indocyanine dye (NIR-27) modified with a glycine at the end of each N-alkyl side chain, and its biological characterization for in vivo cancer-targeted NIR imaging. In addition to its high specificity, NIR-27 also shows lower cytotoxicity than indocyanine green, a nonspecific NIR probe widely used in clinic. These characteristics suggest that NIR-27 is a promising prospect as a new NIR fluorescent sensor for sensitive cancer detection. PMID:25246770

  13. Rapid Synthesis of 68Ga-labeled macroaggregated human serum albumin (MAA) for routine application in perfusion imaging using PET/CT.

    PubMed

    Mueller, D; Kulkarni, Harshad; Baum, Richard P; Odparlik, Andreas

    2017-04-01

    99m Tc-labeled MAA is commonly used for single photon emission computed tomography SPECT. In contrast, positron emission tomography/CT (PET/CT) delivers images with significantly higher resolution. The generator produced radionuclide 68 Ga is widely used for PET/CT imaging agents and 68 Ga-labeled MAA represents an attractive alternative to 99m Tc-labeled MAA. We report a simple and rapid NaCl based labeling procedure for the labeling of MAA with 68 Ga using a commercially available MAA labeling kit for 99m Tc. The procedure delivers 68 Ga-labeled MAA with a high specific activity and a high labeling efficiency (>99%). The synthesis does not require a final step of separation or the use of organic solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Barcode extension for analysis and reconstruction of structures

    NASA Astrophysics Data System (ADS)

    Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L.; Gootenberg, Jonathan S.; Yin, Peng

    2017-03-01

    Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures.

  15. Barcode extension for analysis and reconstruction of structures.

    PubMed

    Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L; Gootenberg, Jonathan S; Yin, Peng

    2017-03-13

    Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures.

  16. Barcode extension for analysis and reconstruction of structures

    PubMed Central

    Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L; Gootenberg, Jonathan S; Yin, Peng

    2017-01-01

    Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures. PMID:28287117

  17. Preparation, Surface Properties, and Therapeutic Applications of Gold Nanoparticles in Biomedicine.

    PubMed

    Panahi, Yunes; Mohammadhosseini, Majid; Nejati-Koshki, Kazem; Abadi, Azam Jafari Najaf; Moafi, Hadi Fallah; Akbarzadeh, Abolfazl; Farshbaf, Masoud

    2017-02-01

    Gold nanoparticles (AuNPs) due to their unique properties and manifold surface functionalities have been applied in bio-nanotechnology. The application of GNPs in recent medical and biological research is very extensive. Especially it involves applications such as detection and photothermalysis of microorganisms and cancer stem cells, biosensors; optical bio-imaging and observing of cells and these nanostructures also serve as practical platforms for therapeutic agents. In this review we studied all therapeutic applications of gold nanoparticles in biomedicine, synthesis methods, and surface properties. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Synthesis on structure and properties of zinc nanocrystal in high ordered 3D nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathyaseelan, B., E-mail: bsseelan03@gmail.com; Manigandan, A.; Anbarasu, V.

    2015-06-24

    The wet impregnation method was employed to prepare ZnO encapsulated in mesoporous silica (ZnO/KIT-6). The prepared ZnO/KIT-6 samples have been studied by X-ray diffraction, transmission electron microscope, and nitrogen adsorption–desorption isotherm. The low angle powder XRD patterns of Calcined ZnO/KIT-6 materials showed a phase that can be indexed to cubic Ia3d. Tem images revealed well ordered cubic 3D nanoporous chennels. The ZnO encapsulated in KIT-6 can be used as light-emitting diodes and ultraviolet nanolasers.

  19. Synthesis of [18F]-labelled Maltose Derivatives as PET Tracers for Imaging Bacterial Infection

    PubMed Central

    Namavari, Mohammad; Gowrishankar, Gayatri; Hoehne, Aileen; Jouannot, Erwan; Gambhir, Sanjiv S

    2015-01-01

    Purpose To develop novel positron emission tomography (PET) agents for visualization and therapy monitoring of bacterial infections. Procedures It is known that maltose and maltodextrins are energy sources for bacteria. Hence, 18F-labelled maltose derivatives could be a valuable tool for imaging bacterial infections. We have developed methods to synthesize 4-O-(α-D-glucopyranosyl)-6-deoxy-6-[18F]fluoro-D-glucopyranoside (6-[18F]fluoromaltose) and 4-O-(α-D-glucopyranosyl)-1-deoxy-1-[18F]fluoro-D-glucopyranoside (1-[18F]fluoromaltose) as bacterial infection PET imaging agents. 6-[18F]fluoromaltose was prepared from precursor 1,2,3-tri-O-acetyl-4-O-(2′,3′,-di-O-acetyl-4′,6′-benzylidene-α-D-glucopyranosyl)-6-deoxy-6-nosyl-D-glucopranoside (5). The synthesis involved the radio-fluorination of 5 followed by acidic and basic hydrolysis to give 6-[18F]fluoromaltose. In an analogous procedure, 1-[18F]fluoromaltose was synthesized from 2,3, 6-tri-O-acetyl-4-O-(2′,3′,4′,6-tetra-O-acetyl-α-D-glucopyranosyl)-1-deoxy-1-O-triflyl-D-glucopranoside (9). Stability of 6-[18F]fluoromaltose in phosphate-buffered saline (PBS) and human and mouse serum at 37 °C was determined. Escherichia coli uptake of 6-[18F]fluoromaltose was examined. Results A reliable synthesis of 1- and 6-[18F]fluoromaltose has been accomplished with 4–6 and 5–8 % radiochemical yields, respectively (decay-corrected with 95 % radiochemical purity). 6-[18F]fluoromaltose was sufficiently stable over the time span needed for PET studies (~96 % intact compound after 1-h and ~65 % after 2-h incubation in serum). Bacterial uptake experiments indicated that E. coli transports 6-[18F]fluoromaltose. Competition assays showed that the uptake of 6-[18F]fluoromaltose was completely blocked by co-incubation with 1 mM of the natural substrate maltose. Conclusion We have successfully synthesized 1- and 6-[18F]fluoromaltose via direct fluorination of appropriate protected maltose precursors. Bacterial uptake experiments in E. coli and stability studies suggest a possible application of 6-[18F]fluoromaltose as a new PET imaging agent for visualization and monitoring of bacterial infections. PMID:25277604

  20. Synthesis of internally functionalized silica nanoparticles for theranostic applications

    NASA Astrophysics Data System (ADS)

    Walton, Nathan Isaac

    This thesis addresses the synthesis and characterization of novel inorganic silica nanoparticle hybrids. It focuses in large part on their potential applications in the medical field. Silica acts as a useful carrier for a variety of compounds and this thesis silica will demonstrate its use as a carrier for boron or gadolinium. Boron-10 and gadolinium-157 have been suggested for the radiological treatment of tumor cells through the process called neutron capture therapy (NCT). Gadolinium is also commonly used as a Magnetic Resonance Imaging (MRI) contrast agent. Particles that carry it have potential theranostic applications of both imaging and treating tumors. Chapter 1 presents a background on synthetic strategies and usages of silica nanoparticles, and NCT theory. Chapter 2 describes a procedure to create mesoporous metal chelating silica nanoparticles, mDTTA. This is achieved via a co-condensation of tetraethoxysilane (TEOS) and 3-trimethoxysilyl-propyl diethylenetriamine (SiDETA) followed by a post-synthesis modification step with bromoacetic acid (BrAA). These particles have a large surface area and well-defined pores of ~2 nm. The mDTTA nanoparticles were used to chelate the copper(II), cobalt(II) and gadolinium(III). The chelating of gadolinium is the most interesting since it can be used as a MRI contrast agent and a neutron capture therapeutic. The synthetic procedure developed also allows for the attachment of a fluorophore that gives the gadolinium chelating mDTTA nanoparticles a dual imaging modality. Chapter 3 presents the synthetic method used to produce two classes of large surface area organically modified silica (ORMOSIL) nanoparticles. Condensating the organosilane vinyltrimethoxysilane in a micellar solution results in nanoparticles that are either surface rough (raspberry-like) or mesoporous nanoparticles, which prior to this thesis has not been demonstrated in ORMOSIL chemistry. Furthermore, the vinyl functionalities are modified, using hydroboration, to make the nanoparticles into water-dispersible boron carriers that also have potential boron neutron capture therapy (BNCT) applications. Lastly, Chapter 4 provides a general description of NCT, specifically that involving boron-10 and gadolinium-157. It further describes the synthetic methodology used in producing fatty acid coated boron nanoparticles (BNPs). The BNPs are encapsulated with silica to add a hydrophilic shell so that they can potentially be used in biological systems as BNCT agents. The silica shell is also modified with a fluorophore, dansyl chloride, so that the particle hybrid could be imaged during cell studies.

  1. Parametric PET/MR Fusion Imaging to Differentiate Aggressive from Indolent Primary Prostate Cancer with Application for Image-Guided Prostate Cancer Biopsies

    DTIC Science & Technology

    2014-10-01

    Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The study investigates whether fusion PET/MRI imaging with 18F- choline PET/CT and...imaging with 18F- choline PET/CT and diffusion-weighted MRI can be successfully applied to target prostate cancer using image-guided prostate...Completed task. The 18F- choline synthesis was implemented and optimized for routine radiotracer production. RDRC committee approval as part of the IRB

  2. Mapping the Mixed Methods–Mixed Research Synthesis Terrain

    PubMed Central

    Sandelowski, Margarete; Voils, Corrine I.; Leeman, Jennifer; Crandell, Jamie L.

    2012-01-01

    Mixed methods–mixed research synthesis is a form of systematic review in which the findings of qualitative and quantitative studies are integrated via qualitative and/or quantitative methods. Although methodological advances have been made, efforts to differentiate research synthesis methods have been too focused on methods and not focused enough on the defining logics of research synthesis—each of which may be operationalized in different ways—or on the research findings themselves that are targeted for synthesis. The conduct of mixed methods–mixed research synthesis studies may more usefully be understood in terms of the logics of aggregation and configuration. Neither logic is preferable to the other nor tied exclusively to any one method or to any one side of the qualitative/quantitative binary. PMID:23066379

  3. Ferrous sulfate based low temperature synthesis and magnetic properties of nickel ferrite nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tejabhiram, Y., E-mail: tejabhiram@gmail.com; Pradeep, R.; Helen, A.T.

    2014-12-15

    Highlights: • Novel low temperature synthesis of nickel ferrite nanoparticles. • Comparison with two conventional synthesis techniques including hydrothermal method. • XRD results confirm the formation of crystalline nickel ferrites at 110 °C. • Superparamagnetic particles with applications in drug delivery and hyperthermia. • Magnetic properties superior to conventional methods found in new process. - Abstract: We report a simple, low temperature and surfactant free co-precipitation method for the preparation of nickel ferrite nanostructures using ferrous sulfate as the iron precursor. The products obtained from this method were compared for their physical properties with nickel ferrites produced through conventional co-precipitationmore » and hydrothermal methods which used ferric nitrate as the iron precursor. X-ray diffraction analysis confirmed the synthesis of single phase inverse spinel nanocrystalline nickel ferrites at temperature as low as 110 °C in the low temperature method. Electron microscopy analysis on the samples revealed the formation of nearly spherical nanostructures in the size range of 20–30 nm which are comparable to other conventional methods. Vibrating sample magnetometer measurements showed the formation of superparamagnetic particles with high magnetic saturation 41.3 emu/g which corresponds well with conventional synthesis methods. The spontaneous synthesis of the nickel ferrite nanoparticles by the low temperature synthesis method was attributed to the presence of 0.808 kJ mol{sup −1} of excess Gibbs free energy due to ferrous sulfate precursor.« less

  4. Design, synthesis, and application of the trimethoprim-based chemical tag for live-cell imaging.

    PubMed

    Jing, Chaoran; Cornish, Virginia W

    2013-01-01

    Over the past decade, chemical tags have been developed to complement the use of fluorescent proteins in live-cell imaging. Chemical tags retain the specificity of protein labeling achieved with fluorescent proteins through genetic encoding, but provide smaller, more robust tags and modular use of organic fluorophores with high photon output and tailored functionalities. The trimethoprim-based chemical tag (TMP-tag) was initially developed based on the high affinity interaction between E. coli dihydrofolate reductase and the antibiotic trimethoprim and was subsequently rendered covalent and fluorogenic via proximity-induced protein labeling reactions. To date, the TMP-tag is one of the few chemical tags that enable intracellular protein labeling and high-resolution live-cell imaging. Here we describe the general design, chemical synthesis, and application of TMP-tag for live-cell imaging. Alternate protocols for synthesizing and using the covalent and the fluorogenic TMP-tags are also included. © 2013 by John Wiley & Sons, Inc.

  5. Synthesis and Preclinical Characterization of a Cationic Iodinated Imaging Contrast Agent (CA4+) and Its Use for Quantitative Computed Tomography of Ex Vivo Human Hip Cartilage.

    PubMed

    Stewart, Rachel C; Patwa, Amit N; Lusic, Hrvoje; Freedman, Jonathan D; Wathier, Michel; Snyder, Brian D; Guermazi, Ali; Grinstaff, Mark W

    2017-07-13

    Contrast agents that go beyond qualitative visualization and enable quantitative assessments of functional tissue performance represent the next generation of clinically useful imaging tools. An optimized and efficient large-scale synthesis of a cationic iodinated contrast agent (CA4+) is described for imaging articular cartilage. Contrast-enhanced CT (CECT) using CA4+ reveals significantly greater agent uptake of CA4+ in articular cartilage compared to that of similar anionic or nonionic agents, and CA4+ uptake follows Donnan equilibrium theory. The CA4+ CECT attenuation obtained from imaging ex vivo human hip cartilage correlates with the glycosaminoglycan content, equilibrium modulus, and coefficient of friction, which are key indicators of cartilage functional performance and osteoarthritis stage. Finally, preliminary toxicity studies in a rat model show no adverse events, and a pharmacokinetics study documents a peak plasma concentration 30 min after dosing, with the agent no longer present in vivo at 96 h via excretion in the urine.

  6. Expectant parents' views of factors influencing infant feeding decisions in the antenatal period: A systematic review.

    PubMed

    Roll, Coralie L; Cheater, Francine

    2016-08-01

    To explore the factors that influence expectant parents' infant feeding decisions in the antenatal period. Mixed method systematic review focussing on participant views data. CINAHL, Medline, Embase and PsychInfo databases were interrogated using initial keywords and then refined terms to elicit relevant studies. Reference lists were checked and hand-searching was undertaken for 2 journals ('Midwifery' and 'Social Science and Medicine') covering a 3 year time period (January 2011-March 2014). Key inclusion criteria: studies reflecting expectant parents' views of the factors influencing their infant feeding decisions in the antenatal period; Studies in the English language published after 1990, from developed countries and of qualitative, quantitative or mixed method design. A narrative interpretive synthesis of the views data from studies of qualitative, quantitative and mixed method design. Data were extracted on study characteristics and parents' views, using the Social Ecological Model to support data extraction and thematic synthesis. Synthesis was influenced by the Evidence for Policy and Practice Information and Co-Ordinating Centre approach to mixed method reviews. Of the 409 studies identified through search methods, 17 studies met the inclusion criteria for the review. Thematic synthesis identified 9 themes: Bonding/Attachment; Body Image; Self Esteem/Confidence; Female Role Models; Family and Support Network; Lifestyle; Formal Information Sources; Knowledge; and Feeding in front of others/Public. The review identified a significant bias in the data towards negative factors relating to the breastfeeding decision, suggesting that infant feeding was not a choice between two feeding options, but rather a process of weighing reasons for and against breastfeeding. Findings reflected the perception of the maternal role as intrinsic to the expectant mothers' infant feeding decisions. Cultural perceptions permeated personal, familial and social influences on the decision-making process. Expectant mothers were sensitive to the way professionals attempted to support and inform them about infant feeding choices. By taking a Social Ecological perspective, we were able to explore and demonstrate the multiple influences impacting on expectant parents in the decision-making process. A better understanding of expectant parents' views and experiences in making infant feeding decisions in the prenatal and antenatal periods will inform public health policy and the coordination of service provision to support infant feeding activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Adaptive Electronic Camouflage Using Texture Synthesis

    DTIC Science & Technology

    2012-04-01

    algorithm begins by computing the GLCMs, GIN and GOUT , of the input image (e.g., image of local environment) and output image (randomly generated...respectively. The algorithm randomly selects a pixel from the output image and cycles its gray-level through all values. For each value, GOUT is updated...The value of the selected pixel is permanently changed to the gray-level value that minimizes the error between GIN and GOUT . Without selecting a

  8. Flame Synthesis Used to Create Metal-Catalyzed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.

    2001-01-01

    Metal-catalyzed carbon nanotubes are highly ordered carbon structures of nanoscale dimensions. They may be thought of as hollow cylinders whose walls are formed by single atomic layers of graphite. Such cylinders may be composed of many nested, concentric atomic layers of carbon or only a single layer, the latter forming a single-walled carbon nanotube. This article reports unique results using a flame for their synthesis. Only recently were carbon nanotubes discovered within an arc discharge and recognized as fullerene derivatives. Today metal-catalyzed carbon nanotubes are of great interest for many reasons. They can be used as supports for the metal catalysts like those found in catalytic converters. Open-ended nanotubes are highly desirable because they can be filled by other elements, metals or gases, for battery and fuel cell applications. Because of their highly crystalline structure, they are significantly stronger than the commercial carbon fibers that are currently available (10 times as strong as steel but possessing one-sixth of the weight). This property makes them highly desirable for strengthening polymer and ceramic composite materials. Current methods of synthesizing carbon nanotubes include thermal pyrolysis of organometallics, laser ablation of metal targets within hydrocarbon atmospheres at high temperatures, and arc discharges. Each of these methods is costly, and it is unclear if they can be scaled for the commercial synthesis of carbon nanotubes. In contrast, flame synthesis is an economical means of bulk synthesis of a variety of aerosol materials such as carbon black. Flame synthesis of carbon nanotubes could potentially realize an economy of scale that would enable their use in common structural materials such as car-body panels. The top figure is a transmission electron micrograph of a multiwalled carbon nanotube. The image shows a cross section of the atomic structure of the nanotube. The dark lines are individual atomic layer planes of carbon, seen here in cross section. They form a nested series of concentric cylinders, much like the growth rings on a tree. This sample was obtained by the supported catalyst method, whereby the nanoscale catalysts are dispersed on a substrate providing their support. The substrate with catalyst particles was immersed within an acetylene diffusion flame to which nitrogen had been added to eliminate soot formation. Upon removal from the flame, the nanotubes were dispersed on a holder suitable for electron microscopy. Although not seen in the figure, the tube diameter reflects that of the catalyst particle.

  9. Fe-based Fischer Tropsch Synthesis of biomass-derived syngas: Effect of synthesis method

    Treesearch

    Khiet Mai; Thomas Elder; Les Groom; James J. Spivey

    2015-01-01

    Two 100Fe/4Cu/4K/6Zn catalysts were prepared using two different methods: coprecipitation or impregnation methods. The effect of the preparation methods on the catalyst structure, catalytic properties, and the conversion of biomass-derived syngas via Fischer–Tropsch synthesis was investigated. Syngas was derived from gasifying Southern pine woodchips and had the...

  10. Synthesizing evidence on complex interventions: how meta-analytical, qualitative, and mixed-method approaches can contribute.

    PubMed

    Petticrew, Mark; Rehfuess, Eva; Noyes, Jane; Higgins, Julian P T; Mayhew, Alain; Pantoja, Tomas; Shemilt, Ian; Sowden, Amanda

    2013-11-01

    Although there is increasing interest in the evaluation of complex interventions, there is little guidance on how evidence from complex interventions may be reviewed and synthesized, and the relevance of the plethora of evidence synthesis methods to complexity is unclear. This article aims to explore how different meta-analytical approaches can be used to examine aspects of complexity; describe the contribution of various narrative, tabular, and graphical approaches to synthesis; and give an overview of the potential choice of selected qualitative and mixed-method evidence synthesis approaches. The methodological discussions presented here build on a 2-day workshop held in Montebello, Canada, in January 2012, involving methodological experts from the Campbell and Cochrane Collaborations and from other international review centers (Anderson L, Petticrew M, Chandler J, et al. systematic reviews of complex interventions. In press). These systematic review methodologists discussed the broad range of existing methods and considered the relevance of these methods to reviews of complex interventions. The evidence from primary studies of complex interventions may be qualitative or quantitative. There is a wide range of methodological options for reviewing and presenting this evidence. Specific contributions of statistical approaches include the use of meta-analysis, meta-regression, and Bayesian methods, whereas narrative summary approaches provide valuable precursors or alternatives to these. Qualitative and mixed-method approaches include thematic synthesis, framework synthesis, and realist synthesis. A suitable combination of these approaches allows synthesis of evidence for understanding complex interventions. Reviewers need to consider which aspects of complex interventions should be a focus of their review and what types of quantitative and/or qualitative studies they will be including, and this will inform their choice of review methods. These may range from standard meta-analysis through to more complex mixed-method synthesis and synthesis approaches that incorporate theory and/or user's perspectives. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. 3D structure of individual nanocrystals in solution by electron microscopy

    DOE PAGES

    Park, Jungwok; Elmlund, Hans; Ercius, Peter; ...

    2015-07-17

    Here, knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unorderedmore » nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.« less

  12. 3D structure of individual nanocrystals in solution by electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jungwok; Elmlund, Hans; Ercius, Peter

    Here, knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unorderedmore » nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.« less

  13. An efficient preparation of labelling precursor of [11C]L-deprenyl-D2 and automated radiosynthesis.

    PubMed

    Zirbesegger, Kevin; Buccino, Pablo; Kreimerman, Ingrid; Engler, Henry; Porcal, Williams; Savio, Eduardo

    2017-01-01

    The synthesis of [ 11 C]L-deprenyl-D 2 for imaging of astrocytosis with positron emission tomography (PET) in neurodegenerative diseases has been previously reported. [ 11 C]L-deprenyl-D 2 radiosynthesis requires a precursor, L-nordeprenyl-D 2 , which has been previously synthesized from L-amphetamine as starting material with low overall yields. Here, we present an efficient synthesis of L-nordeprenyl-D 2 organic precursor as free base and automated radiosynthesis of [ 11 C]L-deprenyl-D 2 for PET imaging of astrocytosis. The L-nordeprenyl-D 2 precursor was synthesized from the easily commercial available and cheap reagent L-phenylalanine in five steps. Next, N -alkylation of L-nordeprenyl-D 2 free base with [ 11 C]MeOTf was optimized using the automated commercial platform GE TRACERlab® FX C Pro. A simple and efficient synthesis of L-nordeprenyl-D 2 precursor of [ 11 C]L-deprenyl-D 2 as free base has been developed in five synthetic steps with an overall yield of 33%. The precursor as free base has been stable for 9 months stored at low temperature (-20 °C). The labelled product was obtained with 44 ± 13% ( n  = 12) (end of synthesis, decay corrected) radiochemical yield from [ 11 C]MeI after 35 min synthesis time. The radiochemical purity was over 99% in all cases and specific activity was (170 ± 116) GBq/μmol. A high-yield synthesis of [ 11 C]L-deprenyl-D 2 has been achieved with high purity and specific activity. L-nordeprenyl-D 2 precursor as free amine was applicable for automated production in a commercial synthesis module for preclinical and clinical application.

  14. Worked examples of alternative methods for the synthesis of qualitative and quantitative research in systematic reviews.

    PubMed

    Lucas, Patricia J; Baird, Janis; Arai, Lisa; Law, Catherine; Roberts, Helen M

    2007-01-15

    The inclusion of qualitative studies in systematic reviews poses methodological challenges. This paper presents worked examples of two methods of data synthesis (textual narrative and thematic), used in relation to one review, with the aim of enabling researchers to consider the strength of different approaches. A systematic review of lay perspectives of infant size and growth was conducted, locating 19 studies (including both qualitative and quantitative). The data extracted from these were synthesised using both a textual narrative and a thematic synthesis. The processes of both methods are presented, showing a stepwise progression to the final synthesis. Both methods led us to similar conclusions about lay views toward infant size and growth. Differences between methods lie in the way they dealt with study quality and heterogeneity. On the basis of the work reported here, we consider textual narrative and thematic synthesis have strengths and weaknesses in relation to different research questions. Thematic synthesis holds most potential for hypothesis generation, but may obscure heterogeneity and quality appraisal. Textual narrative synthesis is better able to describe the scope of existing research and account for the strength of evidence, but is less good at identifying commonality.

  15. On Hilbert-Huang Transform Based Synthesis of a Signal Contaminated by Radio Frequency Interference or Fringes

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Shiri, Ron S.; Vootukuru, Meg; Coletti, Alessandro

    2015-01-01

    Norden E. Huang et al. had proposed and published the Hilbert-Huang Transform (HHT) concept correspondently in 1996, 1998. The HHT is a novel method for adaptive spectral analysis of non-linear and non-stationary signals. The HHT comprises two components: - the Huang Empirical Mode Decomposition (EMD), resulting in an adaptive data-derived basis of Intrinsic Mode functions (IMFs), and the Hilbert Spectral Analysis (HSA1) based on the Hilbert Transform for 1-dimension (1D) applied to the EMD IMF's outcome. Although paper describes the HHT concept in great depth, it does not contain all needed methodology to implement the HHT computer code. In 2004, Semion Kizhner and Karin Blank implemented the reference digital HHT real-time data processing system for 1D (HHT-DPS Version 1.4). The case for 2-Dimension (2D) (HHT2) proved to be difficult due to the computational complexity of EMD for 2D (EMD2) and absence of a suitable Hilbert Transform for 2D spectral analysis (HSA2). The real-time EMD2 and HSA2 comprise the real-time HHT2. Kizhner completed the real-time EMD2 and the HSA2 reference digital implementations respectively in 2013 & 2014. Still, the HHT2 outcome synthesis remains an active research area. This paper presents the initial concepts and preliminary results of HHT2-based synthesis and its application to processing of signals contaminated by Radio-Frequency Interference (RFI), as well as optical systems' fringe detection and mitigation at design stage. The Soil Moisture Active Passive (SMAP mission (SMAP) carries a radiometer instrument that measures Earth soil moisture at L1 frequency (1.4 GHz polarimetric - H, V, 3rd and 4th Stokes parameters). There is abundant RFI at L1 and because soil moisture is a strategic parameter, it is important to be able to recover the RFI-contaminated measurement samples (15% of telemetry). State-of-the-art only allows RFI detection and removes RFI-contaminated measurements. The HHT-based analysis and synthesis facilitates recovery of measurements contaminated by all kinds of RFI, including jamming [7-8]. The fringes are inherent in optical systems and multi-layer complex contour expensive coatings are employed to remove the unwanted fringes. HHT2-based analysis allows test image decomposition to analyze and detect fringes, and HHT2-based synthesis of useful image.

  16. Amine functionalized TiO2-carbon nanotube composite: synthesis, characterization and application to glucose biosensing

    NASA Astrophysics Data System (ADS)

    Tasviri, Mahboubeh; Rafiee-Pour, Hossain-Ali; Ghourchian, Hedayatollah; Gholami, Mohammad Reza

    2011-12-01

    The synthesis of amine functionalized TiO2-coated multiwalled carbon nanotubes (NH2-TiO2-CNTs) using sol-gel method was investigated. The synthesized nanocomposite was characterized with XRD, FTIR spectroscopy, BET test and SEM imaging. The results demonstrated a unique nanostructure with no destruction of the CNTs' shape. In addition, the presence of amine groups on the composite surface was confirmed by FTIR. This nanocomposite was used for one-step immobilization of glucose oxidase (GOx) to sense glucose. The result of cyclic voltammetry showed a pair of well-defined and quasi-reversible peaks for direct electron transfer of GOx in the absence of glucose. Also, the result of electrochemical impedance spectroscopy indicated that GOx was successfully immobilized on the surface of NH2-TiO2-CNTs. Furthermore, good amperometric response showed that immobilized GOx on the NH2-TiO2-CNTs exhibits exceptional bioelectrocatalytic activity toward glucose oxidation.

  17. Enzymic Synthesis of Indole-3-Acetyl-1-O-β-d-Glucose 1

    PubMed Central

    Leznicki, Antoni J.; Bandurski, Robert S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-β-d-glucose from uridine-5′-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss. Images Fig. 4 PMID:11537438

  18. The use of castor oil and ricinoleic acid in lead chalcogenide nanocrystal synthesis

    NASA Astrophysics Data System (ADS)

    Kyobe, Joseph W. M.; Mubofu, Egid B.; Makame, Yahya M. M.; Mlowe, Sixberth; Revaprasadu, Neerish

    2016-08-01

    A green solution-based thermolysis method for the synthesis of lead chalcogenide (PbE, E = S, Se, Te) nanocrystals in castor oil (CSTO) and its isolate ricinoleic acid (RA) is described. The blue shift observed from the optical spectra of CSTO and RA-capped PbE nanocrystals (NCs) confirmed the evidence of quantum confinement. The dimensions of PbE NCs obtained from NIR absorption spectra, transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies were in good agreement. The particle sizes estimated were in the range of 20, 25, and 130 nm for castor oil-capped PbS, PbSe, and PbTe, respectively. Well-defined close to cubic-shaped particles were observed in the scanning electron microscopy (SEM) images of PbSe and PbTe nanocrystals. The high-resolution TEM and selective area electron diffraction (SAED) micrographs of the as-synthesized crystalline PbE NCs showed distinct lattice fringes with d-spacing distances corroborating with the standard values reported in literature.

  19. General and programmable synthesis of hybrid liposome/metal nanoparticles

    PubMed Central

    Lee, Jin-Ho; Shin, Yonghee; Lee, Wooju; Whang, Keumrai; Kim, Dongchoul; Lee, Luke P.; Choi, Jeong-Woo; Kang, Taewook

    2016-01-01

    Hybrid liposome/metal nanoparticles are promising candidate materials for biomedical applications. However, the poor selectivity and low yield of the desired hybrid during synthesis pose a challenge. We designed a programmable liposome by selective encoding of a reducing agent, which allows self-crystallization of metal nanoparticles within the liposome to produce stable liposome/metal nanoparticles alone. We synthesized seven types of liposome/monometallic and more complex liposome/bimetallic hybrids. The resulting nanoparticles are tunable in size and metal composition, and their surface plasmon resonance bands are controllable in visible and near infrared. Owing to outer lipid bilayer, our liposome/Au nanoparticle shows better colloidal stability in biologically relevant solutions as well as higher endocytosis efficiency than gold nanoparticles without the liposome. We used this hybrid in intracellular imaging of living cells via surface-enhanced Raman spectroscopy, taking advantage of its improved physicochemical properties. We believe that our method greatly increases the utility of metal nanoparticles in in vivo applications. PMID:28028544

  20. General and programmable synthesis of hybrid liposome/metal nanoparticles.

    PubMed

    Lee, Jin-Ho; Shin, Yonghee; Lee, Wooju; Whang, Keumrai; Kim, Dongchoul; Lee, Luke P; Choi, Jeong-Woo; Kang, Taewook

    2016-12-01

    Hybrid liposome/metal nanoparticles are promising candidate materials for biomedical applications. However, the poor selectivity and low yield of the desired hybrid during synthesis pose a challenge. We designed a programmable liposome by selective encoding of a reducing agent, which allows self-crystallization of metal nanoparticles within the liposome to produce stable liposome/metal nanoparticles alone. We synthesized seven types of liposome/monometallic and more complex liposome/bimetallic hybrids. The resulting nanoparticles are tunable in size and metal composition, and their surface plasmon resonance bands are controllable in visible and near infrared. Owing to outer lipid bilayer, our liposome/Au nanoparticle shows better colloidal stability in biologically relevant solutions as well as higher endocytosis efficiency than gold nanoparticles without the liposome. We used this hybrid in intracellular imaging of living cells via surface-enhanced Raman spectroscopy, taking advantage of its improved physicochemical properties. We believe that our method greatly increases the utility of metal nanoparticles in in vivo applications.

Top