Sample records for image-based concept mapping

  1. A concept-based interactive biomedical image retrieval approach using visualness and spatial information

    NASA Astrophysics Data System (ADS)

    Rahman, Md M.; Antani, Sameer K.; Demner-Fushman, Dina; Thoma, George R.

    2015-03-01

    This paper presents a novel approach to biomedical image retrieval by mapping image regions to local concepts and represent images in a weighted entropy-based concept feature space. The term concept refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist user in interactively select a Region-Of-Interest (ROI) and search for similar image ROIs. Further, a spatial verification step is used as a post-processing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval, is validated through experiments on a data set of 450 lung CT images extracted from journal articles from four different collections.

  2. Biomedical image representation approach using visualness and spatial information in a concept feature space for interactive region-of-interest-based retrieval.

    PubMed

    Rahman, Md Mahmudur; Antani, Sameer K; Demner-Fushman, Dina; Thoma, George R

    2015-10-01

    This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term "concept" refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature.

  3. Automated semantic indexing of figure captions to improve radiology image retrieval.

    PubMed

    Kahn, Charles E; Rubin, Daniel L

    2009-01-01

    We explored automated concept-based indexing of unstructured figure captions to improve retrieval of images from radiology journals. The MetaMap Transfer program (MMTx) was used to map the text of 84,846 figure captions from 9,004 peer-reviewed, English-language articles to concepts in three controlled vocabularies from the UMLS Metathesaurus, version 2006AA. Sampling procedures were used to estimate the standard information-retrieval metrics of precision and recall, and to evaluate the degree to which concept-based retrieval improved image retrieval. Precision was estimated based on a sample of 250 concepts. Recall was estimated based on a sample of 40 concepts. The authors measured the impact of concept-based retrieval to improve upon keyword-based retrieval in a random sample of 10,000 search queries issued by users of a radiology image search engine. Estimated precision was 0.897 (95% confidence interval, 0.857-0.937). Estimated recall was 0.930 (95% confidence interval, 0.838-1.000). In 5,535 of 10,000 search queries (55%), concept-based retrieval found results not identified by simple keyword matching; in 2,086 searches (21%), more than 75% of the results were found by concept-based search alone. Concept-based indexing of radiology journal figure captions achieved very high precision and recall, and significantly improved image retrieval.

  4. Interpreting the Externalised Images of Pupils' Conceptions of ICT: Methods for the Analysis of Concept Maps.

    ERIC Educational Resources Information Center

    Mavers, Diane; Somekh, Bridget; Restorick, Jane

    2002-01-01

    Describes the ImpacT2 evaluation of students aged ten to 16 in the United Kingdom that uses image-based concept mapping to explore the impact of networked technologies on students' learning. Explains a method for interviewing young students and discusses implications for the way that information and communication technologies (ICT) are used in…

  5. Biomedical image representation approach using visualness and spatial information in a concept feature space for interactive region-of-interest-based retrieval

    PubMed Central

    Rahman, Md. Mahmudur; Antani, Sameer K.; Demner-Fushman, Dina; Thoma, George R.

    2015-01-01

    Abstract. This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term “concept” refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature. PMID:26730398

  6. A qualitative study on using concept maps in problem-based learning.

    PubMed

    Chan, Zenobia C Y

    2017-05-01

    The visual arts, including concept maps, have been shown to be effective tools for facilitating student learning. However, the use of concept maps in nursing education has been under-explored. The aim of this study was to explore how students develop concept maps and what these concept maps consist of, and their views on the use of concept maps as a learning activity in a PBL class. A qualitative approach consisting of an analysis of the contents of the concept maps and interviews with students. The study was conducted in a school of nursing in a university in Hong Kong. A total of 38 students who attended the morning session (20 students) and afternoon session (18 students) respectively of a nursing problem-based learning class. The students in both the morning and afternoon classes were allocated into four groups (4-5 students per group). Each group was asked to draw two concept maps based on a given scenario, and then to participate in a follow-up interview. Two raters individually assessed the concept maps, and then discussed their views with each other. Among the concept maps that were drawn, four were selected. Their four core features of those maps were: a) the integration of informative and artistic elements; b) the delivery of sensational messages; c) the use of images rather than words; and d) three-dimensional and movable. Both raters were concerned about how informative the presentation was, the composition of the elements, and the ease of comprehension, and appreciated the three-dimensional presentation and effective use of images. From the results of the interview, the pros and cons of using concept maps were discerned. This study demonstrated how concept maps could be implemented in a PBL class to boost the students' creativity and to motivate them to learn. This study suggests the use of concept maps as an initiative to motivate student to learn, participate actively, and nurture their creativity. To conclude, this study explored an alternative way for students to make presentations and pioneered the use of art-based concept maps to facilitate student learning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Automated Semantic Indexing of Figure Captions to Improve Radiology Image Retrieval

    PubMed Central

    Kahn, Charles E.; Rubin, Daniel L.

    2009-01-01

    Objective We explored automated concept-based indexing of unstructured figure captions to improve retrieval of images from radiology journals. Design The MetaMap Transfer program (MMTx) was used to map the text of 84,846 figure captions from 9,004 peer-reviewed, English-language articles to concepts in three controlled vocabularies from the UMLS Metathesaurus, version 2006AA. Sampling procedures were used to estimate the standard information-retrieval metrics of precision and recall, and to evaluate the degree to which concept-based retrieval improved image retrieval. Measurements Precision was estimated based on a sample of 250 concepts. Recall was estimated based on a sample of 40 concepts. The authors measured the impact of concept-based retrieval to improve upon keyword-based retrieval in a random sample of 10,000 search queries issued by users of a radiology image search engine. Results Estimated precision was 0.897 (95% confidence interval, 0.857–0.937). Estimated recall was 0.930 (95% confidence interval, 0.838–1.000). In 5,535 of 10,000 search queries (55%), concept-based retrieval found results not identified by simple keyword matching; in 2,086 searches (21%), more than 75% of the results were found by concept-based search alone. Conclusion Concept-based indexing of radiology journal figure captions achieved very high precision and recall, and significantly improved image retrieval. PMID:19261938

  8. Minimizing the semantic gap in biomedical content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Guan, Haiying; Antani, Sameer; Long, L. Rodney; Thoma, George R.

    2010-03-01

    A major challenge in biomedical Content-Based Image Retrieval (CBIR) is to achieve meaningful mappings that minimize the semantic gap between the high-level biomedical semantic concepts and the low-level visual features in images. This paper presents a comprehensive learning-based scheme toward meeting this challenge and improving retrieval quality. The article presents two algorithms: a learning-based feature selection and fusion algorithm and the Ranking Support Vector Machine (Ranking SVM) algorithm. The feature selection algorithm aims to select 'good' features and fuse them using different similarity measurements to provide a better representation of the high-level concepts with the low-level image features. Ranking SVM is applied to learn the retrieval rank function and associate the selected low-level features with query concepts, given the ground-truth ranking of the training samples. The proposed scheme addresses four major issues in CBIR to improve the retrieval accuracy: image feature extraction, selection and fusion, similarity measurements, the association of the low-level features with high-level concepts, and the generation of the rank function to support high-level semantic image retrieval. It models the relationship between semantic concepts and image features, and enables retrieval at the semantic level. We apply it to the problem of vertebra shape retrieval from a digitized spine x-ray image set collected by the second National Health and Nutrition Examination Survey (NHANES II). The experimental results show an improvement of up to 41.92% in the mean average precision (MAP) over conventional image similarity computation methods.

  9. Translating statistical images to text summaries for partially sighted persons on mobile devices: iconic image maps approach

    NASA Astrophysics Data System (ADS)

    Williams, Godfried B.

    2005-03-01

    This paper attempts to demonstrate a novel based idea for transforming statistical image data to text using autoassociative and unsupervised artificial neural network and iconic image maps using the shape and texture genetic algorithm, underlying concepts translating the image data to text. Full details of experiments could be assessed at http://www.uel.ac.uk/seis/applications/.

  10. Latent Semantic Analysis as a Method of Content-Based Image Retrieval in Medical Applications

    ERIC Educational Resources Information Center

    Makovoz, Gennadiy

    2010-01-01

    The research investigated whether a Latent Semantic Analysis (LSA)-based approach to image retrieval can map pixel intensity into a smaller concept space with good accuracy and reasonable computational cost. From a large set of M computed tomography (CT) images, a retrieval query found all images for a particular patient based on semantic…

  11. Chromatic Image Analysis For Quantitative Thermal Mapping

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    1995-01-01

    Chromatic image analysis system (CIAS) developed for use in noncontact measurements of temperatures on aerothermodynamic models in hypersonic wind tunnels. Based on concept of temperature coupled to shift in color spectrum for optical measurement. Video camera images fluorescence emitted by phosphor-coated model at two wavelengths. Temperature map of model then computed from relative brightnesses in video images of model at those wavelengths. Eliminates need for intrusive, time-consuming, contact temperature measurements by gauges, making it possible to map temperatures on complex surfaces in timely manner and at reduced cost.

  12. Measurable realistic image-based 3D mapping

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wang, J.; Wang, J. J.; Ding, W.; Almagbile, A.

    2011-12-01

    Maps with 3D visual models are becoming a remarkable feature of 3D map services. High-resolution image data is obtained for the construction of 3D visualized models.The3D map not only provides the capabilities of 3D measurements and knowledge mining, but also provides the virtual experienceof places of interest, such as demonstrated in the Google Earth. Applications of 3D maps are expanding into the areas of architecture, property management, and urban environment monitoring. However, the reconstruction of high quality 3D models is time consuming, and requires robust hardware and powerful software to handle the enormous amount of data. This is especially for automatic implementation of 3D models and the representation of complicated surfacesthat still need improvements with in the visualisation techniques. The shortcoming of 3D model-based maps is the limitation of detailed coverage since a user can only view and measure objects that are already modelled in the virtual environment. This paper proposes and demonstrates a 3D map concept that is realistic and image-based, that enables geometric measurements and geo-location services. Additionally, image-based 3D maps provide more detailed information of the real world than 3D model-based maps. The image-based 3D maps use geo-referenced stereo images or panoramic images. The geometric relationships between objects in the images can be resolved from the geometric model of stereo images. The panoramic function makes 3D maps more interactive with users but also creates an interesting immersive circumstance. Actually, unmeasurable image-based 3D maps already exist, such as Google street view, but only provide virtual experiences in terms of photos. The topographic and terrain attributes, such as shapes and heights though are omitted. This paper also discusses the potential for using a low cost land Mobile Mapping System (MMS) to implement realistic image 3D mapping, and evaluates the positioning accuracy that a measureable realistic image-based (MRI) system can produce. The major contribution here is the implementation of measurable images on 3D maps to obtain various measurements from real scenes.

  13. Recent advances in parametric neuroreceptor mapping with dynamic PET: basic concepts and graphical analyses.

    PubMed

    Seo, Seongho; Kim, Su Jin; Lee, Dong Soo; Lee, Jae Sung

    2014-10-01

    Tracer kinetic modeling in dynamic positron emission tomography (PET) has been widely used to investigate the characteristic distribution patterns or dysfunctions of neuroreceptors in brain diseases. Its practical goal has progressed from regional data quantification to parametric mapping that produces images of kinetic-model parameters by fully exploiting the spatiotemporal information in dynamic PET data. Graphical analysis (GA) is a major parametric mapping technique that is independent on any compartmental model configuration, robust to noise, and computationally efficient. In this paper, we provide an overview of recent advances in the parametric mapping of neuroreceptor binding based on GA methods. The associated basic concepts in tracer kinetic modeling are presented, including commonly-used compartment models and major parameters of interest. Technical details of GA approaches for reversible and irreversible radioligands are described, considering both plasma input and reference tissue input models. Their statistical properties are discussed in view of parametric imaging.

  14. Preliminary Image Map of the 2007 Harris Fire Perimeter, Barrett Lake Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  15. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Santiago Peak Quadrangle, Orange and Riverside Counties, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  16. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Green Valley Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  17. Preliminary Image Map of the 2007 Witch Fire Perimeter, Warners Ranch Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  18. Preliminary Image Map of the 2007 Harris Fire Perimeter, Otay Mesa Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  19. Preliminary Image Map of the 2007 Rice Fire Perimeter, Bonsall Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  20. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Pechanga Quadrangle, Riverside and San Diego Counties, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  1. Preliminary Image Map of the 2007 Harris Fire Perimeter, Tecate Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  2. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Temecula Quadrangle, Riverside and San Diego Counties, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  3. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Agua Dulce Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  4. Preliminary Image Map of the 2007 Witch Fire Perimeter, San Pasqual Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  5. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Mint Canyon Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  6. Preliminary Image Map of the 2007 Witch Fire Perimeter, Escondido Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  7. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Boucher Hill Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  8. Preliminary Image Map of the 2007 Ammo Fire Perimeter, Margarita Peak Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  9. Preliminary Image Map of the 2007 Witch Fire Perimeter, Ramona Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  10. Preliminary Image Map of the 2007 Ammo Fire Perimeter, San Onofre Bluff Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  11. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Orange Quadrangle, Orange County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  12. Preliminary Image Map of the 2007 Harris Fire Perimeter, Otay Mountain Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  13. Preliminary Image Map of the 2007 Ranch Fire Perimeter, Cobblestone Mountain Quadrangle, Los Angeles and Ventura Counties, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  14. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Palomar Observatory Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  15. Preliminary Image Map of the 2007 Witch Fire Perimeter, El Cajon Mountain Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  16. Preliminary Image Map of the 2007 Witch and Poomacha Fire Perimeters, Rodriguez Mountain Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  17. Preliminary Image Map of the 2007 Witch Fire Perimeter, Santa Ysabel Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  18. Preliminary Image Map of the 2007 Ammo Fire Perimeter, Las Pulgas Canyon Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  19. Preliminary Image Map of the 2007 Harris Fire Perimeter, Jamul Mountains Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  20. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Lake Forest Quadrangle, Orange County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  1. Preliminary Image Map of the 2007 Cajon Fire Perimeter, San Bernardino North Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  2. Preliminary Image Map of the 2007 Slide Fire Perimeter, Butler Peak Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  3. Preliminary Image Map of the 2007 Witch Fire Perimeter, San Vicente Reservoir Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  4. Preliminary Image Map of the 2007 Ammo Fire Perimeter, San Clemente Quadrangle, Orange and San Diego Counties, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  5. Preliminary Image Map of the 2007 Cajon Fire Perimeter, Devore Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  6. Preliminary Image Map of the 2007 Ranch Fire Perimeter, Fillmore Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  7. Preliminary Image Map of the 2007 Ranch Fire Perimeter, Piru Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  8. Preliminary Image Map of the 2007 Magic and Buckweed Fire Perimeters, Newhall Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  9. Preliminary Image Map of the 2007 Harris Fire Perimeter, Dulzura Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  10. Preliminary Image Map of the 2007 Grass Valley Fire Perimeter, Lake Arrowhead Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  11. Preliminary Image Map of the 2007 Harris Fire Perimeter, Potrero Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  12. Preliminary Image Map of the 2007 Witch and Poomacha Fire Perimeters, Mesa Grande Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  13. Preliminary Image Map of the 2007 Canyon Fire Perimeter, Malibu Beach Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  14. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Black Star Canyon Quadrangle, Orange, Riverside, and San Bernardino Counties, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  15. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Warm Springs Mountain Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  16. Preliminary Image Map of the 2007 Ranch Fire Perimeter, Whitaker Peak Quadrangle, Los Angeles and Ventura Counties, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  17. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Vail Lake Quadrangle, Riverside and San Diego Counties, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  18. Preliminary Image Map of the 2007 Witch Fire Perimeter, Valley Center Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  19. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Tustin Quadrangle, Orange County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  20. Preliminary Image Map of the 2007 Witch Fire Perimeter, Rancho Santa Fe Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  1. Preliminary Image Map of the 2007 Slide Fire Perimeter, Harrison Mountain Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  2. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Sleepy Valley Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  3. Preliminary Image Map of the 2007 Ranch and Magic Fire Perimeters, Val Verde Quadrangle, Los Angeles and Ventura Counties, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  4. Preliminary Image Map of the 2007 Witch Fire Perimeter, Poway Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  5. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Pala Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  6. Preliminary Image Map of the 2007 Witch Fire Perimeter, Tule Springs Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  7. Preliminary Image Map of the 2007 Harris Fire Perimeter, Morena Reservoir Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  8. Preliminary Image Map of the 2007 Slide Fire Perimeter, Keller Peak Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  9. Using Concept Maps to Assess the Effect of Graphing Calculators Use on Students' Concept Images of the Derivative at a Point

    ERIC Educational Resources Information Center

    Serhan, Derar

    2009-01-01

    This study used concept maps to investigate the effect of using graphing calculators on students' understanding of the derivative at a point. The study looked for differences between the concept images that are held by students' who are using graphing calculators and the students who are not using them. Seventy one students enrolled in two…

  10. Filter methods to preserve local contrast and to avoid artifacts in gamut mapping

    NASA Astrophysics Data System (ADS)

    Meili, Marcel; Küpper, Dennis; Barańczuk, Zofia; Caluori, Ursina; Simon, Klaus

    2010-01-01

    Contrary to high dynamic range imaging, the preservation of details and the avoidance of artifacts is not explicitly considered in popular color management systems. An effective way to overcome these difficulties is image filtering. In this paper we investigate several image filter concepts for detail preservation as part of a practical gamut mapping strategy. In particular we define four concepts including various image filters and check their performance with a psycho-visual test. Additionally, we compare our performance evaluation to two image quality measures with emphasis on local contrast. Surprisingly, the most simple filter concept performs highly efficient and achieves an image quality which is comparable to the more established but slower methods.

  11. Calibration and accuracy analysis of a focused plenoptic camera

    NASA Astrophysics Data System (ADS)

    Zeller, N.; Quint, F.; Stilla, U.

    2014-08-01

    In this article we introduce new methods for the calibration of depth images from focused plenoptic cameras and validate the results. We start with a brief description of the concept of a focused plenoptic camera and how from the recorded raw image a depth map can be estimated. For this camera, an analytical expression of the depth accuracy is derived for the first time. In the main part of the paper, methods to calibrate a focused plenoptic camera are developed and evaluated. The optical imaging process is calibrated by using a method which is already known from the calibration of traditional cameras. For the calibration of the depth map two new model based methods, which make use of the projection concept of the camera are developed. These new methods are compared to a common curve fitting approach, which is based on Taylor-series-approximation. Both model based methods show significant advantages compared to the curve fitting method. They need less reference points for calibration than the curve fitting method and moreover, supply a function which is valid in excess of the range of calibration. In addition the depth map accuracy of the plenoptic camera was experimentally investigated for different focal lengths of the main lens and is compared to the analytical evaluation.

  12. Euclid Mission: Mapping the Geometry of the Dark Universe. Mission and Consortium Status

    NASA Technical Reports Server (NTRS)

    Rhodes, Jason

    2011-01-01

    Euclid concept: (1) High-precision survey mission to map the geometry of the Dark Universe (2) Optimized for two complementary cosmological probes: (2a) Weak Gravitational Lensing (2b) Baryonic Acoustic Oscillations (2c) Additional probes: clusters, redshift space distortions, ISW (3) Full extragalactic sky survey with 1.2m telescope at L2: (3a) Imaging: (3a-1) High precision imaging at visible wavelengths (3a-2) Photometry/Imaging in the near-infrared (3b) Near Infrared Spectroscopy (4) Synergy with ground based surveys (5) Legacy science for a wide range of in astronomy

  13. Mapping the distribution of materials in hyperspectral data using the USGS Material Identification and Characterization Algorithm (MICA)

    USGS Publications Warehouse

    Kokaly, R.F.; King, T.V.V.; Hoefen, T.M.

    2011-01-01

    Identifying materials by measuring and analyzing their reflectance spectra has been an important method in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow scientists to detect materials and map their distributions across the landscape. With new satellite-borne hyperspectral sensors planned for the future, for example, HYSPIRI (HYPerspectral InfraRed Imager), robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral-feature based analysis of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described in this paper. The core concepts and calculations of MICA are presented. A MICA command file has been developed and applied to map minerals in the full-country coverage of the 2007 Afghanistan HyMap hyperspectral data. ?? 2011 IEEE.

  14. Radiant thinking and the use of the mind map in nurse practitioner education.

    PubMed

    Spencer, Julie R; Anderson, Kelley M; Ellis, Kathryn K

    2013-05-01

    The concept of radiant thinking, which led to the concept of mind mapping, promotes all aspects of the brain working in synergy, with thought beginning from a central point. The mind map, which is a graphical technique to improve creative thinking and knowledge attainment, utilizes colors, images, codes, and dimensions to amplify and enhance key ideas. This technique augments the visualization of relationships and links between concepts, which aids in information acquisition, data retention, and overall comprehension. Faculty can promote students' use of the technique for brainstorming, organizing ideas, taking notes, learning collaboratively, presenting, and studying. These applications can be used in problem-based learning, developing plans of care, health promotion activities, synthesizing disease processes, and forming differential diagnoses. Mind mapping is a creative way for students to engage in a unique method of learning that can expand memory recall and help create a new environment for processing information. Copyright 2013, SLACK Incorporated.

  15. Binary moving-blocker-based scatter correction in cone-beam computed tomography with width-truncated projections: proof of concept.

    PubMed

    Lee, Ho; Fahimian, Benjamin P; Xing, Lei

    2017-03-21

    This paper proposes a binary moving-blocker (BMB)-based technique for scatter correction in cone-beam computed tomography (CBCT). In concept, a beam blocker consisting of lead strips, mounted in front of the x-ray tube, moves rapidly in and out of the beam during a single gantry rotation. The projections are acquired in alternating phases of blocked and unblocked cone beams, where the blocked phase results in a stripe pattern in the width direction. To derive the scatter map from the blocked projections, 1D B-Spline interpolation/extrapolation is applied by using the detected information in the shaded regions. The scatter map of the unblocked projections is corrected by averaging two scatter maps that correspond to their adjacent blocked projections. The scatter-corrected projections are obtained by subtracting the corresponding scatter maps from the projection data and are utilized to generate the CBCT image by a compressed-sensing (CS)-based iterative reconstruction algorithm. Catphan504 and pelvis phantoms were used to evaluate the method's performance. The proposed BMB-based technique provided an effective method to enhance the image quality by suppressing scatter-induced artifacts, such as ring artifacts around the bowtie area. Compared to CBCT without a blocker, the spatial nonuniformity was reduced from 9.1% to 3.1%. The root-mean-square error of the CT numbers in the regions of interest (ROIs) was reduced from 30.2 HU to 3.8 HU. In addition to high resolution, comparable to that of the benchmark image, the CS-based reconstruction also led to a better contrast-to-noise ratio in seven ROIs. The proposed technique enables complete scatter-corrected CBCT imaging with width-truncated projections and allows reducing the acquisition time to approximately half. This work may have significant implications for image-guided or adaptive radiation therapy, where CBCT is often used.

  16. Binary moving-blocker-based scatter correction in cone-beam computed tomography with width-truncated projections: proof of concept

    NASA Astrophysics Data System (ADS)

    Lee, Ho; Fahimian, Benjamin P.; Xing, Lei

    2017-03-01

    This paper proposes a binary moving-blocker (BMB)-based technique for scatter correction in cone-beam computed tomography (CBCT). In concept, a beam blocker consisting of lead strips, mounted in front of the x-ray tube, moves rapidly in and out of the beam during a single gantry rotation. The projections are acquired in alternating phases of blocked and unblocked cone beams, where the blocked phase results in a stripe pattern in the width direction. To derive the scatter map from the blocked projections, 1D B-Spline interpolation/extrapolation is applied by using the detected information in the shaded regions. The scatter map of the unblocked projections is corrected by averaging two scatter maps that correspond to their adjacent blocked projections. The scatter-corrected projections are obtained by subtracting the corresponding scatter maps from the projection data and are utilized to generate the CBCT image by a compressed-sensing (CS)-based iterative reconstruction algorithm. Catphan504 and pelvis phantoms were used to evaluate the method’s performance. The proposed BMB-based technique provided an effective method to enhance the image quality by suppressing scatter-induced artifacts, such as ring artifacts around the bowtie area. Compared to CBCT without a blocker, the spatial nonuniformity was reduced from 9.1% to 3.1%. The root-mean-square error of the CT numbers in the regions of interest (ROIs) was reduced from 30.2 HU to 3.8 HU. In addition to high resolution, comparable to that of the benchmark image, the CS-based reconstruction also led to a better contrast-to-noise ratio in seven ROIs. The proposed technique enables complete scatter-corrected CBCT imaging with width-truncated projections and allows reducing the acquisition time to approximately half. This work may have significant implications for image-guided or adaptive radiation therapy, where CBCT is often used.

  17. Plenoptic mapping for imaging and retrieval of the complex field amplitude of a laser beam.

    PubMed

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C

    2016-12-26

    The plenoptic sensor has been developed to sample complicated beam distortions produced by turbulence in the low atmosphere (deep turbulence or strong turbulence) with high density data samples. In contrast with the conventional Shack-Hartmann wavefront sensor, which utilizes all the pixels under each lenslet of a micro-lens array (MLA) to obtain one data sample indicating sub-aperture phase gradient and photon intensity, the plenoptic sensor uses each illuminated pixel (with significant pixel value) under each MLA lenslet as a data point for local phase gradient and intensity. To characterize the working principle of a plenoptic sensor, we propose the concept of plenoptic mapping and its inverse mapping to describe the imaging and reconstruction process respectively. As a result, we show that the plenoptic mapping is an efficient method to image and reconstruct the complex field amplitude of an incident beam with just one image. With a proof of concept experiment, we show that adaptive optics (AO) phase correction can be instantaneously achieved without going through a phase reconstruction process under the concept of plenoptic mapping. The plenoptic mapping technology has high potential for applications in imaging, free space optical (FSO) communication and directed energy (DE) where atmospheric turbulence distortion needs to be compensated.

  18. Possible Extent of Ancient Lake in Gale Crater, Mars

    NASA Image and Video Library

    2013-12-09

    This illustration depicts a concept for the possible extent of an ancient lake inside Gale Crater. The base map combines image data from the Context Camera on NASA Mars Reconnaissance Orbiter and color information from Viking Orbiter imagery.

  19. How do nurses in palliative care perceive the concept of self-image?

    PubMed

    Jeppsson, Margareth; Thomé, Bibbi

    2015-09-01

    Nursing research indicates that serious illness and impending death influence the individual's self-image. Few studies define what self-image means. Thus it seems to be urgent to explore how nurses in palliative care perceive the concept of self-image, to get a deeper insight into the concept's applicability in palliative care. To explore how nurses in palliative care perceive the concept of self-image. Qualitative descriptive design. In-depth interviews with 17 nurses in palliative care were analysed using phenomenography. The study gained ethical approval. The concept of self-image was perceived as both a familiar and an unfamiliar concept. Four categories of description with a gradually increasing complexity were distinguished: Identity, Self-assessment, Social function and Self-knowledge. They represent the collective understanding of the concept and are illustrated in a 'self-image map'. The identity-category emerged as the most comprehensive one and includes the understanding of 'Who I am' in a multidimensional way. The collective understanding of the concept of self-image include multi-dimensional aspects which not always were evident for the individual nurse. Thus, the concept of self-image needs to be more verbalised and reflected on if nurses are to be comfortable with it and adopt it in their caring context. The 'self-image map' can be used in this reflection to expand the understanding of the concept. If the multi-dimensional aspects of the concept self-image could be explored there are improved possibilities to make identity-promoting strategies visible and support person-centred care. © 2014 Nordic College of Caring Science.

  20. Self-Organizing Neural Network Map for the Purpose of Visualizing the Concept Images of Students on Angles

    ERIC Educational Resources Information Center

    Kaya, Deniz

    2017-01-01

    The purpose of the study is to perform a less-dimensional thorough visualization process for the purpose of determining the images of the students on the concept of angle. The Ward clustering analysis combined with Self-Organizing Neural Network Map (SOM) has been used for the dimension process. The Conceptual Understanding Tool, which consisted…

  1. Digital map and situation surface: a team-oriented multidisplay workspace for network enabled situation analysis

    NASA Astrophysics Data System (ADS)

    Peinsipp-Byma, E.; Geisler, Jürgen; Bader, Thomas

    2009-05-01

    System concepts for network enabled image-based ISR (intelligence, surveillance, reconnaissance) is the major mission of Fraunhofer IITB's applied research in the area of defence and security solutions. For the TechDemo08 as part of the NATO CNAD POW Defence against terrorism Fraunhofer IITB advanced a new multi display concept to handle the shear amount and high complexity of ISR data acquired by networked, distributed surveillance systems with the objective to support the generation of a common situation picture. Amount and Complexity of ISR data demands an innovative man-machine interface concept for humans to deal with it. The IITB's concept is the Digital Map & Situation Surface. This concept offers to the user a coherent multi display environment combining a horizontal surface for the situation overview from the bird's eye view, an attached vertical display for collateral information and so-called foveatablets as personalized magic lenses in order to obtain high resolved and role-specific information about a focused areaof- interest and to interact with it. In the context of TechDemo08 the Digital Map & Situation Surface served as workspace for team-based situation visualization and analysis. Multiple sea- and landside surveillance components were connected to the system.

  2. The comparative effect of individually-generated vs. collaboratively-generated computer-based concept mapping on science concept learning

    NASA Astrophysics Data System (ADS)

    Kwon, So Young

    Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However, the students who collaboratively generated concept maps created significantly higher quality concept maps than those who individually generated concept maps. The researcher concluded that the concept mapping software, Inspiration(TM), fostered construction of students' concept maps individually or collaboratively for science learning and helped students capture their evolving creative ideas and organize them for meaningful learning. Students in both the individual and the collaborative concept mapping groups had positive attitudes toward concept mapping using Inspiration(TM) software.

  3. The role of parietal cortex in the formation of color and motion based concepts

    PubMed Central

    Cheadle, Samuel W.; Zeki, Semir

    2014-01-01

    Imaging evidence shows that separate subdivisions of parietal cortex, in and around the intraparietal sulcus (IPS), are engaged when stimuli are grouped according to color and to motion (Zeki and Stutters, 2013). Since grouping is an essential step in the formation of concepts, we wanted to learn whether parietal cortex is also engaged in the formation of concepts according to these two attributes. Using functional magnetic resonance imaging (fMRI), and choosing the recognition of concept-based color or motion stimuli as our paradigm, we found that there was strong concept-related activity in and around the IPS, a region whose homolog in the macaque monkey is known to receive direct but segregated anatomical inputs from V4 and V5. Parietal activity related to color concepts was juxtaposed but did not overlap with activity related to motion concepts, thus emphasizing the continuation of the segregation of color and motion into the conceptual system. Concurrent retinotopic mapping experiments showed that within the parietal cortex, concept-related activity increases within later stage IPS areas. PMID:25120447

  4. Efficient characterization of phase space mapping in axially symmetric optical systems

    NASA Astrophysics Data System (ADS)

    Barbero, Sergio; Portilla, Javier

    2018-01-01

    Phase space mapping, typically between an object and image plane, characterizes an optical system within a geometrical optics framework. We propose a novel conceptual frame to characterize the phase mapping in axially symmetric optical systems for arbitrary object locations, not restricted to a specific object plane. The idea is based on decomposing the phase mapping into a set of bivariate equations corresponding to different values of the radial coordinate on a specific object surface (most likely the entrance pupil). These equations are then approximated through bivariate Chebyshev interpolation at Chebyshev nodes, which guarantees uniform convergence. Additionally, we propose the use of a new concept (effective object phase space), defined as the set of points of the phase space at the first optical element (typically the entrance pupil) that are effectively mapped onto the image surface. The effective object phase space provides, by means of an inclusion test, a way to avoid tracing rays that do not reach the image surface.

  5. The Effects of a Concept Map-Based Support Tool on Simulation-Based Inquiry Learning

    ERIC Educational Resources Information Center

    Hagemans, Mieke G.; van der Meij, Hans; de Jong, Ton

    2013-01-01

    Students often need support to optimize their learning in inquiry learning environments. In 2 studies, we investigated the effects of adding concept-map-based support to a simulation-based inquiry environment on kinematics. The concept map displayed the main domain concepts and their relations, while dynamic color coding of the concepts displayed…

  6. Artist Concept of MAVEN Imaging Ultraviolet Spectrograph at Work

    NASA Image and Video Library

    2014-11-07

    This artist concept depicts the Imaging Ultraviolet Spectrograph IUVS on NASA MAVEN spacecraft scanning the upper atmosphere of Mars. IUVS uses limb scans to map the chemical makeup and vertical structure across Mars upper atmosphere.

  7. Integrating histology and MRI in the first digital brain of common squirrel monkey, Saimiri sciureus

    NASA Astrophysics Data System (ADS)

    Sun, Peizhen; Parvathaneni, Prasanna; Schilling, Kurt G.; Gao, Yurui; Janve, Vaibhav; Anderson, Adam; Landman, Bennett A.

    2015-03-01

    This effort is a continuation of development of a digital brain atlas of the common squirrel monkey, Saimiri sciureus, a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. Here, we present the integration of histology with multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. The central concept of this work is to use block face photography to establish an intermediate common space in coordinate system which preserves the high resolution in-plane resolution of histology while enabling 3-D correspondence with MRI. In vivo MRI acquisitions include high resolution T2 structural imaging (300 μm isotropic) and low resolution diffusion tensor imaging (600 um isotropic). Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging (both 300 μm isotropic). Cortical regions were manually annotated on the co-registered volumes based on published histological sections in-plane. We describe mapping of histology and MRI based data of the common squirrel monkey and construction of a viewing tool that enable online viewing of these datasets. The previously descried atlas MRI is used for its deformation to provide accurate conformation to the MRI, thus adding information at the histological level to the MRI volume. This paper presents the mapping of single 2D image slice in block face as a proof of concept and this can be extended to map the atlas space in 3D coordinate system as part of the future work and can be loaded to an XNAT system for further use.

  8. An Intelligent Web-Based System for Diagnosing Student Learning Problems Using Concept Maps

    ERIC Educational Resources Information Center

    Acharya, Anal; Sinha, Devadatta

    2017-01-01

    The aim of this article is to propose a method for development of concept map in web-based environment for identifying concepts a student is deficient in after learning using traditional methods. Direct Hashing and Pruning algorithm was used to construct concept map. Redundancies within the concept map were removed to generate a learning sequence.…

  9. Incorporating Concept Mapping in Project-Based Learning: Lessons from Watershed Investigations

    ERIC Educational Resources Information Center

    Rye, James; Landenberger, Rick; Warner, Timothy A.

    2013-01-01

    The concept map tool set forth by Novak and colleagues is underutilized in education. A meta-analysis has encouraged teachers to make extensive use of concept mapping, and researchers have advocated computer-based concept mapping applications that exploit hyperlink technology. Through an NSF sponsored geosciences education grant, middle and…

  10. Assessing Changes in High School Students' Conceptual Understanding through Concept Maps before and after the Computer-Based Predict-Observe-Explain (CB-POE) Tasks on Acid-Base Chemistry at the Secondary Level

    ERIC Educational Resources Information Center

    Yaman, Fatma; Ayas, Alipasa

    2015-01-01

    Although concept maps have been used as alternative assessment methods in education, there has been an ongoing debate on how to evaluate students' concept maps. This study discusses how to evaluate students' concept maps as an assessment tool before and after 15 computer-based Predict-Observe-Explain (CB-POE) tasks related to acid-base chemistry.…

  11. Effects of Multidimensional Concept Maps on Fourth Graders' Learning in Web-Based Computer Course

    ERIC Educational Resources Information Center

    Huang, Hwa-Shan; Chiou, Chei-Chang; Chiang, Heien-Kun; Lai, Sung-Hsi; Huang, Chiun-Yen; Chou, Yin-Yu

    2012-01-01

    This study explores the effect of multidimensional concept mapping instruction on students' learning performance in a web-based computer course. The subjects consisted of 103 fourth graders from an elementary school in central Taiwan. They were divided into three groups: multidimensional concept map (MCM) instruction group, Novak concept map (NCM)…

  12. Development and Evaluation of Real-Time Volumetric Compton Gamma-Ray Imaging

    NASA Astrophysics Data System (ADS)

    Barnowski, Ross Wegner

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. The real-time tracking allows the imager to be moved throughout the environment or around a particular object of interest, obtaining the multiple perspectives necessary for standoff 3D imaging. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, can be incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and two different mobile gamma-ray imaging platforms. The first is a cart-based imaging platform known as the Volumetric Compton Imager (VCI), comprising two 3D position-sensitive high purity germanium (HPGe) detectors, exhibiting excellent gamma-ray imaging characteristics, but with limited mobility due to the size and weight of the cart. The second system is the High Efficiency Multimodal Imager (HEMI) a hand-portable gamma-ray imager comprising 96 individual cm3 CdZnTe crystals arranged in a two-plane, active-mask configuration. The HEMI instrument has poorer energy and angular resolution than the VCI, but is truly hand-portable, allowing the SDF concept to be tested in multiple environments and for more challenging imaging scenarios. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. Each of the two mobile imaging systems are used to demonstrate SDF for a variety of scenarios, including general search and mapping scenarios with several point gamma-ray sources over the range of energies relevant for Compton imaging. More specific imaging scenarios are also addressed, including directed search and object interrogation scenarios. Finally, the volumetric image quality is quantitatively investigated with respect to the number of Compton events acquired during a measurement, the list-mode uncertainty of the Compton cone data, and the uncertainty in the pose estimate from the real-time tracking algorithm. SDF advances the real-world applicability of gamma-ray imaging for many search, mapping, and verification scenarios by improving the tractability of the gamma-ray image reconstruction and providing context for the 3D localization of gamma-ray sources within the environment in real-time.

  13. Accurate Natural Trail Detection Using a Combination of a Deep Neural Network and Dynamic Programming.

    PubMed

    Adhikari, Shyam Prasad; Yang, Changju; Slot, Krzysztof; Kim, Hyongsuk

    2018-01-10

    This paper presents a vision sensor-based solution to the challenging problem of detecting and following trails in highly unstructured natural environments like forests, rural areas and mountains, using a combination of a deep neural network and dynamic programming. The deep neural network (DNN) concept has recently emerged as a very effective tool for processing vision sensor signals. A patch-based DNN is trained with supervised data to classify fixed-size image patches into "trail" and "non-trail" categories, and reshaped to a fully convolutional architecture to produce trail segmentation map for arbitrary-sized input images. As trail and non-trail patches do not exhibit clearly defined shapes or forms, the patch-based classifier is prone to misclassification, and produces sub-optimal trail segmentation maps. Dynamic programming is introduced to find an optimal trail on the sub-optimal DNN output map. Experimental results showing accurate trail detection for real-world trail datasets captured with a head mounted vision system are presented.

  14. Geological mapping of the Schuppen belt of north-east India using geospatial technology

    NASA Astrophysics Data System (ADS)

    Ghosh, Tanaya; Basu, Surajit; Hazra, Sugata

    2014-01-01

    A revised geologic map of the Schuppen belt of northeast India has been prepared based on interpretation of digitally enhanced satellite images. The satellite image interpretation is supported by limited field work and existing geologic maps. Available geological maps of this fold thrust belt are discontinuous and multi-scaled. The authors are of multiple opinions regarding the trajectory of formation boundaries and fault contacts. Digital image processing of satellite images and limited field surveys have been used to reinterpret and modify the existing geological maps of this fold thrust belt. Optical data of Landsat Thematic Mapper, Enhanced Thematic Mapper and elevation data of ASTER have been used to prepare this revised geological map. The study area extends from Hajadisa in south to Digboi oilfield in north, bounded by Naga thrust in the west and Disang thrust in the east. PCA, Image fusion, Linear Contrast stretch, Histogram Equalization and Painted relief algorithms have been used for the delineation of major geological lineaments like lithological boundary, thrust and strike slip faults. Digital elevation maps have enabled in the discrimination between thrust contacts and lithological boundaries, with the former being located mostly in the valleys. Textural enhancements of PCA, colour composites and Painted relief algorithm have been used to discriminate between different rock types. Few geological concepts about the terrain have been revisited and modified. It is assumed that this revised map should be of practical use as this terrain promises unexploited hydrocarbon reserves.

  15. Relationship of students' conceptual representations and problem-solving abilities in acid-base chemistry

    NASA Astrophysics Data System (ADS)

    Powers, Angela R.

    2000-10-01

    This study explored the relationship between secondary chemistry students' conceptual representations of acid-base chemistry, as shown in student-constructed concept maps, and their ability to solve acid-base problems, represented by their score on an 18-item paper and pencil test, the Acid-Base Concept Assessment (ABCA). The ABCA, consisting of both multiple-choice and short-answer items, was originally designed using a question-type by subtopic matrix, validated by a panel of experts, and refined through pilot studies and factor analysis to create the final instrument. The concept map task included a short introduction to concept mapping, a prototype concept map, a practice concept-mapping activity, and the instructions for the acid-base concept map task. The instruments were administered to chemistry students at two high schools; 108 subjects completed both instruments for this study. Factor analysis of ABCA results indicated that the test was unifactorial for these students, despite the intention to create an instrument with multiple "question-type" scales. Concept maps were scored both holistically and by counting valid concepts. The two approaches were highly correlated (r = 0.75). The correlation between ABCA score and concept-map score was 0.29 for holistically-scored concept maps and 0.33 for counted-concept maps. Although both correlations were significant, they accounted for only 8.8 and 10.2% of variance in ABCA scores, respectively. However, when the reliability of the instruments used is considered, more than 20% of the variance in ABCA scores may be explained by concept map scores. MANOVAs for ABCA and concept map scores by instructor, student gender, and year in school showed significant differences for both holistic and counted concept-map scores. Discriminant analysis revealed that the source of these differences was the instruction variable. Significant differences between classes receiving different instruction were found in the frequency of concepts listed by students for 9 of 10 concepts evaluated. Mean ABCA scores did not differ significantly between the two instruction groups. The results of this study failed to provide evidence of conceptual distinctions among different "types" of problem-solving items. The results suggested that several factors influence success in chemistry problem solving, including concept knowledge and organization. Further research into the nature of chemistry problems and problem solving is recommended.

  16. Exploring the Interactive Patterns of Concept Map-Based Online Discussion: A Sequential Analysis of Users' Operations, Cognitive Processing, and Knowledge Construction

    ERIC Educational Resources Information Center

    Wu, Sheng-Yi; Chen, Sherry Y.; Hou, Huei-Tse

    2016-01-01

    Concept maps can be used as a cognitive tool to assist learners' knowledge construction. However, in a concept map-based online discussion environment, studies that take into consideration learners' manipulative actions of composing concept maps, cognitive process among learners' discussion, and social knowledge construction at the same time are…

  17. The Effects of Integrating Computer-Based Concept Mapping for Physics Learning in Junior High School

    ERIC Educational Resources Information Center

    Chang, Cheng-Chieh; Yeh, Ting-Kuang; Shih, Chang-Ming

    2016-01-01

    It generally is accepted that concept mapping has a noticeable impact on learning. But literatures show the use of concept mapping is not benefit all learners. The present study explored the effects of incorporating computer-based concept mapping in physics instruction. A total of 61 9th-grade students participated in this study. By using a…

  18. A tutorial in displaying mass spectrometry-based proteomic data using heat maps.

    PubMed

    Key, Melissa

    2012-01-01

    Data visualization plays a critical role in interpreting experimental results of proteomic experiments. Heat maps are particularly useful for this task, as they allow us to find quantitative patterns across proteins and biological samples simultaneously. The quality of a heat map can be vastly improved by understanding the options available to display and organize the data in the heat map. This tutorial illustrates how to optimize heat maps for proteomics data by incorporating known characteristics of the data into the image. First, the concepts used to guide the creating of heat maps are demonstrated. Then, these concepts are applied to two types of analysis: visualizing spectral features across biological samples, and presenting the results of tests of statistical significance. For all examples we provide details of computer code in the open-source statistical programming language R, which can be used for biologists and clinicians with little statistical background. Heat maps are a useful tool for presenting quantitative proteomic data organized in a matrix format. Understanding and optimizing the parameters used to create the heat map can vastly improve both the appearance and the interoperation of heat map data.

  19. Comparative Effects of Computer-Based Concept Maps, Refutational Texts, and Expository Texts on Science Learning

    ERIC Educational Resources Information Center

    Adesope, Olusola O.; Cavagnetto, Andy; Hunsu, Nathaniel J.; Anguiano, Carlos; Lloyd, Joshua

    2017-01-01

    This study used a between-subjects experimental design to examine the effects of three different computer-based instructional strategies (concept map, refutation text, and expository scientific text) on science learning. Concept maps are node-link diagrams that show concepts as nodes and relationships among the concepts as labeled links.…

  20. The Use of Concept Map as a Consolidation Phase Based STAD to Enhance Students’ Comprehension about Environmental Pollution

    NASA Astrophysics Data System (ADS)

    Nugroho, O. F.; Chandra, D. T.; Sanjaya, Y.; Pendidikan Indonesia, Universitas

    2017-02-01

    The purpose of this study was to improve students’ concept comprehension using concept map as a consolidation phase based STAD. This study was conducted by randomized control group pretest-posttest. Data was collected by using an instrument test to evaluate the effect of concept map as a consolidation phase based STAD on students’understanding about environmental pollution. Data was analyzed using normalized gain (n-gain) and independent t-test. The n-gain analysis shows the increased of students’s understanding about environmental pollution at experimental group arehigher than at the control group. The result of this study showed that students’ comprehension at the experimental class (0,53) higher compared to the control group (0,23). Whilst the t-test analysis shows that there is a significant effect of mapping concept as a consolidation phase based STAD towards students’ concept comprehension. It can be concluded that the implementation of mapping concept based STAD may improve the students’s understanding on science concept.

  1. Dual-contrast agent photon-counting computed tomography of the heart: initial experience.

    PubMed

    Symons, Rolf; Cork, Tyler E; Lakshmanan, Manu N; Evers, Robert; Davies-Venn, Cynthia; Rice, Kelly A; Thomas, Marvin L; Liu, Chia-Ying; Kappler, Steffen; Ulzheimer, Stefan; Sandfort, Veit; Bluemke, David A; Pourmorteza, Amir

    2017-08-01

    To determine the feasibility of dual-contrast agent imaging of the heart using photon-counting detector (PCD) computed tomography (CT) to simultaneously assess both first-pass and late enhancement of the myocardium. An occlusion-reperfusion canine model of myocardial infarction was used. Gadolinium-based contrast was injected 10 min prior to PCD CT. Iodinated contrast was infused immediately prior to PCD CT, thus capturing late gadolinium enhancement as well as first-pass iodine enhancement. Gadolinium and iodine maps were calculated using a linear material decomposition technique and compared to single-energy (conventional) images. PCD images were compared to in vivo and ex vivo magnetic resonance imaging (MRI) and histology. For infarct versus remote myocardium, contrast-to-noise ratio (CNR) was maximal on late enhancement gadolinium maps (CNR 9.0 ± 0.8, 6.6 ± 0.7, and 0.4 ± 0.4, p < 0.001 for gadolinium maps, single-energy images, and iodine maps, respectively). For infarct versus blood pool, CNR was maximum for iodine maps (CNR 11.8 ± 1.3, 3.8 ± 1.0, and 1.3 ± 0.4, p < 0.001 for iodine maps, gadolinium maps, and single-energy images, respectively). Combined first-pass iodine and late gadolinium maps allowed quantitative separation of blood pool, scar, and remote myocardium. MRI and histology analysis confirmed accurate PCD CT delineation of scar. Simultaneous multi-contrast agent cardiac imaging is feasible with photon-counting detector CT. These initial proof-of-concept results may provide incentives to develop new k-edge contrast agents, to investigate possible interactions between multiple simultaneously administered contrast agents, and to ultimately bring them to clinical practice.

  2. Incorporating Concept Mapping in Project-Based Learning: Lessons from Watershed Investigations

    NASA Astrophysics Data System (ADS)

    Rye, James; Landenberger, Rick; Warner, Timothy A.

    2013-06-01

    The concept map tool set forth by Novak and colleagues is underutilized in education. A meta-analysis has encouraged teachers to make extensive use of concept mapping, and researchers have advocated computer-based concept mapping applications that exploit hyperlink technology. Through an NSF sponsored geosciences education grant, middle and secondary science teachers participated in professional development to apply computer-based concept mapping in project-based learning (PBL) units that investigated local watersheds. Participants attended a summer institute, engaged in a summer through spring online learning academy, and presented PBL units at a subsequent fall science teachers' convention. The majority of 17 teachers who attended the summer institute had previously used the concept mapping strategy with students and rated it highly. Of the 12 teachers who continued beyond summer, applications of concept mapping ranged from collaborative planning of PBL projects to building students' vocabulary to students producing maps related to the PBL driving question. Barriers to the adoption and use of concept mapping included technology access at the schools, lack of time for teachers to advance their technology skills, lack of student motivation to choose to learn, and student difficulty with linking terms. In addition to mitigating the aforementioned barriers, projects targeting teachers' use of technology tools may enhance adoption by recruiting teachers as partners from schools as well as a small number that already are proficient in the targeted technology and emphasizing the utility of the concept map as a planning tool.

  3. Inverting ion images without Abel inversion: maximum entropy reconstruction of velocity maps.

    PubMed

    Dick, Bernhard

    2014-01-14

    A new method for the reconstruction of velocity maps from ion images is presented, which is based on the maximum entropy concept. In contrast to other methods used for Abel inversion the new method never applies an inversion or smoothing to the data. Instead, it iteratively finds the map which is the most likely cause for the observed data, using the correct likelihood criterion for data sampled from a Poissonian distribution. The entropy criterion minimizes the information content in this map, which hence contains no information for which there is no evidence in the data. Two implementations are proposed, and their performance is demonstrated with simulated and experimental data: Maximum Entropy Velocity Image Reconstruction (MEVIR) obtains a two-dimensional slice through the velocity distribution and can be compared directly to Abel inversion. Maximum Entropy Velocity Legendre Reconstruction (MEVELER) finds one-dimensional distribution functions Q(l)(v) in an expansion of the velocity distribution in Legendre polynomials P((cos θ) for the angular dependence. Both MEVIR and MEVELER can be used for the analysis of ion images with intensities as low as 0.01 counts per pixel, with MEVELER performing significantly better than MEVIR for images with low intensity. Both methods perform better than pBASEX, in particular for images with less than one average count per pixel.

  4. Monitoring of thermal therapy based on shear modulus changes: II. Shear wave imaging of thermal lesions.

    PubMed

    Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael

    2011-08-01

    The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is currently hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to a precise mapping of the lesion. HIFU treatment and monitoring were respectively performed using a confocal setup consisting of a 2.5-MHz single element transducer focused at 34 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Ultrasound-based strain imaging was combined with shear wave imaging on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created with pushing beams of 100 μs at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Thus, elasticity and strain mapping was achieved every 3 s, leading to real-time monitoring of the treatment. When thermal damage occurs, tissue stiffness was found to increase up to 4-fold and strain imaging showed strong shrinkages that blur the temperature information. We show that strain imaging elastograms are not easy to interpret for accurate lesion characterization, but SWI provides a quantitative mapping of the thermal lesion. Moreover, the concept of shear wave thermometry (SWT) developed in the companion paper allows mapping temperature with the same method. Combined SWT and shear wave imaging can map the lesion stiffening and temperature outside the lesion, which could be used to predict the eventual lesion growth by thermal dose calculation. Finally, SWI is shown to be robust to motion and reliable in vivo on sheep muscle.

  5. Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry.

    PubMed

    Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael

    2011-02-01

    The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is today hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to the 2-D mapping of temperature changes during HIFU treatments. This new concept of shear wave thermometry is experimentally implemented here using conventional ultrasonic imaging probes. HIFU treatment and monitoring were, respectively, performed using a confocal setup consisting of a 2.5-MHz single-element transducer focused at 30 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Thermocouple measurements and ultrasound-based thermometry were used as a gold standard technique and were combined with SWI on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created using 100-μs pushing beams at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Elasticity and temperature mapping was achieved every 3 s, leading to realtime monitoring of the treatment. Tissue stiffness was found to decrease in the focal zone for temperatures up to 43°C. Ultrasound-based temperature estimation was highly correlated to stiffness variation maps (r² = 0.91 to 0.97). A reversible calibration phase of the changes of elasticity with temperature can be made locally using sighting shots. This calibration process allows for the derivation of temperature maps from shear wave imaging. Compared with conventional ultrasound-based approaches, shear wave thermometry is found to be much more robust to motion artifacts.

  6. An Analysis of Prospective Teachers' Knowledge for Constructing Concept Maps

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela

    2015-01-01

    Background: Literature contends that a teacher's knowledge of concept map-based tasks influence how their students perceive the task and execute the creation of acceptable concept maps. Teachers who are skilled concept mappers are able to (1) understand and apply the operational terms to construct a hierarchical/non-hierarchical concept map; (2)…

  7. Multiresolution saliency map based object segmentation

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Wang, Xin; Dai, ZhenYou

    2015-11-01

    Salient objects' detection and segmentation are gaining increasing research interest in recent years. A saliency map can be obtained from different models presented in previous studies. Based on this saliency map, the most salient region (MSR) in an image can be extracted. This MSR, generally a rectangle, can be used as the initial parameters for object segmentation algorithms. However, to our knowledge, all of those saliency maps are represented in a unitary resolution although some models have even introduced multiscale principles in the calculation process. Furthermore, some segmentation methods, such as the well-known GrabCut algorithm, need more iteration time or additional interactions to get more precise results without predefined pixel types. A concept of a multiresolution saliency map is introduced. This saliency map is provided in a multiresolution format, which naturally follows the principle of the human visual mechanism. Moreover, the points in this map can be utilized to initialize parameters for GrabCut segmentation by labeling the feature pixels automatically. Both the computing speed and segmentation precision are evaluated. The results imply that this multiresolution saliency map-based object segmentation method is simple and efficient.

  8. Hierarchical layered and semantic-based image segmentation using ergodicity map

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing

    2010-04-01

    Image segmentation plays a foundational role in image understanding and computer vision. Although great strides have been made and progress achieved on automatic/semi-automatic image segmentation algorithms, designing a generic, robust, and efficient image segmentation algorithm is still challenging. Human vision is still far superior compared to computer vision, especially in interpreting semantic meanings/objects in images. We present a hierarchical/layered semantic image segmentation algorithm that can automatically and efficiently segment images into hierarchical layered/multi-scaled semantic regions/objects with contextual topological relationships. The proposed algorithm bridges the gap between high-level semantics and low-level visual features/cues (such as color, intensity, edge, etc.) through utilizing a layered/hierarchical ergodicity map, where ergodicity is computed based on a space filling fractal concept and used as a region dissimilarity measurement. The algorithm applies a highly scalable, efficient, and adaptive Peano- Cesaro triangulation/tiling technique to decompose the given image into a set of similar/homogenous regions based on low-level visual cues in a top-down manner. The layered/hierarchical ergodicity map is built through a bottom-up region dissimilarity analysis. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level of detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanisms for contextual topological object/region relationship generation. Experiments have been conducted within the maritime image environment where the segmented layered semantic objects include the basic level objects (i.e. sky/land/water) and deeper level objects in the sky/land/water surfaces. Experimental results demonstrate the proposed algorithm has the capability to robustly and efficiently segment images into layered semantic objects/regions with contextual topological relationships.

  9. The effects of using concept mapping as an artifact to engender metacognitive thinking in first-year medical students' problem-based learning discussions: A mixed-methods investigation

    NASA Astrophysics Data System (ADS)

    Shoop, Glenda Hostetter

    Attention in medical education is turning toward instruction that not only focuses on knowledge acquisition, but on developing the medical students' clinical problem-solving skills, and their ability to critically think through complex diseases. Metacognition is regarded as an important consideration in how we teach medical students these higher-order, critical thinking skills. This study used a mixed-methods research design to investigate if concept mapping as an artifact may engender metacognitive thinking in the medical student population. Specifically the purpose of the study is twofold: (1) to determine if concept mapping, functioning as an artifact during problem-based learning, improves learning as measured by scores on test questions; and (2) to explore if the process of concept mapping alters the problem-based learning intragroup discussion in ways that show medical students are engaged in metacognitive thinking. The results showed that students in the problem-based learning concept-mapping groups used more metacognitive thinking patterns than those in the problem-based learning discussion-only group, particularly in the monitoring component. These groups also engaged in a higher level of cognitive thinking associated with reasoning through mechanisms-of-action and breaking down complex biochemical and physiologic principals. The students disclosed in focus-group interviews that concept mapping was beneficial to help them understand how discrete pieces of information fit together in a bigger structure of knowledge. They also stated that concept mapping gave them some time to think through these concepts in a larger conceptual framework. There was no significant difference in the exam-question scores between the problem-based learning concept-mapping groups and the problem-based learning discussion-only group.

  10. Multipurpose, dual-mode imaging in the 3-5 μm range (MWIR) for artwork diagnostics: A systematic approach

    NASA Astrophysics Data System (ADS)

    Daffara, Claudia; Parisotto, Simone; Ambrosini, Dario

    2018-05-01

    We present a multi-purpose, dual-mode imaging method in the Mid-Wavelength Infrared (MWIR) range (from 3 μm to 5 μm) for a more efficient nondestructive analysis of artworks. Using a setup based on a MWIR thermal camera and multiple radiation sources, two radiometric image datasets are acquired in different acquisition modalities, the image in quasi-reflectance mode (TQR) and the thermal sequence in emission mode. Here, the advantages are: the complementarity of the information; the use of the quasi-reflectance map for calculating the emissivity map; the use of TQR map for a referentiation to the visible of the thermographic images. The concept of the method is presented, the practical feasibility is demonstrated through a custom imaging setup, the potentiality for the nondestructive analysis is shown on a notable application to cultural heritage. The method has been used as experimental tool in support of the restoration of the mural painting "Monocromo" by Leonardo da Vinci. Feedback from the operators and a comparison with some conventional diagnostic techniques is also given to underline the novelty and potentiality of the method.

  11. Student-Centered Reliability, Concurrent Validity and Instructional Sensitivity in Scoring of Students' Concept Maps in a University Science Laboratory

    ERIC Educational Resources Information Center

    Kaya, Osman Nafiz; Kilic, Ziya

    2004-01-01

    Student-centered approach of scoring the concept maps consisted of three elements namely symbol system, individual portfolio and scoring scheme. We scored student-constructed concept maps based on 5 concept map criteria: validity of concepts, adequacy of propositions, significance of cross-links, relevancy of examples, and interconnectedness. With…

  12. Investigation of contrast-enhanced subtracted breast CT images with MAP-EM based on projection-based weighting imaging.

    PubMed

    Zhou, Zhengdong; Guan, Shaolin; Xin, Runchao; Li, Jianbo

    2018-06-01

    Contrast-enhanced subtracted breast computer tomography (CESBCT) images acquired using energy-resolved photon counting detector can be helpful to enhance the visibility of breast tumors. In such technology, one challenge is the limited number of photons in each energy bin, thereby possibly leading to high noise in separate images from each energy bin, the projection-based weighted image, and the subtracted image. In conventional low-dose CT imaging, iterative image reconstruction provides a superior signal-to-noise compared with the filtered back projection (FBP) algorithm. In this paper, maximum a posteriori expectation maximization (MAP-EM) based on projection-based weighting imaging for reconstruction of CESBCT images acquired using an energy-resolving photon counting detector is proposed, and its performance was investigated in terms of contrast-to-noise ratio (CNR). The simulation study shows that MAP-EM based on projection-based weighting imaging can improve the CNR in CESBCT images by 117.7%-121.2% compared with FBP based on projection-based weighting imaging method. When compared with the energy-integrating imaging that uses the MAP-EM algorithm, projection-based weighting imaging that uses the MAP-EM algorithm can improve the CNR of CESBCT images by 10.5%-13.3%. In conclusion, MAP-EM based on projection-based weighting imaging shows significant improvement the CNR of the CESBCT image compared with FBP based on projection-based weighting imaging, and MAP-EM based on projection-based weighting imaging outperforms MAP-EM based on energy-integrating imaging for CESBCT imaging.

  13. Use of multiple cluster analysis methods to explore the validity of a community outcomes concept map.

    PubMed

    Orsi, Rebecca

    2017-02-01

    Concept mapping is now a commonly-used technique for articulating and evaluating programmatic outcomes. However, research regarding validity of knowledge and outcomes produced with concept mapping is sparse. The current study describes quantitative validity analyses using a concept mapping dataset. We sought to increase the validity of concept mapping evaluation results by running multiple cluster analysis methods and then using several metrics to choose from among solutions. We present four different clustering methods based on analyses using the R statistical software package: partitioning around medoids (PAM), fuzzy analysis (FANNY), agglomerative nesting (AGNES) and divisive analysis (DIANA). We then used the Dunn and Davies-Bouldin indices to assist in choosing a valid cluster solution for a concept mapping outcomes evaluation. We conclude that the validity of the outcomes map is high, based on the analyses described. Finally, we discuss areas for further concept mapping methods research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Validation and application of Acoustic Mapping Velocimetry

    NASA Astrophysics Data System (ADS)

    Baranya, Sandor; Muste, Marian

    2016-04-01

    The goal of this paper is to introduce a novel methodology to estimate bedload transport in rivers based on an improved bedform tracking procedure. The measurement technique combines components and processing protocols from two contemporary nonintrusive instruments: acoustic and image-based. The bedform mapping is conducted with acoustic surveys while the estimation of the velocity of the bedforms is obtained with processing techniques pertaining to image-based velocimetry. The technique is therefore called Acoustic Mapping Velocimetry (AMV). The implementation of this technique produces a whole-field velocity map associated with the multi-directional bedform movement. Based on the calculated two-dimensional bedform migration velocity field, the bedload transport estimation is done using the Exner equation. A proof-of-concept experiment was performed to validate the AMV based bedload estimation in a laboratory flume at IIHR-Hydroscience & Engineering (IIHR). The bedform migration was analysed at three different flow discharges. Repeated bed geometry mapping, using a multiple transducer array (MTA), provided acoustic maps, which were post-processed with a particle image velocimetry (PIV) method. Bedload transport rates were calculated along longitudinal sections using the streamwise components of the bedform velocity vectors and the measured bedform heights. The bulk transport rates were compared with the results from concurrent direct physical samplings and acceptable agreement was found. As a first field implementation of the AMV an attempt was made to estimate bedload transport for a section of the Ohio river in the United States, where bed geometry maps, resulted by repeated multibeam echo sounder (MBES) surveys, served as input data. Cross-sectional distributions of bedload transport rates from the AMV based method were compared with the ones obtained from another non-intrusive technique (due to the lack of direct samplings), ISSDOTv2, developed by the US Army Corps of Engineers. The good agreement between the results from the two different methods is encouraging and suggests further field tests in varying hydro-morphological situations.

  15. Using concept maps in a modified team-based learning exercise.

    PubMed

    Knollmann-Ritschel, Barbara E C; Durning, Steven J

    2015-04-01

    Medical school education has traditionally been driven by single discipline teaching and assessment. Newer medical school curricula often implement an organ-based approach that fosters integration of basic science and clinical disciplines. Concept maps are widely used in education. Through diagrammatic depiction of a variety of concepts and their specific connections with other ideas, concept maps provide a unique perspective into learning and performance that can complement other assessment methods commonly used in medical schools. In this innovation, we describe using concepts maps as a vehicle for a modified a classic Team-Based Learning (TBL) exercise. Modifications to traditional TBL in our innovation included replacing an individual assessment using multiple-choice questions with concept maps as well as combining the group assessment and application exercise whereby teams created concept maps. These modifications were made to further assess understanding of content across the Fundamentals module (the introductory module of the preclerkship curriculum). While preliminary, student performance and feedback from faculty and students support the use of concept maps in TBL. Our findings suggest concept maps can provide a unique means of determining assessment of learning and generating feedback to students. Concept maps can also demonstrate knowledge acquisition, organization of prior and new knowledge, and synthesis of that knowledge across disciplines in a unique way providing an additional means of assessment in addition to traditional multiple-choice questions. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  16. A Concept Hierarchy Based Ontology Mapping Approach

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Weiru; Bell, David

    Ontology mapping is one of the most important tasks for ontology interoperability and its main aim is to find semantic relationships between entities (i.e. concept, attribute, and relation) of two ontologies. However, most of the current methods only consider one to one (1:1) mappings. In this paper we propose a new approach (CHM: Concept Hierarchy based Mapping approach) which can find simple (1:1) mappings and complex (m:1 or 1:m) mappings simultaneously. First, we propose a new method to represent the concept names of entities. This method is based on the hierarchical structure of an ontology such that each concept name of entity in the ontology is included in a set. The parent-child relationship in the hierarchical structure of an ontology is then extended as a set-inclusion relationship between the sets for the parent and the child. Second, we compute the similarities between entities based on the new representation of entities in ontologies. Third, after generating the mapping candidates, we select the best mapping result for each source entity. We design a new algorithm based on the Apriori algorithm for selecting the mapping results. Finally, we obtain simple (1:1) and complex (m:1 or 1:m) mappings. Our experimental results and comparisons with related work indicate that utilizing this method in dealing with ontology mapping is a promising way to improve the overall mapping results.

  17. VESGEN Software for Mapping and Quantification of Vascular Regulators

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.

    2012-01-01

    VESsel GENeration (VESGEN) Analysis is an automated software that maps and quantifies effects of vascular regulators on vascular morphology by analyzing important vessel parameters. Quantification parameters include vessel diameter, length, branch points, density, and fractal dimension. For vascular trees, measurements are reported as dependent functions of vessel branching generation. VESGEN maps and quantifies vascular morphological events according to fractal-based vascular branching generation. It also relies on careful imaging of branching and networked vascular form. It was developed as a plug-in for ImageJ (National Institutes of Health, USA). VESGEN uses image-processing concepts of 8-neighbor pixel connectivity, skeleton, and distance map to analyze 2D, black-and-white (binary) images of vascular trees, networks, and tree-network composites. VESGEN maps typically 5 to 12 (or more) generations of vascular branching, starting from a single parent vessel. These generations are tracked and measured for critical vascular parameters that include vessel diameter, length, density and number, and tortuosity per branching generation. The effects of vascular therapeutics and regulators on vascular morphology and branching tested in human clinical or laboratory animal experimental studies are quantified by comparing vascular parameters with control groups. VESGEN provides a user interface to both guide and allow control over the users vascular analysis process. An option is provided to select a morphological tissue type of vascular trees, network or tree-network composites, which determines the general collections of algorithms, intermediate images, and output images and measurements that will be produced.

  18. Use of Networked Collaborative Concept Mapping To Measure Team Processes and Team Outcomes.

    ERIC Educational Resources Information Center

    Chung, Gregory K. W. K.; O'Neil, Harold F., Jr.; Herl, Howard E.; Dennis, Robert A.

    The feasibility of using a computer-based networked collaborative concept mapping system to measure teamwork skills was studied. A concept map is a node-link-node representation of content, where the nodes represent concepts and links represent relationships between connected concepts. Teamwork processes were examined for a group concept mapping…

  19. Using Concept Mapping to Improve Poor Readers' Understanding of Expository Text

    ERIC Educational Resources Information Center

    Morfidi, Eleni; Mikropoulos, Anastasios; Rogdaki, Aspasia

    2018-01-01

    The present study examined whether the use of concept mapping is more effective in teaching expository material in comparison to a traditional, lecture only, approach. Its objective was threefold. First, to determine if multimedia concept mapping produces differential learning outcomes compared to digital text-based concept mapping. Secondly, to…

  20. MO-DE-207A-08: Four-Dimensional Cone-Beam CT Iterative Reconstruction with Time-Ordered Chain Graph Model for Non-Periodic Organ Motion and Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, M; Haga, A; Hanaoka, S

    2016-06-15

    Purpose: The purpose of this study is to propose a new concept of four-dimensional (4D) cone-beam CT (CBCT) reconstruction for non-periodic organ motion using the Time-ordered Chain Graph Model (TCGM), and to compare the reconstructed results with the previously proposed methods, the total variation-based compressed sensing (TVCS) and prior-image constrained compressed sensing (PICCS). Methods: CBCT reconstruction method introduced in this study consisted of maximum a posteriori (MAP) iterative reconstruction combined with a regularization term derived from a concept of TCGM, which includes a constraint coming from the images of neighbouring time-phases. The time-ordered image series were concurrently reconstructed in themore » MAP iterative reconstruction framework. Angular range of projections for each time-phase was 90 degrees for TCGM and PICCS, and 200 degrees for TVCS. Two kinds of projection data, an elliptic-cylindrical digital phantom data and two clinical patients’ data, were used for reconstruction. The digital phantom contained an air sphere moving 3 cm along longitudinal axis, and temporal resolution of each method was evaluated by measuring the penumbral width of reconstructed moving air sphere. The clinical feasibility of non-periodic time-ordered 4D CBCT reconstruction was also examined using projection data of prostate cancer patients. Results: The results of reconstructed digital phantom shows that the penumbral widths of TCGM yielded the narrowest result; PICCS and TCGM were 10.6% and 17.4% narrower than that of TVCS, respectively. This suggests that the TCGM has the better temporal resolution than the others. Patients’ CBCT projection data were also reconstructed and all three reconstructed results showed motion of rectal gas and stool. The result of TCGM provided visually clearer and less blurring images. Conclusion: The present study demonstrates that the new concept for 4D CBCT reconstruction, TCGM, combined with MAP iterative reconstruction framework enables time-ordered image reconstruction with narrower time-window.« less

  1. Elemental mapping in a contemporary miniature by full-field X-ray fluorescence imaging with gaseous detector vs. scanning X-ray fluorescence imaging with polycapillary optics

    NASA Astrophysics Data System (ADS)

    Silva, A. L. M.; Cirino, S.; Carvalho, M. L.; Manso, M.; Pessanha, S.; Azevedo, C. D. R.; Carramate, L. F. N. D.; Santos, J. P.; Guerra, M.; Veloso, J. F. C. A.

    2017-03-01

    Energy dispersive X-ray imaging can be used in several research fields and industrial applications. Elemental mapping through energy dispersive X-ray imaging technique has become a promising method to obtain positional distribution of specific elements in a non-destructive way. To obtain the elemental distribution of a sample it is necessary to use instruments capable of providing a precise positioning together with a good energy resolution. Polycapillary beams together with silicon drift chamber detectors are used in several commercial systems and are considered state-of-the-art spectrometers, however they are usually very costly. A new concept of large energy dispersive X-ray imaging systems based on gaseous radiation detectors emerged in the last years enabling a promising 2D elemental detection at a very reduced price. The main goal of this work is to analyze a contemporary Indian miniature with both X-ray fluorescence imaging systems, the one based on a gaseous detector 2D-THCOBRA and the state-of-the-art spectrometer M4 Tornado, from Bruker. The performance of both systems is compared and evaluated in the context of the sample's analysis.

  2. Concept Mapping: A Critical Thinking Technique

    ERIC Educational Resources Information Center

    Harris, Charles M.; Zha, Shenghua

    2013-01-01

    Concept mapping, graphically depicting the structure of abstract concepts, is based on the observation that pictures and line drawings are often more easily comprehended than the words that represent an abstract concept. The efficacy of concept mapping for facilitating critical thinking was assessed in four sections of an introductory psychology…

  3. PSQM-based RR and NR video quality metrics

    NASA Astrophysics Data System (ADS)

    Lu, Zhongkang; Lin, Weisi; Ong, Eeping; Yang, Xiaokang; Yao, Susu

    2003-06-01

    This paper presents a new and general concept, PQSM (Perceptual Quality Significance Map), to be used in measuring the visual distortion. It makes use of the selectivity characteristic of HVS (Human Visual System) that it pays more attention to certain area/regions of visual signal due to one or more of the following factors: salient features in image/video, cues from domain knowledge, and association of other media (e.g., speech or audio). PQSM is an array whose elements represent the relative perceptual-quality significance levels for the corresponding area/regions for images or video. Due to its generality, PQSM can be incorporated into any visual distortion metrics: to improve effectiveness or/and efficiency of perceptual metrics; or even to enhance a PSNR-based metric. A three-stage PQSM estimation method is also proposed in this paper, with an implementation of motion, texture, luminance, skin-color and face mapping. Experimental results show the scheme can improve the performance of current image/video distortion metrics.

  4. Navigation concepts for MR image-guided interventions.

    PubMed

    Moche, Michael; Trampel, Robert; Kahn, Thomas; Busse, Harald

    2008-02-01

    The ongoing development of powerful magnetic resonance imaging techniques also allows for advanced possibilities to guide and control minimally invasive interventions. Various navigation concepts have been described for practically all regions of the body. The specific advantages and limitations of these concepts largely depend on the magnet design of the MR scanner and the interventional environment. Open MR scanners involve minimal patient transfer, which improves the interventional workflow and reduces the need for coregistration, ie, the mapping of spatial coordinates between imaging and intervention position. Most diagnostic scanners, in contrast, do not allow the physician to guide his instrument inside the magnet and, consequently, the patient needs to be moved out of the bore. Although adequate coregistration and navigation concepts for closed-bore scanners are technically more challenging, many developments are driven by the well-known capabilities of high-field systems and their better economic value. Advanced concepts such as multimodal overlays, augmented reality displays, and robotic assistance devices are still in their infancy but might propel the use of intraoperative navigation. The goal of this work is to give an update on MRI-based navigation and related techniques and to briefly discuss the clinical experience and limitations of some selected systems. (Copyright) 2008 Wiley-Liss, Inc.

  5. Possibilities of lunar polar orbiter

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Nagatomo, M.

    This paper describes the concept of a lunar polar orbiter (LPO), which will map the surface of the moon, especially its polar region and the far side, and send precise images of various wave lengths to earth. The primary purpose of the LPO is to identify global and local structures of lunar resources and topography and to search for a suitable site for the manned lunar base projected for next century. The concept of the LPO is based on the H-II rocket (which has a launch capability to send a rover/lander of one metric ton to the lunar surface) and earth observation technology of Japan.

  6. The New Worlds Observer: The Astrophysics Strategic Mission Concept Study

    DTIC Science & Technology

    2009-08-01

    of galaxies and galaxy clusters • Tracing the cosmic evolution of dark energy • Mapping the distribution of dark matter • Characterization of the...imaging of these fields will be used to map the distribution of dark matter us- ing the distortions of galaxy images produced by weak gravitational...dedicated to specific science goals such as mapping dark matter , tracing dark energy, or prob- ing star formation in the local Universe. In the dif

  7. a Method for Simultaneous Aerial and Terrestrial Geodata Acquisition for Corridor Mapping

    NASA Astrophysics Data System (ADS)

    Molina, P.; Blázquez, M.; Sastre, J.; Colomina, I.

    2015-08-01

    In this paper, we present mapKITE, a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method. On one side, the method combines a terrestrial mobile mapping system (TMMS) with an unmanned aerial mapping one, both equipped with remote sensing payloads (at least, a nadir-looking visible-band camera in the UA) by means of which aerial and terrestrial geodata are acquired simultaneously. This tandem geodata acquisition system is based on a terrestrial vehicle (TV) and on an unmanned aircraft (UA) linked by a 'virtual tether', that is, a mechanism based on the real-time supply of UA waypoints by the TV. By means of the TV-to-UA tether, the UA follows the TV keeping a specific relative TV-to-UA spatial configuration enabling the simultaneous operation of both systems to obtain highly redundant and complementary geodata. On the other side, mapKITE presents a novel concept for geodata post-processing favoured by the rich geometrical aspects derived from the mapKITE tandem simultaneous operation. The approach followed for sensor orientation and calibration of the aerial images captured by the UA inherits the principles of Integrated Sensor Orientation (ISO) and adds the pointing-and-scaling photogrammetric measurement of a distinctive element observed in every UA image, which is a coded target mounted on the roof of the TV. By means of the TV navigation system, the orientation of the TV coded target is performed and used in the post-processing UA image orientation approach as a Kinematic Ground Control Point (KGCP). The geometric strength of a mapKITE ISO network is therefore high as it counts with the traditional tie point image measurements, static ground control points, kinematic aerial control and the new point-and-scale measurements of the KGCPs. With such a geometry, reliable system and sensor orientation and calibration and eventual further reduction of the number of traditional ground control points is feasible. The different technical concepts, challenges and breakthroughs behind mapKITE are presented in this paper, such as the TV-to-UA virtual tether and the use of KGCP measurements for UA sensor orientation. In addition, the use in mapKITE of new European GNSS signals such as the Galileo E5 AltBOC is discussed. Because of the critical role of GNSS technologies and the potential impact on the corridor mapping market, the European Commission and the European GNSS Agency, in the frame of the European Union Framework Programme for Research and Innovation "Horizon 2020," have recently awarded the "mapKITE" project to an international consortium of organizations coordinated by GeoNumerics S.L.

  8. Concept Mapping and Misconceptions: A Study of High-School Students' Understandings of Acids and Bases.

    ERIC Educational Resources Information Center

    Ross, Bertram; And Others

    1991-01-01

    An investigation of students understandings of acids and bases using concept maps, multiple-choice tests, and clinical interviews is described. The methodology and resulting analysis are illustrated with two abbreviated case studies selected from the study. Discussion of concept mapping points to how it starkly represents gaps in the understanding…

  9. Investigating the Use of ICT-Based Concept Mapping Techniques on Creativity in Literacy Tasks

    ERIC Educational Resources Information Center

    Riley, Nigel R.; Ahlberg, Mauri

    2004-01-01

    The key research question in this small-scale study focuses on the effects that an ICT (information and communications technologies)-based concept mapping intervention has on creativity and writing achievement in 10-11-year-old primary age pupils. The data shows that pupils using a concept mapping intervention significantly improve their NFER…

  10. Content-based image retrieval with ontological ranking

    NASA Astrophysics Data System (ADS)

    Tsai, Shen-Fu; Tsai, Min-Hsuan; Huang, Thomas S.

    2010-02-01

    Images are a much more powerful medium of expression than text, as the adage says: "One picture is worth a thousand words." It is because compared with text consisting of an array of words, an image has more degrees of freedom and therefore a more complicated structure. However, the less limited structure of images presents researchers in the computer vision community a tough task of teaching machines to understand and organize images, especially when a limit number of learning examples and background knowledge are given. The advance of internet and web technology in the past decade has changed the way human gain knowledge. People, hence, can exchange knowledge with others by discussing and contributing information on the web. As a result, the web pages in the internet have become a living and growing source of information. One is therefore tempted to wonder whether machines can learn from the web knowledge base as well. Indeed, it is possible to make computer learn from the internet and provide human with more meaningful knowledge. In this work, we explore this novel possibility on image understanding applied to semantic image search. We exploit web resources to obtain links from images to keywords and a semantic ontology constituting human's general knowledge. The former maps visual content to related text in contrast to the traditional way of associating images with surrounding text; the latter provides relations between concepts for machines to understand to what extent and in what sense an image is close to the image search query. With the aid of these two tools, the resulting image search system is thus content-based and moreover, organized. The returned images are ranked and organized such that semantically similar images are grouped together and given a rank based on the semantic closeness to the input query. The novelty of the system is twofold: first, images are retrieved not only based on text cues but their actual contents as well; second, the grouping is different from pure visual similarity clustering. More specifically, the inferred concepts of each image in the group are examined in the context of a huge concept ontology to determine their true relations with what people have in mind when doing image search.

  11. Concept Mapping Using Cmap Tools to Enhance Meaningful Learning

    NASA Astrophysics Data System (ADS)

    Cañas, Alberto J.; Novak, Joseph D.

    Concept maps are graphical tools that have been used in all facets of education and training for organizing and representing knowledge. When learners build concept maps, meaningful learning is facilitated. Computer-based concept mapping software such as CmapTools have further extended the use of concept mapping and greatly enhanced the potential of the tool, facilitating the implementation of a concept map-centered learning environment. In this chapter, we briefly present concept mapping and its theoretical foundation, and illustrate how it can lead to an improved learning environment when it is combined with CmapTools and the Internet. We present the nationwide “Proyecto Conéctate al Conocimiento” in Panama as an example of how concept mapping, together with technology, can be adopted by hundreds of schools as a means to enhance meaningful learning.

  12. Evidence-Based Concept Mapping for the Athletic Training Student

    ERIC Educational Resources Information Center

    Speicher, Timothy E.; Martin, Malissa; Zigmont, Jason

    2013-01-01

    Context: A concept map is a graphical and cognitive tool that enables learners to link together interrelated concepts using propositions or statements that answer a posed problem. As an assessment tool, concept mapping reveals a learner's research skill proficiency and cognitive processing. Background: The identification and organization of the…

  13. An effective self-assessment based on concept map extraction from test-sheet for personalized learning

    NASA Astrophysics Data System (ADS)

    Liew, Keng-Hou; Lin, Yu-Shih; Chang, Yi-Chun; Chu, Chih-Ping

    2013-12-01

    Examination is a traditional way to assess learners' learning status, progress and performance after a learning activity. Except the test grade, a test sheet hides some implicit information such as test concepts, their relationships, importance, and prerequisite. The implicit information can be extracted and constructed a concept map for considering (1) the test concepts covered in the same question means these test concepts have strong relationships, and (2) questions in the same test sheet means the test concepts are relative. Concept map has been successfully employed in many researches to help instructors and learners organize relationships among concepts. However, concept map construction depends on experts who need to take effort and time for the organization of the domain knowledge. In addition, the previous researches regarding to automatic concept map construction are limited to consider all learners of a class, which have not considered personalized learning. To cope with this problem, this paper proposes a new approach to automatically extract and construct concept map based on implicit information in a test sheet. Furthermore, the proposed approach also can help learner for self-assessment and self-diagnosis. Finally, an example is given to depict the effectiveness of proposed approach.

  14. Making clinical case-based learning in veterinary medicine visible: analysis of collaborative concept-mapping processes and reflections.

    PubMed

    Khosa, Deep K; Volet, Simone E; Bolton, John R

    2014-01-01

    The value of collaborative concept mapping in assisting students to develop an understanding of complex concepts across a broad range of basic and applied science subjects is well documented. Less is known about students' learning processes that occur during the construction of a concept map, especially in the context of clinical cases in veterinary medicine. This study investigated the unfolding collaborative learning processes that took place in real-time concept mapping of a clinical case by veterinary medical students and explored students' and their teacher's reflections on the value of this activity. This study had two parts. The first part investigated the cognitive and metacognitive learning processes of two groups of students who displayed divergent learning outcomes in a concept mapping task. Meaningful group differences were found in their level of learning engagement in terms of the extent to which they spent time understanding and co-constructing knowledge along with completing the task at hand. The second part explored students' and their teacher's views on the value of concept mapping as a learning and teaching tool. The students' and their teacher's perceptions revealed congruent and contrasting notions about the usefulness of concept mapping. The relevance of concept mapping to clinical case-based learning in veterinary medicine is discussed, along with directions for future research.

  15. A New Standard for Assessing the Performance of High Contrast Imaging Systems

    NASA Astrophysics Data System (ADS)

    Jensen-Clem, Rebecca; Mawet, Dimitri; Gomez Gonzalez, Carlos A.; Absil, Olivier; Belikov, Ruslan; Currie, Thayne; Kenworthy, Matthew A.; Marois, Christian; Mazoyer, Johan; Ruane, Garreth; Tanner, Angelle; Cantalloube, Faustine

    2018-01-01

    As planning for the next generation of high contrast imaging instruments (e.g., WFIRST, HabEx, and LUVOIR, TMT-PFI, EELT-EPICS) matures and second-generation ground-based extreme adaptive optics facilities (e.g., VLT-SPHERE, Gemini-GPI) finish their principal surveys, it is imperative that the performance of different designs, post-processing algorithms, observing strategies, and survey results be compared in a consistent, statistically robust framework. In this paper, we argue that the current industry standard for such comparisons—the contrast curve—falls short of this mandate. We propose a new figure of merit, the “performance map,” that incorporates three fundamental concepts in signal detection theory: the true positive fraction, the false positive fraction, and the detection threshold. By supplying a theoretical basis and recipe for generating the performance map, we hope to encourage the widespread adoption of this new metric across subfields in exoplanet imaging.

  16. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  17. A new method for mapping multidimensional data to lower dimensions

    NASA Technical Reports Server (NTRS)

    Gowda, K. C.

    1983-01-01

    A multispectral mapping method is proposed which is based on the new concept of BEND (Bidimensional Effective Normalised Difference). The method, which involves taking one sample point at a time and finding the interrelationships between its features, is found very economical from the point of view of storage and processing time. It has good dimensionality reduction and clustering properties, and is highly suitable for computer analysis of large amounts of data. The transformed values obtained by this procedure are suitable for either a planar 2-space mapping of geological sample points or for making grayscale and color images of geo-terrains. A few examples are given to justify the efficacy of the proposed procedure.

  18. The Impact of Concept Mapping on the Process of Problem-Based Learning

    ERIC Educational Resources Information Center

    Zwaal, Wichard; Otting, Hans

    2012-01-01

    A concept map is a graphical tool to activate and elaborate on prior knowledge, to support problem solving, promote conceptual thinking and understanding, and to organize and memorize knowledge. The aim of this study is to determine if the use of concept mapping (CM) in a problem-based learning (PBL) curriculum enhances the PBL process. The paper…

  19. Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping.

    PubMed

    Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y

    2018-04-01

    Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping; they were worse on preconditioned quantitative susceptibility mapping. Preconditioned quantitative susceptibility mapping MR imaging can bring the benefits of quantitative susceptibility mapping imaging to clinical practice without the limitations of mask-based quantitative susceptibility mapping, especially for evaluating cerebral microhemorrhage-associated pathologies, such as traumatic brain injury. © 2018 by American Journal of Neuroradiology.

  20. Spectral-spatial hyperspectral image classification using super-pixel-based spatial pyramid representation

    NASA Astrophysics Data System (ADS)

    Fan, Jiayuan; Tan, Hui Li; Toomik, Maria; Lu, Shijian

    2016-10-01

    Spatial pyramid matching has demonstrated its power for image recognition task by pooling features from spatially increasingly fine sub-regions. Motivated by the concept of feature pooling at multiple pyramid levels, we propose a novel spectral-spatial hyperspectral image classification approach using superpixel-based spatial pyramid representation. This technique first generates multiple superpixel maps by decreasing the superpixel number gradually along with the increased spatial regions for labelled samples. By using every superpixel map, sparse representation of pixels within every spatial region is then computed through local max pooling. Finally, features learned from training samples are aggregated and trained by a support vector machine (SVM) classifier. The proposed spectral-spatial hyperspectral image classification technique has been evaluated on two public hyperspectral datasets, including the Indian Pines image containing 16 different agricultural scene categories with a 20m resolution acquired by AVIRIS and the University of Pavia image containing 9 land-use categories with a 1.3m spatial resolution acquired by the ROSIS-03 sensor. Experimental results show significantly improved performance compared with the state-of-the-art works. The major contributions of this proposed technique include (1) a new spectral-spatial classification approach to generate feature representation for hyperspectral image, (2) a complementary yet effective feature pooling approach, i.e. the superpixel-based spatial pyramid representation that is used for the spatial correlation study, (3) evaluation on two public hyperspectral image datasets with superior image classification performance.

  1. Using concept maps to describe undergraduate students’ mental model in microbiology course

    NASA Astrophysics Data System (ADS)

    Hamdiyati, Y.; Sudargo, F.; Redjeki, S.; Fitriani, A.

    2018-05-01

    The purpose of this research was to describe students’ mental model in a mental model based-microbiology course using concept map as assessment tool. Respondents were 5th semester of undergraduate students of Biology Education of Universitas Pendidikan Indonesia. The mental modelling instrument used was concept maps. Data were taken on Bacteria sub subject. A concept map rubric was subsequently developed with a maximum score of 4. Quantitative data was converted into a qualitative one to determine mental model level, namely: emergent = score 1, transitional = score 2, close to extended = score 3, and extended = score 4. The results showed that mental model level on bacteria sub subject before the implementation of mental model based-microbiology course was at the transitional level. After implementation of mental model based-microbiology course, mental model was at transitional level, close to extended, and extended. This indicated an increase in the level of students’ mental model after the implementation of mental model based-microbiology course using concept map as assessment tool.

  2. Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data

    NASA Astrophysics Data System (ADS)

    Lee, Sanggyun; Kim, Hyun-cheol; Im, Jungho

    2018-05-01

    We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m) MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0), as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011-2016, excluding the summer season (i.e., June to September). We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.

  3. Effects of a Question Prompt-Based Concept Mapping Approach on Students' Learning Achievements, Attitudes and 5C Competences in Project-Based Computer Course Activities

    ERIC Educational Resources Information Center

    Wang, Hsiu-Ying; Huang, Iwen; Hwang, Gwo-Jen

    2016-01-01

    Concept mapping has been widely used in various fields to facilitate students' organization of knowledge. Previous studies have, however, pointed out that it is difficult for students to construct concept maps from the abundant searched data without appropriate scaffolding. Thus, researchers have suggested that students could produce high quality…

  4. A simple and unsupervised semi-automatic workflow to detect shallow landslides in Alpine areas based on VHR remote sensing data

    NASA Astrophysics Data System (ADS)

    Amato, Gabriele; Eisank, Clemens; Albrecht, Florian

    2017-04-01

    Landslide detection from Earth observation imagery is an important preliminary work for landslide mapping, landslide inventories and landslide hazard assessment. In this context, the object-based image analysis (OBIA) concept has been increasingly used over the last decade. Within the framework of the Land@Slide project (Earth observation based landslide mapping: from methodological developments to automated web-based information delivery) a simple, unsupervised, semi-automatic and object-based approach for the detection of shallow landslides has been developed and implemented in the InterIMAGE open-source software. The method was applied to an Alpine case study in western Austria, exploiting spectral information from pansharpened 4-bands WorldView-2 satellite imagery (0.5 m spatial resolution) in combination with digital elevation models. First, we divided the image into sub-images, i.e. tiles, and then we applied the workflow to each of them without changing the parameters. The workflow was implemented as top-down approach: at the image tile level, an over-classification of the potential landslide area was produced; the over-estimated area was re-segmented and re-classified by several processing cycles until most false positive objects have been eliminated. In every step a Baatz algorithm based segmentation generates polygons "candidates" to be landslides. At the same time, the average values of normalized difference vegetation index (NDVI) and brightness are calculated for these polygons; after that, these values are used as thresholds to perform an objects selection in order to improve the quality of the classification results. In combination, also empirically determined values of slope and roughness are used in the selection process. Results for each tile were merged to obtain the landslide map for the test area. For final validation, the landslide map was compared to a geological map and a supervised landslide classification in order to estimate its accuracy. Results for the test area showed that the proposed method is capable of accurately distinguishing landslides from roofs and trees. Implementation of the workflow into InterIMAGE was straightforward. We conclude that the method is able to extract landslides in forested areas, but that there is still room for improvements concerning the extraction in non-forested high-alpine regions.

  5. Stereotaxy, navigation and the temporal concatenation.

    PubMed

    Apuzzo, M L; Chen, J C

    1999-01-01

    Nautical and cerebral navigation share similar elements of functional need and similar developmental pathways. The need for orientation necessitates the development of appropriate concepts, and such concepts are dependent on technology for practical realization. Occasionally, a concept precedes technology in time and requires periods of delay for appropriate development. A temporal concatenation exists where time allows the additive as need, concept and technology ultimately provide an endpoint of elegant solution. Nautical navigation has proceeded through periods of dead reckoning and celestial navigation to satellite orientation with associated refinements of instrumentation and charts for guidance. Cerebral navigation has progressed from craniometric orientation and burr hole mounted guidance systems to simple rectolinear and arc-centered devices based on radiographs to guidance by complex anatomical and functional maps provided as an amalgam of modern imaging modes. These maps are now augmented by complex frame and frameless systems which allow not only precise orientation, but also point and volumetric action. These complex technical modalities required and developed in part from elements of maritime navigation that have been translated to cerebral navigation in a temporal concatenation. Copyright 2000 S. Karger AG, Basel

  6. Handheld real-time volumetric 3-D gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Haefner, Andrew; Barnowski, Ross; Luke, Paul; Amman, Mark; Vetter, Kai

    2017-06-01

    This paper presents the concept of real-time fusion of gamma-ray imaging and visual scene data for a hand-held mobile Compton imaging system in 3-D. The ability to obtain and integrate both gamma-ray and scene data from a mobile platform enables improved capabilities in the localization and mapping of radioactive materials. This not only enhances the ability to localize these materials, but it also provides important contextual information of the scene which once acquired can be reviewed and further analyzed subsequently. To demonstrate these concepts, the high-efficiency multimode imager (HEMI) is used in a hand-portable implementation in combination with a Microsoft Kinect sensor. This sensor, in conjunction with open-source software, provides the ability to create a 3-D model of the scene and to track the position and orientation of HEMI in real-time. By combining the gamma-ray data and visual data, accurate 3-D maps of gamma-ray sources are produced in real-time. This approach is extended to map the location of radioactive materials within objects with unknown geometry.

  7. The impact of CmapTools utilization towards students' conceptual change on optics topic

    NASA Astrophysics Data System (ADS)

    Rofiuddin, Muhammad Rifqi; Feranie, Selly

    2017-05-01

    Science teachers need to help students identify their prior ideas and modify them based on scientific knowledge. This process is called as conceptual change. One of essential tools to analyze students' conceptual change is by using concept map. Concept Maps are graphical representations of knowledge that are comprised of concepts and the relationships between them. Constructing concept map is implemented by adapting the role of technology to support learning process, as it is suitable with Educational Ministry Regulation No.68 year 2013. Institute for Human and Machine Cognition (IHMC) has developed CmapTools, a client-server software for easily construct and visualize concept maps. This research aims to investigate secondary students' conceptual change after experiencing five-stage conceptual teaching model by utilizing CmapTools in learning Optics. Weak experimental method through one group pretest-posttest design is implemented in this study to collect preliminary and post concept map as qualitative data. Sample was taken purposively of 8th grade students (n= 22) at one of private schools Bandung, West Java. Conceptual change based on comparison of preliminary and post concept map construction is assessed based on rubric of concept map scoring and structure. Results shows significance conceptual change differences at 50.92 % that is elaborated into concept map element such as prepositions and hierarchical level in high category, cross links in medium category and specific examples in low category. All of the results are supported with the students' positive response towards CmapTools utilization that indicates improvement of motivation, interest, and behavior aspect towards Physics lesson.

  8. Example-based learning: comparing the effects of additionally providing three different integrative learning activities on physiotherapy intervention knowledge.

    PubMed

    Dyer, Joseph-Omer; Hudon, Anne; Montpetit-Tourangeau, Katherine; Charlin, Bernard; Mamede, Sílvia; van Gog, Tamara

    2015-03-07

    Example-based learning using worked examples can foster clinical reasoning. Worked examples are instructional tools that learners can use to study the steps needed to solve a problem. Studying worked examples paired with completion examples promotes acquisition of problem-solving skills more than studying worked examples alone. Completion examples are worked examples in which some of the solution steps remain unsolved for learners to complete. Providing learners engaged in example-based learning with self-explanation prompts has been shown to foster increased meaningful learning compared to providing no self-explanation prompts. Concept mapping and concept map study are other instructional activities known to promote meaningful learning. This study compares the effects of self-explaining, completing a concept map and studying a concept map on conceptual knowledge and problem-solving skills among novice learners engaged in example-based learning. Ninety-one physiotherapy students were randomized into three conditions. They performed a pre-test and a post-test to evaluate their gains in conceptual knowledge and problem-solving skills (transfer performance) in intervention selection. They studied three pairs of worked/completion examples in a digital learning environment. Worked examples consisted of a written reasoning process for selecting an optimal physiotherapy intervention for a patient. The completion examples were partially worked out, with the last few problem-solving steps left blank for students to complete. The students then had to engage in additional self-explanation, concept map completion or model concept map study in order to synthesize and deepen their knowledge of the key concepts and problem-solving steps. Pre-test performance did not differ among conditions. Post-test conceptual knowledge was higher (P < .001) in the concept map study condition (68.8 ± 21.8%) compared to the concept map completion (52.8 ± 17.0%) and self-explanation (52.2 ± 21.7%) conditions. Post-test problem-solving performance was higher (P < .05) in the self-explanation (63.2 ± 16.0%) condition compared to the concept map study (53.3 ± 16.4%) and concept map completion (51.0 ± 13.6%) conditions. Students in the self-explanation condition also invested less mental effort in the post-test. Studying model concept maps led to greater conceptual knowledge, whereas self-explanation led to higher transfer performance. Self-explanation and concept map study can be combined with worked example and completion example strategies to foster intervention selection.

  9. Comparing Two Forms of Concept Map Critique Activities to Facilitate Knowledge Integration Processes in Evolution Education

    ERIC Educational Resources Information Center

    Schwendimann, Beat A.; Linn, Marcia C.

    2016-01-01

    Concept map activities often lack a subsequent revision step that facilitates knowledge integration. This study compares two collaborative critique activities using a Knowledge Integration Map (KIM), a form of concept map. Four classes of high school biology students (n?=?81) using an online inquiry-based learning unit on evolution were assigned…

  10. An Experiment in Mind-Mapping and Argument-Mapping: Tools for Assessing Outcomes in the Business Curriculum

    ERIC Educational Resources Information Center

    Gargouri, Chanaz; Naatus, Mary Kate

    2017-01-01

    Distinguished from other teaching-learning tools, such as mind and concept mapping in which students draw pictures and concepts and show relationships and correlation between them to demonstrate their own understanding of complex concepts, argument mapping is used to demonstrate clarity of reasoning, based on supporting evidence, and come to a…

  11. Using concept mapping to evaluate knowledge structure in problem-based learning.

    PubMed

    Hung, Chia-Hui; Lin, Chen-Yung

    2015-11-27

    Many educational programs incorporate problem-based learning (PBL) to promote students' learning; however, the knowledge structure developed in PBL remains unclear. The aim of this study was to use concept mapping to generate an understanding of the use of PBL in the development of knowledge structures. Using a quasi-experimental study design, we employed concept mapping to illustrate the effects of PBL by examining the patterns of concepts and differences in the knowledge structures of students taught with and without a PBL approach. Fifty-two occupational therapy undergraduates were involved in the study and were randomly divided into PBL and control groups. The PBL group was given two case scenarios for small group discussion, while the control group continued with ordinary teaching and learning. Students were asked to make concept maps after being taught about knowledge structure. A descriptive analysis of the morphology of concept maps was conducted in order to compare the integration of the students' knowledge structures, and statistical analyses were done to understand the differences between groups. Three categories of concept maps were identified as follows: isolated, departmental, and integrated. The students in the control group constructed more isolated maps, while the students in the PBL group tended toward integrated mapping. Concept Relationships, Hierarchy Levels, and Cross Linkages in the concept maps were significantly greater in the PBL group; however, examples of concept maps did not differ significantly between the two groups. The data indicated that PBL had a strong effect on the acquisition and integration of knowledge. The important properties of PBL, including situational learning, problem spaces, and small group interactions, can help students to acquire more concepts, achieve an integrated knowledge structure, and enhance clinical reasoning.

  12. On the Relationship between Variational Level Set-Based and SOM-Based Active Contours

    PubMed Central

    Abdelsamea, Mohammed M.; Gnecco, Giorgio; Gaber, Mohamed Medhat; Elyan, Eyad

    2015-01-01

    Most Active Contour Models (ACMs) deal with the image segmentation problem as a functional optimization problem, as they work on dividing an image into several regions by optimizing a suitable functional. Among ACMs, variational level set methods have been used to build an active contour with the aim of modeling arbitrarily complex shapes. Moreover, they can handle also topological changes of the contours. Self-Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly in modeling an active contour based on the idea of utilizing the prototypes (weights) of a SOM to control the evolution of the contour. SOM-based models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey, we illustrate the main concepts of variational level set-based ACMs, SOM-based ACMs, and their relationship and review in a comprehensive fashion the development of their state-of-the-art models from a machine learning perspective, with a focus on their strengths and weaknesses. PMID:25960736

  13. New method for identifying features of an image on a digital video display

    NASA Astrophysics Data System (ADS)

    Doyle, Michael D.

    1991-04-01

    The MetaMap process extends the concept of direct manipulation human-computer interfaces to new limits. Its specific capabilities include the correlation of discrete image elements to relevant text information and the correlation of these image features to other images as well as to program control mechanisms. The correlation is accomplished through reprogramming of both the color map and the image so that discrete image elements comprise unique sets of color indices. This process allows the correlation to be accomplished with very efficient data storage and program execution times. Image databases adapted to this process become object-oriented as a result. Very sophisticated interrelationships can be set up between images text and program control mechanisms using this process. An application of this interfacing process to the design of an interactive atlas of medical histology as well as other possible applications are described. The MetaMap process is protected by U. S. patent #4

  14. Connecting long distance: semantic distance in analogical reasoning modulates frontopolar cortex activity.

    PubMed

    Green, Adam E; Kraemer, David J M; Fugelsang, Jonathan A; Gray, Jeremy R; Dunbar, Kevin N

    2010-01-01

    Solving problems often requires seeing new connections between concepts or events that seemed unrelated at first. Innovative solutions of this kind depend on analogical reasoning, a relational reasoning process that involves mapping similarities between concepts. Brain-based evidence has implicated the frontal pole of the brain as important for analogical mapping. Separately, cognitive research has identified semantic distance as a key characteristic of the kind of analogical mapping that can support innovation (i.e., identifying similarities across greater semantic distance reveals connections that support more innovative solutions and models). However, the neural substrates of semantically distant analogical mapping are not well understood. Here, we used functional magnetic resonance imaging (fMRI) to measure brain activity during an analogical reasoning task, in which we parametrically varied the semantic distance between the items in the analogies. Semantic distance was derived quantitatively from latent semantic analysis. Across 23 participants, activity in an a priori region of interest (ROI) in left frontopolar cortex covaried parametrically with increasing semantic distance, even after removing effects of task difficulty. This ROI was centered on a functional peak that we previously associated with analogical mapping. To our knowledge, these data represent a first empirical characterization of how the brain mediates semantically distant analogical mapping.

  15. An Ontology-Based Reasoning Framework for Querying Satellite Images for Disaster Monitoring.

    PubMed

    Alirezaie, Marjan; Kiselev, Andrey; Längkvist, Martin; Klügl, Franziska; Loutfi, Amy

    2017-11-05

    This paper presents a framework in which satellite images are classified and augmented with additional semantic information to enable queries about what can be found on the map at a particular location, but also about paths that can be taken. This is achieved by a reasoning framework based on qualitative spatial reasoning that is able to find answers to high level queries that may vary on the current situation. This framework called SemCityMap, provides the full pipeline from enriching the raw image data with rudimentary labels to the integration of a knowledge representation and reasoning methods to user interfaces for high level querying. To illustrate the utility of SemCityMap in a disaster scenario, we use an urban environment-central Stockholm-in combination with a flood simulation. We show that the system provides useful answers to high-level queries also with respect to the current flood status. Examples of such queries concern path planning for vehicles or retrieval of safe regions such as "find all regions close to schools and far from the flooded area". The particular advantage of our approach lies in the fact that ontological information and reasoning is explicitly integrated so that queries can be formulated in a natural way using concepts on appropriate level of abstraction, including additional constraints.

  16. An Ontology-Based Reasoning Framework for Querying Satellite Images for Disaster Monitoring

    PubMed Central

    Alirezaie, Marjan; Klügl, Franziska; Loutfi, Amy

    2017-01-01

    This paper presents a framework in which satellite images are classified and augmented with additional semantic information to enable queries about what can be found on the map at a particular location, but also about paths that can be taken. This is achieved by a reasoning framework based on qualitative spatial reasoning that is able to find answers to high level queries that may vary on the current situation. This framework called SemCityMap, provides the full pipeline from enriching the raw image data with rudimentary labels to the integration of a knowledge representation and reasoning methods to user interfaces for high level querying. To illustrate the utility of SemCityMap in a disaster scenario, we use an urban environment—central Stockholm—in combination with a flood simulation. We show that the system provides useful answers to high-level queries also with respect to the current flood status. Examples of such queries concern path planning for vehicles or retrieval of safe regions such as “find all regions close to schools and far from the flooded area”. The particular advantage of our approach lies in the fact that ontological information and reasoning is explicitly integrated so that queries can be formulated in a natural way using concepts on appropriate level of abstraction, including additional constraints. PMID:29113073

  17. A concept mapping approach to guide and understand dissemination and implementation.

    PubMed

    Green, Amy E; Fettes, Danielle L; Aarons, Gregory A

    2012-10-01

    Many efforts to implement evidence-based programs do not reach their full potential or fail due to the variety of challenges inherent in dissemination and implementation. This article describes the use of concept mapping-a mixed method strategy-to study implementation of behavioral health innovations and evidence-based practice (EBP). The application of concept mapping to implementation research represents a practical and concise way to identify and quantify factors affecting implementation, develop conceptual models of implementation, target areas to address as part of implementation readiness and active implementation, and foster communication among stakeholders. Concept mapping is described and a case example is provided to illustrate its use in an implementation study. Implications for the use of concept mapping methods in both research and applied settings towards the dissemination and implementation of behavioral health services are discussed.

  18. Adaptive radiotherapy for NSCLC patients: utilizing the principle of energy conservation to evaluate dose mapping operations

    NASA Astrophysics Data System (ADS)

    Zhong, Hualiang; Chetty, Indrin J.

    2017-06-01

    Tumor regression during the course of fractionated radiotherapy confounds the ability to accurately estimate the total dose delivered to tumor targets. Here we present a new criterion to improve the accuracy of image intensity-based dose mapping operations for adaptive radiotherapy for patients with non-small cell lung cancer (NSCLC). Six NSCLC patients were retrospectively investigated in this study. An image intensity-based B-spline registration algorithm was used for deformable image registration (DIR) of weekly CBCT images to a reference image. The resultant displacement vector fields were employed to map the doses calculated on weekly images to the reference image. The concept of energy conservation was introduced as a criterion to evaluate the accuracy of the dose mapping operations. A finite element method (FEM)-based mechanical model was implemented to improve the performance of the B-Spline-based registration algorithm in regions involving tumor regression. For the six patients, deformed tumor volumes changed by 21.2  ±  15.0% and 4.1  ±  3.7% on average for the B-Spline and the FEM-based registrations performed from fraction 1 to fraction 21, respectively. The energy deposited in the gross tumor volume (GTV) was 0.66 Joules (J) per fraction on average. The energy derived from the fractional dose reconstructed by the B-spline and FEM-based DIR algorithms in the deformed GTV’s was 0.51 J and 0.64 J, respectively. Based on landmark comparisons for the 6 patients, mean error for the FEM-based DIR algorithm was 2.5  ±  1.9 mm. The cross-correlation coefficient between the landmark-measured displacement error and the loss of radiation energy was  -0.16 for the FEM-based algorithm. To avoid uncertainties in measuring distorted landmarks, the B-Spline-based registrations were compared to the FEM registrations, and their displacement differences equal 4.2  ±  4.7 mm on average. The displacement differences were correlated to their relative loss of radiation energy with a cross-correlation coefficient equal to 0.68. Based on the principle of energy conservation, the FEM-based mechanical model has a better performance than the B-Spline-based DIR algorithm. It is recommended that the principle of energy conservation be incorporated into a comprehensive QA protocol for adaptive radiotherapy.

  19. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Stack, K. M.; Edwards, C. S.; Grotzinger, J. P.; Gupta, S.; Sumner, D. Y.; Calef, F. J.; Edgar, L. A.; Edgett, K. S.; Fraeman, A. A.; Jacob, S. R.; Le Deit, L.; Lewis, K. W.; Rice, M. S.; Rubin, D.; Williams, R. M. E.; Williford, K. H.

    2016-12-01

    This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity's Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.

  20. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars

    USGS Publications Warehouse

    Stack, Kathryn M.; Edwards, Christopher; Grotzinger, J. P.; Gupta, S.; Sumner, D.; Edgar, Lauren; Fraeman, A.; Jacob, S.; LeDeit, L.; Lewis, K.W.; Rice, M.S.; Rubin, D.; Calef, F.; Edgett, K.; Williams, R.M.E.; Williford, K.H.

    2016-01-01

    This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity’s Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.

  1. Research on image evidence in land supervision and GIS management

    NASA Astrophysics Data System (ADS)

    Li, Qiu; Wu, Lixin

    2006-10-01

    Land resource development and utilization brings many problems. The numbers, the scale and volume of illegal land use cases are on the increasing. Since the territory is vast, and the land violations are concealment, it is difficulty for an effective land supervision and management. In this paper, the concepts of evidence, and preservation of evidence were described first. The concepts of image evidence (IE), natural evidence (NE), natural preservation of evidence (NPE), general preservation of evidence (GPE) were proposed based on the characteristics of remote sensing image (RSI) which has a characteristic of objectiveness, truthfulness, high spatial resolution, more information included. Using MapObjects and Visual Basic 6.0, under the Access management to implement the conjunction of spatial vector database and attribute data table; taking RSI as the data sources and background layer; combining the powerful management of geographic information system (GIS) for spatial data, and visual analysis, a land supervision and GIS management system was design and implemented based on NPE. The practical use in Beijing shows that the system is running well, and solved some problems in land supervision and management.

  2. Capturing the Integration of Practice-Based Learning with Beliefs, Values, and Attitudes using Modified Concept Mapping.

    PubMed

    Mcnaughton, Susan; Barrow, Mark; Bagg, Warwick; Frielick, Stanley

    2016-01-01

    Practice-based learning integrates the cognitive, psychomotor, and affective domains and is influenced by students' beliefs, values, and attitudes. Concept mapping has been shown to effectively demonstrate students' changing concepts and knowledge structures. This article discusses how concept mapping was modified to capture students' perceptions of the connections between the domains of thinking and knowing, emotions, behavior, attitudes, values, and beliefs and the specific experiences related to these, over a period of eight months of practice-based clinical learning. The findings demonstrate that while some limitations exist, modified concept mapping is a manageable way to gather rich data about students' perceptions of their clinical practice experiences. These findings also highlight the strong integrating influence of beliefs and values on other areas of practice, suggesting that these need to be attended to as part of a student's educational program.

  3. Capturing the Integration of Practice-Based Learning with Beliefs, Values, and Attitudes using Modified Concept Mapping

    PubMed Central

    Mcnaughton, Susan; Barrow, Mark; Bagg, Warwick; Frielick, Stanley

    2016-01-01

    Practice-based learning integrates the cognitive, psychomotor, and affective domains and is influenced by students’ beliefs, values, and attitudes. Concept mapping has been shown to effectively demonstrate students’ changing concepts and knowledge structures. This article discusses how concept mapping was modified to capture students’ perceptions of the connections between the domains of thinking and knowing, emotions, behavior, attitudes, values, and beliefs and the specific experiences related to these, over a period of eight months of practice-based clinical learning. The findings demonstrate that while some limitations exist, modified concept mapping is a manageable way to gather rich data about students’ perceptions of their clinical practice experiences. These findings also highlight the strong integrating influence of beliefs and values on other areas of practice, suggesting that these need to be attended to as part of a student's educational program. PMID:29349311

  4. Mental map and spatial thinking

    NASA Astrophysics Data System (ADS)

    Vanzella Castellar, Sonia Maria; Cristiane Strina Juliasz, Paula

    2018-05-01

    The spatial thinking is a central concept in our researches at the Faculty of Education of University of São Paulo (FE-USP). The cartography is fundamental to this kind of thinking, because it contributes to the development of the representation of space. The spatial representations are the drawings - mental maps - maps, chart, aerial photos, satellite images, graphics and diagrams. To think spatially - including the contents and concepts geographical and their representations - also corresponds to reason, defined by the skills the individual develops to understand the structure, function of a space, and describe your organization and relation to other spaces. The aim of this paper is to analyze the role of mental maps in the development of concepts of city and landscape - structuring concepts for school geography. The purpose is to analyze how students in Geography and Pedagogy - future teachers - and young children in Early Childhood Education think, feel, and appropriate these concepts. The analys is indicates the importance of developing mental map in activities with pedagogy and geography graduate student to know that students at school can be producers of maps. Cartography is a language and allows the student to develop the spatial and temporal relationships and notions such as orientation, distance and location, learning the concepts of geographical science. Mental maps present the basic features of the location such as the conditions - the features verified in one place - and the connections that is to understand how this place connects to other places.

  5. Brain and Language.

    ERIC Educational Resources Information Center

    Damasio, Antonio R., Damasio, Hanna

    1992-01-01

    Discusses the advances made in understanding the brain structures responsible for language. Presents findings made using magnetic resonance imaging (MRI) and positron emission tomographic (PET) scans to study brain activity. These findings map the structures in the brain that manipulate concepts and those that turn concepts into words. (MCO)

  6. Quality and Rigor of the Concept Mapping Methodology: A Pooled Study Analysis

    ERIC Educational Resources Information Center

    Rosas, Scott R.; Kane, Mary

    2012-01-01

    The use of concept mapping in research and evaluation has expanded dramatically over the past 20 years. Researchers in academic, organizational, and community-based settings have applied concept mapping successfully without the benefit of systematic analyses across studies to identify the features of a methodologically sound study. Quantitative…

  7. Concept-Mapping Tools and the Development of Students' Critical-Thinking Skills

    ERIC Educational Resources Information Center

    Tseng, Sheng-Shiang

    2015-01-01

    Developing students' critical-thinking skills has recently received attention at all levels of education. This article proposes the use of concept-mapping tools to improve students' critical-thinking skills. The article introduces a Web-based concept-mapping tool--Popplet--and demonstrates its application for teaching critical-thinking skills in…

  8. A Concept-Mapping Strategy for Assessing Conceptual Change in a Student-Directed, Research-Based Geoscience Course

    NASA Astrophysics Data System (ADS)

    Rebich, S.

    2003-12-01

    The concept mapping technique has been proposed as a method for examining the evolving nature of students' conceptualizations of scientific concepts, and promises insight into a dimension of learning different from the one accessible through more conventional classroom testing techniques. The theory behind concept mapping is based on an assumption that knowledge acquisition is accomplished through "linking" of new information to an existing knowledge framework, and that meaningful (as opposed to arbitrary or verbatim) links allow for deeper understanding and conceptual change. Reflecting this theory, concept maps are constructed as a network of related concepts connected by labeled links that illustrate the relationship between the concepts. Two concepts connected by one such link make up a "proposition", the basic element of the concept map structure. In this paper, we examine the results of a pre- and post-test assessment program for an upper-division undergraduate geography course entitled "Mock Environmental Summit," which was part of a research project on assessment. Concept mapping was identified as a potentially powerful assessment tool for this course, as more conventional tools such as multiple-choice tests did not seem to provide a reliable indication of the learning students were experiencing as a result of the student-directed research, presentations, and discussions that make up a substantial portion of the course. The assessment program began at the beginning of the course with a one-hour training session during which students were introduced to the theory behind concept mapping, provided with instructions and guidance for constructing a concept map using the CMap software developed and maintained by the Institute for Human and Machine Cognition at the University of West Florida, and asked to collaboratively construct a concept map on a topic not related to the one to be assessed. This training session was followed by a 45-minute "pre-test" on the topic of global climate change, for which students were provided with a list of questions to guide their thoughts during the concept map construction. Following the pre-test, students were not exposed to further concept mapping until the end of the course, when they were asked to complete a "post-test" consisting of exactly the same task. In addition to a summary of our results, this paper presents an overview of available digital concept-mapping tools, proposed scoring techniques, and design principles to keep in mind when designing a concept-mapping assessment program. We also discuss our experience with concept map assessment, the insights it provided into the evolution in student understanding of global climate change that resulted from the course, and our ideas about the potential role of concept mapping in an overall assessment program for interdisciplinary and/or student-directed curricula.

  9. Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture.

    PubMed

    Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin

    2015-07-10

    Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.

  10. Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture

    PubMed Central

    Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin

    2015-01-01

    Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology. PMID:26184205

  11. Interactive Learning Modules: Enabling Near Real-Time Oceanographic Data Use In Undergraduate Education

    NASA Astrophysics Data System (ADS)

    Kilb, D. L.; Fundis, A. T.; Risien, C. M.

    2012-12-01

    The focus of the Education and Public Engagement (EPE) component of the NSF's Ocean Observatories Initiative (OOI) is to provide a new layer of cyber-interactivity for undergraduate educators to bring near real-time data from the global ocean into learning environments. To accomplish this, we are designing six online services including: 1) visualization tools, 2) a lesson builder, 3) a concept map builder, 4) educational web services (middleware), 5) collaboration tools and 6) an educational resource database. Here, we report on our Fall 2012 release that includes the first four of these services: 1) Interactive visualization tools allow users to interactively select data of interest, display the data in various views (e.g., maps, time-series and scatter plots) and obtain statistical measures such as mean, standard deviation and a regression line fit to select data. Specific visualization tools include a tool to compare different months of data, a time series explorer tool to investigate the temporal evolution of select data parameters (e.g., sea water temperature or salinity), a glider profile tool that displays ocean glider tracks and associated transects, and a data comparison tool that allows users to view the data either in scatter plot view comparing one parameter with another, or in time series view. 2) Our interactive lesson builder tool allows users to develop a library of online lesson units, which are collaboratively editable and sharable and provides starter templates designed from learning theory knowledge. 3) Our interactive concept map tool allows the user to build and use concept maps, a graphical interface to map the connection between concepts and ideas. This tool also provides semantic-based recommendations, and allows for embedding of associated resources such as movies, images and blogs. 4) Education web services (middleware) will provide an educational resource database API.

  12. Two-Phase chief complaint mapping to the UMLS metathesaurus in Korean electronic medical records.

    PubMed

    Kang, Bo-Yeong; Kim, Dae-Won; Kim, Hong-Gee

    2009-01-01

    The task of automatically determining the concepts referred to in chief complaint (CC) data from electronic medical records (EMRs) is an essential component of many EMR applications aimed at biosurveillance for disease outbreaks. Previous approaches that have been used for this concept mapping have mainly relied on term-level matching, whereby the medical terms in the raw text and their synonyms are matched with concepts in a terminology database. These previous approaches, however, have shortcomings that limit their efficacy in CC concept mapping, where the concepts for CC data are often represented by associative terms rather than by synonyms. Therefore, herein we propose a concept mapping scheme based on a two-phase matching approach, especially for application to Korean CCs, which uses term-level complete matching in the first phase and concept-level matching based on concept learning in the second phase. The proposed concept-level matching suggests the method to learn all the terms (associative terms as well as synonyms) that represent the concept and predict the most probable concept for a CC based on the learned terms. Experiments on 1204 CCs extracted from 15,618 discharge summaries of Korean EMRs showed that the proposed method gave significantly improved F-measure values compared to the baseline system, with improvements of up to 73.57%.

  13. Matching biomedical ontologies based on formal concept analysis.

    PubMed

    Zhao, Mengyi; Zhang, Songmao; Li, Weizhuo; Chen, Guowei

    2018-03-19

    The goal of ontology matching is to identify correspondences between entities from different yet overlapping ontologies so as to facilitate semantic integration, reuse and interoperability. As a well developed mathematical model for analyzing individuals and structuring concepts, Formal Concept Analysis (FCA) has been applied to ontology matching (OM) tasks since the beginning of OM research, whereas ontological knowledge exploited in FCA-based methods is limited. This motivates the study in this paper, i.e., to empower FCA with as much as ontological knowledge as possible for identifying mappings across ontologies. We propose a method based on Formal Concept Analysis to identify and validate mappings across ontologies, including one-to-one mappings, complex mappings and correspondences between object properties. Our method, called FCA-Map, incrementally generates a total of five types of formal contexts and extracts mappings from the lattices derived. First, the token-based formal context describes how class names, labels and synonyms share lexical tokens, leading to lexical mappings (anchors) across ontologies. Second, the relation-based formal context describes how classes are in taxonomic, partonomic and disjoint relationships with the anchors, leading to positive and negative structural evidence for validating the lexical matching. Third, the positive relation-based context can be used to discover structural mappings. Afterwards, the property-based formal context describes how object properties are used in axioms to connect anchor classes across ontologies, leading to property mappings. Last, the restriction-based formal context describes co-occurrence of classes across ontologies in anonymous ancestors of anchors, from which extended structural mappings and complex mappings can be identified. Evaluation on the Anatomy, the Large Biomedical Ontologies, and the Disease and Phenotype track of the 2016 Ontology Alignment Evaluation Initiative campaign demonstrates the effectiveness of FCA-Map and its competitiveness with the top-ranked systems. FCA-Map can achieve a better balance between precision and recall for large-scale domain ontologies through constructing multiple FCA structures, whereas it performs unsatisfactorily for smaller-sized ontologies with less lexical and semantic expressions. Compared with other FCA-based OM systems, the study in this paper is more comprehensive as an attempt to push the envelope of the Formal Concept Analysis formalism in ontology matching tasks. Five types of formal contexts are constructed incrementally, and their derived concept lattices are used to cluster the commonalities among classes at lexical and structural level, respectively. Experiments on large, real-world domain ontologies show promising results and reveal the power of FCA.

  14. GeoPAT: A toolbox for pattern-based information retrieval from large geospatial databases

    NASA Astrophysics Data System (ADS)

    Jasiewicz, Jarosław; Netzel, Paweł; Stepinski, Tomasz

    2015-07-01

    Geospatial Pattern Analysis Toolbox (GeoPAT) is a collection of GRASS GIS modules for carrying out pattern-based geospatial analysis of images and other spatial datasets. The need for pattern-based analysis arises when images/rasters contain rich spatial information either because of their very high resolution or their very large spatial extent. Elementary units of pattern-based analysis are scenes - patches of surface consisting of a complex arrangement of individual pixels (patterns). GeoPAT modules implement popular GIS algorithms, such as query, overlay, and segmentation, to operate on the grid of scenes. To achieve these capabilities GeoPAT includes a library of scene signatures - compact numerical descriptors of patterns, and a library of distance functions - providing numerical means of assessing dissimilarity between scenes. Ancillary GeoPAT modules use these functions to construct a grid of scenes or to assign signatures to individual scenes having regular or irregular geometries. Thus GeoPAT combines knowledge retrieval from patterns with mapping tasks within a single integrated GIS environment. GeoPAT is designed to identify and analyze complex, highly generalized classes in spatial datasets. Examples include distinguishing between different styles of urban settlements using VHR images, delineating different landscape types in land cover maps, and mapping physiographic units from DEM. The concept of pattern-based spatial analysis is explained and the roles of all modules and functions are described. A case study example pertaining to delineation of landscape types in a subregion of NLCD is given. Performance evaluation is included to highlight GeoPAT's applicability to very large datasets. The GeoPAT toolbox is available for download from

  15. A New Perspective on Surface Weather Maps

    ERIC Educational Resources Information Center

    Meyer, Steve

    2006-01-01

    A two-dimensional weather map is actually a physical representation of three-dimensional atmospheric conditions at a specific point in time. Abstract thinking is required to visualize this two-dimensional image in three-dimensional form. But once that visualization is accomplished, many of the meteorological concepts and processes conveyed by the…

  16. A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Leszczyński, M.; Slight, T. J.; Meredith, W.; Schemmann, M.; Moseley, H.; Woods, J. A.; Valentine, R.; Kalra, S.; Mossey, P.; Theaker, E.; Macluskey, M.; Mimnagh, G.; Mimnagh, W.

    2015-03-01

    A multi-wavelength (360nm - 440nm), real-time Photonic Cancer Detector (PCD) optical system based on GaN semiconductor laser technology is outlined. A proof of concept using blue laser technology for early detection of cancer has already been tested and proven for esophageal cancer. This concept is expanded to consider a wider range of wavelengths and the PCD will initially be used for early diagnosis of oral cancers. The PCD creates an image of the oral cavity (broad field white light detection) and maps within the oral cavity any suspicious lesions with high sensitivity using a narrow field tunable detector.

  17. Applying Computerized Concept Maps in Guiding Pupils to Reason and Solve Mathematical Problems: The Design Rationale and Effect

    ERIC Educational Resources Information Center

    Chen, I-Ching; Hu, Shueh-Cheng

    2013-01-01

    The capability of solving fundamental mathematical problems is essential to elementary school students; however instruction based on ordinary narration usually perplexes students. Concept mapping is well known for its effectiveness on assimilating and organizing knowledge, which is essential to meaningful learning. A variety of concept map-based…

  18. Using Concept Mapping as as Tool for Program Theory Development

    ERIC Educational Resources Information Center

    Orsi, Rebecca

    2011-01-01

    The purpose of this methodological study is to explore how well a process called "concept mapping" (Trochim, 1989) can articulate the theory which underlies a social program. Articulation of a program's theory is a key step in completing a sound theory based evaluation (Weiss, 1997a). In this study, concept mapping is used to…

  19. Concept Map Engineering: Methods and Tools Based on the Semantic Relation Approach

    ERIC Educational Resources Information Center

    Kim, Minkyu

    2013-01-01

    The purpose of this study is to develop a better understanding of technologies that use natural language as the basis for concept map construction. In particular, this study focuses on the semantic relation (SR) approach to drawing rich and authentic concept maps that reflect students' internal representations of a problem situation. The…

  20. Concept Maps as Instructional Tools for Improving Learning of Phase Transitions in Object-Oriented Analysis and Design

    ERIC Educational Resources Information Center

    Shin, Shin-Shing

    2016-01-01

    Students attending object-oriented analysis and design (OOAD) courses typically encounter difficulties transitioning from requirements analysis to logical design and then to physical design. Concept maps have been widely used in studies of user learning. The study reported here, based on the relationship of concept maps to learning theory and…

  1. Digital Images on the DIME

    NASA Technical Reports Server (NTRS)

    2003-01-01

    With NASA on its side, Positive Systems, Inc., of Whitefish, Montana, is veering away from the industry standards defined for producing and processing remotely sensed images. A top developer of imaging products for geographic information system (GIS) and computer-aided design (CAD) applications, Positive Systems is bucking traditional imaging concepts with a cost-effective and time-saving software tool called Digital Images Made Easy (DIME(trademark)). Like piecing a jigsaw puzzle together, DIME can integrate a series of raw aerial or satellite snapshots into a single, seamless panoramic image, known as a 'mosaic.' The 'mosaicked' images serve as useful backdrops to GIS maps - which typically consist of line drawings called 'vectors' - by allowing users to view a multidimensional map that provides substantially more geographic information.

  2. Distortion correction of echo planar images applying the concept of finite rate of innovation to point spread function mapping (FRIP).

    PubMed

    Nunes, Rita G; Hajnal, Joseph V

    2018-06-01

    Point spread function (PSF) mapping enables estimating the displacement fields required for distortion correction of echo planar images. Recently, a highly accelerated approach was introduced for estimating displacements from the phase slope of under-sampled PSF mapping data. Sampling schemes with varying spacing were proposed requiring stepwise phase unwrapping. To avoid unwrapping errors, an alternative approach applying the concept of finite rate of innovation to PSF mapping (FRIP) is introduced, using a pattern search strategy to locate the PSF peak, and the two methods are compared. Fully sampled PSF data was acquired in six subjects at 3.0 T, and distortion maps were estimated after retrospective under-sampling. The two methods were compared for both previously published and newly optimized sampling patterns. Prospectively under-sampled data were also acquired. Shift maps were estimated and deviations relative to the fully sampled reference map were calculated. The best performance was achieved when using FRIP with a previously proposed sampling scheme. The two methods were comparable for the remaining schemes. The displacement field errors tended to be lower as the number of samples or their spacing increased. A robust method for estimating the position of the PSF peak has been introduced.

  3. The Effectiveness of an Online Knowledge Map Instructional Presentation

    ERIC Educational Resources Information Center

    Foor, Jamie L.

    2011-01-01

    In this study, I investigated the effectiveness of the knowledge map (k-map) instructional strategy compared to a text-based presentation in an online environment. K-maps consist of node-link representations of concepts that together form the content of a topic or domain. The benefits of using k-maps are that concepts and ideas are represented as…

  4. Similarity and accuracy of mental models formed during nursing handovers: A concept mapping approach.

    PubMed

    Drach-Zahavy, Anat; Broyer, Chaya; Dagan, Efrat

    2017-09-01

    Shared mental models are crucial for constructing mutual understanding of the patient's condition during a clinical handover. Yet, scant research, if any, has empirically explored mental models of the parties involved in a clinical handover. This study aimed to examine the similarities among mental models of incoming and outgoing nurses, and to test their accuracy by comparing them with mental models of expert nurses. A cross-sectional study, exploring nurses' mental models via the concept mapping technique. 40 clinical handovers. Data were collected via concept mapping of the incoming, outgoing, and expert nurses' mental models (total of 120 concept maps). Similarity and accuracy for concepts and associations indexes were calculated to compare the different maps. About one fifth of the concepts emerged in both outgoing and incoming nurses' concept maps (concept similarity=23%±10.6). Concept accuracy indexes were 35%±18.8 for incoming and 62%±19.6 for outgoing nurses' maps. Although incoming nurses absorbed fewer number of concepts and associations (23% and 12%, respectively), they partially closed the gap (35% and 22%, respectively) relative to expert nurses' maps. The correlations between concept similarities, and incoming as well as outgoing nurses' concept accuracy, were significant (r=0.43, p<0.01; r=0.68 p<0.01, respectively). Finally, in 90% of the maps, outgoing nurses added information concerning the processes enacted during the shift, beyond the expert nurses' gold standard. Two seemingly contradicting processes in the handover were identified. "Information loss", captured by the low similarity indexes among the mental models of incoming and outgoing nurses; and "information restoration", based on accuracy measures indexes among the mental models of the incoming nurses. Based on mental model theory, we propose possible explanations for these processes and derive implications for how to improve a clinical handover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Whole-body hybrid imaging concept for the integration of PET/MR into radiation therapy treatment planning.

    PubMed

    Paulus, Daniel H; Oehmigen, Mark; Grüneisen, Johannes; Umutlu, Lale; Quick, Harald H

    2016-05-07

    Modern radiation therapy (RT) treatment planning is based on multimodality imaging. With the recent availability of whole-body PET/MR hybrid imaging new opportunities arise to improve target volume delineation in RT treatment planning. This, however, requires dedicated RT equipment for reproducible patient positioning on the PET/MR system, which has to be compatible with MR and PET imaging. A prototype flat RT table overlay, radiofrequency (RF) coil holders for head imaging, and RF body bridges for body imaging were developed and tested towards PET/MR system integration. Attenuation correction (AC) of all individual RT components was performed by generating 3D CT-based template models. A custom-built program for μ-map generation assembles all AC templates depending on the presence and position of each RT component. All RT devices were evaluated in phantom experiments with regards to MR and PET imaging compatibility, attenuation correction, PET quantification, and position accuracy. The entire RT setup was then evaluated in a first PET/MR patient study on five patients at different body regions. All tested devices are PET/MR compatible and do not produce visible artifacts or disturb image quality. The RT components showed a repositioning accuracy of better than 2 mm. Photon attenuation of  -11.8% in the top part of the phantom was observable, which was reduced to  -1.7% with AC using the μ-map generator. Active lesions of 3 subjects were evaluated in terms of SUVmean and an underestimation of  -10.0% and  -2.4% was calculated without and with AC of the RF body bridges, respectively. The new dedicated RT equipment for hybrid PET/MR imaging enables acquisitions in all body regions. It is compatible with PET/MR imaging and all hardware components can be corrected in hardware AC by using the suggested μ-map generator. These developments provide the technical and methodological basis for integration of PET/MR hybrid imaging into RT planning.

  6. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera.

    PubMed

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-08-31

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments.

  7. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera

    PubMed Central

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-01-01

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments. PMID:26404284

  8. Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop

    NASA Astrophysics Data System (ADS)

    Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.

    2018-04-01

    The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.

  9. A natural-color mapping for single-band night-time image based on FPGA

    NASA Astrophysics Data System (ADS)

    Wang, Yilun; Qian, Yunsheng

    2018-01-01

    A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.

  10. Dose mapping: validation in 4D dosimetry with measurements and application in radiotherapy follow-up evaluation.

    PubMed

    Zhang, Geoffrey G; Huang, Tzung-Chi; Forster, Ken M; Lin, Kang-Ping; Stevens, Craig; Harris, Eleanor; Guerrero, Thomas

    2008-04-01

    The purpose of this paper is to validate a dose mapping program using optical flow method (OFM), and to demonstrate application of the program in radiotherapy follow-up evaluation. For the purpose of validation, the deformation matrices between four-dimensional (4D) CT data of different simulated respiration phases of a phantom were calculated using OFM. The matrices were then used to map doses of all phases to a single-phase image, and summed in equal time weighting. The calculated dose should closely represent the dose delivered to the moving phantom if the deformation matrices are accurately calculated. The measured point doses agreed with the OFM calculations better than 2% at isocenters, and dose distributions better than 1mm for the 50% isodose line. To demonstrate proof-of-concept for the use of deformable image registration in dose mapping for treatment evaluation, the treatment-planning CT was registered with the post-treatment CT image from the positron emission tomography (PET)/CT resulting in a deformation matrix. The dose distribution from the treatment plan was then mapped onto the restaging PET/CT using the deformation matrix. Two cases in which patients had thoracic malignancies are presented. Each patient had CT-based treatment planning for radiotherapy and restaging fluorodeoxy glucose (FDG)-PET/CT imaging 4-6 weeks after completion of treatments. Areas of pneumonitis and recurrence were identified radiographically on both PET and CT restaging images. Local dose and standard uptake values for pneumonitis and recurrence were studied as a demonstration of this method. By comparing the deformable mapped dose to measurement, the treatment evaluation method which is introduced in this manuscript proved to be accurate. It thus provides a more accurate analysis than other rigid or linear dose-image registration when used in studying treatment outcome versus dose.

  11. A Concept Mapping Approach to Guide and Understand Dissemination and Implementation

    PubMed Central

    Green, Amy E.; Fettes, Danielle L.; Aarons, Gregory A.

    2013-01-01

    Many efforts to implement evidence-based programs do not reach their full potential or fail due to the variety of challenges inherent in dissemination and implementation. This article describes the use of concept mapping—a mixed method strategy—to study implementation of behavioral health innovations and evidence-based practice (EBP). The application of concept mapping to implementation research represents a practical and concise way to identify and quantify factors affecting implementation, develop conceptual models of implementation, target areas to address as part of implementation readiness and active implementation, and foster communication among stakeholders. Concept mapping is described and a case example is provided to illustrate its use in an implementation study. Implications for the use of concept mapping methods in both research and applied settings towards the dissemination and implementation of behavioral health services are discussed. PMID:22892987

  12. The Future Spaceborne Hyperspectral Imager Enmap: its In-Flight Radiometric and Geometric Calibration Concept

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Müller, R.; Krawzcyk, H.; Bachmann, M.; Storch, T.; Mogulsky, V.; Hofer, S.

    2012-07-01

    The German Aerospace Center DLR - namely the Earth Observation Center EOC and the German Space Operations Center GSOC - is responsible for the establishment of the ground segment of the future German hyperspectral satellite mission EnMAP (Environmental Mapping and Analysis Program). The Earth Observation Center has long lasting experiences with air- and spaceborne acquisition, processing, and analysis of hyperspectral image data. In the first part of this paper, an overview of the radiometric in-flight calibration concept including dark value measurements, deep space measurements, internal lamps measurements and sun measurements is presented. Complemented by pre-launch calibration and characterization these analyses will deliver a detailed and quantitative assessment of possible changes of spectral and radiometric characteristics of the hyperspectral instrument, e.g. due to degradation of single elements. A geometric accuracy of 100 m, which will be improved to 30 m with respect to a used reference image, if it exists, will be achieved by ground processing. Therfore, and for the required co-registration accuracy between SWIR and VNIR channels, additional to the radiometric calibration, also a geometric calibration is necessary. In the second part of this paper, the concept of the geometric calibration is presented in detail. The geometric processing of EnMAP scenes will be based on laboratory calibration results. During repeated passes over selected calibration areas images will be acquired. The update of geometric camera model parameters will be done by an adjustment using ground control points, which will be extracted by automatic image matching. In the adjustment, the improvements of the attitude angles (boresight angles), the improvements of the interior orientation (view vector) and the improvements of the position data are estimated. In this paper, the improvement of the boresight angles is presented in detail as an example. The other values and combinations follow the same rules. The geometric calibration will mainly be executed during the commissioning phase, later in the mission it is only executed if required, i.e. if the geometric accuracy of the produced images is close to or exceeds the requirements of 100 m or 30 m respectively, whereas the radiometric calibration will be executed periodically during the mission with a higher frequency during commissioning phase.

  13. Testing random forest classification for identifying lava flows and mapping age groups on a single Landsat 8 image

    NASA Astrophysics Data System (ADS)

    Li, Long; Solana, Carmen; Canters, Frank; Kervyn, Matthieu

    2017-10-01

    Mapping lava flows using satellite images is an important application of remote sensing in volcanology. Several volcanoes have been mapped through remote sensing using a wide range of data, from optical to thermal infrared and radar images, using techniques such as manual mapping, supervised/unsupervised classification, and elevation subtraction. So far, spectral-based mapping applications mainly focus on the use of traditional pixel-based classifiers, without much investigation into the added value of object-based approaches and into advantages of using machine learning algorithms. In this study, Nyamuragira, characterized by a series of > 20 overlapping lava flows erupted over the last century, was used as a case study. The random forest classifier was tested to map lava flows based on pixels and objects. Image classification was conducted for the 20 individual flows and for 8 groups of flows of similar age using a Landsat 8 image and a DEM of the volcano, both at 30-meter spatial resolution. Results show that object-based classification produces maps with continuous and homogeneous lava surfaces, in agreement with the physical characteristics of lava flows, while lava flows mapped through the pixel-based classification are heterogeneous and fragmented including much "salt and pepper noise". In terms of accuracy, both pixel-based and object-based classification performs well but the former results in higher accuracies than the latter except for mapping lava flow age groups without using topographic features. It is concluded that despite spectral similarity, lava flows of contrasting age can be well discriminated and mapped by means of image classification. The classification approach demonstrated in this study only requires easily accessible image data and can be applied to other volcanoes as well if there is sufficient information to calibrate the mapping.

  14. Non-Intrusive, Laser-Based Imaging of Jet-A Fuel Injection and Combustion Species in High Pressure, Subsonic Flows

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.; deGroot, Wilhelmus A.

    2001-01-01

    The emphasis of combustion research efforts at NASA Glenn Research Center (GRC) is on collaborating with industry to design and test gas-turbine combustors and subcomponents for both sub- and supersonic applications. These next-generation aircraft combustors are required to meet strict international environmental restrictions limiting emissions. To meet these goals, innovative combustor concepts require operation at temperatures and pressures far exceeding those of cur-rent designs. New and innovative diagnostic tools are necessary to characterize these flow streams since existing methods are inadequate. The combustion diagnostics team at GRC has implemented a suite of highly sensitive, nonintrusive optical imaging methods to diagnose the flowfields of these new engine concepts. By using optically accessible combustors and flametubes, imaging of fuel and intermediate combustion species via planar laser-induced fluorescence (PLIF) at realistic pressures are now possible. Direct imaging of the fuel injection process through both planar Mie scattering and PLIF methods is also performed. Additionally, a novel combination of planar fuel fluorescence imaging and computational analysis allows a 3-D examination of the flowfield, resulting in spatially and temporally resolved fuel/air volume distribution maps. These maps provide detailed insight into the fuel injection process at actual conditions, thereby greatly enhancing the evaluation of fuel injector performance and other combustion phenomena. Stable species such as CO2, O2, N2O. and hydrocarbons are also investigated by a newly demonstrated 1-D, spontaneous Raman spectroscopic method. This visible wavelength Raman technique allows the acquisition of quantitative. stable species concentration measurements from the flow.

  15. Non-Intrusive, Laser-Based Imaging of Jet-A Fuel Injection and Combustion Species in High Pressure, Subsonic Flows

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; deGroot, W. A.

    2000-01-01

    The emphasis of combustion research efforts at NASA Glenn Research Center (GRC) is on collaborating with industry to design and test gas-turbine combustors and subcomponents for both sub- and supersonic applications. These next-generation aircraft combustors are required to meet strict international environmental restrictions limiting emissions. To meet these goals, innovative combustor concepts require operation at temperatures and pressures far exceeding those of current designs. New and innovative diagnostic tools are necessary to characterize these flow streams since existing methods are inadequate. The combustion diagnostics team at GRC has implemented a suite of highly sensitive, nonintrusive optical imaging methods to diagnose the flowfields of these new engine concepts. By using optically accessible combustors and flame-tubes, imaging of fuel and intermediate combustion species via planar laser-induced fluorescence (PLIF) at realistic pressures are now possible. Direct imaging of the fuel injection process through both planar Mie scattering and PLIF methods is also performed. Additionally, a novel combination of planar fuel fluorescence imaging and computational analysis allows a 3-D examination of the flowfield, resulting in spatially and temporally resolved fuel/air volume distribution maps. These maps provide detailed insight into the fuel injection process at actual conditions, thereby greatly enhancing the evaluation of fuel injector performance and other combustion phenomena. Stable species such as CO2, O2, N2, H2O, and hydrocarbons are also investigated by a newly demonstrated 1-D, spontaneous Raman spectroscopic method. This visible wavelength Raman technique allows the acquisition of quantitative, stable species concentration measurements from the flow.

  16. A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification

    PubMed Central

    Wang, Guizhou; Liu, Jianbo; He, Guojin

    2013-01-01

    This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy. PMID:24453808

  17. Improving learning with science and social studies text using computer-based concept maps for students with disabilities.

    PubMed

    Ciullo, Stephen; Falcomata, Terry S; Pfannenstiel, Kathleen; Billingsley, Glenna

    2015-01-01

    Concept maps have been used to help students with learning disabilities (LD) improve literacy skills and content learning, predominantly in secondary school. However, despite increased access to classroom technology, no previous studies have examined the efficacy of computer-based concept maps to improve learning from informational text for students with LD in elementary school. In this study, we used a concurrent delayed multiple probe design to evaluate the interactive use of computer-based concept maps on content acquisition with science and social studies texts for Hispanic students with LD in Grades 4 and 5. Findings from this study suggest that students improved content knowledge during intervention relative to a traditional instruction baseline condition. Learning outcomes and social validity information are considered to inform recommendations for future research and the feasibility of classroom implementation. © The Author(s) 2014.

  18. Using rule-based natural language processing to improve disease normalization in biomedical text.

    PubMed

    Kang, Ning; Singh, Bharat; Afzal, Zubair; van Mulligen, Erik M; Kors, Jan A

    2013-01-01

    In order for computers to extract useful information from unstructured text, a concept normalization system is needed to link relevant concepts in a text to sources that contain further information about the concept. Popular concept normalization tools in the biomedical field are dictionary-based. In this study we investigate the usefulness of natural language processing (NLP) as an adjunct to dictionary-based concept normalization. We compared the performance of two biomedical concept normalization systems, MetaMap and Peregrine, on the Arizona Disease Corpus, with and without the use of a rule-based NLP module. Performance was assessed for exact and inexact boundary matching of the system annotations with those of the gold standard and for concept identifier matching. Without the NLP module, MetaMap and Peregrine attained F-scores of 61.0% and 63.9%, respectively, for exact boundary matching, and 55.1% and 56.9% for concept identifier matching. With the aid of the NLP module, the F-scores of MetaMap and Peregrine improved to 73.3% and 78.0% for boundary matching, and to 66.2% and 69.8% for concept identifier matching. For inexact boundary matching, performances further increased to 85.5% and 85.4%, and to 73.6% and 73.3% for concept identifier matching. We have shown the added value of NLP for the recognition and normalization of diseases with MetaMap and Peregrine. The NLP module is general and can be applied in combination with any concept normalization system. Whether its use for concept types other than disease is equally advantageous remains to be investigated.

  19. Sparsity-constrained PET image reconstruction with learned dictionaries

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie

    2016-09-01

    PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.

  20. Concept Mapping as an Approach to Facilitate Participatory Intervention Building.

    PubMed

    L Allen, Michele; Schaleben-Boateng, Dane; Davey, Cynthia S; Hang, Mikow; Pergament, Shannon

    2015-01-01

    A challenge to addressing community-defined need through community-based participatory intervention building is ensuring that all collaborators' opinions are represented. Concept mapping integrates perspectives of individuals with differing experiences, interests, or expertise into a common visually depicted framework, and ranks composite views on importance and feasibility. To describe the use of concept mapping to facilitate participatory intervention building for a school-based, teacher-focused, positive youth development (PYD) promotion program for Latino, Hmong, and Somali youth. Particiants were teachers, administrators, youth, parents, youth workers, and community and university researchers on the projects' community collaborative board. We incorporated previously collected qualitative data into the process. In a mixed-methods process we 1) generated statements based on key informant interview and focus group data from youth workers, teachers, parents, and youth in multiple languages regarding ways teachers promote PYD for Somali, Latino and Hmong youth; 2) guided participants to individually sort statements into meaningful groupings and rate them by importance and feasibility; 3) mapped the statements based on their relation to each other using multivariate statistical analyses to identify concepts, and as a group identified labels for each concept; and 4) used labels and statement ratings to identify feasible and important concepts as priorities for intervention development. We identified 12 concepts related to PYD promotion in schools and prioritized 8 for intervention development. Concept mapping facilitated participatory intervention building by formally representing all participants' opinions, generating visual representation of group thinking, and supporting priority setting. Use of prior qualitative work increased the diversity of viewpoints represented.

  1. Mapping Mixed Methods Research: Methods, Measures, and Meaning

    ERIC Educational Resources Information Center

    Wheeldon, J.

    2010-01-01

    This article explores how concept maps and mind maps can be used as data collection tools in mixed methods research to combine the clarity of quantitative counts with the nuance of qualitative reflections. Based on more traditional mixed methods approaches, this article details how the use of pre/post concept maps can be used to design qualitative…

  2. In search of patient characteristics that may guide empirically based treatment selection for personality disorder patients-a concept map approach.

    PubMed

    van Manen, J G; Kamphuis, J H; Goossensen, A; Timman, R; Busschbach, J J V; Verheul, R

    2012-08-01

    Using the concept map method, this study aimed to summarize and describe patient characteristics pertinent to treatment selection for patients with personality disorders (PDs). Initial patient characteristics were derived from the research literature and a survey among Dutch expert clinicians. Concept mapping is a formalized conceptualization procedure that describes the underlying cognitive structures people use in complex tasks, such as treatment allocation. Based on expert opinions of 29 Dutch clinicians, a concept map was generated that yielded eight domains of patient characteristics, i.e., Severity of symptoms, Severity of personality pathology, Ego-adaptive capacities, Motivation and working alliance, Social context, Social demographic characteristics, Trauma, and Treatment history and medical condition. These domains can be ordered along two bipolar axes, running from internal to external concepts and from vulnerability to strength concepts, respectively. Our findings may serve as input for the delineation of algorithms for patient-treatment matching research in PD.

  3. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chi, E-mail: chizheung@gmail.com; Xu, Yiqing; Wei, Xiaoming

    2014-07-28

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated bymore » a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier.« less

  4. Guided filter-based fusion method for multiexposure images

    NASA Astrophysics Data System (ADS)

    Hou, Xinglin; Luo, Haibo; Qi, Feng; Zhou, Peipei

    2016-11-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range camera. A weighted sum-based image fusion (IF) algorithm is proposed so as to express an HDR scene with a high-quality image. This method mainly includes three parts. First, two image features, i.e., gradients and well-exposedness are measured to estimate the initial weight maps. Second, the initial weight maps are refined by a guided filter, in which the source image is considered as the guidance image. This process could reduce the noise in initial weight maps and preserve more texture consistent with the original images. Finally, the fused image is constructed by a weighted sum of source images in the spatial domain. The main contributions of this method are the estimation of the initial weight maps and the appropriate use of the guided filter-based weight maps refinement. It provides accurate weight maps for IF. Compared to traditional IF methods, this algorithm avoids image segmentation, combination, and the camera response curve calibration. Furthermore, experimental results demonstrate the superiority of the proposed method in both subjective and objective evaluations.

  5. Automated geo/ortho registered aerial imagery product generation using the mapping system interface card (MSIC)

    NASA Astrophysics Data System (ADS)

    Bratcher, Tim; Kroutil, Robert; Lanouette, André; Lewis, Paul E.; Miller, David; Shen, Sylvia; Thomas, Mark

    2013-05-01

    The development concept paper for the MSIC system was first introduced in August 2012 by these authors. This paper describes the final assembly, testing, and commercial availability of the Mapping System Interface Card (MSIC). The 2.3kg MSIC is a self-contained, compact variable configuration, low cost real-time precision metadata annotator with embedded INS/GPS designed specifically for use in small aircraft. The MSIC was specifically designed to convert commercial-off-the-shelf (COTS) digital cameras and imaging/non-imaging spectrometers with Camera Link standard data streams into mapping systems for airborne emergency response and scientific remote sensing applications. COTS digital cameras and imaging/non-imaging spectrometers covering the ultraviolet through long-wave infrared wavelengths are important tools now readily available and affordable for use by emergency responders and scientists. The MSIC will significantly enhance the capability of emergency responders and scientists by providing a direct transformation of these important COTS sensor tools into low-cost real-time aerial mapping systems.

  6. Physics faculty beliefs and values about the teaching and learning of problem solving. II. Procedures for measurement and analysis

    NASA Astrophysics Data System (ADS)

    Henderson, Charles; Yerushalmi, Edit; Kuo, Vince H.; Heller, Kenneth; Heller, Patricia

    2007-12-01

    To identify and describe the basis upon which instructors make curricular and pedagogical decisions, we have developed an artifact-based interview and an analysis technique based on multilayered concept maps. The policy capturing technique used in the interview asks instructors to make judgments about concrete instructional artifacts similar to those they likely encounter in their teaching environment. The analysis procedure alternatively employs both an a priori systems view analysis and an emergent categorization to construct a multilayered concept map, which is a hierarchically arranged set of concept maps where child maps include more details than parent maps. Although our goal was to develop a model of physics faculty beliefs about the teaching and learning of problem solving in the context of an introductory calculus-based physics course, the techniques described here are applicable to a variety of situations in which instructors make decisions that influence teaching and learning.

  7. Paper-Based and Computer-Based Concept Mappings: The Effects on Computer Achievement, Computer Anxiety and Computer Attitude

    ERIC Educational Resources Information Center

    Erdogan, Yavuz

    2009-01-01

    The purpose of this paper is to compare the effects of paper-based and computer-based concept mappings on computer hardware achievement, computer anxiety and computer attitude of the eight grade secondary school students. The students were randomly allocated to three groups and were given instruction on computer hardware. The teaching methods used…

  8. Architecture and prototypical implementation of a semantic querying system for big Earth observation image bases

    PubMed Central

    Tiede, Dirk; Baraldi, Andrea; Sudmanns, Martin; Belgiu, Mariana; Lang, Stefan

    2017-01-01

    ABSTRACT Spatiotemporal analytics of multi-source Earth observation (EO) big data is a pre-condition for semantic content-based image retrieval (SCBIR). As a proof of concept, an innovative EO semantic querying (EO-SQ) subsystem was designed and prototypically implemented in series with an EO image understanding (EO-IU) subsystem. The EO-IU subsystem is automatically generating ESA Level 2 products (scene classification map, up to basic land cover units) from optical satellite data. The EO-SQ subsystem comprises a graphical user interface (GUI) and an array database embedded in a client server model. In the array database, all EO images are stored as a space-time data cube together with their Level 2 products generated by the EO-IU subsystem. The GUI allows users to (a) develop a conceptual world model based on a graphically supported query pipeline as a combination of spatial and temporal operators and/or standard algorithms and (b) create, save and share within the client-server architecture complex semantic queries/decision rules, suitable for SCBIR and/or spatiotemporal EO image analytics, consistent with the conceptual world model. PMID:29098143

  9. The use of concept mapping in measurement development and evaluation: Application and future directions.

    PubMed

    Rosas, Scott R; Ridings, John W

    2017-02-01

    The past decade has seen an increase of measurement development research in social and health sciences that featured the use of concept mapping as a core technique. The purpose, application, and utility of concept mapping have varied across this emerging literature. Despite the variety of uses and range of outputs, little has been done to critically review how researchers have approached the application of concept mapping in the measurement development and evaluation process. This article focuses on a review of the current state of practice regarding the use of concept mapping as methodological tool in this process. We systematically reviewed 23 scale or measure development and evaluation studies, and detail the application of concept mapping in the context of traditional measurement development and psychometric testing processes. Although several limitations surfaced, we found several strengths in the contemporary application of the method. We determined concept mapping provides (a) a solid method for establishing content validity, (b) facilitates researcher decision-making, (c) insight into target population perspectives that are integrated a priori, and (d) a foundation for analytical and interpretative choices. Based on these results, we outline how concept mapping can be situated in the measurement development and evaluation processes for new instrumentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A Forest Fire Sensor Web Concept with UAVSAR

    NASA Astrophysics Data System (ADS)

    Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.

    2008-12-01

    We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.

  11. Infrared and visible image fusion method based on saliency detection in sparse domain

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Qi, Y.; Ding, W. R.

    2017-06-01

    Infrared and visible image fusion is a key problem in the field of multi-sensor image fusion. To better preserve the significant information of the infrared and visible images in the final fused image, the saliency maps of the source images is introduced into the fusion procedure. Firstly, under the framework of the joint sparse representation (JSR) model, the global and local saliency maps of the source images are obtained based on sparse coefficients. Then, a saliency detection model is proposed, which combines the global and local saliency maps to generate an integrated saliency map. Finally, a weighted fusion algorithm based on the integrated saliency map is developed to achieve the fusion progress. The experimental results show that our method is superior to the state-of-the-art methods in terms of several universal quality evaluation indexes, as well as in the visual quality.

  12. Concept mapping learning strategy to enhance students' mathematical connection ability

    NASA Astrophysics Data System (ADS)

    Hafiz, M.; Kadir, Fatra, Maifalinda

    2017-05-01

    The concept mapping learning strategy in teaching and learning mathematics has been investigated by numerous researchers. However, there are still less researchers who have scrutinized about the roles of map concept which is connected to the mathematical connection ability. Being well understood on map concept, it may help students to have ability to correlate one concept to other concept in order that the student can solve mathematical problems faced. The objective of this research was to describe the student's mathematical connection ability and to analyze the effect of using concept mapping learning strategy to the students' mathematical connection ability. This research was conducted at senior high school in Jakarta. The method used a quasi-experimental with randomized control group design with the total number was 72 students as the sample. Data obtained through using test in the post-test after giving the treatment. The results of the research are: 1) Students' mathematical connection ability has reached the good enough level category; 2) Students' mathematical connection ability who had taught with concept mapping learning strategy is higher than who had taught with conventional learning strategy. Based on the results above, it can be concluded that concept mapping learning strategycould enhance the students' mathematical connection ability, especially in trigonometry.

  13. Texture Analysis of Chaotic Coupled Map Lattices Based Image Encryption Algorithm

    NASA Astrophysics Data System (ADS)

    Khan, Majid; Shah, Tariq; Batool, Syeda Iram

    2014-09-01

    As of late, data security is key in different enclosures like web correspondence, media frameworks, therapeutic imaging, telemedicine and military correspondence. In any case, a large portion of them confronted with a few issues, for example, the absence of heartiness and security. In this letter, in the wake of exploring the fundamental purposes of the chaotic trigonometric maps and the coupled map lattices, we have presented the algorithm of chaos-based image encryption based on coupled map lattices. The proposed mechanism diminishes intermittent impact of the ergodic dynamical systems in the chaos-based image encryption. To assess the security of the encoded image of this scheme, the association of two nearby pixels and composition peculiarities were performed. This algorithm tries to minimize the problems arises in image encryption.

  14. Data-Driven Multiresolution Camera Using the Foveal Adaptive Pyramid

    PubMed Central

    González, Martin; Sánchez-Pedraza, Antonio; Marfil, Rebeca; Rodríguez, Juan A.; Bandera, Antonio

    2016-01-01

    There exist image processing applications, such as tracking or pattern recognition, that are not necessarily precise enough to maintain the same resolution across the whole image sensor. In fact, they must only keep it as high as possible in a relatively small region, but covering a wide field of view. This is the aim of foveal vision systems. Briefly, they propose to sense a large field of view at a spatially-variant resolution: one relatively small region, the fovea, is mapped at a high resolution, while the rest of the image is captured at a lower resolution. In these systems, this fovea must be moved, from one region of interest to another one, to scan a visual scene. It is interesting that the part of the scene that is covered by the fovea should not be merely spatial, but closely related to perceptual objects. Segmentation and attention are then intimately tied together: while the segmentation process is responsible for extracting perceptively-coherent entities from the scene (proto-objects), attention can guide segmentation. From this loop, the concept of foveal attention arises. This work proposes a hardware system for mapping a uniformly-sampled sensor to a space-variant one. Furthermore, this mapping is tied with a software-based, foveal attention mechanism that takes as input the stream of generated foveal images. The whole hardware/software architecture has been designed to be embedded within an all programmable system on chip (AP SoC). Our results show the flexibility of the data port for exchanging information between the mapping and attention parts of the architecture and the good performance rates of the mapping procedure. Experimental evaluation also demonstrates that the segmentation method and the attention model provide results comparable to other more computationally-expensive algorithms. PMID:27898029

  15. Data-Driven Multiresolution Camera Using the Foveal Adaptive Pyramid.

    PubMed

    González, Martin; Sánchez-Pedraza, Antonio; Marfil, Rebeca; Rodríguez, Juan A; Bandera, Antonio

    2016-11-26

    There exist image processing applications, such as tracking or pattern recognition, that are not necessarily precise enough to maintain the same resolution across the whole image sensor. In fact, they must only keep it as high as possible in a relatively small region, but covering a wide field of view. This is the aim of foveal vision systems. Briefly, they propose to sense a large field of view at a spatially-variant resolution: one relatively small region, the fovea, is mapped at a high resolution, while the rest of the image is captured at a lower resolution. In these systems, this fovea must be moved, from one region of interest to another one, to scan a visual scene. It is interesting that the part of the scene that is covered by the fovea should not be merely spatial, but closely related to perceptual objects. Segmentation and attention are then intimately tied together: while the segmentation process is responsible for extracting perceptively-coherent entities from the scene (proto-objects), attention can guide segmentation. From this loop, the concept of foveal attention arises. This work proposes a hardware system for mapping a uniformly-sampled sensor to a space-variant one. Furthermore, this mapping is tied with a software-based, foveal attention mechanism that takes as input the stream of generated foveal images. The whole hardware/software architecture has been designed to be embedded within an all programmable system on chip (AP SoC). Our results show the flexibility of the data port for exchanging information between the mapping and attention parts of the architecture and the good performance rates of the mapping procedure. Experimental evaluation also demonstrates that the segmentation method and the attention model provide results comparable to other more computationally-expensive algorithms.

  16. Appropriateness of ICNP in Korean home care nursing.

    PubMed

    Kang, Min-Jeoung; Kim, Soon-Lae; Lee, Jong-Eun; Jung, Chai Young; Kim, Sukil

    2015-09-01

    There are several hospitals in Korea that introduced the ICNP (International Classification for Nursing Practice) as the standard terminology for clinical and home care nursing. This research attempted to determine the appropriateness of ICNP in Korean, hospital based, home care nursing. The data was collected from a home care nursing center from January 1, 2009 to September 21, 2012. The center is operated by a Korean teaching hospital equipped with an ICNP based electronic nursing record (ENR) system. Via a refining process, 40,082 simplified sentences of nursing intervention were acquired from 41,158 nursing records. Among them, 545 preferred nursing statements were extracted, then mapped, to ICNP 2011 at both axis and sentence levels. The mapping results were classified into three categories based on the axis of concept origin and the level of hierarchy. These categories were titled: complete, incomplete and no mapping. Out of 45 unique concepts in the action axis, 42 (93.33%) concepts were completely mapped. However, only 38 (15.08%), out of 252 unique concepts, were completely mapped in the focus axis. At the statement level, only 19.63% of statements were completely mapped. The ICNP is not useful as a tool for home care nursing in its present form. The granularity of ICNP has to be improved and more concepts, specific to home care nursing, need to be added in the focus and action axes. Also, a new measure needs to be introduced to prevent information loss during mapping. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Mountain cartography: revival of a classic domain

    NASA Astrophysics Data System (ADS)

    Häberling, Christian; Hurni, Lorenz

    The abstract representation of landscape objects such as mountain peaks, valleys, river networks, lakes, cultivated land and nonproductive areas (forests, pastures, boulder fields, glaciers), settlement areas, infrastructure and traffic networks has been the main concept behind all kind of maps for a long time. For over 300 years, mountain regions became an appropriate subject to be extensively explored and mapped. Together with the growing importance of mountainous areas, the demand for adequate cartographic representations with respect to its contents, graphic design and the presentation media has given new life to a classic domain of cartography: Mountain cartography. This paper gives an overview of the development and the current state of mountain cartography. After a brief description of the beginnings and the historic achievements, basic concepts of cartography such as map purpose, data management, cartographic design and map production and their application in modern mountain cartography are summarised. The paper then provides an overview of different kinds of cartographic representations in mountain cartography like topographic maps, maps derived from Geographical Information Systems (GIS) data, image maps, animations, perspective views and personalised maps. Finally, selected examples of modern mountain map applications are presented.

  18. Planning Paths Through Singularities in the Center of Mass Space

    NASA Technical Reports Server (NTRS)

    Doggett, William R.; Messner, William C.; Juang, Jer-Nan

    1998-01-01

    The center of mass space is a convenient space for planning motions that minimize reaction forces at the robot's base or optimize the stability of a mechanism. A unique problem associated with path planning in the center of mass space is the potential existence of multiple center of mass images for a single Cartesian obstacle, since a single center of mass location can correspond to multiple robot joint configurations. The existence of multiple images results in a need to either maintain multiple center of mass obstacle maps or to update obstacle locations when the robot passes through a singularity, such as when it moves from an elbow-up to an elbow-down configuration. To illustrate the concepts presented in this paper, a path is planned for an example task requiring motion through multiple center of mass space maps. The object of the path planning algorithm is to locate the bang- bang acceleration profile that minimizes the robot's base reactions in the presence of a single Cartesian obstacle. To simplify the presentation, only non-redundant robots are considered and joint non-linearities are neglected.

  19. The Process of Coorientation Toward a Definition of the Situation.

    ERIC Educational Resources Information Center

    Craig, Robert; And Others

    The concept of definition of the situation is rooted in the view that human behavior is affected by the environment only indirectly, via the person's image or cognitive map. As a communication concept, however, definition of the situation must also have a relational aspect; an interaction process depends, in part, on the relationship between the…

  20. Blind source separation of ex-vivo aorta tissue multispectral images

    PubMed Central

    Galeano, July; Perez, Sandra; Montoya, Yonatan; Botina, Deivid; Garzón, Johnson

    2015-01-01

    Blind Source Separation methods (BSS) aim for the decomposition of a given signal in its main components or source signals. Those techniques have been widely used in the literature for the analysis of biomedical images, in order to extract the main components of an organ or tissue under study. The analysis of skin images for the extraction of melanin and hemoglobin is an example of the use of BSS. This paper presents a proof of concept of the use of source separation of ex-vivo aorta tissue multispectral Images. The images are acquired with an interference filter-based imaging system. The images are processed by means of two algorithms: Independent Components analysis and Non-negative Matrix Factorization. In both cases, it is possible to obtain maps that quantify the concentration of the main chromophores present in aortic tissue. Also, the algorithms allow for spectral absorbance of the main tissue components. Those spectral signatures were compared against the theoretical ones by using correlation coefficients. Those coefficients report values close to 0.9, which is a good estimator of the method’s performance. Also, correlation coefficients lead to the identification of the concentration maps according to the evaluated chromophore. The results suggest that Multi/hyper-spectral systems together with image processing techniques is a potential tool for the analysis of cardiovascular tissue. PMID:26137366

  1. Quality and rigor of the concept mapping methodology: a pooled study analysis.

    PubMed

    Rosas, Scott R; Kane, Mary

    2012-05-01

    The use of concept mapping in research and evaluation has expanded dramatically over the past 20 years. Researchers in academic, organizational, and community-based settings have applied concept mapping successfully without the benefit of systematic analyses across studies to identify the features of a methodologically sound study. Quantitative characteristics and estimates of quality and rigor that may guide for future studies are lacking. To address this gap, we conducted a pooled analysis of 69 concept mapping studies to describe characteristics across study phases, generate specific indicators of validity and reliability, and examine the relationship between select study characteristics and quality indicators. Individual study characteristics and estimates were pooled and quantitatively summarized, describing the distribution, variation and parameters for each. In addition, variation in the concept mapping data collection in relation to characteristics and estimates was examined. Overall, results suggest concept mapping yields strong internal representational validity and very strong sorting and rating reliability estimates. Validity and reliability were consistently high despite variation in participation and task completion percentages across data collection modes. The implications of these findings as a practical reference to assess the quality and rigor for future concept mapping studies are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. New segmentation-based tone mapping algorithm for high dynamic range image

    NASA Astrophysics Data System (ADS)

    Duan, Weiwei; Guo, Huinan; Zhou, Zuofeng; Huang, Huimin; Cao, Jianzhong

    2017-07-01

    The traditional tone mapping algorithm for the display of high dynamic range (HDR) image has the drawback of losing the impression of brightness, contrast and color information. To overcome this phenomenon, we propose a new tone mapping algorithm based on dividing the image into different exposure regions in this paper. Firstly, the over-exposure region is determined using the Local Binary Pattern information of HDR image. Then, based on the peak and average gray of the histogram, the under-exposure and normal-exposure region of HDR image are selected separately. Finally, the different exposure regions are mapped by differentiated tone mapping methods to get the final result. The experiment results show that the proposed algorithm achieve the better performance both in visual quality and objective contrast criterion than other algorithms.

  3. Dynamic mapping of brain and cognitive control of virtual gameplay (study by functional magnetic resonance imaging).

    PubMed

    Rezakova, M V; Mazhirina, K G; Pokrovskiy, M A; Savelov, A A; Savelova, O A; Shtark, M B

    2013-04-01

    Using functional magnetic resonance imaging technique, we performed online brain mapping of gamers, practiced to voluntary (cognitively) control their heart rate, the parameter that operated a competitive virtual gameplay in the adaptive feedback loop. With the default start picture, the regions of interest during the formation of optimal cognitive strategy were as follows: Brodmann areas 19, 37, 39 and 40, i.e. cerebellar structures (vermis, amygdala, pyramids, clivus). "Localization" concept of the contribution of the cerebellum to cognitive processes is discussed.

  4. Exploring s-CIELAB as a scanner metric for print uniformity

    NASA Astrophysics Data System (ADS)

    Hertel, Dirk W.

    2005-01-01

    The s-CIELAB color difference metric combines the standard CIELAB metric for perceived color difference with spatial contrast sensitivity filtering. When studying the performance of digital image processing algorithms, maps of spatial color difference between 'before' and 'after' images are a measure of perceived image difference. A general image quality metric can be obtained by modeling the perceived difference from an ideal image. This paper explores the s-CIELAB concept for evaluating the quality of digital prints. Prints present the challenge that the 'ideal print' which should serve as the reference when calculating the delta E* error map is unknown, and thus be estimated from the scanned print. A reasonable estimate of what the ideal print 'should have been' is possible at least for images of known content such as flat fields or continuous wedges, where the error map can be calculated against a global or local mean. While such maps showing the perceived error at each pixel are extremely useful when analyzing print defects, it is desirable to statistically reduce them to a more manageable dataset. Examples of digital print uniformity are given, and the effect of specific print defects on the s-CIELAB delta E* metric are discussed.

  5. A Different Approach to Preparing Novakian Concept Maps: The Indexing Method

    ERIC Educational Resources Information Center

    Turan Oluk, Nurcan; Ekmekci, Güler

    2016-01-01

    People who claim that applying Novakian concept maps in Turkish is problematic base their arguments largely upon the structural differences between the English and Turkish languages. This study aims to introduce the indexing method to eliminate problems encountered in Turkish applications of Novakian maps and to share the preliminary results of…

  6. Appropriating Invention through Concept Maps in Writing for Multimedia and the Web

    ERIC Educational Resources Information Center

    Bacabac, Florence Elizabeth

    2015-01-01

    As an alternative approach to web preproduction, I propose the use of concept maps for invention of website projects in business and professional writing courses. This mapping device approximates our students' initial site plans since rough ideas are formed based on a substantial exploratory technique. Incorporated in various disciplines, the…

  7. Influence of levels of information as presented by different technologies on students' understanding of acid, base, and ph concepts

    NASA Astrophysics Data System (ADS)

    Nakhleh, Mary B.; Krajcik, Joseph S.

    We investigated how different levels of information presented by various technologies affected secondary students' understanding of acid, base, and pH concepts. Secondary students who were selected for the study had just completed their study of acid-base chemistry. No attempt was made to provide further instruction. We analyzed changes in the understanding of individual students by constructing concept maps from the propositions that the students used in interviews conducted before and after a series of acid-base titrations. After the initial interview, students were divided into three groups. Within each group, students individually performed the same set of titrations using different technologies: chemical indicators, pH meters, and microcomputer-based laboratories (MBL). After the titrations were completed, all students were interviewed again. We found that students using MBL exhibited a larger positive shift in their concept map scores, which indicates a greater differentiation and integration of their knowledge of acids and bases. The chemical indicator students exhibited a more moderate positive shift in their concept map scores, and the pH meter students exhibited a smaller positive shift. We also found that the MBL students constructed more inappropriate links in their concept maps than the chemical indicator or pH meter students. However, we speculate that this increased number of inappropriate links indicates a high level of involvement with the technology. We therefore argue that the level of information offered by the technology affected students' understanding of the chemical concepts.Received: 24 February 1993; Revised: 21 February 1994;

  8. Combining local scaling and global methods to detect soil pore space

    NASA Astrophysics Data System (ADS)

    Martin-Sotoca, Juan Jose; Saa-Requejo, Antonio; Grau, Juan B.; Tarquis, Ana M.

    2017-04-01

    The characterization of the spatial distribution of soil pore structures is essential to obtain different parameters that will influence in several models related to water flow and/or microbial growth processes. The first step in pore structure characterization is obtaining soil images that best approximate reality. Over the last decade, major technological advances in X-ray computed tomography (CT) have allowed for the investigation and reconstruction of natural porous media architectures at very fine scales. The subsequent step is delimiting the pore structure (pore space) from the CT soil images applying a thresholding. Many times we could find CT-scan images that show low contrast at the solid-void interface that difficult this step. Different delimitation methods can result in different spatial distributions of pores influencing the parameters used in the models. Recently, new local segmentation method using local greyscale value (GV) concentration variabilities, based on fractal concepts, has been presented. This method creates singularity maps to measure the GV concentration at each point. The C-A method was combined with the singularity map approach (Singularity-CA method) to define local thresholds that can be applied to binarize CT images. Comparing this method with classical methods, such as Otsu and Maximum Entropy, we observed that more pores can be detected mainly due to its ability to amplify anomalous concentrations. However, it delineated many small pores that were incorrect. In this work, we present an improve version of Singularity-CA method that avoid this problem basically combining it with the global classical methods. References Martín-Sotoca, J.J., A. Saa-Requejo, J.B. Grau, A.M. Tarquis. New segmentation method based on fractal properties using singularity maps. Geoderma, 287, 40-53, 2017. Martín-Sotoca, J.J, A. Saa-Requejo, J.B. Grau, A.M. Tarquis. Local 3D segmentation of soil pore space based on fractal properties using singularity maps. Geoderma, http://dx.doi.org/10.1016/j.geoderma.2016.11.029. Torre, Iván G., Juan C. Losada and A.M. Tarquis. Multiscaling properties of soil images. Biosystems Engineering, http://dx.doi.org/10.1016/j.biosystemseng.2016.11.006.

  9. Concept mapping as a method to enhance evidence-based public health.

    PubMed

    van Bon-Martens, Marja J H; van de Goor, Ien A M; van Oers, Hans A M

    2017-02-01

    In this paper we explore the suitability of concept mapping as a method for integrating knowledge from science, practice, and policy. In earlier research we described and analysed five cases of concept mapping procedures in the Netherlands, serving different purposes and fields in public health. In the current paper, seven new concept mapping studies of co-produced work are added to extend this analysis. For each of these twelve studies we analysed: (1) how the method was able to integrate knowledge from practice with scientific knowledge by facilitating dialogue and collaboration between different stakeholders in the field of public health, such as academic researchers, practitioners, policy-makers and the public; (2) how the method was able to bring theory development a step further (scientific relevance); and (3) how the method was able to act as a sound basis for practical decision-making (practical relevance). Based on the answers to these research questions, all but one study was considered useful for building more evidence-based public health, even though the extent to which they underpinned actual decision-making varied. The chance of actually being implemented in practice seems strongly related to the extent to which the responsible decision-makers are involved in the way the concept map is prepared and executed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A Query Expansion Framework in Image Retrieval Domain Based on Local and Global Analysis

    PubMed Central

    Rahman, M. M.; Antani, S. K.; Thoma, G. R.

    2011-01-01

    We present an image retrieval framework based on automatic query expansion in a concept feature space by generalizing the vector space model of information retrieval. In this framework, images are represented by vectors of weighted concepts similar to the keyword-based representation used in text retrieval. To generate the concept vocabularies, a statistical model is built by utilizing Support Vector Machine (SVM)-based classification techniques. The images are represented as “bag of concepts” that comprise perceptually and/or semantically distinguishable color and texture patches from local image regions in a multi-dimensional feature space. To explore the correlation between the concepts and overcome the assumption of feature independence in this model, we propose query expansion techniques in the image domain from a new perspective based on both local and global analysis. For the local analysis, the correlations between the concepts based on the co-occurrence pattern, and the metrical constraints based on the neighborhood proximity between the concepts in encoded images, are analyzed by considering local feedback information. We also analyze the concept similarities in the collection as a whole in the form of a similarity thesaurus and propose an efficient query expansion based on the global analysis. The experimental results on a photographic collection of natural scenes and a biomedical database of different imaging modalities demonstrate the effectiveness of the proposed framework in terms of precision and recall. PMID:21822350

  11. An improved image non-blind image deblurring method based on FoEs

    NASA Astrophysics Data System (ADS)

    Zhu, Qidan; Sun, Lei

    2013-03-01

    Traditional non-blind image deblurring algorithms always use maximum a posterior(MAP). MAP estimates involving natural image priors can reduce the ripples effectively in contrast to maximum likelihood(ML). However, they have been found lacking in terms of restoration performance. Based on this issue, we utilize MAP with KL penalty to replace traditional MAP. We develop an image reconstruction algorithm that minimizes the KL divergence between the reference distribution and the prior distribution. The approximate KL penalty can restrain over-smooth caused by MAP. We use three groups of images and Harris corner detection to prove our method. The experimental results show that our algorithm of non-blind image restoration can effectively reduce the ringing effect and exhibit the state-of-the-art deblurring results.

  12. Does Constructivist Approach Applicable through Concept Maps to Achieve Meaningful Learning in Science?

    ERIC Educational Resources Information Center

    Jena, Ananta Kumar

    2012-01-01

    This study deals with the application of constructivist approach through individual and cooperative modes of spider and hierarchical concept maps to achieve meaningful learning on science concepts (e.g. acids, bases & salts, physical and chemical changes). The main research questions were: Q (1): is there any difference in individual and…

  13. The Circumpolar Arctic Vegetation Map: AVHRR-derived base maps, environmental controls, and integrated mapping procedures

    Treesearch

    D. A. WALKER; W. A. GOULD; MAIERH. A.; M. K. RAYNOLDS

    2002-01-01

    A new false-colour-infrared image derived from biweekly 1993 and 1995 Advanced Very High Resolution Radiometer (AVHRR) data provides a snow-free and cloud-free base image for the interpretation of vegetation as part of a 1:7.5M-scale Circumpolar Arctic Vegetation Map (CAVM). A maximum-NDVI (Normalized DiVerence Vegetation Index) image prepared from the same data...

  14. EnGeoMAP - geological applications within the EnMAP hyperspectral satellite science program

    NASA Astrophysics Data System (ADS)

    Boesche, N. K.; Mielke, C.; Rogass, C.; Guanter, L.

    2016-12-01

    Hyperspectral investigations from near field to space substantially contribute to geological exploration and mining monitoring of raw material and mineral deposits. Due to their spectral characteristics, large mineral occurrences and minefields can be identified from space and the spatial distribution of distinct proxy minerals be mapped. In the frame of the EnMAP hyperspectral satellite science program a mineral and elemental mapping tool was developed - the EnGeoMAP. It contains a basic mineral mapping and a rare earth element mapping approach. This study shows the performance of EnGeoMAP based on simulated EnMAP data of the rare earth element bearing Mountain Pass Carbonatite Complex, USA, and the Rodalquilar and Lomilla Calderas, Spain, which host the economically relevant gold-silver, lead-zinc-silver-gold and alunite deposits. The mountain pass image data was simulated on the basis of AVIRIS Next Generation images, while the Rodalquilar data is based on HyMap images. The EnGeoMAP - Base approach was applied to both images, while the mountain pass image data were additionally analysed using the EnGeoMAP - REE software tool. The results are mineral and elemental maps that serve as proxies for the regional lithology and deposit types. The validation of the maps is based on chemical analyses of field samples. Current airborne sensors meet the spatial and spectral requirements for detailed mineral mapping and future hyperspectral space borne missions will additionally provide a large coverage. For those hyperspectral missions, EnGeoMAP is a rapid data analysis tool that is provided to spectral geologists working in mineral exploration.

  15. TH-C-BRD-06: A Novel MRI Based CT Artifact Correction Method for Improving Proton Range Calculation in the Presence of Severe CT Artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, P; Schreibmann, E; Fox, T

    2014-06-15

    Purpose: Severe CT artifacts can impair our ability to accurately calculate proton range thereby resulting in a clinically unacceptable treatment plan. In this work, we investigated a novel CT artifact correction method based on a coregistered MRI and investigated its ability to estimate CT HU and proton range in the presence of severe CT artifacts. Methods: The proposed method corrects corrupted CT data using a coregistered MRI to guide the mapping of CT values from a nearby artifact-free region. First patient MRI and CT images were registered using 3D deformable image registration software based on B-spline and mutual information. Themore » CT slice with severe artifacts was selected as well as a nearby slice free of artifacts (e.g. 1cm away from the artifact). The two sets of paired MRI and CT images at different slice locations were further registered by applying 2D deformable image registration. Based on the artifact free paired MRI and CT images, a comprehensive geospatial analysis was performed to predict the correct CT HU of the CT image with severe artifact. For a proof of concept, a known artifact was introduced that changed the ground truth CT HU value up to 30% and up to 5cm error in proton range. The ability of the proposed method to recover the ground truth was quantified using a selected head and neck case. Results: A significant improvement in image quality was observed visually. Our proof of concept study showed that 90% of area that had 30% errors in CT HU was corrected to 3% of its ground truth value. Furthermore, the maximum proton range error up to 5cm was reduced to 4mm error. Conclusion: MRI based CT artifact correction method can improve CT image quality and proton range calculation for patients with severe CT artifacts.« less

  16. Concept mapping as a promising method to bring practice into science.

    PubMed

    van Bon-Martens, M J H; van de Goor, L A M; Holsappel, J C; Kuunders, T J M; Jacobs-van der Bruggen, M A M; te Brake, J H M; van Oers, J A M

    2014-06-01

    Concept mapping is a method for developing a conceptual framework of a complex topic for use as a guide to evaluation or planning. In concept mapping, thoughts and ideas are represented in the form of a picture or map, the content of which is determined by a group of stakeholders. This study aimed to explore the suitability of this method as a tool to integrate practical knowledge with scientific knowledge in order to improve theory development as a sound basis for practical decision-making. Following a short introduction to the method of concept mapping, five Dutch studies, serving different purposes and fields in public health, will be described. The aim of these studies was: to construct a theoretical framework for good regional public health reporting; to design an implementation strategy for a guideline for integral local health policy; to guide the evaluation of a local integral approach of overweight and obesity in youth; to guide the construction of a questionnaire to measure the quality of postdisaster psychosocial care; and to conceptualize an integral base for formulation of ambitions and targets for the new youth healthcare programme of a regional health service. The studies showed that concept mapping is a way to integrate practical and scientific knowledge with careful selection of participants that represent the different perspectives. Theory development can be improved through concept mapping; not by formulating new theories, but by highlighting the key issues and defining perceived relationships between topics. In four of the five studies, the resulting concept map was received as a sound basis for practical decision-making. Concept mapping is a valuable method for evidence-based public health policy, and a powerful instrument for facilitating dialogue, coherence and collaboration between researchers, practitioners, policy makers and the public. Development of public health theory was realized by a step-by-step approach, considering both scientific and practical knowledge. However, the external validity of the concept maps in place and time is of importance. Copyright © 2014 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  17. An automated mapping satellite system ( Mapsat).

    USGS Publications Warehouse

    Colvocoresses, A.P.

    1982-01-01

    The favorable environment of space permits a satellite to orbit the Earth with very high stability as long as no local perturbing forces are involved. Solid-state linear-array sensors have no moving parts and create no perturbing force on the satellite. Digital data from highly stabilized stereo linear arrays are amenable to simplified processing to produce both planimetric imagery and elevation data. A satellite imaging system, called Mapsat, including this concept has been proposed to produce data from which automated mapping in near real time can be accomplished. Image maps as large as 1:50 000 scale with contours as close as a 20-m interval may be produced from Mapsat data. -from Author

  18. Using image mapping towards biomedical and biological data sharing

    PubMed Central

    2013-01-01

    Image-based data integration in eHealth and life sciences is typically concerned with the method used for anatomical space mapping, needed to retrieve, compare and analyse large volumes of biomedical data. In mapping one image onto another image, a mechanism is used to match and find the corresponding spatial regions which have the same meaning between the source and the matching image. Image-based data integration is useful for integrating data of various information structures. Here we discuss a broad range of issues related to data integration of various information structures, review exemplary work on image representation and mapping, and discuss the challenges that these techniques may bring. PMID:24059352

  19. Concept mapping for virtual rehabilitation and training of the blind.

    PubMed

    Sanchez, Jaime; Flores, Hector

    2010-04-01

    Concept mapping is a technique that allows for the strengthening of the learning process, based on graphic representations of the learner's mental schemes. However, due to its graphic nature, it cannot be utilized by learners with visual disabilities. In response to this limitation we implemented a study that involves the design of AudiodMC, an audio-based, virtual environment for concept mapping designed for use by blind users and aimed at virtual training and rehabilitation. We analyzed the stages involved in the design of AudiodMC from a user-centered design perspective, considering user involvement and usability testing. These include an observation stage to learn how blind learners construct conceptual maps using concrete materials, a design stage to design of a software tool that aids blind users in creating concept maps, and a cognitive evaluation stage using AudiodMC. We also present the results of a study implemented in order to determine the impact of the use of this software on the development of essential skills for concept mapping (association, classification, categorization, sorting and summarizing). The results point to a high level of user acceptance, having identified key sound characteristics that help blind learners to learn concept codification and selection skills. The use of AudiodMC also allowed for the effective development of the skills under review in our research, thus facilitating meaningful learning.

  20. Design of an image encryption scheme based on a multiple chaotic map

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Jun

    2013-07-01

    In order to solve the problem that chaos is degenerated in limited computer precision and Cat map is the small key space, this paper presents a chaotic map based on topological conjugacy and the chaotic characteristics are proved by Devaney definition. In order to produce a large key space, a Cat map named block Cat map is also designed for permutation process based on multiple-dimensional chaotic maps. The image encryption algorithm is based on permutation-substitution, and each key is controlled by different chaotic maps. The entropy analysis, differential analysis, weak-keys analysis, statistical analysis, cipher random analysis, and cipher sensibility analysis depending on key and plaintext are introduced to test the security of the new image encryption scheme. Through the comparison to the proposed scheme with AES, DES and Logistic encryption methods, we come to the conclusion that the image encryption method solves the problem of low precision of one dimensional chaotic function and has higher speed and higher security.

  1. Artificial Intelligence-Based Student Learning Evaluation: A Concept Map-Based Approach for Analyzing a Student's Understanding of a Topic

    ERIC Educational Resources Information Center

    Jain, G. Panka; Gurupur, Varadraj P.; Schroeder, Jennifer L.; Faulkenberry, Eileen D.

    2014-01-01

    In this paper, we describe a tool coined as artificial intelligence-based student learning evaluation tool (AISLE). The main purpose of this tool is to improve the use of artificial intelligence techniques in evaluating a student's understanding of a particular topic of study using concept maps. Here, we calculate the probability distribution of…

  2. Empirical evidence of the effectiveness of concept mapping as a learning intervention for nuclear medicine technology students in a distance learning radiation protection and biology course.

    PubMed

    Passmore, Gregory G; Owen, Mary Anne; Prabakaran, Krishnan

    2011-12-01

    Metacognitive learning strategies are based on instructional learning theory, which promotes deep, meaningful learning. Educators in a baccalaureate-level nuclear medicine technology program demonstrated that students enrolled in an online, distance learning section of an introductory radiation protection and radiobiology course performed better when traditional instruction was supplemented with nontraditional metacognitive learning strategies. The metacognitive learning strategy that was used is best known as concept mapping. The concept map, in addition to the standard homework problem assignment and opportunity for question-answer sessions, became the template for misconception identification and remediation interactions between the instructor and the student. The control group relied on traditional homework problems and question-answer sessions alone. Because students in both the "treatment" groups (i.e., students who used concept mapping) and the control group were distance learning students, all personal communications were conducted via e-mail or telephone. The final examination of the course was used to facilitate a quantitative comparison of the performance of students who used concept mapping and the performance of students who did not use concept mapping. The results demonstrated a significantly higher median final examination score for the concept mapping group than for the non-concept mapping group (z = -2.0381, P = 0.0415), with an appropriately large effect size (2.65). Concept mapping is a cognitive learning intervention that effectively enables meaningful learning and is suitable for use in the independent learner-oriented distance learning environments used by some nuclear medicine technology programs.

  3. Contour-Driven Atlas-Based Segmentation

    PubMed Central

    Wachinger, Christian; Fritscher, Karl; Sharp, Greg; Golland, Polina

    2016-01-01

    We propose new methods for automatic segmentation of images based on an atlas of manually labeled scans and contours in the image. First, we introduce a Bayesian framework for creating initial label maps from manually annotated training images. Within this framework, we model various registration- and patch-based segmentation techniques by changing the deformation field prior. Second, we perform contour-driven regression on the created label maps to refine the segmentation. Image contours and image parcellations give rise to non-stationary kernel functions that model the relationship between image locations. Setting the kernel to the covariance function in a Gaussian process establishes a distribution over label maps supported by image structures. Maximum a posteriori estimation of the distribution over label maps conditioned on the outcome of the atlas-based segmentation yields the refined segmentation. We evaluate the segmentation in two clinical applications: the segmentation of parotid glands in head and neck CT scans and the segmentation of the left atrium in cardiac MR angiography images. PMID:26068202

  4. A real-time photogrammetric algorithm for sensor and synthetic image fusion with application to aviation combined vision

    NASA Astrophysics Data System (ADS)

    Lebedev, M. A.; Stepaniants, D. G.; Komarov, D. V.; Vygolov, O. V.; Vizilter, Yu. V.; Zheltov, S. Yu.

    2014-08-01

    The paper addresses a promising visualization concept related to combination of sensor and synthetic images in order to enhance situation awareness of a pilot during an aircraft landing. A real-time algorithm for a fusion of a sensor image, acquired by an onboard camera, and a synthetic 3D image of the external view, generated in an onboard computer, is proposed. The pixel correspondence between the sensor and the synthetic images is obtained by an exterior orientation of a "virtual" camera using runway points as a geospatial reference. The runway points are detected by the Projective Hough Transform, which idea is to project the edge map onto a horizontal plane in the object space (the runway plane) and then to calculate intensity projections of edge pixels on different directions of intensity gradient. The performed experiments on simulated images show that on a base glide path the algorithm provides image fusion with pixel accuracy, even in the case of significant navigation errors.

  5. A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hub, Martina; Thieke, Christian; Kessler, Marc L.

    2012-04-15

    Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient. In this work, an approach to estimate the uncertainty of mapping between medical images is proposed that identifies areas bearing a significant risk of inaccurate dose accumulation. Methods: This method accounts formore » the geometric uncertainty of image registration and the heterogeneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the registration metric with respect to the variations of the coefficients. It was evaluated based on patient data that was deformed based on a breathing model, where the ground truth of the deformation, and hence the actual true dose mapping error, is known. Results: The proposed approach has the potential to distinguish areas of the image where dose mapping is likely to be accurate from other areas of the same image, where a larger uncertainty must be expected. Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was developed and implemented. This method was tested for dose mapping, but it may be applied in context of other mapping tasks as well.« less

  6. A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration

    PubMed Central

    Hub, Martina; Thieke, Christian; Kessler, Marc L.; Karger, Christian P.

    2012-01-01

    Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient. In this work, an approach to estimate the uncertainty of mapping between medical images is proposed that identifies areas bearing a significant risk of inaccurate dose accumulation. Methods: This method accounts for the geometric uncertainty of image registration and the heterogeneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the registration metric with respect to the variations of the coefficients. It was evaluated based on patient data that was deformed based on a breathing model, where the ground truth of the deformation, and hence the actual true dose mapping error, is known. Results: The proposed approach has the potential to distinguish areas of the image where dose mapping is likely to be accurate from other areas of the same image, where a larger uncertainty must be expected. Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was developed and implemented. This method was tested for dose mapping, but it may be applied in context of other mapping tasks as well. PMID:22482640

  7. Spatial data software integration - Merging CAD/CAM/mapping with GIS and image processing

    NASA Technical Reports Server (NTRS)

    Logan, Thomas L.; Bryant, Nevin A.

    1987-01-01

    The integration of CAD/CAM/mapping with image processing using geographic information systems (GISs) as the interface is examined. Particular emphasis is given to the development of software interfaces between JPL's Video Image Communication and Retrieval (VICAR)/Imaged Based Information System (IBIS) raster-based GIS and the CAD/CAM/mapping system. The design and functions of the VICAR and IBIS are described. Vector data capture and editing are studied. Various software programs for interfacing between the VICAR/IBIS and CAD/CAM/mapping are presented and analyzed.

  8. Toward accelerating landslide mapping with interactive machine learning techniques

    NASA Astrophysics Data System (ADS)

    Stumpf, André; Lachiche, Nicolas; Malet, Jean-Philippe; Kerle, Norman; Puissant, Anne

    2013-04-01

    Despite important advances in the development of more automated methods for landslide mapping from optical remote sensing images, the elaboration of inventory maps after major triggering events still remains a tedious task. Image classification with expert defined rules typically still requires significant manual labour for the elaboration and adaption of rule sets for each particular case. Machine learning algorithm, on the contrary, have the ability to learn and identify complex image patterns from labelled examples but may require relatively large amounts of training data. In order to reduce the amount of required training data active learning has evolved as key concept to guide the sampling for applications such as document classification, genetics and remote sensing. The general underlying idea of most active learning approaches is to initialize a machine learning model with a small training set, and to subsequently exploit the model state and/or the data structure to iteratively select the most valuable samples that should be labelled by the user and added in the training set. With relatively few queries and labelled samples, an active learning strategy should ideally yield at least the same accuracy than an equivalent classifier trained with many randomly selected samples. Our study was dedicated to the development of an active learning approach for landslide mapping from VHR remote sensing images with special consideration of the spatial distribution of the samples. The developed approach is a region-based query heuristic that enables to guide the user attention towards few compact spatial batches rather than distributed points resulting in time savings of 50% and more compared to standard active learning techniques. The approach was tested with multi-temporal and multi-sensor satellite images capturing recent large scale triggering events in Brazil and China and demonstrated balanced user's and producer's accuracies between 74% and 80%. The assessment also included an experimental evaluation of the uncertainties of manual mappings from multiple experts and demonstrated strong relationships between the uncertainty of the experts and the machine learning model.

  9. The Effects of a Concept Map-Based Information Display in an Electronic Portfolio System on Information Processing and Retention in a Fifth-Grade Science Class Covering the Earth's Atmosphere

    ERIC Educational Resources Information Center

    Kim, Paul; Olaciregui, Claudia

    2008-01-01

    An electronic portfolio system, designed to serve as a resource-based learning space, was tested in a fifth-grade science class. The control-group students accessed a traditional folder-based information display in the system and the experimental-group students accessed a concept map-based information display to review a science portfolio. The…

  10. Mapping from Space - Ontology Based Map Production Using Satellite Imageries

    NASA Astrophysics Data System (ADS)

    Asefpour Vakilian, A.; Momeni, M.

    2013-09-01

    Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83%. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7%. Results showed that vegetation cover and water features have been extracted completely (100%) and about 71% of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.

  11. Mapping from Space - Ontology Based Map Production Using Satellite Imageries

    NASA Astrophysics Data System (ADS)

    Asefpour Vakilian, A.; Momeni, M.

    2013-09-01

    Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83 %. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7 %. Results showed that vegetation cover and water features have been extracted completely (100 %) and about 71 % of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.

  12. Effectiveness of higher order thinking skills (HOTS) based i-Think map concept towards primary students

    NASA Astrophysics Data System (ADS)

    Ping, Owi Wei; Ahmad, Azhar; Adnan, Mazlini; Hua, Ang Kean

    2017-05-01

    Higher Order Thinking Skills (HOTS) is a new concept of education reform based on the Taxonomies Bloom. The concept concentrate on student understanding in learning process based on their own methods. Through the HOTS questions are able to train students to think creatively, critic and innovative. The aim of this study was to identify the student's proficiency in solving HOTS Mathematics question by using i-Think map. This research takes place in Sabak Bernam, Selangor. The method applied is quantitative approach that involves approximately all of the standard five students. Pra-posttest was conduct before and after the intervention using i-Think map in solving the HOTS questions. The result indicates significant improvement for post-test, which prove that applying i-Think map enhance the students ability to solve HOTS question. Survey's analysis showed 90% of the students agree having i-Thinking map in analysis the question carefully and using keywords in the map to solve the questions. As conclusion, this process benefits students to minimize in making the mistake when solving the questions. Therefore, teachers are necessarily to guide students in applying the eligible i-Think map and methods in analyzing the question through finding the keywords.

  13. Quantitative fractography by digital image processing: NIH Image macro tools for stereo pair analysis and 3-D reconstruction.

    PubMed

    Hein, L R

    2001-10-01

    A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.

  14. Mind the gap! Automated concept map feedback supports students in writing cohesive explanations.

    PubMed

    Lachner, Andreas; Burkhart, Christian; Nückles, Matthias

    2017-03-01

    Many students are challenged with the demand of writing cohesive explanations. To support students in writing cohesive explanations, we developed a computer-based feedback tool that visualizes cohesion deficits of students' explanations in a concept map. We conducted three studies to investigate the effectiveness of such feedback as well as the underlying cognitive processes. In Study 1, we found that the concept map helped students identify potential cohesion gaps in their drafts and plan remedial revisions. In Study 2, students with concept map feedback conducted revisions that resulted in more locally and globally cohesive, and also more comprehensible, explanations than the explanations of students who revised without concept map feedback. In Study 3, we replicated the findings of Study 2 by and large. More importantly, students who had received concept map feedback on a training explanation 1 week later wrote a transfer explanation without feedback that was more cohesive than the explanation of students who had received no feedback on their training explanation. The automated concept map feedback appears to particularly support the evaluation phase of the revision process. Furthermore, the feedback enabled novice writers to acquire sustainable skills in writing cohesive explanations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Fully Convolutional Network-Based Multifocus Image Fusion.

    PubMed

    Guo, Xiaopeng; Nie, Rencan; Cao, Jinde; Zhou, Dongming; Qian, Wenhua

    2018-07-01

    As the optical lenses for cameras always have limited depth of field, the captured images with the same scene are not all in focus. Multifocus image fusion is an efficient technology that can synthesize an all-in-focus image using several partially focused images. Previous methods have accomplished the fusion task in spatial or transform domains. However, fusion rules are always a problem in most methods. In this letter, from the aspect of focus region detection, we propose a novel multifocus image fusion method based on a fully convolutional network (FCN) learned from synthesized multifocus images. The primary novelty of this method is that the pixel-wise focus regions are detected through a learning FCN, and the entire image, not just the image patches, are exploited to train the FCN. First, we synthesize 4500 pairs of multifocus images by repeatedly using a gaussian filter for each image from PASCAL VOC 2012, to train the FCN. After that, a pair of source images is fed into the trained FCN, and two score maps indicating the focus property are generated. Next, an inversed score map is averaged with another score map to produce an aggregative score map, which take full advantage of focus probabilities in two score maps. We implement the fully connected conditional random field (CRF) on the aggregative score map to accomplish and refine a binary decision map for the fusion task. Finally, we exploit the weighted strategy based on the refined decision map to produce the fused image. To demonstrate the performance of the proposed method, we compare its fused results with several start-of-the-art methods not only on a gray data set but also on a color data set. Experimental results show that the proposed method can achieve superior fusion performance in both human visual quality and objective assessment.

  16. Susceptibility-based functional brain mapping by 3D deconvolution of an MR-phase activation map.

    PubMed

    Chen, Zikuan; Liu, Jingyu; Calhoun, Vince D

    2013-05-30

    The underlying source of T2*-weighted magnetic resonance imaging (T2*MRI) for brain imaging is magnetic susceptibility (denoted by χ). T2*MRI outputs a complex-valued MR image consisting of magnitude and phase information. Recent research has shown that both the magnitude and the phase images are morphologically different from the source χ, primarily due to 3D convolution, and that the source χ can be reconstructed from complex MR images by computed inverse MRI (CIMRI). Thus, we can obtain a 4D χ dataset from a complex 4D MR dataset acquired from a brain functional MRI study by repeating CIMRI to reconstruct 3D χ volumes at each timepoint. Because the reconstructed χ is a more direct representation of neuronal activity than the MR image, we propose a method for χ-based functional brain mapping, which is numerically characterised by a temporal correlation map of χ responses to a stimulant task. Under the linear imaging conditions used for T2*MRI, we show that the χ activation map can be calculated from the MR phase map by CIMRI. We validate our approach using numerical simulations and Gd-phantom experiments. We also analyse real data from a finger-tapping visuomotor experiment and show that the χ-based functional mapping provides additional activation details (in the form of positive and negative correlation patterns) beyond those generated by conventional MR-magnitude-based mapping. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Integrated Georeferencing of Stereo Image Sequences Captured with a Stereovision Mobile Mapping System - Approaches and Practical Results

    NASA Astrophysics Data System (ADS)

    Eugster, H.; Huber, F.; Nebiker, S.; Gisi, A.

    2012-07-01

    Stereovision based mobile mapping systems enable the efficient capturing of directly georeferenced stereo pairs. With today's camera and onboard storage technologies imagery can be captured at high data rates resulting in dense stereo sequences. These georeferenced stereo sequences provide a highly detailed and accurate digital representation of the roadside environment which builds the foundation for a wide range of 3d mapping applications and image-based geo web-services. Georeferenced stereo images are ideally suited for the 3d mapping of street furniture and visible infrastructure objects, pavement inspection, asset management tasks or image based change detection. As in most mobile mapping systems, the georeferencing of the mapping sensors and observations - in our case of the imaging sensors - normally relies on direct georeferencing based on INS/GNSS navigation sensors. However, in urban canyons the achievable direct georeferencing accuracy of the dynamically captured stereo image sequences is often insufficient or at least degraded. Furthermore, many of the mentioned application scenarios require homogeneous georeferencing accuracy within a local reference frame over the entire mapping perimeter. To achieve these demands georeferencing approaches are presented and cost efficient workflows are discussed which allows validating and updating the INS/GNSS based trajectory with independently estimated positions in cases of prolonged GNSS signal outages in order to increase the georeferencing accuracy up to the project requirements.

  18. Origami silicon optoelectronics for hemispherical electronic eye systems.

    PubMed

    Zhang, Kan; Jung, Yei Hwan; Mikael, Solomon; Seo, Jung-Hun; Kim, Munho; Mi, Hongyi; Zhou, Han; Xia, Zhenyang; Zhou, Weidong; Gong, Shaoqin; Ma, Zhenqiang

    2017-11-24

    Digital image sensors in hemispherical geometries offer unique imaging advantages over their planar counterparts, such as wide field of view and low aberrations. Deforming miniature semiconductor-based sensors with high-spatial resolution into such format is challenging. Here we report a simple origami approach for fabricating single-crystalline silicon-based focal plane arrays and artificial compound eyes that have hemisphere-like structures. Convex isogonal polyhedral concepts allow certain combinations of polygons to fold into spherical formats. Using each polygon block as a sensor pixel, the silicon-based devices are shaped into maps of truncated icosahedron and fabricated on flexible sheets and further folded either into a concave or convex hemisphere. These two electronic eye prototypes represent simple and low-cost methods as well as flexible optimization parameters in terms of pixel density and design. Results demonstrated in this work combined with miniature size and simplicity of the design establish practical technology for integration with conventional electronic devices.

  19. A Comparative Study of the Effects of a Concept Mapping Enhanced Laboratory Experience on Turkish High School Students' Understanding of Acid-Base Chemistry

    ERIC Educational Resources Information Center

    Ozmen, Haluk; Demircioglu, Gokhan; Coll, Richard K.

    2009-01-01

    The research reported here consists of the introduction of an intervention based on a series of laboratory activities combined with concept mapping. The purpose of this intervention was to enhance student understanding of acid-base chemistry for tenth grade students' from two classes in a Turkish high school. An additional aim was to enhance…

  20. The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhou, Liqing

    2015-12-01

    With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.

  1. Concept of a spatial data infrastructure for web-mapping, processing and service provision for geo-hazards

    NASA Astrophysics Data System (ADS)

    Weinke, Elisabeth; Hölbling, Daniel; Albrecht, Florian; Friedl, Barbara

    2017-04-01

    Geo-hazards and their effects are distributed geographically over wide regions. The effective mapping and monitoring is essential for hazard assessment and mitigation. It is often best achieved using satellite imagery and new object-based image analysis approaches to identify and delineate geo-hazard objects (landslides, floods, forest fires, storm damages, etc.). At the moment, several local/national databases and platforms provide and publish data of different types of geo-hazards as well as web-based risk maps and decision support systems. Also, the European commission implemented the Copernicus Emergency Management Service (EMS) in 2015 that publishes information about natural and man-made disasters and risks. Currently, no platform for landslides or geo-hazards as such exists that enables the integration of the user in the mapping and monitoring process. In this study we introduce the concept of a spatial data infrastructure for object delineation, web-processing and service provision of landslide information with the focus on user interaction in all processes. A first prototype for the processing and mapping of landslides in Austria and Italy has been developed within the project Land@Slide, funded by the Austrian Research Promotion Agency FFG in the Austrian Space Applications Program ASAP. The spatial data infrastructure and its services for the mapping, processing and analysis of landslides can be extended to other regions and to all types of geo-hazards for analysis and delineation based on Earth Observation (EO) data. The architecture of the first prototypical spatial data infrastructure includes four main areas of technical components. The data tier consists of a file storage system and the spatial data catalogue for the management of EO-data, other geospatial data on geo-hazards, as well as descriptions and protocols for the data processing and analysis. An interface to extend the data integration from external sources (e.g. Sentinel-2 data) is planned for the possibility of rapid mapping. The server tier consists of java based web and GIS server. Sub and main services are part of the service tier. Sub services are for example map services, feature editing services, geometry services, geoprocessing services and metadata services. For (meta)data provision and to support data interoperability, web standards of the OGC and the rest-interface is used. Four central main services are designed and developed: (1) a mapping service (including image segmentation and classification approaches), (2) a monitoring service to monitor changes over time, (3) a validation service to analyze landslide delineations from different sources and (4) an infrastructure service to identify affected landslides. The main services use and combine parts of the sub services. Furthermore, a series of client applications based on new technology standards making use of the data and services offered by the spatial data infrastructure. Next steps include the design to extend the current spatial data infrastructure to other areas and geo-hazard types to develop a spatial data infrastructure that can assist targeted mapping and monitoring of geo-hazards on a global context.

  2. Metaphorical mapping between raw-cooked food and strangeness-familiarity in Chinese culture.

    PubMed

    Deng, Xiaohong; Qu, Yuan; Zheng, Huihui; Lu, Yang; Zhong, Xin; Ward, Anne; Li, Zijun

    2017-02-01

    Previous research has demonstrated metaphorical mappings between physical coldness-warmth and social distance-closeness. Since the concepts of interpersonal warmth are frequently expressed in terms of food-related words in Chinese, the present study sought to explore whether the concept of raw-cooked food could be unconsciously and automatically mapped onto strangeness-familiarity. After rating the nutritive value of raw or cooked foods, participants were presented with morphing movies in which their acquaintances gradually transformed into strangers or strangers gradually morphed into acquaintances, and were asked to stop the movies when the combined images became predominantly target faces. The results demonstrated that unconscious and automatic metaphorical mappings between raw-cooked food and strangeness-familiarity exist. This study provides a foundation for testing whether Chinese people can think about interpersonal familiarity using mental representations of raw-cooked food and supports cognitive metaphor theory from a crosslinguistic perspective.

  3. PSF mapping-based correction of eddy-current-induced distortions in diffusion-weighted echo-planar imaging.

    PubMed

    In, Myung-Ho; Posnansky, Oleg; Speck, Oliver

    2016-05-01

    To accurately correct diffusion-encoding direction-dependent eddy-current-induced geometric distortions in diffusion-weighted echo-planar imaging (DW-EPI) and to minimize the calibration time at 7 Tesla (T). A point spread function (PSF) mapping based eddy-current calibration method is newly presented to determine eddy-current-induced geometric distortions even including nonlinear eddy-current effects within the readout acquisition window. To evaluate the temporal stability of eddy-current maps, calibration was performed four times within 3 months. Furthermore, spatial variations of measured eddy-current maps versus their linear superposition were investigated to enable correction in DW-EPIs with arbitrary diffusion directions without direct calibration. For comparison, an image-based eddy-current correction method was additionally applied. Finally, this method was combined with a PSF-based susceptibility-induced distortion correction approach proposed previously to correct both susceptibility and eddy-current-induced distortions in DW-EPIs. Very fast eddy-current calibration in a three-dimensional volume is possible with the proposed method. The measured eddy-current maps are very stable over time and very similar maps can be obtained by linear superposition of principal-axes eddy-current maps. High resolution in vivo brain results demonstrate that the proposed method allows more efficient eddy-current correction than the image-based method. The combination of both PSF-based approaches allows distortion-free images, which permit reliable analysis in diffusion tensor imaging applications at 7T. © 2015 Wiley Periodicals, Inc.

  4. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    PubMed

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Organization and integration of biomedical knowledge with concept maps for key peroxisomal pathways.

    PubMed

    Willemsen, A M; Jansen, G A; Komen, J C; van Hooff, S; Waterham, H R; Brites, P M T; Wanders, R J A; van Kampen, A H C

    2008-08-15

    One important area of clinical genomics research involves the elucidation of molecular mechanisms underlying (complex) disorders which eventually may lead to new diagnostic or drug targets. To further advance this area of clinical genomics one of the main challenges is the acquisition and integration of data, information and expert knowledge for specific biomedical domains and diseases. Currently the required information is not very well organized but scattered over biological and biomedical databases, basic text books, scientific literature and experts' minds and may be highly specific, heterogeneous, complex and voluminous. We present a new framework to construct knowledge bases with concept maps for presentation of information and the web ontology language OWL for the representation of information. We demonstrate this framework through the construction of a peroxisomal knowledge base, which focuses on four key peroxisomal pathways and several related genetic disorders. All 155 concept maps in our knowledge base are linked to at least one other concept map, which allows the visualization of one big network of related pieces of information. The peroxisome knowledge base is available from www.bioinformaticslaboratory.nl (Support-->Web applications). Supplementary data is available from www.bioinformaticslaboratory.nl (Research-->Output--> Publications--> KB_SuppInfo)

  6. Detection of bone disease by hybrid SST-watershed x-ray image segmentation

    NASA Astrophysics Data System (ADS)

    Sanei, Saeid; Azron, Mohammad; Heng, Ong Sim

    2001-07-01

    Detection of diagnostic features from X-ray images is favorable due to the low cost of these images. Accurate detection of the bone metastasis region greatly assists physicians to monitor the treatment and to remove the cancerous tissue by surgery. A hybrid SST-watershed algorithm, here, efficiently detects the boundary of the diseased regions. Shortest Spanning Tree (SST), based on graph theory, is one of the most powerful tools in grey level image segmentation. The method converts the images into arbitrary-shape closed segments of distinct grey levels. To do that, the image is initially mapped to a tree. Then using RSST algorithm the image is segmented to a certain number of arbitrary-shaped regions. However, in fine segmentation, over-segmentation causes loss of objects of interest. In coarse segmentation, on the other hand, SST-based method suffers from merging the regions belonged to different objects. By applying watershed algorithm, the large segments are divided into the smaller regions based on the number of catchment's basins for each segment. The process exploits bi-level watershed concept to separate each multi-lobe region into a number of areas each corresponding to an object (in our case a cancerous region of the bone,) disregarding their homogeneity in grey level.

  7. Responsive, Flexible and Scalable Broader Impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Decharon, A.; Companion, C.; Steinman, M.

    2010-12-01

    In many educator professional development workshops, scientists present content in a slideshow-type format and field questions afterwards. Drawbacks of this approach include: inability to begin the lecture with content that is responsive to audience needs; lack of flexible access to specific material within the linear presentation; and “Q&A” sessions are not easily scalable to broader audiences. Often this type of traditional interaction provides little direct benefit to the scientists. The Centers for Ocean Sciences Education Excellence - Ocean Systems (COSEE-OS) applies the technique of concept mapping with demonstrated effectiveness in helping scientists and educators “get on the same page” (deCharon et al., 2009). A key aspect is scientist professional development geared towards improving face-to-face and online communication with non-scientists. COSEE-OS promotes scientist-educator collaboration, tests the application of scientist-educator maps in new contexts through webinars, and is piloting the expansion of maps as long-lived resources for the broader community. Collaboration - COSEE-OS has developed and tested a workshop model bringing scientists and educators together in a peer-oriented process, often clarifying common misconceptions. Scientist-educator teams develop online concept maps that are hyperlinked to “assets” (i.e., images, videos, news) and are responsive to the needs of non-scientist audiences. In workshop evaluations, 91% of educators said that the process of concept mapping helped them think through science topics and 89% said that concept mapping helped build a bridge of communication with scientists (n=53). Application - After developing a concept map, with COSEE-OS staff assistance, scientists are invited to give webinar presentations that include live “Q&A” sessions. The webinars extend the reach of scientist-created concept maps to new contexts, both geographically and topically (e.g., oil spill), with a relatively small investment of time. Initiated in summer 2010, the webinars are interactive and highly flexible: people can participate from their homes anywhere and can interact according to their comfort levels (i.e., submitting questions in “chat boxes” rather than orally). Expansion - To expand scientists’ research beyond educators attending a workshop or webinar, COSEE-OS uses a blog as an additional mode of communication. Topically focused by concept maps, blogs serve as a forum for scalable content. The varied types of formatting allow scientists to create long-lived resources that remain attributed to them while supporting sustained educator engagement. Blogs are another point of contact and allow educators further asynchronous access to scientists. Based on COSEE-OS evaluations, interacting on a blog was found to be educators’ preferred method of following up with scientists. Sustained engagement of scientists or educators requires a specific return on investment. Workshops and web tools can be used together to maximize scientist impact with a relatively small investment of time. As one educator stated, “It really helps my students’ interest when we discuss concepts and I tell them my knowledge comes directly from a scientist!” [A. deCharon et al. (2009), Online tools help get scientists and educators on the same page, Eos Transactions, American Geophysical Union, 90(34), 289-290.

  8. Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognitive Functions

    DTIC Science & Technology

    2017-05-14

    AFRL-AFOSR-JP-TR-2017-0052 Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions...invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions 5a.  CONTRACT NUMBER 5b.  GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT Brain stress level measurement (non-invasively) in quantitative term is very helpful to correlate with various

  9. Non invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions

    DTIC Science & Technology

    2017-05-14

    AFRL-AFOSR-JP-TR-2017-0052 Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions...invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions 5a.  CONTRACT NUMBER 5b.  GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT Brain stress level measurement (non-invasively) in quantitative term is very helpful to correlate with various

  10. Urban Land Cover/use Change Detection Using High Resolution SPOT 5 and SPOT 6 Images and Urban Atlas Nomenclature

    NASA Astrophysics Data System (ADS)

    Akay, S. S.; Sertel, E.

    2016-06-01

    Urban land cover/use changes like urbanization and urban sprawl have been impacting the urban ecosystems significantly therefore determination of urban land cover/use changes is an important task to understand trends and status of urban ecosystems, to support urban planning and to aid decision-making for urban-based projects. High resolution satellite images could be used to accurately, periodically and quickly map urban land cover/use and their changes by time. This paper aims to determine urban land cover/use changes in Gaziantep city centre between 2010 and 2105 using object based images analysis and high resolution SPOT 5 and SPOT 6 images. 2.5 m SPOT 5 image obtained in 5th of June 2010 and 1.5 m SPOT 6 image obtained in 7th of July 2015 were used in this research to precisely determine land changes in five-year period. In addition to satellite images, various ancillary data namely Normalized Difference Vegetation Index (NDVI), Difference Water Index (NDWI) maps, cadastral maps, OpenStreetMaps, road maps and Land Cover maps, were integrated into the classification process to produce high accuracy urban land cover/use maps for these two years. Both images were geometrically corrected to fulfil the 1/10,000 scale geometric accuracy. Decision tree based object oriented classification was applied to identify twenty different urban land cover/use classes defined in European Urban Atlas project. Not only satellite images and satellite image-derived indices but also different thematic maps were integrated into decision tree analysis to create rule sets for accurate mapping of each class. Rule sets of each satellite image for the object based classification involves spectral, spatial and geometric parameter to automatically produce urban map of the city centre region. Total area of each class per related year and their changes in five-year period were determined and change trend in terms of class transformation were presented. Classification accuracy assessment was conducted by creating a confusion matrix to illustrate the thematic accuracy of each class.

  11. Multi-focus image fusion using a guided-filter-based difference image.

    PubMed

    Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Yang, Tingwu

    2016-03-20

    The aim of multi-focus image fusion technology is to integrate different partially focused images into one all-focused image. To realize this goal, a new multi-focus image fusion method based on a guided filter is proposed and an efficient salient feature extraction method is presented in this paper. Furthermore, feature extraction is primarily the main objective of the present work. Based on salient feature extraction, the guided filter is first used to acquire the smoothing image containing the most sharpness regions. To obtain the initial fusion map, we compose a mixed focus measure by combining the variance of image intensities and the energy of the image gradient together. Then, the initial fusion map is further processed by a morphological filter to obtain a good reprocessed fusion map. Lastly, the final fusion map is determined via the reprocessed fusion map and is optimized by a guided filter. Experimental results demonstrate that the proposed method does markedly improve the fusion performance compared to previous fusion methods and can be competitive with or even outperform state-of-the-art fusion methods in terms of both subjective visual effects and objective quality metrics.

  12. Cluster compression algorithm: A joint clustering/data compression concept

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.

    1977-01-01

    The Cluster Compression Algorithm (CCA), which was developed to reduce costs associated with transmitting, storing, distributing, and interpreting LANDSAT multispectral image data is described. The CCA is a preprocessing algorithm that uses feature extraction and data compression to more efficiently represent the information in the image data. The format of the preprocessed data enables simply a look-up table decoding and direct use of the extracted features to reduce user computation for either image reconstruction, or computer interpretation of the image data. Basically, the CCA uses spatially local clustering to extract features from the image data to describe spectral characteristics of the data set. In addition, the features may be used to form a sequence of scalar numbers that define each picture element in terms of the cluster features. This sequence, called the feature map, is then efficiently represented by using source encoding concepts. Various forms of the CCA are defined and experimental results are presented to show trade-offs and characteristics of the various implementations. Examples are provided that demonstrate the application of the cluster compression concept to multi-spectral images from LANDSAT and other sources.

  13. Determination of skeleton and sign map for phase obtaining from a single ESPI image

    NASA Astrophysics Data System (ADS)

    Yang, Xia; Yu, Qifeng; Fu, Sihua

    2009-06-01

    A robust method of determining the sign map and skeletons for ESPI images is introduced in this paper. ESPI images have high speckle noise which makes it difficult to obtain the fringe information, especially from a single image. To overcome the effects of high speckle noise, local directional computing windows are designed according to the fringe directions. Then by calculating the gradients from the filtered image in directional windows, sign map and good skeletons can be determined robustly. Based on the sign map, single image phase-extracting methods such as quadrature transform can be improved. And based on skeletons, fringe phases can be obtained directly by normalization methods. Experiments show that this new method is robust and effective for extracting phase from a single ESPI fringe image.

  14. Using low-cost drones to map malaria vector habitats.

    PubMed

    Hardy, Andy; Makame, Makame; Cross, Dónall; Majambere, Silas; Msellem, Mwinyi

    2017-01-14

    There is a growing awareness that if we are to achieve the ambitious goal of malaria elimination, we must compliment indoor-based vector control interventions (such as bednets and indoor spraying) with outdoor-based interventions such as larval source management (LSM). The effectiveness of LSM is limited by our capacity to identify and map mosquito aquatic habitats. This study provides a proof of concept for the use of a low-cost (< $1000) drone (DJI Phantom) for mapping water bodies in seven sites across Zanzibar including natural water bodies, irrigated and non-irrigated rice paddies, peri-urban and urban locations. With flying times of less than 30 min for each site, high-resolution (7 cm) georeferenced images were successfully generated for each of the seven sites, covering areas up to 30 ha. Water bodies were readily identifiable in the imagery, as well as ancillary information for planning LSM activities (access routes to water bodies by road and foot) and public health management (e.g. identification of drinking water sources, mapping individual households and the nature of their construction). The drone-based surveys carried out in this study provide a low-cost and flexible solution to mapping water bodies for operational dissemination of LSM initiatives in mosquito vector-borne disease elimination campaigns. Generated orthomosaics can also be used to provide vital information for other public health planning activities.

  15. Diffusion Tensor Magnetic Resonance Imaging Strategies for Color Mapping of Human Brain Anatomy

    PubMed Central

    Boujraf, Saïd

    2018-01-01

    Background: A color mapping of fiber tract orientation using diffusion tensor imaging (DTI) can be prominent in clinical practice. The goal of this paper is to perform a comparative study of visualized diffusion anisotropy in the human brain anatomical entities using three different color-mapping techniques based on diffusion-weighted imaging (DWI) and DTI. Methods: The first technique is based on calculating a color map from DWIs measured in three perpendicular directions. The second technique is based on eigenvalues derived from the diffusion tensor. The last technique is based on three eigenvectors corresponding to sorted eigenvalues derived from the diffusion tensor. All magnetic resonance imaging measurements were achieved using a 1.5 Tesla Siemens Vision whole body imaging system. A single-shot DW echoplanar imaging sequence used a Stejskal–Tanner approach. Trapezoidal diffusion gradients are used. The slice orientation was transverse. The basic measurement yielded a set of 13 images. Each series consists of a single image without diffusion weighting, besides two DWIs for each of the next six noncollinear magnetic field gradient directions. Results: The three types of color maps were calculated consequently using the DWI obtained and the DTI. Indeed, we established an excellent similarity between the image data in the color maps and the fiber directions of known anatomical structures (e.g., corpus callosum and gray matter). Conclusions: In the meantime, rotationally invariant quantities such as the eigenvectors of the diffusion tensor reflected better, the real orientation found in the studied tissue. PMID:29928631

  16. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor.

    PubMed

    Kim, Heegwang; Park, Jinho; Park, Hasil; Paik, Joonki

    2017-12-09

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system.

  17. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor

    PubMed Central

    Park, Jinho; Park, Hasil

    2017-01-01

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system. PMID:29232826

  18. The effects of AVIRIS atmospheric calibration methodology on identification and quantitative mapping of surface mineralogy, Drum Mountains, Utah

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Dwyer, John L.

    1993-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures reflected light in 224 contiguous spectra bands in the 0.4 to 2.45 micron region of the electromagnetic spectrum. Numerous studies have used these data for mineralogic identification and mapping based on the presence of diagnostic spectral features. Quantitative mapping requires conversion of the AVIRIS data to physical units (usually reflectance) so that analysis results can be compared and validated with field and laboratory measurements. This study evaluated two different AVIRIS calibration techniques to ground reflectance: an empirically-based method and an atmospheric model based method to determine their effects on quantitative scientific analyses. Expert system analysis and linear spectral unmixing were applied to both calibrated data sets to determine the effect of the calibration on the mineral identification and quantitative mapping results. Comparison of the image-map results and image reflectance spectra indicate that the model-based calibrated data can be used with automated mapping techniques to produce accurate maps showing the spatial distribution and abundance of surface mineralogy. This has positive implications for future operational mapping using AVIRIS or similar imaging spectrometer data sets without requiring a priori knowledge.

  19. Sea-Floor Images and Data from Multibeam Surveys in San Francisco Bay, Southern California, Hawaii, the Gulf of Mexico, and Lake Tahoe, California-Nevada

    USGS Publications Warehouse

    Dartnell, Peter; Gardiner, James V.

    1999-01-01

    Accurate base maps are a prerequisite for any geologic study, regardless of the objectives. Land-based studies commonly utilize aerial photographs, USGS 7.5-minute quadrangle maps, and satellite images as base maps. Until now, studies that involve the ocean floor have been at a disadvantage due to an almost complete lack of accurate marine base maps. Many base maps of the sea floor have been constructed over the past century but with a wide range in navigational and depth accuracies. Only in the past few years has marine surveying technology advanced far enough to produce navigational accuracy of 1 meter and depth resolutions of 50 centimeters. The Pacific Seafloor Mapping Project of the U.S. Geological Survey's, Western Coastal and Marine Geology Program, Menlo Park, California, U.S.A., in cooperation with the Ocean Mapping Group, University of New Brunswick, Fredericton, Canada, is using this new technology to systematically map the ocean floor and lakes. This type of marine surveying, called multibeam surveying, collects high-resolution bathymetric and backscatter data that can be used for various base maps, GIS coverages, and scientific visualization methods. This is an interactive CD-ROM that contains images, movies, and data of all the surveys the Pacific Seafloor Mapping Project has completed up to January 1999. The images and movies on this CD-ROM, such as shaded relief of the bathymetry, backscatter, oblique views, 3-D views, and QuickTime movies help the viewer to visualize the multibeam data. This CD-ROM also contains ARC/INFO export (.e00) files and full-resolution TIFF images of all the survey sites that can be downloaded and used in many GIS packages.

  20. Challenges and complications in neighborhood mapping: from neighborhood concept to operationalization

    NASA Astrophysics Data System (ADS)

    Deng, Yongxin

    2016-07-01

    This paper examines complications in neighborhood mapping and corresponding challenges for the GIS community, taking both a conceptual and a methodological perspective. It focuses on the social and spatial dimensions of the neighborhood concept and highlights their relationship in neighborhood mapping. Following a brief summary of neighborhood definitions, five interwoven factors are identified to be origins of neighborhood mapping difficulties: conceptual vagueness, uncertainty of various sources, GIS representation, scale, and neighborhood homogeneity or continuity. Existing neighborhood mapping methods are grouped into six categories to be assessed: perception based, physically based, inference based, preexisting, aggregated, and automated. Mapping practices in various neighborhood-related disciplines and applications are cited as examples to demonstrate how the methods work, as well as how they should be evaluated. A few mapping strategies for the improvement of neighborhood mapping are prescribed from a GIS perspective: documenting simplifications employed in the mapping procedure, addressing uncertainty sources, developing new data solutions, and integrating complementary mapping methods. Incorporation of high-resolution data and introduction of more GIS ideas and methods (such as fuzzy logic) are identified to be future opportunities.

  1. Regional Lung Ventilation Analysis Using Temporally Resolved Magnetic Resonance Imaging.

    PubMed

    Kolb, Christoph; Wetscherek, Andreas; Buzan, Maria Teodora; Werner, René; Rank, Christopher M; Kachelrie, Marc; Kreuter, Michael; Dinkel, Julien; Heuel, Claus Peter; Maier-Hein, Klaus

    We propose a computer-aided method for regional ventilation analysis and observation of lung diseases in temporally resolved magnetic resonance imaging (4D MRI). A shape model-based segmentation and registration workflow was used to create an atlas-derived reference system in which regional tissue motion can be quantified and multimodal image data can be compared regionally. Model-based temporal registration of the lung surfaces in 4D MRI data was compared with the registration of 4D computed tomography (CT) images. A ventilation analysis was performed on 4D MR images of patients with lung fibrosis; 4D MR ventilation maps were compared with corresponding diagnostic 3D CT images of the patients and 4D CT maps of subjects without impaired lung function (serving as reference). Comparison between the computed patient-specific 4D MR regional ventilation maps and diagnostic CT images shows good correlation in conspicuous regions. Comparison to 4D CT-derived ventilation maps supports the plausibility of the 4D MR maps. Dynamic MRI-based flow-volume loops and spirograms further visualize the free-breathing behavior. The proposed methods allow for 4D MR-based regional analysis of tissue dynamics and ventilation in spontaneous breathing and comparison of patient data. The proposed atlas-based reference coordinate system provides an automated manner of annotating and comparing multimodal lung image data.

  2. Visual scan-path analysis with feature space transient fixation moments

    NASA Astrophysics Data System (ADS)

    Dempere-Marco, Laura; Hu, Xiao-Peng; Yang, Guang-Zhong

    2003-05-01

    The study of eye movements provides useful insight into the cognitive processes underlying visual search tasks. The analysis of the dynamics of eye movements has often been approached from a purely spatial perspective. In many cases, however, it may not be possible to define meaningful or consistent dynamics without considering the features underlying the scan paths. In this paper, the definition of the feature space has been attempted through the concept of visual similarity and non-linear low dimensional embedding, which defines a mapping from the image space into a low dimensional feature manifold that preserves the intrinsic similarity of image patterns. This has enabled the definition of perceptually meaningful features without the use of domain specific knowledge. Based on this, this paper introduces a new concept called Feature Space Transient Fixation Moments (TFM). The approach presented tackles the problem of feature space representation of visual search through the use of TFM. We demonstrate the practical values of this concept for characterizing the dynamics of eye movements in goal directed visual search tasks. We also illustrate how this model can be used to elucidate the fundamental steps involved in skilled search tasks through the evolution of transient fixation moments.

  3. Medical Image Fusion Based on Feature Extraction and Sparse Representation

    PubMed Central

    Wei, Gao; Zongxi, Song

    2017-01-01

    As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision map is proposed to deal with these problems simultaneously. Three decision maps are designed including structure information map (SM) and energy information map (EM) as well as structure and energy map (SEM) to make the results reserve more energy and edge information. SM contains the local structure feature captured by the Laplacian of a Gaussian (LOG) and EM contains the energy and energy distribution feature detected by the mean square deviation. The decision map is added to the normal sparse representation based method to improve the speed of the algorithm. Proposed approach also improves the quality of the fused results by enhancing the contrast and reserving more structure and energy information from the source images. The experiment results of 36 groups of CT/MR, MR-T1/MR-T2, and CT/PET images demonstrate that the method based on SR and SEM outperforms five state-of-the-art methods. PMID:28321246

  4. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model

    PubMed Central

    Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  5. The Application of MRI for Depiction of Subtle Blood Brain Barrier Disruption in Stroke

    PubMed Central

    Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael

    2011-01-01

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum. A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in conventional MRI. These results demonstrate the advantages of delayed contrast extravasation in increasing the sensitivity to subtle BBB disruption in ischemic stroke patients. The calculated disruption maps provide clear depiction of significant volumes of BBB disruption unattainable by conventional contrast-enhanced MRI. PMID:21209786

  6. The application of MRI for depiction of subtle blood brain barrier disruption in stroke.

    PubMed

    Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael

    2010-12-26

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum. A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in conventional MRI. These results demonstrate the advantages of delayed contrast extravasation in increasing the sensitivity to subtle BBB disruption in ischemic stroke patients. The calculated disruption maps provide clear depiction of significant volumes of BBB disruption unattainable by conventional contrast-enhanced MRI.

  7. Fostering clinical reasoning in physiotherapy: comparing the effects of concept map study and concept map completion after example study in novice and advanced learners.

    PubMed

    Montpetit-Tourangeau, Katherine; Dyer, Joseph-Omer; Hudon, Anne; Windsor, Monica; Charlin, Bernard; Mamede, Sílvia; van Gog, Tamara

    2017-12-01

    Health profession learners can foster clinical reasoning by studying worked examples presenting fully worked out solutions to a clinical problem. It is possible to improve the learning effect of these worked examples by combining them with other learning activities based on concept maps. This study investigated which combinaison of activities, worked examples study with concept map completion or worked examples study with concept map study, fosters more meaningful learning of intervention knowledge in physiotherapy students. Moreover, this study compared the learning effects of these learning activity combinations between novice and advanced learners. Sixty-one second-year physiotherapy students participated in the study which included a pre-test phase, a 130-min guided-learning phase and a four-week self-study phase. During the guided and self-study learning sessions, participants had to study three written worked examples presenting the clinical reasoning for selecting electrotherapeutic currents to treat patients with motor deficits. After each example, participants engaged in either concept map completion or concept map study depending on which learning condition they were randomly allocated to. Students participated in an immediate post-test at the end of the guided-learning phase and a delayed post-test at the end of the self-study phase. Post-tests assessed the understanding of principles governing the domain of knowledge to be learned (conceptual knowledge) and the ability to solve new problems that have similar (i.e., near transfer) or different (i.e., far transfer) solution rationales as problems previously studied in the examples. Learners engaged in concept map completion outperformed those engaged in concept map study on near transfer (p = .010) and far transfer (p < .001) performance. There was a significant interaction effect of learners' prior ability and learning condition on conceptual knowledge but not on near and far transfer performance. Worked examples study combined with concept map completion led to greater transfer performance than worked examples study combined with concept map study for both novice and advanced learners. Concept map completion might give learners better insight into what they have and have not yet learned, allowing them to focus on those aspects during subsequent example study.

  8. A web-based system for supporting global land cover data production

    NASA Astrophysics Data System (ADS)

    Han, Gang; Chen, Jun; He, Chaoying; Li, Songnian; Wu, Hao; Liao, Anping; Peng, Shu

    2015-05-01

    Global land cover (GLC) data production and verification process is very complicated, time consuming and labor intensive, requiring huge amount of imagery data and ancillary data and involving many people, often from different geographic locations. The efficient integration of various kinds of ancillary data and effective collaborative classification in large area land cover mapping requires advanced supporting tools. This paper presents the design and development of a web-based system for supporting 30-m resolution GLC data production by combining geo-spatial web-service and Computer Support Collaborative Work (CSCW) technology. Based on the analysis of the functional and non-functional requirements from GLC mapping, a three tiers system model is proposed with four major parts, i.e., multisource data resources, data and function services, interactive mapping and production management. The prototyping and implementation of the system have been realised by a combination of Open Source Software (OSS) and commercially available off-the-shelf system. This web-based system not only facilitates the integration of heterogeneous data and services required by GLC data production, but also provides online access, visualization and analysis of the images, ancillary data and interim 30 m global land-cover maps. The system further supports online collaborative quality check and verification workflows. It has been successfully applied to China's 30-m resolution GLC mapping project, and has improved significantly the efficiency of GLC data production and verification. The concepts developed through this study should also benefit other GLC or regional land-cover data production efforts.

  9. Towards case-based medical learning in radiological decision making using content-based image retrieval

    PubMed Central

    2011-01-01

    Background Radiologists' training is based on intensive practice and can be improved with the use of diagnostic training systems. However, existing systems typically require laboriously prepared training cases and lack integration into the clinical environment with a proper learning scenario. Consequently, diagnostic training systems advancing decision-making skills are not well established in radiological education. Methods We investigated didactic concepts and appraised methods appropriate to the radiology domain, as follows: (i) Adult learning theories stress the importance of work-related practice gained in a team of problem-solvers; (ii) Case-based reasoning (CBR) parallels the human problem-solving process; (iii) Content-based image retrieval (CBIR) can be useful for computer-aided diagnosis (CAD). To overcome the known drawbacks of existing learning systems, we developed the concept of image-based case retrieval for radiological education (IBCR-RE). The IBCR-RE diagnostic training is embedded into a didactic framework based on the Seven Jump approach, which is well established in problem-based learning (PBL). In order to provide a learning environment that is as similar as possible to radiological practice, we have analysed the radiological workflow and environment. Results We mapped the IBCR-RE diagnostic training approach into the Image Retrieval in Medical Applications (IRMA) framework, resulting in the proposed concept of the IRMAdiag training application. IRMAdiag makes use of the modular structure of IRMA and comprises (i) the IRMA core, i.e., the IRMA CBIR engine; and (ii) the IRMAcon viewer. We propose embedding IRMAdiag into hospital information technology (IT) infrastructure using the standard protocols Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7). Furthermore, we present a case description and a scheme of planned evaluations to comprehensively assess the system. Conclusions The IBCR-RE paradigm incorporates a novel combination of essential aspects of diagnostic learning in radiology: (i) Provision of work-relevant experiences in a training environment integrated into the radiologist's working context; (ii) Up-to-date training cases that do not require cumbersome preparation because they are provided by routinely generated electronic medical records; (iii) Support of the way adults learn while remaining suitable for the patient- and problem-oriented nature of medicine. Future work will address unanswered questions to complete the implementation of the IRMAdiag trainer. PMID:22032775

  10. Towards case-based medical learning in radiological decision making using content-based image retrieval.

    PubMed

    Welter, Petra; Deserno, Thomas M; Fischer, Benedikt; Günther, Rolf W; Spreckelsen, Cord

    2011-10-27

    Radiologists' training is based on intensive practice and can be improved with the use of diagnostic training systems. However, existing systems typically require laboriously prepared training cases and lack integration into the clinical environment with a proper learning scenario. Consequently, diagnostic training systems advancing decision-making skills are not well established in radiological education. We investigated didactic concepts and appraised methods appropriate to the radiology domain, as follows: (i) Adult learning theories stress the importance of work-related practice gained in a team of problem-solvers; (ii) Case-based reasoning (CBR) parallels the human problem-solving process; (iii) Content-based image retrieval (CBIR) can be useful for computer-aided diagnosis (CAD). To overcome the known drawbacks of existing learning systems, we developed the concept of image-based case retrieval for radiological education (IBCR-RE). The IBCR-RE diagnostic training is embedded into a didactic framework based on the Seven Jump approach, which is well established in problem-based learning (PBL). In order to provide a learning environment that is as similar as possible to radiological practice, we have analysed the radiological workflow and environment. We mapped the IBCR-RE diagnostic training approach into the Image Retrieval in Medical Applications (IRMA) framework, resulting in the proposed concept of the IRMAdiag training application. IRMAdiag makes use of the modular structure of IRMA and comprises (i) the IRMA core, i.e., the IRMA CBIR engine; and (ii) the IRMAcon viewer. We propose embedding IRMAdiag into hospital information technology (IT) infrastructure using the standard protocols Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7). Furthermore, we present a case description and a scheme of planned evaluations to comprehensively assess the system. The IBCR-RE paradigm incorporates a novel combination of essential aspects of diagnostic learning in radiology: (i) Provision of work-relevant experiences in a training environment integrated into the radiologist's working context; (ii) Up-to-date training cases that do not require cumbersome preparation because they are provided by routinely generated electronic medical records; (iii) Support of the way adults learn while remaining suitable for the patient- and problem-oriented nature of medicine. Future work will address unanswered questions to complete the implementation of the IRMAdiag trainer.

  11. Critical thinking in graduate medical education: A role for concept mapping assessment?

    PubMed

    West, D C; Pomeroy, J R; Park, J K; Gerstenberger, E A; Sandoval, J

    2000-09-06

    Tools to assess the evolving conceptual framework of physicians-in-training are limited, despite their critical importance to physicians' evolving clinical expertise. Concept mapping assessment (CMA) enables teachers to view students' organization of their knowledge at various points in training. To assess whether CMA reflects expected differences and changes in the conceptual framework of resident physicians, whether concept maps can be scored reliably, and how well CMA scores relate to the results of standard in-training examination. A group of 21 resident physicians (9 first-year and 12 second- and third-year residents) from a university-based pediatric training program underwent concept map training, drew a preinstruction concept map about seizures, completed an education course on seizures, and then drew a postinstruction map. Maps were scored independently by 3 raters using a standardized method. The study was conducted in May and June 1999. Preinstruction map total scores and subscores in 4 categories compared with postinstruction map scores; map scores of second- and third-year residents compared with first-year residents; and interrater correlation of map scores. Total CMA scores increased after instruction from a mean (SD) preinstruction map score of 429 (119) to a mean postinstruction map score of 516 (196) (P =.03). Second- and third-year residents scored significantly higher than first-year residents before instruction (mean [SD] score of 472 [116] vs 371 [102], respectively; P =.04), but not after instruction (mean [SD] scores, 561 [203] vs 456 [179], respectively; P =.16). Second- and third-year residents had greater preinstruction map complexity as measured by cross-link score (P =.01) than first-year residents. The CMA score had a weak to no correlation with the American Board of Pediatrics In-training Examination score (r = 0.10-0.54). Interrater correlation of map scoring ranged from weak to moderate for the preinstruction map (r = 0.51-0.69) and moderate to strong for the postinstruction map (r = 0.74-0.88). Our data provide preliminary evidence that concept mapping assessment reflects expected differences and change in the conceptual framework of resident physicians. Concept mapping assessment and standardized testing may measure different cognitive domains. JAMA. 2000;284:1105-1110

  12. Mapping and monitoring changes in vegetation communities of Jasper Ridge, CA, using spectral fractions derived from AVIRIS images

    NASA Technical Reports Server (NTRS)

    Sabol, Donald E., Jr.; Roberts, Dar A.; Adams, John B.; Smith, Milton O.

    1993-01-01

    An important application of remote sensing is to map and monitor changes over large areas of the land surface. This is particularly significant with the current interest in monitoring vegetation communities. Most of traditional methods for mapping different types of plant communities are based upon statistical classification techniques (i.e., parallel piped, nearest-neighbor, etc.) applied to uncalibrated multispectral data. Classes from these techniques are typically difficult to interpret (particularly to a field ecologist/botanist). Also, classes derived for one image can be very different from those derived from another image of the same area, making interpretation of observed temporal changes nearly impossible. More recently, neural networks have been applied to classification. Neural network classification, based upon spectral matching, is weak in dealing with spectral mixtures (a condition prevalent in images of natural surfaces). Another approach to mapping vegetation communities is based on spectral mixture analysis, which can provide a consistent framework for image interpretation. Roberts et al. (1990) mapped vegetation using the band residuals from a simple mixing model (the same spectral endmembers applied to all image pixels). Sabol et al. (1992b) and Roberts et al. (1992) used different methods to apply the most appropriate spectral endmembers to each image pixel, thereby allowing mapping of vegetation based upon the the different endmember spectra. In this paper, we describe a new approach to classification of vegetation communities based upon the spectra fractions derived from spectral mixture analysis. This approach was applied to three 1992 AVIRIS images of Jasper Ridge, California to observe seasonal changes in surface composition.

  13. PathBot: A Radiology-Pathology Correlation Dashboard.

    PubMed

    Kelahan, Linda C; Kalaria, Amit D; Filice, Ross W

    2017-12-01

    Pathology is considered the "gold standard" of diagnostic medicine. The importance of radiology-pathology correlation is seen in interdepartmental patient conferences such as "tumor boards" and by the tradition of radiology resident immersion in a radiologic-pathology course at the American Institute of Radiologic Pathology. In practice, consistent pathology follow-up can be difficult due to time constraints and cumbersome electronic medical records. We present a radiology-pathology correlation dashboard that presents radiologists with pathology reports matched to their dictations, for both diagnostic imaging and image-guided procedures. In creating our dashboard, we utilized the RadLex ontology and National Center for Biomedical Ontology (NCBO) Annotator to identify anatomic concepts in pathology reports that could subsequently be mapped to relevant radiology reports, providing an automated method to match related radiology and pathology reports. Radiology-pathology matches are presented to the radiologist on a web-based dashboard. We found that our algorithm was highly specific in detecting matches. Our sensitivity was slightly lower than expected and could be attributed to missing anatomy concepts in the RadLex ontology, as well as limitations in our parent term hierarchical mapping and synonym recognition algorithms. By automating radiology-pathology correlation and presenting matches in a user-friendly dashboard format, we hope to encourage pathology follow-up in clinical radiology practice for purposes of self-education and to augment peer review. We also hope to provide a tool to facilitate the production of quality teaching files, lectures, and publications. Diagnostic images have a richer educational value when they are backed up by the gold standard of pathology.

  14. Image Mining in Remote Sensing for Coastal Wetlands Mapping: from Pixel Based to Object Based Approach

    NASA Astrophysics Data System (ADS)

    Farda, N. M.; Danoedoro, P.; Hartono; Harjoko, A.

    2016-11-01

    The availably of remote sensing image data is numerous now, and with a large amount of data it makes “knowledge gap” in extraction of selected information, especially coastal wetlands. Coastal wetlands provide ecosystem services essential to people and the environment. The aim of this research is to extract coastal wetlands information from satellite data using pixel based and object based image mining approach. Landsat MSS, Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI images located in Segara Anakan lagoon are selected to represent data at various multi temporal images. The input for image mining are visible and near infrared bands, PCA band, invers PCA bands, mean shift segmentation bands, bare soil index, vegetation index, wetness index, elevation from SRTM and ASTER GDEM, and GLCM (Harralick) or variability texture. There is three methods were applied to extract coastal wetlands using image mining: pixel based - Decision Tree C4.5, pixel based - Back Propagation Neural Network, and object based - Mean Shift segmentation and Decision Tree C4.5. The results show that remote sensing image mining can be used to map coastal wetlands ecosystem. Decision Tree C4.5 can be mapped with highest accuracy (0.75 overall kappa). The availability of remote sensing image mining for mapping coastal wetlands is very important to provide better understanding about their spatiotemporal coastal wetlands dynamics distribution.

  15. Towards an EO-based Landslide Web Mapping and Monitoring Service

    NASA Astrophysics Data System (ADS)

    Hölbling, Daniel; Weinke, Elisabeth; Albrecht, Florian; Eisank, Clemens; Vecchiotti, Filippo; Friedl, Barbara; Kociu, Arben

    2017-04-01

    National and regional authorities and infrastructure maintainers in mountainous regions require accurate knowledge of the location and spatial extent of landslides for hazard and risk management. Information on landslides is often collected by a combination of ground surveying and manual image interpretation following landslide triggering events. However, the high workload and limited time for data acquisition result in a trade-off between completeness, accuracy and detail. Remote sensing data offers great potential for mapping and monitoring landslides in a fast and efficient manner. While facing an increased availability of high-quality Earth Observation (EO) data and new computational methods, there is still a lack in science-policy interaction and in providing innovative tools and methods that can easily be used by stakeholders and users to support their daily work. Taking up this issue, we introduce an innovative and user-oriented EO-based web service for landslide mapping and monitoring. Three central design components of the service are presented: (1) the user requirements definition, (2) the semi-automated image analysis methods implemented in the service, and (3) the web mapping application with its responsive user interface. User requirements were gathered during semi-structured interviews with regional authorities. The potential users were asked if and how they employ remote sensing data for landslide investigation and what their expectations to a landslide web mapping service regarding reliability and usability are. The interviews revealed the capability of our service for landslide documentation and mapping as well as monitoring of selected landslide sites, for example to complete and update landslide inventory maps. In addition, the users see a considerable potential for landslide rapid mapping. The user requirements analysis served as basis for the service concept definition. Optical satellite imagery from different high resolution (HR) and very high resolution (VHR) sensors, e.g. Landsat, Sentinel-2, SPOT-5, WorldView-2/3, was acquired for different study areas in the Alps. Object-based image analysis (OBIA) methods were used for semi-automated mapping of landslides. Selected mapping routines and results, including a step-by-step guidance, are integrated in the service by means of a web processing chain. This allows the user to gain insights into the service idea, the potential of semi-automated mapping methods, and the applicability of various satellite data for specific landslide mapping tasks. Moreover, an easy-to use and guided classification workflow, which includes image segmentation, statistical classification and manual editing options, enables the user to perform his/her own analyses. For validation, the classification results can be downloaded or compared against uploaded reference data using the implemented tools. Furthermore, users can compare the classification results to freely available data such as OpenStreetMap to identify landslide-affected infrastructure (e.g. roads, buildings). They also can upload infrastructure data available at their organization for specific assessments or monitor the evolution of selected landslides over time. Further actions will include the validation of the service in collaboration with stakeholders, decision makers and experts, which is essential to produce landslide information products that can assist the targeted management of natural hazards, and the evaluation of the potential towards the development of an operational Copernicus downstream service.

  16. The cartography of Venus with Magellan data

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Morgan, H. F.; Russell, J. F.

    1993-01-01

    Maps of Venus based on Magellan data are being compiled at 1:50,000,000, 1:5,000,000 and 1:1,500,000 scales. Topographic contour lines based on radar altimetry data are overprinted on the image maps, along with feature nomenclature. Map controls are based on existing knowledge of the spacecraft orbit; photogrammetric triangulation, a traditional basis for geodetic control for bodies where framing cameras were used, is not feasible with the radar images of Venus. Preliminary synthetic aperture radar (SAR) image maps have some data gaps and cosmetic inconsistencies, which will be corrected on final compilations. Eventual revision of geodetic controls and of the adopted Venusian spin-axis location will result in geometric adjustments, particularly on large-scale maps.

  17. Geologic map of Ophir and central Candor Chasmata (MTM -05072) of Mars

    USGS Publications Warehouse

    Lucchitta, Baerbel K.

    1999-01-01

    The geologic map of Ophir and central Candor Chasmata is one of a series of 1:500,000 scale maps prepared for areas on Mars that are of particular scientific interest and may serve as potential future landing sites. This map is also part of a set that includes east Candor Chasma, west Candor Chasma, and Melas Chasma. The geologic interpretations are based dominantly on medium- and high-resolution Viking images, many of them stereoscopic, and supplemented by lower resolution apoapsis and other color images. A strip of very high resolution stereoscopic images (~20 m/pixel) crosses the central part of the quadrangle from northwest to southeast and served to clarify detailed relations not obvious on other images. A topographic map with contour intervals of 200 m was also used, as were multidirectional oblique images derived from merged image mosaics and topography (see fig. 1) (Bertolini and McEwen, 1990). Geologic relations and interpretations are based on the entire central Valles Marineris map set. The map area is included in the Valles Marineris map of Witbeck and others (1991), but units were defined independently. Age assignments, however, were integrated with those by Witbeck and others and Scott and Tanaka (1986).

  18. Advantage of spatial map ion imaging in the study of large molecule photodissociation

    NASA Astrophysics Data System (ADS)

    Lee, Chin; Lin, Yen-Cheng; Lee, Shih-Huang; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung

    2017-07-01

    The original ion imaging technique has low velocity resolution, and currently, photodissociation is mostly investigated using velocity map ion imaging. However, separating signals from the background (resulting from undissociated excited parent molecules) is difficult when velocity map ion imaging is used for the photodissociation of large molecules (number of atoms ≥ 10). In this study, we used the photodissociation of phenol at the S1 band origin as an example to demonstrate how our multimass ion imaging technique, based on modified spatial map ion imaging, can overcome this difficulty. The photofragment translational energy distribution obtained when multimass ion imaging was used differed considerably from that obtained when velocity map ion imaging and Rydberg atom tagging were used. We used conventional translational spectroscopy as a second method to further confirm the experimental results, and we conclude that data should be interpreted carefully when velocity map ion imaging or Rydberg atom tagging is used in the photodissociation of large molecules. Finally, we propose a modified velocity map ion imaging technique without the disadvantages of the current velocity map ion imaging technique.

  19. Tomographic phase microscopy and its biological applications

    NASA Astrophysics Data System (ADS)

    Choi, Wonshik

    2012-12-01

    Conventional interferometric microscopy techniques such as digital holographic microscopy and quantitative phase microscopy are often classified as 3D imaging techniques because a recorded complex field image can be numerically propagated to a different depth. In a strict sense, however, a single complex field image contains only 2D information on a specimen. The measured 2D image is only a subset of the 3D structure. For the 3D mapping of an object, multiple independent 2D images are to be taken, for example at multiple incident angles or wavelengths, and then combined by the so-called optical diffraction tomography (ODT). In this Letter, tomographic phase microscopy (TPM) is reviewed that experimentally realizes the concept of the ODT for the 3D mapping of biological cells in their native state, and some of its interesting biological and biomedical applications are introduced. [Figure not available: see fulltext.

  20. Function representation with circle inversion map systems

    NASA Astrophysics Data System (ADS)

    Boreland, Bryson; Kunze, Herb

    2017-01-01

    The fractals literature develops the now well-known concept of local iterated function systems (using affine maps) with grey-level maps (LIFSM) as an approach to function representation in terms of the associated fixed point of the so-called fractal transform. While originally explored as a method to achieve signal (and 2-D image) compression, more recent work has explored various aspects of signal and image processing using this machinery. In this paper, we develop a similar framework for function representation using circle inversion map systems. Given a circle C with centre õ and radius r, inversion with respect to C transforms the point p˜ to the point p˜', such that p˜ and p˜' lie on the same radial half-line from õ and d(õ, p˜)d(õ, p˜') = r2, where d is Euclidean distance. We demonstrate the results with an example.

  1. A novel algorithm for thermal image encryption.

    PubMed

    Hussain, Iqtadar; Anees, Amir; Algarni, Abdulmohsen

    2018-04-16

    Thermal images play a vital character at nuclear plants, Power stations, Forensic labs biological research, and petroleum products extraction. Safety of thermal images is very important. Image data has some unique features such as intensity, contrast, homogeneity, entropy and correlation among pixels that is why somehow image encryption is trickier as compare to other encryptions. With conventional image encryption schemes it is normally hard to handle these features. Therefore, cryptographers have paid attention to some attractive properties of the chaotic maps such as randomness and sensitivity to build up novel cryptosystems. That is why, recently proposed image encryption techniques progressively more depends on the application of chaotic maps. This paper proposed an image encryption algorithm based on Chebyshev chaotic map and S8 Symmetric group of permutation based substitution boxes. Primarily, parameters of chaotic Chebyshev map are chosen as a secret key to mystify the primary image. Then, the plaintext image is encrypted by the method generated from the substitution boxes and Chebyshev map. By this process, we can get a cipher text image that is perfectly twisted and dispersed. The outcomes of renowned experiments, key sensitivity tests and statistical analysis confirm that the proposed algorithm offers a safe and efficient approach for real-time image encryption.

  2. Solution of the problem of superposing image and digital map for detection of new objects

    NASA Astrophysics Data System (ADS)

    Rizaev, I. S.; Miftakhutdinov, D. I.; Takhavova, E. G.

    2018-01-01

    The problem of superposing the map of the terrain with the image of the terrain is considered. The image of the terrain may be represented in different frequency bands. Further analysis of the results of collation the digital map with the image of the appropriate terrain is described. Also the approach to detection of differences between information represented on the digital map and information of the image of the appropriate area is offered. The algorithm for calculating the values of brightness of the converted image area on the original picture is offered. The calculation is based on using information about the navigation parameters and information according to arranged bench marks. For solving the posed problem the experiments were performed. The results of the experiments are shown in this paper. The presented algorithms are applicable to the ground complex of remote sensing data to assess differences between resulting images and accurate geopositional data. They are also suitable for detecting new objects in the image, based on the analysis of the matching the digital map and the image of corresponding locality.

  3. LandEx - Fast, FOSS-Based Application for Query and Retrieval of Land Cover Patterns

    NASA Astrophysics Data System (ADS)

    Netzel, P.; Stepinski, T.

    2012-12-01

    The amount of satellite-based spatial data is continuously increasing making a development of efficient data search tools a priority. The bulk of existing research on searching satellite-gathered data concentrates on images and is based on the concept of Content-Based Image Retrieval (CBIR); however, available solutions are not efficient and robust enough to be put to use as deployable web-based search tools. Here we report on development of a practical, deployable tool that searches classified, rather than raw image. LandEx (Landscape Explorer) is a GeoWeb-based tool for Content-Based Pattern Retrieval (CBPR) contained within the National Land Cover Dataset 2006 (NLCD2006). The USGS-developed NLCD2006 is derived from Landsat multispectral images; it covers the entire conterminous U.S. with the resolution of 30 meters/pixel and it depicts 16 land cover classes. The size of NLCD2006 is about 10 Gpixels (161,000 x 100,000 pixels). LandEx is a multi-tier GeoWeb application based on Open Source Software. Main components are: GeoExt/OpenLayers (user interface), GeoServer (OGC WMS, WCS and WPS server), and GRASS (calculation engine). LandEx performs search using query-by-example approach: user selects a reference scene (exhibiting a chosen pattern of land cover classes) and the tool produces, in real time, a map indicating a degree of similarity between the reference pattern and all local patterns across the U.S. Scene pattern is encapsulated by a 2D histogram of classes and sizes of single-class clumps. Pattern similarity is based on the notion of mutual information. The resultant similarity map can be viewed and navigated in a web browser, or it can download as a GeoTiff file for more in-depth analysis. The LandEx is available at http://sil.uc.edu

  4. Finger vein recognition based on personalized weight maps.

    PubMed

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-09-10

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition.

  5. Finger Vein Recognition Based on Personalized Weight Maps

    PubMed Central

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-01-01

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition. PMID:24025556

  6. Evaluating pixel and object based image classification techniques for mapping plant invasions from UAV derived aerial imagery: Harrisia pomanensis as a case study

    NASA Astrophysics Data System (ADS)

    Mafanya, Madodomzi; Tsele, Philemon; Botai, Joel; Manyama, Phetole; Swart, Barend; Monate, Thabang

    2017-07-01

    Invasive alien plants (IAPs) not only pose a serious threat to biodiversity and water resources but also have impacts on human and animal wellbeing. To support decision making in IAPs monitoring, semi-automated image classifiers which are capable of extracting valuable information in remotely sensed data are vital. This study evaluated the mapping accuracies of supervised and unsupervised image classifiers for mapping Harrisia pomanensis (a cactus plant commonly known as the Midnight Lady) using two interlinked evaluation strategies i.e. point and area based accuracy assessment. Results of the point-based accuracy assessment show that with reference to 219 ground control points, the supervised image classifiers (i.e. Maxver and Bhattacharya) mapped H. pomanensis better than the unsupervised image classifiers (i.e. K-mediuns, Euclidian Length and Isoseg). In this regard, user and producer accuracies were 82.4% and 84% respectively for the Maxver classifier. The user and producer accuracies for the Bhattacharya classifier were 90% and 95.7%, respectively. Though the Maxver produced a higher overall accuracy and Kappa estimate than the Bhattacharya classifier, the Maxver Kappa estimate of 0.8305 is not significantly (statistically) greater than the Bhattacharya Kappa estimate of 0.8088 at a 95% confidence interval. The area based accuracy assessment results show that the Bhattacharya classifier estimated the spatial extent of H. pomanensis with an average mapping accuracy of 86.1% whereas the Maxver classifier only gave an average mapping accuracy of 65.2%. Based on these results, the Bhattacharya classifier is therefore recommended for mapping H. pomanensis. These findings will aid in the algorithm choice making for the development of a semi-automated image classification system for mapping IAPs.

  7. Making Dynamic Digital Maps Cross-Platform and WWW Capable

    NASA Astrophysics Data System (ADS)

    Condit, C. D.

    2001-05-01

    High-quality color geologic maps are an invaluable information resource for educators, students and researchers. However, maps with large datasets that include images, or various types of movies, in addition to site locations where analytical data has been collected, are difficult to publish in a format that facilitates their easy access, distribution and use. The development of capable desktop computers and object oriented graphical programming environments has facilitated publication of such data sets in an encapsulated form. The original Dynamic Digital Map (DDM) programs, developed using the Macintosh based SuperCard programming environment, exemplified this approach, in which all data are included in a single package designed so that display and access to the data did not depend on proprietary programs. These DDMs were aimed for ease of use, and allowed data to be displayed by several methods, including point-and-click at icons pin-pointing sample (or image) locations on maps, and from clicklists of sample or site numbers. Each of these DDMs included an overview and automated tour explaining the content organization and program use. This SuperCard development culminated in a "DDM Template", which is a SuperCard shell into which SuperCard users could insert their own content and thus create their own DDMs, following instructions in an accompanying "DDM Cookbook" (URL http://www.geo.umass.edu/faculty/condit/condit2.html). These original SuperCard-based DDMs suffered two critical limitations: a single user platform (Macintosh) and, although they can be downloaded from the web, their use lacked an integration into the WWW. Over the last eight months I have been porting the DDM technology to MetaCard, which is aggressively cross-platform (11 UNIX dialects, WIN32 and Macintosh). The new MetaCard DDM is redesigned to make the maps and images accessible either from CD or the web, using the "LoadNGo" concept. LoadNGo allows the user to download the stand-alone DDM program using a standard browser, and then use the program independently to access images, maps and data with fast web connections. DDMs are intended to be a fast and inexpensive way to publish and make accessible, as an integrated product, high-quality color maps and data sets. They are not a substitute for the analytical capability of GIS; however maps produced using GIS and CAD programs can be easily integrated into DDMs. The preparation of any map product is a time consuming effort. To compliment that effort, the DDM Templates have build into them the capability to contain explanatory text at three different user levels (or perhaps in three different languages), thus one DDM may be used as both a research publication medium and an educational outreach product, with the user choosing which user mode to access the data.

  8. Generating Text from Functional Brain Images

    PubMed Central

    Pereira, Francisco; Detre, Greg; Botvinick, Matthew

    2011-01-01

    Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., “Apartment’’) while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., “door,” “window” for “Apartment’’). Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively. PMID:21927602

  9. A Brief History of Soil Mapping and Classification in the USA

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Hartemink, Alfred E.

    2014-05-01

    Soil maps show the distribution of soils across an area but also depict soil science theory and ideas on soil formation and classification at the time the maps were created. The national soil mapping program in the USA was established in 1899. The first nation-wide soil map was published by M. Whitney in 1909 and showed soil provinces that were largely based on geology. In 1912, G.N. Coffey published the first country-wide map based on soil properties. The map showed 5 broad soil units that used parent material, color and drainage as diagnostic criteria. The 1913 national map was produced by C.F. Marbut, H.H. Bennett, J.E. Lapham, and M.H. Lapham and showed broad physiographic units that were further subdivided into soil series, soil classes and soil types. In 1935, Marbut drafted a series of maps based on soil properties, but these maps were replaced as official U.S. soil maps in 1938 with the work of M. Baldwin, C.E. Kellogg, and J. Thorp. A series of soil maps similar to modern USA maps appeared in the 1960s with the 7th Approximation followed by revisions with the 1975 and 1999 editions of Soil Taxonomy. This review has shown that soil maps in the United States produced since the early 1900s moved initially from a geologic-based concept to a pedologic concept of soils. Later changes were from property-based systems to process-based, and then back to property-based. The information in this presentation is based on Brevik and Hartemink (2013). Brevik, E.C., and A.E. Hartemink. 2013. Soil Maps of the United States of America. Soil Science Society of America Journal 77:1117-1132. doi:10.2136/sssaj2012.0390.

  10. Numeric and symbolic knowledge representation of cerebral cortex anatomy: methods and preliminary results.

    PubMed

    Dameron, O; Gibaud, B; Morandi, X

    2004-06-01

    The human cerebral cortex anatomy describes the brain organization at the scale of gyri and sulci. It is used as landmarks for neurosurgery as well as localization support for functional data analysis or inter-subject data comparison. Existing models of the cortex anatomy either rely on image labeling but fail to represent variability and structural properties or rely on a conceptual model but miss the inner 3D nature and relations of anatomical structures. This study was therefore conducted to propose a model of sulco-gyral anatomy for the healthy human brain. We hypothesized that both numeric knowledge (i.e., image-based) and symbolic knowledge (i.e., concept-based) have to be represented and coordinated. In addition, the representation of this knowledge should be application-independent in order to be usable in various contexts. Therefore, we devised a symbolic model describing specialization, composition and spatial organization of cortical anatomical structures. We also collected numeric knowledge such as 3D models of shape and shape variation about cortical anatomical structures. For each numeric piece of knowledge, a companion file describes the concept it refers to and the nature of the relationship. Demonstration software performs a mapping between the numeric and the symbolic aspects for browsing the knowledge base.

  11. Automated mapping of clinical terms into SNOMED-CT. An application to codify procedures in pathology.

    PubMed

    Allones, J L; Martinez, D; Taboada, M

    2014-10-01

    Clinical terminologies are considered a key technology for capturing clinical data in a precise and standardized manner, which is critical to accurately exchange information among different applications, medical records and decision support systems. An important step to promote the real use of clinical terminologies, such as SNOMED-CT, is to facilitate the process of finding mappings between local terms of medical records and concepts of terminologies. In this paper, we propose a mapping tool to discover text-to-concept mappings in SNOMED-CT. Name-based techniques were combined with a query expansion system to generate alternative search terms, and with a strategy to analyze and take advantage of the semantic relationships of the SNOMED-CT concepts. The developed tool was evaluated and compared to the search services provided by two SNOMED-CT browsers. Our tool automatically mapped clinical terms from a Spanish glossary of procedures in pathology with 88.0% precision and 51.4% recall, providing a substantial improvement of recall (28% and 60%) over other publicly accessible mapping services. The improvements reached by the mapping tool are encouraging. Our results demonstrate the feasibility of accurately mapping clinical glossaries to SNOMED-CT concepts, by means a combination of structural, query expansion and named-based techniques. We have shown that SNOMED-CT is a great source of knowledge to infer synonyms for the medical domain. Results show that an automated query expansion system overcomes the challenge of vocabulary mismatch partially.

  12. A fusion algorithm for infrared and visible based on guided filtering and phase congruency in NSST domain

    NASA Astrophysics Data System (ADS)

    Liu, Zhanwen; Feng, Yan; Chen, Hang; Jiao, Licheng

    2017-10-01

    A novel and effective image fusion method is proposed for creating a highly informative and smooth surface of fused image through merging visible and infrared images. Firstly, a two-scale non-subsampled shearlet transform (NSST) is employed to decompose the visible and infrared images into detail layers and one base layer. Then, phase congruency is adopted to extract the saliency maps from the detail layers and a guided filtering is proposed to compute the filtering output of base layer and saliency maps. Next, a novel weighted average technique is used to make full use of scene consistency for fusion and obtaining coefficients map. Finally the fusion image was acquired by taking inverse NSST of the fused coefficients map. Experiments show that the proposed approach can achieve better performance than other methods in terms of subjective visual effect and objective assessment.

  13. A Computer-Aided Diagnosis System for Measuring Carotid Artery Intima-Media Thickness (IMT) Using Quaternion Vectors.

    PubMed

    Kutbay, Uğurhan; Hardalaç, Fırat; Akbulut, Mehmet; Akaslan, Ünsal; Serhatlıoğlu, Selami

    2016-06-01

    This study aims investigating adjustable distant fuzzy c-means segmentation on carotid Doppler images, as well as quaternion-based convolution filters and saliency mapping procedures. We developed imaging software that will simplify the measurement of carotid artery intima-media thickness (IMT) on saliency mapping images. Additionally, specialists evaluated the present images and compared them with saliency mapping images. In the present research, we conducted imaging studies of 25 carotid Doppler images obtained by the Department of Cardiology at Fırat University. After implementing fuzzy c-means segmentation and quaternion-based convolution on all Doppler images, we obtained a model that can be analyzed easily by the doctors using a bottom-up saliency model. These methods were applied to 25 carotid Doppler images and then interpreted by specialists. In the present study, we used color-filtering methods to obtain carotid color images. Saliency mapping was performed on the obtained images, and the carotid artery IMT was detected and interpreted on the obtained images from both methods and the raw images are shown in Results. Also these results were investigated by using Mean Square Error (MSE) for the raw IMT images and the method which gives the best performance is the Quaternion Based Saliency Mapping (QBSM). 0,0014 and 0,000191 mm(2) MSEs were obtained for artery lumen diameters and plaque diameters in carotid arteries respectively. We found that computer-based image processing methods used on carotid Doppler could aid doctors' in their decision-making process. We developed software that could ease the process of measuring carotid IMT for cardiologists and help them to evaluate their findings.

  14. Map of Pluto Surface

    NASA Image and Video Library

    1998-03-28

    This image-based surface map of Pluto was assembled by computer image processing software from four separate images of Pluto disk taken with the European Space Agency Faint Object Camera aboard NASA Hubble Space Telescope.

  15. In-vehicle signing concepts: An analytical precursor to an in-vehicle information system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spelt, P.F.; Tufano, D.R.; Knee, H.E.

    The purpose of the project described in this report is to develop alternative In-Vehicle Signing (IVS) system concepts based on allocation of the functions associated with driving a road vehicle. In the driving milieu, tasks can be assigned to one of three agents, the driver, the vehicle or the infrastructure. Assignment of tasks is based on a philosophy of function allocation which can emphasize any of several philosophical approaches. In this project, function allocations were made according to the current practice in vehicle design and signage as well as a human-centered strategy. Several IVS system concepts are presented based onmore » differing functional allocation outcomes. A design space for IVS systems is described, and a technical analysis of a map-based and sever beacon-based IVS systems are presented. Because of problems associated with both map-based and beacon-based concepts, a hybrid IVS concept was proposed. The hybrid system uses on-board map-based databases to serve those areas in which signage can be anticipated to be relatively static, such as large metropolitan areas where few if any new roads will be built. For areas where sign density is low, and/or where population growth causes changes in traffic flow, beacon-based concepts function best. For this situation, changes need only occur in the central database from which sign information is transmitted. This report presents system concepts which enable progress from the IVS system concept-independent functional requirements to a more specific set of system concepts which facilitate analysis and selection of hardware and software to perform the functions of IVS. As such, this phase of the project represents a major step toward the design and development of a prototype WS system. Once such a system is developed, a program of testing, evaluation, an revision will be undertaken. Ultimately, such a system can become part of the road vehicle of the future.« less

  16. Mapping the Views of Adolescent Health Stakeholders.

    PubMed

    Ewan, Lindsay A; McLinden, Daniel; Biro, Frank; DeJonckheere, Melissa; Vaughn, Lisa M

    2016-01-01

    Health research that includes youth and family stakeholders increases the contextual relevance of findings, which can benefit both the researchers and stakeholders involved. The goal of this study was to identify youth and family adolescent health priorities and to explore strategies to address these concerns. Stakeholders identified important adolescent health concerns, perceptions of which were then explored using concept mapping. Concept mapping is a mixed-method participatory research approach that invites input from various stakeholders. In response to prompts, stakeholders suggested ways to address the identified health conditions. Adolescent participants then sorted the statements into groups based on content similarity and rated the statements for importance and feasibility. Multidimensional scaling and cluster analysis were then applied to create the concept maps. Stakeholders identified sexually transmitted infections (STIs) and obesity as the health conditions they considered most important. The concept map for STIs identified 7 clusters: General sex education, support and empowerment, testing and treatment, community involvement and awareness, prevention and protection, parental involvement in sex education, and media. The obesity concept map portrayed 8 clusters: Healthy food choices, obesity education, support systems, clinical and community involvement, community support for exercise, physical activity, nutrition support, and nutrition education. Ratings were generally higher for importance than for feasibility. The concept maps demonstrate stakeholder-driven ideas about approaches to target STIs and obesity in this context. Strategies at multiple social ecological levels were emphasized. The concept maps can be used to generate discussion regarding these topics and to identify interventions. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  17. A concept mapping study on organic food consumers in Shanghai, China.

    PubMed

    Hasimu, Huliyeti; Marchesini, Sergio; Canavari, Maurizio

    2017-01-01

    Despite some similarities with developed countries, the growth of organic market in China seems to follow a different path. Thus, important questions are how Chinese urban consumers perceive organic food, and what are the main concepts associated to the organic attribute. We aimed at representing in graphic form the network of mental associations with the organic concept. We used an adapted version of the "Brand concept mapping" method to acquire, process, and draw individual concept networks perceived by 50 organic food consumers in Shanghai. We then analyzed the data using network and cluster analysis to create aggregated maps for two distinct groups of consumers. Similarly to their peers in developed countries, Chinese consumers perceive organic food as healthy, safe and expensive. However, organic is not necessarily synonymous with natural produce in China, also due to a translation of the term that conveys the idea of a "technology advanced" product. Organic overlaps with the green food label in terms of image and positioning in the market, since they are easily associated and often confused. The two groups we identified show clear differences in the way the organic concept is associated to other concepts and features. The study provides useful information for practitioners: marketers of organic products in China should invest in communication to emphasize the differences with Green Food products and they should consider the possibility of segmenting organic consumers; Chinese policy makers should consider implementing information campaigns aimed at achieving a better understanding of the features of these quality labels among consumers. For researchers, the study confirms that the BCM method is effective and its integration with network and cluster analysis improves the interpretation of individual and aggregated maps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Using Android-Based Educational Game for Learning Colloid Material

    NASA Astrophysics Data System (ADS)

    Sari, S.; Anjani, R.; Farida, I.; Ramdhani, M. A.

    2017-09-01

    This research is based on the importance of the development of student’s chemical literacy on Colloid material using Android-based educational game media. Educational game products are developed through research and development design. In the analysis phase, material analysis is performed to generate concept maps, determine chemical literacy indicators, game strategies and set game paths. In the design phase, product packaging is carried out, then validation and feasibility test are performed. Research produces educational game based on Android that has the characteristics that is: Colloid material presented in 12 levels of game in the form of questions and challenges, presents visualization of discourse, images and animation contextually to develop the process of thinking and attitude. Based on the analysis of validation and trial results, the product is considered feasible to use.

  19. An authenticated image encryption scheme based on chaotic maps and memory cellular automata

    NASA Astrophysics Data System (ADS)

    Bakhshandeh, Atieh; Eslami, Ziba

    2013-06-01

    This paper introduces a new image encryption scheme based on chaotic maps, cellular automata and permutation-diffusion architecture. In the permutation phase, a piecewise linear chaotic map is utilized to confuse the plain-image and in the diffusion phase, we employ the Logistic map as well as a reversible memory cellular automata to obtain an efficient and secure cryptosystem. The proposed method admits advantages such as highly secure diffusion mechanism, computational efficiency and ease of implementation. A novel property of the proposed scheme is its authentication ability which can detect whether the image is tampered during the transmission or not. This is particularly important in applications where image data or part of it contains highly sensitive information. Results of various analyses manifest high security of this new method and its capability for practical image encryption.

  20. Lossless Compression of Classification-Map Data

    NASA Technical Reports Server (NTRS)

    Hua, Xie; Klimesh, Matthew

    2009-01-01

    A lossless image-data-compression algorithm intended specifically for application to classification-map data is based on prediction, context modeling, and entropy coding. The algorithm was formulated, in consideration of the differences between classification maps and ordinary images of natural scenes, so as to be capable of compressing classification- map data more effectively than do general-purpose image-data-compression algorithms. Classification maps are typically generated from remote-sensing images acquired by instruments aboard aircraft (see figure) and spacecraft. A classification map is a synthetic image that summarizes information derived from one or more original remote-sensing image(s) of a scene. The value assigned to each pixel in such a map is the index of a class that represents some type of content deduced from the original image data for example, a type of vegetation, a mineral, or a body of water at the corresponding location in the scene. When classification maps are generated onboard the aircraft or spacecraft, it is desirable to compress the classification-map data in order to reduce the volume of data that must be transmitted to a ground station.

  1. Promoting Conceptual Understanding via Adaptive Concept Maps

    ERIC Educational Resources Information Center

    Moore, Jacob P.

    2013-01-01

    The purpose of this study is to explore the feasibility and effectiveness of a scalable concept map based navigation system for a digital textbook. A literature review has been conducted to identify possible methods to promote conceptual understanding in the context of a digital textbook, and these hypothesized solutions will be evaluated through…

  2. An Electronic Engineering Curriculum Design Based on Concept-Mapping Techniques

    ERIC Educational Resources Information Center

    Toral, S. L.; Martinez-Torres, M. R.; Barrero, F.; Gallardo, S.; Duran, M. J.

    2007-01-01

    Curriculum design is a concern in European Universities as they face the forthcoming European Higher Education Area (EHEA). This process can be eased by the use of scientific tools such as Concept-Mapping Techniques (CMT) that extract and organize the most relevant information from experts' experience using statistics techniques, and helps a…

  3. The Contributions of Digital Concept Maps to Assessment for Learning Practices

    ERIC Educational Resources Information Center

    Filiz, Mehmet; Trumpower, David; Atas, Sait

    2013-01-01

    We have been developing a digital concept maps website (www.conceptmapsforlearning.com) based on the principles of effective assessment for learning. The purpose of this paper is to reveal its promising contributions to formative evaluation practices. The website reduces the workload of teachers as well as provides immediate and delayed feedback…

  4. Fourier-Mellin moment-based intertwining map for image encryption

    NASA Astrophysics Data System (ADS)

    Kaur, Manjit; Kumar, Vijay

    2018-03-01

    In this paper, a robust image encryption technique that utilizes Fourier-Mellin moments and intertwining logistic map is proposed. Fourier-Mellin moment-based intertwining logistic map has been designed to overcome the issue of low sensitivity of an input image. Multi-objective Non-Dominated Sorting Genetic Algorithm (NSGA-II) based on Reinforcement Learning (MNSGA-RL) has been used to optimize the required parameters of intertwining logistic map. Fourier-Mellin moments are used to make the secret keys more secure. Thereafter, permutation and diffusion operations are carried out on input image using secret keys. The performance of proposed image encryption technique has been evaluated on five well-known benchmark images and also compared with seven well-known existing encryption techniques. The experimental results reveal that the proposed technique outperforms others in terms of entropy, correlation analysis, a unified average changing intensity and the number of changing pixel rate. The simulation results reveal that the proposed technique provides high level of security and robustness against various types of attacks.

  5. Event-Based Tone Mapping for Asynchronous Time-Based Image Sensor

    PubMed Central

    Simon Chane, Camille; Ieng, Sio-Hoi; Posch, Christoph; Benosman, Ryad B.

    2016-01-01

    The asynchronous time-based neuromorphic image sensor ATIS is an array of autonomously operating pixels able to encode luminance information with an exceptionally high dynamic range (>143 dB). This paper introduces an event-based methodology to display data from this type of event-based imagers, taking into account the large dynamic range and high temporal accuracy that go beyond available mainstream display technologies. We introduce an event-based tone mapping methodology for asynchronously acquired time encoded gray-level data. A global and a local tone mapping operator are proposed. Both are designed to operate on a stream of incoming events rather than on time frame windows. Experimental results on real outdoor scenes are presented to evaluate the performance of the tone mapping operators in terms of quality, temporal stability, adaptation capability, and computational time. PMID:27642275

  6. Spectroscopic remote sensing for material identification, vegetation characterization, and mapping

    USGS Publications Warehouse

    Kokaly, Raymond F.; Lewis, Paul E.; Shen, Sylvia S.

    2012-01-01

    Identifying materials by measuring and analyzing their reflectance spectra has been an important procedure in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow materials to be mapped across the landscape. With many existing airborne sensors and new satellite-borne sensors planned for the future, robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral feature analyses of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described. MICA is a module of the PRISM (Processing Routines in IDL for Spectroscopic Measurements) software, available to the public from the U.S. Geological Survey (USGS) at http://pubs.usgs.gov/of/2011/1155/. The core concepts of MICA include continuum removal and linear regression to compare key diagnostic absorption features in reference laboratory/field spectra and the spectra being analyzed. The reference spectra, diagnostic features, and threshold constraints are defined within a user-developed MICA command file (MCF). Building on several decades of experience in mineral mapping, a broadly-applicable MCF was developed to detect a set of minerals frequently occurring on the Earth's surface and applied to map minerals in the country-wide coverage of the 2007 Afghanistan HyMap data set. MICA has also been applied to detect sub-pixel oil contamination in marshes impacted by the Deepwater Horizon incident by discriminating the C-H absorption features in oil residues from background vegetation. These two recent examples demonstrate the utility of a spectroscopic approach to remote sensing for identifying and mapping the distributions of materials in imaging spectrometer data.

  7. A saliency-based approach to detection of infrared target

    NASA Astrophysics Data System (ADS)

    Chen, Yanfei; Sang, Nong; Dan, Zhiping

    2013-10-01

    Automatic target detection in infrared images is a hot research field of national defense technology. We propose a new saliency-based infrared target detection model in this paper, which is based on the fact that human focus of attention is directed towards the relevant target to interpret the most promising information. For a given image, the convolution of the image log amplitude spectrum with a low-pass Gaussian kernel of an appropriate scale is equivalent to an image saliency detector in the frequency domain. At the same time, orientation and shape features extracted are combined into a saliency map in the spatial domain. Our proposed model decides salient targets based on a final saliency map, which is generated by integration of the saliency maps in the frequency and spatial domain. At last, the size of each salient target is obtained by maximizing entropy of the final saliency map. Experimental results show that the proposed model can highlight both small and large salient regions in infrared image, as well as inhibit repeated distractors in cluttered image. In addition, its detecting efficiency has improved significantly.

  8. A chaotic cryptosystem for images based on Henon and Arnold cat map.

    PubMed

    Soleymani, Ali; Nordin, Md Jan; Sundararajan, Elankovan

    2014-01-01

    The rapid evolution of imaging and communication technologies has transformed images into a widespread data type. Different types of data, such as personal medical information, official correspondence, or governmental and military documents, are saved and transmitted in the form of images over public networks. Hence, a fast and secure cryptosystem is needed for high-resolution images. In this paper, a novel encryption scheme is presented for securing images based on Arnold cat and Henon chaotic maps. The scheme uses Arnold cat map for bit- and pixel-level permutations on plain and secret images, while Henon map creates secret images and specific parameters for the permutations. Both the encryption and decryption processes are explained, formulated, and graphically presented. The results of security analysis of five different images demonstrate the strength of the proposed cryptosystem against statistical, brute force and differential attacks. The evaluated running time for both encryption and decryption processes guarantee that the cryptosystem can work effectively in real-time applications.

  9. A Chaotic Cryptosystem for Images Based on Henon and Arnold Cat Map

    PubMed Central

    Sundararajan, Elankovan

    2014-01-01

    The rapid evolution of imaging and communication technologies has transformed images into a widespread data type. Different types of data, such as personal medical information, official correspondence, or governmental and military documents, are saved and transmitted in the form of images over public networks. Hence, a fast and secure cryptosystem is needed for high-resolution images. In this paper, a novel encryption scheme is presented for securing images based on Arnold cat and Henon chaotic maps. The scheme uses Arnold cat map for bit- and pixel-level permutations on plain and secret images, while Henon map creates secret images and specific parameters for the permutations. Both the encryption and decryption processes are explained, formulated, and graphically presented. The results of security analysis of five different images demonstrate the strength of the proposed cryptosystem against statistical, brute force and differential attacks. The evaluated running time for both encryption and decryption processes guarantee that the cryptosystem can work effectively in real-time applications. PMID:25258724

  10. Spectrally resolved digital holography using a white light LED

    NASA Astrophysics Data System (ADS)

    Claus, D.; Pedrini, G.; Buchta, D.; Osten, W.

    2017-06-01

    This paper introduces the concept of spectrally resolved digital holography. The measurement principle and the analysis of the data will be discussed in detail. The usefulness of spectrally resolved digital holography is demonstrated for colour imaging and optical metrology with regards to the recovery of modulus information and phase information, respectively. The phase information will be used to measure the shape of an object via the application of the dual wavelength method. Based on the large degree of data available, multiple speckle de-correlated dual wavelength phase maps can be obtained, which when averaged result in a signal to noise ratio improvement.

  11. Bedrock and structural geologic maps of eastern Candor Sulci, western Ceti Mensa, and southeastern Ceti Mensa, Candor Chasma, Valles Marineris region of Mars

    USGS Publications Warehouse

    Okubo, Chris H.; Gaither, Tenielle A.

    2017-05-12

    This map product contains a set of three 1:18,000-scale maps showing the geology and structure of study areas in the western Candor Chasma region of Valles Marineris, Mars. These maps are part of an informal series of large-scale maps and map-based topical studies aimed at refining current understanding of the geologic history of western Candor Chasma. The map bases consist of digital elevation models and orthorectified images derived from High Resolution Imaging Science Experiment (HiRISE) data. These maps are accompanied by geologic cross sections, colorized elevation maps, and cutouts of HiRISE images showing key superposition relations. Also included in this product is a Correlation of Map Units that integrates units across all three map areas, as well as an integrated Description of Map Units and an integrated Explanation of Map Symbols. The maps were assembled using ArcGIS software produced by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS projects and databases associated with each map are included online as supplemental data.

  12. Analysis of Radarsat-2 Full Polarimetric Data for Forest Mapping

    NASA Astrophysics Data System (ADS)

    Maghsoudi, Yasser

    Forests are a major natural resource of the Earth and control a wide range of environmental processes. Forests comprise a major part of the planet's plant biodiversity and have an important role in the global hydrological and biochemical cycles. Among the numerous potential applications of remote sensing in forestry, forest mapping plays a vital role for characterization of the forest in terms of species. Particularly, in Canada where forests occupy 45% of the territory, representing more than 400 million hectares of the total Canadian continental area. In this thesis, the potential of polarimetric SAR (PolSAR) Radarsat-2 data for forest mapping is investigated. This thesis has two principle objectives. First is to propose algorithms for analyzing the PolSAR image data for forest mapping. There are a wide range of SAR parameters that can be derived from PolSAR data. In order to make full use of the discriminative power offered by all these parameters, two categories of methods are proposed. The methods are based on the concept of feature selection and classifier ensemble. First, a nonparametric definition of the evaluation function is proposed and hence the methods NFS and CBFS. Second, a fast wrapper algorithm is proposed for the evaluation function in feature selection and hence the methods FWFS and FWCBFS. Finally, to incorporate the neighboring pixels information in classification an extension of the FWCBFS method i.e. CCBFS is proposed. The second objective of this thesis is to provide a comparison between leaf-on (summer) and leaf-off (fall) season images for forest mapping. Two Radarsat-2 images acquired in fine quad-polarized mode were chosen for this study. The images were collected in leaf-on and leaf-off seasons. We also test the hypothesis whether combining the SAR parameters obtained from both images can provide better results than either individual datasets. The rationale for this combination is that every dataset has some parameters which may be useful for forest mapping. To assess the potential of the proposed methods their performance have been compared with each other and with the baseline classifiers. The baseline methods include the Wishart classifier, which is a commonly used classification method in PolSAR community, as well as an SVM classifier with the full set of parameters. Experimental results showed a better performance of the leaf-off image compared to that of leaf-on image for forest mapping. It is also shown that combining leaf-off parameters with leaf-on parameters can significantly improve the classification accuracy. Also, the classification results (in terms of the overall accuracy) compared to the baseline classifiers demonstrate the effectiveness of the proposed nonparametric scheme for forest mapping.

  13. Development of an information data base for watershed monitoring

    NASA Technical Reports Server (NTRS)

    Smith, A. Y.; Blackwell, R. J.

    1980-01-01

    Landsat multispectral scanner data, Defense Mapping Agency digital terrain data, conventional maps, and ground data were integrated to create a comprehensive information data base (the Image Based Information System), to monitor the water quality of the Lake Tahoe Basin. Landsat imagery was used as the planimetric base to which all other data were registered. A georeference image plane, which provided an interface between all data planes for the Lake Tahoe Basin data base, was created from the drainage basin map. The data base was used to extract each drainage basin for separate display. The Defense Mapping Agency-created elevation image was processed with VICAR software to produce a component representing slope magnitude, which was cross-tabulated with the drainage basin georeference table. Future applications of the data base include the development of precipitation modeling, surface runoff models, and classification of drainage basin cover types.

  14. Clinical concept mapping: Does it improve discipline-based critical thinking of nursing students?

    PubMed

    Moattari, Marzieh; Soleimani, Sara; Moghaddam, Neda Jamali; Mehbodi, Farkhondeh

    2014-01-01

    Enhancing nursing students' critical thinking is a challenge faced by nurse educators. This study aimed at determining the effect of clinical concept mapping on discipline-based critical thinking of nursing students. In this quasi-experimental post-test only design, a convenient sample of 4(th) year nursing students (N = 32) participated. They were randomly divided into two groups. The experimental group participated in a 1-day workshop on clinical concept mapping. They were also assigned to use at least two clinical concepts mapping during their clinical practice. Post-test was done using a specially designed package consisting of vignettes for measurement of 17 dimensions of critical thinking in nursing under two categories of cognitive critical thinking skills and habits of mind. They were required to write about how they would use a designated critical thinking skills or habits of mind to accomplish the nursing actions. The students' responses were evaluated based on identification of critical thinking, justification, and quality of the student's response. The mean score of both groups was compared by Mann-Whitney test using SPSS version 16.5. The results of the study revealed a significant difference between the two groups' critical thinking regarding identification, justification, and quality of responses, and overall critical thinking scores, cognitive thinking skills, and habits of mind. The two groups also differed significantly from each other in 11 out of 17 dimensions of critical thinking. Clinical concept mapping is a valuable strategy for improvement of critical thinking of nursing students. However, further studies are recommended to generalize this result to nursing students in their earlier stage of education.

  15. Simultaneous radiofrequency (RF) heating and magnetic resonance (MR) thermal mapping using an intravascular MR imaging/RF heating system.

    PubMed

    Qiu, Bensheng; El-Sharkawy, Abdel-Monem; Paliwal, Vaishali; Karmarkar, Parag; Gao, Fabao; Atalar, Ergin; Yang, Xiaoming

    2005-07-01

    Previous studies have confirmed the possibility of using an intravascular MR imaging guidewire (MRIG) as a heating source to enhance vascular gene transfection/expression. This motivated us to develop a new intravascular system that can perform MR imaging, radiofrequncy (RF) heating, and MR temperature monitoring simultaneously in an MR scanner. To validate this concept, a series of mathematical simulations of RF power loss along a 0.032-inch MRIG and RF energy spatial distribution were performed to determine the optimum RF heating frequency. Then, an RF generator/amplifier and a filter box were built. The possibility for simultaneous RF heating and MR thermal mapping of the system was confirmed in vitro using a phantom, and the obtained thermal mapping profile was compared with the simulated RF power distribution. Subsequently, the feasibility of simultaneous RF heating and temperature monitoring was successfully validated in vivo in the aorta of living rabbits. This MR imaging/RF heating system offers a potential tool for intravascular MR-mediated, RF-enhanced vascular gene therapy.

  16. Structural knowledge learning from maps for supervised land cover/use classification: Application to the monitoring of land cover/use maps in French Guiana

    NASA Astrophysics Data System (ADS)

    Bayoudh, Meriam; Roux, Emmanuel; Richard, Gilles; Nock, Richard

    2015-03-01

    The number of satellites and sensors devoted to Earth observation has become increasingly elevated, delivering extensive data, especially images. At the same time, the access to such data and the tools needed to process them has considerably improved. In the presence of such data flow, we need automatic image interpretation methods, especially when it comes to the monitoring and prediction of environmental and societal changes in highly dynamic socio-environmental contexts. This could be accomplished via artificial intelligence. The concept described here relies on the induction of classification rules that explicitly take into account structural knowledge, using Aleph, an Inductive Logic Programming (ILP) system, combined with a multi-class classification procedure. This methodology was used to monitor changes in land cover/use of the French Guiana coastline. One hundred and fifty-eight classification rules were induced from 3 diachronic land cover/use maps including 38 classes. These rules were expressed in first order logic language, which makes them easily understandable by non-experts. A 10-fold cross-validation gave significant average values of 84.62%, 99.57% and 77.22% for classification accuracy, specificity and sensitivity, respectively. Our methodology could be beneficial to automatically classify new objects and to facilitate object-based classification procedures.

  17. New formulation for interferometric synthetic aperture radar for terrain mapping

    NASA Astrophysics Data System (ADS)

    Jakowatz, Charles V., Jr.; Wahl, Daniel E.; Eichel, Paul H.; Thompson, Paul A.

    1994-06-01

    The subject of interferometric synthetic aperture radar (IFSAR) for high-accuracy terrain elevation mapping continues to gain importance in the arena of radar signal processing. Applications to problems in precision terrain-aided guidance and automatic target recognition, as well as a variety of civil applications, are being studied by a number of researchers. Not unlike many other areas of SAR processing, the subject of IFSAR can, at first glance, appear to be somewhat mysterious. In this paper we show how the mathematics of IFSAR for terrain elevation mapping using a pair of spotlight mode SAR collections can be derived in a very straightforward manner. Here, we employ an approach that relies entirely on Fourier transforms, and utilizes no reference to range equations or Doppler concepts. The result is a simplified explanation of the fundamentals of interferometry, including an easily-seen link between image domain phase difference and terrain elevation height. The derivation builds upon previous work by the authors in which a framework for spotlight mode SAR image formation based on an analogy to 3D computerized axial tomography (CAT) was developed. After outlining the major steps in the mathematics, we show how a computer simulator which utilizes 3D Fourier transforms can be constructed that demonstrates all of the major aspects of IFSAR from spotlight mode collections.

  18. An Innovative Approach to Automatically Detect and Interpret Salient Spatiotemporal Features of a Numeric Field: A Case Study in Electrocardiographic Imaging

    NASA Astrophysics Data System (ADS)

    Ironi, Liliana; Tentoni, Stefania

    2009-08-01

    The last decade has witnessed major advancements in the direct application of functional imaging techniques to several clinical contexts. Unfortunately, this is not the case of Electrocardiology. As a matter of fact, epicardial maps, which can hit electrical conduction pathologies that routine surface ECG's analysis may miss, can be obtained non invasively from body surface data through mathematical model-based reconstruction methods. But, their interpretation still requires highly specialized skills that belong to few experts. The automated detection of salient patterns in the map, grounded on the existing interpretation rationale, would therefore represent a major contribution towards the clinical use of such valuable tools, whose diagnostic potential is still largely unexploited. We focus on epicardial activation isochronal maps, which convey information about the heart electric function in terms of the depolarization wavefront kinematics. An approach grounded on the integration of a Spatial Aggregation (SA) method with concepts borrowed from Computational Geometry provides a computational framework to extract, from the given activation data, a few basic features that characterize the wavefront propagation, as well as a more specific set of features that identify an important class of heart rhythm pathologies, namely reentry arrhythmias due to block of conduction.

  19. Three-dimensional full-field X-ray orientation microscopy

    PubMed Central

    Viganò, Nicola; Tanguy, Alexandre; Hallais, Simon; Dimanov, Alexandre; Bornert, Michel; Batenburg, Kees Joost; Ludwig, Wolfgang

    2016-01-01

    A previously introduced mathematical framework for full-field X-ray orientation microscopy is for the first time applied to experimental near-field diffraction data acquired from a polycrystalline sample. Grain by grain tomographic reconstructions using convex optimization and prior knowledge are carried out in a six-dimensional representation of position-orientation space, used for modelling the inverse problem of X-ray orientation imaging. From the 6D reconstruction output we derive 3D orientation maps, which are then assembled into a common sample volume. The obtained 3D orientation map is compared to an EBSD surface map and local misorientations, as well as remaining discrepancies in grain boundary positions are quantified. The new approach replaces the single orientation reconstruction scheme behind X-ray diffraction contrast tomography and extends the applicability of this diffraction imaging technique to material micro-structures exhibiting sub-grains and/or intra-granular orientation spreads of up to a few degrees. As demonstrated on textured sub-regions of the sample, the new framework can be extended to operate on experimental raw data, thereby bypassing the concept of orientation indexation based on diffraction spot peak positions. This new method enables fast, three-dimensional characterization with isotropic spatial resolution, suitable for time-lapse observations of grain microstructures evolving as a function of applied strain or temperature. PMID:26868303

  20. Concept Mapping Assessment of Media Assisted Learning in Interdisciplinary Science Education

    NASA Astrophysics Data System (ADS)

    Schaal, Steffen; Bogner, Franz X.; Girwidz, Raimund

    2010-05-01

    Acquisition of conceptual knowledge is a central aim in science education. In this study we monitored an interdisciplinary hypermedia assisted learning unit on hibernation and thermodynamics based on cooperative learning. We used concept mapping for the assessment, applying a pre-test/post-test design. In our study, 106 9th graders cooperated by working in pairs ( n = 53) for six lessons. As an interdisciplinary learning activity in such complex knowledge domains has to combine many different aspects, we focused on long-term knowledge. Learners working cooperatively in dyads constructed computer-supported concept maps which were analysed by specific software. The data analysis encompassed structural aspects of the knowledge corresponding to a target reference map. After the learning unit, the results showed the acquisition of higher-order domain-specific knowledge structures which indicates successful interdisciplinary learning through the hypermedia learning environment. The benefit of using a computer-assisted concept mapping assessment for research in science education, and in science classrooms is considered.

  1. Text image authenticating algorithm based on MD5-hash function and Henon map

    NASA Astrophysics Data System (ADS)

    Wei, Jinqiao; Wang, Ying; Ma, Xiaoxue

    2017-07-01

    In order to cater to the evidentiary requirements of the text image, this paper proposes a fragile watermarking algorithm based on Hash function and Henon map. The algorithm is to divide a text image into parts, get flippable pixels and nonflippable pixels of every lump according to PSD, generate watermark of non-flippable pixels with MD5-Hash, encrypt watermark with Henon map and select embedded blocks. The simulation results show that the algorithm with a good ability in tampering localization can be used to authenticate and forensics the authenticity and integrity of text images

  2. Active machine learning for rapid landslide inventory mapping with VHR satellite images (Invited)

    NASA Astrophysics Data System (ADS)

    Stumpf, A.; Lachiche, N.; Malet, J.; Kerle, N.; Puissant, A.

    2013-12-01

    VHR satellite images have become a primary source for landslide inventory mapping after major triggering events such as earthquakes and heavy rainfalls. Visual image interpretation is still the prevailing standard method for operational purposes but is time-consuming and not well suited to fully exploit the increasingly better supply of remote sensing data. Recent studies have addressed the development of more automated image analysis workflows for landslide inventory mapping. In particular object-oriented approaches that account for spatial and textural image information have been demonstrated to be more adequate than pixel-based classification but manually elaborated rule-based classifiers are difficult to adapt under changing scene characteristics. Machine learning algorithm allow learning classification rules for complex image patterns from labelled examples and can be adapted straightforwardly with available training data. In order to reduce the amount of costly training data active learning (AL) has evolved as a key concept to guide the sampling for many applications. The underlying idea of AL is to initialize a machine learning model with a small training set, and to subsequently exploit the model state and data structure to iteratively select the most valuable samples that should be labelled by the user. With relatively few queries and labelled samples, an AL strategy yields higher accuracies than an equivalent classifier trained with many randomly selected samples. This study addressed the development of an AL method for landslide mapping from VHR remote sensing images with special consideration of the spatial distribution of the samples. Our approach [1] is based on the Random Forest algorithm and considers the classifier uncertainty as well as the variance of potential sampling regions to guide the user towards the most valuable sampling areas. The algorithm explicitly searches for compact regions and thereby avoids a spatially disperse sampling pattern inherent to most other AL methods. The accuracy, the sampling time and the computational runtime of the algorithm were evaluated on multiple satellite images capturing recent large scale landslide events. Sampling between 1-4% of the study areas the accuracies between 74% and 80% were achieved, whereas standard sampling schemes yielded only accuracies between 28% and 50% with equal sampling costs. Compared to commonly used point-wise AL algorithm the proposed approach significantly reduces the number of iterations and hence the computational runtime. Since the user can focus on relatively few compact areas (rather than on hundreds of distributed points) the overall labeling time is reduced by more than 50% compared to point-wise queries. An experimental evaluation of multiple expert mappings demonstrated strong relationships between the uncertainties of the experts and the machine learning model. It revealed that the achieved accuracies are within the range of the inter-expert disagreement and that it will be indispensable to consider ground truth uncertainties to truly achieve further enhancements in the future. The proposed method is generally applicable to a wide range of optical satellite images and landslide types. [1] A. Stumpf, N. Lachiche, J.-P. Malet, N. Kerle, and A. Puissant, Active learning in the spatial domain for remote sensing image classification, IEEE Transactions on Geosciece and Remote Sensing. 2013, DOI 10.1109/TGRS.2013.2262052.

  3. Pulmonary (cardio) diagnostic system for combat casualty care capable of extracting embedded characteristics of obstructive or restrictive flow

    NASA Astrophysics Data System (ADS)

    Allgood, Glenn O.; Treece, Dale A.; Pearce, Fred J.; Bentley, Timothy B.

    2000-08-01

    Walter Reed Army Institute of Research and Oak Ridge National Laboratory have developed a prototype pulmonary diagnostic system capable of extracting signatures from adventitious lung sounds that characterize obstructive and/or restrictive flow. Examples of disorders that have been detailed include emphysema, asthma, pulmonary fibrosis, and pneumothorax. The system is based on the premise that acoustic signals associated with pulmonary disorders can be characterized by a set of embedded signatures unique to the disease. The concept is being extended to include cardio signals correlated with pulmonary data to provide an accurate and timely diagnoses of pulmonary function and distress in critically injured soldiers that will allow medical personnel to anticipate the need for accurate therapeutic intervention as well as monitor soldiers whose injuries may lead to pulmonary compromise later. The basic operation of the diagnostic system is as follows: (1) create an image from the acoustic signature based on higher order statistics, (2) deconstruct the image based on a predefined map, (3) compare the deconstructed image with stored images of pulmonary symptoms, and (4) classify the disorder based on a clustering of known symptoms and provide a statistical measure of confidence. The system has produced conformity between adults and infants and provided effective measures of physiology in the presence of noise.

  4. Concept maps: A tool for knowledge management and synthesis in web-based conversational learning.

    PubMed

    Joshi, Ankur; Singh, Satendra; Jaswal, Shivani; Badyal, Dinesh Kumar; Singh, Tejinder

    2016-01-01

    Web-based conversational learning provides an opportunity for shared knowledge base creation through collaboration and collective wisdom extraction. Usually, the amount of generated information in such forums is very huge, multidimensional (in alignment with the desirable preconditions for constructivist knowledge creation), and sometimes, the nature of expected new information may not be anticipated in advance. Thus, concept maps (crafted from constructed data) as "process summary" tools may be a solution to improve critical thinking and learning by making connections between the facts or knowledge shared by the participants during online discussion This exploratory paper begins with the description of this innovation tried on a web-based interacting platform (email list management software), FAIMER-Listserv, and generated qualitative evidence through peer-feedback. This process description is further supported by a theoretical construct which shows how social constructivism (inclusive of autonomy and complexity) affects the conversational learning. The paper rationalizes the use of concept map as mid-summary tool for extracting information and further sense making out of this apparent intricacy.

  5. 36 CFR 1194.22 - Web-based intranet and internet information and applications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... active region of a server-side image map. (f) Client-side image maps shall be provided instead of server-side image maps except where the regions cannot be defined with an available geometric shape. (g) Row...) Frames shall be titled with text that facilitates frame identification and navigation. (j) Pages shall be...

  6. 36 CFR 1194.22 - Web-based intranet and internet information and applications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... active region of a server-side image map. (f) Client-side image maps shall be provided instead of server-side image maps except where the regions cannot be defined with an available geometric shape. (g) Row...) Frames shall be titled with text that facilitates frame identification and navigation. (j) Pages shall be...

  7. 36 CFR § 1194.22 - Web-based intranet and internet information and applications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... active region of a server-side image map. (f) Client-side image maps shall be provided instead of server-side image maps except where the regions cannot be defined with an available geometric shape. (g) Row...) Frames shall be titled with text that facilitates frame identification and navigation. (j) Pages shall be...

  8. Landslide Inventory Mapping from Bitemporal 10 m SENTINEL-2 Images Using Change Detection Based Markov Random Field

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Lu, P.; Li, Z.

    2018-04-01

    Landslide inventory mapping is essential for hazard assessment and mitigation. In most previous studies, landslide mapping was achieved by visual interpretation of aerial photos and remote sensing images. However, such method is labor-intensive and time-consuming, especially over large areas. Although a number of semi-automatic landslide mapping methods have been proposed over the past few years, limitations remain in terms of their applicability over different study areas and data, and there is large room for improvement in terms of the accuracy and automation degree. For these reasons, we developed a change detection-based Markov Random Field (CDMRF) method for landslide inventory mapping. The proposed method mainly includes two steps: 1) change detection-based multi-threshold for training samples generation and 2) MRF for landslide inventory mapping. Compared with the previous methods, the proposed method in this study has three advantages: 1) it combines multiple image difference techniques with multi-threshold method to generate reliable training samples; 2) it takes the spectral characteristics of landslides into account; and 3) it is highly automatic with little parameter tuning. The proposed method was applied for regional landslides mapping from 10 m Sentinel-2 images in Western China. Results corroborated the effectiveness and applicability of the proposed method especially the capability of rapid landslide mapping. Some directions for future research are offered. This study to our knowledge is the first attempt to map landslides from free and medium resolution satellite (i.e., Sentinel-2) images in China.

  9. Continuous Mapping of Tunnel Walls in a Gnss-Denied Environment

    NASA Astrophysics Data System (ADS)

    Chapman, Michael A.; Min, Cao; Zhang, Deijin

    2016-06-01

    The need for reliable systems for capturing precise detail in tunnels has increased as the number of tunnels (e.g., for cars and trucks, trains, subways, mining and other infrastructure) has increased and the age of these structures and, subsequent, deterioration has introduced structural degradations and eventual failures. Due to the hostile environments encountered in tunnels, mobile mapping systems are plagued with various problems such as loss of GNSS signals, drift of inertial measurements systems, low lighting conditions, dust and poor surface textures for feature identification and extraction. A tunnel mapping system using alternate sensors and algorithms that can deliver precise coordinates and feature attributes from surfaces along the entire tunnel path is presented. This system employs image bridging or visual odometry to estimate precise sensor positions and orientations. The fundamental concept is the use of image sequences to geometrically extend the control information in the absence of absolute positioning data sources. This is a non-trivial problem due to changes in scale, perceived resolution, image contrast and lack of salient features. The sensors employed include forward-looking high resolution digital frame cameras coupled with auxiliary light sources. In addition, a high frequency lidar system and a thermal imager are included to offer three dimensional point clouds of the tunnel walls along with thermal images for moisture detection. The mobile mapping system is equipped with an array of 16 cameras and light sources to capture the tunnel walls. Continuous images are produced using a semi-automated mosaicking process. Results of preliminary experimentation are presented to demonstrate the effectiveness of the system for the generation of seamless precise tunnel maps.

  10. Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf B.; Durkin, Anthony J.; Chave, Robert; Lindsley, Erik H.; Farkas, Daniel L.

    2014-05-01

    Attempts to understand the changes in the structure and physiology of human skin abnormalities by non-invasive optical imaging are aided by spectroscopic methods that quantify, at the molecular level, variations in tissue oxygenation and melanin distribution. However, current commercial and research systems to map hemoglobin and melanin do not correlate well with pathology for pigmented lesions or darker skin. We developed a multimode dermoscope that combines polarization and hyperspectral imaging with an efficient analytical model to map the distribution of specific skin bio-molecules. This corrects for the melanin-hemoglobin misestimation common to other systems, without resorting to complex and computationally intensive tissue optical models. For this system's proof of concept, human skin measurements on melanocytic nevus, vitiligo, and venous occlusion conditions were performed in volunteers. The resulting molecular distribution maps matched physiological and anatomical expectations, confirming a technologic approach that can be applied to next generation dermoscopes and having biological plausibility that is likely to appeal to dermatologists.

  11. 2.5D multi-view gait recognition based on point cloud registration.

    PubMed

    Tang, Jin; Luo, Jian; Tjahjadi, Tardi; Gao, Yan

    2014-03-28

    This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM.

  12. Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach.

    PubMed

    Zhang, Jianming; Sclaroff, Stan

    2016-05-01

    We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets.

  13. Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen

    2017-09-01

    Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.

  14. The Contribution of Constructivist Instruction Accompanied by Concept Mapping in Enhancing Pre-Service Chemistry Teachers' Conceptual Understanding of Chemistry in the Laboratory Course

    ERIC Educational Resources Information Center

    Aydin, Sevgi; Aydemir, Nurdane; Boz, Yezdan; Cetin-Dindar, Ayla; Bektas, Oktay

    2009-01-01

    The present study aimed to evaluate whether a chemistry laboratory course called "Laboratory Experiments in Science Education" based on constructivist instruction accompanied with concept mapping enhanced pre-service chemistry teachers' conceptual understanding. Data were collected from five pre-service chemistry teachers at a university…

  15. Traumatizing Aspects of Providing Counselling in Community Agencies to Survivors of Sexual Violence: A Concept Map

    ERIC Educational Resources Information Center

    Kadambi, Michaela A.; Truscott, Derek

    2008-01-01

    Concept mapping (a combined qualitative/quantitative approach) was used to clarify and understand 72 Canadian professionals' experience of what they found to be traumatizing about their work with sexual violence survivors in community settings. A sample of 30 professionals providing community-based treatment to survivors of sexual violence sorted…

  16. The Effects of Utilising the Concept Maps in Teaching History

    ERIC Educational Resources Information Center

    Nair, Subadrah Madhawa; Narayanasamy, Moganasundari

    2017-01-01

    Teaching History is a tough and challenging task for teachers because most students consider History as a boring subject. Many studies indicate that students are not interested in learning History. This paper is based on a quasi-experimental study conducted to investigate the effects of utilizing the concept map method in the teaching of History…

  17. Multimodal Image Alignment via Linear Mapping between Feature Modalities.

    PubMed

    Jiang, Yanyun; Zheng, Yuanjie; Hou, Sujuan; Chang, Yuchou; Gee, James

    2017-01-01

    We propose a novel landmark matching based method for aligning multimodal images, which is accomplished uniquely by resolving a linear mapping between different feature modalities. This linear mapping results in a new measurement on similarity of images captured from different modalities. In addition, our method simultaneously solves this linear mapping and the landmark correspondences by minimizing a convex quadratic function. Our method can estimate complex image relationship between different modalities and nonlinear nonrigid spatial transformations even in the presence of heavy noise, as shown in our experiments carried out by using a variety of image modalities.

  18. An Innovative Method of Teaching-Learning Strategy to Enhance the Learner's Educational Process: Paradigm Shift from Conventional Approach to Modern Approach by Neurocognitive Based Concept Mapping

    ERIC Educational Resources Information Center

    Ramachandran, Sridhar; Pandia Vadivu, P.

    2014-01-01

    This study examines the effectiveness of Neurocognitive Based Concept Mapping (NBCM) on students' learning in a science course. A total of 32 grade IX of high school Central Board of Secondary Education (CBSE) students were involved in this study by pre-test and post-test measurements. They were divided into two groups: NBCM group as an…

  19. Knowledge Maps for E-Learning

    ERIC Educational Resources Information Center

    Lee, Jae Hwa; Segev, Aviv

    2012-01-01

    Maps such as concept maps and knowledge maps are often used as learning materials. These maps have nodes and links, nodes as key concepts and links as relationships between key concepts. From a map, the user can recognize the important concepts and the relationships between them. To build concept or knowledge maps, domain experts are needed.…

  20. Mapping with Young Children.

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Warash, Bobbi Gibson

    Techniques for encouraging young children to discover the purpose and use of maps are discussed. Motor activity and topological studies form a base from which the teacher and children can build a mapping program of progressive sophistication. Concepts important to mapping include boundaries, regions, exteriors, interiors, holes, order, point of…

  1. A phenomenographic case study: Concept maps from the perspectives of middle school students

    NASA Astrophysics Data System (ADS)

    Saglam, Yilmaz

    The objective of this study was to investigate the experiences of middle school students when concept maps were used as a learning tool. Twenty-nine students' written responses, concept maps and videotapes were analyzed. Out of 29 students, thirteen students were interviewed using a semi-structured and open-ended interview protocol. The students' initial written responses provided us with the students' initial reactions to concept maps. The videotapes captured the students' behavior, and interpersonal interactions. The interviews probed students': (1) knowledge about drawing concept maps, (2) perception of the meaning and usefulness of concept maps, and (3) attitudes towards concept maps. The results indicated that the students viewed concept maps as useful tools in learning science. They believed that concept maps organized and summarized the information, which thereby helped them understand the topic easily. They also believed that concept maps had some cognitive benefits. However, the students viewed concept maps as hard to construct because it was difficult for the students to think of related concepts. The students' initial written responses, interviews and videotapes indicated that the students seemed to see both positive and negative aspects of concept maps. Some students' had more positive and some had more negative attitudes.

  2. Wavemill Product Assessment- Defining Products and Evaluating Potential Performance from a Novel Spaceborne Interferometric SAR

    NASA Astrophysics Data System (ADS)

    Cotton, P. D.; Gommenginger, C.; Martin, A.; Marquez, J.; Burbidge, G.; Quilfen, Y.; Chapron, B.; Reppucci, A.; Buck, C.

    2016-08-01

    Ocean Surface Currents are one of the most important ocean properties for oceanographers and operators in the maritime domain. Improved monitoring of ocean currents is systematically the number one requirement that emerges from any science or end user requirement surveys.Wavemill is a novel hybrid interferometric SAR system first proposed by ESA/ESTEC [Buck, 2005]. It offers the possibility of generating two-dimensional wide swath, high resolution, high precision maps of surface current vectors and ocean topography [Buck et al., 2009]. Based on a single spacecraft, it avoids the difficulties of synchronisation and baseline estimation associated with other interferometric SAR systems based on two or more satellites (e.g. the "cartwheel" or "helix" concept).The Wavemill concept has developed steadily since its first inception in 2005. A number of Wavemill studies in recent years have gradually put together facts and figures to support the case for Wavemill as a possible space-borne mission.The Wavemill Product Assessment study (WaPA) aimed to define the scientific capabilities and limitations of a spaceborne Wavemill instrument in preparation for a possible submission of the Wavemill concept as a candidate Earth Explorer Core mission. The WaPA project team brought together expert scientists and engineers in the field of SAR imaging of ocean currents, and included the National Oceanography Centre (UK), Starlab (Spain), IFREMER (France) and Airbus Defence and Space (UK). Overall project management was provided by Satellite Oceanographic Consultants (UK). The approach taken included:- A review of SAR imaging of ocean currents in along-track interferometric mode to learn from previous experiments and modelling what key phenomena need to be accounted for to determine the true performance of a spaceborne Wavemill system- Validation of proposed Wavemill primary products based on Wavemill airborne proof-of-concept data and numerical simulations to determine the capabilities and limitations of a spaceborne Wavemill instrument for ocean current vector and sea surface height mapping.- An analysis of the potential for ocean wind vector retrieval from a spaceborne Wavemill instrument.- An investigation of possible secondary products from Wavemill relating to rivers, ocean/atmosphere interactions, ocean swell and cryospheric applications.An assessment of the synergy between Wavemill and ocean surface current products derived from other remote sensing techniques, accounting for the nature and variability of the measured properties, to identify any additional requirements on a future Wavemill mission.

  3. Active edge maps for medical image registration

    NASA Astrophysics Data System (ADS)

    Kerwin, William; Yuan, Chun

    2001-07-01

    Applying edge detection prior to performing image registration yields several advantages over raw intensity- based registration. Advantages include the ability to register multicontrast or multimodality images, immunity to intensity variations, and the potential for computationally efficient algorithms. In this work, a common framework for edge-based image registration is formulated as an adaptation of snakes used in boundary detection. Called active edge maps, the new formulation finds a one-to-one transformation T(x) that maps points in a source image to corresponding locations in a target image using an energy minimization approach. The energy consists of an image component that is small when edge features are well matched in the two images, and an internal term that restricts T(x) to allowable configurations. The active edge map formulation is illustrated here with a specific example developed for affine registration of carotid artery magnetic resonance images. In this example, edges are identified using a magnitude of gradient operator, image energy is determined using a Gaussian weighted distance function, and the internal energy includes separate, adjustable components that control volume preservation and rigidity.

  4. The iMars WebGIS - Spatio-Temporal Data Queries and Single Image Map Web Services

    NASA Astrophysics Data System (ADS)

    Walter, Sebastian; Steikert, Ralf; Schreiner, Bjoern; Muller, Jan-Peter; van Gasselt, Stephan; Sidiropoulos, Panagiotis; Lanz-Kroechert, Julia

    2017-04-01

    Introduction: Web-based planetary image dissemination platforms usually show outline coverages of the data and offer querying for metadata as well as preview and download, e.g. the HRSC Mapserver (Walter & van Gasselt, 2014). Here we introduce a new approach for a system dedicated to change detection by simultanous visualisation of single-image time series in a multi-temporal context. While the usual form of presenting multi-orbit datasets is the merge of the data into a larger mosaic, we want to stay with the single image as an important snapshot of the planetary surface at a specific time. In the context of the EU FP-7 iMars project we process and ingest vast amounts of automatically co-registered (ACRO) images. The base of the co-registration are the high precision HRSC multi-orbit quadrangle image mosaics, which are based on bundle-block-adjusted multi-orbit HRSC DTMs. Additionally we make use of the existing bundle-adjusted HRSC single images available at the PDS archives. A prototype demonstrating the presented features is available at http://imars.planet.fu-berlin.de. Multi-temporal database: In order to locate multiple coverage of images and select images based on spatio-temporal queries, we converge available coverage catalogs for various NASA imaging missions into a relational database management system with geometry support. We harvest available metadata entries during our processing pipeline using the Integrated Software for Imagers and Spectrometers (ISIS) software. Currently, this database contains image outlines from the MGS/MOC, MRO/CTX and the MO/THEMIS instruments with imaging dates ranging from 1996 to the present. For the MEx/HRSC data, we already maintain a database which we automatically update with custom software based on the VICAR environment. Web Map Service with time support: The MapServer software is connected to the database and provides Web Map Services (WMS) with time support based on the START_TIME image attribute. It allows temporal WMS GetMap requests by setting additional TIME parameter values in the request. The values for the parameter represent an interval defined by its lower and upper bounds. As the WMS time standard only supports one time variable, only the start times of the images are considered. If no time values are submitted with the request, the full time range of all images is assumed as the default. Dynamic single image WMS: To compare images from different acquisition times at sites of multiple coverage, we have to load every image as a single WMS layer. Due to the vast amount of single images we need a way to set up the layers in a dynamic way - the map server does not know the images to be served beforehand. We use the MapScript interface to dynamically access MapServer's objects and configure the file name and path of the requested image in the map configuration. The layers are created on-the-fly each representing only one single image. On the frontend side, the vendor-specific WMS request parameter (PRODUCTID) has to be appended to the regular set of WMS parameters. The request is then passed on to the MapScript instance. Web Map Tile Cache: In order to speed up access of the WMS requests, a MapCache instance has been integrated in the pipeline. As it is not aware of the available PDS product IDs which will be queried, the PRODUCTID parameter is configured as an additional dimension of the cache. The WMS request is received by the Apache webserver configured with the MapCache module. If the tile is available in the tile cache, it is immediately commited to the client. If not available, the tile request is forwarded to Apache and the MapScript module. The Python script intercepts the WMS request and extracts the product ID from the parameter chain. It loads the layer object from the map file and appends the file name and path of the inquired image. After some possible further image processing inside the script (stretching, color matching), the request is submitted to the MapServer backend which in turn delivers the response back to the MapCache instance. Web frontend: We have implemented a web-GIS frontend based on various OpenLayers components. The basemap is a global color-hillshaded HRSC bundle-adjusted DTM mosaic with a resolution of 50 m per pixel. The new bundle-block-adjusted qudrangle mosaics of the MC-11 quadrangle, both image and DTM, are included with opacity slider options. The layer user interface has been adapted on the base of the ol3-layerswitcher and extended by foldable and switchable groups, layer sorting (by resolution, by time and alphabeticallly) and reordering (drag-and-drop). A collapsible time panel accomodates a time slider interface where the user can filter the visible data by a range of Mars or Earth dates and/or by solar longitudes. The visualisation of time-series of single images is controlled by a specific toolbar enabling the workflow of image selection (by point or bounding box), dynamic image loading and playback of single images in a video player-like environment. During a stress-test campaign we could demonstrate that the system is capable of serving up to 10 simultaneous users on its current lightweight development hardware. It is planned to relocate the software to more powerful hardware by the time of this conference. Conclusions/Outlook: The iMars webGIS is an expert tool for the detection and visualization of surface changes. We demonstrate a technique to dynamically retrieve and display single images based on the time-series structure of the data. Together with the multi-temporal database and its MapServer/MapCache backend it provides a stable and high performance environment for the dissemination of the various iMars products. Acknowledgements: This research has received funding from the EU's FP7 Programme under iMars 607379 and by the German Space Agency (DLR Bonn), grant 50 QM 1301 (HRSC on Mars Express).

  5. Semi-automated extraction of landslides in Taiwan based on SPOT imagery and DEMs

    NASA Astrophysics Data System (ADS)

    Eisank, Clemens; Hölbling, Daniel; Friedl, Barbara; Chen, Yi-Chin; Chang, Kang-Tsung

    2014-05-01

    The vast availability and improved quality of optical satellite data and digital elevation models (DEMs), as well as the need for complete and up-to-date landslide inventories at various spatial scales have fostered the development of semi-automated landslide recognition systems. Among the tested approaches for designing such systems, object-based image analysis (OBIA) stepped out to be a highly promising methodology. OBIA offers a flexible, spatially enabled framework for effective landslide mapping. Most object-based landslide mapping systems, however, have been tailored to specific, mainly small-scale study areas or even to single landslides only. Even though reported mapping accuracies tend to be higher than for pixel-based approaches, accuracy values are still relatively low and depend on the particular study. There is still room to improve the applicability and objectivity of object-based landslide mapping systems. The presented study aims at developing a knowledge-based landslide mapping system implemented in an OBIA environment, i.e. Trimble eCognition. In comparison to previous knowledge-based approaches, the classification of segmentation-derived multi-scale image objects relies on digital landslide signatures. These signatures hold the common operational knowledge on digital landslide mapping, as reported by 25 Taiwanese landslide experts during personal semi-structured interviews. Specifically, the signatures include information on commonly used data layers, spectral and spatial features, and feature thresholds. The signatures guide the selection and implementation of mapping rules that were finally encoded in Cognition Network Language (CNL). Multi-scale image segmentation is optimized by using the improved Estimation of Scale Parameter (ESP) tool. The approach described above is developed and tested for mapping landslides in a sub-region of the Baichi catchment in Northern Taiwan based on SPOT imagery and a high-resolution DEM. An object-based accuracy assessment is conducted by quantitatively comparing extracted landslide objects with landslide polygons that were visually interpreted by local experts. The applicability and transferability of the mapping system are evaluated by comparing initial accuracies with those achieved for the following two tests: first, usage of a SPOT image from the same year, but for a different area within the Baichi catchment; second, usage of SPOT images from multiple years for the same region. The integration of the common knowledge via digital landslide signatures is new in object-based landslide studies. In combination with strategies to optimize image segmentation this may lead to a more objective, transferable and stable knowledge-based system for the mapping of landslides from optical satellite data and DEMs.

  6. An Integrated Tone Mapping for High Dynamic Range Image Visualization

    NASA Astrophysics Data System (ADS)

    Liang, Lei; Pan, Jeng-Shyang; Zhuang, Yongjun

    2018-01-01

    There are two type tone mapping operators for high dynamic range (HDR) image visualization. HDR image mapped by perceptual operators have strong sense of reality, but will lose local details. Empirical operators can maximize local detail information of HDR image, but realism is not strong. A common tone mapping operator suitable for all applications is not available. This paper proposes a novel integrated tone mapping framework which can achieve conversion between empirical operators and perceptual operators. In this framework, the empirical operator is rendered based on improved saliency map, which simulates the visual attention mechanism of the human eye to the natural scene. The results of objective evaluation prove the effectiveness of the proposed solution.

  7. Development and Evaluation of Computerized Problem-based Learning Cases Emphasizing Basic Sciences Concepts.

    ERIC Educational Resources Information Center

    Abate, Marie A.; Meyer-Stout, Paula J.; Stamatakis, Mary K.; Gannett, Peter M.; Dunsworth, Teresa S.; Nardi, Anne H.

    2000-01-01

    Describes development and evaluation of eight computerized problem-based learning (PBL) cases in medicinal chemistry and pharmaceutics concepts. Case versions either incorporated concept maps emphasizing key ideas or did not. Student performance on quizzes did not differ between the different case versions and was similar to that of students who…

  8. The FAO/NASA/NLR Artemis system - An integrated concept for environmental monitoring by satellite in support of food/feed security and desert locust surveillance

    NASA Technical Reports Server (NTRS)

    Hielkema, J. U.; Howard, J. A.; Tucker, C. J.; Van Ingen Schenau, H. A.

    1987-01-01

    The African real time environmental monitoring using imaging satellites (Artemis) system, which should monitor precipitation and vegetation conditions on a continental scale, is presented. The hardware and software characteristics of the system are illustrated and the Artemis databases are outlined. Plans for the system include the use of hourly digital Meteosat data and daily NOAA/AVHRR data to study environmental conditions. Planned mapping activities include monthly rainfall anomaly maps, normalized difference vegetation index maps for ten day and monthly periods with a spatial resolution of 7.6 km, ten day crop/rangeland moisture availability maps, and desert locust potential breeding activity factor maps for a plague prevention program.

  9. Enriching Student Concept Images: Teaching and Learning Fractions through a Multiple-Embodiment Approach

    ERIC Educational Resources Information Center

    Zhang, Xiaofen; Clements, M. A.; Ellerton, Nerida F.

    2015-01-01

    This study investigated how fifth-grade children's concept images of the unit fractions represented by the symbols 1/2, 1/3/ and 1/4 changed as a result of their participation in an instructional intervention based on multiple embodiments of fraction concepts. The participants' concept images were examined through pre- and post-teaching written…

  10. Segmentation of radiologic images with self-organizing maps: the segmentation problem transformed into a classification task

    NASA Astrophysics Data System (ADS)

    Pelikan, Erich; Vogelsang, Frank; Tolxdorff, Thomas

    1996-04-01

    The texture-based segmentation of x-ray images of focal bone lesions using topological maps is introduced. Texture characteristics are described by image-point correlation of feature images to feature vectors. For the segmentation, the topological map is labeled using an improved labeling strategy. Results of the technique are demonstrated on original and synthetic x-ray images and quantified with the aid of quality measures. In addition, a classifier-specific contribution analysis is applied for assessing the feature space.

  11. Enhanced Deforestation Mapping in North Korea using Spatial-temporal Image Fusion Method and Phenology-based Index

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Lee, D.

    2017-12-01

    North Korea (the Democratic People's Republic of Korea, DPRK) is known to have some of the most degraded forest in the world. The characteristics of forest landscape in North Korea is complex and heterogeneous, the major vegetation cover types in the forest are hillside farm, unstocked forest, natural forest, and plateau vegetation. Better classification of types in high spatial resolution of deforested areas could provide essential information for decisions about forest management priorities and restoration of deforested areas. For mapping heterogeneous vegetation covers, the phenology-based indices are helpful to overcome the reflectance value confusion that occurs when using one season images. Coarse spatial resolution images may be acquired with a high repetition rate and it is useful for analyzing phenology characteristics, but may not capture the spatial detail of the land cover mosaic of the region of interest. Previous spatial-temporal fusion methods were only capture the temporal change, or focused on both temporal change and spatial change but with low accuracy in heterogeneous landscapes and small patches. In this study, a new concept for spatial-temporal image fusion method focus on heterogeneous landscape was proposed to produce fine resolution images at both fine spatial and temporal resolution. We classified the three types of pixels between the base image and target image, the first type is only reflectance changed caused by phenology, this type of pixels supply the reflectance, shape and texture information; the second type is both reflectance and spectrum changed in some bands caused by phenology like rice paddy or farmland, this type of pixels only supply shape and texture information; the third type is reflectance and spectrum changed caused by land cover type change, this type of pixels don't provide any information because we can't know how land cover changed in target image; and each type of pixels were applied different prediction methods. Results show that both STARFM and FSDAF predicted in low accuracy in second type pixels and small patches. Classification results used spatial-temporal image fusion method proposed in this study showed overall classification accuracy of 89.38%, with corresponding kappa coefficients of 0.87.

  12. Quantitative architectural analysis: a new approach to cortical mapping.

    PubMed

    Schleicher, A; Palomero-Gallagher, N; Morosan, P; Eickhoff, S B; Kowalski, T; de Vos, K; Amunts, K; Zilles, K

    2005-12-01

    Recent progress in anatomical and functional MRI has revived the demand for a reliable, topographic map of the human cerebral cortex. Till date, interpretations of specific activations found in functional imaging studies and their topographical analysis in a spatial reference system are, often, still based on classical architectonic maps. The most commonly used reference atlas is that of Brodmann and his successors, despite its severe inherent drawbacks. One obvious weakness in traditional, architectural mapping is the subjective nature of localising borders between cortical areas, by means of a purely visual, microscopical examination of histological specimens. To overcome this limitation, more objective, quantitative mapping procedures have been established in the past years. The quantification of the neocortical, laminar pattern by defining intensity line profiles across the cortical layers, has a long tradition. During the last years, this method has been extended to enable a reliable, reproducible mapping of the cortex based on image analysis and multivariate statistics. Methodological approaches to such algorithm-based, cortical mapping were published for various architectural modalities. In our contribution, principles of algorithm-based mapping are described for cyto- and receptorarchitecture. In a cytoarchitectural parcellation of the human auditory cortex, using a sliding window procedure, the classical areal pattern of the human superior temporal gyrus was modified by a replacing of Brodmann's areas 41, 42, 22 and parts of area 21, with a novel, more detailed map. An extension and optimisation of the sliding window procedure to the specific requirements of receptorarchitectonic mapping, is also described using the macaque central sulcus and adjacent superior parietal lobule as a second, biologically independent example. Algorithm-based mapping procedures, however, are not limited to these two architectural modalities, but can be applied to all images in which a laminar cortical pattern can be detected and quantified, e.g. myeloarchitectonic and in vivo high resolution MR imaging. Defining cortical borders, based on changes in cortical lamination in high resolution, in vivo structural MR images will result in a rapid increase of our knowledge on the structural parcellation of the human cerebral cortex.

  13. Modeling a color-rendering operator for high dynamic range images using a cone-response function

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Hyoung; Kim, Gi-Seok; Yun, Byoung-Ju

    2015-09-01

    Tone-mapping operators are the typical algorithms designed to produce visibility and the overall impression of brightness, contrast, and color of high dynamic range (HDR) images on low dynamic range (LDR) display devices. Although several new tone-mapping operators have been proposed in recent years, the results of these operators have not matched those of the psychophysical experiments based on the human visual system. A color-rendering model that is a combination of tone-mapping and cone-response functions using an XYZ tristimulus color space is presented. In the proposed method, the tone-mapping operator produces visibility and the overall impression of brightness, contrast, and color in HDR images when mapped onto relatively LDR devices. The tone-mapping resultant image is obtained using chromatic and achromatic colors to avoid well-known color distortions shown in the conventional methods. The resulting image is then processed with a cone-response function wherein emphasis is placed on human visual perception (HVP). The proposed method covers the mismatch between the actual scene and the rendered image based on HVP. The experimental results show that the proposed method yields an improved color-rendering performance compared to conventional methods.

  14. Images of the World: Mental Maps of U.S. Military Officers

    DTIC Science & Technology

    1992-05-01

    only displayed the geographic characteristics of the countries, (the direction, distance, and size; all relative to the U.S.) but the maps also indicate...individual’s mental map is based upon learned facts and exposure to impressionable images. Facts and images of the world constitute the foundation from... characteristics of the world are mostly static, images people have of places are dynamic and fluid. Graphically, this is the main difference between

  15. The effects of rectification and Global Positioning System errors on satellite image-based estimates of forest area

    Treesearch

    Ronald E. McRoberts

    2010-01-01

    Satellite image-based maps of forest attributes are of considerable interest and are used for multiple purposes such as international reporting by countries that have no national forest inventory and small area estimation for all countries. Construction of the maps typically entails, in part, rectifying the satellite images to a geographic coordinate system, observing...

  16. 3D Reconstruction of geological structures based on remote sensing data: example from Anaran anticline, Lurestan province, Zagros folds and thrust belt, Iran.

    NASA Astrophysics Data System (ADS)

    Snidero, M.; Amilibia, A.; Gratacos, O.; Muñoz, J. A.

    2009-04-01

    This work presents a methodological workflow for the 3D reconstruction of geological surfaces at regional scale, based on remote sensing data and geological maps. This workflow has been tested on the reconstruction of the Anaran anticline, located in the Zagros Fold and Thrust belt mountain front. The used remote sensing data-set is a combination of Aster and Spot images as well as a high resolution digital elevation model. A consistent spatial positioning of the complete data-set in a 3D environment is necessary to obtain satisfactory results during the reconstruction. The Aster images have been processed by the Optimum Index Factor (OIF) technique, in order to facilitate the geological mapping. By pansharpening of the resulting Aster image with the SPOT panchromatic one we obtain the final high-resolution image used during the 3D mapping. Structural data (dip data) has been acquired through the analysis of the 3D mapped geological traces. Structural analysis of the resulting data-set allows us to divide the structure in different cylindrical domains. Related plunge lines orientation has been used to project data along the structure, covering areas with little or no information. Once a satisfactory dataset has been acquired, we reconstruct a selected horizon following the dip-domain concept. By manual editing, the obtained surfaces have been adjusted to the mapped geological limits as well as to the modeled faults. With the implementation of the Discrete Smooth Interpolation (DSI) algorithm, the final surfaces have been reconstructed along the anticline. Up to date the results demonstrate that the proposed methodology is a powerful tool for 3D reconstruction of geological surfaces when working with remote sensing data, in very inaccessible areas (eg. Iran, China, Africa). It is especially useful in semiarid regions where the structure strongly controls the topography. The reconstructed surfaces clearly show the geometry in the different sectors of the structure: presence of a back thrust affecting the back limb in the southern part of the anticline, the geometry of the grabens located along the anticline crest, the crosscutting relationship in the north-south faulted zone with the main thrust, the northern dome periclinal closure.

  17. Avoiding Stair-Step Artifacts in Image Registration for GOES-R Navigation and Registration Assessment

    NASA Technical Reports Server (NTRS)

    Grycewicz, Thomas J.; Tan, Bin; Isaacson, Peter J.; De Luccia, Frank J.; Dellomo, John

    2016-01-01

    In developing software for independent verification and validation (IVV) of the Image Navigation and Registration (INR) capability for the Geostationary Operational Environmental Satellite R Series (GOES-R) Advanced Baseline Imager (ABI), we have encountered an image registration artifact which limits the accuracy of image offset estimation at the subpixel scale using image correlation. Where the two images to be registered have the same pixel size, subpixel image registration preferentially selects registration values where the image pixel boundaries are close to lined up. Because of the shape of a curve plotting input displacement to estimated offset, we call this a stair-step artifact. When one image is at a higher resolution than the other, the stair-step artifact is minimized by correlating at the higher resolution. For validating ABI image navigation, GOES-R images are correlated with Landsat-based ground truth maps. To create the ground truth map, the Landsat image is first transformed to the perspective seen from the GOES-R satellite, and then is scaled to an appropriate pixel size. Minimizing processing time motivates choosing the map pixels to be the same size as the GOES-R pixels. At this pixel size image processing of the shift estimate is efficient, but the stair-step artifact is present. If the map pixel is very small, stair-step is not a problem, but image correlation is computation-intensive. This paper describes simulation-based selection of the scale for truth maps for registering GOES-R ABI images.

  18. Earth mapping - aerial or satellite imagery comparative analysis

    NASA Astrophysics Data System (ADS)

    Fotev, Svetlin; Jordanov, Dimitar; Lukarski, Hristo

    Nowadays, solving the tasks for revision of existing map products and creation of new maps requires making a choice of the land cover image source. The issue of the effectiveness and cost of the usage of aerial mapping systems versus the efficiency and cost of very-high resolution satellite imagery is topical [1, 2, 3, 4]. The price of any remotely sensed image depends on the product (panchromatic or multispectral), resolution, processing level, scale, urgency of task and on whether the needed image is available in the archive or has to be requested. The purpose of the present work is: to make a comparative analysis between the two approaches for mapping the Earth having in mind two parameters: quality and cost. To suggest an approach for selection of the map information sources - airplane-based or spacecraft-based imaging systems with very-high spatial resolution. Two cases are considered: area that equals approximately one satellite scene and area that equals approximately the territory of Bulgaria.

  19. Cartographic quality of ERTS-1 images

    NASA Technical Reports Server (NTRS)

    Welch, R. I.

    1973-01-01

    Analyses of simulated and operational ERTS images have provided initial estimates of resolution, ground resolution, detectability thresholds and other measures of image quality of interest to earth scientists and cartographers. Based on these values, including an approximate ground resolution of 250 meters for both RBV and MSS systems, the ERTS-1 images appear suited to the production and/or revision of planimetric and photo maps of 1:500,000 scale and smaller for which map accuracy standards are compatible with the imaged detail. Thematic mapping, although less constrained by map accuracy standards, will be influenced by measurement thresholds and errors which have yet to be accurately determined for ERTS images. This study also indicates the desirability of establishing a quantitative relationship between image quality values and map products which will permit both engineers and cartographers/earth scientists to contribute to the design requirements of future satellite imaging systems.

  20. Expert system-based mineral mapping using AVIRIS

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Lefkoff, A. B.; Dietz, J. B.

    1992-01-01

    Integrated analysis of imaging spectrometer data and field spectral measurements were used in conjunction with conventional geologic field mapping to characterize bedrock and surficial geology at the northern end of Death Valley, California and Nevada. A knowledge-based expert system was used to automatically produce image maps from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data showing the principal surface mineralogy. The imaging spectrometer data show the spatial distribution of spectrally distinct minerals occurring both as primary rock-forming minerals and as alteration and weathering products. Field spectral measurements were used to verify the mineral maps and field mapping was used to extend the remote sensing results. Geographically referenced image-maps produced from these data form new base maps from which to develop improved understanding of the processes of deposition and erosion affecting the present land surface. The 'northern Grapevine Mountains' (NGM) study area was reported on in numerous papers. This area is an unnamed northwestward extension of the range. Most of the research here has concentrated on mapping of Jurassic-age plutons and associated hydrothermal alteration, however, the nature and scope of these studies is much broader, pertaining to the geologic history and development of the entire Death Valley region. AVIRIS data for the NGM site were obtained during May 1989. Additional AVIRIS data were acquired during September 1989 as part of the Geologic Remote Sensing Field Experiment (GRSFE). The area covered by these data overlaps slightly with the May 1989 data. Three and one-half AVIRIS scenes total were analyzed.

  1. Integrating Concept Mapping and the Learning Cycle To Teach Diffusion and Osmosis Concepts to High School Biology Students.

    ERIC Educational Resources Information Center

    Odom, Arthur L.; Kelly, Paul V.

    2001-01-01

    Explores the effectiveness of concept mapping, the learning cycle, expository instruction, and a combination of concept mapping/learning cycle in promoting conceptual understanding of diffusion and osmosis. Concludes that the concept mapping/learning cycle and concept mapping treatment groups significantly outperformed the expository treatment…

  2. Concept Mapping as an Innovative Tool for the Assessment of Learning: An Experimental Experience among Business Management Degree Students

    ERIC Educational Resources Information Center

    Ruiz-Palomino, Pablo; Martinez-Canas, Ricardo

    2013-01-01

    In the search to improve the quality of education at the university level, the use of concept mapping is becoming an important instructional technique for enhancing the teaching-learning process. This educational tool is based on cognitive theories by making a distinction between learning by rote (memorizing) and learning by meaning, where…

  3. Mapping the Future: Optimizing Joint Geospatial Engineering Support

    DTIC Science & Technology

    2006-05-16

    Environment. Maxwell Air Force Base, AL.: Air University, 1990. Babbage , Ross and Desmond Ball. Geographic Information Systems: Defence Applications...Joint Pub 4-04. Washington, DC: 27 September 2001. Wertz, Charles J. The Data Dictionary, Concepts and Uses. Wellesley, MA: QED Information...Force Defense Mapping for Future Operations, Washington, DC: September 1995, 1-7. 18 Charles J. Wertz, The Data Dictionary, Concepts and Uses

  4. Effects of Students' Pre- and Post-Laboratory Concept Maps on Students' Attitudes toward Chemistry Laboratory in University General Chemistry

    ERIC Educational Resources Information Center

    Kilic, Ziya; Kaya, Osman Nafiz; Dogan, Alev

    2004-01-01

    The purpose of this study was to investigate the effects of scientific discussions based on student-constructed pre- and post-laboratory concept maps on students' attitudes toward chemistry laboratory in the university general chemistry. As part of instruction, during the first four laboratory sessions, students were taught how to construct and…

  5. Respiration-induced movement correlation for synchronous noninvasive renal cancer surgery.

    PubMed

    Abhilash, Rakkunedeth H; Chauhan, Sunita

    2012-07-01

    Noninvasive surgery (NIS), such as high-intensity focused ultrasound (HIFU)-based ablation or radiosurgery, is used for treating tumors and cancers in various parts of the body. The soft tissue targets (usually organs) deform and move as a result of physiological processes such as respiration. Moreover, other deformations induced during surgery by changes in patient position, changes in physical properties caused by repeated exposures and uncertainties resulting from cavitation also occur. In this paper, we present a correlation-based movement prediction technique to address respiration-induced movement of the urological organs while targeting through extracorporeal trans-abdominal route access. Among other organs, kidneys are worst affected during respiratory cycles, with significant three-dimensional displacements observed on the order of 20 mm. Remote access to renal targets such as renal carcinomas and cysts during noninvasive surgery, therefore, requires a tightly controlled real-time motion tracking and quantitative estimate for compensation routine to synchronize the energy source(s) for precise energy delivery to the intended regions. The correlation model finds a mapping between the movement patterns of external skin markers placed on the abdominal access window and the internal movement of the targeted kidney. The coarse estimate of position is then fine-tuned using the Adaptive Neuro-Fuzzy Inference System (ANFIS), thereby achieving a nonlinear mapping. The technical issues involved in this tracking scheme are threefold: the model must have sufficient accuracy in mapping the movement pattern; there must be an image-based tracking scheme to provide the organ position within allowable system latency; and the processing delay resulting from modeling and tracking must be within the achievable prediction horizon to accommodate the latency in the therapeutic delivery system. The concept was tested on ultrasound image sequences collected from 20 healthy volunteers. The results indicate that the modeling technique can be practically integrated into an image-guided noninvasive robotic surgical system with an indicative targeting accuracy of more than 94%. A comparative analysis showed the superiority of this technique over conventional linear mapping and modelfree blind search techniques.

  6. Clinical concept mapping: Does it improve discipline-based critical thinking of nursing students?

    PubMed Central

    Moattari, Marzieh; Soleimani, Sara; Moghaddam, Neda Jamali; Mehbodi, Farkhondeh

    2014-01-01

    Background: Enhancing nursing students’ critical thinking is a challenge faced by nurse educators. This study aimed at determining the effect of clinical concept mapping on discipline-based critical thinking of nursing students. Materials and Methods: In this quasi-experimental post-test only design, a convenient sample of 4th year nursing students (N = 32) participated. They were randomly divided into two groups. The experimental group participated in a 1-day workshop on clinical concept mapping. They were also assigned to use at least two clinical concepts mapping during their clinical practice. Post-test was done using a specially designed package consisting of vignettes for measurement of 17 dimensions of critical thinking in nursing under two categories of cognitive critical thinking skills and habits of mind. They were required to write about how they would use a designated critical thinking skills or habits of mind to accomplish the nursing actions. The students’ responses were evaluated based on identification of critical thinking, justification, and quality of the student's response. The mean score of both groups was compared by Mann-Whitney test using SPSS version 16.5. Results: The results of the study revealed a significant difference between the two groups’ critical thinking regarding identification, justification, and quality of responses, and overall critical thinking scores, cognitive thinking skills, and habits of mind. The two groups also differed significantly from each other in 11 out of 17 dimensions of critical thinking. Conclusion: Clinical concept mapping is a valuable strategy for improvement of critical thinking of nursing students. However, further studies are recommended to generalize this result to nursing students in their earlier stage of education. PMID:24554963

  7. What is needed to implement a web-based audit and feedback intervention with outreach visits to improve care quality: A concept mapping study among cardiac rehabilitation teams.

    PubMed

    van Engen-Verheul, Mariëtte M; Peek, Niels; Haafkens, Joke A; Joukes, Erik; Vromen, Tom; Jaspers, Monique W M; de Keizer, Nicolette F

    2017-01-01

    Evidence on successful quality improvement (QI) in health care requires quantitative information from randomized clinical trials (RCTs) on the effectiveness of QI interventions, but also qualitative information from professionals to understand factors influencing QI implementation. Using a structured qualitative approach, concept mapping, this study determines factors identified by cardiac rehabilitation (CR) teams on what is needed to successfully implement a web-based audit and feedback (A&F) intervention with outreach visits to improve the quality of CR care. Participants included 49 CR professionals from 18 Dutch CR centres who had worked with the A&F system during a RCT. In three focus group sessions participants formulated statements on factors needed to implement QI successfully. Subsequently, participants rated all statements for importance and feasibility and grouped them thematically. Multi dimensional scaling was used to produce a final concept map. Forty-two unique statements were formulated and grouped into five thematic clusters in the concept map. The cluster with the highest importance was QI team commitment, followed by organisational readiness, presence of an adequate A&F system, access to an external quality assessor, and future use and functionalities of the A&F system. Concept mapping appeared efficient and useful to understand contextual factors influencing QI implementation as perceived by healthcare teams. While presence of a web-based A&F system and external quality assessor were seen as instrumental for gaining insight into performance and formulating QI actions, QI team commitment and organisational readiness were perceived as essential to actually implement and carry out these actions. These two sociotechnical factors should be taken into account when implementing and evaluating the success of QI implementations in future research. Copyright © 2016. Published by Elsevier Ireland Ltd.

  8. Optical smart packaging to reduce transmitted information.

    PubMed

    Cabezas, Luisa; Tebaldi, Myrian; Barrera, John Fredy; Bolognini, Néstor; Torroba, Roberto

    2012-01-02

    We demonstrate a smart image-packaging optical technique that uses what we believe is a new concept to save byte space when transmitting data. The technique supports a large set of images mapped into modulated speckle patterns. Then, they are multiplexed into a single package. This operation results in a substantial decreasing of the final amount of bytes of the package with respect to the amount resulting from the addition of the images without using the method. Besides, there are no requirements on the type of images to be processed. We present results that proof the potentiality of the technique.

  9. Mapping and Managing Knowledge and Information in Resource-Based Learning

    ERIC Educational Resources Information Center

    Tergan, Sigmar-Olaf; Graber, Wolfgang; Neumann, Anja

    2006-01-01

    In resource-based learning scenarios, students are often overwhelmed by the complexity of task-relevant knowledge and information. Techniques for the external interactive representation of individual knowledge in graphical format may help them to cope with complex problem situations. Advanced computer-based concept-mapping tools have the potential…

  10. Quantitative Evaluation of 2 Scatter-Correction Techniques for 18F-FDG Brain PET/MRI in Regard to MR-Based Attenuation Correction.

    PubMed

    Teuho, Jarmo; Saunavaara, Virva; Tolvanen, Tuula; Tuokkola, Terhi; Karlsson, Antti; Tuisku, Jouni; Teräs, Mika

    2017-10-01

    In PET, corrections for photon scatter and attenuation are essential for visual and quantitative consistency. MR attenuation correction (MRAC) is generally conducted by image segmentation and assignment of discrete attenuation coefficients, which offer limited accuracy compared with CT attenuation correction. Potential inaccuracies in MRAC may affect scatter correction, because the attenuation image (μ-map) is used in single scatter simulation (SSS) to calculate the scatter estimate. We assessed the impact of MRAC to scatter correction using 2 scatter-correction techniques and 3 μ-maps for MRAC. Methods: The tail-fitted SSS (TF-SSS) and a Monte Carlo-based single scatter simulation (MC-SSS) algorithm implementations on the Philips Ingenuity TF PET/MR were used with 1 CT-based and 2 MR-based μ-maps. Data from 7 subjects were used in the clinical evaluation, and a phantom study using an anatomic brain phantom was conducted. Scatter-correction sinograms were evaluated for each scatter correction method and μ-map. Absolute image quantification was investigated with the phantom data. Quantitative assessment of PET images was performed by volume-of-interest and ratio image analysis. Results: MRAC did not result in large differences in scatter algorithm performance, especially with TF-SSS. Scatter sinograms and scatter fractions did not reveal large differences regardless of the μ-map used. TF-SSS showed slightly higher absolute quantification. The differences in volume-of-interest analysis between TF-SSS and MC-SSS were 3% at maximum in the phantom and 4% in the patient study. Both algorithms showed excellent correlation with each other with no visual differences between PET images. MC-SSS showed a slight dependency on the μ-map used, with a difference of 2% on average and 4% at maximum when a μ-map without bone was used. Conclusion: The effect of different MR-based μ-maps on the performance of scatter correction was minimal in non-time-of-flight 18 F-FDG PET/MR brain imaging. The SSS algorithm was not affected significantly by MRAC. The performance of the MC-SSS algorithm is comparable but not superior to TF-SSS, warranting further investigations of algorithm optimization and performance with different radiotracers and time-of-flight imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  11. Beck Exportation: London and Sydney

    NASA Astrophysics Data System (ADS)

    Cartwright, William; Field, Kenneth

    2018-05-01

    Henry (Harry) Beck's schematic map of the London Underground is the foundation for most `modern' representations of metropolitan rail systems. From its introduction in the 1930s, it has been the image of the London underground rail transportation system, and, indeed, the image of London itself. Following the launch of the schematic map in 1933 Londoners adopted his representation of the underground as the favoured transportation navigation tool, but also as a physical affirmation that they were citizens of a modern city, a city of electricity and the avant-garde. The London Underground map, as well as being the physical image of the underground rail system, became the signature of the modern city itself. It projected order, systematic transportation and commuter convenience. The map reinforced the general belief that a modern transportation system was at the very heart of what made a city a city. Building upon the success of the map, Beck, and the London Passenger Transport Board, explored how this `take' on the representation of an urban transportation system might be exported to other European, and Antipodean rail networks. This paper provides a dialogue on how Beck's concept for the `metromap' was offered as an alternative navigational diagram to the, then new, Sydney underground system. It then outlines the results of an investigation about how this `Exportation' of Beck's design resulted in the 1939 Sydney metromap that was a clone of the London Underground map.

  12. Coming To Know: The Role of the Concept Map--Mirror, Assistant, Master?

    ERIC Educational Resources Information Center

    McAleese, Ray

    This paper explains the process of creating and managing concept maps, using reflection as a focus for its argument. Section 1, What is a Concept Map?, highlights the background and definition of concept mapping, explains how maps signify virtual conceptual structures, looks at structural knowledge, provides an example of a concept map, and…

  13. What Do Pre-Service Physics Teachers Know and Think about Concept Mapping?

    ERIC Educational Resources Information Center

    Didis, Nilüfer; Özcan, Özgür; Azar, Ali

    2014-01-01

    In order to use concept maps in physics classes effectively, teachers' knowledge and ideas about concept mapping are as important as the physics knowledge used in mapping. For this reason, we aimed to examine pre-service physics teachers' knowledge on concept mapping, their ideas about the implementation of concept mapping in physics…

  14. Temporal lobe networks supporting the comprehension of spoken words.

    PubMed

    Bonilha, Leonardo; Hillis, Argye E; Hickok, Gregory; den Ouden, Dirk B; Rorden, Chris; Fridriksson, Julius

    2017-09-01

    Auditory word comprehension is a cognitive process that involves the transformation of auditory signals into abstract concepts. Traditional lesion-based studies of stroke survivors with aphasia have suggested that neocortical regions adjacent to auditory cortex are primarily responsible for word comprehension. However, recent primary progressive aphasia and normal neurophysiological studies have challenged this concept, suggesting that the left temporal pole is crucial for word comprehension. Due to its vasculature, the temporal pole is not commonly completely lesioned in stroke survivors and this heterogeneity may have prevented its identification in lesion-based studies of auditory comprehension. We aimed to resolve this controversy using a combined voxel-based-and structural connectome-lesion symptom mapping approach, since cortical dysfunction after stroke can arise from cortical damage or from white matter disconnection. Magnetic resonance imaging (T1-weighted and diffusion tensor imaging-based structural connectome), auditory word comprehension and object recognition tests were obtained from 67 chronic left hemisphere stroke survivors. We observed that damage to the inferior temporal gyrus, to the fusiform gyrus and to a white matter network including the left posterior temporal region and its connections to the middle temporal gyrus, inferior temporal gyrus, and cingulate cortex, was associated with word comprehension difficulties after factoring out object recognition. These results suggest that the posterior lateral and inferior temporal regions are crucial for word comprehension, serving as a hub to integrate auditory and conceptual processing. Early processing linking auditory words to concepts is situated in posterior lateral temporal regions, whereas additional and deeper levels of semantic processing likely require more anterior temporal regions.10.1093/brain/awx169_video1awx169media15555638084001. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. [A Study on the Cognitive Learning Effectiveness of Scenario-Based Concept Mapping in a Neurological Nursing Course].

    PubMed

    Pan, Hui-Ching; Hsieh, Suh-Ing; Hsu, Li-Ling

    2015-12-01

    The multiple levels of knowledge related to the neurological system deter many students from pursuing studies on this topic. Thus, in facing complicated and uncertain medical circumstances, nursing students have diffi-culty adjusting and using basic neurological-nursing knowledge and skills. Scenario-based concept-mapping teaching has been shown to promote the integration of complicated data, clarify related concepts, and increase the effectiveness of cognitive learning. To investigate the effect on the neurological-nursing cognition and learning attitude of nursing students of a scenario-based concept-mapping strategy that was integrated into the neurological nursing unit of a medical and surgical nursing course. This quasi-experimental study used experimental and control groups and a pre-test / post-test design. Sopho-more (2nd year) students in a four-year program at a university of science and technology in Taiwan were convenience sampled using cluster randomization that was run under SPSS 17.0. Concept-mapping lessons were used as the intervention for the experimental group. The control group followed traditional lesson plans only. The cognitive learning outcome was measured using the neurological nursing-learning examination. Both concept-mapping and traditional lessons significantly improved post-test neurological nursing learning scores (p < .001), with no significant difference between the two groups (p = .51). The post-test feedback from the control group mentioned that too much content was taught and that difficulties were experienced in understanding mechanisms and in absorbing knowledge. In contrast, the experimental group held a significantly more positive perspective and learning attitude with regard to the teaching material. Furthermore, a significant number in the experimental group expressed the desire to add more lessons on anatomy, physiology, and pathology. These results indicate that this intervention strategy may help change the widespread fear and refusal of nursing students with regard to neurological lessons and may facilitate interest and positively affect learning in this important subject area. Integrating the concept-mapping strategy and traditional clinical-case lessons into neurological nursing lessons holds the potential to increase post-test scores significantly. Concept mapping helped those in the experimental group adopt views and attitudes toward learning the teaching material that were more positive than those held by their control-group peers. In addition, while 59% of the experimental group and 49% of the control group submitted opinions related to learning attitude in the open-ended questions, positive feedback was greater in the experimental group than in the control group.

  16. The Research of Feature Extraction Method of Liver Pathological Image Based on Multispatial Mapping and Statistical Properties

    PubMed Central

    Liu, Huiling; Xia, Bingbing; Yi, Dehui

    2016-01-01

    We propose a new feature extraction method of liver pathological image based on multispatial mapping and statistical properties. For liver pathological images of Hematein Eosin staining, the image of R and B channels can reflect the sensitivity of liver pathological images better, while the entropy space and Local Binary Pattern (LBP) space can reflect the texture features of the image better. To obtain the more comprehensive information, we map liver pathological images to the entropy space, LBP space, R space, and B space. The traditional Higher Order Local Autocorrelation Coefficients (HLAC) cannot reflect the overall information of the image, so we propose an average correction HLAC feature. We calculate the statistical properties and the average gray value of pathological images and then update the current pixel value as the absolute value of the difference between the current pixel gray value and the average gray value, which can be more sensitive to the gray value changes of pathological images. Lastly the HLAC template is used to calculate the features of the updated image. The experiment results show that the improved features of the multispatial mapping have the better classification performance for the liver cancer. PMID:27022407

  17. High-dynamic range imaging techniques based on both color-separation algorithms used in conventional graphic arts and the human visual perception modeling

    NASA Astrophysics Data System (ADS)

    Lo, Mei-Chun; Hsieh, Tsung-Hsien; Perng, Ruey-Kuen; Chen, Jiong-Qiao

    2010-01-01

    The aim of this research is to derive illuminant-independent type of HDR imaging modules which can optimally multispectrally reconstruct of every color concerned in high-dynamic-range of original images for preferable cross-media color reproduction applications. Each module, based on either of broadband and multispectral approach, would be incorporated models of perceptual HDR tone-mapping, device characterization. In this study, an xvYCC format of HDR digital camera was used to capture HDR scene images for test. A tone-mapping module was derived based on a multiscale representation of the human visual system and used equations similar to a photoreceptor adaptation equation, proposed by Michaelis-Menten. Additionally, an adaptive bilateral type of gamut mapping algorithm, using approach of a multiple conversing-points (previously derived), was incorporated with or without adaptive Un-sharp Masking (USM) to carry out the optimization of HDR image rendering. An LCD with standard color space of Adobe RGB (D65) was used as a soft-proofing platform to display/represent HDR original RGB images, and also evaluate both renditionquality and prediction-performance of modules derived. Also, another LCD with standard color space of sRGB was used to test gamut-mapping algorithms, used to be integrated with tone-mapping module derived.

  18. Mining Concept Maps to Understand University Students' Learning

    ERIC Educational Resources Information Center

    Yoo, Jin Soung; Cho, Moon-Heum

    2012-01-01

    Concept maps, visual representations of knowledge, are used in an educational context as a way to represent students' knowledge, and identify mental models of students; however there is a limitation of using concept mapping due to its difficulty to evaluate the concept maps. A concept map has a complex structure which is composed of concepts and…

  19. Aggregating concept map data to investigate the knowledge of beginning CS students

    NASA Astrophysics Data System (ADS)

    Mühling, Andreas

    2016-07-01

    Concept maps have a long history in educational settings as a tool for teaching, learning, and assessing. As an assessment tool, they are predominantly used to extract the structural configuration of learners' knowledge. This article presents an investigation of the knowledge structures of a large group of beginning CS students. The investigation is based on a method that collects, aggregates, and automatically analyzes the concept maps of a group of learners as a whole, to identify common structural configurations and differences in the learners' knowledge. It shows that those students who have attended CS education in their secondary school life have, on average, configured their knowledge about typical core CS/OOP concepts differently. Also, artifacts of their particular CS curriculum are visible in their externalized knowledge. The data structures and analysis methods necessary for working with concept landscapes have been implemented as a GNU R package that is freely available.

  20. Pre-Service Teachers' Concept Images on Fractal Dimension

    ERIC Educational Resources Information Center

    Karakus, Fatih

    2016-01-01

    The analysis of pre-service teachers' concept images can provide information about their mental schema of fractal dimension. There is limited research on students' understanding of fractal and fractal dimension. Therefore, this study aimed to investigate the pre-service teachers' understandings of fractal dimension based on concept image. The…

  1. Automated, on-board terrain analysis for precision landings

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Hines, Glenn D.

    2006-01-01

    Advances in space robotics technology hinge to a large extent upon the development and deployment of sophisticated new vision-based methods for automated in-space mission operations and scientific survey. To this end, we have developed a new concept for automated terrain analysis that is based upon a generic image enhancement platform|multi-scale retinex (MSR) and visual servo (VS) processing. This pre-conditioning with the MSR and the vs produces a "canonical" visual representation that is largely independent of lighting variations, and exposure errors. Enhanced imagery is then processed with a biologically inspired two-channel edge detection process, followed by a smoothness based criteria for image segmentation. Landing sites can be automatically determined by examining the results of the smoothness-based segmentation which shows those areas in the image that surpass a minimum degree of smoothness. Though the msr has proven to be a very strong enhancement engine, the other elements of the approach|the vs, terrain map generation, and smoothness-based segmentation|are in early stages of development. Experimental results on data from the Mars Global Surveyor show that the imagery can be processed to automatically obtain smooth landing sites. In this paper, we describe the method used to obtain these landing sites, and also examine the smoothness criteria in terms of the imager and scene characteristics. Several examples of applying this method to simulated and real imagery are shown.

  2. Software For Tie-Point Registration Of SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Dubois, Pascale; Okonek, Sharon; Van Zyl, Jacob; Burnette, Fred; Borgeaud, Maurice

    1995-01-01

    SAR-REG software package registers synthetic-aperture-radar (SAR) image data to common reference frame based on manual tie-pointing. Image data can be in binary, integer, floating-point, or AIRSAR compressed format. For example, with map of soil characteristics, vegetation map, digital elevation map, or SPOT multispectral image, as long as user can generate binary image to be used by tie-pointing routine and data are available in one of the previously mentioned formats. Written in FORTRAN 77.

  3. Using Concept Maps to Monitor Knowledge Structure Changes in a Science Classroom

    NASA Astrophysics Data System (ADS)

    Cook, Leah J.

    The aim of this research is to determine what differences may exist in students' structural knowledge while using a variety of concept mapping assessments. A concept map can be used as an assessment which connects concepts in a knowledge domain. A single assessment may not be powerful enough to establish how students' new knowledge relates to prior knowledge. More research is needed to establish how various aspects of the concept mapping task influence the output of map creation by students. Using multiple concept maps and pre-instruction and post-instruction VNOS instruments during a 16-week semester, this study was designed to investigate the impact of concept map training and the impact of assessment design on the created maps. Also, this study was designed to determine what differences can be observed between expert and novice maps and if similarities and differences exist between concept maps and an open-ended assessment. Participants created individual maps and the maps were analyzed for structural complexity, overall structure, and content. The concept maps were then compared by their timing, design, and scores. The results indicate that concept mapping training does significantly impact the shape and structure complexity of the map created by students. Additionally, these data support that students should be frequently reminded of appropriate concept mapping skills and opportunities so that good mapping skills will be utilized. Changing the assessment design does appear to be able to impact the overall structure and complexity of created maps, while narrowing the content focus of the map does not necessarily restrict the overall structure or the complexity. Furthermore, significant differences in structural complexity were observed between novice and expert mappers. The fluctuations of NOS concepts identified in student created maps may suggest why some students were still confused or had incorrect conceptions of NOS, despite explicit and reflective instruction throughout the semester.

  4. Multiresolution MAP despeckling of SAR images based on locally adaptive generalized Gaussian pdf modeling.

    PubMed

    Argenti, Fabrizio; Bianchi, Tiziano; Alparone, Luciano

    2006-11-01

    In this paper, a new despeckling method based on undecimated wavelet decomposition and maximum a posteriori MIAP) estimation is proposed. Such a method relies on the assumption that the probability density function (pdf) of each wavelet coefficient is generalized Gaussian (GG). The major novelty of the proposed approach is that the parameters of the GG pdf are taken to be space-varying within each wavelet frame. Thus, they may be adjusted to spatial image context, not only to scale and orientation. Since the MAP equation to be solved is a function of the parameters of the assumed pdf model, the variance and shape factor of the GG function are derived from the theoretical moments, which depend on the moments and joint moments of the observed noisy signal and on the statistics of speckle. The solution of the MAP equation yields the MAP estimate of the wavelet coefficients of the noise-free image. The restored SAR image is synthesized from such coefficients. Experimental results, carried out on both synthetic speckled images and true SAR images, demonstrate that MAP filtering can be successfully applied to SAR images represented in the shift-invariant wavelet domain, without resorting to a logarithmic transformation.

  5. Building Interoperable FHIR-Based Vocabulary Mapping Services: A Case Study of OHDSI Vocabularies and Mappings.

    PubMed

    Jiang, Guoqian; Kiefer, Richard; Prud'hommeaux, Eric; Solbrig, Harold R

    2017-01-01

    The OHDSI Common Data Model (CDM) is a deep information model, in which its vocabulary component plays a critical role in enabling consistent coding and query of clinical data. The objective of the study is to create methods and tools to expose the OHDSI vocabularies and mappings as the vocabulary mapping services using two HL7 FHIR core terminology resources ConceptMap and ValueSet. We discuss the benefits and challenges in building the FHIR-based terminology services.

  6. Interrater reliability of the mind map assessment rubric in a cohort of medical students.

    PubMed

    D'Antoni, Anthony V; Zipp, Genevieve Pinto; Olson, Valerie G

    2009-04-28

    Learning strategies are thinking tools that students can use to actively acquire information. Examples of learning strategies include mnemonics, charts, and maps. One strategy that may help students master the tsunami of information presented in medical school is the mind map learning strategy. Currently, there is no valid and reliable rubric to grade mind maps and this may contribute to their underutilization in medicine. Because concept maps and mind maps engage learners similarly at a metacognitive level, a valid and reliable concept map assessment scoring system was adapted to form the mind map assessment rubric (MMAR). The MMAR can assess mind map depth based upon concept-links, cross-links, hierarchies, examples, pictures, and colors. The purpose of this study was to examine interrater reliability of the MMAR. This exploratory study was conducted at a US medical school as part of a larger investigation on learning strategies. Sixty-six (N = 66) first-year medical students were given a 394-word text passage followed by a 30-minute presentation on mind mapping. After the presentation, subjects were again given the text passage and instructed to create mind maps based upon the passage. The mind maps were collected and independently scored using the MMAR by 3 examiners. Interrater reliability was measured using the intraclass correlation coefficient (ICC) statistic. Statistics were calculated using SPSS version 12.0 (Chicago, IL). Analysis of the mind maps revealed the following: concept-links ICC = .05 (95% CI, -.42 to .38), cross-links ICC = .58 (95% CI, .37 to .73), hierarchies ICC = .23 (95% CI, -.15 to .50), examples ICC = .53 (95% CI, .29 to .69), pictures ICC = .86 (95% CI, .79 to .91), colors ICC = .73 (95% CI, .59 to .82), and total score ICC = .86 (95% CI, .79 to .91). The high ICC value for total mind map score indicates strong MMAR interrater reliability. Pictures and colors demonstrated moderate to strong interrater reliability. We conclude that the MMAR may be a valid and reliable tool to assess mind maps in medicine. However, further research on the validity and reliability of the MMAR is necessary.

  7. Interrater reliability of the mind map assessment rubric in a cohort of medical students

    PubMed Central

    D'Antoni, Anthony V; Zipp, Genevieve Pinto; Olson, Valerie G

    2009-01-01

    Background Learning strategies are thinking tools that students can use to actively acquire information. Examples of learning strategies include mnemonics, charts, and maps. One strategy that may help students master the tsunami of information presented in medical school is the mind map learning strategy. Currently, there is no valid and reliable rubric to grade mind maps and this may contribute to their underutilization in medicine. Because concept maps and mind maps engage learners similarly at a metacognitive level, a valid and reliable concept map assessment scoring system was adapted to form the mind map assessment rubric (MMAR). The MMAR can assess mind map depth based upon concept-links, cross-links, hierarchies, examples, pictures, and colors. The purpose of this study was to examine interrater reliability of the MMAR. Methods This exploratory study was conducted at a US medical school as part of a larger investigation on learning strategies. Sixty-six (N = 66) first-year medical students were given a 394-word text passage followed by a 30-minute presentation on mind mapping. After the presentation, subjects were again given the text passage and instructed to create mind maps based upon the passage. The mind maps were collected and independently scored using the MMAR by 3 examiners. Interrater reliability was measured using the intraclass correlation coefficient (ICC) statistic. Statistics were calculated using SPSS version 12.0 (Chicago, IL). Results Analysis of the mind maps revealed the following: concept-links ICC = .05 (95% CI, -.42 to .38), cross-links ICC = .58 (95% CI, .37 to .73), hierarchies ICC = .23 (95% CI, -.15 to .50), examples ICC = .53 (95% CI, .29 to .69), pictures ICC = .86 (95% CI, .79 to .91), colors ICC = .73 (95% CI, .59 to .82), and total score ICC = .86 (95% CI, .79 to .91). Conclusion The high ICC value for total mind map score indicates strong MMAR interrater reliability. Pictures and colors demonstrated moderate to strong interrater reliability. We conclude that the MMAR may be a valid and reliable tool to assess mind maps in medicine. However, further research on the validity and reliability of the MMAR is necessary. PMID:19400964

  8. A web-based land cover classification system based on ontology model of different classification systems

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Chen, X.

    2016-12-01

    Land cover classification systems used in remote sensing image data have been developed to meet the needs for depicting land covers in scientific investigations and policy decisions. However, accuracy assessments of a spate of data sets demonstrate that compared with the real physiognomy, each of the thematic map of specific land cover classification system contains some unavoidable flaws and unintended deviation. This work proposes a web-based land cover classification system, an integrated prototype, based on an ontology model of various classification systems, each of which is assigned the same weight in the final determination of land cover type. Ontology, a formal explication of specific concepts and relations, is employed in this prototype to build up the connections among different systems to resolve the naming conflicts. The process is initialized by measuring semantic similarity between terminologies in the systems and the search key to produce certain set of satisfied classifications, and carries on through searching the predefined relations in concepts of all classification systems to generate classification maps with user-specified land cover type highlighted, based on probability calculated by votes from data sets with different classification system adopted. The present system is verified and validated by comparing the classification results with those most common systems. Due to full consideration and meaningful expression of each classification system using ontology and the convenience that the web brings with itself, this system, as a preliminary model, proposes a flexible and extensible architecture for classification system integration and data fusion, thereby providing a strong foundation for the future work.

  9. On the accuracy and reproducibility of a novel probabilistic atlas-based generation for calculation of head attenuation maps on integrated PET/MR scanners.

    PubMed

    Chen, Kevin T; Izquierdo-Garcia, David; Poynton, Clare B; Chonde, Daniel B; Catana, Ciprian

    2017-03-01

    To propose an MR-based method for generating continuous-valued head attenuation maps and to assess its accuracy and reproducibility. Demonstrating that novel MR-based photon attenuation correction methods are both accurate and reproducible is essential prior to using them routinely in research and clinical studies on integrated PET/MR scanners. Continuous-valued linear attenuation coefficient maps ("μ-maps") were generated by combining atlases that provided the prior probability of voxel positions belonging to a certain tissue class (air, soft tissue, or bone) and an MR intensity-based likelihood classifier to produce posterior probability maps of tissue classes. These probabilities were used as weights to generate the μ-maps. The accuracy of this probabilistic atlas-based continuous-valued μ-map ("PAC-map") generation method was assessed by calculating the voxel-wise absolute relative change (RC) between the MR-based and scaled CT-based attenuation-corrected PET images. To assess reproducibility, we performed pair-wise comparisons of the RC values obtained from the PET images reconstructed using the μ-maps generated from the data acquired at three time points. The proposed method produced continuous-valued μ-maps that qualitatively reflected the variable anatomy in patients with brain tumor and agreed well with the scaled CT-based μ-maps. The absolute RC comparing the resulting PET volumes was 1.76 ± 2.33 %, quantitatively demonstrating that the method is accurate. Additionally, we also showed that the method is highly reproducible, the mean RC value for the PET images reconstructed using the μ-maps obtained at the three visits being 0.65 ± 0.95 %. Accurate and highly reproducible continuous-valued head μ-maps can be generated from MR data using a probabilistic atlas-based approach.

  10. Restoration of distorted depth maps calculated from stereo sequences

    NASA Technical Reports Server (NTRS)

    Damour, Kevin; Kaufman, Howard

    1991-01-01

    A model-based Kalman estimator is developed for spatial-temporal filtering of noise and other degradations in velocity and depth maps derived from image sequences or cinema. As an illustration of the proposed procedures, edge information from image sequences of rigid objects is used in the processing of the velocity maps by selecting from a series of models for directional adaptive filtering. Adaptive filtering then allows for noise reduction while preserving sharpness in the velocity maps. Results from several synthetic and real image sequences are given.

  11. Range image registration based on hash map and moth-flame optimization

    NASA Astrophysics Data System (ADS)

    Zou, Li; Ge, Baozhen; Chen, Lei

    2018-03-01

    Over the past decade, evolutionary algorithms (EAs) have been introduced to solve range image registration problems because of their robustness and high precision. However, EA-based range image registration algorithms are time-consuming. To reduce the computational time, an EA-based range image registration algorithm using hash map and moth-flame optimization is proposed. In this registration algorithm, a hash map is used to avoid over-exploitation in registration process. Additionally, we present a search equation that is better at exploration and a restart mechanism to avoid being trapped in local minima. We compare the proposed registration algorithm with the registration algorithms using moth-flame optimization and several state-of-the-art EA-based registration algorithms. The experimental results show that the proposed algorithm has a lower computational cost than other algorithms and achieves similar registration precision.

  12. Depth map occlusion filling and scene reconstruction using modified exemplar-based inpainting

    NASA Astrophysics Data System (ADS)

    Voronin, V. V.; Marchuk, V. I.; Fisunov, A. V.; Tokareva, S. V.; Egiazarian, K. O.

    2015-03-01

    RGB-D sensors are relatively inexpensive and are commercially available off-the-shelf. However, owing to their low complexity, there are several artifacts that one encounters in the depth map like holes, mis-alignment between the depth and color image and lack of sharp object boundaries in the depth map. Depth map generated by Kinect cameras also contain a significant amount of missing pixels and strong noise, limiting their usability in many computer vision applications. In this paper, we present an efficient hole filling and damaged region restoration method that improves the quality of the depth maps obtained with the Microsoft Kinect device. The proposed approach is based on a modified exemplar-based inpainting and LPA-ICI filtering by exploiting the correlation between color and depth values in local image neighborhoods. As a result, edges of the objects are sharpened and aligned with the objects in the color image. Several examples considered in this paper show the effectiveness of the proposed approach for large holes removal as well as recovery of small regions on several test images of depth maps. We perform a comparative study and show that statistically, the proposed algorithm delivers superior quality results compared to existing algorithms.

  13. Sci—Thur AM: YIS - 08: Constructing an Attenuation map for a PET/MR Breast coil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick, John C.; Imaging, Lawson Health Research Institute, Knoxville, TN; London Regional Cancer Program, Knoxville, TN

    2014-08-15

    In 2013, around 23000 Canadian women and 200 Canadian men were diagnosed with breast cancer. An estimated 5100 women and 55 men died from the disease. Using the sensitivity of MRI with the selectivity of PET, PET/MRI combines anatomical and functional information within the same scan and could help with early detection in high-risk patients. MRI requires radiofrequency coils for transmitting energy and receiving signal but the breast coil attenuates PET signal. To correct for this PET attenuation, a 3-dimensional map of linear attenuation coefficients (μ-map) of the breast coil must be created and incorporated into the PET reconstruction process.more » Several approaches have been proposed for building hardware μ-maps, some of which include the use of conventional kVCT and Dual energy CT. These methods can produce high resolution images based on the electron densities of materials that can be converted into μ-maps. However, imaging hardware containing metal components with photons in the kV range is susceptible to metal artifacts. These artifacts can compromise the accuracy of the resulting μ-map and PET reconstruction; therefore high-Z components should be removed. We propose a method for calculating μ-maps without removing coil components, based on megavoltage (MV) imaging with a linear accelerator that has been detuned for imaging at 1.0MeV. Containers of known geometry with F18 were placed in the breast coil for imaging. A comparison between reconstructions based on the different μ-map construction methods was made. PET reconstructions with our method show a maximum of 6% difference over the existing kVCT-based reconstructions.« less

  14. High School Students' Concepts of Acids and Bases.

    ERIC Educational Resources Information Center

    Ross, Bertram H. B.

    An investigation of Ontario high school students' understanding of acids and bases with quantitative and qualitative methods revealed misconceptions. A concept map, based on the objectives of the Chemistry Curriculum Guideline, generated multiple-choice items and interview questions. The multiple-choice test was administered to 34 grade 12…

  15. Using satellite data in map design and production

    USGS Publications Warehouse

    Hutchinson, John A.

    2002-01-01

    Satellite image maps have been produced by the U.S. Geological Survey (USGS) since shortly after the launch of the first Landsat satellite in 1972. Over the years, the use of image data to design and produce maps has developed from a manual and photographic process to one that incorporates geographic information systems, desktop publishing, and digital prepress techniques. At the same time, the content of most image-based maps produced by the USGS has shifted from raw image data to land cover or other information layers derived from satellite imagery, often portrayed in combination with shaded relief.

  16. Topographic map of the western region of Dao Vallis in Hellas Planitia, Mars; MTM 500k -40/082E OMKT

    USGS Publications Warehouse

    Rosiek, Mark R.; Redding, Bonnie L.; Galuszka, Donna M.

    2006-01-01

    This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. Contours were derived from a digital terrain model (DTM) compiled on a digital photogrammetric workstation using Viking Orbiter stereo image pairs with orientation parameters derived from an analytic aerotriangulation. The image base for this map employs Viking Orbiter images from orbits 406 and 363. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models.

  17. Voyager Cartography

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Bridges, P. M.; Mullins, K. F.

    1985-01-01

    The Jovian and Saturnian satellites are being mapped at several scales from Voyager 1 and 2 data. The maps include specially formatted color mosaics, controlled photomosaics, and airbrush maps. More than 500 Voyager images of the Jovian and Saturnian satellites were radiometrically processed in preparation for cartographic processing. Of these images, 235 were geometrically transformed to map projections for base mosaic compilations. Special techniques for producing hybrid photomosaic/airbrush maps of Callisto are under investigation. The techniques involve making controlled computer mosaics of all available images with highest resolution images superimposed on lowest resolution images. The mosaics are then improved by airbrushing: seams and artifacts are removed, and image details enhanced that had been lost by saturation in some images. A controlled mosaic of the northern hemisphere of Rhea is complete, as is all processing for a similar mosaic of the equatorial region. Current plans and status of the various series are shown in a table.

  18. Development and Evaluation of a Low Fertility Ontology for Analyzing Social Data in Korea.

    PubMed

    Lee, Ji-Hyun; Park, Hyeoun-Ae; Song, Tae-Min

    2016-01-01

    The purpose of this study is to develop a low fertility ontology for collecting and analyzing social data. A low fertility ontology was developed according to Ontology Development 101 and formally represented using Protégé. The content coverage of the ontology was evaluated using 1,387 narratives posted by the public and 63 narratives posted by public servants. Six super-classes of the ontology were developed based on Bronfenbrenner's ecological system theory with an individual in the center and environmental systems impacting their as surroundings. In total, 568 unique concepts were extracted from the narratives. Out of these concepts, 424(74.6%) concepts were lexically or semantically mapped, 67(11.8%) were either broadly or narrowly mapped to the ontology concepts. Remaining 77(13.6%) concepts were not mapped to any of the ontology concepts. This ontology can be used as a framework to understand low fertility problems using social data in Korea.

  19. Modulated Acquisition of Spatial Distortion Maps

    PubMed Central

    Volkov, Alexey; Gros, Jerneja Žganec; Žganec, Mario; Javornik, Tomaž; Švigelj, Aleš

    2013-01-01

    This work discusses a novel approach to image acquisition which improves the robustness of captured data required for 3D range measurements. By applying a pseudo-random code modulation to sequential acquisition of projected patterns the impact of environmental factors such as ambient light and mutual interference is significantly reduced. The proposed concept has been proven with an experimental range sensor based on the laser triangulation principle. The proposed design can potentially enhance the use of this principle to a variety of outdoor applications, such as autonomous vehicles, pedestrians' safety, collision avoidance, and many other tasks, where robust real-time distance detection in real world environment is crucial. PMID:23966196

  20. Modulated acquisition of spatial distortion maps.

    PubMed

    Volkov, Alexey; Gros, Jerneja Zganec; Zganec, Mario; Javornik, Tomaž; Svigelj, Aleš

    2013-08-21

    This work discusses a novel approach to image acquisition which improves the robustness of captured data required for 3D range measurements. By applying a pseudo-random code modulation to sequential acquisition of projected patterns the impact of environmental factors such as ambient light and mutual interference is significantly reduced. The proposed concept has been proven with an experimental range sensor based on the laser triangulation principle. The proposed design can potentially enhance the use of this principle to a variety of outdoor applications, such as autonomous vehicles, pedestrians' safety, collision avoidance, and many other tasks, where robust real-time distance detection in real world environment is crucial.

  1. Spatial Relation Predicates in Topographic Feature Semantics

    USGS Publications Warehouse

    Varanka, Dalia E.; Caro, Holly K.

    2013-01-01

    Topographic data are designed and widely used for base maps of diverse applications, yet the power of these information sources largely relies on the interpretive skills of map readers and relational database expert users once the data are in map or geographic information system (GIS) form. Advances in geospatial semantic technology offer data model alternatives for explicating concepts and articulating complex data queries and statements. To understand and enrich the vocabulary of topographic feature properties for semantic technology, English language spatial relation predicates were analyzed in three standard topographic feature glossaries. The analytical approach drew from disciplinary concepts in geography, linguistics, and information science. Five major classes of spatial relation predicates were identified from the analysis; representations for most of these are not widely available. The classes are: part-whole (which are commonly modeled throughout semantic and linked-data networks), geometric, processes, human intention, and spatial prepositions. These are commonly found in the ‘real world’ and support the environmental science basis for digital topographical mapping. The spatial relation concepts are based on sets of relation terms presented in this chapter, though these lists are not prescriptive or exhaustive. The results of this study make explicit the concepts forming a broad set of spatial relation expressions, which in turn form the basis for expanding the range of possible queries for topographical data analysis and mapping.

  2. Enhancing scattering images for orientation recovery with diffusion map

    DOE PAGES

    Winter, Martin; Saalmann, Ulf; Rost, Jan M.

    2016-02-12

    We explore the possibility for orientation recovery in single-molecule coherent diffractive imaging with diffusion map. This algorithm approximates the Laplace-Beltrami operator, which we diagonalize with a metric that corresponds to the mapping of Euler angles onto scattering images. While suitable for images of objects with specific properties we show why this approach fails for realistic molecules. Here, we introduce a modification of the form factor in the scattering images which facilitates the orientation recovery and should be suitable for all recovery algorithms based on the distance of individual images. (C) 2016 Optical Society of America

  3. E-Learning Content Design Standards Based on Interactive Digital Concepts Maps in the Light of Meaningful and Constructivist Learning Theory

    ERIC Educational Resources Information Center

    Afify, Mohammed Kamal

    2018-01-01

    The present study aims to identify standards of interactive digital concepts maps design and their measurement indicators as a tool to develop, organize and administer e-learning content in the light of Meaningful Learning Theory and Constructivist Learning Theory. To achieve the objective of the research, the author prepared a list of E-learning…

  4. Student Perceptions and Use of an Assessment Rubric for a Group Concept Map in Physiology

    ERIC Educational Resources Information Center

    Moni, Roger W.; Moni, Karen B.

    2008-01-01

    We previously reported how the opinions of second-year dentistry students and faculty members can be used to construct an assessment rubric to grade group-based concept maps in physiology (14). This article describes the second phase of this study of the subsequent year's cohort. A case study approach was used to investigate how groups of students…

  5. Determining the Exchangeability of Concept Map and Problem-Solving Essay Scores

    ERIC Educational Resources Information Center

    Hollenbeck, Keith; Twyman, Todd; Tindal, Gerald

    2006-01-01

    This study investigated the score exchangeability of concept maps with problem-solving essays. Of interest was whether sixth-grade students' concept maps predicted their scores on essay responses that used concept map content. Concept maps were hypothesized to be alternatives to performance assessments for content-area domain knowledge in science.…

  6. Constructing Concept Maps to Encourage Meaningful Learning in Science Classroom

    ERIC Educational Resources Information Center

    Akcay, Hakan

    2017-01-01

    The purpose of this activity is to demonstrate science teaching and assessing what is learned via using concept maps. Concept mapping is a technique for visually representing the structure of information. Concept mapping allows students to understand the relationships between concepts of science by creating a visual map of the connections. Concept…

  7. Concept Mapping: A Unique Means for Negotiating Meaning in Professional Studies

    ERIC Educational Resources Information Center

    Mackinnon, Gregory R.; Keppell, Mike

    2005-01-01

    Concept mapping (Novak & Gowin, 1984) has been used extensively as a graphic organiser in classroom teaching. This article addresses two particular approaches to using concept mapping that go beyond classroom planning into the realm of "idea-exchange" with concept mapping as mediator. The notion of "negotiative concept mapping" is examined in two…

  8. Geologic map of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  9. 2.5D Multi-View Gait Recognition Based on Point Cloud Registration

    PubMed Central

    Tang, Jin; Luo, Jian; Tjahjadi, Tardi; Gao, Yan

    2014-01-01

    This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM. PMID:24686727

  10. Panoramic optical-servoing for industrial inspection and repair

    NASA Astrophysics Data System (ADS)

    Sallinger, Christian; O'Leary, Paul; Retschnig, Alexander; Kammerhofer, Martin

    2004-05-01

    Recently specialized robots were introduced to perform the task of inspection and repair in large cylindrical structures such as ladles, melting furnaces and converters. This paper reports on the image processing system and optical servoing for one such a robot. A panoramic image of the vessels inner surface is produced by performing a coordinated robot motion and image acquisition. The level of projective distortion is minimized by acquiring a high density of images. Normalized phase correlation calculated via the 2D Fourier transform is used to calculate the shift between the single images. The narrow strips from the dense image map are then stitched together to build the panorama. The mapping between the panoramic image and the positioning of the robot is established during the stitching of the images. This enables optical feedback. The robots operator can locate a defect on the surface by selecting the area of the image. Calculation of the forward and inverse kinematics enable the robot to automatically move to the location on the surface requiring repair. Experimental results using a standard 6R industrial robot have shown the full functionality of the system concept. Finally, were test measurements carried out successfully, in a ladle at a temperature of 1100° C.

  11. Development of Geostatistical Models to Estimate CO2 Storage Resource in Sedimentary Geologic Formations

    NASA Astrophysics Data System (ADS)

    Popova, Olga H.

    Dental hygiene students must embody effective critical thinking skills in order to provide evidence-based comprehensive patient care. The problem addressed in this study it was not known if and to what extent concept mapping and reflective journaling activities embedded in a curriculum over a 4-week period, impacted the critical thinking skills of 22 first and second-year dental hygiene students attending a community college in the Midwest. The overarching research questions were: what is the effect of concept mapping, and what is the effect of reflective journaling on the level of critical thinking skills of first and second year dental hygiene students? This quantitative study employed a quasi-experimental, pretest-posttest design. Analysis of Covariance (ANCOVA) assessed students' mean scores of critical thinking on the California Critical Thinking Skills Test (CCTST) pretest and posttest for the concept mapping and reflective journaling treatment groups. The results of the study found an increase in CCTST posttest scores with the use of both concept mapping and reflective journaling. However, the increase in scores was not found to be statistically significant. Hence, this study identified concept mapping using Ausubel's assimilation theory and reflective journaling incorporating Johns's revision of Carper's patterns of knowing as potential instructional strategies and theoretical models to enhance undergraduate students' critical thinking skills. More research is required in this area to draw further conclusions. Keywords: Critical thinking, critical thinking development, critical thinking skills, instructional strategies, concept mapping, reflective journaling, dental hygiene, college students.

  12. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Angelis, L; Landry, G; Dedes, G

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBsmore » was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)« less

  13. Efficient morse decompositions of vector fields.

    PubMed

    Chen, Guoning; Mischaikow, Konstantin; Laramee, Robert S; Zhang, Eugene

    2008-01-01

    Existing topology-based vector field analysis techniques rely on the ability to extract the individual trajectories such as fixed points, periodic orbits, and separatrices that are sensitive to noise and errors introduced by simulation and interpolation. This can make such vector field analysis unsuitable for rigorous interpretations. We advocate the use of Morse decompositions, which are robust with respect to perturbations, to encode the topological structures of a vector field in the form of a directed graph, called a Morse connection graph (MCG). While an MCG exists for every vector field, it need not be unique. Previous techniques for computing MCG's, while fast, are overly conservative and usually results in MCG's that are too coarse to be useful for the applications. To address this issue, we present a new technique for performing Morse decomposition based on the concept of tau-maps, which typically provides finer MCG's than existing techniques. Furthermore, the choice of tau provides a natural tradeoff between the fineness of the MCG's and the computational costs. We provide efficient implementations of Morse decomposition based on tau-maps, which include the use of forward and backward mapping techniques and an adaptive approach in constructing better approximations of the images of the triangles in the meshes used for simulation.. Furthermore, we propose the use of spatial tau-maps in addition to the original temporal tau-maps. These techniques provide additional trade-offs between the quality of the MCGs and the speed of computation. We demonstrate the utility of our technique with various examples in the plane and on surfaces including engine simulation data sets.

  14. Color encryption scheme based on adapted quantum logistic map

    NASA Astrophysics Data System (ADS)

    Zaghloul, Alaa; Zhang, Tiejun; Amin, Mohamed; Abd El-Latif, Ahmed A.

    2014-04-01

    This paper presents a new color image encryption scheme based on quantum chaotic system. In this scheme, a new encryption scheme is accomplished by generating an intermediate chaotic key stream with the help of quantum chaotic logistic map. Then, each pixel is encrypted by the cipher value of the previous pixel and the adapted quantum logistic map. The results show that the proposed scheme has adequate security for the confidentiality of color images.

  15. Learning style preference and student aptitude for concept maps.

    PubMed

    Kostovich, Carol T; Poradzisz, Michele; Wood, Karen; O'Brien, Karen L

    2007-05-01

    Acknowledging that individuals' preferences for learning vary, faculty in an undergraduate nursing program questioned whether a student's learning style is an indicator of aptitude in developing concept maps. The purpose of this research was to describe the relationship between nursing students' learning style preference and aptitude for concept maps. The sample included 120 undergraduate students enrolled in the adult health nursing course. Students created one concept map and completed two instruments: the Learning Style Survey and the Concept Map Survey. Data included Learning Style Survey scores, grade for the concept map, and grade for the adult health course. No significant difference was found between learning style preference and concept map grades. Thematic analysis of the qualitative survey data yielded further insight into students' preferences for creating concept maps.

  16. Concept Learning through Image Processing.

    ERIC Educational Resources Information Center

    Cifuentes, Lauren; Yi-Chuan, Jane Hsieh

    This study explored computer-based image processing as a study strategy for middle school students' science concept learning. Specifically, the research examined the effects of computer graphics generation on science concept learning and the impact of using computer graphics to show interrelationships among concepts during study time. The 87…

  17. Concept Model on Topological Learning

    NASA Astrophysics Data System (ADS)

    Ae, Tadashi; Kioi, Kazumasa

    2010-11-01

    We discuss a new model for concept based on topological learning, where the learning process on the neural network is represented by mathematical topology. The topological learning of neural networks is summarized by a quotient of input space and the hierarchical step induces a tree where each node corresponds to a quotient. In general, the concept acquisition is a difficult problem, but the emotion for a subject is represented by providing the questions to a person. Therefore, a kind of concept is captured by such data and the answer sheet can be mapped into a topology consisting of trees. In this paper, we will discuss a way of mapping the emotional concept to a topological learning model.

  18. Northern Everglades, Florida, satellite image map

    USGS Publications Warehouse

    Thomas, Jean-Claude; Jones, John W.

    2002-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  19. A Two-Layers Based Approach of an Enhanced-Map for Urban Positioning Support

    PubMed Central

    Piñana-Díaz, Carolina; Toledo-Moreo, Rafael; Toledo-Moreo, F. Javier; Skarmeta, Antonio

    2012-01-01

    This paper presents a two-layer based enhanced map that can support navigation in urban environments. One layer is dedicated to describe the drivable road with a special focus on the accurate description of its bounds. This feature can support positioning and advanced map-matching when compared with standard polyline-based maps. The other layer depicts building heights and locations, thus enabling the detection of non-line-of-sight signals coming from GPS satellites not in direct view. Both the concept and the methodology for creating these enhanced maps are shown in the paper. PMID:23202172

  20. Mapping spatial patterns with morphological image processing

    Treesearch

    Peter Vogt; Kurt H. Riitters; Christine Estreguil; Jacek Kozak; Timothy G. Wade; James D. Wickham

    2006-01-01

    We use morphological image processing for classifying spatial patterns at the pixel level on binary land-cover maps. Land-cover pattern is classified as 'perforated,' 'edge,' 'patch,' and 'core' with higher spatial precision and thematic accuracy compared to a previous approach based on image convolution, while retaining the...

  1. Near-Infrared Coloring via a Contrast-Preserving Mapping Model.

    PubMed

    Chang-Hwan Son; Xiao-Ping Zhang

    2017-11-01

    Near-infrared gray images captured along with corresponding visible color images have recently proven useful for image restoration and classification. This paper introduces a new coloring method to add colors to near-infrared gray images based on a contrast-preserving mapping model. A naive coloring method directly adds the colors from the visible color image to the near-infrared gray image. However, this method results in an unrealistic image because of the discrepancies in the brightness and image structure between the captured near-infrared gray image and the visible color image. To solve the discrepancy problem, first, we present a new contrast-preserving mapping model to create a new near-infrared gray image with a similar appearance in the luminance plane to the visible color image, while preserving the contrast and details of the captured near-infrared gray image. Then, we develop a method to derive realistic colors that can be added to the newly created near-infrared gray image based on the proposed contrast-preserving mapping model. Experimental results show that the proposed new method not only preserves the local contrast and details of the captured near-infrared gray image, but also transfers the realistic colors from the visible color image to the newly created near-infrared gray image. It is also shown that the proposed near-infrared coloring can be used effectively for noise and haze removal, as well as local contrast enhancement.

  2. Seamless Warping of Diffusion Tensor Fields

    PubMed Central

    Hao, Xuejun; Bansal, Ravi; Plessen, Kerstin J.; Peterson, Bradley S.

    2008-01-01

    To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create “seams” or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT datasets seamlessly from one imaging space to another. Once the bijection has been achieved and tensors have been correctly relocated to the template space, we can appropriately reorient tensors in the template space using a warping method based on Procrustean estimation. PMID:18334425

  3. Opto-digital spectrum encryption by using Baker mapping and gyrator transform

    NASA Astrophysics Data System (ADS)

    Chen, Hang; Zhao, Jiguang; Liu, Zhengjun; Du, Xiaoping

    2015-03-01

    A concept of spectrum information hidden technology is proposed in this paper. We present an optical encryption algorithm for hiding both the spatial and spectrum information by using the Baker mapping in gyrator transform domains. The Baker mapping is introduced for scrambling the every single band of the hyperspectral image before adding the random phase functions. Subsequently, three thin cylinder lenses are controlled by PC for implementing the gyrator transform. The amplitude and phase information in the output plane can be regarded as the encrypted information and main key. Some numerical simulations are made to test the validity and capability of the proposed encryption algorithm.

  4. Time-efficient high-resolution whole-brain three-dimensional macromolecular proton fraction mapping

    PubMed Central

    Yarnykh, Vasily L.

    2015-01-01

    Purpose Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole-brain MPF mapping technique utilizing a minimal possible number of source images for scan time reduction. Methods The described technique is based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole-brain three-dimensional MPF mapping with isotropic 1.25×1.25×1.25 mm3 voxel size and scan time of 20 minutes. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from 8 healthy subjects. Results Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (<2%). High-resolution MPF maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details including gray matter structures with high iron content. Conclusions Synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. PMID:26102097

  5. A Novel Bit-level Image Encryption Method Based on Chaotic Map and Dynamic Grouping

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Ji; Shen, Yan

    2012-10-01

    In this paper, a novel bit-level image encryption method based on dynamic grouping is proposed. In the proposed method, the plain-image is divided into several groups randomly, then permutation-diffusion process on bit level is carried out. The keystream generated by logistic map is related to the plain-image, which confuses the relationship between the plain-image and the cipher-image. The computer simulation results of statistical analysis, information entropy analysis and sensitivity analysis show that the proposed encryption method is secure and reliable enough to be used for communication application.

  6. Color naming: color scientists do it between Munsell sheets of color

    NASA Astrophysics Data System (ADS)

    Beretta, Giordano B.; Moroney, Nathan M.

    2010-01-01

    With the advent of high dynamic range imaging and wide gamut color spaces, gamut mapping algorithms have to nudge image colors much more drastically to constrain them within a rendering device's gamut. Classical colorimetry is concerned with color matching and the developed color difference metrics are for small distances. For larger distances, categorization becomes a more useful concept. In the gamut mapping case, lexical distance induced by color names is a more useful metric, which translates to the condition that a nudged color may not cross a name boundary. The new problem is to find these color name boundaries. We compare the experimental procedures used for color naming by linguists, ethnologists, and color scientists and propose a methodology that leads to robust repeatable experiments.

  7. A novel image encryption algorithm based on chaos maps with Markov properties

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Li, Pei-yue; Zhang, Ming-chao; Sui, Yong-xin; Yang, Huai-jiang

    2015-02-01

    In order to construct high complexity, secure and low cost image encryption algorithm, a class of chaos with Markov properties was researched and such algorithm was also proposed. The kind of chaos has higher complexity than the Logistic map and Tent map, which keeps the uniformity and low autocorrelation. An improved couple map lattice based on the chaos with Markov properties is also employed to cover the phase space of the chaos and enlarge the key space, which has better performance than the original one. A novel image encryption algorithm is constructed on the new couple map lattice, which is used as a key stream generator. A true random number is used to disturb the key which can dynamically change the permutation matrix and the key stream. From the experiments, it is known that the key stream can pass SP800-22 test. The novel image encryption can resist CPA and CCA attack and differential attack. The algorithm is sensitive to the initial key and can change the distribution the pixel values of the image. The correlation of the adjacent pixels can also be eliminated. When compared with the algorithm based on Logistic map, it has higher complexity and better uniformity, which is nearer to the true random number. It is also efficient to realize which showed its value in common use.

  8. Quantitative proton imaging from multiple physics processes: a proof of concept

    NASA Astrophysics Data System (ADS)

    Bopp, C.; Rescigno, R.; Rousseau, M.; Brasse, D.

    2015-07-01

    Proton imaging is developed in order to improve the accuracy of charged particle therapy treatment planning. It makes it possible to directly map the relative stopping powers of the materials using the information on the energy loss of the protons. In order to reach a satisfactory spatial resolution in the reconstructed images, the position and direction of each particle is recorded upstream and downstream from the patient. As a consequence of individual proton detection, information on the transmission rate and scattering of the protons is available. Image reconstruction processes are proposed to make use of this information. A proton tomographic acquisition of an anthropomorphic head phantom was simulated. The transmission rate of the particles was used to reconstruct a map of the macroscopic cross section for nuclear interactions of the materials. A two-step iterative reconstruction process was implemented to reconstruct a map of the inverse scattering length of the materials using the scattering of the protons. Results indicate that, while the reconstruction processes should be optimized, it is possible to extract quantitative information from the transmission rate and scattering of the protons. This suggests that proton imaging could provide additional knowledge on the materials that may be of use to further improve treatment planning.

  9. Quantitative proton imaging from multiple physics processes: a proof of concept.

    PubMed

    Bopp, C; Rescigno, R; Rousseau, M; Brasse, D

    2015-07-07

    Proton imaging is developed in order to improve the accuracy of charged particle therapy treatment planning. It makes it possible to directly map the relative stopping powers of the materials using the information on the energy loss of the protons. In order to reach a satisfactory spatial resolution in the reconstructed images, the position and direction of each particle is recorded upstream and downstream from the patient. As a consequence of individual proton detection, information on the transmission rate and scattering of the protons is available. Image reconstruction processes are proposed to make use of this information. A proton tomographic acquisition of an anthropomorphic head phantom was simulated. The transmission rate of the particles was used to reconstruct a map of the macroscopic cross section for nuclear interactions of the materials. A two-step iterative reconstruction process was implemented to reconstruct a map of the inverse scattering length of the materials using the scattering of the protons. Results indicate that, while the reconstruction processes should be optimized, it is possible to extract quantitative information from the transmission rate and scattering of the protons. This suggests that proton imaging could provide additional knowledge on the materials that may be of use to further improve treatment planning.

  10. Development of a novel 2D color map for interactive segmentation of histological images.

    PubMed

    Chaudry, Qaiser; Sharma, Yachna; Raza, Syed H; Wang, May D

    2012-05-01

    We present a color segmentation approach based on a two-dimensional color map derived from the input image. Pathologists stain tissue biopsies with various colored dyes to see the expression of biomarkers. In these images, because of color variation due to inconsistencies in experimental procedures and lighting conditions, the segmentation used to analyze biological features is usually ad-hoc. Many algorithms like K-means use a single metric to segment the image into different color classes and rarely provide users with powerful color control. Our 2D color map interactive segmentation technique based on human color perception information and the color distribution of the input image, enables user control without noticeable delay. Our methodology works for different staining types and different types of cancer tissue images. Our proposed method's results show good accuracy with low response and computational time making it a feasible method for user interactive applications involving segmentation of histological images.

  11. Attack to AN Image Encryption Based on Chaotic Logistic Map

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Yuan; Chen, Feng; Wang, Tian; Xu, Dahai; Ma, Yutian

    2013-10-01

    This paper offers two different attacks on a freshly proposed image encryption based on chaotic logistic map. The cryptosystem under study first uses a secret key of 80-bit and employed two chaotic logistic maps. We derived the initial conditions of the logistic maps from using the secret key by providing different weights to all its bits. Additionally, in this paper eight different types of procedures are used to encrypt the pixels of an image in the proposed encryption process of which one of them will be used for a certain pixel which is determined by the product of the logistic map. The secret key is revised after encrypting each block which consisted of 16 pixels of the image. The encrypting process have weakness, worst of which is that every byte of plaintext is independent when substituted, so the cipher text of the byte will not change even the other bytes have changed. As a result of weakness, a chosen plaintext attack and a chosen cipher text attack can be completed without any knowledge of the key value to recuperate the ciphered image.

  12. Forward and backward tone mapping of high dynamic range images based on subband architecture

    NASA Astrophysics Data System (ADS)

    Bouzidi, Ines; Ouled Zaid, Azza

    2015-01-01

    This paper presents a novel High Dynamic Range (HDR) tone mapping (TM) system based on sub-band architecture. Standard wavelet filters of Daubechies, Symlets, Coiflets and Biorthogonal were used to estimate the proposed system performance in terms of Low Dynamic Range (LDR) image quality and reconstructed HDR image fidelity. During TM stage, the HDR image is firstly decomposed in sub-bands using symmetrical analysis-synthesis filter bank. The transform coefficients are then rescaled using a predefined gain map. The inverse Tone Mapping (iTM) stage is straightforward. Indeed, the LDR image passes through the same sub-band architecture. But, instead of reducing the dynamic range, the LDR content is boosted to an HDR representation. Moreover, in our TM sheme, we included an optimization module to select the gain map components that minimize the reconstruction error, and consequently resulting in high fidelity HDR content. Comparisons with recent state-of-the-art methods have shown that our method provides better results in terms of visual quality and HDR reconstruction fidelity using objective and subjective evaluations.

  13. Computer-Based Tutoring of Visual Concepts: From Novice to Experts.

    ERIC Educational Resources Information Center

    Sharples, Mike

    1991-01-01

    Description of ways in which computers might be used to teach visual concepts discusses hypermedia systems; describes computer-generated tutorials; explains the use of computers to create learning aids such as concept maps, feature spaces, and structural models; and gives examples of visual concept teaching in medical education. (10 references)…

  14. Mapping Partners Master Drug Dictionary to RxNorm using an NLP-based approach.

    PubMed

    Zhou, Li; Plasek, Joseph M; Mahoney, Lisa M; Chang, Frank Y; DiMaggio, Dana; Rocha, Roberto A

    2012-08-01

    To develop an automated method based on natural language processing (NLP) to facilitate the creation and maintenance of a mapping between RxNorm and a local medication terminology for interoperability and meaningful use purposes. We mapped 5961 terms from Partners Master Drug Dictionary (MDD) and 99 of the top prescribed medications to RxNorm. The mapping was conducted at both term and concept levels using an NLP tool, called MTERMS, followed by a manual review conducted by domain experts who created a gold standard mapping. The gold standard was used to assess the overall mapping between MDD and RxNorm and evaluate the performance of MTERMS. Overall, 74.7% of MDD terms and 82.8% of the top 99 terms had an exact semantic match to RxNorm. Compared to the gold standard, MTERMS achieved a precision of 99.8% and a recall of 73.9% when mapping all MDD terms, and a precision of 100% and a recall of 72.6% when mapping the top prescribed medications. The challenges and gaps in mapping MDD to RxNorm are mainly due to unique user or application requirements for representing drug concepts and the different modeling approaches inherent in the two terminologies. An automated approach based on NLP followed by human expert review is an efficient and feasible way for conducting dynamic mapping. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Recovery of chemical Estimates by Field Inhomogeneity Neighborhood Error Detection (REFINED): Fat/Water Separation at 7T

    PubMed Central

    Narayan, Sreenath; Kalhan, Satish C.; Wilson, David L.

    2012-01-01

    I.Abstract Purpose To reduce swaps in fat-water separation methods, a particular issue on 7T small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Materials and Methods Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Results Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Conclusion Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. PMID:23023815

  16. Recovery of chemical estimates by field inhomogeneity neighborhood error detection (REFINED): fat/water separation at 7 tesla.

    PubMed

    Narayan, Sreenath; Kalhan, Satish C; Wilson, David L

    2013-05-01

    To reduce swaps in fat-water separation methods, a particular issue on 7 Tesla (T) small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. Copyright © 2012 Wiley Periodicals, Inc.

  17. Novel Image Encryption Scheme Based on Chebyshev Polynomial and Duffing Map

    PubMed Central

    2014-01-01

    We present a novel image encryption algorithm using Chebyshev polynomial based on permutation and substitution and Duffing map based on substitution. Comprehensive security analysis has been performed on the designed scheme using key space analysis, visual testing, histogram analysis, information entropy calculation, correlation coefficient analysis, differential analysis, key sensitivity test, and speed test. The study demonstrates that the proposed image encryption algorithm shows advantages of more than 10113 key space and desirable level of security based on the good statistical results and theoretical arguments. PMID:25143970

  18. Geodatabase model for global geologic mapping: concept and implementation in planetary sciences

    NASA Astrophysics Data System (ADS)

    Nass, Andrea

    2017-04-01

    One aim of the NASA Dawn mission is to generate global geologic maps of the asteroid Vesta and the dwarf planet Ceres. To accomplish this, the Dawn Science Team followed the technical recommendations for cartographic basemap production. The geological mapping campaign of Vesta was completed and published, but mapping of the dwarf planet Ceres is still ongoing. The tiling schema for the geological mapping is the same for both planetary bodies and for Ceres it is divided into two parts: four overview quadrangles (Survey Orbit, 415 m/pixel) and 15 more detailed quadrangles (High Altitude Mapping HAMO, 140 m/pixel). The first global geologic map was based on survey images (415 m/pixel). The combine 4 Survey quadrangles completed by HAMO data served as basis for generating a more detailed view of the geologic history and also for defining the chronostratigraphy and time scale of the dwarf planet. The most detailed view can be expected within the 15 mapping quadrangles based on HAMO resolution and completed by the Low Altitude Mapping (LAMO) data with 35 m/pixel. For the interpretative mapping process of each quadrangle one responsible mapper was assigned. Unifying the geological mapping of each quadrangle and bringing this together to regional and global valid statements is already a very time intensive task. However, another challenge that has to be accomplished is to consider how the 15 individual mappers can generate one homogenous GIS-based project (w.r.t. geometrical and visual character) thus produce a geologically-consistent final map. Our approach this challenge was already discussed for mapping of Vesta. To accommodate the map requirements regarding rules for data storage and database management, the computer-based GIS environment used for the interpretative mapping process must be designed in a way that it can be adjusted to the unique features of the individual investigation areas. Within this contribution the template will be presented that uses standards for digitizing, visualization, data merging and synchronization in the processes of interpretative mapping project. Following the new technological innovations within GIS software and the individual requirements for mapping Ceres, a template was developed based on the symbology and framework. The template for (GIS-base) mapping presented here directly links the generically descriptive attributes of planetary objects to the predefined and standardized symbology in one data structure. Using this template the map results are more comparable and better controllable. Furthermore, merging and synchronization of the individual maps, map projects and sheets will be far more efficient. The template can be adapted to any other planetary body and or within future discovery missions (e.g., Lucy and Psyche which was selected to explore the early solar system by NASA) for generating reusable map results.

  19. Tectonic evaluation of the Nubian shield of Northeastern Sudan using thematic mapper imagery

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Bechtel is nearing completion of a one-year program that uses digitally enhanced LANDSAT Thematic Mapper (TM) data to compile the first comprehensive regional tectonic map of the Proterozoic Nubian Shield exposed in the northern Red Sea Hills of northeastern Sudan. The status of significant objectives of this study are given. Pertinent published and unpublished geologic literature and maps of the northern Red Sea Hills to establish the geologic framework of the region were reviewed. Thematic mapper imagery for optimal base-map enhancements was processed. Photo mosaics of enhanced images to serve as base maps for compilation of geologic information were completed. Interpretation of TM imagery to define and delineate structural and lithogologic provinces was completed. Geologic information (petrologic, and radiometric data) was compiled from the literature review onto base-map overlays. Evaluation of the tectonic evolution of the Nubian Shield based on the image interpretation and the compiled tectonic maps is continuing.

  20. Evolution of regional to global paddy rice mapping methods

    NASA Astrophysics Data System (ADS)

    Dong, J.; Xiao, X.

    2016-12-01

    Paddy rice agriculture plays an important role in various environmental issues including food security, water use, climate change, and disease transmission. However, regional and global paddy rice maps are surprisingly scarce and sporadic despite numerous efforts in paddy rice mapping algorithms and applications. In this presentation we would like to review the existing paddy rice mapping methods from the literatures ranging from the 1980s to 2015. In particular, we illustrated the evolution of these paddy rice mapping efforts, looking specifically at the future trajectory of paddy rice mapping methodologies. The biophysical features and growth phases of paddy rice were analyzed first, and feature selections for paddy rice mapping were analyzed from spectral, polarimetric, temporal, spatial, and textural aspects. We sorted out paddy rice mapping algorithms into four categories: 1) Reflectance data and image statistic-based approaches, 2) vegetation index (VI) data and enhanced image statistic-based approaches, 3) VI or RADAR backscatter-based temporal analysis approaches, and 4) phenology-based approaches through remote sensing recognition of key growth phases. The phenology-based approaches using unique features of paddy rice (e.g., transplanting) for mapping have been increasingly used in paddy rice mapping. Based on the literature review, we discussed a series of issues for large scale operational paddy rice mapping.

  1. MS lesion segmentation using a multi-channel patch-based approach with spatial consistency

    NASA Astrophysics Data System (ADS)

    Mechrez, Roey; Goldberger, Jacob; Greenspan, Hayit

    2015-03-01

    This paper presents an automatic method for segmentation of Multiple Sclerosis (MS) in Magnetic Resonance Images (MRI) of the brain. The approach is based on similarities between multi-channel patches (T1, T2 and FLAIR). An MS lesion patch database is built using training images for which the label maps are known. For each patch in the testing image, k similar patches are retrieved from the database. The matching labels for these k patches are then combined to produce an initial segmentation map for the test case. Finally a novel iterative patch-based label refinement process based on the initial segmentation map is performed to ensure spatial consistency of the detected lesions. A leave-one-out evaluation is done for each testing image in the MS lesion segmentation challenge of MICCAI 2008. Results are shown to compete with the state-of-the-art methods on the MICCAI 2008 challenge.

  2. GEOBIA For Land Use Mapping Using Worldview2 Image In Bengkak Village Coastal, Banyuwangi Regency, East Java

    NASA Astrophysics Data System (ADS)

    Alrassi, Fitzastri; Salim, Emil; Nina, Anastasia; Alwi, Luthfi; Danoedoro, Projo; Kamal, Muhammad

    2016-11-01

    The east coast of Banyuwangi regency has a diverse variety of land use such as ponds, mangroves, agricultural fields and settlements. WorldView-2 is a multispectral image with high spatial resolution that can display detailed information of land use. Geographic Object Based Image Analysis (GEOBIA) classification technique uses object segments as the smallest unit of analysis. The segmentation and classification process is not only based on spectral value of the image but also considering other elements of the image interpretation. This gives GEOBIA an opportunities and challenges in the mapping and monitoring of land use. This research aims to assess the GEOBIA classification method for generating the classification of land use in coastal areas of Banyuwangi. The result of this study is land use classification map produced by GEOBIA classification. We verified the accuracy of the resulted land use map by comparing the map with result from visual interpretation of the image that have been validated through field surveys. Variation of land use in most of the east coast of Banyuwangi regency is dominated by mangrove, agricultural fields, mixed farms, settlements and ponds.

  3. Web Image Retrieval Using Self-Organizing Feature Map.

    ERIC Educational Resources Information Center

    Wu, Qishi; Iyengar, S. Sitharama; Zhu, Mengxia

    2001-01-01

    Provides an overview of current image retrieval systems. Describes the architecture of the SOFM (Self Organizing Feature Maps) based image retrieval system, discussing the system architecture and features. Introduces the Kohonen model, and describes the implementation details of SOFM computation and its learning algorithm. Presents a test example…

  4. Object-based landslide mapping on satellite images from different sensors

    NASA Astrophysics Data System (ADS)

    Hölbling, Daniel; Friedl, Barbara; Eisank, Clemens; Blaschke, Thomas

    2015-04-01

    Several studies have proven that object-based image analysis (OBIA) is a suitable approach for landslide mapping using remote sensing data. Mostly, optical satellite images are utilized in combination with digital elevation models (DEMs) for semi-automated mapping. The ability of considering spectral, spatial, morphometric and contextual features in OBIA constitutes a significant advantage over pixel-based methods, especially when analysing non-uniform natural phenomena such as landslides. However, many of the existing knowledge-based OBIA approaches for landslide mapping are rather complex and are tailored to specific data sets. These restraints lead to a lack of transferability of OBIA mapping routines. The objective of this study is to develop an object-based approach for landslide mapping that is robust against changing input data with different resolutions, i.e. optical satellite imagery from various sensors. Two study sites in Taiwan were selected for developing and testing the landslide mapping approach. One site is located around the Baolai village in the Huaguoshan catchment in the southern-central part of the island, the other one is a sub-area of the Taimali watershed in Taitung County near the south-eastern Pacific coast. Both areas are regularly affected by severe landslides and debris flows. A range of very high resolution (VHR) optical satellite images was used for the object-based mapping of landslides and for testing the transferability across different sensors and resolutions: (I) SPOT-5, (II) Formosat-2, (III) QuickBird, and (IV) WorldView-2. Additionally, a digital elevation model (DEM) with 5 m spatial resolution and its derived products (e.g. slope, plan curvature) were used for supporting the semi-automated mapping, particularly for differentiating source areas and accumulation areas according to their morphometric characteristics. A focus was put on the identification of comparatively stable parameters (e.g. relative indices), which could be transferred to the different satellite images. The presence of bare ground was assumed to be an evidence for the occurrence of landslides. For separating vegetated from non-vegetated areas the Normalized Difference Vegetation Index (NDVI) was primarily used. Each image was divided into two respective parts based on an automatically calculated NDVI threshold value in eCognition (Trimble) software by combining the homogeneity criterion of multiresolution segmentation and histogram-based methods, so that heterogeneity is increased to a maximum. Expert knowledge models, which depict features and thresholds that are usually used by experts for digital landslide mapping, were considered for refining the classification. The results were compared to the respective results from visual image interpretation (i.e. manually digitized reference polygons for each image), which were produced by an independent local expert. By that, the spatial overlaps as well as under- and over-estimated areas were identified and the performance of the approach in relation to each sensor was evaluated. The presented method can complement traditional manual mapping efforts. Moreover, it contributes to current developments for increasing the transferability of semi-automated OBIA approaches and for improving the efficiency of change detection approaches across multi-sensor imagery.

  5. MultiMap: A Tool to Automatically Extract and Analyse Spatial Microscopic Data From Large Stacks of Confocal Microscopy Images

    PubMed Central

    Varando, Gherardo; Benavides-Piccione, Ruth; Muñoz, Alberto; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2018-01-01

    The development of 3D visualization and reconstruction methods to analyse microscopic structures at different levels of resolutions is of great importance to define brain microorganization and connectivity. MultiMap is a new tool that allows the visualization, 3D segmentation and quantification of fluorescent structures selectively in the neuropil from large stacks of confocal microscopy images. The major contribution of this tool is the posibility to easily navigate and create regions of interest of any shape and size within a large brain area that will be automatically 3D segmented and quantified to determine the density of puncta in the neuropil. As a proof of concept, we focused on the analysis of glutamatergic and GABAergic presynaptic axon terminals in the mouse hippocampal region to demonstrate its use as a tool to provide putative excitatory and inhibitory synaptic maps. The segmentation and quantification method has been validated over expert labeled images of the mouse hippocampus and over two benchmark datasets, obtaining comparable results to the expert detections. PMID:29875639

  6. MultiMap: A Tool to Automatically Extract and Analyse Spatial Microscopic Data From Large Stacks of Confocal Microscopy Images.

    PubMed

    Varando, Gherardo; Benavides-Piccione, Ruth; Muñoz, Alberto; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2018-01-01

    The development of 3D visualization and reconstruction methods to analyse microscopic structures at different levels of resolutions is of great importance to define brain microorganization and connectivity. MultiMap is a new tool that allows the visualization, 3D segmentation and quantification of fluorescent structures selectively in the neuropil from large stacks of confocal microscopy images. The major contribution of this tool is the posibility to easily navigate and create regions of interest of any shape and size within a large brain area that will be automatically 3D segmented and quantified to determine the density of puncta in the neuropil. As a proof of concept, we focused on the analysis of glutamatergic and GABAergic presynaptic axon terminals in the mouse hippocampal region to demonstrate its use as a tool to provide putative excitatory and inhibitory synaptic maps. The segmentation and quantification method has been validated over expert labeled images of the mouse hippocampus and over two benchmark datasets, obtaining comparable results to the expert detections.

  7. Bas-relief map using texture analysis with application to live enhancement of ultrasound images.

    PubMed

    Du, Huarui; Ma, Rui; Wang, Xiaoying; Zhang, Jue; Fang, Jing

    2015-05-01

    For ultrasound imaging, speckle is one of the most important factors in the degradation of contrast resolution because it masks meaningful texture and has the potential to interfere with diagnosis. It is expected that researchers would explore appropriate ways to reduce the speckle noise, to find the edges of structures and enhance weak borders between different organs in ultrasound imaging. Inspired by the principle of differential interference contrast microscopy, a "bas-relief map" is proposed that depicts the texture structure of ultrasound images. Based on a bas-relief map, an adaptive bas-relief filter was developed for ultrafast despeckling. Subsequently, an edge map was introduced to enhance the edges of images in real time. The holistic bas-relief map approach has been used experimentally with synthetic phantoms and digital ultrasound B-scan images of liver, kidney and gallbladder. Based on the visual inspection and the performance metrics of the despeckled images, it was found that the bas-relief map approach is capable of effectively reducing the speckle while significantly enhancing contrast and tissue boundaries for ultrasonic images, and its speckle reduction ability is comparable to that of Kuan, Lee and Frost filters. Meanwhile, the proposed technique could preserve more intra-region details compared with the popular speckle reducing anisotropic diffusion technique and more effectively enhance edges. In addition, the adaptive bas-relief filter was much less time consuming than the Kuan, Lee and Frost filter and speckle reducing anisotropic diffusion techniques. The bas-relief map strategy is effective for speckle reduction and live enhancement of ultrasound images, and can provide a valuable tool for clinical diagnosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Object-based Landslide Mapping: Examples, Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Hölbling, Daniel; Eisank, Clemens; Friedl, Barbara; Chang, Kang-Tsung; Tsai, Tsai-Tsung; Birkefeldt Møller Pedersen, Gro; Betts, Harley; Cigna, Francesca; Chiang, Shou-Hao; Aubrey Robson, Benjamin; Bianchini, Silvia; Füreder, Petra; Albrecht, Florian; Spiekermann, Raphael; Weinke, Elisabeth; Blaschke, Thomas; Phillips, Chris

    2016-04-01

    Over the last decade, object-based image analysis (OBIA) has been increasingly used for mapping landslides that occur after triggering events such as heavy rainfall. The increasing availability and quality of Earth Observation (EO) data in terms of temporal, spatial and spectral resolution allows for comprehensive mapping of landslides at multiple scales. Most often very high resolution (VHR) or high resolution (HR) optical satellite images are used in combination with a digital elevation model (DEM) and its products such as slope and curvature. Semi-automated object-based mapping makes use of various characteristics of image objects that are derived through segmentation. OBIA enables numerous spectral, spatial, contextual and textural image object properties to be applied during an analysis. This is especially useful when mapping complex natural features such as landslides and constitutes an advantage over pixel-based image analysis. However, several drawbacks in the process of object-based landslide mapping have not been overcome yet. The developed classification routines are often rather complex and limited regarding their transferability across areas and sensors. There is still more research needed to further improve present approaches and to fully exploit the capabilities of OBIA for landslide mapping. In this study several examples of object-based landslide mapping from various geographical regions with different characteristics are presented. Examples from the Austrian and Italian Alps are shown, whereby one challenge lies in the detection of small-scale landslides on steep slopes while preventing the classification of false positives with similar spectral properties (construction areas, utilized land, etc.). Further examples feature landslides mapped in Iceland, where the differentiation of landslides from other landscape-altering processes in a highly dynamic volcanic landscape poses a very distinct challenge, and in Norway, which is exposed to multiple types of landslides. Unlike in these northern European countries, landslides in Taiwan can be effectively delineated based on spectral differences as the surrounding is most often densely vegetated. In this tropical/subtropical region the fast information provision after Typhoon events is important. This need can be addressed in OBIA by automatically calculating thresholds based on vegetation indices and using them for a first rough identification of areas affected by landslides. Moreover, the differentiation in landslide source and transportation area is of high relevance in Taiwan. Finally, an example from New Zealand, where landslide inventory mapping is important for estimating surface erosion, will demonstrate the performance of OBIA compared to visual expert interpretation and on-screen mapping. The associated challenges and opportunities related to case studies in each of these regions are discussed and reviewed. In doing so, open research issues in object-based landslide mapping based on EO data are identified and highlighted.

  9. The effects of three concept mapping strategies on seventh-grade students' science achievement at an urban middle school

    NASA Astrophysics Data System (ADS)

    Dosanjh, Navdeep Kaur

    2011-12-01

    There is great concern over students' poor science achievement in the United States. Due to the lack of science achievement, students are not pursing science related careers resulting in an increase in outsourcing to other countries. Learning strategies such as concept mapping may ameliorate this situation by providing students with tools that encourage meaningful learning. The purpose of this quasi-experimental study was to measure the effects of three concept mapping learning strategies (concept identifying, proposition identifying, student generated) on urban middle school students' understanding of the circulatory system. Three intact classes of seventh-grade students were assigned to one of the three concept mapping strategies. The students were given a pretest on the circulatory system then learned and used their respective concept mapping strategies while learning about the circulatory system. At the conclusion of the study, students' science achievement was measured by performance on an achievement test and rubric scores of their respective concept identifying, proposition identifying, and student generated concept maps. The results of the study suggest that all three of the concept mapping strategies are effective in increasing students' science achievement. Additionally, the moderate significant correlations between the posttest and concept map scores of the current study established that concept maps are a useful measure of student knowledge. Lastly, the results of the current study also suggest that the concept identifying mapping strategy may be a useful scaffold in instructing students how to develop student generated concept maps.

  10. Automatic Depth Extraction from 2D Images Using a Cluster-Based Learning Framework.

    PubMed

    Herrera, Jose L; Del-Blanco, Carlos R; Garcia, Narciso

    2018-07-01

    There has been a significant increase in the availability of 3D players and displays in the last years. Nonetheless, the amount of 3D content has not experimented an increment of such magnitude. To alleviate this problem, many algorithms for converting images and videos from 2D to 3D have been proposed. Here, we present an automatic learning-based 2D-3D image conversion approach, based on the key hypothesis that color images with similar structure likely present a similar depth structure. The presented algorithm estimates the depth of a color query image using the prior knowledge provided by a repository of color + depth images. The algorithm clusters this database attending to their structural similarity, and then creates a representative of each color-depth image cluster that will be used as prior depth map. The selection of the appropriate prior depth map corresponding to one given color query image is accomplished by comparing the structural similarity in the color domain between the query image and the database. The comparison is based on a K-Nearest Neighbor framework that uses a learning procedure to build an adaptive combination of image feature descriptors. The best correspondences determine the cluster, and in turn the associated prior depth map. Finally, this prior estimation is enhanced through a segmentation-guided filtering that obtains the final depth map estimation. This approach has been tested using two publicly available databases, and compared with several state-of-the-art algorithms in order to prove its efficiency.

  11. Recognizing lexical and semantic change patterns in evolving life science ontologies to inform mapping adaptation.

    PubMed

    Dos Reis, Julio Cesar; Dinh, Duy; Da Silveira, Marcos; Pruski, Cédric; Reynaud-Delaître, Chantal

    2015-03-01

    Mappings established between life science ontologies require significant efforts to maintain them up to date due to the size and frequent evolution of these ontologies. In consequence, automatic methods for applying modifications on mappings are highly demanded. The accuracy of such methods relies on the available description about the evolution of ontologies, especially regarding concepts involved in mappings. However, from one ontology version to another, a further understanding of ontology changes relevant for supporting mapping adaptation is typically lacking. This research work defines a set of change patterns at the level of concept attributes, and proposes original methods to automatically recognize instances of these patterns based on the similarity between attributes denoting the evolving concepts. This investigation evaluates the benefits of the proposed methods and the influence of the recognized change patterns to select the strategies for mapping adaptation. The summary of the findings is as follows: (1) the Precision (>60%) and Recall (>35%) achieved by comparing manually identified change patterns with the automatic ones; (2) a set of potential impact of recognized change patterns on the way mappings is adapted. We found that the detected correlations cover ∼66% of the mapping adaptation actions with a positive impact; and (3) the influence of the similarity coefficient calculated between concept attributes on the performance of the recognition algorithms. The experimental evaluations conducted with real life science ontologies showed the effectiveness of our approach to accurately characterize ontology evolution at the level of concept attributes. This investigation confirmed the relevance of the proposed change patterns to support decisions on mapping adaptation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The IHMC CmapTools software in research and education: a multi-level use case in Space Meteorology

    NASA Astrophysics Data System (ADS)

    Messerotti, Mauro

    2010-05-01

    The IHMC (Institute for Human and Machine Cognition, Florida University System, USA) CmapTools software is a powerful multi-platform tool for knowledge modelling in graphical form based on concept maps. In this work we present its application for the high-level development of a set of multi-level concept maps in the framework of Space Meteorology to act as the kernel of a space meteorology domain ontology. This is an example of a research use case, as a domain ontology coded in machine-readable form via e.g. OWL (Web Ontology Language) is suitable to be an active layer of any knowledge management system embedded in a Virtual Observatory (VO). Apart from being manageable at machine level, concept maps developed via CmapTools are intrinsically human-readable and can embed hyperlinks and objects of many kinds. Therefore they are suitable to be published on the web: the coded knowledge can be exploited for educational purposes by the students and the public, as the level of information can be naturally organized among linked concept maps in progressively increasing complexity levels. Hence CmapTools and its advanced version COE (Concept-map Ontology Editor) represent effective and user-friendly software tools for high-level knowledge represention in research and education.

  13. Principles and techniques of polarimetric mapping.

    NASA Technical Reports Server (NTRS)

    Halajian, J.; Hallock, H.

    1973-01-01

    This paper introduces the concept and potential value of polarimetric maps and the techniques for generating these maps in operational remote sensing. The application-oriented polarimetric signature analyses in the literature are compiled, and several optical models are illustrated to bring out requirements of a sensor system for polarimetric mapping. By use of the concepts of Stokes parameters the descriptive specification of one sensor system is refined. The descriptive specification for a multichannel digital photometric-polarimetric mapper is based upon our experience with the present single channel device which includes the generation of polarimetric maps and pictures. High photometric accuracy and stability coupled with fast, accurate digital output has enabled us to overcome the handicap of taking sequential data from the same terrain.

  14. What Is a Doctorate? A Concept-Mapped Analysis of Process versus Product in the Supervision of Lab-Based PhDs

    ERIC Educational Resources Information Center

    Kandiko, Camille B.; Kinchin, Ian M.

    2012-01-01

    Background: Concept-mapping and interview techniques are used to track knowledge and understanding over the duration of PhD study amongst four students and their supervisors in the course of full-time research towards their PhDs. This work is in contrast to much PhD supervision research and policy research that focuses on supervisory styles and…

  15. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California

    USGS Publications Warehouse

    Kruse, F.A.

    1988-01-01

    Three flightlines of Airborne Imaging Spectrometer (AIS) data, acquired over the northern Grapevine Mountains, Nevada, and California, were used to map minerals associated with hydrothermally altered rocks. The data were processed to remove vertical striping, normalized using an equal area normalization, and reduced to reflectance relative to an average spectrum derived from the data. An algorithm was developed to automatically calculate the absorption band parameters band position, band depth, and band width for the strongest absorption feature in each pixel. These parameters were mapped into an intensity, hue, saturation (IHS) color system to produce a single color image that summarized the absorption band information, This image was used to map areas of potential alteration based upon the predicted relationships between the color image and mineral absorption band. Individual AIS spectra for these areas were then examined to identify specific minerals. Two types of alteration were mapped with the AIS data. Areas of quartz-sericite-pyrite alteration were identified based upon a strong absorption feature near 2.21 ??m, a weak shoulder near 2.25 ??m, and a weak absorption band near 2.35 ??m caused by sericite (fine-grained muscovite). Areas of argillic alteration were defined based on the presence of montmorillonite, identified by a weak to moderate absorption feature near 2.21 ??m and the absence of the 2.35 ??m band. Montmorillonite could not be identified in mineral mixtures. Calcite and dolomite were identified based on sharp absorption features near 2.34 and 2.32 ??m, respectively. Areas of alteration identified using the AIS data corresponded well with areas mapped using field mapping, field reflectance spectra, and laboratory spectral measurements. ?? 1988.

  16. Contrast Transmission In Medical Image Display

    NASA Astrophysics Data System (ADS)

    Pizer, Stephen M.; Zimmerman, John B.; Johnston, R. Eugene

    1982-11-01

    The display of medical images involves transforming recorded intensities such at CT numbers into perceivable intensities such as combinations of color and luminance. For the viewer to extract the most information about patterns of decreasing and increasing recorded intensity, the display designer must pay attention to three issues: 1) choice of display scale, including its discretization; 2) correction for variations in contrast sensitivity across the display scale due to the observer and the display device (producing an honest display); and 3) contrast enhancement based on the information in the recorded image and its importance, determined by viewing objectives. This paper will present concepts and approaches in all three of these areas. In choosing display scales three properties are important: sensitivity, associability, and naturalness of order. The unit of just noticeable difference (jnd) will be carefully defined. An observer experiment to measure the jnd values across a display scale will be specified. The overall sensitivity provided by a scale as measured in jnd's gives a measure of sensitivity called the perceived dynamic range (PDR). Methods for determining the PDR fran the aforementioned PDR values, and PDR's for various grey and pseudocolor scales will be presented. Methods of achieving sensitivity while retaining associability and naturalness of order with pseudocolor scales will be suggested. For any display device and scale it is useful to compensate for the device and observer by preceding the device with an intensity mapping (lookup table) chosen so that perceived intensity is linear with display-driving intensity. This mapping can be determined from the aforementioned jnd values. With a linearized display it is possible to standardize display devices so that the same image displayed on different devices or scales (e.g. video and hard copy) will be in sane sense perceptually equivalent. Furthermore, with a linearized display, it is possible to design contrast enhancement mappings that optimize the transmission of information from the recorded image to the display-driving signal with the assurance that this information will not then be lost by a -further nonlinear relation between display-driving and perceived intensity. It is suggested that optimal contrast enhancement mappings are adaptive to the local distribution of recorded intensities.

  17. The Utility of Concept Maps to Facilitate Higher-Level Learning in a Large Classroom Setting

    PubMed Central

    Carr-Lopez, Sian M.; Vyas, Deepti; Patel, Rajul A.; Gnesa, Eric H.

    2014-01-01

    Objective. To describe the utility of concept mapping in a cardiovascular therapeutics course within a large classroom setting. Design. Students enrolled in a cardiovascular care therapeutics course completed concept maps for each major chronic cardiovascular condition. A grading rubric was used to facilitate peer-assessment of the concept map. Assessment. Students were administered a survey at the end of the course assessing their perceptions on the usefulness of the concept maps during the course and also during APPEs to assess utility beyond the course. Question item analyses were conducted on cumulative final examinations comparing student performance on concept-mapped topics compared to nonconcept-mapped topics. Conclusion. Concept maps help to facilitate meaningful learning within the course and the majority of students utilized them beyond the course. PMID:26056408

  18. Fluorescence lifetime imaging and Fourier transform infrared spectroscopy of Michelangelo's David.

    PubMed

    Comelli, Daniela; Valentini, Gianluca; Cubeddu, Rinaldo; Toniolo, Lucia

    2005-09-01

    We developed a combined procedure for the analysis of works of art based on a portable system for fluorescence imaging integrated with analytical measurements on microsamples. The method allows us to localize and identify organic and inorganic compounds present on the surface of artworks. The fluorescence apparatus measures the temporal and spectral features of the fluorescence emission, excited by ultraviolet (UV) laser pulses. The kinetic of the emission is studied through a fluorescence lifetime imaging system, while an optical multichannel analyzer measures the fluorescence spectra of selected points. The chemical characterization of the compounds present on the artistic surfaces is then performed by means of analytical measurements on microsamples collected with the assistance of the fluorescence maps. The previous concepts have been successfully applied to study the contaminants on the surface of Michelangelo's David. The fluorescence analysis combined with Fourier transform infrared (FT-IR) measurements revealed the presence of beeswax, which permeates most of the statue surface, and calcium oxalate deposits mainly arranged in vertical patterns and related to rain washing.

  19. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    DOE PAGES

    Sarrazin, P.; Blake, D.; Gailhanou, M.; ...

    2018-04-01

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shownmore » that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.« less

  20. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D.; Gailhanou, M.; Marchis, F.; Chalumeau, C.; Webb, S.; Walter, P.; Schyns, E.; Thompson, K.; Bristow, T.

    2018-04-01

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shown that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.

  1. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrazin, P.; Blake, D.; Gailhanou, M.

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shownmore » that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.« less

  2. Subject-specific bone attenuation correction for brain PET/MR: can ZTE-MRI substitute CT scan accurately?

    PubMed

    Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude

    2017-09-21

    In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units ([Formula: see text]) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into [Formula: see text] was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of [Formula: see text] corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.

  3. Subject-specific bone attenuation correction for brain PET/MR: can ZTE-MRI substitute CT scan accurately?

    NASA Astrophysics Data System (ADS)

    Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude

    2017-10-01

    In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units (HU ) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into HU was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of 4~mm corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.

  4. Combining points and lines in rectifying satellite images

    NASA Astrophysics Data System (ADS)

    Elaksher, Ahmed F.

    2017-09-01

    The quick advance in remote sensing technologies established the potential to gather accurate and reliable information about the Earth surface using high resolution satellite images. Remote sensing satellite images of less than one-meter pixel size are currently used in large-scale mapping. Rigorous photogrammetric equations are usually used to describe the relationship between the image coordinates and ground coordinates. These equations require the knowledge of the exterior and interior orientation parameters of the image that might not be available. On the other hand, the parallel projection transformation could be used to represent the mathematical relationship between the image-space and objectspace coordinate systems and provides the required accuracy for large-scale mapping using fewer ground control features. This article investigates the differences between point-based and line-based parallel projection transformation models in rectifying satellite images with different resolutions. The point-based parallel projection transformation model and its extended form are presented and the corresponding line-based forms are developed. Results showed that the RMS computed using the point- or line-based transformation models are equivalent and satisfy the requirement for large-scale mapping. The differences between the transformation parameters computed using the point- and line-based transformation models are insignificant. The results showed high correlation between the differences in the ground elevation and the RMS.

  5. Evaluation of Atlas-Based Attenuation Correction for Integrated PET/MR in Human Brain: Application of a Head Atlas and Comparison to True CT-Based Attenuation Correction.

    PubMed

    Sekine, Tetsuro; Buck, Alfred; Delso, Gaspar; Ter Voert, Edwin E G W; Huellner, Martin; Veit-Haibach, Patrick; Warnock, Geoffrey

    2016-02-01

    Attenuation correction (AC) for integrated PET/MR imaging in the human brain is still an open problem. In this study, we evaluated a simplified atlas-based AC (Atlas-AC) by comparing (18)F-FDG PET data corrected using either Atlas-AC or true CT data (CT-AC). We enrolled 8 patients (median age, 63 y). All patients underwent clinically indicated whole-body (18)F-FDG PET/CT for staging, restaging, or follow-up of malignant disease. All patients volunteered for an additional PET/MR of the head (additional tracer was not injected). For each patient, 2 AC maps were generated: an Atlas-AC map registered to a patient-specific liver accelerated volume acquisition-Flex MR sequence and using a vendor-provided head atlas generated from multiple CT head images and a CT-based AC map. For comparative AC, the CT-AC map generated from PET/CT was superimposed on the Atlas-AC map. PET images were reconstructed from the list-mode raw data from the PET/MR imaging scanner using each AC map. All PET images were normalized to the SPM5 PET template, and (18)F-FDG accumulation was quantified in 67 volumes of interest (VOIs; automated anatomic labeling atlas). Relative difference (%diff) between images based on Atlas-AC and CT-AC was calculated, and averaged difference images were generated. (18)F-FDG uptake in all VOIs was compared using Bland-Altman analysis. The range of error in all 536 VOIs was -3.0%-7.3%. Whole-brain (18)F-FDG uptake based on Atlas-AC was slightly underestimated (%diff = 2.19% ± 1.40%). The underestimation was most pronounced in the regions below the anterior/posterior commissure line, such as the cerebellum, temporal lobe, and central structures (%diff = 3.69% ± 1.43%, 3.25% ± 1.42%, and 3.05% ± 1.18%), suggesting that Atlas-AC tends to underestimate the attenuation values of the skull base bone. When compared with the gold-standard CT-AC, errors introduced using Atlas-AC did not exceed 8% in any brain region investigated. Underestimation of (18)F-FDG uptake was minor (<4%) but significant in regions near the skull base. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. Identifying User Interaction Patterns in E-Textbooks

    PubMed Central

    Saarinen, Santeri; Turunen, Markku; Mikkilä-Erdmann, Mirjamaija; Erdmann, Norbert; Yrjänäinen, Sari; Keskinen, Tuuli

    2015-01-01

    We introduce a new architecture for e-textbooks which contains two navigational aids: an index and a concept map. We report results from an evaluation in a university setting with 99 students. The interaction sequences of the users were captured during the user study. We found several clusters of user interaction types in our data. Three separate user types were identified based on the interaction sequences: passive user, term clicker, and concept map user. We also discovered that with the concept map interface users started to interact with the application significantly sooner than with the index interface. Overall, our findings suggest that analysis of interaction patterns allows deeper insights into the use of e-textbooks than is afforded by summative evaluation. PMID:26605377

  7. Identifying User Interaction Patterns in E-Textbooks.

    PubMed

    Saarinen, Santeri; Heimonen, Tomi; Turunen, Markku; Mikkilä-Erdmann, Mirjamaija; Raisamo, Roope; Erdmann, Norbert; Yrjänäinen, Sari; Keskinen, Tuuli

    2015-01-01

    We introduce a new architecture for e-textbooks which contains two navigational aids: an index and a concept map. We report results from an evaluation in a university setting with 99 students. The interaction sequences of the users were captured during the user study. We found several clusters of user interaction types in our data. Three separate user types were identified based on the interaction sequences: passive user, term clicker, and concept map user. We also discovered that with the concept map interface users started to interact with the application significantly sooner than with the index interface. Overall, our findings suggest that analysis of interaction patterns allows deeper insights into the use of e-textbooks than is afforded by summative evaluation.

  8. South Florida Everglades: satellite image map

    USGS Publications Warehouse

    Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.

    2001-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  9. An efficient hole-filling method based on depth map in 3D view generation

    NASA Astrophysics Data System (ADS)

    Liang, Haitao; Su, Xiu; Liu, Yilin; Xu, Huaiyuan; Wang, Yi; Chen, Xiaodong

    2018-01-01

    New virtual view is synthesized through depth image based rendering(DIBR) using a single color image and its associated depth map in 3D view generation. Holes are unavoidably generated in the 2D to 3D conversion process. We propose a hole-filling method based on depth map to address the problem. Firstly, we improve the process of DIBR by proposing a one-to-four (OTF) algorithm. The "z-buffer" algorithm is used to solve overlap problem. Then, based on the classical patch-based algorithm of Criminisi et al., we propose a hole-filling algorithm using the information of depth map to handle the image after DIBR. In order to improve the accuracy of the virtual image, inpainting starts from the background side. In the calculation of the priority, in addition to the confidence term and the data term, we add the depth term. In the search for the most similar patch in the source region, we define the depth similarity to improve the accuracy of searching. Experimental results show that the proposed method can effectively improve the quality of the 3D virtual view subjectively and objectively.

  10. Hypotheses generation as supervised link discovery with automated class labeling on large-scale biomedical concept networks

    PubMed Central

    2012-01-01

    Computational approaches to generate hypotheses from biomedical literature have been studied intensively in recent years. Nevertheless, it still remains a challenge to automatically discover novel, cross-silo biomedical hypotheses from large-scale literature repositories. In order to address this challenge, we first model a biomedical literature repository as a comprehensive network of biomedical concepts and formulate hypotheses generation as a process of link discovery on the concept network. We extract the relevant information from the biomedical literature corpus and generate a concept network and concept-author map on a cluster using Map-Reduce frame-work. We extract a set of heterogeneous features such as random walk based features, neighborhood features and common author features. The potential number of links to consider for the possibility of link discovery is large in our concept network and to address the scalability problem, the features from a concept network are extracted using a cluster with Map-Reduce framework. We further model link discovery as a classification problem carried out on a training data set automatically extracted from two network snapshots taken in two consecutive time duration. A set of heterogeneous features, which cover both topological and semantic features derived from the concept network, have been studied with respect to their impacts on the accuracy of the proposed supervised link discovery process. A case study of hypotheses generation based on the proposed method has been presented in the paper. PMID:22759614

  11. Subpixel Mapping of Hyperspectral Image Based on Linear Subpixel Feature Detection and Object Optimization

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoxin; Zhao, Liaoying; Li, Xiaorun; Chen, Shuhan

    2018-04-01

    Owing to the limitation of spatial resolution of the imaging sensor and the variability of ground surfaces, mixed pixels are widesperead in hyperspectral imagery. The traditional subpixel mapping algorithms treat all mixed pixels as boundary-mixed pixels while ignoring the existence of linear subpixels. To solve this question, this paper proposed a new subpixel mapping method based on linear subpixel feature detection and object optimization. Firstly, the fraction value of each class is obtained by spectral unmixing. Secondly, the linear subpixel features are pre-determined based on the hyperspectral characteristics and the linear subpixel feature; the remaining mixed pixels are detected based on maximum linearization index analysis. The classes of linear subpixels are determined by using template matching method. Finally, the whole subpixel mapping results are iteratively optimized by binary particle swarm optimization algorithm. The performance of the proposed subpixel mapping method is evaluated via experiments based on simulated and real hyperspectral data sets. The experimental results demonstrate that the proposed method can improve the accuracy of subpixel mapping.

  12. Hyperspectral feature mapping classification based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Li, Junwei; Wang, Guangping; Wu, Jingli

    2016-03-01

    This paper proposed a hyperspectral feature mapping classification algorithm based on mathematical morphology. Without the priori information such as spectral library etc., the spectral and spatial information can be used to realize the hyperspectral feature mapping classification. The mathematical morphological erosion and dilation operations are performed respectively to extract endmembers. The spectral feature mapping algorithm is used to carry on hyperspectral image classification. The hyperspectral image collected by AVIRIS is applied to evaluate the proposed algorithm. The proposed algorithm is compared with minimum Euclidean distance mapping algorithm, minimum Mahalanobis distance mapping algorithm, SAM algorithm and binary encoding mapping algorithm. From the results of the experiments, it is illuminated that the proposed algorithm's performance is better than that of the other algorithms under the same condition and has higher classification accuracy.

  13. Design and Applications of Rapid Image Tile Producing Software Based on Mosaic Dataset

    NASA Astrophysics Data System (ADS)

    Zha, Z.; Huang, W.; Wang, C.; Tang, D.; Zhu, L.

    2018-04-01

    Map tile technology is widely used in web geographic information services. How to efficiently produce map tiles is key technology for rapid service of images on web. In this paper, a rapid producing software for image tile data based on mosaic dataset is designed, meanwhile, the flow of tile producing is given. Key technologies such as cluster processing, map representation, tile checking, tile conversion and compression in memory are discussed. Accomplished by software development and tested by actual image data, the results show that this software has a high degree of automation, would be able to effectively reducing the number of IO and improve the tile producing efficiency. Moreover, the manual operations would be reduced significantly.

  14. Wavelength-adaptive dehazing using histogram merging-based classification for UAV images.

    PubMed

    Yoon, Inhye; Jeong, Seokhwa; Jeong, Jaeheon; Seo, Doochun; Paik, Joonki

    2015-03-19

    Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  15. Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.

    PubMed

    Zhao, Bo; Setsompop, Kawin; Adalsteinsson, Elfar; Gagoski, Borjan; Ye, Huihui; Ma, Dan; Jiang, Yun; Ellen Grant, P; Griswold, Mark A; Wald, Lawrence L

    2018-02-01

    This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T 1 , T 2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med 79:933-942, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. No-reference image quality assessment based on statistics of convolution feature maps

    NASA Astrophysics Data System (ADS)

    Lv, Xiaoxin; Qin, Min; Chen, Xiaohui; Wei, Guo

    2018-04-01

    We propose a Convolutional Feature Maps (CFM) driven approach to accurately predict image quality. Our motivation bases on the finding that the Nature Scene Statistic (NSS) features on convolution feature maps are significantly sensitive to distortion degree of an image. In our method, a Convolutional Neural Network (CNN) is trained to obtain kernels for generating CFM. We design a forward NSS layer which performs on CFM to better extract NSS features. The quality aware features derived from the output of NSS layer is effective to describe the distortion type and degree an image suffered. Finally, a Support Vector Regression (SVR) is employed in our No-Reference Image Quality Assessment (NR-IQA) model to predict a subjective quality score of a distorted image. Experiments conducted on two public databases demonstrate the promising performance of the proposed method is competitive to state of the art NR-IQA methods.

  17. Image Encryption Algorithm Based on Hyperchaotic Maps and Nucleotide Sequences Database

    PubMed Central

    2017-01-01

    Image encryption technology is one of the main means to ensure the safety of image information. Using the characteristics of chaos, such as randomness, regularity, ergodicity, and initial value sensitiveness, combined with the unique space conformation of DNA molecules and their unique information storage and processing ability, an efficient method for image encryption based on the chaos theory and a DNA sequence database is proposed. In this paper, digital image encryption employs a process of transforming the image pixel gray value by using chaotic sequence scrambling image pixel location and establishing superchaotic mapping, which maps quaternary sequences and DNA sequences, and by combining with the logic of the transformation between DNA sequences. The bases are replaced under the displaced rules by using DNA coding in a certain number of iterations that are based on the enhanced quaternary hyperchaotic sequence; the sequence is generated by Chen chaos. The cipher feedback mode and chaos iteration are employed in the encryption process to enhance the confusion and diffusion properties of the algorithm. Theoretical analysis and experimental results show that the proposed scheme not only demonstrates excellent encryption but also effectively resists chosen-plaintext attack, statistical attack, and differential attack. PMID:28392799

  18. Sustainable Forest Management Support Based on the Spatial Distribution of Fuels for Fire Management

    Treesearch

    José Germán Flores Garnica; Juan de Dios Benavides Solorio; David Arturo Moreno Gonzalez

    2006-01-01

    Fire behavior simulation is based mainly on the fuel model-concept. However, there are great difficulties to develop the corresponding maps, therefore it is suggested the generation of four fuel maps (1-hour, 10-hours, 100-hours and alive). These maps will allow a better definition of the spatial variation of forest fuels, even within a zone classified as a given fuel...

  19. Inexpensive Tools To Quantify And Map Vegetative Cover For Large-Scale Research Or Management Decisions.

    USDA-ARS?s Scientific Manuscript database

    Vegetative cover can be quantified quickly and consistently and often at lower cost with image analysis of color digital images than with visual assessments. Image-based mapping of vegetative cover for large-scale research and management decisions can now be considered with the accuracy of these met...

  20. A New Minimum Trees-Based Approach for Shape Matching with Improved Time Computing: Application to Graphical Symbols Recognition

    NASA Astrophysics Data System (ADS)

    Franco, Patrick; Ogier, Jean-Marc; Loonis, Pierre; Mullot, Rémy

    Recently we have developed a model for shape description and matching. Based on minimum spanning trees construction and specifics stages like the mixture, it seems to have many desirable properties. Recognition invariance in front shift, rotated and noisy shape was checked through median scale tests related to GREC symbol reference database. Even if extracting the topology of a shape by mapping the shortest path connecting all the pixels seems to be powerful, the construction of graph induces an expensive algorithmic cost. In this article we discuss on the ways to reduce time computing. An alternative solution based on image compression concepts is provided and evaluated. The model no longer operates in the image space but in a compact space, namely the Discrete Cosine space. The use of block discrete cosine transform is discussed and justified. The experimental results led on the GREC2003 database show that the proposed method is characterized by a good discrimination power, a real robustness to noise with an acceptable time computing.

Top