Sample records for image-based finite element

  1. Dental application of novel finite element analysis software for three-dimensional finite element modeling of a dentulous mandible from its computed tomography images.

    PubMed

    Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich

    2013-12-01

    This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.

  2. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone.

    PubMed

    Lu, Yongtao; Engelke, Klaus; Glueer, Claus-C; Morlock, Michael M; Huber, Gerd

    2014-11-01

    Quantitative computed tomography-based finite element modeling technique is a promising clinical tool for the prediction of bone strength. However, quantitative computed tomography-based finite element models were created from image datasets with different image voxel sizes. The aim of this study was to investigate whether there is an influence of image voxel size on the finite element models. In all 12 thoracolumbar vertebrae were scanned prior to autopsy (in situ) using two different quantitative computed tomography scan protocols, which resulted in image datasets with two different voxel sizes (0.29 × 0.29 × 1.3 mm(3) vs 0.18 × 0.18 × 0.6 mm(3)). Eight of them were scanned after autopsy (in vitro) and the datasets were reconstructed with two voxel sizes (0.32 × 0.32 × 0.6 mm(3) vs. 0.18 × 0.18 × 0.3 mm(3)). Finite element models with cuboid volume of interest extracted from the vertebral cancellous part were created and inhomogeneous bilinear bone properties were defined. Axial compression was simulated. No effect of voxel size was detected on the apparent bone mineral density for both the in situ and in vitro cases. However, the apparent modulus and yield strength showed significant differences in the two voxel size group pairs (in situ and in vitro). In conclusion, the image voxel size may have to be considered when the finite element voxel modeling technique is used in clinical applications. © IMechE 2014.

  3. Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms

    NASA Technical Reports Server (NTRS)

    Kurdila, Andrew J.; Sharpley, Robert C.

    1999-01-01

    This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.

  4. Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density-modulus relationship.

    PubMed

    Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2015-08-01

    Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain initiation. Calculation of bone elastic moduli from image data is a basic step when constructing finite element models. However, different relationships between elastic moduli and imaged density (known as density-modulus relationships) have been reported in the literature. The objective of this study was to apply seven different trabecular-specific and two cortical-specific density-modulus relationships from the literature to finite element models of proximal tibia subchondral bone, and identify the relationship(s) that best predicted experimentally measured local subchondral structural stiffness with highest explained variance and least error. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using published density-modulus relationships and mapped to corresponding finite element models. Proximal tibial structural stiffness values were compared to experimentally measured stiffness values from in-situ macro-indentation testing directly on the subchondral bone surface (47 indentation points). Regression lines between experimentally measured and finite element calculated stiffness had R(2) values ranging from 0.56 to 0.77. Normalized root mean squared error varied from 16.6% to 337.6%. Of the 21 evaluated density-modulus relationships in this study, Goulet combined with Snyder and Schneider or Rho appeared most appropriate for finite element modeling of local subchondral bone structural stiffness. Though, further studies are needed to optimize density-modulus relationships and improve finite element estimates of local subchondral bone structural stiffness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A combined registration and finite element analysis method for fast estimation of intraoperative brain shift; phantom and animal model study.

    PubMed

    Mohammadi, Amrollah; Ahmadian, Alireza; Rabbani, Shahram; Fattahi, Ehsan; Shirani, Shapour

    2017-12-01

    Finite element models for estimation of intraoperative brain shift suffer from huge computational cost. In these models, image registration and finite element analysis are two time-consuming processes. The proposed method is an improved version of our previously developed Finite Element Drift (FED) registration algorithm. In this work the registration process is combined with the finite element analysis. In the Combined FED (CFED), the deformation of whole brain mesh is iteratively calculated by geometrical extension of a local load vector which is computed by FED. While the processing time of the FED-based method including registration and finite element analysis was about 70 s, the computation time of the CFED was about 3.2 s. The computational cost of CFED is almost 50% less than similar state of the art brain shift estimators based on finite element models. The proposed combination of registration and structural analysis can make the calculation of brain deformation much faster. Copyright © 2016 John Wiley & Sons, Ltd.

  6. A Modeling Approach for Burn Scar Assessment Using Natural Features and Elastic Property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsap, L V; Zhang, Y; Goldgof, D B

    2004-04-02

    A modeling approach is presented for quantitative burn scar assessment. Emphases are given to: (1) constructing a finite element model from natural image features with an adaptive mesh, and (2) quantifying the Young's modulus of scars using the finite element model and the regularization method. A set of natural point features is extracted from the images of burn patients. A Delaunay triangle mesh is then generated that adapts to the point features. A 3D finite element model is built on top of the mesh with the aid of range images providing the depth information. The Young's modulus of scars ismore » quantified with a simplified regularization functional, assuming that the knowledge of scar's geometry is available. The consistency between the Relative Elasticity Index and the physician's rating based on the Vancouver Scale (a relative scale used to rate burn scars) indicates that the proposed modeling approach has high potentials for image-based quantitative burn scar assessment.« less

  7. XFEM-based modeling of successive resections for preoperative image updating

    NASA Astrophysics Data System (ADS)

    Vigneron, Lara M.; Robe, Pierre A.; Warfield, Simon K.; Verly, Jacques G.

    2006-03-01

    We present a new method for modeling organ deformations due to successive resections. We use a biomechanical model of the organ, compute its volume-displacement solution based on the eXtended Finite Element Method (XFEM). The key feature of XFEM is that material discontinuities induced by every new resection can be handled without remeshing or mesh adaptation, as would be required by the conventional Finite Element Method (FEM). We focus on the application of preoperative image updating for image-guided surgery. Proof-of-concept demonstrations are shown for synthetic and real data in the context of neurosurgery.

  8. Finite Element-Based Mechanical Assessment of Bone Quality on the Basis of In Vivo Images.

    PubMed

    Pahr, Dieter H; Zysset, Philippe K

    2016-12-01

    Beyond bone mineral density (BMD), bone quality designates the mechanical integrity of bone tissue. In vivo images based on X-ray attenuation, such as CT reconstructions, provide size, shape, and local BMD distribution and may be exploited as input for finite element analysis (FEA) to assess bone fragility. Further key input parameters of FEA are the material properties of bone tissue. This review discusses the main determinants of bone mechanical properties and emphasizes the added value, as well as the important assumptions underlying finite element analysis. Bone tissue is a sophisticated, multiscale composite material that undergoes remodeling but exhibits a rather narrow band of tissue mineralization. Mechanically, bone tissue behaves elastically under physiologic loads and yields by cracking beyond critical strain levels. Through adequate cell-orchestrated modeling, trabecular bone tunes its mechanical properties by volume fraction and fabric. With proper calibration, these mechanical properties may be incorporated in quantitative CT-based finite element analysis that has been validated extensively with ex vivo experiments and has been applied increasingly in clinical trials to assess treatment efficacy against osteoporosis.

  9. Anatomically Realistic Three-Dimensional Meshes of the Pelvic Floor & Anal Canal for Finite Element Analysis

    PubMed Central

    Noakes, Kimberley F.; Bissett, Ian P.; Pullan, Andrew J.; Cheng, Leo K.

    2014-01-01

    Three anatomically realistic meshes, suitable for finite element analysis, of the pelvic floor and anal canal regions have been developed to provide a framework with which to examine the mechanics, via finite element analysis of normal function within the pelvic floor. Two cadaver-based meshes were produced using the Visible Human Project (male and female) cryosection data sets, and a third mesh was produced based on MR image data from a live subject. The Visible Man (VM) mesh included 10 different pelvic structures while the Visible Woman and MRI meshes contained 14 and 13 structures respectively. Each image set was digitized and then finite element meshes were created using an iterative fitting procedure with smoothing constraints calculated from ‘L’-curves. These weights produced accurate geometric meshes of each pelvic structure with average Root Mean Square (RMS) fitting errors of less than 1.15 mm. The Visible Human cadaveric data provided high resolution images, however, the cadaveric meshes lacked the normal dynamic form of living tissue and suffered from artifacts related to postmortem changes. The lower resolution MRI mesh was able to accurately portray structure of the living subject and paves the way for dynamic, functional modeling. PMID:18317929

  10. Intervertebral disc biomechanical analysis using the finite element modeling based on medical images.

    PubMed

    Li, Haiyun; Wang, Zheng

    2006-01-01

    In this paper, a 3D geometric model of the intervertebral and lumbar disks has been presented, which integrated the spine CT and MRI data-based anatomical structure. Based on the geometric model, a 3D finite element model of an L1-L2 segment was created. Loads, which simulate the pressure from above were applied to the FEM, while a boundary condition describing the relative L1-L2 displacement is imposed on the FEM to account for 3D physiological states. The simulation calculation illustrates the stress and strain distribution and deformation of the spine. The method has two characteristics compared to previous studies: first, the finite element model of the lumbar are based on the data directly derived from medical images such as CTs and MRIs. Second, the result of analysis will be more accurate than using the data of geometric parameters. The FEM provides a promising tool in clinical diagnosis and for optimizing individual therapy in the intervertebral disc herniation.

  11. Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models.

    PubMed

    Chen, G; Wu, F Y; Liu, Z C; Yang, K; Cui, F

    2015-08-01

    Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Evaluation of Acoustic Propagation Paths into the Human Head

    DTIC Science & Technology

    2005-07-25

    paths. A 3D finite-element solid mesh was constructed using a digital image database of an adult male head. Finite-element analysis was used to model the...air-borne sound pressure amplitude) via the alternate propagation paths. A 3D finite-element solid mesh was constructed using a digital image database ... database of an adult male head Coupled acoustic-mechanical finite-element analysis (FEA) was used to model the wave propagation through the fluid-solid

  13. Errors due to the truncation of the computational domain in static three-dimensional electrical impedance tomography.

    PubMed

    Vauhkonen, P J; Vauhkonen, M; Kaipio, J P

    2000-02-01

    In electrical impedance tomography (EIT), an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. The currents spread out in three dimensions and therefore off-plane structures have a significant effect on the reconstructed images. A question arises: how far from the current carrying electrodes should the discretized model of the object be extended? If the model is truncated too near the electrodes, errors are produced in the reconstructed images. On the other hand if the model is extended very far from the electrodes the computational time may become too long in practice. In this paper the model truncation problem is studied with the extended finite element method. Forward solutions obtained using so-called infinite elements, long finite elements and separable long finite elements are compared to the correct solution. The effects of the truncation of the computational domain on the reconstructed images are also discussed and results from the three-dimensional (3D) sensitivity analysis are given. We show that if the finite element method with ordinary elements is used in static 3D EIT, the dimension of the problem can become fairly large if the errors associated with the domain truncation are to be avoided.

  14. Finite element Compton tomography

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Amouzou, Pauline; Menon, Naresh; Gertsenshteyn, Michael

    2007-09-01

    In this paper a new approach to 3D Compton imaging is presented, based on a kind of finite element (FE) analysis. A window for X-ray incoherent scattering (or Compton scattering) attenuation coefficients is identified for breast cancer diagnosis, for hard X-ray photon energy of 100-300 keV. The point-by-point power/energy budget is computed, based on a 2D array of X-ray pencil beams, scanned vertically. The acceptable medical doses are also computed. The proposed finite element tomography (FET) can be an alternative to X-ray mammography, tomography, and tomosynthesis. In experiments, 100 keV (on average) X-ray photons are applied, and a new type of pencil beam collimation, based on a Lobster-Eye Lens (LEL), is proposed.

  15. Finite element model for MOI applications using A-V formulation

    NASA Astrophysics Data System (ADS)

    Xuan, L.; Shanker, B.; Udpa, L.; Shih, W.; Fitzpatrick, G.

    2001-04-01

    Magneto-optic imaging (MOI) is a relatively new sensor application of an extension of bubble memory technology to NDT and produce easy-to-interpret, real time analog images. MOI systems use a magneto-optic (MO) sensor to produce analog images of magnetic flux leakage from surface and subsurface defects. The instrument's capability in detecting the relatively weak magnetic fields associated with subsurface defects depends on the sensitivity of the magneto-optic sensor. The availability of a theoretical model that can simulate the MOI system performance is extremely important for optimization of the MOI sensor and hardware system. A nodal finite element model based on magnetic vector potential formulation has been developed for simulating MOI phenomenon. This model has been used for predicting the magnetic fields in simple test geometry with corrosion dome defects. In the case of test samples with multiple discontinuities, a more robust model using the magnetic vector potential Ā and electrical scalar potential V is required. In this paper, a finite element model based on A-V formulation is developed to model complex circumferential crack under aluminum rivets in dimpled countersink.

  16. Computational optical palpation: a finite-element approach to micro-scale tactile imaging using a compliant sensor

    PubMed Central

    Sampson, David D.; Kennedy, Brendan F.

    2017-01-01

    High-resolution tactile imaging, superior to the sense of touch, has potential for future biomedical applications such as robotic surgery. In this paper, we propose a tactile imaging method, termed computational optical palpation, based on measuring the change in thickness of a thin, compliant layer with optical coherence tomography and calculating tactile stress using finite-element analysis. We demonstrate our method on test targets and on freshly excised human breast fibroadenoma, demonstrating a resolution of up to 15–25 µm and a field of view of up to 7 mm. Our method is open source and readily adaptable to other imaging modalities, such as ultrasonography and confocal microscopy. PMID:28250098

  17. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.

    PubMed

    Rieger, R; Auregan, J C; Hoc, T

    2018-03-01

    The objective of the present study is to assess the mechanical behavior of trabecular bone based on microCT imaging and micro-finite-element analysis. In this way two methods are detailed: (i) direct determination of macroscopic elastic property of trabecular bone; (ii) inverse approach to assess mechanical properties of trabecular bone tissue. Thirty-five females and seven males (forty-two subjects) mean aged (±SD) 80±11.7 years from hospitals of Assistance publique-Hôpitaux de Paris (AP-HP) diagnosed with osteoporosis following a femoral neck fracture due to a fall from standing were included in this study. Fractured heads were collected during hip replacement surgery. Standardized bone cores were removed from the femoral head's equator by a trephine in a water bath. MicroCT images acquisition and analysis were performed with CTan ® software and bone volume fraction was then determined. Micro-finite-element simulations were per-formed using Abaqus 6.9-2 ® software in order to determine the macroscopic mechanical behaviour of the trabecular bone. After microCT acquisition, a longitudinal compression test was performed and the experimental macroscopic Young's Modulus was extracted. An inverse approach based on the whole trabecular bone's mechanical response and micro-finite-element analysis was performed to determine microscopic mechanical properties of trabecular bone. In the present study, elasticity of the tissue was shown to be similar to that of healthy tissue but with a lower yield stress. Classical histomorphometric analysis form microCT imaging associated with an inverse micro-finite-element method allowed to assess microscopic mechanical trabecular bone parameters. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Finite element modeling of hyper-viscoelasticity of peripheral nerve ultrastructures.

    PubMed

    Chang, Cheng-Tao; Chen, Yu-Hsing; Lin, Chou-Ching K; Ju, Ming-Shaung

    2015-07-16

    The mechanical characteristics of ultrastructures of rat sciatic nerves were investigated through animal experiments and finite element analyses. A custom-designed dynamic testing apparatus was used to conduct in vitro transverse compression experiments on the nerves. The optical coherence tomography (OCT) was utilized to record the cross-sectional images of nerve during the dynamic testing. Two-dimensional finite element models of the nerves were built based on their OCT images. A hyper-viscoelastic model was employed to describe the elastic and stress relaxation response of each ultrastructure of the nerve, namely the endoneurium, the perineurium and the epineurium. The first-order Ogden model was employed to describe the elasticity of each ultrastructure and a generalized Maxwell model for the relaxation. The inverse finite element analysis was used to estimate the material parameters of the ultrastructures. The results show the instantaneous shear modulus of the ultrastructures in decreasing order is perineurium, endoneurium, and epineurium. The FE model combined with the first-order Ogden model and the second-order Prony series is good enough for describing the compress-and-hold response of the nerve ultrastructures. The integration of OCT and the nonlinear finite element modeling may be applicable to study the viscoelasticity of peripheral nerve down to the ultrastructural level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Functional Data Approximation on Bounded Domains using Polygonal Finite Elements.

    PubMed

    Cao, Juan; Xiao, Yanyang; Chen, Zhonggui; Wang, Wenping; Bajaj, Chandrajit

    2018-07-01

    We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded domains using generalized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare approximation qualities (precision/convergence) of these partition-of-unity finite elements through numerical experiments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and quadratic serendipity bases over polygonal meshes on the domain. For a convex n -sided polygon, the quadratic serendipity elements have 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, rather than the usual n ( n + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive functional/scattered data approximations. Experimental results show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus traditional finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity finite elements obtained by our greedy algorithms can be further refined using an L 2 -optimization to improve the piecewise functional approximation. We conduct several experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in functional data/image approximation.

  20. The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography.

    PubMed

    Zhang, Bo; Yang, Xiang; Yang, Fei; Yang, Xin; Qin, Chenghu; Han, Dong; Ma, Xibo; Liu, Kai; Tian, Jie

    2010-09-13

    In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.

  1. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.

    PubMed

    Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2017-01-01

    Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm 3 density. In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.

    PubMed

    Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S

    2016-05-01

    The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Extended Finite Element Method with Simplified Spherical Harmonics Approximation for the Forward Model of Optical Molecular Imaging

    PubMed Central

    Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin

    2012-01-01

    An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SPN). In XFEM scheme of SPN equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging. PMID:23227108

  4. Extended finite element method with simplified spherical harmonics approximation for the forward model of optical molecular imaging.

    PubMed

    Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin

    2012-01-01

    An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SP(N)). In XFEM scheme of SP(N) equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging.

  5. Development and analysis of a finite element model to simulate pulmonary emphysema in CT imaging.

    PubMed

    Diciotti, Stefano; Nobis, Alessandro; Ciulli, Stefano; Landini, Nicholas; Mascalchi, Mario; Sverzellati, Nicola; Innocenti, Bernardo

    2015-01-01

    In CT imaging, pulmonary emphysema appears as lung regions with Low-Attenuation Areas (LAA). In this study we propose a finite element (FE) model of lung parenchyma, based on a 2-D grid of beam elements, which simulates pulmonary emphysema related to smoking in CT imaging. Simulated LAA images were generated through space sampling of the model output. We employed two measurements of emphysema extent: Relative Area (RA) and the exponent D of the cumulative distribution function of LAA clusters size. The model has been used to compare RA and D computed on the simulated LAA images with those computed on the models output. Different mesh element sizes and various model parameters, simulating different physiological/pathological conditions, have been considered and analyzed. A proper mesh element size has been determined as the best trade-off between reliable results and reasonable computational cost. Both RA and D computed on simulated LAA images were underestimated with respect to those calculated on the models output. Such underestimations were larger for RA (≈ -44 ÷ -26%) as compared to those for D (≈ -16 ÷ -2%). Our FE model could be useful to generate standard test images and to design realistic physical phantoms of LAA images for the assessment of the accuracy of descriptors for quantifying emphysema in CT imaging.

  6. Modeling and analysis of visual digital impact model for a Chinese human thorax.

    PubMed

    Zhu, Jin; Wang, Kai-Ming; Li, Shu; Liu, Hai-Yan; Jing, Xiao; Li, Xiao-Fang; Liu, Yi-He

    2017-01-01

    To establish a three-dimensional finite element model of the human chest for engineering research on individual protection. Computed tomography (CT) scanning data were used for three-dimensional reconstruction with the medical image reconstruction software Mimics. The finite element method (FEM) preprocessing software ANSYS ICEM CFD was used for cell mesh generation, and the relevant material behavior parameters of all of the model's parts were specified. The finite element model was constructed with the FEM software, and the model availability was verified based on previous cadaver experimental data. A finite element model approximating the anatomical structure of the human chest was established, and the model's simulation results conformed to the results of the cadaver experiment overall. Segment data of the human body and specialized software can be utilized for FEM model reconstruction to satisfy the need for numerical analysis of shocks to the human chest in engineering research on body mechanics.

  7. [Establishment of a 3D finite element model of human skull using MSCT images and mimics software].

    PubMed

    Huang, Ping; Li, Zheng-dong; Shao, Yu; Zou, Dong-hua; Liu, Ning-guo; Li, Li; Chen, Yuan-yuan; Wan, Lei; Chen, Yi-jiu

    2011-02-01

    To establish a human 3D finite element skull model, and to explore its value in biomechanics analysis. The cadaveric head was scanned and then 3D skull model was created using Mimics software based on 2D CT axial images. The 3D skull model was optimized by preprocessor along with creation of the surface and volume meshes. The stress changes, after the head was struck by an object or the head hit the ground directly, were analyzed using ANSYS software. The original 3D skull model showed a large number of triangles with a poor quality and high similarity with the real head, while the optimized model showed high quality surface and volume meshes with a small number of triangles comparatively. The model could show the local and global stress changes effectively. The human 3D skull model can be established using MSCT and Mimics software and provides a good finite element model for biomechanics analysis. This model may also provide a base for the study of head stress changes following different forces.

  8. Multi-grid finite element method used for enhancing the reconstruction accuracy in Cerenkov luminescence tomography

    NASA Astrophysics Data System (ADS)

    Guo, Hongbo; He, Xiaowei; Liu, Muhan; Zhang, Zeyu; Hu, Zhenhua; Tian, Jie

    2017-03-01

    Cerenkov luminescence tomography (CLT), as a promising optical molecular imaging modality, can be applied to cancer diagnostic and therapeutic. Most researches about CLT reconstruction are based on the finite element method (FEM) framework. However, the quality of FEM mesh grid is still a vital factor to restrict the accuracy of the CLT reconstruction result. In this paper, we proposed a multi-grid finite element method framework, which was able to improve the accuracy of reconstruction. Meanwhile, the multilevel scheme adaptive algebraic reconstruction technique (MLS-AART) based on a modified iterative algorithm was applied to improve the reconstruction accuracy. In numerical simulation experiments, the feasibility of our proposed method were evaluated. Results showed that the multi-grid strategy could obtain 3D spatial information of Cerenkov source more accurately compared with the traditional single-grid FEM.

  9. EIT image reconstruction based on a hybrid FE-EFG forward method and the complete-electrode model.

    PubMed

    Hadinia, M; Jafari, R; Soleimani, M

    2016-06-01

    This paper presents the application of the hybrid finite element-element free Galerkin (FE-EFG) method for the forward and inverse problems of electrical impedance tomography (EIT). The proposed method is based on the complete electrode model. Finite element (FE) and element-free Galerkin (EFG) methods are accurate numerical techniques. However, the FE technique has meshing task problems and the EFG method is computationally expensive. In this paper, the hybrid FE-EFG method is applied to take both advantages of FE and EFG methods, the complete electrode model of the forward problem is solved, and an iterative regularized Gauss-Newton method is adopted to solve the inverse problem. The proposed method is applied to compute Jacobian in the inverse problem. Utilizing 2D circular homogenous models, the numerical results are validated with analytical and experimental results and the performance of the hybrid FE-EFG method compared with the FE method is illustrated. Results of image reconstruction are presented for a human chest experimental phantom.

  10. ImageParser: a tool for finite element generation from three-dimensional medical images

    PubMed Central

    Yin, HM; Sun, LZ; Wang, G; Yamada, T; Wang, J; Vannier, MW

    2004-01-01

    Background The finite element method (FEM) is a powerful mathematical tool to simulate and visualize the mechanical deformation of tissues and organs during medical examinations or interventions. It is yet a challenge to build up an FEM mesh directly from a volumetric image partially because the regions (or structures) of interest (ROIs) may be irregular and fuzzy. Methods A software package, ImageParser, is developed to generate an FEM mesh from 3-D tomographic medical images. This software uses a semi-automatic method to detect ROIs from the context of image including neighboring tissues and organs, completes segmentation of different tissues, and meshes the organ into elements. Results The ImageParser is shown to build up an FEM model for simulating the mechanical responses of the breast based on 3-D CT images. The breast is compressed by two plate paddles under an overall displacement as large as 20% of the initial distance between the paddles. The strain and tangential Young's modulus distributions are specified for the biomechanical analysis of breast tissues. Conclusion The ImageParser can successfully exact the geometry of ROIs from a complex medical image and generate the FEM mesh with customer-defined segmentation information. PMID:15461787

  11. Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Al-Mayah, Adil; Moseley, Joanne; Velec, Mike; Brock, Kristy

    2011-08-01

    Both accuracy and efficiency are critical for the implementation of biomechanical model-based deformable registration in clinical practice. The focus of this investigation is to evaluate the potential of improving the efficiency of the deformable image registration of the human lungs without loss of accuracy. Three-dimensional finite element models have been developed using image data of 14 lung cancer patients. Each model consists of two lungs, tumor and external body. Sliding of the lungs inside the chest cavity is modeled using a frictionless surface-based contact model. The effect of the type of element, finite deformation and elasticity on the accuracy and computing time is investigated. Linear and quadrilateral tetrahedral elements are used with linear and nonlinear geometric analysis. Two types of material properties are applied namely: elastic and hyperelastic. The accuracy of each of the four models is examined using a number of anatomical landmarks representing the vessels bifurcation points distributed across the lungs. The registration error is not significantly affected by the element type or linearity of analysis, with an average vector error of around 2.8 mm. The displacement differences between linear and nonlinear analysis methods are calculated for all lungs nodes and a maximum value of 3.6 mm is found in one of the nodes near the entrance of the bronchial tree into the lungs. The 95 percentile of displacement difference ranges between 0.4 and 0.8 mm. However, the time required for the analysis is reduced from 95 min in the quadratic elements nonlinear geometry model to 3.4 min in the linear element linear geometry model. Therefore using linear tetrahedral elements with linear elastic materials and linear geometry is preferable for modeling the breathing motion of lungs for image-guided radiotherapy applications.

  12. Thickness optimization of auricular silicone scaffold based on finite element analysis.

    PubMed

    Jiang, Tao; Shang, Jianzhong; Tang, Li; Wang, Zhuo

    2016-01-01

    An optimized thickness of a transplantable auricular silicone scaffold was researched. The original image data were acquired from CT scans, and reverse modeling technology was used to build a digital 3D model of an auricle. The transplant process was simulated in ANSYS Workbench by finite element analysis (FEA), solid scaffolds were manufactured based on the FEA results, and the transplantable artificial auricle was finally obtained with an optimized thickness, as well as sufficient intensity and hardness. This paper provides a reference for clinical transplant surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A multi-organ biomechanical model to analyze prostate deformation due to large deformation of the rectum

    NASA Astrophysics Data System (ADS)

    Brock, Kristy K.; Ménard, Cynthia; Hensel, Jennifer; Jaffray, David A.

    2006-03-01

    Magnetic resonance imaging (MRI) with an endorectal receiver coil (ERC) provides superior visualization of the prostate gland and its surrounding anatomy at the expense of large anatomical deformation. The ability to correct for this deformation is critical to integrate the MR images into the CT-based treatment planning for radiotherapy. The ability to quantify and understand the physiological motion due to large changes in rectal filling can also improve the precision of image-guided procedures. The purpose of this study was to understand the biomechanical relationship between the prostate, rectum, and bladder using a finite element-based multi-organ deformable image registration method, 'Morfeus' developed at our institution. Patients diagnosed with prostate cancer were enrolled in the study. Gold seed markers were implanted in the prostate and MR scans performed with the ERC in place and its surrounding balloon inflated to varying volumes (0-100cc). The prostate, bladder, and rectum were then delineated, converted into finite element models, and assigned appropriate material properties. Morfeus was used to assign surface interfaces between the adjacent organs and deform the bladder and rectum from one position to another, obtaining the position of the prostate through finite element analysis. This approach achieves sub-voxel accuracy of image co-registration in the context of a large ERC deformation, while providing a biomechanical understanding of the multi-organ physiological relationship between the prostate, bladder, and rectum. The development of a deformable registration strategy is essential to integrate the superior information offered in MR images into the treatment planning process.

  14. Automation of a DXA-based finite element tool for clinical assessment of hip fracture risk.

    PubMed

    Luo, Yunhua; Ahmed, Sharif; Leslie, William D

    2018-03-01

    Finite element analysis of medical images is a promising tool for assessing hip fracture risk. Although a number of finite element models have been developed for this purpose, none of them have been routinely used in clinic. The main reason is that the computer programs that implement the finite element models have not been completely automated, and heavy training is required before clinicians can effectively use them. By using information embedded in clinical dual energy X-ray absorptiometry (DXA), we completely automated a DXA-based finite element (FE) model that we previously developed for predicting hip fracture risk. The automated FE tool can be run as a standalone computer program with the subject's raw hip DXA image as input. The automated FE tool had greatly improved short-term precision compared with the semi-automated version. To validate the automated FE tool, a clinical cohort consisting of 100 prior hip fracture cases and 300 matched controls was obtained from a local community clinical center. Both the automated FE tool and femoral bone mineral density (BMD) were applied to discriminate the fracture cases from the controls. Femoral BMD is the gold standard reference recommended by the World Health Organization for screening osteoporosis and for assessing hip fracture risk. The accuracy was measured by the area under ROC curve (AUC) and odds ratio (OR). Compared with femoral BMD (AUC = 0.71, OR = 2.07), the automated FE tool had a considerably improved accuracy (AUC = 0.78, OR = 2.61 at the trochanter). This work made a large step toward applying our DXA-based FE model as a routine clinical tool for the assessment of hip fracture risk. Furthermore, the automated computer program can be embedded into a web-site as an internet application. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Natural Crack Sizing Based on Eddy Current Image and Electromagnetic Field Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endo, H.; Uchimoto, T.; Takagi, T.

    2006-03-06

    An eddy current testing (ECT) system with multi-coil type probes is applied to size up cracks fabricated on austenite stainless plates. We have developed muti-channel ECT system to produce data as digital images. The probes consist of transmit-receive type sensors as elements to classify crack directions, working as two scan direction modes simultaneously. Template matching applied to the ECT images determines regions of interest in sizing up cracks. Finite element based inversion sizes up the crack depth from the measured ECT signal. The present paper demonstrates this approach for fatigue crack and stress corrosion cracking.

  16. Finite Element Analysis of Film Stack Architecture for Complementary Metal-Oxide-Semiconductor Image Sensors.

    PubMed

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-05-02

    Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components.

  17. Finite Element Analysis of Film Stack Architecture for Complementary Metal-Oxide–Semiconductor Image Sensors

    PubMed Central

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-01-01

    Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components. PMID:28468324

  18. Three-dimensional electrical impedance tomography based on the complete electrode model.

    PubMed

    Vauhkonen, P J; Vauhkonen, M; Savolainen, T; Kaipio, J P

    1999-09-01

    In electrical impedance tomography an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. It is often assumed that the injected currents are confined to the two-dimensional (2-D) electrode plane and the reconstruction is based on 2-D assumptions. However, the currents spread out in three dimensions and, therefore, off-plane structures have significant effect on the reconstructed images. In this paper we propose a finite element-based method for the reconstruction of three-dimensional resistivity distributions. The proposed method is based on the so-called complete electrode model that takes into account the presence of the electrodes and the contact impedances. Both the forward and the inverse problems are discussed and results from static and dynamic (difference) reconstructions with real measurement data are given. It is shown that in phantom experiments with accurate finite element computations it is possible to obtain static images that are comparable with difference images that are reconstructed from the same object with the empty (saline filled) tank as a reference.

  19. Biomechanical modelling for breast image registration

    NASA Astrophysics Data System (ADS)

    Lee, Angela; Rajagopal, Vijay; Chung, Jae-Hoon; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.

    2008-03-01

    Breast cancer is a leading cause of death in women. Tumours are usually detected by palpation or X-ray mammography followed by further imaging, such as magnetic resonance imaging (MRI) or ultrasound. The aim of this research is to develop a biophysically-based computational tool that will allow accurate collocation of features (such as suspicious lesions) across multiple imaging views and modalities in order to improve clinicians' diagnosis of breast cancer. We have developed a computational framework for generating individual-specific, 3D finite element models of the breast. MR images were obtained of the breast under gravity loading and neutrally buoyant conditions. Neutrally buoyant breast images, obtained whilst immersing the breast in water, were used to estimate the unloaded geometry of the breast (for present purposes, we have assumed that the densities of water and breast tissue are equal). These images were segmented to isolate the breast tissues, and a tricubic Hermite finite element mesh was fitted to the digitised data points in order to produce a customized breast model. The model was deformed, in accordance with finite deformation elasticity theory, to predict the gravity loaded state of the breast in the prone position. The unloaded breast images were embedded into the reference model and warped based on the predicted deformation. In order to analyse the accuracy of the model predictions, the cross-correlation image comparison metric was used to compare the warped, resampled images with the clinical images of the prone gravity loaded state. We believe that a biomechanical image registration tool of this kind will aid radiologists to provide more reliable diagnosis and localisation of breast cancer.

  20. Accuracy of specimen-specific nonlinear finite element analysis for evaluation of radial diaphysis strength in cadaver material.

    PubMed

    Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Thoreson, Andrew Ryan; An, Kai-Nan; Takahashi, Kazuhisa

    2015-01-01

    The feasibility of a user-specific finite element model for predicting the in situ strength of the radius after implantation of bone plates for open fracture reduction was established. The effect of metal artifact in CT imaging was characterized. The results were verified against biomechanical test data. Fourteen cadaveric radii were divided into two groups: (1) intact radii for evaluating the accuracy of radial diaphysis strength predictions with finite element analysis and (2) radii with a locking plate affixed for evaluating metal artifact. All bones were imaged with CT. In the plated group, radii were first imaged with the plates affixed (for simulating digital plate removal). They were then subsequently imaged with the locking plates and screws removed (actual plate removal). Fracture strength of the radius diaphysis under axial compression was predicted with a three-dimensional, specimen-specific, nonlinear finite element analysis for both the intact and plated bones (bones with and without the plate captured in the scan). Specimens were then loaded to failure using a universal testing machine to verify the actual fracture load. In the intact group, the physical and predicted fracture loads were strongly correlated. For radii with plates affixed, the physical and predicted (simulated plate removal and actual plate removal) fracture loads were strongly correlated. This study demonstrates that our specimen-specific finite element analysis can accurately predict the strength of the radial diaphysis. The metal artifact from CT imaging was shown to produce an overestimate of strength.

  1. Patient-specific finite element modeling of bones.

    PubMed

    Poelert, Sander; Valstar, Edward; Weinans, Harrie; Zadpoor, Amir A

    2013-04-01

    Finite element modeling is an engineering tool for structural analysis that has been used for many years to assess the relationship between load transfer and bone morphology and to optimize the design and fixation of orthopedic implants. Due to recent developments in finite element model generation, for example, improved computed tomography imaging quality, improved segmentation algorithms, and faster computers, the accuracy of finite element modeling has increased vastly and finite element models simulating the anatomy and properties of an individual patient can be constructed. Such so-called patient-specific finite element models are potentially valuable tools for orthopedic surgeons in fracture risk assessment or pre- and intraoperative planning of implant placement. The aim of this article is to provide a critical overview of current themes in patient-specific finite element modeling of bones. In addition, the state-of-the-art in patient-specific modeling of bones is compared with the requirements for a clinically applicable patient-specific finite element method, and judgment is passed on the feasibility of application of patient-specific finite element modeling as a part of clinical orthopedic routine. It is concluded that further development in certain aspects of patient-specific finite element modeling are needed before finite element modeling can be used as a routine clinical tool.

  2. Accuracy of specimen-specific nonlinear finite element analysis for evaluation of distal radius strength in cadaver material.

    PubMed

    Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Takahashi, Kazuhisa

    2014-11-01

    Distal radius fracture, which often occurs in the setting of osteoporosis, can lead to permanent deformity and disability. Great effort has been directed toward developing noninvasive methods for evaluating the distal radius strength, with the goal of assessing fracture risk. The aim of this study was to evaluate distal radius strength using a finite element model and to gauge the accuracy of finite element model measurement using cadaver material. Ten wrists were obtained from cadavers with a mean age of 89.5 years at death. CT images of each wrist in an extended position were obtained. CT-based finite element models were prepared with Mechanical Finder software. Fracture on the models was simulated by applying a mechanical load to the palm in a direction parallel to the forearm axis, after which the fracture load and the site at which the fracture began were identified. For comparison, the wrists were fractured using a universal testing machine and the fracture load and the site of fracture were identified. The fracture load was 970.9 N in the finite element model group and 990.0 N in the actual measurement group. The site of the initial fracture was extra-articular to the distal radius in both groups. The finite element model was predictive for distal radius fracture when compared to the actual measurement. In this study, a finite element model for evaluation of distal radius strength was validated and can be used to predict fracture risk. We conclude that a finite element model is useful for the evaluation of distal radius strength. Knowing distal radius strength might avoid distal radius fracture because appropriate antiosteoporotic treatment can be initiated.

  3. EIT Imaging Regularization Based on Spectral Graph Wavelets.

    PubMed

    Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Vauhkonen, Marko; Wolf, Gerhard; Mueller-Lisse, Ullrich; Moeller, Knut

    2017-09-01

    The objective of electrical impedance tomographic reconstruction is to identify the distribution of tissue conductivity from electrical boundary conditions. This is an ill-posed inverse problem usually solved under the finite-element method framework. In previous studies, standard sparse regularization was used for difference electrical impedance tomography to achieve a sparse solution. However, regarding elementwise sparsity, standard sparse regularization interferes with the smoothness of conductivity distribution between neighboring elements and is sensitive to noise. As an effect, the reconstructed images are spiky and depict a lack of smoothness. Such unexpected artifacts are not realistic and may lead to misinterpretation in clinical applications. To eliminate such artifacts, we present a novel sparse regularization method that uses spectral graph wavelet transforms. Single-scale or multiscale graph wavelet transforms are employed to introduce local smoothness on different scales into the reconstructed images. The proposed approach relies on viewing finite-element meshes as undirected graphs and applying wavelet transforms derived from spectral graph theory. Reconstruction results from simulations, a phantom experiment, and patient data suggest that our algorithm is more robust to noise and produces more reliable images.

  4. Establishing the 3-D finite element solid model of femurs in partial by volume rendering.

    PubMed

    Zhang, Yinwang; Zhong, Wuxue; Zhu, Haibo; Chen, Yun; Xu, Lingjun; Zhu, Jianmin

    2013-01-01

    It remains rare to report three-dimensional (3-D) finite element solid model of femurs in partial by volume rendering method, though several methods of femoral 3-D finite element modeling are already available. We aim to analyze the advantages of the modeling method by establishing the 3-D finite element solid model of femurs in partial by volume rendering. A 3-D finite element model of the normal human femurs, made up of three anatomic structures: cortical bone, cancellous bone and pulp cavity, was constructed followed by pretreatment of the CT original image. Moreover, the finite-element analysis was carried on different material properties, three types of materials given for cortical bone, six assigned for cancellous bone, and single for pulp cavity. The established 3-D finite element of femurs contains three anatomical structures: cortical bone, cancellous bone, and pulp cavity. The compressive stress primarily concentrated in the medial surfaces of femur, especially in the calcar femorale. Compared with whole modeling by volume rendering method, the 3-D finite element solid model created in partial is more real and fit for finite element analysis. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Finite-element-based matching of pre- and intraoperative data for image-guided endovascular aneurysm repair

    PubMed Central

    Dumenil, Aurélien; Kaladji, Adrien; Castro, Miguel; Esneault, Simon; Lucas, Antoine; Rochette, Michel; Goksu, Cemil; Haigron, Pascal

    2013-01-01

    Endovascular repair of abdominal aortic aneurysms is a well-established technique throughout the medical and surgical communities. Although increasingly indicated, this technique does have some limitations. Because intervention is commonly performed under fluoroscopic control, two-dimensional (2D) visualization of the aneurysm requires the injection of a contrast agent. The projective nature of this imaging modality inevitably leads to topographic errors, and does not give information on arterial wall quality at the time of deployment. A specially-adapted intraoperative navigation interface could increase deployment accuracy and reveal such information, which preoperative three-dimensional (3D) imaging might otherwise provide. One difficulty is the precise matching of preoperative data (images and models) and intraoperative observations affected by anatomical deformations due to tool-tissue interactions. Our proposed solution involves a finite element-based preoperative simulation of tool/tissue interactions, its adaptive tuning regarding patient specific data, and the matching with intra-operative data. The biomechanical model was first tuned on a group of 10 patients and assessed on a second group of 8 patients. PMID:23269745

  6. Automatic construction of patient-specific finite-element mesh of the spine from IVDs and vertebra segmentations

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, Jose M.; Lazary, Aron; Frangi, Alejandro F.

    2016-03-01

    Computational medicine aims at developing patient-specific models to help physicians in the diagnosis and treatment selection for patients. The spine, and other skeletal structures, is an articulated object, composed of rigid bones (vertebrae) and non-rigid parts (intervertebral discs (IVD), ligaments and muscles). These components are usually extracted from different image modalities, involving patient repositioning. In the case of the spine, these models require the segmentation of IVDs from MR and vertebrae from CT. In the literature, there exists a vast selection of segmentations methods, but there is a lack of approaches to align the vertebrae and IVDs. This paper presents a method to create patient-specific finite element meshes for biomechanical simulations, integrating rigid and non-rigid parts of articulated objects. First, the different parts are aligned in a complete surface model. Vertebrae extracted from CT are rigidly repositioned in between the IVDs, initially using the IVDs location and then refining the alignment using the MR image with a rigid active shape model algorithm. Finally, a mesh morphing algorithm, based on B-splines, is employed to map a template finite-element (volumetric) mesh to the patient-specific surface mesh. This morphing reduces possible misalignments and guarantees the convexity of the model elements. Results show that the accuracy of the method to align vertebrae into MR, together with IVDs, is similar to that of the human observers. Thus, this method is a step forward towards the automation of patient-specific finite element models for biomechanical simulations.

  7. Solving the forward problem of magnetoacoustic tomography with magnetic induction by means of the finite element method

    NASA Astrophysics Data System (ADS)

    Li, Xun; Li, Xu; Zhu, Shanan; He, Bin

    2009-05-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently proposed imaging modality to image the electrical impedance of biological tissue. It combines the good contrast of electrical impedance tomography with the high spatial resolution of sonography. In this paper, a three-dimensional MAT-MI forward problem was investigated using the finite element method (FEM). The corresponding FEM formulae describing the forward problem are introduced. In the finite element analysis, magnetic induction in an object with conductivity values close to biological tissues was first carried out. The stimulating magnetic field was simulated as that generated from a three-dimensional coil. The corresponding acoustic source and field were then simulated. Computer simulation studies were conducted using both concentric and eccentric spherical conductivity models with different geometric specifications. In addition, the grid size for finite element analysis was evaluated for the model calibration and evaluation of the corresponding acoustic field.

  8. Solving the Forward Problem of Magnetoacoustic Tomography with Magnetic Induction by Means of the Finite Element Method

    PubMed Central

    Li, Xun; Li, Xu; Zhu, Shanan; He, Bin

    2010-01-01

    Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) is a recently proposed imaging modality to image the electrical impedance of biological tissue. It combines the good contrast of electrical impedance tomography with the high spatial resolution of sonography. In this paper, three-dimensional MAT-MI forward problem was investigated using the finite element method (FEM). The corresponding FEM formulas describing the forward problem are introduced. In the finite element analysis, magnetic induction in an object with conductivity values close to biological tissues was first carried out. The stimulating magnetic field was simulated as that generated from a three-dimensional coil. The corresponding acoustic source and field were then simulated. Computer simulation studies were conducted using both concentric and eccentric spherical conductivity models with different geometric specifications. In addition, the grid size for finite element analysis was evaluated for model calibration and evaluation of the corresponding acoustic field. PMID:19351978

  9. Investigating Deformation and Mesoscale Void Creation in HMX Based Composites using Tomography Based Grain Scale Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Walters, David J.; Luscher, Darby J.; Manner, Virginia; Yeager, John D.; Patterson, Brian M.

    2017-06-01

    The microstructure of plastic bonded explosives (PBXs) significantly affects their macroscale mechanical characteristics. Imaging and modeling of the mesoscale constituents allows for a detailed examination of the deformation of mechanically loaded PBXs. In this study, explosive composites, formulated with HMX crystals and various HTPB based polymer binders have been imaged using micro Computed Tomography (μCT). Cohesive parameters for simulation of the crystal/binder interface are determined by comparing numerical and experimental results of the delamination of a polymer bound bi-crystal system. Similarly, polycrystalline samples are discretized into a finite element mesh using the mesoscale geometry captured by in-situ μCT imaging. Experimentally, increasing the stiffness of the HTPB binder in the polycrystalline system resulted in a transition from ductile flow with little crystal/binder delamination to brittle behavior with increased void creation along the interfaces. Simulating the macroscale compression of these samples demonstrates the effects that the mesoscale geometry, cohesive properties, and binder stiffness have on the creation and distribution of interfacial voids. Understanding void nucleation is critical for modeling damage in these complex materials.

  10. An inverse method to determine the mechanical properties of the iris in vivo

    PubMed Central

    2014-01-01

    Background Understanding the mechanical properties of the iris can help to have an insight into the eye diseases with abnormalities of the iris morphology. Material parameters of the iris were simply calculated relying on the ex vivo experiment. However, the mechanical response of the iris in vivo is different from that ex vivo, therefore, a method was put forward to determine the material parameters of the iris using the optimization method in combination with the finite element method based on the in vivo experiment. Material and methods Ocular hypertension was induced by rapid perfusion to the anterior chamber, during perfusion intraocular pressures in the anterior and posterior chamber were record by sensors, images of the anterior segment were captured by the ultrasonic system. The displacement of the characteristic points on the surface of the iris was calculated. A finite element model of the anterior chamber was developed using the ultrasonic image before perfusion, the multi-island genetic algorithm was employed to determine the material parameters of the iris by minimizing the difference between the finite element simulation and the experimental measurements. Results Material parameters of the iris in vivo were identified as the iris was taken as a nearly incompressible second-order Ogden solid. Values of the parameters μ1, α1, μ2 and α2 were 0.0861 ± 0.0080 MPa, 54.2546 ± 12.7180, 0.0754 ± 0.0200 MPa, and 48.0716 ± 15.7796 respectively. The stability of the inverse finite element method was verified, the sensitivity of the model parameters was investigated. Conclusion Material properties of the iris in vivo could be determined using the multi-island genetic algorithm coupled with the finite element method based on the experiment. PMID:24886660

  11. Use of edge-based finite elements for solving three dimensional scattering problems

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Jin, J. M.; Volakis, John L.

    1991-01-01

    Edge based finite elements are free from drawbacks associated with node based vectorial finite elements and are, therefore, ideal for solving 3-D scattering problems. The finite element discretization using edge elements is checked by solving for the resonant frequencies of a closed inhomogeneously filled metallic cavity. Great improvements in accuracy are observed when compared to the classical node based approach with no penalty in terms of computational time and with the expected absence of spurious modes. A performance comparison between the edge based tetrahedra and rectangular brick elements is carried out and tetrahedral elements are found to be more accurate than rectangular bricks for a given storage intensity. A detailed formulation for the scattering problem with various approaches for terminating the finite element mesh is also presented.

  12. On the validation of seismic imaging methods: Finite frequency or ray theory?

    DOE PAGES

    Maceira, Monica; Larmat, Carene; Porritt, Robert W.; ...

    2015-01-23

    We investigate the merits of the more recently developed finite-frequency approach to tomography against the more traditional and approximate ray theoretical approach for state of the art seismic models developed for western North America. To this end, we employ the spectral element method to assess the agreement between observations on real data and measurements made on synthetic seismograms predicted by the models under consideration. We check for phase delay agreement as well as waveform cross-correlation values. Based on statistical analyses on S wave phase delay measurements, finite frequency shows an improvement over ray theory. Random sampling using cross-correlation values identifiesmore » regions where synthetic seismograms computed with ray theory and finite-frequency models differ the most. Our study suggests that finite-frequency approaches to seismic imaging exhibit measurable improvement for pronounced low-velocity anomalies such as mantle plumes.« less

  13. [Three-dimensional finite element study on the change of glossopharyngeum in patient with obstructive sleep apnea hypopnea syndrome during titrated mandible advancement].

    PubMed

    Yang, Suixing; Feng, Jing; Zhang, Zuo; Qu, Aili; Gong, Miao; Tang, Jie; Fan, Junheng; Li, Songqing; Zhao, Yanling

    2013-04-01

    To construct a three-dimensional finite element model of the upper airway and adjacent structure of an obstructive sleep apnea hypopnea syndrome (OSAHS) patient for biomechanical analysis. And to study the influence of glossopharyngeum of an OSAHS patient with three-dimensional finite element model during titrated mandible advancement. DICOM format image information of an OSAHS patient's upper airway was obtained by thin-section CT scanning and digital image processing were utilized to construct a three-dimensional finite element model by Mimics 10.0, Imageware 10.0 and Ansys software. The changes and the law of glossopharyngeum were observed by biomechanics and morphology after loading with titrated mandible advancement. A three-dimensional finite element model of the adjacent upper airway structure of OSAHS was established successfully. After loading, the transverse diameter of epiglottis tip of glossopharyngeum increased significantly, although the sagittal diameter decreased correspondingly. The principal stress was mainly distributed in anterior wall of the upper airway. The location of principal stress concentration did not change significantly with the increasing of distance. The stress of glossopharyngeum increased during titrated mandible advancement. A more precise three-dimensional finite model of upper airway and adjacent structure of an OSAHS patient is established and improved efficiency by Mimics, Imageware and Ansys software. The glossopharyngeum of finite element model of OSAHS is analyzed by titrated mandible advancement and can effectively show the relationship between mandible advancement and the glossopharyngeum.

  14. Integrating MRI-based geometry, composition and fiber architecture in a finite element model of the human intervertebral disc.

    PubMed

    Stadelmann, Marc A; Maquer, Ghislain; Voumard, Benjamin; Grant, Aaron; Hackney, David B; Vermathen, Peter; Alkalay, Ron N; Zysset, Philippe K

    2018-05-17

    Intervertebral disc degeneration is a common disease that is often related to impaired mechanical function, herniations and chronic back pain. The degenerative process induces alterations of the disc's shape, composition and structure that can be visualized in vivo using magnetic resonance imaging (MRI). Numerical tools such as finite element analysis (FEA) have the potential to relate MRI-based information to the altered mechanical behavior of the disc. However, in terms of geometry, composition and fiber architecture, current FE models rely on observations made on healthy discs and might therefore not be well suited to study the degeneration process. To address the issue, we propose a new, more realistic FE methodology based on diffusion tensor imaging (DTI). For this study, a human disc joint was imaged in a high-field MR scanner with proton-density weighted (PD) and DTI sequences. The PD image was segmented and an anatomy-specific mesh was generated. Assuming accordance between local principal diffusion direction and local mean collagen fiber alignment, corresponding fiber angles were assigned to each element. Those element-wise fiber directions and PD intensities allowed the homogenized model to smoothly account for composition and fibrous structure of the disc. The disc's in vitro mechanical behavior was quantified under tension, compression, flexion, extension, lateral bending and rotation. The six resulting load-displacement curves could be replicated by the FE model, which supports our approach as a first proof of concept towards patient-specific disc modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. An Information-Based Machine Learning Approach to Elasticity Imaging

    PubMed Central

    Hoerig, Cameron; Ghaboussi, Jamshid; Insana, Michael. F.

    2016-01-01

    An information-based technique is described for applications in mechanical-property imaging of soft biological media under quasi-static loads. We adapted the Autoprogressive method that was originally developed for civil engineering applications for this purpose. The Autoprogressive method is a computational technique that combines knowledge of object shape and a sparse distribution of force and displacement measurements with finite-element analyses and artificial neural networks to estimate a complete set of stress and strain vectors. Elasticity imaging parameters are then computed from estimated stresses and strains. We introduce the technique using ultrasonic pulse-echo measurements in simple gelatin imaging phantoms having linear-elastic properties so that conventional finite-element modeling can be used to validate results. The Autoprogressive algorithm does not require any assumptions about the material properties and can, in principle, be used to image media with arbitrary properties. We show that by selecting a few well-chosen force-displacement measurements that are appropriately applied during training and establish convergence, we can estimate all nontrivial stress and strain vectors throughout an object and accurately estimate an elastic modulus at high spatial resolution. This new method of modeling the mechanical properties of tissue-like materials introduces a unique method of solving the inverse problem and is the first technique for imaging stress without assuming the underlying constitutive model. PMID:27858175

  16. Development and validation of a subject-specific finite element model of the functional spinal unit to predict vertebral strength.

    PubMed

    Lee, Chu-Hee; Landham, Priyan R; Eastell, Richard; Adams, Michael A; Dolan, Patricia; Yang, Lang

    2017-09-01

    Finite element models of an isolated vertebral body cannot accurately predict compressive strength of the spinal column because, in life, compressive load is variably distributed across the vertebral body and neural arch. The purpose of this study was to develop and validate a patient-specific finite element model of a functional spinal unit, and then use the model to predict vertebral strength from medical images. A total of 16 cadaveric functional spinal units were scanned and then tested mechanically in bending and compression to generate a vertebral wedge fracture. Before testing, an image processing and finite element analysis framework (SpineVox-Pro), developed previously in MATLAB using ANSYS APDL, was used to generate a subject-specific finite element model with eight-node hexahedral elements. Transversely isotropic linear-elastic material properties were assigned to vertebrae, and simple homogeneous linear-elastic properties were assigned to the intervertebral disc. Forward bending loading conditions were applied to simulate manual handling. Results showed that vertebral strengths measured by experiment were positively correlated with strengths predicted by the functional spinal unit finite element model with von Mises or Drucker-Prager failure criteria ( R 2  = 0.80-0.87), with areal bone mineral density measured by dual-energy X-ray absorptiometry ( R 2  = 0.54) and with volumetric bone mineral density from quantitative computed tomography ( R 2  = 0.79). Large-displacement non-linear analyses on all specimens did not improve predictions. We conclude that subject-specific finite element models of a functional spinal unit have potential to estimate the vertebral strength better than bone mineral density alone.

  17. Studies of finite element analysis of composite material structures

    NASA Technical Reports Server (NTRS)

    Douglas, D. O.; Holzmacher, D. E.; Lane, Z. C.; Thornton, E. A.

    1975-01-01

    Research in the area of finite element analysis is summarized. Topics discussed include finite element analysis of a picture frame shear test, BANSAP (a bandwidth reduction program for SAP IV), FEMESH (a finite element mesh generation program based on isoparametric zones), and finite element analysis of a composite bolted joint specimens.

  18. Extension to linear dynamics for hybrid stress finite element formulation based on additional displacements

    NASA Astrophysics Data System (ADS)

    Sumihara, K.

    Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.

  19. Challenges in Integrating Nondestructive Evaluation and Finite Element Methods for Realistic Structural Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Zagidulin, Dmitri; Rauser, Richard W.

    2000-01-01

    Capabilities and expertise related to the development of links between nondestructive evaluation (NDE) and finite element analysis (FEA) at Glenn Research Center (GRC) are demonstrated. Current tools to analyze data produced by computed tomography (CT) scans are exercised to help assess the damage state in high temperature structural composite materials. A utility translator was written to convert velocity (an image processing software) STL data file to a suitable CAD-FEA type file. Finite element analyses are carried out with MARC, a commercial nonlinear finite element code, and the analytical results are discussed. Modeling was established by building MSC/Patran (a pre and post processing finite element package) generated model and comparing it to a model generated by Velocity in conjunction with MSC/Patran Graphics. Modeling issues and results are discussed in this paper. The entire process that outlines the tie between the data extracted via NDE and the finite element modeling and analysis is fully described.

  20. Creating a Structurally Realistic Finite Element Geometric Model of a Cardiomyocyte to Study the Role of Cellular Architecture in Cardiomyocyte Systems Biology.

    PubMed

    Rajagopal, Vijay; Bass, Gregory; Ghosh, Shouryadipta; Hunt, Hilary; Walker, Cameron; Hanssen, Eric; Crampin, Edmund; Soeller, Christian

    2018-04-18

    With the advent of three-dimensional (3D) imaging technologies such as electron tomography, serial-block-face scanning electron microscopy and confocal microscopy, the scientific community has unprecedented access to large datasets at sub-micrometer resolution that characterize the architectural remodeling that accompanies changes in cardiomyocyte function in health and disease. However, these datasets have been under-utilized for investigating the role of cellular architecture remodeling in cardiomyocyte function. The purpose of this protocol is to outline how to create an accurate finite element model of a cardiomyocyte using high resolution electron microscopy and confocal microscopy images. A detailed and accurate model of cellular architecture has significant potential to provide new insights into cardiomyocyte biology, more than experiments alone can garner. The power of this method lies in its ability to computationally fuse information from two disparate imaging modalities of cardiomyocyte ultrastructure to develop one unified and detailed model of the cardiomyocyte. This protocol outlines steps to integrate electron tomography and confocal microscopy images of adult male Wistar (name for a specific breed of albino rat) rat cardiomyocytes to develop a half-sarcomere finite element model of the cardiomyocyte. The procedure generates a 3D finite element model that contains an accurate, high-resolution depiction (on the order of ~35 nm) of the distribution of mitochondria, myofibrils and ryanodine receptor clusters that release the necessary calcium for cardiomyocyte contraction from the sarcoplasmic reticular network (SR) into the myofibril and cytosolic compartment. The model generated here as an illustration does not incorporate details of the transverse-tubule architecture or the sarcoplasmic reticular network and is therefore a minimal model of the cardiomyocyte. Nevertheless, the model can already be applied in simulation-based investigations into the role of cell structure in calcium signaling and mitochondrial bioenergetics, which is illustrated and discussed using two case studies that are presented following the detailed protocol.

  1. Combining the Finite Element Method with Structural Connectome-based Analysis for Modeling Neurotrauma: Connectome Neurotrauma Mechanics

    PubMed Central

    Kraft, Reuben H.; Mckee, Phillip Justin; Dagro, Amy M.; Grafton, Scott T.

    2012-01-01

    This article presents the integration of brain injury biomechanics and graph theoretical analysis of neuronal connections, or connectomics, to form a neurocomputational model that captures spatiotemporal characteristics of trauma. We relate localized mechanical brain damage predicted from biofidelic finite element simulations of the human head subjected to impact with degradation in the structural connectome for a single individual. The finite element model incorporates various length scales into the full head simulations by including anisotropic constitutive laws informed by diffusion tensor imaging. Coupling between the finite element analysis and network-based tools is established through experimentally-based cellular injury thresholds for white matter regions. Once edges are degraded, graph theoretical measures are computed on the “damaged” network. For a frontal impact, the simulations predict that the temporal and occipital regions undergo the most axonal strain and strain rate at short times (less than 24 hrs), which leads to cellular death initiation, which results in damage that shows dependence on angle of impact and underlying microstructure of brain tissue. The monotonic cellular death relationships predict a spatiotemporal change of structural damage. Interestingly, at 96 hrs post-impact, computations predict no network nodes were completely disconnected from the network, despite significant damage to network edges. At early times () network measures of global and local efficiency were degraded little; however, as time increased to 96 hrs the network properties were significantly reduced. In the future, this computational framework could help inform functional networks from physics-based structural brain biomechanics to obtain not only a biomechanics-based understanding of injury, but also neurophysiological insight. PMID:22915997

  2. An image morphing technique based on optimal mass preserving mapping.

    PubMed

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2007-06-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L(2) mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods.

  3. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    PubMed Central

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  4. Lagrangian displacement tracking using a polar grid between endocardial and epicardial contours for cardiac strain imaging.

    PubMed

    Ma, Chi; Varghese, Tomy

    2012-04-01

    Accurate cardiac deformation analysis for cardiac displacement and strain imaging over time requires Lagrangian description of deformation of myocardial tissue structures. Failure to couple the estimated displacement and strain information with the correct myocardial tissue structures will lead to erroneous result in the displacement and strain distribution over time. Lagrangian based tracking in this paper divides the tissue structure into a fixed number of pixels whose deformation is tracked over the cardiac cycle. An algorithm that utilizes a polar-grid generated between the estimated endocardial and epicardial contours for cardiac short axis images is proposed to ensure Lagrangian description of the pixels. Displacement estimates from consecutive radiofrequency frames were then mapped onto the polar grid to obtain a distribution of the actual displacement that is mapped to the polar grid over time. A finite element based canine heart model coupled with an ultrasound simulation program was used to verify this approach. Segmental analysis of the accumulated displacement and strain over a cardiac cycle demonstrate excellent agreement between the ideal result obtained directly from the finite element model and our Lagrangian approach to strain estimation. Traditional Eulerian based estimation results, on the other hand, show significant deviation from the ideal result. An in vivo comparison of the displacement and strain estimated using parasternal short axis views is also presented. Lagrangian displacement tracking using a polar grid provides accurate tracking of myocardial deformation demonstrated using both finite element and in vivo radiofrequency data acquired on a volunteer. In addition to the cardiac application, this approach can also be utilized for transverse scans of arteries, where a polar grid can be generated between the contours delineating the outer and inner wall of the vessels from the blood flowing though the vessel.

  5. A Morphological Approach to the Modeling of the Cold Spray Process

    NASA Astrophysics Data System (ADS)

    Delloro, F.; Jeandin, M.; Jeulin, D.; Proudhon, H.; Faessel, M.; Bianchi, L.; Meillot, E.; Helfen, L.

    2017-12-01

    A coating buildup model was developed, the aim of which was simulating the microstructure of a tantalum coating cold sprayed onto a copper substrate. To do so, first was operated a fine characterization of the irregular tantalum powder in 3D, using x-ray microtomography and developing specific image analysis algorithms. Particles were grouped by shape in seven classes. Afterward, 3D finite element simulations of the impact of the previously observed particles were realized. To finish, a coating buildup model was developed, based on the results of finite element simulations of particle impact. In its first version, this model is limited to 2D.

  6. Cognitive-graphic method for constructing of hierarchical forms of basic functions of biquadratic finite element

    NASA Astrophysics Data System (ADS)

    Astionenko, I. O.; Litvinenko, O. I.; Osipova, N. V.; Tuluchenko, G. Ya.; Khomchenko, A. N.

    2016-10-01

    Recently the interpolation bases of the hierarchical type have been used for the problem solving of the approximation of multiple arguments functions (such as in the finite-element method). In this work the cognitive graphical method of constructing of the hierarchical form bases on the serendipity finite elements is suggested, which allowed to get the alternative bases on a biquadratic finite element from the serendipity family without internal knots' inclusion. The cognitive-graphic method allowed to improve the known interpolation procedure of Taylor and to get the modified elements with irregular arrangement of knots. The proposed procedures are universal and are spread in the area of finite-elements.

  7. The Reverse Time Migration technique coupled with Interior Penalty Discontinuous Galerkin method.

    NASA Astrophysics Data System (ADS)

    Baldassari, C.; Barucq, H.; Calandra, H.; Denel, B.; Diaz, J.

    2009-04-01

    Seismic imaging is based on the seismic reflection method which produces an image of the subsurface from reflected waves recordings by using a tomography process and seismic migration is the industrial standard to improve the quality of the images. The migration process consists in replacing the recorded wavefields at their actual place by using various mathematical and numerical methods but each of them follows the same schedule, according to the pioneering idea of Claerbout: numerical propagation of the source function (propagation) and of the recorded wavefields (retropropagation) and next, construction of the image by applying an imaging condition. The retropropagation step can be realized accouting for the time reversibility of the wave equation and the resulting algorithm is currently called Reverse Time Migration (RTM). To be efficient, especially in three dimensional domain, the RTM requires the solution of the full wave equation by fast numerical methods. Finite element methods are considered as the best discretization method for solving the wave equation, even if they lead to the solution of huge systems with several millions of degrees of freedom, since they use meshes adapted to the domain topography and the boundary conditions are naturally taken into account in the variational formulation. Among the different finite element families, the spectral element one (SEM) is very interesting because it leads to a diagonal mass matrix which dramatically reduces the cost of the numerical computation. Moreover this method is very accurate since it allows the use of high order finite elements. However, SEM uses meshes of the domain made of quadrangles in 2D or hexaedra in 3D which are difficult to compute and not always suitable for complex topographies. Recently, Grote et al. applied the IPDG (Interior Penalty Discontinuous Galerkin) method to the wave equation. This approach is very interesting since it relies on meshes with triangles in 2D or tetrahedra in 3D, which allows to handle the topography of the domain very accurately. Moreover, the fact that the resulting mass matrix is block-diagonal and that IPDG is compatible with the use of high-order finite element may let us suppose that its performances are similar to the ones of the SEM. In this presentation, we study the performances of IDPG through numerical comparisons with the SEM in 1D and 2D. We compare in particular the accuracy of the solutions obtained by the two methods with various order of approximation and the computational burden of the algorithms. The conclusion is IPDG and SEM perform similarly when considering low order finite elements while IPDG outperforms SEM in case of high order finite elements. Next we illustrate the impact of IPDG on the RTM, first through a simple configuration test (two-layered medium), then through realistic industrial applications in 2D.

  8. Finite-element modeling of compression and gravity on a population of breast phantoms for multimodality imaging simulation.

    PubMed

    Sturgeon, Gregory M; Kiarashi, Nooshin; Lo, Joseph Y; Samei, E; Segars, W P

    2016-05-01

    The authors are developing a series of computational breast phantoms based on breast CT data for imaging research. In this work, the authors develop a program that will allow a user to alter the phantoms to simulate the effect of gravity and compression of the breast (craniocaudal or mediolateral oblique) making the phantoms applicable to multimodality imaging. This application utilizes a template finite-element (FE) breast model that can be applied to their presegmented voxelized breast phantoms. The FE model is automatically fit to the geometry of a given breast phantom, and the material properties of each element are set based on the segmented voxels contained within the element. The loading and boundary conditions, which include gravity, are then assigned based on a user-defined position and compression. The effect of applying these loads to the breast is computed using a multistage contact analysis in FEBio, a freely available and well-validated FE software package specifically designed for biomedical applications. The resulting deformation of the breast is then applied to a boundary mesh representation of the phantom that can be used for simulating medical images. An efficient script performs the above actions seamlessly. The user only needs to specify which voxelized breast phantom to use, the compressed thickness, and orientation of the breast. The authors utilized their FE application to simulate compressed states of the breast indicative of mammography and tomosynthesis. Gravity and compression were simulated on example phantoms and used to generate mammograms in the craniocaudal or mediolateral oblique views. The simulated mammograms show a high degree of realism illustrating the utility of the FE method in simulating imaging data of repositioned and compressed breasts. The breast phantoms and the compression software can become a useful resource to the breast imaging research community. These phantoms can then be used to evaluate and compare imaging modalities that involve different positioning and compression of the breast.

  9. Quantitative damage imaging using Lamb wave diffraction tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Yan; Ruan, Min; Zhu, Wen-Fa; Chai, Xiao-Dong

    2016-12-01

    In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated numerically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted S0 scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474195, 11274226, 11674214, and 51478258).

  10. Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation.

    PubMed

    Campbell, Graeme Michael; Glüer, Claus-C

    2017-07-01

    Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics. In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge. Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.

  11. Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities

    NASA Astrophysics Data System (ADS)

    Romero, Ignacio; Segurado, Javier; LLorca, Javier

    2008-04-01

    The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix.

  12. Image-based models of cardiac structure in health and disease

    PubMed Central

    Vadakkumpadan, Fijoy; Arevalo, Hermenegild; Prassl, Anton J.; Chen, Junjie; Kickinger, Ferdinand; Kohl, Peter; Plank, Gernot; Trayanova, Natalia

    2010-01-01

    Computational approaches to investigating the electromechanics of healthy and diseased hearts are becoming essential for the comprehensive understanding of cardiac function. In this article, we first present a brief review of existing image-based computational models of cardiac structure. We then provide a detailed explanation of a processing pipeline which we have recently developed for constructing realistic computational models of the heart from high resolution structural and diffusion tensor (DT) magnetic resonance (MR) images acquired ex vivo. The presentation of the pipeline incorporates a review of the methodologies that can be used to reconstruct models of cardiac structure. In this pipeline, the structural image is segmented to reconstruct the ventricles, normal myocardium, and infarct. A finite element mesh is generated from the segmented structural image, and fiber orientations are assigned to the elements based on DTMR data. The methods were applied to construct seven different models of healthy and diseased hearts. These models contain millions of elements, with spatial resolutions in the order of hundreds of microns, providing unprecedented detail in the representation of cardiac structure for simulation studies. PMID:20582162

  13. Modeling the mechanics of axonal fiber tracts using the embedded finite element method.

    PubMed

    Garimella, Harsha T; Kraft, Reuben H

    2017-05-01

    A subject-specific human head finite element model with embedded axonal fiber tractography obtained from diffusion tensor imaging was developed. The axonal fiber tractography finite element model was coupled with the volumetric elements in the head model using the embedded element method. This technique enables the calculation of axonal strains and real-time tracking of the mechanical response of the axonal fiber tracts. The coupled model was then verified using pressure and relative displacement-based (between skull and brain) experimental studies and was employed to analyze a head impact, demonstrating the applicability of this method in studying axonal injury. Following this, a comparison study of different injury criteria was performed. This model was used to determine the influence of impact direction on the extent of the axonal injury. The results suggested that the lateral impact loading is more dangerous compared to loading in the sagittal plane, a finding in agreement with previous studies. Through this analysis, we demonstrated the viability of the embedded element method as an alternative numerical approach for studying axonal injury in patient-specific human head models. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Cortical bone fracture analysis using XFEM - case study.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2017-04-01

    We aim to achieve an accurate simulation of human cortical bone fracture using the extended finite element method within a commercial finite element software abaqus. A two-dimensional unit cell model of cortical bone is built based on a microscopy image of the mid-diaphysis of tibia of a 70-year-old human male donor. Each phase of this model, an interstitial bone, a cement line, and an osteon, are considered linear elastic and isotropic with material properties obtained by nanoindentation, taken from literature. The effect of using fracture analysis methods (cohesive segment approach versus linear elastic fracture mechanics approach), finite element type, and boundary conditions (traction, displacement, and mixed) on cortical bone crack initiation and propagation are studied. In this study cohesive segment damage evolution for a traction separation law based on energy and displacement is used. In addition, effects of the increment size and mesh density on analysis results are investigated. We find that both cohesive segment and linear elastic fracture mechanics approaches within the extended finite element method can effectively simulate cortical bone fracture. Mesh density and simulation increment size can influence analysis results when employing either approach, and using finer mesh and/or smaller increment size does not always provide more accurate results. Both approaches provide close but not identical results, and crack propagation speed is found to be slower when using the cohesive segment approach. Also, using reduced integration elements along with the cohesive segment approach decreases crack propagation speed compared with using full integration elements. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Angular Random Walk Estimation of a Time-Domain Switching Micromachined Gyroscope

    DTIC Science & Technology

    2016-10-19

    1 2. PARAMETRIC SYSTEM IDENTIFICATION BASED ON TIME-DOMAIN SWITCHING ........ 2 3. FINITE ELEMENT MODELING OF RESONATOR...8 3. FINITE ELEMENT MODELING OF RESONATOR This section details basic finite element modeling of the resonator used with the TDSMG. While it...Based on finite element simulations of the employed resonator, it is found that the effects of thermomechanical noise is on par with 10 ps of timing

  16. An imaged-based inverse finite element method to determine in-vivo mechanical properties of the human trabecular meshwork.

    PubMed

    Pant, Anup D; Kagemann, Larry; Schuman, Joel S; Sigal, Ian A; Amini, Rouzbeh

    2017-01-01

    Previous studies have shown that the trabecular meshwork (TM) is mechanically stiffer in glaucomatous eyes as compared to normal eyes. It is believed that elevated TM stiffness increases resistance to the aqueous humor outflow, producing increased intraocular pressure (IOP). It would be advantageous to measure TM mechanical properties in vivo , as these properties are believed to play an important role in the pathophysiology of glaucoma and could be useful for identifying potential risk factors. The purpose of this study was to develop a method to estimate in-vivo TM mechanical properties using clinically available exams and computer simulations. Inverse finite element simulation. A finite element model of the TM was constructed from optical coherence tomography (OCT) images of a healthy volunteer before and during IOP elevation. An axisymmetric model of the TM was then constructed. Images of the TM at a baseline IOP level of 11, and elevated level of 23 mmHg were treated as the undeformed and deformed configurations, respectively. An inverse modeling technique was subsequently used to estimate the TM shear modulus ( G ). An optimization technique was used to find the shear modulus that minimized the difference between Schlemm's canal area in the in-vivo images and simulations. Upon completion of inverse finite element modeling, the simulated area of the Schlemm's canal changed from 8,889 µm 2 to 2,088 µm 2 , similar to the experimentally measured areal change of the canal (from 8,889 µm 2 to 2,100 µm 2 ). The calculated value of shear modulus was found to be 1.93 kPa, (implying an approximate Young's modulus of 5.75 kPa), which is consistent with previous ex-vivo measurements. The combined imaging and computational simulation technique provides a unique approach to calculate the mechanical properties of the TM in vivo without any surgical intervention. Quantification of such mechanical properties will help us examine the mechanistic role of TM biomechanics in the regulation of IOP in healthy and glaucomatous eyes.

  17. A Finite Element Method to Correct Deformable Image Registration Errors in Low-Contrast Regions

    PubMed Central

    Zhong, Hualiang; Kim, Jinkoo; Li, Haisen; Nurushev, Teamour; Movsas, Benjamin; Chetty, Indrin J.

    2012-01-01

    Image-guided adaptive radiotherapy requires deformable image registration to map radiation dose back and forth between images. The purpose of this study is to develop a novel method to improve the accuracy of an intensity-based image registration algorithm in low-contrast regions. A computational framework has been developed in this study to improve the quality of the “demons” registration. For each voxel in the registration’s target image, the standard deviation of image intensity in a neighborhood of this voxel was calculated. A mask for high-contrast regions was generated based on their standard deviations. In the masked regions, a tetrahedral mesh was refined recursively so that a sufficient number of tetrahedral nodes in these regions can be selected as driving nodes. An elastic system driven by the displacements of the selected nodes was formulated using a finite element method (FEM) and implemented on the refined mesh. The displacements of these driving nodes were generated with the “demons” algorithm. The solution of the system was derived using a conjugated gradient method, and interpolated to generate a displacement vector field for the registered images. The FEM correction method was compared with the “demons” algorithm on the CT images of lung and prostate patients. The performance of the FEM correction relating to the “demons” registration was analyzed based on the physical property of their deformation maps, and quantitatively evaluated through a benchmark model developed specifically for this study. Compared to the benchmark model, the “demons” registration has the maximum error of 1.2 cm, which can be corrected by the FEM method to 0.4 cm, and the average error of the “demons” registration is reduced from 0.17 cm to 0.11 cm. For the CT images of lung and prostate patients, the deformation maps generated by the “demons” algorithm were found unrealistic at several places. In these places, the displacement differences between the “demons” registrations and their FEM corrections were found in the range of 0.4 cm and 1.1cm. The mesh refinement and FEM simulation were implemented in a single thread application which requires about 45 minutes of computation time on a 2.6 GH computer. This study has demonstrated that the finite element method can be integrated with intensity-based image registration algorithms to improve their registration accuracy, especially in low-contrast regions. PMID:22581269

  18. Structural Anomalies Detected in Ceramic Matrix Composites Using Combined Nondestructive Evaluation and Finite Element Analysis (NDE and FEA)

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2003-01-01

    Most reverse engineering approaches involve imaging or digitizing an object and then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. The rapid prototyping technique builds high-quality physical prototypes directly from computer-aided design files. This fundamental technique for interpreting and interacting with large data sets is being used here via Velocity2 (an integrated image-processing software, ref. 1) using computed tomography (CT) data to produce a prototype three-dimensional test specimen model for analyses. A study at the NASA Glenn Research Center proposes to use these capabilities to conduct a combined nondestructive evaluation (NDE) and finite element analysis (FEA) to screen pretest and posttest structural anomalies in structural components. A tensile specimen made of silicon nitrite (Si3N4) ceramic matrix composite was considered to evaluate structural durability and deformity. Ceramic matrix composites are being sought as candidate materials to replace nickel-base superalloys for turbine engine applications. They have the unique characteristics of being able to withstand higher operating temperatures and harsh combustion environments. In addition, their low densities relative to metals help reduce component mass (ref. 2). Detailed three-dimensional volume rendering of the tensile test specimen was successfully carried out with Velocity2 (ref. 1) using two-dimensional images that were generated via computed tomography. Subsequent, three-dimensional finite element analyses were performed, and the results obtained were compared with those predicted by NDE-based calculations and experimental tests. It was shown that Velocity2 software can be used to render a three-dimensional object from a series of CT scan images with a minimum level of complexity. The analytical results (ref. 3) show that the high-stress regions correlated well with the damage sites identified by the CT scans and the experimental data. Furthermore, modeling of the voids collected via NDE offered an analytical advantage that resulted in more accurate assessments of the material s structural strength. The top figure shows a CT scan image of the specimen test section illustrating various hidden structural entities in the material and an optical image of the test specimen considered in this study. The bottom figure represents the stress response predicted from the finite element analyses (ref .3 ) for a selected CT slice where it clearly illustrates the correspondence of the high stress risers due to voids in the material with those predicted by the NDE. This study is continuing, and efforts are concentrated on improving the modeling capabilities to imitate the structural anomalies as detected.

  19. ARL Summer Student Research Symposium. Volume 1: Select Papers

    DTIC Science & Technology

    2012-08-01

    deploying Android smart phones and tablets on the battlefield, which may be a target for malware. In our research, we attempt to improve static...network. (a) The T1 and MRI images are (b) segmented into different material components. The segmented geometry is then used to create (c) a finite element...towards finding a method to detect mTBI non-invasively. One method in particular includes the use of a magnetic resonance image ( MRI )-based imaging

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wannamaker, Philip E.

    We have developed an algorithm for the inversion of magnetotelluric (MT) data to a 3D earth resistivity model based upon the finite element method. Hexahedral edge finite elements are implemented to accommodate discontinuities in the electric field across resistivity boundaries, and to accurately simulate topographic variations. All matrices are reduced and solved using direct solution modules which avoids ill-conditioning endemic to iterative solvers such as conjugate gradients, principally PARDISO for the finite element system and PLASMA for the parameter step estimate. Large model parameterizations can be handled by transforming the Gauss-Newton estimator to data-space form. Accuracy of the forward problemmore » and jacobians has been checked by comparison to integral equations results and by limiting asymptotes. Inverse accuracy and performance has been verified against the public Dublin Secret Test Model 2 and the well-known Mount St Helens 3D MT data set. This algorithm we believe is the most capable yet for forming 3D images of earth resistivity structure and their implications for geothermal fluids and pathways.« less

  1. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    DTIC Science & Technology

    2017-09-19

    Results show that the finite element computational models accurately match analytical calculations, and that the composite material studied in this...products. 15. SUBJECT TERMS Finite Element Analysis, Structural Acoustics, Fiber-Reinforced Composites, Physics-Based Modeling 16. SECURITY...2 4 FINITE ELEMENT MODEL DESCRIPTION

  2. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.

    PubMed

    Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui

    2018-06-01

    Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.

  3. Development and validation of a weight-bearing finite element model for total knee replacement.

    PubMed

    Woiczinski, M; Steinbrück, A; Weber, P; Müller, P E; Jansson, V; Schröder, Ch

    2016-01-01

    Total knee arthroplasty (TKA) is a successful procedure for osteoarthritis. However, some patients (19%) do have pain after surgery. A finite element model was developed based on boundary conditions of a knee rig. A 3D-model of an anatomical full leg was generated from magnetic resonance image data and a total knee prosthesis was implanted without patella resurfacing. In the finite element model, a restarting procedure was programmed in order to hold the ground reaction force constant with an adapted quadriceps muscle force during a squat from 20° to 105° of flexion. Knee rig experimental data were used to validate the numerical model in the patellofemoral and femorotibial joint. Furthermore, sensitivity analyses of Young's modulus of the patella cartilage, posterior cruciate ligament (PCL) stiffness, and patella tendon origin were performed. Pearson's correlations for retropatellar contact area, pressure, patella flexion, and femorotibial ap-movement were near to 1. Lowest root mean square error for retropatellar pressure, patella flexion, and femorotibial ap-movement were found for the baseline model setup with Young's modulus of 5 MPa for patella cartilage, a downscaled PCL stiffness of 25% compared to the literature given value and an anatomical origin of the patella tendon. The results of the conducted finite element model are comparable with the experimental results. Therefore, the finite element model developed in this study can be used for further clinical investigations and will help to better understand the clinical aspects after TKA with an unresurfaced patella.

  4. Development of finite element model for customized prostheses design for patient with pelvic bone tumor.

    PubMed

    Iqbal, Taimoor; Shi, Lei; Wang, Ling; Liu, Yaxiong; Li, Dichen; Qin, Mian; Jin, Zhongmin

    2017-06-01

    The aim of this study was to design a hemi-pelvic prosthesis for a patient affected by pelvic sarcoma. To investigate the biomechanical functionality of the pelvis reconstructed with designed custom-made prosthesis, a patient-specific finite element model of whole pelvis with primary ligaments inclusive was constructed based on the computed tomography images of the patient. Then, a finite element analysis was performed to calculate and compare the stress distribution between the normal and implanted pelvis models when undergoing three different static conditions-both-leg standing, single-leg standing for the healthy and the affected one. No significant differences were observed in the stresses between the normal and reconstructed pelvis for both-leg standing, but 20%-40% larger stresses were predicted for the peak stress of the single-leg standing (affected side). Moreover, two- to threefold of peak stresses were predicted within the prostheses compared to that of the normal pelvis especially for single-leg standing case, however, still below the allowable fatigue limitation. The study on the load transmission functionality of prosthesis indicated that it is crucial to carry out finite element analysis for functional evaluation of the designed customized prostheses before three-dimensional printing manufacturing, allowing better understanding of the possible peak stresses within the bone as well as the implants for safety precaution. The finite element model can be equally applicable to other bone tumor model for biomechanical studying.

  5. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2011-01-01

    Detailed two-dimensional finite element analyses of the cross-sections of a model CVI (chemical vapor infiltrated) SiC/SiC (silicon carbide fiber in a silicon carbide matrix) ceramic matrix composites are performed. High resolution images of the cross-section of this composite material are generated using serial sectioning of the test specimens. These images are then used to develop very detailed finite element models of the cross-sections using the public domain software OOF2 (Object Oriented Analysis of Material Microstructures). Examination of these images shows that these microstructures have significant variability and irregularity. How these variabilities manifest themselves in the variability in effective properties as well as the stress distribution, damage initiation and damage progression is the overall objective of this work. Results indicate that even though the macroscopic stress-strain behavior of various sections analyzed is very similar, each section has a very distinct damage pattern when subjected to in-plane tensile loads and this damage pattern seems to follow the unique architectural and microstructural details of the analyzed sections.

  6. Characterization of Mechanical Properties of Tissue Scaffolds by Phase Contrast Imaging and Finite Element Modeling.

    PubMed

    Bawolin, Nahshon K; Dolovich, Allan T; Chen, Daniel X B; Zhang, Chris W J

    2015-08-01

    In tissue engineering, the cell and scaffold approach has shown promise as a treatment to regenerate diseased and/or damaged tissue. In this treatment, an artificial construct (scaffold) is seeded with cells, which organize and proliferate into new tissue. The scaffold itself biodegrades with time, leaving behind only newly formed tissue. The degradation qualities of the scaffold are critical during the treatment period, since the change in the mechanical properties of the scaffold with time can influence cell behavior. To observe in time the scaffold's mechanical properties, a straightforward method is to deform the scaffold and then characterize scaffold deflection accordingly. However, experimentally observing the scaffold deflection is challenging. This paper presents a novel study on characterization of mechanical properties of scaffolds by phase contrast imaging and finite element modeling, which specifically includes scaffold fabrication, scaffold imaging, image analysis, and finite elements (FEs) modeling of the scaffold mechanical properties. The innovation of the work rests on the use of in-line phase contrast X-ray imaging at 20 KeV to characterize tissue scaffold deformation caused by ultrasound radiation forces and the use of the Fourier transform to identify movement. Once deformation has been determined experimentally, it is then compared with the predictions given by the forward solution of a finite element model. A consideration of the number of separate loading conditions necessary to uniquely identify the material properties of transversely isotropic and fully orthotropic scaffolds is also presented, along with the use of an FE as a form of regularization.

  7. Material Characterization and Geometric Segmentation of a Composite Structure Using Microfocus X-Ray Computed Tomography Image-Based Finite Element Modeling

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Roth, D. J.; Cotton, R.; Studor, George F.; Christiansen, Eric; Young, P. C.

    2011-01-01

    This study utilizes microfocus x-ray computed tomography (CT) slice sets to model and characterize the damage locations and sizes in thermal protection system materials that underwent impact testing. ScanIP/FE software is used to visualize and process the slice sets, followed by mesh generation on the segmented volumetric rendering. Then, the local stress fields around several of the damaged regions are calculated for realistic mission profiles that subject the sample to extreme temperature and other severe environmental conditions. The resulting stress fields are used to quantify damage severity and make an assessment as to whether damage that did not penetrate to the base material can still result in catastrophic failure of the structure. It is expected that this study will demonstrate that finite element modeling based on an accurate three-dimensional rendered model from a series of CT slices is an essential tool to quantify the internal macroscopic defects and damage of a complex system made out of thermal protection material. Results obtained showing details of segmented images; three-dimensional volume-rendered models, finite element meshes generated, and the resulting thermomechanical stress state due to impact loading for the material are presented and discussed. Further, this study is conducted to exhibit certain high-caliber capabilities that the nondestructive evaluation (NDE) group at NASA Glenn Research Center can offer to assist in assessing the structural durability of such highly specialized materials so improvements in their performance and capacities to handle harsh operating conditions can be made.

  8. [Progression on finite element modeling method in scoliosis].

    PubMed

    Fan, Ning; Zang, Lei; Hai, Yong; Du, Peng; Yuan, Shuo

    2018-04-25

    Scoliosis is a complex spinal three-dimensional malformation with complicated pathogenesis, often associated with complications as thoracic deformity and shoulder imbalance. Because the acquisition of specimen or animal models are difficult, the biomechanical study of scoliosis is limited. In recent years, along with the development of the computer technology, software and image, the technology of establishing a finite element model of human spine is maturing and it has been providing strong support for the research of pathogenesis of scoliosis, the design and application of brace, and the selection of surgical methods. The finite element model method is gradually becoming an important tool in the biomechanical study of scoliosis. Establishing a high quality finite element model is the basis of analysis and future study. However, the finite element modeling process can be complex and modeling methods are greatly varied. Choosing the appropriate modeling method according to research objectives has become researchers' primary task. In this paper, the author reviews the national and international literature in recent years and concludes the finite element modeling methods in scoliosis, including data acquisition, establishment of the geometric model, the material properties, parameters setting, the validity of the finite element model validation and so on. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.

  9. Minimizing EIT image artefacts from mesh variability in finite element models.

    PubMed

    Adler, Andy; Lionheart, William R B

    2011-07-01

    Electrical impedance tomography (EIT) solves an inverse problem to estimate the conductivity distribution within a body from electrical simulation and measurements at the body surface, where the inverse problem is based on a solution of Laplace's equation in the body. Most commonly, a finite element model (FEM) is used, largely because of its ability to describe irregular body shapes. In this paper, we show that simulated variations in the positions of internal nodes within a FEM can result in serious image artefacts in the reconstructed images. Such variations occur when designing FEM meshes to conform to conductivity targets, but the effects may also be seen in other applications of absolute and difference EIT. We explore the hypothesis that these artefacts result from changes in the projection of the anisotropic conductivity tensor onto the FEM system matrix, which introduces anisotropic components into the simulated voltages, which cannot be reconstructed onto an isotropic image, and appear as artefacts. The magnitude of the anisotropic effect is analysed for a small regular FEM, and shown to be proportional to the relative node movement as a fraction of element size. In order to address this problem, we show that it is possible to incorporate a FEM node movement component into the formulation of the inverse problem. These results suggest that it is important to consider artefacts due to FEM mesh geometry in EIT image reconstruction.

  10. The constraint method: A new finite element technique. [applied to static and dynamic loads on plates

    NASA Technical Reports Server (NTRS)

    Tsai, C.; Szabo, B. A.

    1973-01-01

    An approch to the finite element method which utilizes families of conforming finite elements based on complete polynomials is presented. Finite element approximations based on this method converge with respect to progressively reduced element sizes as well as with respect to progressively increasing orders of approximation. Numerical results of static and dynamic applications of plates are presented to demonstrate the efficiency of the method. Comparisons are made with plate elements in NASTRAN and the high-precision plate element developed by Cowper and his co-workers. Some considerations are given to implementation of the constraint method into general purpose computer programs such as NASTRAN.

  11. Subresolution Displacements in Finite Difference Simulations of Ultrasound Propagation and Imaging.

    PubMed

    Pinton, Gianmarco F

    2017-03-01

    Time domain finite difference simulations are used extensively to simulate wave propagation. They approximate the wave field on a discrete domain with a grid spacing that is typically on the order of a tenth of a wavelength. The smallest displacements that can be modeled by this type of simulation are thus limited to discrete values that are integer multiples of the grid spacing. This paper presents a method to represent continuous and subresolution displacements by varying the impedance of individual elements in a multielement scatterer. It is demonstrated that this method removes the limitations imposed by the discrete grid spacing by generating a continuum of displacements as measured by the backscattered signal. The method is first validated on an ideal perfect correlation case with a single scatterer. It is subsequently applied to a more complex case with a field of scatterers that model an acoustic radiation force-induced displacement used in ultrasound elasticity imaging. A custom finite difference simulation tool is used to simulate propagation from ultrasound imaging pulses in the scatterer field. These simulated transmit-receive events are then beamformed into images, which are tracked with a correlation-based algorithm to determine the displacement. A linear predictive model is developed to analytically describe the relationship between element impedance and backscattered phase shift. The error between model and simulation is λ/ 1364 , where λ is the acoustical wavelength. An iterative method is also presented that reduces the simulation error to λ/ 5556 over one iteration. The proposed technique therefore offers a computationally efficient method to model continuous subresolution displacements of a scattering medium in ultrasound imaging. This method has applications that include ultrasound elastography, blood flow, and motion tracking. This method also extends generally to finite difference simulations of wave propagation, such as electromagnetic or seismic waves.

  12. Development of digital phantoms based on a finite element model to simulate low-attenuation areas in CT imaging for pulmonary emphysema quantification.

    PubMed

    Diciotti, Stefano; Nobis, Alessandro; Ciulli, Stefano; Landini, Nicholas; Mascalchi, Mario; Sverzellati, Nicola; Innocenti, Bernardo

    2017-09-01

    To develop an innovative finite element (FE) model of lung parenchyma which simulates pulmonary emphysema on CT imaging. The model is aimed to generate a set of digital phantoms of low-attenuation areas (LAA) images with different grades of emphysema severity. Four individual parameter configurations simulating different grades of emphysema severity were utilized to generate 40 FE models using ten randomizations for each setting. We compared two measures of emphysema severity (relative area (RA) and the exponent D of the cumulative distribution function of LAA clusters size) between the simulated LAA images and those computed directly on the models output (considered as reference). The LAA images obtained from our model output can simulate CT-LAA images in subjects with different grades of emphysema severity. Both RA and D computed on simulated LAA images were underestimated as compared to those calculated on the models output, suggesting that measurements in CT imaging may not be accurate in the assessment of real emphysema extent. Our model is able to mimic the cluster size distribution of LAA on CT imaging of subjects with pulmonary emphysema. The model could be useful to generate standard test images and to design physical phantoms of LAA images for the assessment of the accuracy of indexes for the radiologic quantitation of emphysema.

  13. Fast 3D registration of multimodality tibial images with significant structural mismatch

    NASA Astrophysics Data System (ADS)

    Rajapakse, C. S.; Wald, M. J.; Magland, J.; Zhang, X. H.; Liu, X. S.; Guo, X. E.; Wehrli, F. W.

    2009-02-01

    Recently, micro-magnetic resonance imaging (μMRI) in conjunction with micro-finite element analysis has shown great potential in estimating mechanical properties - stiffness and elastic moduli - of bone in patients at risk of osteoporosis. Due to limited spatial resolution and signal-to-noise ratio achievable in vivo, the validity of estimated properties is often established by comparison to those derived from high-resolution micro-CT (μCT) images of cadaveric specimens. For accurate comparison of mechanical parameters derived from μMR and μCT images, analyzed 3D volumes have to be closely matched. The alignment of the micro structure (and the cortex) is often hampered by the fundamental differences of μMR and μCT images and variations in marrow content and cortical bone thickness. Here we present an intensity cross-correlation based registration algorithm coupled with segmentation for registering 3D tibial specimen images acquired by μMRI and μCT in the context of finite-element modeling to assess the bone's mechanical constants. The algorithm first generates three translational and three rotational parameters required to align segmented μMR and CT images from sub regions with high micro-structural similarities. These transformation parameters are then used to register the grayscale μMR and μCT images, which include both the cortex and trabecular bone. The intensity crosscorrelation maximization based registration algorithm described here is suitable for 3D rigid-body image registration applications where through-plane rotations are known to be relatively small. The close alignment of the resulting images is demonstrated quantitatively based on a voxel-overlap measure and qualitatively using visual inspection of the micro structure.

  14. Quasi-static image-based immersed boundary-finite element model of left ventricle under diastolic loading

    PubMed Central

    Gao, Hao; Wang, Huiming; Berry, Colin; Luo, Xiaoyu; Griffith, Boyce E

    2014-01-01

    Finite stress and strain analyses of the heart provide insight into the biomechanics of myocardial function and dysfunction. Herein, we describe progress toward dynamic patient-specific models of the left ventricle using an immersed boundary (IB) method with a finite element (FE) structural mechanics model. We use a structure-based hyperelastic strain-energy function to describe the passive mechanics of the ventricular myocardium, a realistic anatomical geometry reconstructed from clinical magnetic resonance images of a healthy human heart, and a rule-based fiber architecture. Numerical predictions of this IB/FE model are compared with results obtained by a commercial FE solver. We demonstrate that the IB/FE model yields results that are in good agreement with those of the conventional FE model under diastolic loading conditions, and the predictions of the LV model using either numerical method are shown to be consistent with previous computational and experimental data. These results are among the first to analyze the stress and strain predictions of IB models of ventricular mechanics, and they serve both to verify the IB/FE simulation framework and to validate the IB/FE model. Moreover, this work represents an important step toward using such models for fully dynamic fluid–structure interaction simulations of the heart. © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. PMID:24799090

  15. Combining the Finite Element Method with Structural Connectome-based Analysis for Modeling Neurotrauma: Connectome Neurotrauma Mechanics

    DTIC Science & Technology

    2012-08-16

    threshold of 18% strain, 161 edges were removed. Watts and Strogatz [66] define the small-world network based on the clustering coefficient of the network and...NeuroImage 52: 1059–1069. 65. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87: 198701. 66. Watts DJ, Strogatz SH

  16. Combining the Finite Element Method with Structural Connectome-based Analysis for Modeling Neurotrauma:Connectome Neurotrauma Mechanics

    DTIC Science & Technology

    2012-08-16

    death threshold. Using an injury threshold of 18% strain, 161 edges were removed. Watts and Strogatz [66] define the small-world network based on the...NeuroImage 52: 1059–1069. 65. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87: 198701. 66. Watts DJ, Strogatz SH

  17. Evaluation of stress changes in the mandible with a fixed functional appliance: a finite element study.

    PubMed

    Chaudhry, Anshul; Sidhu, Maninder S; Chaudhary, Girish; Grover, Seema; Chaudhry, Nimisha; Kaushik, Ashutosh

    2015-02-01

    The aim of this study was to evaluate the effects of a fixed functional appliance (Forsus Fatigue Resistant Device; 3M Unitek, Monrovia, Calif) on the mandible with 3-dimensional finite element stress analysis. A 3-dimensional finite element model of the mandible was constructed from the images generated by cone-beam computed tomography of a patient undergoing fixed orthodontic treatment. The changes were studied with the finite element method, in the form of highest von Mises stress and maximum principal stress regions. More areas of stress were seen in the model of the mandible with the Forsus compared with the model of the mandible in the resting stage. This fixed functional appliance studied by finite element model analysis caused increases in the maximum principal stress and the von Mises stress in both the cortical bone and the condylar region of the mandible by more than 2 times. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  18. Simulation results for a finite element-based cumulative reconstructor

    NASA Astrophysics Data System (ADS)

    Wagner, Roland; Neubauer, Andreas; Ramlau, Ronny

    2017-10-01

    Modern ground-based telescopes rely on adaptive optics (AO) systems for the compensation of image degradation caused by atmospheric turbulences. Within an AO system, measurements of incoming light from guide stars are used to adjust deformable mirror(s) in real time that correct for atmospheric distortions. The incoming wavefront has to be derived from sensor measurements, and this intermediate result is then translated into the shape(s) of the deformable mirror(s). Rapid changes of the atmosphere lead to the need for fast wavefront reconstruction algorithms. We review a fast matrix-free algorithm that was developed by Neubauer to reconstruct the incoming wavefront from Shack-Hartmann measurements based on a finite element discretization of the telescope aperture. The method is enhanced by a domain decomposition ansatz. We show that this algorithm reaches the quality of standard approaches in end-to-end simulation while at the same time maintaining the speed of recently introduced solvers with linear order speed.

  19. Dynamic analysis of a needle insertion for soft materials: Arbitrary Lagrangian-Eulerian-based three-dimensional finite element analysis.

    PubMed

    Yamaguchi, Satoshi; Tsutsui, Kihei; Satake, Koji; Morikawa, Shigehiro; Shirai, Yoshiaki; Tanaka, Hiromi T

    2014-10-01

    Our goal was to develop a three-dimensional finite element model that enables dynamic analysis of needle insertion for soft materials. To demonstrate large deformation and fracture, we used the arbitrary Lagrangian-Eulerian (ALE) method for fluid analysis. We performed ALE-based finite element analysis for 3% agar gel and three types of copper needle with bevel tips. To evaluate simulation results, we compared the needle deflection and insertion force with corresponding experimental results acquired with a uniaxial manipulator. We studied the shear stress distribution of agar gel on various time scales. For 30°, 45°, and 60°, differences in deflections of each needle between both sets of results were 2.424, 2.981, and 3.737mm, respectively. For the insertion force, there was no significant difference for mismatching area error (p<0.05) between simulation and experimental results. Our results have the potential to be a stepping stone to develop pre-operative surgical planning to estimate an optimal needle insertion path for MR image-guided microwave coagulation therapy and for analyzing large deformation and fracture in biological tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A finite element head and neck model as a supportive tool for deformable image registration.

    PubMed

    Kim, Jihun; Saitou, Kazuhiro; Matuszak, Martha M; Balter, James M

    2016-07-01

    A finite element (FE) head and neck model was developed as a tool to aid investigations and development of deformable image registration and patient modeling in radiation oncology. Useful aspects of a FE model for these purposes include ability to produce realistic deformations (similar to those seen in patients over the course of treatment) and a rational means of generating new configurations, e.g., via the application of force and/or displacement boundary conditions. The model was constructed based on a cone-beam computed tomography image of a head and neck cancer patient. The three-node triangular surface meshes created for the bony elements (skull, mandible, and cervical spine) and joint elements were integrated into a skeletal system and combined with the exterior surface. Nodes were additionally created inside the surface structures which were composed of the three-node triangular surface meshes, so that four-node tetrahedral FE elements were created over the whole region of the model. The bony elements were modeled as a homogeneous linear elastic material connected by intervertebral disks. The surrounding tissues were modeled as a homogeneous linear elastic material. Under force or displacement boundary conditions, FE analysis on the model calculates approximate solutions of the displacement vector field. A FE head and neck model was constructed that skull, mandible, and cervical vertebrae were mechanically connected by disks. The developed FE model is capable of generating realistic deformations that are strain-free for the bony elements and of creating new configurations of the skeletal system with the surrounding tissues reasonably deformed. The FE model can generate realistic deformations for skeletal elements. In addition, the model provides a way of evaluating the accuracy of image alignment methods by producing a ground truth deformation and correspondingly simulated images. The ability to combine force and displacement conditions provides flexibility for simulating realistic anatomic configurations.

  1. Application of kernel method in fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Baikejiang, Reheman; Li, Changqing

    2017-02-01

    Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.

  2. Improving a complex finite-difference ground water flow model through the use of an analytic element screening model

    USGS Publications Warehouse

    Hunt, R.J.; Anderson, M.P.; Kelson, V.A.

    1998-01-01

    This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.

  3. Image-Based Macro-Micro Finite Element Models of a Canine Femur with Implant Design Implications

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Krishnan, Ganapathi; Dyce, Jonathan

    2006-06-01

    In this paper, a comprehensive model of a bone-cement-implant assembly is developed for a canine cemented femoral prosthesis system. Various steps in this development entail profiling the canine femur contours by computed tomography (CT) scanning, computer aided design (CAD) reconstruction of the canine femur from CT images, CAD modeling of the implant from implant blue prints and CAD modeling of the interface cement. Finite element analysis of the macroscopic assembly is conducted for stress analysis in individual components of the system, accounting for variation in density and material properties in the porous bone material. A sensitivity analysis is conducted with the macroscopic model to investigate the effect of implant design variables on the stress distribution in the assembly. Subsequently, rigorous microstructural analysis of the bone incorporating the morphological intricacies is conducted. Various steps in this development include acquisition of the bone microstructural data from histological serial sectioning, stacking of sections to obtain 3D renderings of void distributions, microstructural characterization and determination of properties and, finally, microstructural stress analysis using a 3D Voronoi cell finite element method. Generation of the simulated microstructure and analysis by the 3D Voronoi cell finite element model provides a new way of modeling complex microstructures and correlating to morphological characteristics. An inverse calculation of the material parameters of bone by combining macroscopic experiments with microstructural characterization and analysis provides a new approach to evaluating properties without having to do experiments at this scale. Finally, the microstructural stresses in the femur are computed using the 3D VCFEM to study the stress distribution at the scale of the bone porosity. Significant difference is observed between the macroscopic stresses and the peak microscopic stresses at different locations.

  4. An Adaptive MR-CT Registration Method for MRI-guided Prostate Cancer Radiotherapy

    PubMed Central

    Zhong, Hualiang; Wen, Ning; Gordon, James; Elshaikh, Mohamed A; Movsas, Benjamin; Chetty, Indrin J.

    2015-01-01

    Magnetic Resonance images (MRI) have superior soft tissue contrast compared with CT images. Therefore, MRI might be a better imaging modality to differentiate the prostate from surrounding normal organs. Methods to accurately register MRI to simulation CT images are essential, as we transition the use of MRI into the routine clinic setting. In this study, we present a finite element method (FEM) to improve the performance of a commercially available, B-spline-based registration algorithm in the prostate region. Specifically, prostate contours were delineated independently on ten MRI and CT images using the Eclipse treatment planning system. Each pair of MRI and CT images was registered with the B-spline-based algorithm implemented in the VelocityAI system. A bounding box that contains the prostate volume in the CT image was selected and partitioned into a tetrahedral mesh. An adaptive finite element method was then developed to adjust the displacement vector fields (DVFs) of the B-spline-based registrations within the box. The B-spline and FEM-based registrations were evaluated based on the variations of prostate volume and tumor centroid, the unbalanced energy of the generated DVFs, and the clarity of the reconstructed anatomical structures. The results showed that the volumes of the prostate contours warped with the B-spline-based DVFs changed 10.2% on average, relative to the volumes of the prostate contours on the original MR images. This discrepancy was reduced to 1.5% for the FEM-based DVFs. The average unbalanced energy was 2.65 and 0.38 mJ/cm3, and the prostate centroid deviation was 0.37 and 0.28 cm, for the B-spline and FEM-based registrations, respectively. Different from the B-spline-warped MR images, the FEM-warped MR images have clear boundaries between prostates and bladders, and their internal prostatic structures are consistent with those of the original MR images. In summary, the developed adaptive FEM method preserves the prostate volume during the transformation between the MR and CT images and improves the accuracy of the B-spline registrations in the prostate region. The approach will be valuable for development of high-quality MRI-guided radiation therapy. PMID:25775937

  5. An adaptive MR-CT registration method for MRI-guided prostate cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Zhong, Hualiang; Wen, Ning; Gordon, James J.; Elshaikh, Mohamed A.; Movsas, Benjamin; Chetty, Indrin J.

    2015-04-01

    Magnetic Resonance images (MRI) have superior soft tissue contrast compared with CT images. Therefore, MRI might be a better imaging modality to differentiate the prostate from surrounding normal organs. Methods to accurately register MRI to simulation CT images are essential, as we transition the use of MRI into the routine clinic setting. In this study, we present a finite element method (FEM) to improve the performance of a commercially available, B-spline-based registration algorithm in the prostate region. Specifically, prostate contours were delineated independently on ten MRI and CT images using the Eclipse treatment planning system. Each pair of MRI and CT images was registered with the B-spline-based algorithm implemented in the VelocityAI system. A bounding box that contains the prostate volume in the CT image was selected and partitioned into a tetrahedral mesh. An adaptive finite element method was then developed to adjust the displacement vector fields (DVFs) of the B-spline-based registrations within the box. The B-spline and FEM-based registrations were evaluated based on the variations of prostate volume and tumor centroid, the unbalanced energy of the generated DVFs, and the clarity of the reconstructed anatomical structures. The results showed that the volumes of the prostate contours warped with the B-spline-based DVFs changed 10.2% on average, relative to the volumes of the prostate contours on the original MR images. This discrepancy was reduced to 1.5% for the FEM-based DVFs. The average unbalanced energy was 2.65 and 0.38 mJ cm-3, and the prostate centroid deviation was 0.37 and 0.28 cm, for the B-spline and FEM-based registrations, respectively. Different from the B-spline-warped MR images, the FEM-warped MR images have clear boundaries between prostates and bladders, and their internal prostatic structures are consistent with those of the original MR images. In summary, the developed adaptive FEM method preserves the prostate volume during the transformation between the MR and CT images and improves the accuracy of the B-spline registrations in the prostate region. The approach will be valuable for the development of high-quality MRI-guided radiation therapy.

  6. Computer aided stress analysis of long bones utilizing computer tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marom, S.A.

    1986-01-01

    A computer aided analysis method, utilizing computed tomography (CT) has been developed, which together with a finite element program determines the stress-displacement pattern in a long bone section. The CT data file provides the geometry, the density and the material properties for the generated finite element model. A three-dimensional finite element model of a tibial shaft is automatically generated from the CT file by a pre-processing procedure for a finite element program. The developed pre-processor includes an edge detection algorithm which determines the boundaries of the reconstructed cross-sectional images of the scanned bone. A mesh generation procedure than automatically generatesmore » a three-dimensional mesh of a user-selected refinement. The elastic properties needed for the stress analysis are individually determined for each model element using the radiographic density (CT number) of each pixel with the elemental borders. The elastic modulus is determined from the CT radiographic density by using an empirical relationship from the literature. The generated finite element model, together with applied loads, determined from existing gait analysis and initial displacements, comprise a formatted input for the SAP IV finite element program. The output of this program, stresses and displacements at the model elements and nodes, are sorted and displayed by a developed post-processor to provide maximum and minimum values at selected locations in the model.« less

  7. An Investigation of Two Finite Element Modeling Solutions for Biomechanical Simulation Using a Case Study of a Mandibular Bone.

    PubMed

    Liu, Yun-Feng; Fan, Ying-Ying; Dong, Hui-Yue; Zhang, Jian-Xing

    2017-12-01

    The method used in biomechanical modeling for finite element method (FEM) analysis needs to deliver accurate results. There are currently two solutions used in FEM modeling for biomedical model of human bone from computerized tomography (CT) images: one is based on a triangular mesh and the other is based on the parametric surface model and is more popular in practice. The outline and modeling procedures for the two solutions are compared and analyzed. Using a mandibular bone as an example, several key modeling steps are then discussed in detail, and the FEM calculation was conducted. Numerical calculation results based on the models derived from the two methods, including stress, strain, and displacement, are compared and evaluated in relation to accuracy and validity. Moreover, a comprehensive comparison of the two solutions is listed. The parametric surface based method is more helpful when using powerful design tools in computer-aided design (CAD) software, but the triangular mesh based method is more robust and efficient.

  8. Simulation of bone-conducted sound transmission in a three-dimensional finite-element model of a human skull

    NASA Astrophysics Data System (ADS)

    Chang, You; Kim, Namkeun; Stenfelt, Stefan

    2015-12-01

    Bone conduction (BC) is the transmission of sound to the inner ear through the bones of the skull. This type of transmission is used in humans fitted with BC hearing aids as well as to classify between conductive and sensorineural hearing losses. The objective of the present study is to develop a finite-element (FE) model of the human skull based on cryosectional images of a female cadaver head in order to gain better understanding of the sound transmission. Further, the BC behavior was validated in terms of sound transmission against experimental data published in the literature. Results showed the responses of the simulated skull FE model were consistent with the experimentally reported data.

  9. Development of Software to Model AXAF-I Image Quality

    NASA Technical Reports Server (NTRS)

    Ahmad, Anees; Hawkins, Lamar

    1996-01-01

    This draft final report describes the work performed under the delivery order number 145 from May 1995 through August 1996. The scope of work included a number of software development tasks for the performance modeling of AXAF-I. A number of new capabilities and functions have been added to the GT software, which is the command mode version of the GRAZTRACE software, originally developed by MSFC. A structural data interface has been developed for the EAL (old SPAR) finite element analysis FEA program, which is being used by MSFC Structural Analysis group for the analysis of AXAF-I. This interface utility can read the structural deformation file from the EAL and other finite element analysis programs such as NASTRAN and COSMOS/M, and convert the data to a suitable format that can be used for the deformation ray-tracing to predict the image quality for a distorted mirror. There is a provision in this utility to expand the data from finite element models assuming 180 degrees symmetry. This utility has been used to predict image characteristics for the AXAF-I HRMA, when subjected to gravity effects in the horizontal x-ray ground test configuration. The development of the metrology data processing interface software has also been completed. It can read the HDOS FITS format surface map files, manipulate and filter the metrology data, and produce a deformation file, which can be used by GT for ray tracing for the mirror surface figure errors. This utility has been used to determine the optimum alignment (axial spacing and clocking) for the four pairs of AXAF-I mirrors. Based on this optimized alignment, the geometric images and effective focal lengths for the as built mirrors were predicted to cross check the results obtained by Kodak.

  10. A framework for correcting brain retraction based on an eXtended Finite Element Method using a laser range scanner.

    PubMed

    Li, Ping; Wang, Weiwei; Song, Zhijian; An, Yong; Zhang, Chenxi

    2014-07-01

    Brain retraction causes great distortion that limits the accuracy of an image-guided neurosurgery system that uses preoperative images. Therefore, brain retraction correction is an important intraoperative clinical application. We used a linear elastic biomechanical model, which deforms based on the eXtended Finite Element Method (XFEM) within a framework for brain retraction correction. In particular, a laser range scanner was introduced to obtain a surface point cloud of the exposed surgical field including retractors inserted into the brain. A brain retraction surface tracking algorithm converted these point clouds into boundary conditions applied to XFEM modeling that drive brain deformation. To test the framework, we performed a brain phantom experiment involving the retraction of tissue. Pairs of the modified Hausdorff distance between Canny edges extracted from model-updated images, pre-retraction, and post-retraction CT images were compared to evaluate the morphological alignment of our framework. Furthermore, the measured displacements of beads embedded in the brain phantom and the predicted ones were compared to evaluate numerical performance. The modified Hausdorff distance of 19 pairs of images decreased from 1.10 to 0.76 mm. The forecast error of 23 stainless steel beads in the phantom was between 0 and 1.73 mm (mean 1.19 mm). The correction accuracy varied between 52.8 and 100 % (mean 81.4 %). The results demonstrate that the brain retraction compensation can be incorporated intraoperatively into the model-updating process in image-guided neurosurgery systems.

  11. A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models.

    PubMed

    Wood, Scott T; Dean, Brian C; Dean, Delphine

    2013-04-01

    This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction

    DOE PAGES

    Chen, Zhangxing; Huang, Tianyu; Shao, Yimin; ...

    2018-03-15

    Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less

  13. Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhangxing; Huang, Tianyu; Shao, Yimin

    Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less

  14. 3D digital image correlation methods for full-field vibration measurement

    NASA Astrophysics Data System (ADS)

    Helfrick, Mark N.; Niezrecki, Christopher; Avitabile, Peter; Schmidt, Timothy

    2011-04-01

    In the area of modal test/analysis/correlation, significant effort has been expended over the past twenty years in order to make reduced models and to expand test data for correlation and eventual updating of the finite element models. This has been restricted by vibration measurements which are traditionally limited to the location of relatively few applied sensors. Advances in computers and digital imaging technology have allowed 3D digital image correlation (DIC) methods to measure the shape and deformation of a vibrating structure. This technique allows for full-field measurement of structural response, thus providing a wealth of simultaneous test data. This paper presents some preliminary results for the test/analysis/correlation of data measured using the DIC approach along with traditional accelerometers and a scanning laser vibrometer for comparison to a finite element model. The results indicate that all three approaches correlated well with the finite element model and provide validation for the DIC approach for full-field vibration measurement. Some of the advantages and limitations of the technique are presented and discussed.

  15. Development of an Image-based Multi-Scale Finite Element Approach to Predict Fatigue Damage in Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Arshadi, Amir

    Image-based simulation of complex materials is a very important tool for understanding their mechanical behavior and an effective tool for successful design of composite materials. In this thesis an image-based multi-scale finite element approach is developed to predict the mechanical properties of asphalt mixtures. In this approach the "up-scaling" and homogenization of each scale to the next is critically designed to improve accuracy. In addition to this multi-scale efficiency, this study introduces an approach for consideration of particle contacts at each of the scales in which mineral particles exist. One of the most important pavement distresses which seriously affects the pavement performance is fatigue cracking. As this cracking generally takes place in the binder phase of the asphalt mixture, the binder fatigue behavior is assumed to be one of the main factors influencing the overall pavement fatigue performance. It is also known that aggregate gradation, mixture volumetric properties, and filler type and concentration can affect damage initiation and progression in the asphalt mixtures. This study was conducted to develop a tool to characterize the damage properties of the asphalt mixtures at all scales. In the present study the Viscoelastic continuum damage model is implemented into the well-known finite element software ABAQUS via the user material subroutine (UMAT) in order to simulate the state of damage in the binder phase under the repeated uniaxial sinusoidal loading. The inputs are based on the experimentally derived measurements for the binder properties. For the scales of mastic and mortar, the artificially 2-Dimensional images of mastic and mortar scales were generated and used to characterize the properties of those scales. Finally, the 2D scanned images of asphalt mixtures are used to study the asphalt mixture fatigue behavior under loading. In order to validate the proposed model, the experimental test results and the simulation results were compared. Indirect tensile fatigue tests were conducted on asphalt mixture samples. A comparison between experimental results and the results from simulation shows that the model developed in this study is capable of predicting the effect of asphalt binder properties and aggregate micro-structure on mechanical behavior of asphalt concrete under loading.

  16. On the existence and stability conditions for mixed-hybrid finite element solutions based on Reissner's variational principle

    NASA Technical Reports Server (NTRS)

    Karlovitz, L. A.; Atluri, S. N.; Xue, W.-M.

    1985-01-01

    The extensions of Reissner's two-field (stress and displacement) principle to the cases wherein the displacement field is discontinuous and/or the stress field results in unreciprocated tractions, at a finite number of surfaces ('interelement boundaries') in a domain (as, for instance, when the domain is discretized into finite elements), is considered. The conditions for the existence, uniqueness, and stability of mixed-hybrid finite element solutions based on such discontinuous fields, are summarized. The reduction of these global conditions to local ('element') level, and the attendant conditions on the ranks of element matrices, are discussed. Two examples of stable, invariant, least-order elements - a four-node square planar element and an eight-node cubic element - are discussed in detail.

  17. Constitutive Model Calibration via Autonomous Multiaxial Experimentation (Postprint)

    DTIC Science & Technology

    2016-09-17

    test machine. Experimental data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain...data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain conditions. Optimization methods...be used directly in finite element simulations of more complex geometries. Keywords Axial/torsional experimentation • Plasticity • Constitutive model

  18. Face-based smoothed finite element method for real-time simulation of soft tissue

    NASA Astrophysics Data System (ADS)

    Mendizabal, Andrea; Bessard Duparc, Rémi; Bui, Huu Phuoc; Paulus, Christoph J.; Peterlik, Igor; Cotin, Stéphane

    2017-03-01

    In soft tissue surgery, a tumor and other anatomical structures are usually located using the preoperative CT or MR images. However, due to the deformation of the concerned tissues, this information suffers from inaccuracy when employed directly during the surgery. In order to account for these deformations in the planning process, the use of a bio-mechanical model of the tissues is needed. Such models are often designed using the finite element method (FEM), which is, however, computationally expensive, in particular when a high accuracy of the simulation is required. In our work, we propose to use a smoothed finite element method (S-FEM) in the context of modeling of the soft tissue deformation. This numerical technique has been introduced recently to overcome the overly stiff behavior of the standard FEM and to improve the solution accuracy and the convergence rate in solid mechanics problems. In this paper, a face-based smoothed finite element method (FS-FEM) using 4-node tetrahedral elements is presented. We show that in some cases, the method allows for reducing the number of degrees of freedom, while preserving the accuracy of the discretization. The method is evaluated on a simulation of a cantilever beam loaded at the free end and on a simulation of a 3D cube under traction and compression forces. Further, it is applied to the simulation of the brain shift and of the kidney's deformation. The results demonstrate that the method outperforms the standard FEM in a bending scenario and that has similar accuracy as the standard FEM in the simulations of the brain-shift and of the kidney's deformation.

  19. A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain

    NASA Astrophysics Data System (ADS)

    Lozovskiy, Alexander; Olshanskii, Maxim A.; Vassilevski, Yuri V.

    2018-05-01

    The paper develops a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method builds on a quasi-Lagrangian formulation of the problem. The paper provides stability and convergence analysis of the fully discrete (finite-difference in time and finite-element in space) method. The analysis does not assume any CFL time-step restriction, it rather needs mild conditions of the form $\\Delta t\\le C$, where $C$ depends only on problem data, and $h^{2m_u+2}\\le c\\,\\Delta t$, $m_u$ is polynomial degree of velocity finite element space. Both conditions result from a numerical treatment of practically important non-homogeneous boundary conditions. The theoretically predicted convergence rate is confirmed by a set of numerical experiments. Further we apply the method to simulate a flow in a simplified model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.

  20. Finite element analysis on the bending condition of truck frame before and after opening

    NASA Astrophysics Data System (ADS)

    Cai, Kaiwu; Cheng, Wei; Lu, Jifu

    2018-05-01

    Based on the design parameters of a truck frame, the structure design and model of the truck frame are built. Based on the finite element theory, the load, the type of fatigue and the material parameters of the frame are combined with the semi-trailer. Using finite element analysis software, after a truck frame hole in bending condition for the finite element analysis of comparison, through the analysis found that the truck frame hole under bending condition can meet the strength requirements are very helpful for improving the design of the truck frame.

  1. Electromagnetic finite elements based on a four-potential variational principle

    NASA Technical Reports Server (NTRS)

    Schuler, James J.; Felippa, Carlos A.

    1991-01-01

    Electromagnetic finite elements based on a variational principle that uses the electromagnetic four-potential as a primary variable are derived. This choice is used to construct elements suitable for downstream coupling with mechanical and thermal finite elements for the analysis of electromagnetic/mechanical systems that involve superconductors. The main advantages of the four-potential as a basis for finite element formulation are that the number of degrees of freedom per node remains modest as the problem dimensionally increases, that jump discontinuities on interfaces are naturally accommodated, and that statics as well as dynamics may be treated without any a priori approximations. The new elements are tested on an axisymmetric problem under steady state forcing conditions. The results are in excellent agreement with analytical solutions.

  2. Application of the control volume mixed finite element method to a triangular discretization

    USGS Publications Warehouse

    Naff, R.L.

    2012-01-01

    A two-dimensional control volume mixed finite element method is applied to the elliptic equation. Discretization of the computational domain is based in triangular elements. Shape functions and test functions are formulated on the basis of an equilateral reference triangle with unit edges. A pressure support based on the linear interpolation of elemental edge pressures is used in this formulation. Comparisons are made between results from the standard mixed finite element method and this control volume mixed finite element method. Published 2011. This article is a US Government work and is in the public domain in the USA. ?? 2012 John Wiley & Sons, Ltd. This article is a US Government work and is in the public domain in the USA.

  3. Medical image reconstruction algorithm based on the geometric information between sensor detector and ROI

    NASA Astrophysics Data System (ADS)

    Ham, Woonchul; Song, Chulgyu; Lee, Kangsan; Roh, Seungkuk

    2016-05-01

    In this paper, we propose a new image reconstruction algorithm considering the geometric information of acoustic sources and senor detector and review the two-step reconstruction algorithm which was previously proposed based on the geometrical information of ROI(region of interest) considering the finite size of acoustic sensor element. In a new image reconstruction algorithm, not only mathematical analysis is very simple but also its software implementation is very easy because we don't need to use the FFT. We verify the effectiveness of the proposed reconstruction algorithm by showing the simulation results by using Matlab k-wave toolkit.

  4. High Performance Computing Technologies for Modeling the Dynamics and Dispersion of Ice Chunks in the Arctic Ocean

    DTIC Science & Technology

    2016-08-23

    SECURITY CLASSIFICATION OF: Hybrid finite element / finite volume based CaMEL shallow water flow solvers have been successfully extended to study wave...effects on ice floes in a simplified 10 sq-km ocean domain. Our solver combines the merits of both the finite element and finite volume methods and...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 sea ice dynamics, shallow water, finite element , finite volume

  5. 3D reconstruction of bony elements of the knee joint and finite element analysis of total knee prosthesis obtained from the reconstructed model.

    PubMed

    Djoudi, Farid

    2013-01-01

    Two separate themes are presented in this paper. The first theme is to present a graphical modeling approach of human anatomical structures namely, the femur and the tibia. The second theme involves making a finite element analysis of stresses, displacements and deformations in prosthetic implants (the femoral implant and the polyethylene insert). The graphical modeling approach comes in two parts. The first is the segmentation of MRI scanned images, retrieved in DICOM format for edge detection. In the second part, 3D-CAD models are generated from the results of the segmentation stage. The finite element analysis is done by first extracting the prosthetic implants from the reconstructed 3D-CAD model, then do a finite element analysis of these implants under objectively determined conditions such as; forces, allowed displacements, the materials composing implant, and the coefficient of friction. The objective of this work is to implement an interface for exchanging data between 2D MRI images obtained from a medical diagnosis of a patient and the 3D-CAD model used in various applications, such as; the extraction of the implants, stress analysis at the knee joint and can serve as an aid to surgery, also predict the behavior of the prosthetic implants vis-a-vis the forces acting on the knee joints.

  6. Finite element analysis of a bone healing model: 1-year follow-up after internal fixation surgery for femoral fracture.

    PubMed

    Jiang-Jun, Zhou; Min, Zhao; Ya-Bo, Yan; Wei, Lei; Ren-Fa, Lv; Zhi-Yu, Zhu; Rong-Jian, Chen; Wei-Tao, Yu; Cheng-Fei, Du

    2014-03-01

    Finite element analysis was used to compare preoperative and postoperative stress distribution of a bone healing model of femur fracture, to identify whether broken ends of fractured bone would break or not after fixation dislodgement one year after intramedullary nailing. Method s: Using fast, personalized imaging, bone healing models of femur fracture were constructed based on data from multi-slice spiral computed tomography using Mimics, Geomagic Studio, and Abaqus software packages. The intramedullary pin was removed by Boolean operations before fixation was dislodged. Loads were applied on each model to simulate a person standing on one leg. The von Mises stress distribution, maximum stress, and its location was observed. Results : According to 10 kinds of display groups based on material assignment, the nodes of maximum and minimum von Mises stress were the same before and after dislodgement, and all nodes of maximum von Mises stress were outside the fracture line. The maximum von Mises stress node was situated at the bottom quarter of the femur. The von Mises stress distribution was identical before and after surgery. Conclusion : Fast, personalized model establishment can simulate fixation dislodgement before operation, and personalized finite element analysis was performed to successfully predict whether nail dislodgement would disrupt femur fracture or not.

  7. Deformable medical image registration of pleural cavity for photodynamic therapy by using finite-element based method

    NASA Astrophysics Data System (ADS)

    Penjweini, Rozhin; Kim, Michele M.; Dimofte, Andrea; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    When the pleural cavity is opened during the surgery portion of pleural photodynamic therapy (PDT) of malignant mesothelioma, the pleural volume will deform. This impacts the delivered dose when using highly conformal treatment techniques. To track the anatomical changes and contour the lung and chest cavity, an infrared camera-based navigation system (NDI) is used during PDT. In the same patient, a series of computed tomography (CT) scans of the lungs are also acquired before the surgery. The reconstructed three-dimensional contours from both NDI and CTs are imported into COMSOL Multiphysics software, where a finite element-based (FEM) deformable image registration is obtained. The CT contour is registered to the corresponding NDI contour by overlapping the center of masses and aligning their orientations. The NDI contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Deformed Geometry model is applied in COMSOL to obtain a deformed target contour. The distortion of the volume at X, Y and Z is mapped to illustrate the transformation of the target contour. The initial assessment shows that FEM-based image deformable registration can fuse images acquired by different modalities. It provides insights into the deformation of anatomical structures along X, Y and Z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting three-dimensional deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery.

  8. Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions.

    PubMed

    Akrami, Mohammad; Qian, Zhihui; Zou, Zhemin; Howard, David; Nester, Chris J; Ren, Lei

    2018-04-01

    The objective of this study was to develop and validate a subject-specific framework for modelling the human foot. This was achieved by integrating medical image-based finite element modelling, individualised multi-body musculoskeletal modelling and 3D gait measurements. A 3D ankle-foot finite element model comprising all major foot structures was constructed based on MRI of one individual. A multi-body musculoskeletal model and 3D gait measurements for the same subject were used to define loading and boundary conditions. Sensitivity analyses were used to investigate the effects of key modelling parameters on model predictions. Prediction errors of average and peak plantar pressures were below 10% in all ten plantar regions at five key gait events with only one exception (lateral heel, in early stance, error of 14.44%). The sensitivity analyses results suggest that predictions of peak plantar pressures are moderately sensitive to material properties, ground reaction forces and muscle forces, and significantly sensitive to foot orientation. The maximum region-specific percentage change ratios (peak stress percentage change over parameter percentage change) were 1.935-2.258 for ground reaction forces, 1.528-2.727 for plantar flexor muscles and 4.84-11.37 for foot orientations. This strongly suggests that loading and boundary conditions need to be very carefully defined based on personalised measurement data.

  9. Modeling and measurement of angle-beam wave propagation in a scatterer-free plate

    NASA Astrophysics Data System (ADS)

    Dawson, Alexander J.; Michaels, Jennifer E.; Michaels, Thomas E.

    2017-02-01

    Wavefield imaging has been shown to be a powerful tool for improving the understanding and characterization of wave propagation and scattering in plates. The complete measurement of surface displacement over a 2-D grid provided by wavefield imaging has the potential to serve as a useful means of validating ultrasonic models. Here, a preliminary study of ultrasonic angle-beam wave propagation in a scatterer-free plate using a combination of wavefield measurements and 2-D finite element models is described. Both wavefield imaging and finite element analysis are used to study the propagation of waves at a refracted angle of 56.8° propagating in a 6.35 mm thick aluminum plate. Wavefield imaging is performed using a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. The commercial finite element software package, PZFlex, which is specifically designed to handle large, complex ultrasonic problems, is used to create a 2-D cross-sectional model of the transducer and plate. For model validation, vertical surface displacements from both the wavefield measurements and the PZFlex finite element model are compared and found to be in excellent agreement. The validated PZFlex model is then used to explain the mechanism of Rayleigh wave generation by the angle-beam wedge. Since the wavefield measurements are restricted to the specimen surface, the cross-sectional PZFlex model is able to provide insights the wavefield data cannot. This study illustrates how information obtained from ultrasonic experiments and modeling results can be combined to improve understanding of angle-beam wave generation and propagation.

  10. Finite element model of size, shape and blood pressure on rupture of intracranial saccular aneurysms

    NASA Astrophysics Data System (ADS)

    Rica Nabong, Jennica; David, Guido

    2017-10-01

    Rupture of intracranial saccular aneurysms is a primary concern for neurologists and patients because it leads to stroke and permanent disability. This paper examines the role of blood pressure, in connection with size of and wall thickness, in the rupture of saccular aneurysms. A bulb-shaped geometry of a saccular aneurysm is obtained from angiographic images of a patient and modeled using Finite Elements based on the principle of virtual work under the Fung stress-strain relationship. The numerical model is subjected to varying levels of systolic blood pressure. Rupture is assumed to occur when the wall stress exceeded its mechanical strength. The results show which sizes of this class of aneurysms are at high risk of rupture for varying levels of blood pressure.

  11. Benchmark model correction of monitoring system based on Dynamic Load Test of Bridge

    NASA Astrophysics Data System (ADS)

    Shi, Jing-xian; Fan, Jiang

    2018-03-01

    Structural health monitoring (SHM) is a field of research in the area, and it’s designed to achieve bridge safety and reliability assessment, which needs to be carried out on the basis of the accurate simulation of the finite element model. Bridge finite element model is simplified of the structural section form, support conditions, material properties and boundary condition, which is based on the design and construction drawings, and it gets the calculation models and the results.But according to the design and specification requirements established finite element model due to its cannot fully reflect the true state of the bridge, so need to modify the finite element model to obtain the more accurate finite element model. Based on Da-guan river crossing of Ma - Zhao highway in Yunnan province as the background to do the dynamic load test test, we find that the impact coefficient of the theoretical model of the bridge is very different from the coefficient of the actual test, and the change is different; according to the actual situation, the calculation model is adjusted to get the correct frequency of the bridge, the revised impact coefficient found that the modified finite element model is closer to the real state, and provides the basis for the correction of the finite model.

  12. Studies on vibration characteristics of a pear using finite element method*

    PubMed Central

    Song, Hui-zhi; Wang, Jun; Li, Yong-hui

    2006-01-01

    The variation of the vibration characteristics of a Huanghua pear was investigated using finite element simulations. A new image processing technique was used to obtain the unsymmetrical and un-spherical geometrical model of a pear. The vibration characteristics of this type of pear with the correlation of its behavior with geometrical configurations and material characteristics were investigated using numerical modal analysis. The results showed that the eigenfrequency increased with the increasing pear Young’s modulus, while decreased with increasing pear density, and decreased with increasing pear volume. The results of this study provided foundation for further investigations of the physical characteristics of fruits and vegetables by using finite element simulations. PMID:16691644

  13. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, N. A. S., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Correia, T. M., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Rokosz, M. K., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk

    2014-07-28

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to supportmore » the design of optimised electrocaloric units and operating conditions.« less

  14. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool.

    PubMed

    Fernandez, J W; Hunter, P J

    2005-08-01

    A 3D anatomically based patient-specific finite element (FE) model of patello-femoral (PF) articulation is presented to analyse the main features of patella biomechanics, namely, patella tracking (kinematics), quadriceps extensor forces, surface contact and internal patella stresses. The generic geometries are a subset from the model database of the International Union of Physiological Sciences (IUPS) (http://www.physiome.org.nz) Physiome Project with soft tissue derived from the widely used visible human dataset, and the bones digitised from an anatomically accurate physical model with muscle attachment information. The models are customised to patient magnetic resonance images using a variant of free-form deformation, called 'host-mesh' fitting. The continuum was solved using the governing equation of finite elasticity, with the multibody problem coupled through contact mechanics. Additional constraints such as tissue incompressibility are also imposed. Passive material properties are taken from the literature and implemented for deformable tissue with a non-linear micro-structurally based constitutive law. Bone and cartilage are implemented using a 'St-Venant Kirchoff' model suitable for rigid body rotations. The surface fibre directions have been estimated from anatomy images of cadaver muscle dissections and active muscle contraction was based on a steady-state calcium-tension relation. The 3D continuum model of muscle, tendon and bone is compared with experimental results from the literature, and surgical simulations performed to illustrate its clinical assessment capabilities (a Maquet procedure for reducing patella stresses and a vastus lateralis release for a bipartite patella). Finally, the model limitations, issues and future improvements are discussed.

  15. The NASA/Industry Design Analysis Methods for Vibrations (DAMVIBS) Program - A government overview. [of rotorcraft technology development using finite element method

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1992-01-01

    An overview is presented of government contributions to the program called Design Analysis Methods for Vibrations (DAMV) which attempted to develop finite-element-based analyses of rotorcraft vibrations. NASA initiated the program with a finite-element modeling program for the CH-47D tandem-rotor helicopter. The DAMV program emphasized four areas including: airframe finite-element modeling, difficult components studies, coupled rotor-airframe vibrations, and airframe structural optimization. Key accomplishments of the program include industrywide standards for modeling metal and composite airframes, improved industrial designs for vibrations, and the identification of critical structural contributors to airframe vibratory responses. The program also demonstrated the value of incorporating secondary modeling details to improving correlation, and the findings provide the basis for an improved finite-element-based dynamics design-analysis capability.

  16. Structure and conformational dynamics of scaffolded DNA origami nanoparticles

    DTIC Science & Technology

    2017-05-08

    all-atom molecular dynamics and coarse-grained finite element modeling to DX-based nanoparticles to elucidate their fine-scale and global conforma... finite element (FE) modeling approach CanDo is also routinely used to predict the 3D equilibrium conformation of programmed DNA assemblies based on a...model with both experimental cryo-electron microscopy (cryo-EM) data and all-atom modeling. MATERIALS AND METHODS Lattice-free finite element model

  17. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.

    PubMed

    Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol

    2010-12-01

    Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.

    2010-01-01

    Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.

  19. Building Finite Element Models to Investigate Zebrafish Jaw Biomechanics.

    PubMed

    Brunt, Lucy H; Roddy, Karen A; Rayfield, Emily J; Hammond, Chrissy L

    2016-12-03

    Skeletal morphogenesis occurs through tightly regulated cell behaviors during development; many cell types alter their behavior in response to mechanical strain. Skeletal joints are subjected to dynamic mechanical loading. Finite element analysis (FEA) is a computational method, frequently used in engineering that can predict how a material or structure will respond to mechanical input. By dividing a whole system (in this case the zebrafish jaw skeleton) into a mesh of smaller 'finite elements', FEA can be used to calculate the mechanical response of the structure to external loads. The results can be visualized in many ways including as a 'heat map' showing the position of maximum and minimum principal strains (a positive principal strain indicates tension while a negative indicates compression. The maximum and minimum refer the largest and smallest strain). These can be used to identify which regions of the jaw and therefore which cells are likely to be under particularly high tensional or compressional loads during jaw movement and can therefore be used to identify relationships between mechanical strain and cell behavior. This protocol describes the steps to generate Finite Element models from confocal image data on the musculoskeletal system, using the zebrafish lower jaw as a practical example. The protocol leads the reader through a series of steps: 1) staining of the musculoskeletal components, 2) imaging the musculoskeletal components, 3) building a 3 dimensional (3D) surface, 4) generating a mesh of Finite Elements, 5) solving the FEA and finally 6) validating the results by comparison to real displacements seen in movements of the fish jaw.

  20. Ability of Magnetic Resonance Elastography to Assess Taut Bands

    PubMed Central

    Chen, Qingshan; Basford, Jeffery; An, Kai-Nan

    2008-01-01

    Background Myofascial taut bands are central to diagnosis of myofascial pain. Despite their importance, we still lack either a laboratory test or imaging technique capable of objectively confirming either their nature or location. This study explores the ability of magnetic resonance elastography to localize and investigate the mechanical properties of myofascial taut bands on the basis of their effects on shear wave propagation. Methods This study was conducted in three phases. The first involved the imaging of taut bands in gel phantoms, the second a finite element modeling of the phantom experiment, and the third a preliminary evaluation involving eight human subjects-four of whom had, and four of whom did not have myofascial pain. Experiments were performed with a 1.5 Tesla magnetic resonance imaging scanner. Shear wave propagation was imaged and shear stiffness was reconstructed using matched filtering stiffness inversion algorithms. Findings The gel phantom imaging and finite element calculation experiments supported our hypothesis that taut bands can be imaged based on its outstanding shear stiffness. The preliminary human study showed a statistically significant 50-100% (p=0.01) increase of shear stiffness in the taut band regions of the involved subjects relative to that of the controls or in nearby uninvolved muscle. Interpretation This study suggests that magnetic resonance elastography may have a potential for objectively characterizing myofascial taut bands that have been up to now detectable only by the clinician's fingers. PMID:18206282

  1. Discrete maximum principle for the P1 - P0 weak Galerkin finite element approximations

    NASA Astrophysics Data System (ADS)

    Wang, Junping; Ye, Xiu; Zhai, Qilong; Zhang, Ran

    2018-06-01

    This paper presents two discrete maximum principles (DMP) for the numerical solution of second order elliptic equations arising from the weak Galerkin finite element method. The results are established by assuming an h-acute angle condition for the underlying finite element triangulations. The mathematical theory is based on the well-known De Giorgi technique adapted in the finite element context. Some numerical results are reported to validate the theory of DMP.

  2. Sequential and parallel image restoration: neural network implementations.

    PubMed

    Figueiredo, M T; Leitao, J N

    1994-01-01

    Sequential and parallel image restoration algorithms and their implementations on neural networks are proposed. For images degraded by linear blur and contaminated by additive white Gaussian noise, maximum a posteriori (MAP) estimation and regularization theory lead to the same high dimension convex optimization problem. The commonly adopted strategy (in using neural networks for image restoration) is to map the objective function of the optimization problem into the energy of a predefined network, taking advantage of its energy minimization properties. Departing from this approach, we propose neural implementations of iterative minimization algorithms which are first proved to converge. The developed schemes are based on modified Hopfield (1985) networks of graded elements, with both sequential and parallel updating schedules. An algorithm supported on a fully standard Hopfield network (binary elements and zero autoconnections) is also considered. Robustness with respect to finite numerical precision is studied, and examples with real images are presented.

  3. Lattice dynamics in elemental modulated Sb 2 Te 3 films: Lattice dynamics in elemental modulated Sb 2 Te 3 films

    DOE PAGES

    Bessas, D.; Winkler, M.; Sergueev, I.; ...

    2015-09-03

    We investigate the crystallinity and the lattice dynamics in elemental modulated Sbinline imageTeinline image films microscopically using high energy synchrotron radiation diffraction combined with inline imageSb nuclear inelastic scattering. The correlation length is found to be finite but less than 100 . Moreover, the element specific density of phonon states is extracted. A comparison with the element specific density of phonon states in bulk Sbinline imageTeinline image confirms that the main features in the density of phonon states arise from the layered structure. The average speed of sound at inline image inline image, is almost the same compared to bulkmore » Sbinline imageTeinline image at inline image, inline image. Similarly, the change in the acoustic cut-off energy is within the experimental detection limit. Therefore, we suggest that the lattice thermal conductivity in elemental modulated Sbinline imageTeinline image films should not be significantly changed from its bulk value.« less

  4. Enhanced Ultrasound Visualization of Bracytherapy Seeds by a Novel Magnetically Induced Motion Imaging Method

    DTIC Science & Technology

    2008-04-01

    We report our progress in developing Magnetically Induced Motion Imaging (MIMI) for unambiguous identification and localization brachytherapy seeds ...in ultrasound images. Coupled finite element and ultrasound imaging simulations have been performed to demonstrate that seeds are detectable with MIMI

  5. CFD Analysis of the SBXC Glider Airframe

    DTIC Science & Technology

    2016-06-01

    mathematically on finite element methods. To validate and verify the methodology developed, a mathematical comparison was made with the previous research data...greater than 15 m/s. 14. SUBJECT TERMS finite element method, computational fluid dynamics, Y Plus, mesh element quality, aerodynamic data, fluid...based mathematically on finite element methods. To validate and verify the methodology developed, a mathematical comparison was made with the

  6. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  7. Mass preserving registration for heart MR images.

    PubMed

    Zhu, Lei; Haker, Steven; Tannenbaum, Allen

    2005-01-01

    This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm.

  8. Mass Preserving Registration for Heart MR Images

    PubMed Central

    Zhu, Lei; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm. PMID:16685954

  9. A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less

  10. A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2017-08-17

    Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less

  11. Finite Element Analysis of a Copper Single Crystal Shape Memory Alloy-Based Endodontic Instruments

    NASA Astrophysics Data System (ADS)

    Vincent, Marin; Thiebaud, Frédéric; Bel Haj Khalifa, Saifeddine; Engels-Deutsch, Marc; Ben Zineb, Tarak

    2015-10-01

    The aim of the present paper is the development of endodontic Cu-based single crystal Shape Memory Alloy (SMA) instruments in order to eliminate the antimicrobial and mechanical deficiencies observed with the conventional Nickel-Titane (NiTi) SMA files. A thermomechanical constitutive law, already developed and implemented in a finite element code by our research group, is adopted for the simulation of the single crystal SMA behavior. The corresponding material parameters were identified starting from experimental results for a tensile test at room temperature. A computer-aided design geometry has been achieved and considered for a finite element structural analysis of the endodontic Cu-based single crystal SMA files. They are meshed with tetrahedral continuum elements to improve the computation time and the accuracy of results. The geometric parameters tested in this study are the length of the active blade, the rod length, the pitch, the taper, the tip diameter, and the rod diameter. For each set of adopted parameters, a finite element model is built and tested in a combined bending-torsion loading in accordance with ISO 3630-1 norm. The numerical analysis based on finite element procedure allowed purposing an optimal geometry suitable for Cu-based single crystal SMA endodontic files. The same analysis was carried out for the classical NiTi SMA files and a comparison was made between the two kinds of files. It showed that Cu-based single crystal SMA files are less stiff than the NiTi files. The Cu-based endodontic files could be used to improve the root canal treatments. However, the finite element analysis brought out the need for further investigation based on experiments.

  12. Wigner analysis of three dimensional pupil with finite lateral aperture

    PubMed Central

    Chen, Hsi-Hsun; Oh, Se Baek; Zhai, Xiaomin; Tsai, Jui-Chang; Cao, Liang-Cai; Barbastathis, George; Luo, Yuan

    2015-01-01

    A three dimensional (3D) pupil is an optical element, most commonly implemented on a volume hologram, that processes the incident optical field on a 3D fashion. Here we analyze the diffraction properties of a 3D pupil with finite lateral aperture in the 4-f imaging system configuration, using the Wigner Distribution Function (WDF) formulation. Since 3D imaging pupil is finite in both lateral and longitudinal directions, the WDF of the volume holographic 4-f imager theoretically predicts distinct Bragg diffraction patterns in phase space. These result in asymmetric profiles of diffracted coherent point spread function between degenerate diffraction and Bragg diffraction, elucidating the fundamental performance of volume holographic imaging. Experimental measurements are also presented, confirming the theoretical predictions. PMID:25836443

  13. [Application of finite element method in spinal biomechanics].

    PubMed

    Liu, Qiang; Zhang, Jun; Sun, Shu-Chun; Wang, Fei

    2017-02-25

    The finite element model is one of the most important methods in study of modern spinal biomechanics, according to the needs to simulate the various states of the spine, calculate the stress force and strain distribution of the different groups in the state, and explore its principle of mechanics, mechanism of injury, and treatment effectiveness. In addition, in the study of the pathological state of the spine, the finite element is mainly used in the understanding the mechanism of lesion location, evaluating the effects of different therapeutic tool, assisting and completing the selection and improvement of therapeutic tool, in order to provide a theoretical basis for the rehabilitation of spinal lesions. Finite element method can be more provide the service for the patients suffering from spinal correction, operation and individual implant design. Among the design and performance evaluation of the implant need to pay attention to the individual difference and perfect the evaluation system. At present, how to establish a model which is more close to the real situation has been the focus and difficulty of the study of human body's finite element.Although finite element method can better simulate complex working condition, it is necessary to improve the authenticity of the model and the sharing of the group by using many kinds of methods, such as image science, statistics, kinematics and so on. Copyright© 2017 by the China Journal of Orthopaedics and Traumatology Press.

  14. Research on Finite Element Model Generating Method of General Gear Based on Parametric Modelling

    NASA Astrophysics Data System (ADS)

    Lei, Yulong; Yan, Bo; Fu, Yao; Chen, Wei; Hou, Liguo

    2017-06-01

    Aiming at the problems of low efficiency and poor quality of gear meshing in the current mainstream finite element software, through the establishment of universal gear three-dimensional model, and explore the rules of unit and node arrangement. In this paper, a finite element model generation method of universal gear based on parameterization is proposed. Visual Basic program is used to realize the finite element meshing, give the material properties, and set the boundary / load conditions and other pre-processing work. The dynamic meshing analysis of the gears is carried out with the method proposed in this pape, and compared with the calculated values to verify the correctness of the method. The method greatly shortens the workload of gear finite element pre-processing, improves the quality of gear mesh, and provides a new idea for the FEM pre-processing.

  15. Integrated thermal disturbance analysis of optical system of astronomical telescope

    NASA Astrophysics Data System (ADS)

    Yang, Dehua; Jiang, Zibo; Li, Xinnan

    2008-07-01

    During operation, astronomical telescope will undergo thermal disturbance, especially more serious in solar telescope, which may cause degradation of image quality. As drives careful thermal load investigation and measure applied to assess its effect on final image quality during design phase. Integrated modeling analysis is boosting the process to find comprehensive optimum design scheme by software simulation. In this paper, we focus on the Finite Element Analysis (FEA) software-ANSYS-for thermal disturbance analysis and the optical design software-ZEMAX-for optical system design. The integrated model based on ANSYS and ZEMAX is briefed in the first from an overview of point. Afterwards, we discuss the establishment of thermal model. Complete power series polynomial with spatial coordinates is introduced to present temperature field analytically. We also borrow linear interpolation technique derived from shape function in finite element theory to interface the thermal model and structural model and further to apply the temperatures onto structural model nodes. Thereby, the thermal loads are transferred with as high fidelity as possible. Data interface and communication between the two softwares are discussed mainly on mirror surfaces and hence on the optical figure representation and transformation. We compare and comment the two different methods, Zernike polynomials and power series expansion, for representing and transforming deformed optical surface to ZEMAX. Additionally, these methods applied to surface with non-circular aperture are discussed. At the end, an optical telescope with parabolic primary mirror of 900 mm in diameter is analyzed to illustrate the above discussion. Finite Element Model with most interested parts of the telescope is generated in ANSYS with necessary structural simplification and equivalence. Thermal analysis is performed and the resulted positions and figures of the optics are to be retrieved and transferred to ZEMAX, and thus final image quality is evaluated with thermal disturbance.

  16. Simulation of photoacoustic tomography (PAT) system in COMSOL and comparison of two popular reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Sowmiya, C.; Thittai, Arun K.

    2017-03-01

    Photoacoustic imaging is a molecular cum functional imaging modality based on differential optical absorption of the incident laser pulse by the endogeneous tissue chromophores. Several numerical simulations and finite element models have been developed in the past to describe and study Photoacoustic (PA) signal generation principles and study the effect of variation in PA parameters. Most of these simulation work concentrate on analyzing extracted 1D PA signals and each of them mostly describe only few of the building blocks of a Photoacoustic Tomography (PAT) imaging system. Papers describing simulation of the entire PAT system in one simulation platform, along with reconstruction is seemingly rare. This study attempts to describe how a commercially available Finite Element software (COMSOL(R)), can serve as a single platform for simulating PAT that couples the electromagnetic, thermodynamic and acoustic pressure physics involved in PA phenomena. Further, an array of detector elements placed at the boundary in the FE model can provide acoustic pressure data that can be exported to Matlab(R) to perform tomographic image reconstruction. The performance of two most commonly used image reconstruction techniques; namely, Filtered Backprojection (FBP) and Synthetic Aperture (SA) beamforming are compared. Results obtained showed that the lateral resolution obtained using FBP vs. SA largely depends on the aperture parameters. FBP reconstruction was able to provide a slightly better lateral resolution for smaller aperture while SA worked better for larger aperture. This interesting effect is currently being investigated further. Computationally FBP was faster, but it had artifacts along the spherical shell on which the data is projected.

  17. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation.

    PubMed

    Seo, Jeong-Woo; Kang, Dong-Won; Kim, Ju-Young; Yang, Seung-Tae; Kim, Dae-Hyeok; Choi, Jin-Seung; Tack, Gye-Rae

    2014-01-01

    In this study, the accuracy of the inputs required for finite element analysis, which is mainly used for the biomechanical analysis of bones, was improved. To ensure a muscle force and joint contact force similar to the actual values, a musculoskeletal model that was based on the actual gait experiment was used. Gait data were obtained from a healthy male adult aged 29 who had no history of musculoskeletal disease and walked normally (171 cm height and 72 kg weight), and were used as inputs for the musculoskeletal model simulation to determine the muscle force and joint contact force. Among the phases of gait, which is the most common activity in daily life, the stance phase is the most affected by the load. The results data were extracted from five events in the stance phase: heel contact (ST1), loading response (ST2), early mid-stance (ST2), late mid-stance (ST4), and terminal stance (ST5). The results were used as the inputs for the finite element model that was formed using 1.5mm intervals computed tomography (CT) images and the maximum Von-Mises stress and the maximum Von-Mises strain of the right femur were examined. The maximum stress and strain were lowest at the ST4. The maximum values for the femur occurred in the medial part and then in the lateral part after the mid-stance. In this study, the results of the musculoskeletal model simulation using the inverse-dynamic analysis were utilized to improve the accuracy of the inputs, which affected the finite element analysis results, and the possibility of the bone-specific analysis according to the lapse of time was examined.

  18. Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Q.; Sprague, M. A.; Jonkman, J.

    2014-01-01

    This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context ofmore » LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.« less

  19. The aggregated unfitted finite element method for elliptic problems

    NASA Astrophysics Data System (ADS)

    Badia, Santiago; Verdugo, Francesc; Martín, Alberto F.

    2018-07-01

    Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterative Krylov methods and, in consequence, hinders the practical usage of unfitted methods for realistic large scale applications. In this work, we present a technique that addresses such conditioning problems by constructing enhanced finite element spaces based on a cell aggregation technique. The presented method, called aggregated unfitted finite element method, is easy to implement, and can be used, in contrast to previous works, in Galerkin approximations of coercive problems with conforming Lagrangian finite element spaces. The mathematical analysis of the new method states that the condition number of the resulting linear system matrix scales as in standard finite elements for body-fitted meshes, without being affected by small cut cells, and that the method leads to the optimal finite element convergence order. These theoretical results are confirmed with 2D and 3D numerical experiments.

  20. Towards an in-plane methodology to track breast lesions using mammograms and patient-specific finite-element simulations

    NASA Astrophysics Data System (ADS)

    Lapuebla-Ferri, Andrés; Cegoñino-Banzo, José; Jiménez-Mocholí, Antonio-José; Pérez del Palomar, Amaya

    2017-11-01

    In breast cancer screening or diagnosis, it is usual to combine different images in order to locate a lesion as accurately as possible. These images are generated using a single or several imaging techniques. As x-ray-based mammography is widely used, a breast lesion is located in the same plane of the image (mammogram), but tracking it across mammograms corresponding to different views is a challenging task for medical physicians. Accordingly, simulation tools and methodologies that use patient-specific numerical models can facilitate the task of fusing information from different images. Additionally, these tools need to be as straightforward as possible to facilitate their translation to the clinical area. This paper presents a patient-specific, finite-element-based and semi-automated simulation methodology to track breast lesions across mammograms. A realistic three-dimensional computer model of a patient’s breast was generated from magnetic resonance imaging to simulate mammographic compressions in cranio-caudal (CC, head-to-toe) and medio-lateral oblique (MLO, shoulder-to-opposite hip) directions. For each compression being simulated, a virtual mammogram was obtained and posteriorly superimposed to the corresponding real mammogram, by sharing the nipple as a common feature. Two-dimensional rigid-body transformations were applied, and the error distance measured between the centroids of the tumors previously located on each image was 3.84 mm and 2.41 mm for CC and MLO compression, respectively. Considering that the scope of this work is to conceive a methodology translatable to clinical practice, the results indicate that it could be helpful in supporting the tracking of breast lesions.

  1. Tissue Modeling and Analyzing with Finite Element Method: A Review for Cranium Brain Imaging

    PubMed Central

    Yue, Xianfang; Wang, Li; Wang, Ruonan

    2013-01-01

    For the structure mechanics of human body, it is almost impossible to conduct mechanical experiments. Then the finite element model to simulate mechanical experiments has become an effective tool. By introducing several common methods for constructing a 3D model of cranial cavity, this paper carries out systematically the research on the influence law of cranial cavity deformation. By introducing the new concepts and theory to develop the 3D cranial cavity model with the finite-element method, the cranial cavity deformation process with the changing ICP can be made the proper description and reasonable explanation. It can provide reference for getting cranium biomechanical model quickly and efficiently and lay the foundation for further biomechanical experiments and clinical applications. PMID:23476630

  2. [A simulation study with finite element model on the unequal loss of peripheral vision caused by acceleration].

    PubMed

    Geng, Xiaoqi; Liu, Xiaoyu; Liu, Songyang; Xu, Yan; Zhao, Xianliang; Wang, Jie; Fan, Yubo

    2017-04-01

    An unequal loss of peripheral vision may happen with high sustaining multi-axis acceleration, leading to a great potential flight safety hazard. In the present research, finite element method was used to study the mechanism of unequal loss of peripheral vision. Firstly, a 3D geometric model of skull was developed based on the adult computer tomography (CT) images. The model of double eyes was created by mirroring with the previous right eye model. Then, the double-eye model was matched to the skull model, and fat was filled between eyeballs and skull. Acceleration loads of head-to-foot (G z ), right-to-left (G y ), chest-to-back (G x ) and multi-axis directions were applied to the current model to simulate dynamic response of retina by explicit dynamics solution. The results showed that the relative strain of double eyes was 25.7% under multi-axis acceleration load. Moreover, the strain distributions showed a significant difference among acceleration loaded in different directions. It indicated that a finite element model of double eyes was an effective means to study the mechanism of an unequal loss of peripheral vision at sustaining high multi-axis acceleration.

  3. Processing and Modeling of Porous Copper Using Sintering Dissolution Process

    NASA Astrophysics Data System (ADS)

    Salih, Mustafa Abualgasim Abdalhakam

    The growth of porous metal has produced materials with improved properties as compared to non-metals and solid metals. Porous metal can be classified as either open cell or closed cell. Open cell allows a fluid media to pass through it. Closed cell is made up of adjacent sealed pores with shared cell walls. Metal foams offer higher strength to weight ratios, increased impact energy absorption, and a greater tolerance to high temperatures and adverse environmental conditions when compared to bulk materials. Copper and its alloys are examples of these, well known for high strength and good mechanical, thermal and electrical properties. In the present study, the porous Cu was made by a powder metallurgy process, using three different space holders, sodium chloride, sodium carbonate and potassium carbonate. Several different samples have been produced, using different ratios of volume fraction. The densities of the porous metals have been measured and compared to the theoretical density calculated using an equation developed for these foams. The porous structure was determined with the removal of spacer materials through sintering process. The sintering process of each spacer material depends on the melting point of the spacer material. Processing, characterization, and mechanical properties were completed. These tests include density measurements, compression tests, computed tomography (CT) and scanning electron microscopy (SEM). The captured morphological images are utilized to generate the object-oriented finite element (OOF) analysis for the porous copper. Porous copper was formed with porosities in the range of 40-66% with density ranges from 3 to 5.2 g/cm3. A study of two different methods to measure porosity was completed. OOF (Object Oriented Finite Elements) is a desktop software application for studying the relationship between the microstructure of a material and its overall mechanical, dielectric, or thermal properties using finite element models based on real or simulated micrographs. OOF provides methods for segmenting images, creating meshes and solving of complex geometries using finite element models, and visualizing 2D results.

  4. New Software Developments for Quality Mesh Generation and Optimization from Biomedical Imaging Data

    PubMed Central

    Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko

    2013-01-01

    In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. PMID:24252469

  5. Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements

    NASA Technical Reports Server (NTRS)

    Gould, Dana C.

    2000-01-01

    This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.

  6. Finite Element Analysis (FEA) in Design and Production.

    ERIC Educational Resources Information Center

    Waggoner, Todd C.; And Others

    1995-01-01

    Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)

  7. Computational Modeling System for Deformation and Failure in Polycrystalline Metals

    DTIC Science & Technology

    2009-03-29

    FIB/EHSD 3.3 The Voronoi Cell FEM for Micromechanical Modeling 3.4 VCFEM for Microstructural Damage Modeling 3.5 Adaptive Multiscale Simulations...accurate and efficient image-based micromechanical finite element model, for crystal plasticity and damage , incorporating real morphological and...topology with evolving strain localization and damage . (v) Development of multi-scaling algorithms in the time domain for compression and localization in

  8. Stability analysis and finite element simulations of superplastic forming in the presence of hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Nazzal, M. A.

    2018-04-01

    It is established that some superplastic materials undergo significant cavitation during deformation. In this work, stability analysis for the superplastic copper based alloy Coronze-638 at 550 °C based on Hart's definition of stable plastic deformation and finite element simulations for the balanced biaxial loading case are carried out to study the effects of hydrostatic pressure on cavitation evolution during superplastic forming. The finite element results show that imposing hydrostatic pressure yields to a reduction in cavitation growth.

  9. Transient analysis of 1D inhomogeneous media by dynamic inhomogeneous finite element method

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Wang, Yao; Hei, Baoping

    2013-12-01

    The dynamic inhomogeneous finite element method is studied for use in the transient analysis of onedimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.

  10. Least-squares finite element methods for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Carey, G. F.

    1990-01-01

    A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.

  11. [Research Progress and Prospect of Applications of Finite Element Method in Lumbar Spine Biomechanics].

    PubMed

    Zhang, Zhenjun; Li, Yang; Liao, Zhenhua; Liu, Weiqiang

    2016-12-01

    Based on the application of finite element analysis in spine biomechanics,the research progress of finite element method applied in lumbar spine mechanics is reviewed and the prospect is forecasted.The related works,including lumbar ontology modeling,clinical application research,and occupational injury and protection,are summarized.The main research areas of finite element method are as follows:new accurate modeling process,the optimized simulation method,diversified clinical effect evaluation,and the clinical application of artificial lumbar disc.According to the recent research progress,the application prospects of finite element method,such as automation and individuation of modeling process,evaluation and analysis of new operation methods and simulation of mechanical damage and dynamic response,are discussed.The purpose of this paper is to provide the theoretical reference and practical guidance for the clinical lumbar problems by reviewing the application of finite element method in the field of the lumbar spine biomechanics.

  12. Application of the Finite Element Method to Rotary Wing Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Friedmann, P. P.

    1982-01-01

    A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.

  13. Constructing a patient-specific computer model of the upper airway in sleep apnea patients.

    PubMed

    Dhaliwal, Sandeep S; Hesabgar, Seyyed M; Haddad, Seyyed M H; Ladak, Hanif; Samani, Abbas; Rotenberg, Brian W

    2018-01-01

    The use of computer simulation to develop a high-fidelity model has been proposed as a novel and cost-effective alternative to help guide therapeutic intervention in sleep apnea surgery. We describe a computer model based on patient-specific anatomy of obstructive sleep apnea (OSA) subjects wherein the percentage and sites of upper airway collapse are compared to findings on drug-induced sleep endoscopy (DISE). Basic science computer model generation. Three-dimensional finite element techniques were undertaken for model development in a pilot study of four OSA patients. Magnetic resonance imaging was used to capture patient anatomy and software employed to outline critical anatomical structures. A finite-element mesh was applied to the volume enclosed by each structure. Linear and hyperelastic soft-tissue properties for various subsites (tonsils, uvula, soft palate, and tongue base) were derived using an inverse finite-element technique from surgical specimens. Each model underwent computer simulation to determine the degree of displacement on various structures within the upper airway, and these findings were compared to DISE exams performed on the four study patients. Computer simulation predictions for percentage of airway collapse and site of maximal collapse show agreement with observed results seen on endoscopic visualization. Modeling the upper airway in OSA patients is feasible and holds promise in aiding patient-specific surgical treatment. NA. Laryngoscope, 128:277-282, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Aorta modeling with the element-based zero-stress state and isogeometric discretization

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Sasaki, Takafumi

    2017-02-01

    Patient-specific arterial fluid-structure interaction computations, including aorta computations, require an estimation of the zero-stress state (ZSS), because the image-based arterial geometries do not come from a ZSS. We have earlier introduced a method for estimation of the element-based ZSS (EBZSS) in the context of finite element discretization of the arterial wall. The method has three main components. 1. An iterative method, which starts with a calculated initial guess, is used for computing the EBZSS such that when a given pressure load is applied, the image-based target shape is matched. 2. A method for straight-tube segments is used for computing the EBZSS so that we match the given diameter and longitudinal stretch in the target configuration and the "opening angle." 3. An element-based mapping between the artery and straight-tube is extracted from the mapping between the artery and straight-tube segments. This provides the mapping from the arterial configuration to the straight-tube configuration, and from the estimated EBZSS of the straight-tube configuration back to the arterial configuration, to be used as the initial guess for the iterative method that matches the image-based target shape. Here we present the version of the EBZSS estimation method with isogeometric wall discretization. With isogeometric discretization, we can obtain the element-based mapping directly, instead of extracting it from the mapping between the artery and straight-tube segments. That is because all we need for the element-based mapping, including the curvatures, can be obtained within an element. With NURBS basis functions, we may be able to achieve a similar level of accuracy as with the linear basis functions, but using larger-size and much fewer elements. Higher-order NURBS basis functions allow representation of more complex shapes within an element. To show how the new EBZSS estimation method performs, we first present 2D test computations with straight-tube configurations. Then we show how the method can be used in a 3D computation where the target geometry is coming from medical image of a human aorta.

  15. Improving finite element results in modeling heart valve mechanics.

    PubMed

    Earl, Emily; Mohammadi, Hadi

    2018-06-01

    Finite element analysis is a well-established computational tool which can be used for the analysis of soft tissue mechanics. Due to the structural complexity of the leaflet tissue of the heart valve, the currently available finite element models do not adequately represent the leaflet tissue. A method of addressing this issue is to implement computationally expensive finite element models, characterized by precise constitutive models including high-order and high-density mesh techniques. In this study, we introduce a novel numerical technique that enhances the results obtained from coarse mesh finite element models to provide accuracy comparable to that of fine mesh finite element models while maintaining a relatively low computational cost. Introduced in this study is a method by which the computational expense required to solve linear and nonlinear constitutive models, commonly used in heart valve mechanics simulations, is reduced while continuing to account for large and infinitesimal deformations. This continuum model is developed based on the least square algorithm procedure coupled with the finite difference method adhering to the assumption that the components of the strain tensor are available at all nodes of the finite element mesh model. The suggested numerical technique is easy to implement, practically efficient, and requires less computational time compared to currently available commercial finite element packages such as ANSYS and/or ABAQUS.

  16. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

    PubMed

    Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P

    2011-04-01

    Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.

  17. Numerical Analysis of Solids at Failure

    DTIC Science & Technology

    2011-08-20

    failure analyses include the formulation of invariant finite elements for thin Kirchhoff rods, and preliminary initial studies of growth in...analysis of the failure of other structural/mechanical systems, including the finite element modeling of thin Kirchhoff rods and the constitutive...algorithm based on the connectivity graph of the underlying finite element mesh. In this setting, the discontinuities are defined by fronts propagating

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, J.C.

    The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.

  19. Computational simulation of breast compression based on segmented breast and fibroglandular tissues on magnetic resonance images.

    PubMed

    Shih, Tzu-Ching; Chen, Jeon-Hor; Liu, Dongxu; Nie, Ke; Sun, Lizhi; Lin, Muqing; Chang, Daniel; Nalcioglu, Orhan; Su, Min-Ying

    2010-07-21

    This study presents a finite element-based computational model to simulate the three-dimensional deformation of a breast and fibroglandular tissues under compression. The simulation was based on 3D MR images of the breast, and craniocaudal and mediolateral oblique compression, as used in mammography, was applied. The geometry of the whole breast and the segmented fibroglandular tissues within the breast were reconstructed using triangular meshes by using the Avizo 6.0 software package. Due to the large deformation in breast compression, a finite element model was used to simulate the nonlinear elastic tissue deformation under compression, using the MSC.Marc software package. The model was tested in four cases. The results showed a higher displacement along the compression direction compared to the other two directions. The compressed breast thickness in these four cases at a compression ratio of 60% was in the range of 5-7 cm, which is a typical range of thickness in mammography. The projection of the fibroglandular tissue mesh at a compression ratio of 60% was compared to the corresponding mammograms of two women, and they demonstrated spatially matched distributions. However, since the compression was based on magnetic resonance imaging (MRI), which has much coarser spatial resolution than the in-plane resolution of mammography, this method is unlikely to generate a synthetic mammogram close to the clinical quality. Whether this model may be used to understand the technical factors that may impact the variations in breast density needs further investigation. Since this method can be applied to simulate compression of the breast at different views and different compression levels, another possible application is to provide a tool for comparing breast images acquired using different imaging modalities--such as MRI, mammography, whole breast ultrasound and molecular imaging--that are performed using different body positions and under different compression conditions.

  20. The MHOST finite element program: 3-D inelastic analysis methods for hot section components. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Nakazawa, Shohei

    1989-01-01

    The user options available for running the MHOST finite element analysis package is described. MHOST is a solid and structural analysis program based on the mixed finite element technology, and is specifically designed for 3-D inelastic analysis. A family of 2- and 3-D continuum elements along with beam and shell structural elements can be utilized, many options are available in the constitutive equation library, the solution algorithms and the analysis capabilities. The outline of solution algorithms is discussed along with the data input and output, analysis options including the user subroutines and the definition of the finite elements implemented in the program package.

  1. A block iterative finite element algorithm for numerical solution of the steady-state, compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1976-01-01

    An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.

  2. In vivo evidence of significant levator ani muscle stretch on MR images of a live childbirth.

    PubMed

    Sindhwani, Nikhil; Bamberg, Christian; Famaey, Nele; Callewaert, Geertje; Dudenhausen, Joachim W; Teichgräber, Ulf; Deprest, Jan

    2017-08-01

    Vaginal childbirth is believed to be a significant risk factor for the development of pelvic floor dysfunction later in life. Previous studies have explored the use of medical imaging and simulations of childbirth to determine the stretch in the levator ani muscle. A report in 2012 has recorded magnetic resonance images of a live childbirth of a 24 year old woman giving birth vaginally for the second time, using a 1.0 Tesla open, high-field scanner. Our objective was to determine the stretch ratios in the levator muscle using these magnetic resonance images of live childbirth. Three-dimensional magnetic resonance image sequences were obtained to visualize coronal and axial planes before and after the childbirth. These images were obtained before the expulsion phase without pushing and were used to reconstruct the levator muscle and the fetal head in 3 dimensions. The fetal head was approximated to be an ellipsoid, and it is assumed that its middle section is visible in dynamic magnetic resonance images. Assuming incompressibility, the full deformation field of the fetal head is then calculated. Real-time cine magnetic resonance images were acquired for the during the expulsion phase, occurring over 2 contractions in the midsagittal plane. The levator muscle stretch is estimated using a custom program. The program calculates points of contact between the fetal head ellipsoid and the levator ani muscle model as the head descends down the birth canal and moves them orthogonal to its surface. Circumferential stretch was calculated to represent the extension needed to allow the passage of the fetal head. Starting from a position in the preexpulsion phase, the levator muscle experiences a maximum circumferential stretch of 248% on the posterior-medial portion of the levator ani muscle, as shown in previously published finite element simulations. However, the maximal stretch was notably less than that predicted by finite element models. This is because our baseline 3-dimensional model of the levator muscle is created from images taken shortly before expulsion and thus is already in a stretched state. Furthermore, the finite element models are created from images of a healthy nulliparous woman, while this study uses images from a para 2 woman. This study is the first attempt to estimate the stretch in levator ani muscle using magnetic resonance images of a live childbirth. The stretch was significant and the locations corroborate with previous findings of finite element models. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Finite Element A Posteriori Error Estimation for Heat Conduction. Degree awarded by George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Lang, Christapher G.; Bey, Kim S. (Technical Monitor)

    2002-01-01

    This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.

  4. Investigation on the Residual Stress State of Drawn Tubes by Numerical Simulation and Neutron Diffraction Analysis

    PubMed Central

    Palkowski, Heinz; Brück, Sebastian; Pirling, Thilo; Carradò, Adele

    2013-01-01

    Cold drawing is widely applied in the industrial production of seamless tubes, employed for various mechanical applications. During pre-processing, deviations in tools and their adjustment lead to inhomogeneities in the geometry of the tubes and cause a gradient in residuals. In this paper a three dimensional finite element (3D-FE)-model is presented which was developed to calculate the change in wall thickness, eccentricity, ovality and residual macro-stress state of the tubes, produced by cold drawing. The model simulates the drawing process of tubes, drawn with and without a plug. For finite element modelling, the commercial software package Abaqus was used. To validate the model, neutron strain imaging measurements were performed on the strain imaging instrument SALSA at the Institute Laue Langevin (ILL, Grenoble, France) on a series of SF-copper tubes, drawn under controlled laboratory conditions, varying the drawing angle and the plug geometry. It can be stated that there is sufficient agreement between the finite element method (FEM)-calculation and the neutron stress determination. PMID:28788380

  5. Computational strategies for tire monitoring and analysis

    NASA Technical Reports Server (NTRS)

    Danielson, Kent T.; Noor, Ahmed K.; Green, James S.

    1995-01-01

    Computational strategies are presented for the modeling and analysis of tires in contact with pavement. A procedure is introduced for simple and accurate determination of tire cross-sectional geometric characteristics from a digitally scanned image. Three new strategies for reducing the computational effort in the finite element solution of tire-pavement contact are also presented. These strategies take advantage of the observation that footprint loads do not usually stimulate a significant tire response away from the pavement contact region. The finite element strategies differ in their level of approximation and required amount of computer resources. The effectiveness of the strategies is demonstrated by numerical examples of frictionless and frictional contact of the space shuttle Orbiter nose-gear tire. Both an in-house research code and a commercial finite element code are used in the numerical studies.

  6. Brain injury tolerance limit based on computation of axonal strain.

    PubMed

    Sahoo, Debasis; Deck, Caroline; Willinger, Rémy

    2016-07-01

    Traumatic brain injury (TBI) is the leading cause of death and permanent impairment over the last decades. In both the severe and mild TBIs, diffuse axonal injury (DAI) is the most common pathology and leads to axonal degeneration. Computation of axonal strain by using finite element head model in numerical simulation can enlighten the DAI mechanism and help to establish advanced head injury criteria. The main objective of this study is to develop a brain injury criterion based on computation of axonal strain. To achieve the objective a state-of-the-art finite element head model with enhanced brain and skull material laws, was used for numerical computation of real world head trauma. The implementation of new medical imaging data such as, fractional anisotropy and axonal fiber orientation from Diffusion Tensor Imaging (DTI) of 12 healthy patients into the finite element brain model was performed to improve the brain constitutive material law with more efficient heterogeneous anisotropic visco hyper-elastic material law. The brain behavior has been validated in terms of brain deformation against Hardy et al. (2001), Hardy et al. (2007), and in terms of brain pressure against Nahum et al. (1977) and Trosseille et al. (1992) experiments. Verification of model stability has been conducted as well. Further, 109 well-documented TBI cases were simulated and axonal strain computed to derive brain injury tolerance curve. Based on an in-depth statistical analysis of different intra-cerebral parameters (brain axonal strain rate, axonal strain, first principal strain, Von Mises strain, first principal stress, Von Mises stress, CSDM (0.10), CSDM (0.15) and CSDM (0.25)), it was shown that axonal strain was the most appropriate candidate parameter to predict DAI. The proposed brain injury tolerance limit for a 50% risk of DAI has been established at 14.65% of axonal strain. This study provides a key step for a realistic novel injury metric for DAI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [The establishment and meaning of the three-dimensional finite element model of pelvic floor levator ani muscle in an old healthy woman].

    PubMed

    Chen, Wei; Wn, Lijun; Yan, Zhihan; Wang, Jusong; Fu, Yalan; Chen, Xiongfei; Liu, Kun; Wu, Zhipeng

    2011-10-01

    This paper is to establish a three-dimensional finite element model (3D-FEM) of pelvic floor levator ani muscles in an old healthy women. We acquired the image data of the pelvic bones and pelvic floor muscles from CT and MRI scanning in a non-pregnant old healthy female volunteers. The 3-D reconstruction and mesh optimization of the whole pelvic bones and muscles with application of image processing software Mimics12.0 and Geomagic9.0 were obtained. Then we built the 3D-FEM of the musculoskeletal system of the pelvic bones and levator ani muscles with Ansys11.0 software. We obtained an accurate 3D-FEM of pelvic bones and levator ani muscles in the older healthy woman. The results showed that it was reliable to build 3D-FEM with CT and MRI scanning data and this model could vividly reflect the huge space anatomy of the real pelvic floor levator ani muscles. It avoids the defects to gain the model from the body of anatomical specimens in the past. The image data of model are closer to vivisection, and the model is more conducive to the latter finite element analysis.

  8. CoCrMo cellular structures made by Electron Beam Melting studied by local tomography and finite element modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, Clémence; Maire, Eric, E-mail: eric.maire@insa-lyon.fr; Meille, Sylvain

    The work focuses on the structural and mechanical characterization of Co-Cr-Mo cellular samples with cubic pore structure made by Electron Beam Melting (EBM). X-ray tomography was used to characterize the architecture of the sample. High resolution images were also obtained thanks to local tomography in which the specimen is placed close to the X-ray source. These images enabled to observe some defects due to the fabrication process: small pores in the solid phase, partially melted particles attached to the surface. Then, in situ compression tests were performed in the tomograph. The images of the deformed sample show a progressive bucklingmore » of the vertical struts leading to final fracture. The deformation initiated where the defects were present in the strut i.e. in regions with reduced local thickness. The finite element modelling confirmed the high stress concentrations of these weak points leading to the fracture of the sample. - Highlights: • CoCrMo samples fabricated by Electron Beam Melting (EBM) process are considered. • X-ray Computed Tomography is used to observe the structure of the sample. • The mechanical properties are tested thanks to an in situ test in the tomograph. • A finite element model is developed to model the mechanical behaviour.« less

  9. Slices: A Scalable Partitioner for Finite Element Meshes

    NASA Technical Reports Server (NTRS)

    Ding, H. Q.; Ferraro, R. D.

    1995-01-01

    A parallel partitioner for partitioning unstructured finite element meshes on distributed memory architectures is developed. The element based partitioner can handle mixtures of different element types. All algorithms adopted in the partitioner are scalable, including a communication template for unpredictable incoming messages, as shown in actual timing measurements.

  10. Exact finite elements for conduction and convection

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An approach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions.

  11. Optimum element density studies for finite-element thermal analysis of hypersonic aircraft structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Olona, Timothy; Muramoto, Kyle M.

    1990-01-01

    Different finite element models previously set up for thermal analysis of the space shuttle orbiter structure are discussed and their shortcomings identified. Element density criteria are established for the finite element thermal modelings of space shuttle orbiter-type large, hypersonic aircraft structures. These criteria are based on rigorous studies on solution accuracies using different finite element models having different element densities set up for one cell of the orbiter wing. Also, a method for optimization of the transient thermal analysis computer central processing unit (CPU) time is discussed. Based on the newly established element density criteria, the orbiter wing midspan segment was modeled for the examination of thermal analysis solution accuracies and the extent of computation CPU time requirements. The results showed that the distributions of the structural temperatures and the thermal stresses obtained from this wing segment model were satisfactory and the computation CPU time was at the acceptable level. The studies offered the hope that modeling the large, hypersonic aircraft structures using high-density elements for transient thermal analysis is possible if a CPU optimization technique was used.

  12. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  13. Applications of discrete element method in modeling of grain postharvest operations

    USDA-ARS?s Scientific Manuscript database

    Grain kernels are finite and discrete materials. Although flowing grain can behave like a continuum fluid at times, the discontinuous behavior exhibited by grain kernels cannot be simulated solely with conventional continuum-based computer modeling such as finite-element or finite-difference methods...

  14. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  15. AutoCAD-To-NASTRAN Translator Program

    NASA Technical Reports Server (NTRS)

    Jones, A.

    1989-01-01

    Program facilitates creation of finite-element mathematical models from geometric entities. AutoCAD to NASTRAN translator (ACTON) computer program developed to facilitate quick generation of small finite-element mathematical models for use with NASTRAN finite-element modeling program. Reads geometric data of drawing from Data Exchange File (DXF) used in AutoCAD and other PC-based drafting programs. Written in Microsoft Quick-Basic (Version 2.0).

  16. [Finite element analysis of stress changes of posterior spinal pedicle screw infixation].

    PubMed

    Yan, Jia-Zhi; Wu, Zhi-Hong; Xu, Ri-Xin; Wang, Xue-Song; Xing, Ze-Jun; Zhao, Yu; Zhang, Jian-Guo; Shen, Jian-Xiong; Wang, Yi-Peng; Qiu, Gui-Xing

    2009-01-06

    To evaluate the mechanical response of L3-L4 segment after posterior interfixation with a transpedicle screw system. Spiral CT machine was used to conduct continuous parallel scan on the L3-L4 section of a 40-year-old healthy male Chinese. The image data thus obtained were introduced into MIMICS software to reconstruct the 2-D data into volume data and obtain 3-D models of every element.. Pro/3-D model construction software system was used to simulate the 3-D entity of L3-L4 fixed by screw robs through spinal pedicle via posterior approach that was introduced into the finite element software ABAQUS to construct a 3-D finite element model. The stress changes on the vertebrae and screw under the axial pressure of 0.5 mPa was analyzed. Under the evenly distributed pressure the displacement of the L4 model was 0.00125815 mm, with an error of only 0.8167% from the datum displacement. The convergence of the model was good. The stress of the fixed vertebral body, intervertebral disc, and internal fixators changed significantly. The stress concentration zone of the intervertebral disc turned from the posterolateral side to anterolateral side. The stress produced by the fixed vertebral bodies decreased significantly. Obvious stress concentration existed in the upper and lower sides of the base of screw and the fixed screw at the upper vertebral body bore greater stress than the lower vertebral body. Integration of computer aided device and finite element analysis can successfully stimulate the internal fixation of L3-IA visa posterior approach and observe the mechanic changes in the vertebral column more directly.

  17. A coupled/uncoupled deformation and fatigue damage algorithm utilizing the finite element method

    NASA Technical Reports Server (NTRS)

    Wilt, Thomas E.; Arnold, Steven M.

    1994-01-01

    A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum based fatigue damage model for unidirectional metal matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress which fully couples the fatigue damage calculations with the finite element deformation solution. An axisymmetric stress analysis was performed on a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. The composite core behavior was represented using Hill's anisotropic continuum based plasticity model, and similarly, the matrix cladding was represented by an isotropic plasticity model. Results are presented in the form of S-N curves and damage distribution plots.

  18. An Element-Based Concurrent Partitioner for Unstructured Finite Element Meshes

    NASA Technical Reports Server (NTRS)

    Ding, Hong Q.; Ferraro, Robert D.

    1996-01-01

    A concurrent partitioner for partitioning unstructured finite element meshes on distributed memory architectures is developed. The partitioner uses an element-based partitioning strategy. Its main advantage over the more conventional node-based partitioning strategy is its modular programming approach to the development of parallel applications. The partitioner first partitions element centroids using a recursive inertial bisection algorithm. Elements and nodes then migrate according to the partitioned centroids, using a data request communication template for unpredictable incoming messages. Our scalable implementation is contrasted to a non-scalable implementation which is a straightforward parallelization of a sequential partitioner.

  19. An adaptive finite element method for the inequality-constrained Reynolds equation

    NASA Astrophysics Data System (ADS)

    Gustafsson, Tom; Rajagopal, Kumbakonam R.; Stenberg, Rolf; Videman, Juha

    2018-07-01

    We present a stabilized finite element method for the numerical solution of cavitation in lubrication, modeled as an inequality-constrained Reynolds equation. The cavitation model is written as a variable coefficient saddle-point problem and approximated by a residual-based stabilized method. Based on our recent results on the classical obstacle problem, we present optimal a priori estimates and derive novel a posteriori error estimators. The method is implemented as a Nitsche-type finite element technique and shown in numerical computations to be superior to the usually applied penalty methods.

  20. Finite element area and line integral transforms for generalization of aperture function and geometry in Kirchhoff scalar diffraction theory

    NASA Astrophysics Data System (ADS)

    Kraus, Hal G.

    1993-02-01

    Two finite element-based methods for calculating Fresnel region and near-field region intensities resulting from diffraction of light by two-dimensional apertures are presented. The first is derived using the Kirchhoff area diffraction integral and the second is derived using a displaced vector potential to achieve a line integral transformation. The specific form of each of these formulations is presented for incident spherical waves and for Gaussian laser beams. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define apertures of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s), which may be of continuous or discontinuous form. The finite element transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is illustrated in several examples which include secondary obstructions, secondary spider supports, multiple mirror arrays, synthetic aperture arrays, apertures covered by screens, apodization, phase plates, and off-axis apertures. Typically, the finite element line integral transform results in significant gains in computational efficiency over the finite element Kirchhoff transform method, but is also subject to some loss in generality.

  1. Weak form implementation of the semi-analytical finite element (SAFE) method for a variety of elastodynamic waveguides

    NASA Astrophysics Data System (ADS)

    Hakoda, Christopher; Lissenden, Clifford; Rose, Joseph L.

    2018-04-01

    Dispersion curves are essential to any guided wave NDE project. The Semi-Analytical Finite Element (SAFE) method has significantly increased the ease by which these curves can be calculated. However, due to misconceptions regarding theory and fragmentation based on different finite-element software, the theory has stagnated, and adoption by researchers who are new to the field has been slow. This paper focuses on the relationship between the SAFE formulation and finite element theory, and the implementation of the SAFE method in a weak form for plates, pipes, layered waveguides/composites, curved waveguides, and arbitrary cross-sections is shown. The benefits of the weak form are briefly described, as is implementation in open-source and commercial finite element software.

  2. Finite element analysis of left ventricle during cardiac cycles in viscoelasticity.

    PubMed

    Shen, Jing Jin; Xu, Feng Yu; Yang, Wen An

    2016-08-01

    To investigate the effect of myocardial viscoeslasticity on heart function, this paper presents a finite element model based on a hyper-viscoelastic model for the passive myocardium and Hill's three-element model for the active contraction. The hyper-viscoelastic model considers the myocardium microstructure, while the active model is phenomenologically based on the combination of Hill's equation for the steady tetanized contraction and the specific time-length-force property of the myocardial muscle. To validate the finite element model, the end-diastole strains and the end-systole strain predicted by the model are compared with the experimental values in the literature. It is found that the proposed model not only can estimate well the pumping function of the heart, but also predicts the transverse shear strains. The finite element model is also applied to analyze the influence of viscoelasticity on the residual stresses in the myocardium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A new family of stable elements for the Stokes problem based on a mixed Galerkin/least-squares finite element formulation

    NASA Technical Reports Server (NTRS)

    Franca, Leopoldo P.; Loula, Abimael F. D.; Hughes, Thomas J. R.; Miranda, Isidoro

    1989-01-01

    Adding to the classical Hellinger-Reissner formulation, a residual form of the equilibrium equation, a new Galerkin/least-squares finite element method is derived. It fits within the framework of a mixed finite element method and is stable for rather general combinations of stress and velocity interpolations, including equal-order discontinuous stress and continuous velocity interpolations which are unstable within the Galerkin approach. Error estimates are presented based on a generalization of the Babuska-Brezzi theory. Numerical results (not presented herein) have confirmed these estimates as well as the good accuracy and stability of the method.

  4. A Dynamic Finite Element Analysis of Human Foot Complex in the Sagittal Plane during Level Walking

    PubMed Central

    Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R.; Ren, Luquan

    2013-01-01

    The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%–33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning. PMID:24244500

  5. A dynamic finite element analysis of human foot complex in the sagittal plane during level walking.

    PubMed

    Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R; Ren, Luquan

    2013-01-01

    The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%-33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning.

  6. Development of a nondestructive vibration technique for bond assessment of Space Shuttle tiles

    NASA Technical Reports Server (NTRS)

    Moslehy, Faissal A.

    1994-01-01

    This final report describes the achievements of the above titled project. The project is funded by NASA-KSC (Grant No. NAG 10-0117) for the period of 1 Jan. to 31 Dec. 1993. The purpose of this project was to develop a nondestructive, noncontact technique based on 'vibration signature' of tile systems to quantify the bond conditions of the thermal protection system) tiles of Space Shuttle orbiters. The technique uses a laser rapid scan system, modal measurements, and finite element modeling. Finite element models were developed for tiles bonded to both clamped and deformable integrated skin-stringer orbiter mid-fuselage. Results showed that the size and location of a disbonded tile can be determined from frequency and mode shape information. Moreover, a frequency response survey was used to quickly identify the disbonded tiles. The finite element results were compared with experimentally determined frequency responses of a 17-tile test panel, where a rapidscan laser system was employed. An excellent degree of correlation between the mathematical simulation and experimental results was realized. An inverse solution for single-tile assemblies was also derived and is being implemented into a computer program that can interact with the modal testing software. The output of the program displays the size and location of disbond. This program has been tested with simulated input (i.e., finite element data), and excellent agreement between predicted and simulated disbonds was shown. Finally, laser vibration imaging and acoustic emission techniques were shown to be well suited for detecting and monitoring the progressive damage in Graphite/Epoxy composite materials.

  7. New software developments for quality mesh generation and optimization from biomedical imaging data.

    PubMed

    Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko

    2014-01-01

    In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Second order tensor finite element

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.

    1990-01-01

    The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.

  9. A mixed shear flexible finite element for the analysis of laminated plates

    NASA Technical Reports Server (NTRS)

    Putcha, N. S.; Reddy, J. N.

    1984-01-01

    A mixed shear flexible finite element based on the Hencky-Mindlin type shear deformation theory of laminated plates is presented and their behavior in bending is investigated. The element consists of three displacements, two rotations, and three moments as the generalized degrees of freedom per node. The numerical convergence and accuracy characteristics of the element are investigated by comparing the finite element solutions with the exact solutions. The present study shows that reduced-order integration of the stiffness coefficients due to shear is necessary to obtain accurate results for thin plates.

  10. Trabecular Bone Mechanical Properties and Fractal Dimension

    NASA Technical Reports Server (NTRS)

    Hogan, Harry A.

    1996-01-01

    Countermeasures for reducing bone loss and muscle atrophy due to extended exposure to the microgravity environment of space are continuing to be developed and improved. An important component of this effort is finite element modeling of the lower extremity and spinal column. These models will permit analysis and evaluation specific to each individual and thereby provide more efficient and effective exercise protocols. Inflight countermeasures and post-flight rehabilitation can then be customized and targeted on a case-by-case basis. Recent Summer Faculty Fellowship participants have focused upon finite element mesh generation, muscle force estimation, and fractal calculations of trabecular bone microstructure. Methods have been developed for generating the three-dimensional geometry of the femur from serial section magnetic resonance images (MRI). The use of MRI as an imaging modality avoids excessive exposure to radiation associated with X-ray based methods. These images can also detect trabecular bone microstructure and architecture. The goal of the current research is to determine the degree to which the fractal dimension of trabecular architecture can be used to predict the mechanical properties of trabecular bone tissue. The elastic modulus and the ultimate strength (or strain) can then be estimated from non-invasive, non-radiating imaging and incorporated into the finite element models to more accurately represent the bone tissue of each individual of interest. Trabecular bone specimens from the proximal tibia are being studied in this first phase of the work. Detailed protocols and procedures have been developed for carrying test specimens through all of the steps of a multi-faceted test program. The test program begins with MRI and X-ray imaging of the whole bones before excising a smaller workpiece from the proximal tibia region. High resolution MRI scans are then made and the piece further cut into slabs (roughly 1 cm thick). The slabs are X-rayed again and also scanned using dual-energy X-ray absorptiometry (DEXA). Cube specimens are then cut from the slabs and tested mechanically in compression. Correlations between mechanical properties and fractal dimension will then be examined to assess and quantify the predictive capability of the fractal calculations.

  11. Frequency response function (FRF) based updating of a laser spot welded structure

    NASA Astrophysics Data System (ADS)

    Zin, M. S. Mohd; Rani, M. N. Abdul; Yunus, M. A.; Sani, M. S. M.; Wan Iskandar Mirza, W. I. I.; Mat Isa, A. A.

    2018-04-01

    The objective of this paper is to present frequency response function (FRF) based updating as a method for matching the finite element (FE) model of a laser spot welded structure with a physical test structure. The FE model of the welded structure was developed using CQUAD4 and CWELD element connectors, and NASTRAN was used to calculate the natural frequencies, mode shapes and FRF. Minimization of the discrepancies between the finite element and experimental FRFs was carried out using the exceptional numerical capability of NASTRAN Sol 200. The experimental work was performed under free-free boundary conditions using LMS SCADAS. Avast improvement in the finite element FRF was achieved using the frequency response function (FRF) based updating with two different objective functions proposed.

  12. Assignment Of Finite Elements To Parallel Processors

    NASA Technical Reports Server (NTRS)

    Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.

    1990-01-01

    Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.

  13. Finite element analysis of thrust angle contact ball slewing bearing

    NASA Astrophysics Data System (ADS)

    Deng, Biao; Guo, Yuan; Zhang, An; Tang, Shengjin

    2017-12-01

    In view of the large heavy slewing bearing no longer follows the rigid ring hupothesis under the load condition, the entity finite element model of thrust angular contact ball bearing was established by using finite element analysis software ANSYS. The boundary conditions of the model were set according to the actual condition of slewing bearing, the internal stress state of the slewing bearing was obtained by solving and calculation, and the calculated results were compared with the numerical results based on the rigid ring assumption. The results show that more balls are loaded in the result of finite element method, and the maximum contact stresses between the ball and raceway have some reductions. This is because the finite element method considers the ferrule as an elastic body. The ring will produce structure deformation in the radial plane when the heavy load slewing bearings are subjected to external loads. The results of the finite element method are more in line with the actual situation of the slewing bearing in the engineering.

  14. Three-dimensional multi bioluminescent sources reconstruction based on adaptive finite element method

    NASA Astrophysics Data System (ADS)

    Ma, Xibo; Tian, Jie; Zhang, Bo; Zhang, Xing; Xue, Zhenwen; Dong, Di; Han, Dong

    2011-03-01

    Among many optical molecular imaging modalities, bioluminescence imaging (BLI) has more and more wide application in tumor detection and evaluation of pharmacodynamics, toxicity, pharmacokinetics because of its noninvasive molecular and cellular level detection ability, high sensitivity and low cost in comparison with other imaging technologies. However, BLI can not present the accurate location and intensity of the inner bioluminescence sources such as in the bone, liver or lung etc. Bioluminescent tomography (BLT) shows its advantage in determining the bioluminescence source distribution inside a small animal or phantom. Considering the deficiency of two-dimensional imaging modality, we developed three-dimensional tomography to reconstruct the information of the bioluminescence source distribution in transgenic mOC-Luc mice bone with the boundary measured data. In this paper, to study the osteocalcin (OC) accumulation in transgenic mOC-Luc mice bone, a BLT reconstruction method based on multilevel adaptive finite element (FEM) algorithm was used for localizing and quantifying multi bioluminescence sources. Optical and anatomical information of the tissues are incorporated as a priori knowledge in this method, which can reduce the ill-posedness of BLT. The data was acquired by the dual modality BLT and Micro CT prototype system that was developed by us. Through temperature control and absolute intensity calibration, a relative accurate intensity can be calculated. The location of the OC accumulation was reconstructed, which was coherent with the principle of bone differentiation. This result also was testified by ex vivo experiment in the black 96-plate well using the BLI system and the chemiluminescence apparatus.

  15. A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.

  16. A combined experimental and finite element approach to analyse the fretting mechanism of the head-stem taper junction in total hip replacement.

    PubMed

    Bitter, Thom; Khan, Imran; Marriott, Tim; Lovelady, Elaine; Verdonschot, Nico; Janssen, Dennis

    2017-09-01

    Fretting corrosion at the taper interface of modular hip implants has been implicated as a possible cause of implant failure. This study was set up to gain more insight in the taper mechanics that lead to fretting corrosion. The objectives of this study therefore were (1) to select experimental loading conditions to reproduce clinically relevant fretting corrosion features observed in retrieved components, (2) to develop a finite element model consistent with the fretting experiments and (3) to apply more complicated loading conditions of activities of daily living to the finite element model to study the taper mechanics. The experiments showed similar wear patterns on the taper surface as observed in retrievals. The finite element wear score based on Archard's law did not correlate well with the amount of material loss measured in the experiments. However, similar patterns were observed between the simulated micromotions and the experimental wear measurements. Although the finite element model could not be validated, the loading conditions based on activities of daily living demonstrate the importance of assembly load on the wear potential. These findings suggest that finite element models that do not incorporate geometry updates to account for wear loss may not be appropriate to predict wear volumes of taper connections.

  17. The Influence of Reconstruction Kernel on Bone Mineral and Strength Estimates Using Quantitative Computed Tomography and Finite Element Analysis.

    PubMed

    Michalski, Andrew S; Edwards, W Brent; Boyd, Steven K

    2017-10-17

    Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p < 0.001) when compared with images reconstructed using the bone-sharpening kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p < 0.001, and 18.2%, p < 0.001, respectively) when compared with the image reconstructed by the bone-sharpening kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  18. The Overshoot Phenomenon in Geodynamics Codes

    NASA Astrophysics Data System (ADS)

    Kommu, R. K.; Heien, E. M.; Kellogg, L. H.; Bangerth, W.; Heister, T.; Studley, E. H.

    2013-12-01

    The overshoot phenomenon is a common occurrence in numerical software when a continuous function on a finite dimensional discretized space is used to approximate a discontinuous jump, in temperature and material concentration, for example. The resulting solution overshoots, and undershoots, the discontinuous jump. Numerical simulations play an extremely important role in mantle convection research. This is both due to the strong temperature and stress dependence of viscosity and also due to the inaccessibility of deep earth. Under these circumstances, it is essential that mantle convection simulations be extremely accurate and reliable. CitcomS and ASPECT are two finite element based mantle convection simulations developed and maintained by the Computational Infrastructure for Geodynamics. CitcomS is a finite element based mantle convection code that is designed to run on multiple high-performance computing platforms. ASPECT, an adaptive mesh refinement (AMR) code built on the Deal.II library, is also a finite element based mantle convection code that scales well on various HPC platforms. CitcomS and ASPECT both exhibit the overshoot phenomenon. One attempt at controlling the overshoot uses the Entropy Viscosity method, which introduces an artificial diffusion term in the energy equation of mantle convection. This artificial diffusion term is small where the temperature field is smooth. We present results from CitcomS and ASPECT that quantify the effect of the Entropy Viscosity method in reducing the overshoot phenomenon. In the discontinuous Galerkin (DG) finite element method, the test functions used in the method are continuous within each element but are discontinuous across inter-element boundaries. The solution space in the DG method is discontinuous. FEniCS is a collection of free software tools that automate the solution of differential equations using finite element methods. In this work we also present results from a finite element mantle convection simulation implemented in FEniCS that investigates the effect of using DG elements in reducing the overshoot problem.

  19. SU-F-I-50: Finite Element-Based Deformable Image Registration of Lung and Heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penjweini, R; Kim, M; Zhu, T

    Purpose: Photodynamic therapy (PDT) is used after surgical resection to treat the microscopic disease for malignant pleural mesothelioma and to increase survival rates. Although accurate light delivery is imperative to PDT efficacy, the deformation of the pleural volume during the surgery impacts the delivered light dose. To facilitate treatment planning, we use a finite-element-based (FEM) deformable image registration to quantify the anatomical variation of lung and heart volumes between CT pre-(or post-) surgery and surface contours obtained during PDT using an infrared camera-based navigation system (NDI). Methods: NDI is used during PDT to obtain the information of the cumulative lightmore » fluence on every cavity surface point that is being treated. A wand, comprised of a modified endotrachial tube filled with Intralipid and an optical fiber inside the tube, is used to deliver the light during PDT. The position of the treatment is tracked using an attachment with nine reflective passive markers that are seen by the NDI system. Then, the position points are plotted as three-dimensional volume of the pleural cavity using Matlab and Meshlab. A series of computed tomography (CT) scans of the lungs and heart, in the same patient, are also acquired before and after the surgery. The NDI and CT contours are imported into COMSOL Multiphysics, where the FEM-based deformable image registration is obtained. The NDI and CT contours acquired during and post-PDT are considered as the reference, and the Pre-PDT CT contours are used as the target, which will be deformed. Results: Anatomical variation of the lung and heart volumes, taken at different times from different imaging devices, was determined by using our model. The resulting three-dimensional deformation map along x, y and z-axes was obtained. Conclusion: Our model fuses images acquired by different modalities and provides insights into the variation in anatomical structures over time.« less

  20. SU-E-J-111: Finite Element-Based Deformable Image Registration of Pleural Cavity for Photodynamic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penjweini, R; Zhu, T

    Purpose: The pleural volumes will deform during surgery portion of the pleural photodynamic therapy (PDT) of lung cancer when the pleural cavity is opened. This impact the delivered dose when using highly conformal treatment techniques. In this study, a finite element-based (FEM) deformable image registration is used to quantify the anatomical variation between the contours for the pleural cavities obtained in the operating room and those determined from pre-surgery computed tomography (CT) scans. Methods: An infrared camera-based navigation system (NDI) is used during PDT to track the anatomical changes and contour the lung and chest cavity. A series of CTsmore » of the lungs, in the same patient, are also acquired before the surgery. The structure contour of lung and the CTs are processed and contoured in Matlab and MeshLab. Then, the contours are imported into COMSOL Multiphysics 5.0, where the FEM-based deformable image registration is obtained using the deformed mesh - moving mesh (ALE) model. The NDI acquired lung contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Results: The reconstructed three-dimensional contours from both NDI and CT can be converted to COMSOL so that a three-dimensional ALE model can be developed. The contours can be registered using COMSOL ALE moving mesh model, which takes into account the deformation along x, y and z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting 3D deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery. Conclusion: Deformable image registration can fuse images acquired by different modalities. It provides insights into the development of phenomenon and variation in normal anatomical structures over time. The initial assessments of three-dimensional registration show good agreement.« less

  1. Performance assessment of HIFU lesion detection by Harmonic Motion Imaging for Focused Ultrasound (HMIFU): A 3D finite-element-based framework with experimental validation

    PubMed Central

    Hou, Gary Y.; Luo, Jianwen; Marquet, Fabrice; Maleke, Caroline; Vappou, Jonathan; Konofagou, Elisa E.

    2014-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on Amplitude-modulated (AM) - Harmonic Motion Imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module, and an image-formation model. The objective of this study is to develop such a framework in order to 1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and 2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6, and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69, 5.39 and 1.65, 3.19, 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28, and 1.78 at 10-s, 20-s, and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was also found in both simulations (16.2, 73.1 and 334.7 mm2) and experiments (26.2, 94.2 and 206.2 mm2). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo. PMID:22036637

  2. Computational Simulation of Breast Compression Based on Segmented Breast and Fibroglandular Tissues on Magnetic Resonance Images

    PubMed Central

    Shih, Tzu-Ching; Chen, Jeon-Hor; Liu, Dongxu; Nie, Ke; Sun, Lizhi; Lin, Muqing; Chang, Daniel; Nalcioglu, Orhan; Su, Min-Ying

    2010-01-01

    This study presents a finite element based computational model to simulate the three-dimensional deformation of the breast and the fibroglandular tissues under compression. The simulation was based on 3D MR images of the breast, and the craniocaudal and mediolateral oblique compression as used in mammography was applied. The geometry of whole breast and the segmented fibroglandular tissues within the breast were reconstructed using triangular meshes by using the Avizo® 6.0 software package. Due to the large deformation in breast compression, a finite element model was used to simulate the non-linear elastic tissue deformation under compression, using the MSC.Marc® software package. The model was tested in 4 cases. The results showed a higher displacement along the compression direction compared to the other two directions. The compressed breast thickness in these 4 cases at 60% compression ratio was in the range of 5-7 cm, which is the typical range of thickness in mammography. The projection of the fibroglandular tissue mesh at 60% compression ratio was compared to the corresponding mammograms of two women, and they demonstrated spatially matched distributions. However, since the compression was based on MRI, which has much coarser spatial resolution than the in-plane resolution of mammography, this method is unlikely to generate a synthetic mammogram close to the clinical quality. Whether this model may be used to understand the technical factors that may impact the variations in breast density measurements needs further investigation. Since this method can be applied to simulate compression of the breast at different views and different compression levels, another possible application is to provide a tool for comparing breast images acquired using different imaging modalities – such as MRI, mammography, whole breast ultrasound, and molecular imaging – that are performed using different body positions and different compression conditions. PMID:20601773

  3. Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta.

    PubMed

    Caouette, Christiane; Ikin, Nicole; Villemure, Isabelle; Arnoux, Pierre-Jean; Rauch, Frank; Aubin, Carl-Éric

    2017-04-01

    Lower limb deformation in children with osteogenesis imperfecta (OI) impairs ambulation and may lead to fracture. Corrective surgery is based on empirical assessment criteria. The objective was to develop a reconstruction method of the tibia for OI patients that could be used as input of a comprehensive finite element model to assess fracture risks. Data were obtained from three children with OI and tibia deformities. Four pQCT scans were registered to biplanar radiographs, and a template mesh was deformed to fit the bone outline. Cortical bone thickness was computed. Sensitivity of the model to missing slices of pQCT was assessed by calculating maximal von Mises stress for a vertical hopping load case. Sensitivity of the model to ±5 % of cortical thickness measurements was assessed by calculating loads at fracture. Difference between the mesh contour and bone outline on the radiographs was below 1 mm. Removal of one pQCT slice increased maximal von Mises stress by up to 10 %. Simulated ±5 % variation of cortical bone thickness leads to variations of up to 4.1 % on predicted fracture loads. Using clinically available tibia imaging from children with OI, the developed reconstruction method allowed the building of patient-specific finite element models.

  4. Biomechanical effects of maxillary expansion on a patient with cleft palate: A finite element analysis

    PubMed Central

    Lee, Haofu; Nguyen, Alan; Hong, Christine; Hoang, Paul; Pham, John; Ting, Kang

    2017-01-01

    Introduction The aims of this study were to evaluate the effects of rapid palatal expansion on the craniofacial skeleton of a patient with unilateral cleft lip and palate (UCLP) and to predict the points of force application for optimal expansion using a 3-dimensional finite element model. Methods A 3-dimensional finite element model of the craniofacial complex with UCLP was generated from spiral computed tomographic scans with imaging software (Mimics, version 13.1; Materialise, Leuven, Belgium). This model was imported into the finite element solver (version 12.0; ANSYS, Canonsburg, Pa) to evaluate transverse expansion forces from rapid palatal expansion. Finite element analysis was performed with transverse expansion to achieve 5 mm of anterolateral expansion of the collapsed minor segment to simulate correction of the anterior crossbite in a patient with UCLP. Results High-stress concentrations were observed at the body of the sphenoid, medial to the orbit, and at the inferior area of the zygomatic process of the maxilla. The craniofacial stress distribution was asymmetric, with higher stress levels on the cleft side. When forces were applied more anteriorly on the collapsed minor segment and more posteriorly on the major segment, there was greater expansion of the anterior region of the minor segment with minimal expansion of the major segment. Conclusions The transverse expansion forces from rapid palatal expansion are distributed to the 3 maxillary buttresses. Finite element analysis is an appropriate tool to study and predict the points of force application for better controlled expansion in patients with UCLP. PMID:27476365

  5. Biomechanical effects of maxillary expansion on a patient with cleft palate: A finite element analysis.

    PubMed

    Lee, Haofu; Nguyen, Alan; Hong, Christine; Hoang, Paul; Pham, John; Ting, Kang

    2016-08-01

    The aims of this study were to evaluate the effects of rapid palatal expansion on the craniofacial skeleton of a patient with unilateral cleft lip and palate (UCLP) and to predict the points of force application for optimal expansion using a 3-dimensional finite element model. A 3-dimensional finite element model of the craniofacial complex with UCLP was generated from spiral computed tomographic scans with imaging software (Mimics, version 13.1; Materialise, Leuven, Belgium). This model was imported into the finite element solver (version 12.0; ANSYS, Canonsburg, Pa) to evaluate transverse expansion forces from rapid palatal expansion. Finite element analysis was performed with transverse expansion to achieve 5 mm of anterolateral expansion of the collapsed minor segment to simulate correction of the anterior crossbite in a patient with UCLP. High-stress concentrations were observed at the body of the sphenoid, medial to the orbit, and at the inferior area of the zygomatic process of the maxilla. The craniofacial stress distribution was asymmetric, with higher stress levels on the cleft side. When forces were applied more anteriorly on the collapsed minor segment and more posteriorly on the major segment, there was greater expansion of the anterior region of the minor segment with minimal expansion of the major segment. The transverse expansion forces from rapid palatal expansion are distributed to the 3 maxillary buttresses. Finite element analysis is an appropriate tool to study and predict the points of force application for better controlled expansion in patients with UCLP. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  6. Virtual evaluation of stent graft deployment: a validated modeling and simulation study.

    PubMed

    De Bock, S; Iannaccone, F; De Santis, G; De Beule, M; Van Loo, D; Devos, D; Vermassen, F; Segers, P; Verhegghe, B

    2012-09-01

    The presented study details the virtual deployment of a bifurcated stent graft (Medtronic Talent) in an Abdominal Aortic Aneurysm model, using the finite element method. The entire deployment procedure is modeled, with the stent graft being crimped and bent according to the vessel geometry, and subsequently released. The finite element results are validated in vitro with placement of the device in a silicone mock aneurysm, using high resolution CT scans to evaluate the result. The presented work confirms the capability of finite element computer simulations to predict the deformed configuration after endovascular aneurysm repair (EVAR). These simulations can be used to quantify mechanical parameters, such as neck dilations, radial forces and stresses in the device, that are difficult or impossible to obtain from medical imaging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. On the Finite Element Implementation of the Generalized Method of Cells Micromechanics Constitutive Model

    NASA Technical Reports Server (NTRS)

    Wilt, T. E.

    1995-01-01

    The Generalized Method of Cells (GMC), a micromechanics based constitutive model, is implemented into the finite element code MARC using the user subroutine HYPELA. Comparisons in terms of transverse deformation response, micro stress and strain distributions, and required CPU time are presented for GMC and finite element models of fiber/matrix unit cell. GMC is shown to provide comparable predictions of the composite behavior and requires significantly less CPU time as compared to a finite element analysis of the unit cell. Details as to the organization of the HYPELA code are provided with the actual HYPELA code included in the appendix.

  8. Shear-flexible finite-element models of laminated composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  9. Application of Finite Element Method in Traffic Injury and Its Prospect in Forensic Science.

    PubMed

    Liu, C G; Lu, Y J; Gao, J; Liu, Q

    2016-06-01

    The finite element method (FEM) is a numerical computation method based on computer technology, and has been gradually applied in the fields of medicine and biomechanics. The finite element analysis can be used to explore the loading process and injury mechanism of human body in traffic injury. FEM is also helpful for the forensic investigation in traffic injury. This paper reviews the development of the finite element models and analysis of brain, cervical spine, chest and abdomen, pelvis, limbs at home and aboard in traffic injury in recent years. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  10. Automated finite element modeling of the lumbar spine: Using a statistical shape model to generate a virtual population of models.

    PubMed

    Campbell, J Q; Petrella, A J

    2016-09-06

    Population-based modeling of the lumbar spine has the potential to be a powerful clinical tool. However, developing a fully parameterized model of the lumbar spine with accurate geometry has remained a challenge. The current study used automated methods for landmark identification to create a statistical shape model of the lumbar spine. The shape model was evaluated using compactness, generalization ability, and specificity. The primary shape modes were analyzed visually, quantitatively, and biomechanically. The biomechanical analysis was performed by using the statistical shape model with an automated method for finite element model generation to create a fully parameterized finite element model of the lumbar spine. Functional finite element models of the mean shape and the extreme shapes (±3 standard deviations) of all 17 shape modes were created demonstrating the robust nature of the methods. This study represents an advancement in finite element modeling of the lumbar spine and will allow population-based modeling in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The effect of screw tunnels on the biomechanical stability of vertebral body after pedicle screws removal: a finite element analysis.

    PubMed

    Liu, Jia-Ming; Zhang, Yu; Zhou, Yang; Chen, Xuan-Yin; Huang, Shan-Hu; Hua, Zi-Kai; Liu, Zhi-Li

    2017-06-01

    Posterior reduction and pedicle screw fixation is a widely used procedure for thoracic and lumbar vertebrae fractures. Usually, the pedicle screws would be removed after the fracture healing and screw tunnels would be left. The aim of this study is to evaluate the effect of screw tunnels on the biomechanical stability of the lumbar vertebral body after pedicle screws removal by finite element analysis (FEA). First, the CT values of the screw tunnels wall in the fractured vertebral bodies were measured in patients whose pedicle screws were removed, and they were then compared with the values of vertebral cortical bone. Second, an adult patient was included and the CT images of the lumbar spine were harvested. Three dimensional finite element models of the L1 vertebra with unilateral or bilateral screw tunnels were created based on the CT images. Different compressive loads were vertically acted on the models. The maximum loads which the models sustained and the distribution of the force in the different parts of the models were recorded and compared with each other. The CT values of the tunnels wall and vertebral cortical bone were 387.126±62.342 and 399.204±53.612, which were not statistically different (P=0.149). The models of three dimensional tetrahedral mesh finite element of normal lumbar 1 vertebra were established with good geometric similarity and realistic appearance. After given the compressive loads, the cortical bone was the first one to reach its ultimate stress. The maximum loads which the bilateral screw tunnels model, unilateral screw tunnel model, and normal vertebral model can sustain were 3.97 Mpa, 3.83 Mpa, and 3.78 Mpa, respectively. For the diameter of the screw tunnels, the model with a diameter of 6.5 mm could sustain the largest load. In addition, the stress distributing on the outside of the cortical bone gradually decreased as the thickness of the tunnel wall increased. Based on the FEA, pedicle screw tunnels would not decrease the biomechanical stability and strength of the vertebral body. A large diameter of screw tunnel and thick tunnel wall were helpful for the biomechanical stability of the vertebral body.

  12. Corneal biomechanical properties from air-puff corneal deformation imaging

    NASA Astrophysics Data System (ADS)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  13. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.

    PubMed

    Mithraratne, K; Ho, H; Hunter, P J; Fernandez, J W

    2012-10-01

    A coupled computational model of the foot consisting of a three-dimensional soft tissue continuum and a one-dimensional (1D) transient blood flow network is presented in this article. The primary aim of the model is to investigate the blood flow in major arteries of the pathologic foot where the soft tissue stiffening occurs. It has been reported in the literature that there could be up to about five-fold increase in the mechanical stiffness of the plantar soft tissues in pathologic (e.g. diabetic) feet compared with healthy ones. The increased stiffness results in higher tissue hydrostatic pressure within the plantar area of the foot when loaded. The hydrostatic pressure acts on the external surface of blood vessels and tend to reduce the flow cross-section area and hence the blood supply. The soft tissue continuum model of the foot was modelled as a tricubic Hermite finite element mesh representing all the muscles, skin and fat of the foot and treated as incompressible with transversely isotropic properties. The details of the mechanical model of soft tissue are presented in the companion paper, Part 1. The deformed state of the soft tissue continuum because of the applied ground reaction force at three foot positions (heel-strike, midstance and toe-off) was obtained by solving the Cauchy equations based on the theory of finite elasticity using the Galerkin finite element method. The geometry of the main arterial network in the foot was represented using a 1D Hermite cubic finite element mesh. The flow model consists of 1D Navier-Stokes equations and a nonlinear constitutive equation to describe vessel radius-transmural pressure relation. The latter was defined as the difference between the fluid and soft tissue hydrostatic pressure. Transient flow governing equations were numerically solved using the two-step Lax-Wendroff finite difference method. The geometry of both the soft tissue continuum and arterial network is anatomically-based and was developed using the data derived from visible human images and magnetic resonance images of a healthy male volunteer. Simulation results reveal that a two-fold increase in tissue stiffness leads to about 28% reduction in blood flow to the affected region. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Exact finite elements for conduction and convection

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507

  15. Scanning properties of a resonant fiber-optic piezoelectric scanner

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Yang, Zhe; Fu, Ling

    2011-12-01

    We develop a resonant fiber-optic scanner using four piezoelectric elements arranged as a square tube, which is efficient to manufacture and drive. Using coupled-field model based on finite element method, scanning properties of the scanner, including vibration mode, resonant frequency, and scanning range, are numerically studied. We also physically measure the effects of geometry sizes and drive signals on the scanning properties, thus providing a foundation for general purpose designs. A scanner adopted in a prototype of imaging system, with a diameter of ˜2 mm and driven by a voltage of 10 V (peak to peak), demonstrates the scanning performance by obtaining an image of resolution target bars. The proposed fiber-optic scanner can be applied to micro-endoscopy that requires two-dimensional scanning of fibers.

  16. Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1996-01-01

    A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.

  17. Determination of female breast tumor and its parameter estimation by thermal simulation

    NASA Astrophysics Data System (ADS)

    Chen, Xin-guang; Xu, A.-qing; Yang, Hong-qin; Wang, Yu-hua; Xie, Shu-sen

    2010-02-01

    Thermal imaging is an emerging method for early detection of female breast tumor. The main challenge for thermal imaging used in breast clinics lies in how to detect or locate the tumor and obtain its related parameters. The purpose of this study is to apply an improved method which combined a genetic algorithm with finite element thermal analysis to determine the breast tumor and its parameters, such as the size, location, metabolic heat generation and blood perfusion rate. A finite element model for breast embedded a tumor was used to investigate the temperature distribution, and then the influences of tumor metabolic heat generation, tumor location and tumor size on the temperature were studied by use of an improved genetic algorithm. The results show that thermal imaging is a potential and effective detection tool for early breast tumor, and thermal simulation may be helpful for the explanation of breast thermograms.

  18. Semi-automatic sparse preconditioners for high-order finite element methods on non-uniform meshes

    NASA Astrophysics Data System (ADS)

    Austin, Travis M.; Brezina, Marian; Jamroz, Ben; Jhurani, Chetan; Manteuffel, Thomas A.; Ruge, John

    2012-05-01

    High-order finite elements often have a higher accuracy per degree of freedom than the classical low-order finite elements. However, in the context of implicit time-stepping methods, high-order finite elements present challenges to the construction of efficient simulations due to the high cost of inverting the denser finite element matrix. There are many cases where simulations are limited by the memory required to store the matrix and/or the algorithmic components of the linear solver. We are particularly interested in preconditioned Krylov methods for linear systems generated by discretization of elliptic partial differential equations with high-order finite elements. Using a preconditioner like Algebraic Multigrid can be costly in terms of memory due to the need to store matrix information at the various levels. We present a novel method for defining a preconditioner for systems generated by high-order finite elements that is based on a much sparser system than the original high-order finite element system. We investigate the performance for non-uniform meshes on a cube and a cubed sphere mesh, showing that the sparser preconditioner is more efficient and uses significantly less memory. Finally, we explore new methods to construct the sparse preconditioner and examine their effectiveness for non-uniform meshes. We compare results to a direct use of Algebraic Multigrid as a preconditioner and to a two-level additive Schwarz method.

  19. Thermal finite-element analysis of space shuttle main engine turbine blade

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Tong, Michael T.; Kaufman, Albert

    1987-01-01

    Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.

  20. Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers

    NASA Astrophysics Data System (ADS)

    Prot, V.; Skallerud, B.

    2009-02-01

    An incompressible transversely isotropic hyperelastic material for solid finite element analysis of a porcine mitral valve response is described. The material model implementation is checked in single element tests and compared with a membrane implementation in an out-of-plane loading test to study how the layered structures modify the stress response for a simple geometry. Three different collagen layer arrangements are used in finite element analysis of the mitral valve. When the leaflets are arranged in two layers with the collagen on the ventricular side, the stress in the fibre direction through the thickness in the central part of the anterior leaflet is homogenized and the peak stress is reduced. A simulation using membrane elements is also carried out for comparison with the solid finite element results. Compared to echocardiographic measurements, the finite element models bulge too much in the left atrium. This may be due to evidence of active muscle fibres in some parts of the anterior leaflet, whereas our constitutive modelling is based on passive material.

  1. Simulating the Mechanical Response of Titanium Alloys Through the Crystal Plasticity Finite Element Analysis of Image-Based Synthetic Microstructures

    DTIC Science & Technology

    2012-01-01

    2002. [2] Max Blosser. Fundamental Modeling and Thermal Performance Issues for Metal- lic Thermal Protection System Concept. Journal of Spacecraft and...Directorate (AFRL/RX, Metallic Thermal Protection System Program, Universal Technology Corporation/AFRL Grant, ProgramManagers: Todd Warren and Reji John...retired Space Shuttle program were built with a Thermal Protection System (TPS) to withstand heating during atmo- spheric reentry. The partially

  2. Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory

    NASA Technical Reports Server (NTRS)

    Putcha, N. S.; Reddy, J. N.

    1986-01-01

    A mixed shear flexible finite element, with relaxed continuity, is developed for the geometrically linear and nonlinear analysis of layered anisotropic plates. The element formulation is based on a refined higher order theory which satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate and requires no shear correction coefficients. The mixed finite element developed herein consists of eleven degrees of freedom per node which include three displacements, two rotations and six moment resultants. The element is evaluated for its accuracy in the analysis of the stability and vibration of anisotropic rectangular plates with different lamination schemes and boundary conditions. The mixed finite element described here for the higher order theory gives very accurate results for buckling loads and natural frequencies.

  3. A three-dimensional finite element model of human atrial anatomy: New methods for cubic Hermite meshes with extraordinary vertices

    PubMed Central

    Gonzales, Matthew J.; Sturgeon, Gregory; Krishnamurthy, Adarsh; Hake, Johan; Jonas, René; Stark, Paul; Rappel, Wouter-Jan; Narayan, Sanjiv M.; Zhang, Yongjie; Segars, W. Paul; McCulloch, Andrew D.

    2013-01-01

    High-order cubic Hermite finite elements have been valuable in modeling cardiac geometry, fiber orientations, biomechanics, and electrophysiology, but their use in solving three-dimensional problems has been limited to ventricular models with simple topologies. Here, we utilized a subdivision surface scheme and derived a generalization of the “local-to-global” derivative mapping scheme of cubic Hermite finite elements to construct bicubic and tricubic Hermite models of the human atria with extraordinary vertices from computed tomography images of a patient with atrial fibrillation. To an accuracy of 0.6 millimeters, we were able to capture the left atrial geometry with only 142 bicubic Hermite finite elements, and the right atrial geometry with only 90. The left and right atrial bicubic Hermite meshes were G1 continuous everywhere except in the one-neighborhood of extraordinary vertices, where the mean dot products of normals at adjacent elements were 0.928 and 0.925. We also constructed two biatrial tricubic Hermite models and defined fiber orientation fields in agreement with diagrammatic data from the literature using only 42 angle parameters. The meshes all have good quality metrics, uniform element sizes, and elements with aspect ratios near unity, and are shared with the public. These new methods will allow for more compact and efficient patient-specific models of human atrial and whole heart physiology. PMID:23602918

  4. Electrochemical Impedance Imaging via the Distribution of Diffusion Times

    NASA Astrophysics Data System (ADS)

    Song, Juhyun; Bazant, Martin Z.

    2018-03-01

    We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.

  5. Coupled thermomechanical behavior of graphene using the spring-based finite element approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgantzinos, S. K., E-mail: sgeor@mech.upatras.gr; Anifantis, N. K., E-mail: nanif@mech.upatras.gr; Giannopoulos, G. I., E-mail: ggiannopoulos@teiwest.gr

    The prediction of the thermomechanical behavior of graphene using a new coupled thermomechanical spring-based finite element approach is the aim of this work. Graphene sheets are modeled in nanoscale according to their atomistic structure. Based on molecular theory, the potential energy is defined as a function of temperature, describing the interatomic interactions in different temperature environments. The force field is approached by suitable straight spring finite elements. Springs simulate the interatomic interactions and interconnect nodes located at the atomic positions. Their stiffness matrix is expressed as a function of temperature. By using appropriate boundary conditions, various different graphene configurations aremore » analyzed and their thermo-mechanical response is approached using conventional finite element procedures. A complete parametric study with respect to the geometric characteristics of graphene is performed, and the temperature dependency of the elastic material properties is finally predicted. Comparisons with available published works found in the literature demonstrate the accuracy of the proposed method.« less

  6. Osteoporosis imaging: effects of bone preservation on MDCT-based trabecular bone microstructure parameters and finite element models.

    PubMed

    Baum, Thomas; Grande Garcia, Eduardo; Burgkart, Rainer; Gordijenko, Olga; Liebl, Hans; Jungmann, Pia M; Gruber, Michael; Zahel, Tina; Rummeny, Ernst J; Waldt, Simone; Bauer, Jan S

    2015-06-26

    Osteoporosis is defined as a skeletal disorder characterized by compromised bone strength due to a reduction of bone mass and deterioration of bone microstructure predisposing an individual to an increased risk of fracture. Trabecular bone microstructure analysis and finite element models (FEM) have shown to improve the prediction of bone strength beyond bone mineral density (BMD) measurements. These computational methods have been developed and validated in specimens preserved in formalin solution or by freezing. However, little is known about the effects of preservation on trabecular bone microstructure and FEM. The purpose of this observational study was to investigate the effects of preservation on trabecular bone microstructure and FEM in human vertebrae. Four thoracic vertebrae were harvested from each of three fresh human cadavers (n=12). Multi-detector computed tomography (MDCT) images were obtained at baseline, 3 and 6 month follow-up. In the intervals between MDCT imaging, two vertebrae from each donor were formalin-fixed and frozen, respectively. BMD, trabecular bone microstructure parameters (histomorphometry and fractal dimension), and FEM-based apparent compressive modulus (ACM) were determined in the MDCT images and validated by mechanical testing to failure of the vertebrae after 6 months. Changes of BMD, trabecular bone microstructure parameters, and FEM-based ACM in formalin-fixed and frozen vertebrae over 6 months ranged between 1.0-5.6% and 1.3-6.1%, respectively, and were not statistically significant (p>0.05). BMD, trabecular bone microstructure parameters, and FEM-based ACM as assessed at baseline, 3 and 6 month follow-up correlated significantly with mechanically determined failure load (r=0.89-0.99; p<0.05). The correlation coefficients r were not significantly different for the two preservation methods (p>0.05). Formalin fixation and freezing up to six months showed no significant effects on trabecular bone microstructure and FEM-based ACM in human vertebrae and may both be used in corresponding in-vitro experiments in the context of osteoporosis.

  7. Finite element analysis of steel fiber-reinforced concrete (SFRC): validation of experimental tensile capacity of dog-bone specimens

    NASA Astrophysics Data System (ADS)

    Islam, Md. Mashfiqul; Chowdhury, Md. Arman; Sayeed, Md. Abu; Hossain, Elsha Al; Ahmed, Sheikh Saleh; Siddique, Ashfia

    2014-09-01

    Finite element analyses are conducted to model the tensile capacity of steel fiber-reinforced concrete (SFRC). For this purpose dog-bone specimens are casted and tested under direct and uniaxial tension. Two types of aggregates (brick and stone) are used to cast the SFRC and plain concrete. The fiber volume ratio is maintained 1.5 %. Total 8 numbers of dog-bone specimens are made and tested in a 1000-kN capacity digital universal testing machine (UTM). The strain data are gathered employing digital image correlation technique from high-definition images and high-speed video clips. Then, the strain data are synthesized with the load data obtained from the load cell of the UTM. The tensile capacity enhancement is found 182-253 % compared to control specimen to brick SFRC and in case of stone SFRC the enhancement is 157-268 %. Fibers are found to enhance the tensile capacity as well as ductile properties of concrete that ensures to prevent sudden brittle failure. The dog-bone specimens are modeled in the ANSYS 10.0 finite element platform and analyzed to model the tensile capacity of brick and stone SFRC. The SOLID65 element is used to model the SFRC as well as plain concretes by optimizing the Poisson's ratio, modulus of elasticity, tensile strength and stress-strain relationships and also failure pattern as well as failure locations. This research provides information of the tensile capacity enhancement of SFRC made of both brick and stone which will be helpful for the construction industry of Bangladesh to introduce this engineering material in earthquake design. Last of all, the finite element outputs are found to hold good agreement with the experimental tensile capacity which validates the FE modeling.

  8. Finite Element Analysis of Denosumab Treatment Effects on Vertebral Strength in Ovariectomized Cynomolgus Monkeys.

    PubMed

    Lee, David C; Varela, Aurore; Kostenuik, Paul J; Ominsky, Michael S; Keaveny, Tony M

    2016-08-01

    Finite element analysis has not yet been validated for measuring changes in whole-bone strength at the hip or spine in people after treatment with an osteoporosis agent. Toward that end, we assessed the ability of a clinically approved implementation of finite element analysis to correctly quantify treatment effects on vertebral strength, comparing against direct mechanical testing, in cynomolgus monkeys randomly assigned to one of three 16-month-long treatments: sham surgery with vehicle (Sham-Vehicle), ovariectomy with vehicle (OVX-Vehicle), or ovariectomy with denosumab (OVX-DMAb). After treatment, T12 vertebrae were retrieved, scanned with micro-CT, and mechanically tested to measure compressive strength. Blinded to the strength data and treatment codes, the micro-CT images were coarsened and homogenized to create continuum-type finite element models, without explicit porosity. With clinical translation in mind, these models were then analyzed for strength using the U.S. Food and Drug Administration (FDA)-cleared VirtuOst software application (O.N. Diagnostics, Berkeley, CA, USA), developed for analysis of human bones. We found that vertebral strength by finite element analysis was highly correlated (R(2)  = 0.97; n = 52) with mechanical testing, independent of treatment (p = 0.12). Further, the size of the treatment effect on strength (ratio of mean OVX-DMAb to mean OVX-Vehicle, as a percentage) was large and did not differ (p = 0.79) between mechanical testing (+57%; 95% CI [26%, 95%]) and finite element analysis (+51% [20%, 88%]). The micro-CT analysis revealed increases in cortical thickness (+45% [19%, 73%]) and trabecular bone volume fraction (+24% [8%, 42%]). These results show that a preestablished clinical finite element analysis implementation-developed for human bone and clinically validated in fracture-outcome studies-correctly quantified the observed treatment effects of denosumab on vertebral strength in cynomolgus monkeys. One implication is that the treatment effects in this study are well explained by the features contained within these finite element models, namely, the bone geometry and mass and the spatial distribution of bone mass. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  9. A finite element method to correct deformable image registration errors in low-contrast regions

    NASA Astrophysics Data System (ADS)

    Zhong, Hualiang; Kim, Jinkoo; Li, Haisen; Nurushev, Teamour; Movsas, Benjamin; Chetty, Indrin J.

    2012-06-01

    Image-guided adaptive radiotherapy requires deformable image registration to map radiation dose back and forth between images. The purpose of this study is to develop a novel method to improve the accuracy of an intensity-based image registration algorithm in low-contrast regions. A computational framework has been developed in this study to improve the quality of the ‘demons’ registration. For each voxel in the registration's target image, the standard deviation of image intensity in a neighborhood of this voxel was calculated. A mask for high-contrast regions was generated based on their standard deviations. In the masked regions, a tetrahedral mesh was refined recursively so that a sufficient number of tetrahedral nodes in these regions can be selected as driving nodes. An elastic system driven by the displacements of the selected nodes was formulated using a finite element method (FEM) and implemented on the refined mesh. The displacements of these driving nodes were generated with the ‘demons’ algorithm. The solution of the system was derived using a conjugated gradient method, and interpolated to generate a displacement vector field for the registered images. The FEM correction method was compared with the ‘demons’ algorithm on the computed tomography (CT) images of lung and prostate patients. The performance of the FEM correction relating to the ‘demons’ registration was analyzed based on the physical property of their deformation maps, and quantitatively evaluated through a benchmark model developed specifically for this study. Compared to the benchmark model, the ‘demons’ registration has the maximum error of 1.2 cm, which can be corrected by the FEM to 0.4 cm, and the average error of the ‘demons’ registration is reduced from 0.17 to 0.11 cm. For the CT images of lung and prostate patients, the deformation maps generated by the ‘demons’ algorithm were found unrealistic at several places. In these places, the displacement differences between the ‘demons’ registrations and their FEM corrections were found in the range of 0.4 and 1.1 cm. The mesh refinement and FEM simulation were implemented in a single thread application which requires about 45 min of computation time on a 2.6 GHz computer. This study has demonstrated that the FEM can be integrated with intensity-based image registration algorithms to improve their registration accuracy, especially in low-contrast regions.

  10. The application of super wavelet finite element on temperature-pressure coupled field simulation of LPG tank under jet fire

    NASA Astrophysics Data System (ADS)

    Zhao, Bin

    2015-02-01

    Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.

  11. Probabilistic finite elements for transient analysis in nonlinear continua

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.; Mani, A.

    1985-01-01

    The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.

  12. Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator.

    PubMed

    Dubay, Rickey; Hassan, Marwan; Li, Chunying; Charest, Meaghan

    2014-09-01

    This paper presents a unique approach for active vibration control of a one-link flexible manipulator. The method combines a finite element model of the manipulator and an advanced model predictive controller to suppress vibration at its tip. This hybrid methodology improves significantly over the standard application of a predictive controller for vibration control. The finite element model used in place of standard modelling in the control algorithm provides a more accurate prediction of dynamic behavior, resulting in enhanced control. Closed loop control experiments were performed using the flexible manipulator, instrumented with strain gauges and piezoelectric actuators. In all instances, experimental and simulation results demonstrate that the finite element based predictive controller provides improved active vibration suppression in comparison with using a standard predictive control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Chen, Huangxin; Salama, Amgad; Sun, Shuyu

    2016-10-01

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  14. Construction and validation of a three-dimensional finite element model of degenerative scoliosis.

    PubMed

    Zheng, Jie; Yang, Yonghong; Lou, Shuliang; Zhang, Dongsheng; Liao, Shenghui

    2015-12-24

    With the aging of the population, degenerative scoliosis (DS) incidence rate is increasing. In recent years, increasing research on this topic has been carried out, yet biomechanical research on the subject is seldom seen and in vitro biomechanical model of DS nearly cannot be available. The objective of this study was to develop and validate a complete three-dimensional finite element model of DS in order to build the digital platform for further biomechanical study. A 55-year-old female DS patient (Suer Pan, ID number was P141986) was selected for this study. This study was performed in accordance with the ethical standards of Declaration of Helsinki and its amendments and was approved by the local ethics committee (117 hospital of PLA ethics committee). Spiral computed tomography (CT) scanning was conducted on the patient's lumbar spine from the T12 to S1. CT images were then imported into a finite element modeling system. A three-dimensional solid model was then formed from segmentation of the CT scan. The three-dimensional model of each vertebra was then meshed, and material properties were assigned to each element according to the pathological characteristics of DS. Loads and boundary conditions were then applied in such a manner as to simulate in vitro biomechanical experiments conducted on lumbar segments. The results of the model were then compared with experimental results in order to validate the model. An integral three-dimensional finite element model of DS was built successfully, consisting of 113,682 solid elements, 686 cable elements, 33,329 shell elements, 4968 target elements, 4968 contact elements, totaling 157,635 elements, and 197,374 nodes. The model accurately described the physical features of DS and was geometrically similar to the object of study. The results of analysis with the finite element model agreed closely with in vitro experiments, validating the accuracy of the model. The three-dimensional finite element model of DS built in this study is clear, reliable, and effective for further biomechanical simulation study of DS.

  15. A 2D multi-term time and space fractional Bloch-Torrey model based on bilinear rectangular finite elements

    NASA Astrophysics Data System (ADS)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W.

    2018-03-01

    The consideration of diffusion processes in magnetic resonance imaging (MRI) signal attenuation is classically described by the Bloch-Torrey equation. However, many recent works highlight the distinct deviation in MRI signal decay due to anomalous diffusion, which motivates the fractional order generalization of the Bloch-Torrey equation. In this work, we study the two-dimensional multi-term time and space fractional diffusion equation generalized from the time and space fractional Bloch-Torrey equation. By using the Galerkin finite element method with a structured mesh consisting of rectangular elements to discretize in space and the L1 approximation of the Caputo fractional derivative in time, a fully discrete numerical scheme is derived. A rigorous analysis of stability and error estimation is provided. Numerical experiments in the square and L-shaped domains are performed to give an insight into the efficiency and reliability of our method. Then the scheme is applied to solve the multi-term time and space fractional Bloch-Torrey equation, which shows that the extra time derivative terms impact the relaxation process.

  16. Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells

    NASA Astrophysics Data System (ADS)

    Zhang, Kuo; Wu, Xi-Ling; Yan, Jing-Fu; Cai, Jia-Tie

    2017-03-01

    Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.

  17. Time reversal and phase coherent music techniques for super-resolution ultrasound imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Labyed, Yassin

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements. A modified TR-MUSIC imaging algorithm is used to account for ultrasound scattering from both density and compressibility contrasts. The phase response of ultrasound transducer elements is accounted for in a PC-MUSIC system.

  18. Optimization and Validation of Rotating Current Excitation with GMR Array Sensors for Riveted

    DTIC Science & Technology

    2016-09-16

    distribution. Simulation results, using both an optimized coil and a conventional coil, are generated using the finite element method (FEM) model...optimized coil and a conventional coil, are generated using the finite element method (FEM) model. The signal magnitude for an optimized coil is seen to be...optimized coil. 4. Model Based Performance Analysis A 3D finite element model (FEM) is used to analyze the performance of the optimized coil and

  19. A Simplified Finite Element Simulation for Straightening Process of Thin-Walled Tube

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqian; Yang, Huilin

    2017-12-01

    The finite element simulation is an effective way for the study of thin-walled tube in the two cross rolls straightening process. To determine the accurate radius of curvature of the roll profile more efficiently, a simplified finite element model based on the technical parameters of an actual two cross roll straightening machine, was developed to simulate the complex straightening process. Then a dynamic simulation was carried out using ANSYS LS-DYNA program. The result implied that the simplified finite element model was reasonable for simulate the two cross rolls straightening process, and can be obtained the radius of curvature of the roll profile with the tube’s straightness 2 mm/m.

  20. Finite element modeling and analysis of tires

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Andersen, C. M.

    1983-01-01

    Predicting the response of tires under various loading conditions using finite element technology is addressed. Some of the recent advances in finite element technology which have high potential for application to tire modeling problems are reviewed. The analysis and modeling needs for tires are identified. Reduction methods for large-scale nonlinear analysis, with particular emphasis on treatment of combined loads, displacement-dependent and nonconservative loadings; development of simple and efficient mixed finite element models for shell analysis, identification of equivalent mixed and purely displacement models, and determination of the advantages of using mixed models; and effective computational models for large-rotation nonlinear problems, based on a total Lagrangian description of the deformation are included.

  1. A constrained modulus reconstruction technique for breast cancer assessment.

    PubMed

    Samani, A; Bishop, J; Plewes, D B

    2001-09-01

    A reconstruction technique for breast tissue elasticity modulus is described. This technique assumes that the geometry of normal and suspicious tissues is available from a contrast-enhanced magnetic resonance image. Furthermore, it is assumed that the modulus is constant throughout each tissue volume. The technique, which uses quasi-static strain data, is iterative where each iteration involves modulus updating followed by stress calculation. Breast mechanical stimulation is assumed to be done by two compressional rigid plates. As a result, stress is calculated using the finite element method based on the well-controlled boundary conditions of the compression plates. Using the calculated stress and the measured strain, modulus updating is done element-by-element based on Hooke's law. Breast tissue modulus reconstruction using simulated data and phantom modulus reconstruction using experimental data indicate that the technique is robust.

  2. Predicting Bone Mechanical State During Recovery After Long-Duration Skeletal Unloading Using QCT and Finite Element Modeling

    NASA Technical Reports Server (NTRS)

    Chang, Katarina L.; Pennline, James A.

    2013-01-01

    During long-duration missions at the International Space Station, astronauts experience weightlessness leading to skeletal unloading. Unloading causes a lack of a mechanical stimulus that triggers bone cellular units to remove mass from the skeleton. A mathematical system of the cellular dynamics predicts theoretical changes to volume fractions and ash fraction in response to temporal variations in skeletal loading. No current model uses image technology to gather information about a skeletal site s initial properties to calculate bone remodeling changes and then to compare predicted bone strengths with the initial strength. The goal of this study is to use quantitative computed tomography (QCT) in conjunction with a computational model of the bone remodeling process to establish initial bone properties to predict changes in bone mechanics during bone loss and recovery with finite element (FE) modeling. Input parameters for the remodeling model include bone volume fraction and ash fraction, which are both computed from the QCT images. A non-destructive approach to measure ash fraction is also derived. Voxel-based finite element models (FEM) created from QCTs provide initial evaluation of bone strength. Bone volume fraction and ash fraction outputs from the computational model predict changes to the elastic modulus of bone via a two-parameter equation. The modulus captures the effect of bone remodeling and functions as the key to evaluate of changes in strength. Application of this time-dependent modulus to FEMs and composite beam theory enables an assessment of bone mechanics during recovery. Prediction of bone strength is not only important for astronauts, but is also pertinent to millions of patients with osteoporosis and low bone density.

  3. A Flexible Method for Producing F.E.M. Analysis of Bone Using Open-Source Software

    NASA Technical Reports Server (NTRS)

    Boppana, Abhishektha; Sefcik, Ryan; Meyers, Jerry G.; Lewandowski, Beth E.

    2016-01-01

    This project, performed in support of the NASA GRC Space Academy summer program, sought to develop an open-source workflow methodology that segmented medical image data, created a 3D model from the segmented data, and prepared the model for finite-element analysis. In an initial step, a technological survey evaluated the performance of various existing open-source software that claim to perform these tasks. However, the survey concluded that no single software exhibited the wide array of functionality required for the potential NASA application in the area of bone, muscle and bio fluidic studies. As a result, development of a series of Python scripts provided the bridging mechanism to address the shortcomings of the available open source tools. The implementation of the VTK library provided the most quick and effective means of segmenting regions of interest from the medical images; it allowed for the export of a 3D model by using the marching cubes algorithm to build a surface mesh. To facilitate the development of the model domain from this extracted information required a surface mesh to be processed in the open-source software packages Blender and Gmsh. The Preview program of the FEBio suite proved to be sufficient for volume filling the model with an unstructured mesh and preparing boundaries specifications for finite element analysis. To fully allow FEM modeling, an in house developed Python script allowed assignment of material properties on an element by element basis by performing a weighted interpolation of voxel intensity of the parent medical image correlated to published information of image intensity to material properties, such as ash density. A graphical user interface combined the Python scripts and other software into a user friendly interface. The work using Python scripts provides a potential alternative to expensive commercial software and inadequate, limited open-source freeware programs for the creation of 3D computational models. More work will be needed to validate this approach in creating finite-element models.

  4. [Analysis of the movement of long axis and the distribution of principal stress in abutment tooth retained by conical telescope].

    PubMed

    Lin, Ying-he; Man, Yi; Qu, Yi-li; Guan, Dong-hua; Lu, Xuan; Wei, Na

    2006-01-01

    To study the movement of long axis and the distribution of principal stress in the abutment teeth in removable partial denture which is retained by use of conical telescope. An ideal three dimensional finite element model was constructed by using SCT image reconstruction technique, self-programming and ANSYS software. The static loads were applied. The displacement of the long axis and the distribution of the principal stress in the abutment teeth was analyzed. There is no statistic difference of displacenat and stress distribution among different three-dimensional finite element models. Generally, the abutment teeth move along the long axis itself. Similar stress distribution was observed in each three-dimensional finite element model. The maximal principal compressive stress was observed at the distal cervix of the second premolar. The abutment teeth can be well protected by use of conical telescope.

  5. Finite element modeling of trolling-mode AFM.

    PubMed

    Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza

    2018-06-01

    Trolling mode atomic force microscopy (TR-AFM) has overcome many imaging problems in liquid environments by considerably reducing the liquid-resonator interaction forces. The finite element model of the TR-AFM resonator considering the effects of fluid and nanoneedle flexibility is presented in this research, for the first time. The model is verified by ABAQUS software. The effect of installation angle of the microbeam relative to the horizon and the effect of fluid on the system behavior are investigated. Using the finite element model, frequency response curve of the system is obtained and validated around the frequency of the operating mode by the available experimental results, in air and liquid. The changes in the natural frequencies in the presence of liquid are studied. The effects of tip-sample interaction on the excitation of higher order modes of the system are also investigated in air and liquid environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A finite element boundary integral formulation for radiation and scattering by cavity antennas using tetrahedral elements

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, J. L.; Chatterjee, A.; Jin, J. M.

    1992-01-01

    A hybrid finite element boundary integral formulation is developed using tetrahedral and/or triangular elements for discretizing the cavity and/or aperture of microstrip antenna arrays. The tetrahedral elements with edge based linear expansion functions are chosen for modeling the volume region and triangular elements are used for discretizing the aperture. The edge based expansion functions are divergenceless thus removing the requirement to introduce a penalty term and the tetrahedral elements permit greater geometrical adaptability than the rectangular bricks. The underlying theory and resulting expressions are discussed in detail together with some numerical scattering examples for comparison and demonstration.

  7. Analysis of the sound field in finite length infinite baffled cylindrical ducts with vibrating walls of finite impedance.

    PubMed

    Shao, Wei; Mechefske, Chris K

    2005-04-01

    This paper describes an analytical model of finite cylindrical ducts with infinite flanges. This model is used to investigate the sound radiation characteristics of the gradient coil system of a magnetic resonance imaging (MRI) scanner. The sound field in the duct satisfies both the boundary conditions at the wall and at the open ends. The vibrating cylindrical wall of the duct is assumed to be the only sound source. Different acoustic conditions for the wall (rigid and absorptive) are used in the simulations. The wave reflection phenomenon at the open ends of the finite duct is described by general radiation impedance. The analytical model is validated by the comparison with its counterpart in a commercial code based on the boundary element method (BEM). The analytical model shows significant advantages over the BEM model with better numerical efficiency and a direct relation between the design parameters and the sound field inside the duct.

  8. Influence of Finite Element Software on Energy Release Rates Computed Using the Virtual Crack Closure Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Goetze, Dirk; Ransom, Jonathon (Technical Monitor)

    2006-01-01

    Strain energy release rates were computed along straight delamination fronts of Double Cantilever Beam, End-Notched Flexure and Single Leg Bending specimens using the Virtual Crack Closure Technique (VCCT). Th e results were based on finite element analyses using ABAQUS# and ANSYS# and were calculated from the finite element results using the same post-processing routine to assure a consistent procedure. Mixed-mode strain energy release rates obtained from post-processing finite elem ent results were in good agreement for all element types used and all specimens modeled. Compared to previous studies, the models made of s olid twenty-node hexahedral elements and solid eight-node incompatible mode elements yielded excellent results. For both codes, models made of standard brick elements and elements with reduced integration did not correctly capture the distribution of the energy release rate acr oss the width of the specimens for the models chosen. The results suggested that element types with similar formulation yield matching results independent of the finite element software used. For comparison, m ixed-mode strain energy release rates were also calculated within ABAQUS#/Standard using the VCCT for ABAQUS# add on. For all specimens mod eled, mixed-mode strain energy release rates obtained from ABAQUS# finite element results using post-processing were almost identical to re sults calculated using the VCCT for ABAQUS# add on.

  9. Three-dimensional electrical impedance tomography: a topology optimization approach.

    PubMed

    Mello, Luís Augusto Motta; de Lima, Cícero Ribeiro; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez; Silva, Emílio Carlos Nelli

    2008-02-01

    Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.

  10. Cryotherapy simulator for localized prostate cancer.

    PubMed

    Hahn, James K; Manyak, Michael J; Jin, Ge; Kim, Dongho; Rewcastle, John; Kim, Sunil; Walsh, Raymond J

    2002-01-01

    Cryotherapy is a treatment modality that uses a technique to selectively freeze tissue and thereby cause controlled tissue destruction. The procedure involves placement of multiple small diameter probes through the perineum into the prostate tissue at selected spatial intervals. Transrectal ultrasound is used to properly position the cylindrical probes before activation of the liquid Argon cooling element, which lowers the tissue temperature below -40 degrees Centigrade. Tissue effect is monitored by transrectal ultrasound changes as well as thermocouples placed in the tissue. The computer-based cryotherapy simulation system mimics the major surgical steps involved in the procedure. The simulated real-time ultrasound display is generated from 3-D ultrasound datasets where the interaction of the ultrasound with the instruments as well as the frozen tissue is simulated by image processing. The thermal and mechanical simulations of the tissue are done using a modified finite-difference/finite-element method optimized for real-time performance. The simulator developed is a part of a comprehensive training program, including a computer-based learning system and hands-on training program with a proctor, designed to familiarize the physician with the technique and equipment involved.

  11. Evaluation of an improved finite-element thermal stress calculation technique

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.

    1982-01-01

    A procedure for generating accurate thermal stresses with coarse finite element grids (Ojalvo's method) is described. The procedure is based on the observation that for linear thermoelastic problems, the thermal stresses may be envisioned as being composed of two contributions; the first due to the strains in the structure which depend on the integral of the temperature distribution over the finite element and the second due to the local variation of the temperature in the element. The first contribution can be accurately predicted with a coarse finite-element mesh. The resulting strain distribution can then be combined via the constitutive relations with detailed temperatures from a separate thermal analysis. The result is accurate thermal stresses from coarse finite element structural models even where the temperature distributions have sharp variations. The range of applicability of the method for various classes of thermostructural problems such as in-plane or bending type problems and the effect of the nature of the temperature distribution and edge constraints are addressed. Ojalvo's method is used in conjunction with the SPAR finite element program. Results are obtained for rods, membranes, a box beam and a stiffened panel.

  12. CONSTRUCTION OF SCALAR AND VECTOR FINITE ELEMENT FAMILIES ON POLYGONAL AND POLYHEDRAL MESHES

    PubMed Central

    GILLETTE, ANDREW; RAND, ALEXANDER; BAJAJ, CHANDRAJIT

    2016-01-01

    We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart-Thomas, and Brezzi-Douglas-Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties. PMID:28077939

  13. CONSTRUCTION OF SCALAR AND VECTOR FINITE ELEMENT FAMILIES ON POLYGONAL AND POLYHEDRAL MESHES.

    PubMed

    Gillette, Andrew; Rand, Alexander; Bajaj, Chandrajit

    2016-10-01

    We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart-Thomas, and Brezzi-Douglas-Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties.

  14. Application of the finite element method in orthopedic implant design.

    PubMed

    Saha, Subrata; Roychowdhury, Amit

    2009-01-01

    The finite element method (FEM) was first introduced to the field of orthopedic biomechanics in the early 1970s to evaluate stresses in human bones. By the early 1980s, the method had become well established as a tool for basic research and design analysis. Since the late 1980s and early 1990s, FEM has also been used to study bone remodeling. Today, it is one of the most reliable simulation tools for evaluating wear, fatigue, crack propagation, and so forth, and is used in many types of preoperative testing. Since the introduction of FEM to orthopedic biomechanics, there have been rapid advances in computer processing speeds, the finite element and other numerical methods, understanding of mechanical properties of soft and hard tissues and their modeling, and image-processing techniques. In light of these advances, it is accepted today that FEM will continue to contribute significantly to further progress in the design and development of orthopedic implants, as well as in the understanding of other complex systems of the human body. In the following article, different main application areas of finite element simulation will be reviewed including total hip joint arthroplasty, followed by the knee, spine, shoulder, and elbow, respectively.

  15. Prediction of Path Deviation in Robot Based Incremental Sheet Metal Forming by Means of a New Solid-Shell Finite Element Technology and a Finite Elastoplastic Model with Combined Hardening

    NASA Astrophysics Data System (ADS)

    Kiliclar, Yalin; Laurischkat, Roman; Vladimirov, Ivaylo N.; Reese, Stefanie

    2011-08-01

    The presented project deals with a robot based incremental sheet metal forming process, which is called roboforming and has been developed at the Chair of Production Systems. It is characterized by flexible shaping using a freely programmable path-synchronous movement of two industrial robots. The final shape is produced by the incremental infeed of the forming tool in depth direction and its movement along the part contour in lateral direction. However, the resulting geometries formed in roboforming deviate several millimeters from the reference geometry. This results from the compliance of the involved machine structures and the springback effects of the workpiece. The project aims to predict these deviations caused by resiliences and to carry out a compensative path planning based on this prediction. Therefore a planning tool is implemented which compensates the robots's compliance and the springback effects of the sheet metal. The forming process is simulated by means of a finite element analysis using a material model developed at the Institute of Applied Mechanics (IFAM). It is based on the multiplicative split of the deformation gradient in the context of hyperelasticity and combines nonlinear kinematic and isotropic hardening. Low-order finite elements used to simulate thin sheet structures, such as used for the experiments, have the major problem of locking, a nonphysical stiffening effect. For an efficient finite element analysis a special solid-shell finite element formulation based on reduced integration with hourglass stabilization has been developed. To circumvent different locking effects, the enhanced assumed strain (EAS) and the assumed natural strain (ANS) concepts are included in this formulation. Having such powerful tools available we obtain more accurate geometries.

  16. Computed tomography-based finite element analysis to assess fracture risk and osteoporosis treatment

    PubMed Central

    Imai, Kazuhiro

    2015-01-01

    Finite element analysis (FEA) is a computer technique of structural stress analysis and developed in engineering mechanics. FEA has developed to investigate structural behavior of human bones over the past 40 years. When the faster computers have acquired, better FEA, using 3-dimensional computed tomography (CT) has been developed. This CT-based finite element analysis (CT/FEA) has provided clinicians with useful data. In this review, the mechanism of CT/FEA, validation studies of CT/FEA to evaluate accuracy and reliability in human bones, and clinical application studies to assess fracture risk and effects of osteoporosis medication are overviewed. PMID:26309819

  17. Application of a data base management system to a finite element model

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.

    1980-01-01

    In today's software market, much effort is being expended on the development of data base management systems (DBMS). Most commercially available DBMS were designed for business use. However, the need for such systems within the engineering and scientific communities is becoming apparent. A potential DBMS application that appears attractive is the handling of data for finite element engineering models. The applications of a commercially available, business-oriented DBMS to a structural engineering, finite element model is explored. The model, DBMS, an approach to using the DBMS, advantages and disadvantages are described. Plans for research on a scientific and engineering DBMS are discussed.

  18. magnum.fe: A micromagnetic finite-element simulation code based on FEniCS

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Exl, Lukas; Bruckner, Florian; Drews, André; Suess, Dieter

    2013-11-01

    We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms.

  19. A majorized Newton-CG augmented Lagrangian-based finite element method for 3D restoration of geological models

    NASA Astrophysics Data System (ADS)

    Tang, Peipei; Wang, Chengjing; Dai, Xiaoxia

    2016-04-01

    In this paper, we propose a majorized Newton-CG augmented Lagrangian-based finite element method for 3D elastic frictionless contact problems. In this scheme, we discretize the restoration problem via the finite element method and reformulate it to a constrained optimization problem. Then we apply the majorized Newton-CG augmented Lagrangian method to solve the optimization problem, which is very suitable for the ill-conditioned case. Numerical results demonstrate that the proposed method is a very efficient algorithm for various large-scale 3D restorations of geological models, especially for the restoration of geological models with complicated faults.

  20. Design and characterization of planar capacitive imaging probe based on the measurement sensitivity distribution

    NASA Astrophysics Data System (ADS)

    Yin, X.; Chen, G.; Li, W.; Huthchins, D. A.

    2013-01-01

    Previous work indicated that the capacitive imaging (CI) technique is a useful NDE tool which can be used on a wide range of materials, including metals, glass/carbon fibre composite materials and concrete. The imaging performance of the CI technique for a given application is determined by design parameters and characteristics of the CI probe. In this paper, a rapid method for calculating the whole probe sensitivity distribution based on the finite element model (FEM) is presented to provide a direct view of the imaging capabilities of the planar CI probe. Sensitivity distributions of CI probes with different geometries were obtained. Influencing factors on sensitivity distribution were studied. Comparisons between CI probes with point-to-point triangular electrode pair and back-to-back triangular electrode pair were made based on the analysis of the corresponding sensitivity distributions. The results indicated that the sensitivity distribution could be useful for optimising the probe design parameters and predicting the imaging performance.

  1. A quasi two-dimensional model for sound attenuation by the sonic crystals.

    PubMed

    Gupta, A; Lim, K M; Chew, C H

    2012-10-01

    Sound propagation in the sonic crystal (SC) along the symmetry direction is modeled by sound propagation through a variable cross-sectional area waveguide. A one-dimensional (1D) model based on the Webster horn equation is used to obtain sound attenuation through the SC. This model is compared with two-dimensional (2D) finite element simulation and experiment. The 1D model prediction of frequency band for sound attenuation is found to be shifted by around 500 Hz with respect to the finite element simulation. The reason for this shift is due to the assumption involved in the 1D model. A quasi 2D model is developed for sound propagation through the waveguide. Sound pressure profiles from the quasi 2D model are compared with the finite element simulation and the 1D model. The result shows significant improvement over the 1D model and is in good agreement with the 2D finite element simulation. Finally, sound attenuation through the SC is computed based on the quasi 2D model and is found to be in good agreement with the finite element simulation. The quasi 2D model provides an improved method to calculate sound attenuation through the SC.

  2. Development library of finite elements for computer-aided design system of reed sensors

    NASA Astrophysics Data System (ADS)

    Kozlov, A. S.; Shmakov, N. A.; Tkalich, V. L.; Labkovskaia, R. I.; Kalinkina, M. E.; Pirozhnikova, O. I.

    2018-05-01

    The article is devoted to the development of a modern highly reliable element base of devices for security and fire alarm systems, in particular, to the improvement of the quality of contact cores (reed and membrane) of reed sensors. Modeling of elastic sensitive elements uses quadrangular elements of plates and shells, considered in the system of curvilinear orthogonal coordinates. The developed mathematical models and the formed finite element library are designed for systems of automated design of reed switch detectors to create competitive devices alarms. The finite element library is used for the automated system production of reed switch detectors both in series production and in the implementation of individual orders.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Majumdar, Saurindranath

    Irradiation creep plays a major role in the structural integrity of the graphite components in high temperature gas cooled reactors. Finite element procedures combined with a suitable irradiation creep model can be used to simulate the time-integrated structural integrity of complex shapes, such as the reactor core graphite reflector and fuel bricks. In the present work a comparative study was undertaken to understand the effect of linear and nonlinear irradiation creep on results of finite element based stress analysis. Numerical results were generated through finite element simulations of a typical graphite reflector.

  4. A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Hu, Changqing; Shu, Chi-Wang

    1998-01-01

    In this paper, we present a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method.

  5. Elastic-plastic mixed-iterative finite element analysis: Implementation and performance assessment

    NASA Technical Reports Server (NTRS)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented in MHOST-a mixed iterative finite element analysis computer program developed by NASA Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Generally, the membrane results are excellent, indicating the implementation of elastic-plastic mixed-iterative analysis is appropriate.

  6. Influence of global heterogeneities on regional imaging based upon full waveform inversion of teleseismic wavefield

    NASA Astrophysics Data System (ADS)

    Monteiller, Vadim; Beller, Stephen; Operto, Stephane; Virieux, Jean

    2015-04-01

    The current development of dense seismic arrays and high performance computing make feasible today application of full-waveform inversion (FWI) on teleseismic data for high-resolution lithospheric imaging. In teleseismic configuration, the source is often considered to first order as a planar wave that impinges the base of the lithospheric target located below the receiver array. Recently, injection methods coupling global propagation in 1D or axisymmetric earth model with regional 3D methods (Discontinuous Galerkin finite element methods, Spectral elements methods or finite differences) allow us to consider more realistic teleseismic phases. Those teleseismic phases can be propagated inside 3D regional model in order to exploit not only the forward-scattered waves propagating up to the receiver but also second-order arrivals that are back-scattered from the free-surface and the reflectors before their recordings on the surface. However, those computation are performed assuming simple global model. In this presentation, we review some key specifications that might be considered for mitigating the effect on FWI of heterogeneities situated outside the regional domain. We consider synthetic models and data computed using our recently developed hybrid method AxiSEM/SEM. The global simulation is done by AxiSEM code which allows us to consider axisymmetric anomalies. The 3D regional computation is performed by Spectral Element Method. We investigate the effect of external anomalies on the regional model obtained by FWI when one neglects them by considering only 1D global propagation. We also investigate the effect of the source time function and the focal mechanism on results of the FWI approach.

  7. Anisotropic constitutive model for nickel base single crystal alloys: Development and finite element implementation

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.

    1986-01-01

    A tool for the mechanical analysis of nickel base single crystal superalloys, specifically Rene N4, used in gas turbine engine components is developed. This is achieved by a rate dependent anisotropic constitutive model implemented in a nonlinear three dimensional finite element code. The constitutive model is developed from metallurigical concepts utilizing a crystallographic approach. A non Schmid's law formulation is used to model the tension/compression asymmetry and orientation dependence in octahedral slip. Schmid's law is a good approximation to the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response, and strain rate sensitivity of these alloys. Methods for deriving the material constants from standard tests are presented. The finite element implementation utilizes an initial strain method and twenty noded isoparametric solid elements. The ability to model piecewise linear load histories is included in the finite element code. The constitutive equations are accurately and economically integrated using a second order Adams-Moulton predictor-corrector method with a dynamic time incrementing procedure. Computed results from the finite element code are compared with experimental data for tensile, creep and cyclic tests at 760 deg C. The strain rate sensitivity and stress relaxation capabilities of the model are evaluated.

  8. Finite Element Modeling and Long Wave Infrared Imaging for Detection and Identification of Buried Objects

    DTIC Science & Technology

    surface temperature profile of a sandbox containing buried objects using a long-wave infrared camera. Images were recorded for several days under ambient...time of day . Best detection of buried objects corresponded to shallow depths for observed intervals where maxima/minima ambient temperatures coincided

  9. Thermo-Oxidative Induced Damage in Polymer Composites: Microstructure Image-Based Multi-Scale Modeling and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Hussein, Rafid M.; Chandrashekhara, K.

    2017-11-01

    A multi-scale modeling approach is presented to simulate and validate thermo-oxidation shrinkage and cracking damage of a high temperature polymer composite. The multi-scale approach investigates coupled transient diffusion-reaction and static structural at macro- to micro-scale. The micro-scale shrinkage deformation and cracking damage are simulated and validated using 2D and 3D simulations. Localized shrinkage displacement boundary conditions for the micro-scale simulations are determined from the respective meso- and macro-scale simulations, conducted for a cross-ply laminate. The meso-scale geometrical domain and the micro-scale geometry and mesh are developed using the object oriented finite element (OOF). The macro-scale shrinkage and weight loss are measured using unidirectional coupons and used to build the macro-shrinkage model. The cross-ply coupons are used to validate the macro-shrinkage model by the shrinkage profiles acquired using scanning electron images at the cracked surface. The macro-shrinkage model deformation shows a discrepancy when the micro-scale image-based cracking is computed. The local maximum shrinkage strain is assumed to be 13 times the maximum macro-shrinkage strain of 2.5 × 10-5, upon which the discrepancy is minimized. The microcrack damage of the composite is modeled using a static elastic analysis with extended finite element and cohesive surfaces by considering the modulus spatial evolution. The 3D shrinkage displacements are fed to the model using node-wise boundary/domain conditions of the respective oxidized region. Microcrack simulation results: length, meander, and opening are closely matched to the crack in the area of interest for the scanning electron images.

  10. Acoustic, elastic and poroelastic simulations of CO2 sequestration crosswell monitoring based on spectral-element and adjoint methods

    NASA Astrophysics Data System (ADS)

    Morency, Christina; Luo, Yang; Tromp, Jeroen

    2011-05-01

    The key issues in CO2 sequestration involve accurate monitoring, from the injection stage to the prediction and verification of CO2 movement over time, for environmental considerations. '4-D seismics' is a natural non-intrusive monitoring technique which involves 3-D time-lapse seismic surveys. Successful monitoring of CO2 movement requires a proper description of the physical properties of a porous reservoir. We investigate the importance of poroelasticity by contrasting poroelastic simulations with elastic and acoustic simulations. Discrepancies highlight a poroelastic signature that cannot be captured using an elastic or acoustic theory and that may play a role in accurately imaging and quantifying injected CO2. We focus on time-lapse crosswell imaging and model updating based on Fréchet derivatives, or finite-frequency sensitivity kernels, which define the sensitivity of an observable to the model parameters. We compare results of time-lapse migration imaging using acoustic, elastic (with and without the use of Gassmann's formulae) and poroelastic models. Our approach highlights the influence of using different physical theories for interpreting seismic data, and, more importantly, for extracting the CO2 signature from seismic waveforms. We further investigate the differences between imaging with the direct compressional wave, as is commonly done, versus using both direct compressional (P) and shear (S) waves. We conclude that, unlike direct P-wave traveltimes, a combination of direct P- and S-wave traveltimes constrains most parameters. Adding P- and S-wave amplitude information does not drastically improve parameter sensitivity, but it does improve spatial resolution of the injected CO2 zone. The main advantage of using a poroelastic theory lies in direct sensitivity to fluid properties. Simulations are performed using a spectral-element method, and finite-frequency sensitivity kernels are calculated using an adjoint method.

  11. An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method

    NASA Astrophysics Data System (ADS)

    Nouizi, F.; Erkol, H.; Luk, A.; Marks, M.; Unlu, M. B.; Gulsen, G.

    2016-10-01

    We previously introduced photo-magnetic imaging (PMI), an imaging technique that illuminates the medium under investigation with near-infrared light and measures the induced temperature increase using magnetic resonance thermometry (MRT). Using a multiphysics solver combining photon migration and heat diffusion, PMI models the spatiotemporal distribution of temperature variation and recovers high resolution optical absorption images using these temperature maps. In this paper, we present a new fast non-iterative reconstruction algorithm for PMI. This new algorithm uses analytic methods during the resolution of the forward problem and the assembly of the sensitivity matrix. We validate our new analytic-based algorithm with the first generation finite element method (FEM) based reconstruction algorithm previously developed by our team. The validation is performed using, first synthetic data and afterwards, real MRT measured temperature maps. Our new method accelerates the reconstruction process 30-fold when compared to a single iteration of the FEM-based algorithm.

  12. A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting.

    PubMed

    Haufe, Stefan; Huang, Yu; Parra, Lucas C

    2015-08-01

    In electroencephalographic (EEG) source imaging as well as in transcranial current stimulation (TCS), it is common to model the head using either three-shell boundary element (BEM) or more accurate finite element (FEM) volume conductor models. Since building FEMs is computationally demanding and labor intensive, they are often extensively reused as templates even for subjects with mismatching anatomies. BEMs can in principle be used to efficiently build individual volume conductor models; however, the limiting factor for such individualization are the high acquisition costs of structural magnetic resonance images. Here, we build a highly detailed (0.5mm(3) resolution, 6 tissue type segmentation, 231 electrodes) FEM based on the ICBM152 template, a nonlinear average of 152 adult human heads, which we call ICBM-NY. We show that, through more realistic electrical modeling, our model is similarly accurate as individual BEMs. Moreover, through using an unbiased population average, our model is also more accurate than FEMs built from mismatching individual anatomies. Our model is made available in Matlab format.

  13. Dispersion characteristics of plasmonic waveguides for THz waves

    NASA Astrophysics Data System (ADS)

    Markides, Christos; Viphavakit, Charusluk; Themistos, Christos; Komodromos, Michael; Kalli, Kyriacos; Quadir, Anita; Rahman, Azizur

    2013-05-01

    Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide.

  14. Load-adaptive scaffold architecturing: a bioinspired approach to the design of porous additively manufactured scaffolds with optimized mechanical properties.

    PubMed

    Rainer, Alberto; Giannitelli, Sara M; Accoto, Dino; De Porcellinis, Stefano; Guglielmelli, Eugenio; Trombetta, Marcella

    2012-04-01

    Computer-Aided Tissue Engineering (CATE) is based on a set of additive manufacturing techniques for the fabrication of patient-specific scaffolds, with geometries obtained from medical imaging. One of the main issues regarding the application of CATE concerns the definition of the internal architecture of the fabricated scaffolds, which, in turn, influences their porosity and mechanical strength. The present study envisages an innovative strategy for the fabrication of highly optimized structures, based on the a priori finite element analysis (FEA) of the physiological load set at the implant site. The resulting scaffold micro-architecture does not follow a regular geometrical pattern; on the contrary, it is based on the results of a numerical study. The algorithm was applied to a solid free-form fabrication process, using poly(ε-caprolactone) as the starting material for the processing of additive manufactured structures. A simple and intuitive geometry was chosen as a proof-of-principle application, on which finite element simulations and mechanical testing were performed. Then, to demonstrate the capability in creating mechanically biomimetic structures, the proximal femur subjected to physiological loading conditions was considered and a construct fitting a femur head portion was designed and manufactured.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solis, S. E.; Centro de Investigacion e Instrumentacion e Imagenologia Medica, Universidad Autonoma Metropolitana Iztapalapa, Mexico, DF 09340; Hernandez, J. A.

    Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour ofmore » the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging.« less

  16. Probabilistic finite elements for fatigue and fracture analysis

    NASA Astrophysics Data System (ADS)

    Belytschko, Ted; Liu, Wing Kam

    Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.

  17. Finite Element Model Development For Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.

  18. Probabilistic finite elements for fatigue and fracture analysis

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Liu, Wing Kam

    1992-01-01

    Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.

  19. Flow Applications of the Least Squares Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1998-01-01

    The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.

  20. Skull Defects in Finite Element Head Models for Source Reconstruction from Magnetoencephalography Signals

    PubMed Central

    Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens

    2016-01-01

    Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044

  1. Measuring the nonlinear elastic properties of tissue-like phantoms.

    PubMed

    Erkamp, Ramon Q; Skovoroda, Andrei R; Emelianov, Stanislav Y; O'Donnell, Matthew

    2004-04-01

    A direct mechanical system simultaneously measuring external force and deformation of samples over a wide dynamic range is used to obtain force-displacement curves of tissue-like phantoms under plain strain deformation. These measurements, covering a wide deformation range, then are used to characterize the nonlinear elastic properties of the phantom materials. The model assumes incompressible media, in which several strain energy potentials are considered. Finite-element analysis is used to evaluate the performance of this material characterization procedure. The procedures developed allow calibration of nonlinear elastic phantoms for elasticity imaging experiments and finite-element simulations.

  2. Finite element analysis of helical flows in human aortic arch: A novel index

    PubMed Central

    Lee, Cheng-Hung; Liu, Kuo-Sheng; Jhong, Guan-Heng; Liu, Shih-Jung; Hsu, Ming-Yi; Wang, Chao-Jan; Hung, Kuo-Chun

    2014-01-01

    This study investigates the helical secondary flows in the aortic arch using finite element analysis. The relationship between helical flow and the configuration of the aorta in patients of whose three-dimensional images constructed from computed tomography scans was examined. A finite element model of the pressurized root, arch, and supra-aortic vessels was developed to simulate the pattern of helical secondary flows. Calculations indicate that most of the helical secondary flow was formed in the ascending aorta. Angle α between the zero reference point and the aortic ostium (correlation coefficient (r) = −0.851, P = 0.001), the dispersion index of the cross section of the ascending (r = 0.683, P = 0.021) and descending aorta (r = 0.732, P = 0.010), all correlated closely with the presence of helical flow (P < 0.05). Stepwise multiple linear regression analysis confirmed angel α to be independently associated with the helical flow pattern in therein (standardized coefficients = −0.721, P = 0.023). The presence of helical fluid motion based on the atherosclerotic risks of patients, including those associated with diabetes, hypertension, hyperlipidemia, or renal insufficiency, was also evaluated. Numerical simulation of the flow patterns in aortas incorporating the atherosclerotic risks may better explain the mechanism of formation of helical flows and provide insight into causative factors that underlie them. PMID:24803960

  3. A machine learning approach as a surrogate of finite element analysis-based inverse method to estimate the zero-pressure geometry of human thoracic aorta.

    PubMed

    Liang, Liang; Liu, Minliang; Martin, Caitlin; Sun, Wei

    2018-05-09

    Advances in structural finite element analysis (FEA) and medical imaging have made it possible to investigate the in vivo biomechanics of human organs such as blood vessels, for which organ geometries at the zero-pressure level need to be recovered. Although FEA-based inverse methods are available for zero-pressure geometry estimation, these methods typically require iterative computation, which are time-consuming and may be not suitable for time-sensitive clinical applications. In this study, by using machine learning (ML) techniques, we developed an ML model to estimate the zero-pressure geometry of human thoracic aorta given 2 pressurized geometries of the same patient at 2 different blood pressure levels. For the ML model development, a FEA-based method was used to generate a dataset of aorta geometries of 3125 virtual patients. The ML model, which was trained and tested on the dataset, is capable of recovering zero-pressure geometries consistent with those generated by the FEA-based method. Thus, this study demonstrates the feasibility and great potential of using ML techniques as a fast surrogate of FEA-based inverse methods to recover zero-pressure geometries of human organs. Copyright © 2018 John Wiley & Sons, Ltd.

  4. A VLSI architecture for performing finite field arithmetic with reduced table look-up

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.; Truong, T. K.; Reed, I. S.

    1986-01-01

    A new table look-up method for finding the log and antilog of finite field elements has been developed by N. Glover. In his method, the log and antilog of a field element is found by the use of several smaller tables. The method is based on a use of the Chinese Remainder Theorem. The technique often results in a significant reduction in the memory requirements of the problem. A VLSI architecture is developed for a special case of this new algorithm to perform finite field arithmetic including multiplication, division, and the finding of an inverse element in the finite field.

  5. Design synthesis and optimization of permanent magnet synchronous machines based on computationally-efficient finite element analysis

    NASA Astrophysics Data System (ADS)

    Sizov, Gennadi Y.

    In this dissertation, a model-based multi-objective optimal design of permanent magnet ac machines, supplied by sine-wave current regulated drives, is developed and implemented. The design procedure uses an efficient electromagnetic finite element-based solver to accurately model nonlinear material properties and complex geometric shapes associated with magnetic circuit design. Application of an electromagnetic finite element-based solver allows for accurate computation of intricate performance parameters and characteristics. The first contribution of this dissertation is the development of a rapid computational method that allows accurate and efficient exploration of large multi-dimensional design spaces in search of optimum design(s). The computationally efficient finite element-based approach developed in this work provides a framework of tools that allow rapid analysis of synchronous electric machines operating under steady-state conditions. In the developed modeling approach, major steady-state performance parameters such as, winding flux linkages and voltages, average, cogging and ripple torques, stator core flux densities, core losses, efficiencies and saturated machine winding inductances, are calculated with minimum computational effort. In addition, the method includes means for rapid estimation of distributed stator forces and three-dimensional effects of stator and/or rotor skew on the performance of the machine. The second contribution of this dissertation is the development of the design synthesis and optimization method based on a differential evolution algorithm. The approach relies on the developed finite element-based modeling method for electromagnetic analysis and is able to tackle large-scale multi-objective design problems using modest computational resources. Overall, computational time savings of up to two orders of magnitude are achievable, when compared to current and prevalent state-of-the-art methods. These computational savings allow one to expand the optimization problem to achieve more complex and comprehensive design objectives. The method is used in the design process of several interior permanent magnet industrial motors. The presented case studies demonstrate that the developed finite element-based approach practically eliminates the need for using less accurate analytical and lumped parameter equivalent circuit models for electric machine design optimization. The design process and experimental validation of the case-study machines are detailed in the dissertation.

  6. 3D mouse shape reconstruction based on phase-shifting algorithm for fluorescence molecular tomography imaging system.

    PubMed

    Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing

    2015-11-10

    This work introduces a fast, low-cost, robust method based on fringe pattern and phase shifting to obtain three-dimensional (3D) mouse surface geometry for fluorescence molecular tomography (FMT) imaging. We used two pico projector/webcam pairs to project and capture fringe patterns from different views. We first calibrated the pico projectors and the webcams to obtain their system parameters. Each pico projector/webcam pair had its own coordinate system. We used a cylindrical calibration bar to calculate the transformation matrix between these two coordinate systems. After that, the pico projectors projected nine fringe patterns with a phase-shifting step of 2π/9 onto the surface of a mouse-shaped phantom. The deformed fringe patterns were captured by the corresponding webcam respectively, and then were used to construct two phase maps, which were further converted to two 3D surfaces composed of scattered points. The two 3D point clouds were further merged into one with the transformation matrix. The surface extraction process took less than 30 seconds. Finally, we applied the Digiwarp method to warp a standard Digimouse into the measured surface. The proposed method can reconstruct the surface of a mouse-sized object with an accuracy of 0.5 mm, which we believe is sufficient to obtain a finite element mesh for FMT imaging. We performed an FMT experiment using a mouse-shaped phantom with one embedded fluorescence capillary target. With the warped finite element mesh, we successfully reconstructed the target, which validated our surface extraction approach.

  7. A finite element-based algorithm for rubbing induced vibration prediction in rotors

    NASA Astrophysics Data System (ADS)

    Behzad, Mehdi; Alvandi, Mehdi; Mba, David; Jamali, Jalil

    2013-10-01

    In this paper, an algorithm is developed for more realistic investigation of rotor-to-stator rubbing vibration, based on finite element theory with unilateral contact and friction conditions. To model the rotor, cross sections are assumed to be radially rigid. A finite element discretization based on traditional beam theories which sufficiently accounts for axial and transversal flexibility of the rotor is used. A general finite element discretization model considering inertial and viscoelastic characteristics of the stator is used for modeling the stator. Therefore, for contact analysis, only the boundary of the stator is discretized. The contact problem is defined as the contact between the circular rigid cross section of the rotor and “nodes” of the stator only. Next, Gap function and contact conditions are described for the contact problem. Two finite element models of the rotor and the stator are coupled via the Lagrange multipliers method in order to obtain the constrained equation of motion. A case study of the partial rubbing is simulated using the algorithm. The synchronous and subsynchronous responses of the partial rubbing are obtained for different rotational speeds. In addition, a sensitivity analysis is carried out with respect to the initial clearance, the stator stiffness, the damping parameter, and the coefficient of friction. There is a good agreement between the result of this research and the experimental result in the literature.

  8. A 3/D finite element approach for metal matrix composites based on micromechanical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svobodnik, A.J.; Boehm, H.J.; Rammerstorfer, F.G.

    Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardeningmore » rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown. 12 refs.« less

  9. Finite element analysis of hollow out-of-plane HfO2 microneedles for transdermal drug delivery applications.

    PubMed

    Zhang, Yong-Hua; A Campbell, Stephen; Karthikeyan, Sreejith

    2018-02-17

    Transdermal drug delivery (TDD) based on microneedles is an excellent approach due to its advantages of both traditional transdermal patch and hypodermic syringes. In this paper, the fabrication method of hollow out-of-layer hafnium oxide (HfO 2 ) microneedles mainly based on deep reactive ion etching of silicon and atomic layer deposition of HfO 2  is described, and the finite element analysis of the microneedles based on ANSYS software is also presented. The fabrication process is simplified by using a single mask. The finite element analysis of a single microneedle shows that the flexibility of the microneedles can be easily adjusted for various applications. The finite element analysis of a 3 × 3 HfO 2 microneedle array applied on the skin well explains the "bed of nail" effect, i.e., the skin is not liable to be pierced when the density of microneedles in array increases. The presented research work here provides useful information for design optimization of HfO 2 microneedles used for TDD applications.

  10. [Study on the effect of vertebrae semi-dislocation on the stress distribution in facet joint and interuertebral disc of patients with cervical syndrome based on the three dimensional finite element model].

    PubMed

    Zhang, Ming-cai; Lü, Si-zhe; Cheng, Ying-wu; Gu, Li-xu; Zhan, Hong-sheng; Shi, Yin-yu; Wang, Xiang; Huang, Shi-rong

    2011-02-01

    To study the effect of vertebrae semi-dislocation on the stress distribution in facet joint and interuertebral disc of patients with cervical syndrome using three dimensional finite element model. A patient with cervical spondylosis was randomly chosen, who was male, 28 years old, and diagnosed as cervical vertebra semidislocation by dynamic and static palpation and X-ray, and scanned from C(1) to C(7) by 0.75 mm slice thickness of CT. Based on the CT data, the software was used to construct the three dimensional finite element model of cervical vertebra semidislocation (C(4)-C(6)). Based on the model,virtual manipulation was used to correct the vertebra semidislocation by the software, and the stress distribution was analyzed. The result of finite element analysis showed that the stress distribution of C(5-6) facet joint and intervertebral disc changed after virtual manipulation. The vertebra semidislocation leads to the abnormal stress distribution of facet joint and intervertebral disc.

  11. The GPRIME approach to finite element modeling

    NASA Technical Reports Server (NTRS)

    Wallace, D. R.; Mckee, J. H.; Hurwitz, M. M.

    1983-01-01

    GPRIME, an interactive modeling system, runs on the CDC 6000 computers and the DEC VAX 11/780 minicomputer. This system includes three components: (1) GPRIME, a user friendly geometric language and a processor to translate that language into geometric entities, (2) GGEN, an interactive data generator for 2-D models; and (3) SOLIDGEN, a 3-D solid modeling program. Each component has a computer user interface of an extensive command set. All of these programs make use of a comprehensive B-spline mathematics subroutine library, which can be used for a wide variety of interpolation problems and other geometric calculations. Many other user aids, such as automatic saving of the geometric and finite element data bases and hidden line removal, are available. This interactive finite element modeling capability can produce a complete finite element model, producing an output file of grid and element data.

  12. Modelling of thick composites using a layerwise laminate theory

    NASA Technical Reports Server (NTRS)

    Robbins, D. H., Jr.; Reddy, J. N.

    1993-01-01

    The layerwise laminate theory of Reddy (1987) is used to develop a layerwise, two-dimensional, displacement-based, finite element model of laminated composite plates that assumes a piecewise continuous distribution of the tranverse strains through the laminate thickness. The resulting layerwise finite element model is capable of computing interlaminar stresses and other localized effects with the same level of accuracy as a conventional 3D finite element model. Although the total number of degrees of freedom are comparable in both models, the layerwise model maintains a 2D-type data structure that provides several advantages over a conventional 3D finite element model, e.g. simplified input data, ease of mesh alteration, and faster element stiffness matrix formulation. Two sample problems are provided to illustrate the accuracy of the present model in computing interlaminar stresses for laminates in bending and extension.

  13. Finite element method for optimal guidance of an advanced launch vehicle

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.; Calise, Anthony J.; Leung, Martin

    1992-01-01

    A temporal finite element based on a mixed form of Hamilton's weak principle is summarized for optimal control problems. The resulting weak Hamiltonian finite element method is extended to allow for discontinuities in the states and/or discontinuities in the system equations. An extension of the formulation to allow for control inequality constraints is also presented. The formulation does not require element quadrature, and it produces a sparse system of nonlinear algebraic equations. To evaluate its feasibility for real-time guidance applications, this approach is applied to the trajectory optimization of a four-state, two-stage model with inequality constraints for an advanced launch vehicle. Numerical results for this model are presented and compared to results from a multiple-shooting code. The results show the accuracy and computational efficiency of the finite element method.

  14. The Applications of Finite Element Analysis in Proximal Humeral Fractures.

    PubMed

    Ye, Yongyu; You, Wei; Zhu, Weimin; Cui, Jiaming; Chen, Kang; Wang, Daping

    2017-01-01

    Proximal humeral fractures are common and most challenging, due to the complexity of the glenohumeral joint, especially in the geriatric population with impacted fractures, that the development of implants continues because currently the problems with their fixation are not solved. Pre-, intra-, and postoperative assessments are crucial in management of those patients. Finite element analysis, as one of the valuable tools, has been implemented as an effective and noninvasive method to analyze proximal humeral fractures, providing solid evidence for management of troublesome patients. However, no review article about the applications and effects of finite element analysis in assessing proximal humeral fractures has been reported yet. This review article summarized the applications, contribution, and clinical significance of finite element analysis in assessing proximal humeral fractures. Furthermore, the limitations of finite element analysis, the difficulties of more realistic simulation, and the validation and also the creation of validated FE models were discussed. We concluded that although some advancements in proximal humeral fractures researches have been made by using finite element analysis, utility of this powerful tool for routine clinical management and adequate simulation requires more state-of-the-art studies to provide evidence and bases.

  15. Preferential sites for InAsP/InP quantum wire nucleation using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Nuñez-Moraleda, Bernardo; Pizarro, Joaquin; Guerrero, Elisa; Guerrero-Lebrero, Maria P.; Yáñez, Andres; Molina, Sergio Ignacio; Galindo, Pedro Luis

    2014-11-01

    In this paper, stress fields at the surface of the capping layer of self-assembled InAsP quantum wires grown on an InP (001) substrate have been determined from atomistic models using molecular dynamics and Stillinger-Weber potentials. To carry out these calculations, the quantum wire compositional distribution was extracted from previous works, where the As and P distributions were determined by electron energy loss spectroscopy and high-resolution aberration-corrected Z-contrast imaging. Preferential sites for the nucleation of wires on the surface of the capping layer were studied and compared with (i) previous simulations using finite element analysis to solve anisotropic elastic theory equations and (ii) experimentally measured locations of stacked wires. Preferential nucleation sites of stacked wires were determined by the maximum stress location at the MD model surface in good agreement with experimental results and those derived from finite element analysis. This indicates that MD simulations based on empirical potentials provide a suitable and flexible tool to study strain dependent atom processes.

  16. 3D numerical simulations of oblique droplet impact onto a deep liquid pool

    NASA Astrophysics Data System (ADS)

    Gelderblom, Hanneke; Reijers, Sten A.; Gielen, Marise; Sleutel, Pascal; Lohse, Detlef; Xie, Zhihua; Pain, Christopher C.; Matar, Omar K.

    2017-11-01

    We study the fluid dynamics of three-dimensional oblique droplet impact, which results in phenomena that include splashing and cavity formation. An adaptive, unstructured mesh modelling framework is employed here, which can modify and adapt unstructured meshes to better represent the underlying physics of droplet dynamics, and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a volume-of-fluid-type method for the interface-capturing based on a compressive control-volume advection method. The framework also features second-order finite-element methods, and a force-balanced algorithm for the surface tension implementation, minimising the spurious velocities often found in many simulations involving capillary-driven flows. The numerical results generated using this framework are compared with high-speed images of the interfacial shapes of the deformed droplet, and the cavity formed upon impact, yielding good agreement. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  17. A model-updating procedure to stimulate piezoelectric transducers accurately.

    PubMed

    Piranda, B; Ballandras, S; Steichen, W; Hecart, B

    2001-09-01

    The use of numerical calculations based on finite element methods (FEM) has yielded significant improvements in the simulation and design of piezoelectric transducers piezoelectric transducer utilized in acoustic imaging. However, the ultimate precision of such models is directly controlled by the accuracy of material characterization. The present work is dedicated to the development of a model-updating technique adapted to the problem of piezoelectric transducer. The updating process is applied using the experimental admittance of a given structure for which a finite element analysis is performed. The mathematical developments are reported and then applied to update the entries of a FEM of a two-layer structure (a PbZrTi-PZT-ridge glued on a backing) for which measurements were available. The efficiency of the proposed approach is demonstrated, yielding the definition of a new set of constants well adapted to predict the structure response accurately. Improvement of the proposed approach, consisting of the updating of material coefficients not only on the admittance but also on the impedance data, is finally discussed.

  18. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU

    NASA Astrophysics Data System (ADS)

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ˜600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ˜0.25 s/excitation source.

  19. Broadband ground motion simulation using a paralleled hybrid approach of Frequency Wavenumber and Finite Difference method

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wei, S.

    2016-12-01

    The serious damage of Mexico City caused by the 1985 Michoacan earthquake 400 km away indicates that urban areas may be affected by remote earthquakes. To asses earthquake risk of urban areas imposed by distant earthquakes, we developed a hybrid Frequency Wavenumber (FK) and Finite Difference (FD) code implemented with MPI, since the computation of seismic wave propagation from a distant earthquake using a single numerical method (e.g. Finite Difference, Finite Element or Spectral Element) is very expensive. In our approach, we compute the incident wave field (ud) at the boundaries of the excitation box, which surrounding the local structure, using a paralleled FK method (Zhu and Rivera, 2002), and compute the total wave field (u) within the excitation box using a parallelled 2D FD method. We apply perfectly matched layer (PML) absorbing condition to the diffracted wave field (u-ud). Compared to previous Generalized Ray Theory and Finite Difference (Wen and Helmberger, 1998), Frequency Wavenumber and Spectral Element (Tong et al., 2014), and Direct Solution Method and Spectral Element hybrid method (Monteiller et al., 2013), our absorbing boundary condition dramatically suppress the numerical noise. The MPI implementation of our method can greatly speed up the calculation. Besides, our hybrid method also has a potential use in high resolution array imaging similar to Tong et al. (2014).

  20. Finite element probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacvarov, D.C.

    1981-01-01

    A new method for probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes is presented. The utilized approach of applying the finite element method for probabilistic risk assessment is demonstrated to be very powerful. The reasons for this are two. First, the finite element method is inherently suitable for analysis of three dimensional spaces where the parameters, such as three variate probability densities of the lightning currents, are non-uniformly distributed. Second, the finite element method permits non-uniform discretization of the three dimensional probability spaces thus yielding high accuracy in critical regions, such as the area of themore » low probability events, while at the same time maintaining coarse discretization in the non-critical areas to keep the number of grid points and the size of the problem to a manageable low level. The finite element probabilistic risk assessment method presented here is based on a new multidimensional search algorithm. It utilizes an efficient iterative technique for finite element interpolation of the transmission line insulation flashover criteria computed with an electro-magnetic transients program. Compared to other available methods the new finite element probabilistic risk assessment method is significantly more accurate and approximately two orders of magnitude computationally more efficient. The method is especially suited for accurate assessment of rare, very low probability events.« less

  1. SU-F-207-05: Excess Heat Corrections in a Prototype Calorimeter for Direct Realization of CT Absorbed Dose to Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Mayer, H; Tosh, R

    2015-06-15

    Purpose: To reconcile air kerma and calorimetry measurements in a prototype calorimeter for obtaining absorbed dose in diagnostic CT beams. While corrections for thermal artifacts are routine and generally small in calorimetry of radiotherapy beams, large differences in relative stopping powers of calorimeter materials at the lower energies typical of CT beams greatly magnify their effects. Work-to-date on the problem attempts to reconcile laboratory measurements with modeling output from Monte Carlo and finite-element analysis of heat transfer. Methods: Small thermistor beads were embedded in a polystyrene (PS) core element of 1 cm diameter, which was inserted into a cylindrical HDPEmore » phantom of 30 cm diameter and subjected to radiation in a diagnostic CT x-ray imaging system. Resistance changes in the thermistors due to radiation heating were monitored via lock-in amplifier. Multiple 3-second exposures were recorded at 8 different dose-rates from the CT system, and least-squares fits to experimental data were compared to an expected thermal response obtained by finite-element analysis incorporating source terms based on semi-empirical modeling and Monte Carlo simulation. Results: Experimental waveforms exhibited large thermal artifacts with fast time constants, associated with excess heat in wires and glass, and smaller steps attributable to radiation heating of the core material. Preliminary finite-element analysis follows the transient component of the signal qualitatively, but predicts a slower decay of temperature spikes. This was supplemented by non-linear least-squares fits incorporating semi-empirical formulae for heat transfer, which were used to obtain dose-to-PS in reasonable agreement with the output of Monte Carlo calculations that converts air kerma to absorbed dose. Conclusion: Discrepancies between the finite-element analysis and our experimental data testify to the very significant heat transfer correction required for absorbed dose calorimetry of diagnostic CT beams. The results obtained here are being used to refine both simulations and design of calorimeter core components.« less

  2. Time-independent hybrid enrichment for finite element solution of transient conduction–radiation in diffusive grey media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk; Seaid, Mohammed; Trevelyan, Jon

    2013-10-15

    We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach canmore » be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.« less

  3. Body Composition Assessment in Axial CT Images Using FEM-Based Automatic Segmentation of Skeletal Muscle.

    PubMed

    Popuri, Karteek; Cobzas, Dana; Esfandiari, Nina; Baracos, Vickie; Jägersand, Martin

    2016-02-01

    The proportions of muscle and fat tissues in the human body, referred to as body composition is a vital measurement for cancer patients. Body composition has been recently linked to patient survival and the onset/recurrence of several types of cancers in numerous cancer research studies. This paper introduces a fully automatic framework for the segmentation of muscle and fat tissues from CT images to estimate body composition. We developed a novel finite element method (FEM) deformable model that incorporates a priori shape information via a statistical deformation model (SDM) within the template-based segmentation framework. The proposed method was validated on 1000 abdominal and 530 thoracic CT images and we obtained very good segmentation results with Jaccard scores in excess of 90% for both the muscle and fat regions.

  4. Electrochemical Impedance Imaging via the Distribution of Diffusion Times.

    PubMed

    Song, Juhyun; Bazant, Martin Z

    2018-03-16

    We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.

  5. A finite-element simulation of galvanic coupling intra-body communication based on the whole human body.

    PubMed

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-10-09

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.

  6. A Finite-Element Simulation of Galvanic Coupling Intra-Body Communication Based on the Whole Human Body

    PubMed Central

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-01-01

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz–5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication. PMID:23202010

  7. PLANS; a finite element program for nonlinear analysis of structures. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Pifko, A.; Armen, H., Jr.; Levy, A.; Levine, H.

    1977-01-01

    The PLANS system, rather than being one comprehensive computer program, is a collection of finite element programs used for the nonlinear analysis of structures. This collection of programs evolved and is based on the organizational philosophy in which classes of analyses are treated individually based on the physical problem class to be analyzed. Each of the independent finite element computer programs of PLANS, with an associated element library, can be individually loaded and used to solve the problem class of interest. A number of programs have been developed for material nonlinear behavior alone and for combined geometric and material nonlinear behavior. The usage, capabilities, and element libraries of the current programs include: (1) plastic analysis of built-up structures where bending and membrane effects are significant, (2) three dimensional elastic-plastic analysis, (3) plastic analysis of bodies of revolution, and (4) material and geometric nonlinear analysis of built-up structures.

  8. Penalty-Based Finite Element Interface Technology for Analysis of Homogeneous and Composite Structures

    NASA Technical Reports Server (NTRS)

    Averill, Ronald C.

    2002-01-01

    An effective and robust interface element technology able to connect independently modeled finite element subdomains has been developed. This method is based on the use of penalty constraints and allows coupling of finite element models whose nodes do not coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. A significant effort has been directed toward identifying those model characteristics (element geometric properties, material properties, and loads) that most strongly affect the required penalty parameter, and subsequently to developing simple 'formulae' for automatically calculating the proper penalty parameter for each interface constraint. This task is especially critical in composite materials and structures, where adjacent sub-regions may be composed of significantly different materials or laminates. This approach has been validated by investigating a variety of two-dimensional problems, including composite laminates.

  9. A parallel finite element procedure for contact-impact problems using edge-based smooth triangular element and GPU

    NASA Astrophysics Data System (ADS)

    Cai, Yong; Cui, Xiangyang; Li, Guangyao; Liu, Wenyang

    2018-04-01

    The edge-smooth finite element method (ES-FEM) can improve the computational accuracy of triangular shell elements and the mesh partition efficiency of complex models. In this paper, an approach is developed to perform explicit finite element simulations of contact-impact problems with a graphical processing unit (GPU) using a special edge-smooth triangular shell element based on ES-FEM. Of critical importance for this problem is achieving finer-grained parallelism to enable efficient data loading and to minimize communication between the device and host. Four kinds of parallel strategies are then developed to efficiently solve these ES-FEM based shell element formulas, and various optimization methods are adopted to ensure aligned memory access. Special focus is dedicated to developing an approach for the parallel construction of edge systems. A parallel hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty function calculation method are embedded in this parallel explicit algorithm. Finally, the program flow is well designed, and a GPU-based simulation system is developed, using Nvidia's CUDA. Several numerical examples are presented to illustrate the high quality of the results obtained with the proposed methods. In addition, the GPU-based parallel computation is shown to significantly reduce the computing time.

  10. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.

  11. [Three-dimensional finite element modeling and biomechanical simulation for evaluating and improving postoperative internal instrumentation of neck-thoracic vertebral tumor en bloc resection].

    PubMed

    Qinghua, Zhao; Jipeng, Li; Yongxing, Zhang; He, Liang; Xuepeng, Wang; Peng, Yan; Xiaofeng, Wu

    2015-04-07

    To employ three-dimensional finite element modeling and biomechanical simulation for evaluating the stability and stress conduction of two postoperative internal fixed modeling-multilevel posterior instrumentation ( MPI) and MPI with anterior instrumentation (MPAI) with neck-thoracic vertebral tumor en bloc resection. Mimics software and computed tomography (CT) images were used to establish the three-dimensional (3D) model of vertebrae C5-T2 and simulated the C7 en bloc vertebral resection for MPI and MPAI modeling. Then the statistics and images were transmitted into the ANSYS finite element system and 20N distribution load (simulating body weight) and applied 1 N · m torque on neutral point for simulating vertebral displacement and stress conduction and distribution of motion mode, i. e. flexion, extension, bending and rotating. With a better stability, the displacement of two adjacent vertebral bodies of MPI and MPAI modeling was less than that of complete vertebral modeling. No significant differences existed between each other. But as for stress shielding effect reduction, MPI was slightly better than MPAI. From biomechanical point of view, two internal instrumentations with neck-thoracic tumor en bloc resection may achieve an excellent stability with no significant differences. But with better stress conduction, MPI is more advantageous in postoperative reconstruction.

  12. [Construction and validation of a three-dimensional finite element model of cranio-maxillary complex with sutures in unilateral cleft lip and palate patient].

    PubMed

    Wu, Zhi-fang; Lei, Yong-hua; Li, Wen-jie; Liao, Sheng-hui; Zhao, Zi-jin

    2013-02-01

    To explore an effective method to construct and validate a finite element model of the unilateral cleft lip and palate(UCLP) craniomaxillary complex with sutures, which could be applied in further three-dimensional finite element analysis (FEA). One male patient aged 9 with left complete lip and palate cleft was selected and CT scan was taken at 0.75mm intervals on the skull. The CT data was saved in Dicom format, which was, afterwards, imported into Software Mimics 10.0 to generate a three-dimensional anatomic model. Then Software Geomagic Studio 12.0 was used to match, smoothen and transfer the anatomic model into a CAD model with NURBS patches. Then, 12 circum-maxillary sutures were integrated into the CAD model by Solidworks (2011 version). Finally meshing by E-feature Biomedical Modeler was done and a three-dimensional finite element model with sutures was obtained. A maxillary protraction force (500 g per side, 20° downward and forward from the occlusal plane) was applied. Displacement and stress distribution of some important craniofacial structures were measured and compared with the results of related researches in the literature. A three-dimensional finite element model of UCLP craniomaxillary complex with 12 sutures was established from the CT scan data. This simulation model consisted of 206 753 individual elements with 260 662 nodes, which was a more precise simulation and a better representation of human craniomaxillary complex than the formerly available FEA models. By comparison, this model was proved to be valid. It is an effective way to establish the three-dimensional finite element model of UCLP cranio-maxillary complex with sutures from CT images with the help of the following softwares: Mimics 10.0, Geomagic Studio 12.0, Solidworks and E-feature Biomedical Modeler.

  13. Integral finite element analysis of turntable bearing with flexible rings

    NASA Astrophysics Data System (ADS)

    Deng, Biao; Liu, Yunfei; Guo, Yuan; Tang, Shengjin; Su, Wenbin; Lei, Zhufeng; Wang, Pengcheng

    2018-03-01

    This paper suggests a method to calculate the internal load distribution and contact stress of the thrust angular contact ball turntable bearing by FEA. The influence of the stiffness of the bearing structure and the plastic deformation of contact area on the internal load distribution and contact stress of the bearing is considered. In this method, the load-deformation relationship of the rolling elements is determined by the finite element contact analysis of a single rolling element and the raceway. Based on this, the nonlinear contact between the rolling elements and the inner and outer ring raceways is same as a nonlinear compression spring and bearing integral finite element analysis model including support structure was established. The effects of structural deformation and plastic deformation on the built-in stress distribution of slewing bearing are investigated on basis of comparing the consequences of load distribution, inner and outer ring stress, contact stress and other finite element analysis results with the traditional bearing theory, which has guiding function for improving the design of slewing bearing.

  14. Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.

    PubMed

    Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin

    2011-01-01

    In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. A parametric study of hard tissue injury prediction using finite elements: consideration of geometric complexity, subfailure material properties, CT-thresholding, and element characteristics.

    PubMed

    Arregui-Dalmases, Carlos; Del Pozo, Eduardo; Duprey, Sonia; Lopez-Valdes, Francisco J; Lau, Anthony; Subit, Damien; Kent, Richard

    2010-06-01

    The objectives of this study were to examine the axial response of the clavicle under quasistatic compressions replicating the body boundary conditions and to quantify the sensitivity of finite element-predicted fracture in the clavicle to several parameters. Clavicles were harvested from 14 donors (age range 14-56 years). Quasistatic axial compression tests were performed using a custom rig designed to replicate in situ boundary conditions. Prior to testing, high-resolution computed tomography (CT) scans were taken of each clavicle. From those images, finite element models were constructed. Factors varied parametrically included the density used to threshold cortical bone in the CT scans, the presence of trabecular bone, the mesh density, Young's modulus, the maximum stress, and the element type (shell vs. solid, triangular vs. quadrilateral surface elements). The experiments revealed significant variability in the peak force (2.41 +/- 0.72 kN) and displacement to peak force (4.9 +/- 1.1 mm), with age (p < .05) and with some geometrical traits of the specimens. In the finite element models, the failure force and location were moderately dependent upon the Young's modulus. The fracture force was highly sensitive to the yield stress (80-110 MPa). Neither fracture location nor force was strongly dependent on mesh density as long as the element size was less than 5 x 5 mm(2). Both the fracture location and force were strongly dependent upon the threshold density used to define the thickness of the cortical shell.

  16. Analysis of Large Quasistatic Deformations of Inelastic Solids by a New Stress Based Finite Element Method. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Reed, Kenneth W.

    1992-01-01

    A new hybrid stress finite element algorithm suitable for analyses of large quasistatic deformation of inelastic solids is presented. Principal variables in the formulation are the nominal stress rate and spin. The finite element equations which result are discrete versions of the equations of compatibility and angular momentum balance. Consistent reformulation of the constitutive equation and accurate and stable time integration of the stress are discussed at length. Examples which bring out the feasibility and performance of the algorithm conclude the work.

  17. Adaptive finite element method for turbulent flow near a propeller

    NASA Astrophysics Data System (ADS)

    Pelletier, Dominique; Ilinca, Florin; Hetu, Jean-Francois

    1994-11-01

    This paper presents an adaptive finite element method based on remeshing to solve incompressible turbulent free shear flow near a propeller. Solutions are obtained in primitive variables using a highly accurate finite element approximation on unstructured grids. Turbulence is modeled by a mixing length formulation. Two general purpose error estimators, which take into account swirl and the variation of the eddy viscosity, are presented and applied to the turbulent wake of a propeller. Predictions compare well with experimental measurements. The proposed adaptive scheme is robust, reliable and cost effective.

  18. Development of non-linear finite element computer code

    NASA Technical Reports Server (NTRS)

    Becker, E. B.; Miller, T.

    1985-01-01

    Recent work has shown that the use of separable symmetric functions of the principal stretches can adequately describe the response of certain propellant materials and, further, that a data reduction scheme gives a convenient way of obtaining the values of the functions from experimental data. Based on representation of the energy, a computational scheme was developed that allows finite element analysis of boundary value problems of arbitrary shape and loading. The computational procedure was implemental in a three-dimensional finite element code, TEXLESP-S, which is documented herein.

  19. Finite element validation of stress intensity factor calculation models for thru-thickness and thumb-nail cracks in double edge notch specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beres, W.; Koul, A.K.

    1994-09-01

    Stress intensity factors for thru-thickness and thumb-nail cracks in the double edge notch specimens, containing two different notch radius (R) to specimen width (W) ratios (R/W = 1/8 and 1/16), are calculated through finite element analysis. The finite element results are compared with predictions based on existing empirical models for SIF calculations. The effects of a change in R/W ratio on SIF of thru-thickness and thumb-nail cracks are also discussed. 34 refs.

  20. Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure. III - Impact/contact simulations

    NASA Technical Reports Server (NTRS)

    Nakajima, Yukio; Padovan, Joe

    1987-01-01

    In a three-part series of papers, a generalized finite element methodology is formulated to handle traveling load problems involving large deformation fields in structure composed of viscoelastic media. The main thrust of this paper is to develop an overall finite element methodology and associated solution algorithms to handle the transient aspects of moving problems involving contact impact type loading fields. Based on the methodology and algorithms formulated, several numerical experiments are considered. These include the rolling/sliding impact of tires with road obstructions.

  1. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.

    PubMed

    Spilker, R L; de Almeida, E S; Donzelli, P S

    1992-01-01

    This chapter addresses computationally demanding numerical formulations in the biomechanics of soft tissues. The theory of mixtures can be used to represent soft hydrated tissues in the human musculoskeletal system as a two-phase continuum consisting of an incompressible solid phase (collagen and proteoglycan) and an incompressible fluid phase (interstitial water). We first consider the finite deformation of soft hydrated tissues in which the solid phase is represented as hyperelastic. A finite element formulation of the governing nonlinear biphasic equations is presented based on a mixed-penalty approach and derived using the weighted residual method. Fluid and solid phase deformation, velocity, and pressure are interpolated within each element, and the pressure variables within each element are eliminated at the element level. A system of nonlinear, first-order differential equations in the fluid and solid phase deformation and velocity is obtained. In order to solve these equations, the contributions of the hyperelastic solid phase are incrementally linearized, a finite difference rule is introduced for temporal discretization, and an iterative scheme is adopted to achieve equilibrium at the end of each time increment. We demonstrate the accuracy and adequacy of the procedure using a six-node, isoparametric axisymmetric element, and we present an example problem for which independent numerical solution is available. Next, we present an automated, adaptive environment for the simulation of soft tissue continua in which the finite element analysis is coupled with automatic mesh generation, error indicators, and projection methods. Mesh generation and updating, including both refinement and coarsening, for the two-dimensional examples examined in this study are performed using the finite quadtree approach. The adaptive analysis is based on an error indicator which is the L2 norm of the difference between the finite element solution and a projected finite element solution. Total stress, calculated as the sum of the solid and fluid phase stresses, is used in the error indicator. To allow the finite difference algorithm to proceed in time using an updated mesh, solution values must be transferred to the new nodal locations. This rezoning is accomplished using a projected field for the primary variables. The accuracy and effectiveness of this adaptive finite element analysis is demonstrated using a linear, two-dimensional, axisymmetric problem corresponding to the indentation of a thin sheet of soft tissue. The method is shown to effectively capture the steep gradients and to produce solutions in good agreement with independent, converged, numerical solutions.

  2. Drekar v.2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seefeldt, Ben; Sondak, David; Hensinger, David M.

    Drekar is an application code that solves partial differential equations for fluids that can be optionally coupled to electromagnetics. Drekar solves low-mach compressible and incompressible computational fluid dynamics (CFD), compressible and incompressible resistive magnetohydrodynamics (MHD), and multiple species plasmas interacting with electromagnetic fields. Drekar discretization technology includes continuous and discontinuous finite element formulations, stabilized finite element formulations, mixed integration finite element bases (nodal, edge, face, volume) and an initial arbitrary Lagrangian Eulerian (ALE) capability. Drekar contains the implementation of the discretized physics and leverages the open source Trilinos project for both parallel solver capabilities and general finite element discretization tools.more » The code will be released open source under a BSD license. The code is used for fundamental research for simulation of fluids and plasmas on high performance computing environments.« less

  3. Construction of a three-dimensional finite element model of maxillary first molar and it's supporting structures

    PubMed Central

    Begum, M. Sameena; Dinesh, M. R.; Tan, Kenneth F. H.; Jairaj, Vani; Md Khalid, K.; Singh, Varun Pratap

    2015-01-01

    The finite element method (FEM) is a powerful computational tool for solving stress-strain problems; its ability to handle material inhomogeneity and complex shapes makes the FEM, the most suitable method for the analysis of internal stress levels in the tooth, periodontium, and alveolar bone. This article intends to explain the steps involved in the generation of a three-dimensional finite element model of tooth, periodontal ligament (PDL) and alveolar bone, as the procedure of modeling is most important because the result is based on the nature of the modeling systems. Finite element analysis offers a means of determining strain-stress levels in the tooth, ligament, and bone structures for a broad range of orthodontic loading scenarios without producing tissue damage. PMID:26538895

  4. Assessment of the performance of rigid pavement back-calculation through finite element modeling

    NASA Astrophysics Data System (ADS)

    Shoukry, Samir N.; William, Gergis W.; Martinelli, David R.

    1999-02-01

    This study focuses on examining the behavior of rigid pavement layers during the Falling Weight Deflectometer (FWD) test. Factors affecting the design of a concrete slab, such as whether the joints are doweled or undoweled and the spacing between the transverse joints, were considered in this study. Explicit finite element analysis was employed to investigate pavement layers' responses to the action of the impulse of the FWD test. Models of various dimensions were developed to satisfy the factors under consideration. The accuracy of the finite element models developed in this investigation was verified by comparing the finite element- generated deflection basin with that experimentally measured during an actual test. The results showed that the measured deflection basin can be reproduced through finite element modeling of the pavement structure. The resulting deflection basins from the use FE modeling was processed in order to backcalculate pavement layer moduli. This approach provides a method for the evaluation of the performance of existing backcalculation programs which are based on static elastic layer analysis. Based upon the previous studies conducted for the selection of software, three different backcalculation programs were chosen for the evaluation: MODULUS5.0, EVERCALC4.0, and MODCOMP3. The results indicate that ignoring the dynamic nature of the load may lead to crude results, especially during backcalculation procedures.

  5. A parallel algorithm for generation and assembly of finite element stiffness and mass matrices

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Carmona, E. A.; Nguyen, D. T.; Baddourah, M. A.

    1991-01-01

    A new algorithm is proposed for parallel generation and assembly of the finite element stiffness and mass matrices. The proposed assembly algorithm is based on a node-by-node approach rather than the more conventional element-by-element approach. The new algorithm's generality and computation speed-up when using multiple processors are demonstrated for several practical applications on multi-processor Cray Y-MP and Cray 2 supercomputers.

  6. A survey of parametrized variational principles and applications to computational mechanics

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1993-01-01

    This survey paper describes recent developments in the area of parametrized variational principles (PVP's) and selected applications to finite-element computational mechanics. A PVP is a variational principle containing free parameters that have no effect on the Euler-Lagrange equations. The theory of single-field PVP's based on gauge functions (also known as null Lagrangians) is a subset of the inverse problem of variational calculus that has limited value. On the other hand, multifield PVP's are more interesting from theoretical and practical standpoints. Following a tutorial introduction, the paper describes the recent construction of multifield PVP's in several areas of elasticity and electromagnetics. It then discusses three applications to finite-element computational mechanics: the derivation of high-performance finite elements, the development of element-level error indicators, and the constructions of finite element templates. The paper concludes with an overview of open research areas.

  7. Windowed time-reversal music technique for super-resolution ultrasound imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Labyed, Yassin

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements.

  8. Performance assessment of HIFU lesion detection by harmonic motion imaging for focused ultrasound (HMIFU): a 3-D finite-element-based framework with experimental validation.

    PubMed

    Hou, Gary Y; Luo, Jianwen; Marquet, Fabrice; Maleke, Caroline; Vappou, Jonathan; Konofagou, Elisa E

    2011-12-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on amplitude-modulated (AM) - harmonic motion imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module and an image-formation model. The objective of this study is to develop such a framework to (1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and (2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6 and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69 and 5.39 and 1.65, 3.19 and 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28 and 1.78 at 10-s, 20-s and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was found in both simulations (16.2, 73.1 and 334.7 mm(2)) and experiments (26.2, 94.2 and 206.2 mm(2)). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Numerical simulation on hydromechanical coupling in porous media adopting three-dimensional pore-scale model.

    PubMed

    Liu, Jianjun; Song, Rui; Cui, Mengmeng

    2014-01-01

    A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view.

  10. Numerical Simulation on Hydromechanical Coupling in Porous Media Adopting Three-Dimensional Pore-Scale Model

    PubMed Central

    Liu, Jianjun; Song, Rui; Cui, Mengmeng

    2014-01-01

    A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view. PMID:24955384

  11. On a 3-D singularity element for computation of combined mode stress intensities

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.; Kathiresan, K.

    1976-01-01

    A special three-dimensional singularity element is developed for the computation of combined modes 1, 2, and 3 stress intensity factors, which vary along an arbitrarily curved crack front in three dimensional linear elastic fracture problems. The finite element method is based on a displacement-hybrid finite element model, based on a modified variational principle of potential energy, with arbitrary element interior displacements, interelement boundary displacements, and element boundary tractions as variables. The special crack-front element used in this analysis contains the square root singularity in strains and stresses, where the stress-intensity factors K(1), K(2), and K(3) are quadratically variable along the crack front and are solved directly along with the unknown nodal displacements.

  12. A study of the response of nonlinear springs

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Knott, T. W.; Johnson, E. R.

    1991-01-01

    The various phases to developing a methodology for studying the response of a spring-reinforced arch subjected to a point load are discussed. The arch is simply supported at its ends with both the spring and the point load assumed to be at midspan. The spring is present to off-set the typical snap through behavior normally associated with arches, and to provide a structure that responds with constant resistance over a finite displacement. The various phases discussed consist of the following: (1) development of the closed-form solution for the shallow arch case; (2) development of a finite difference analysis to study (shallow) arches; and (3) development of a finite element analysis for studying more general shallow and nonshallow arches. The two numerical analyses rely on a continuation scheme to move the solution past limit points, and to move onto bifurcated paths, both characteristics being common to the arch problem. An eigenvalue method is used for a continuation scheme. The finite difference analysis is based on a mixed formulation (force and displacement variables) of the governing equations. The governing equations for the mixed formulation are in first order form, making the finite difference implementation convenient. However, the mixed formulation is not well-suited for the eigenvalue continuation scheme. This provided the motivation for the displacement based finite element analysis. Both the finite difference and the finite element analyses are compared with the closed form shallow arch solution. Agreement is excellent, except for the potential problems with the finite difference analysis and the continuation scheme. Agreement between the finite element analysis and another investigator's numerical analysis for deep arches is also good.

  13. A Locally Modal B-Spline Based Full-Vector Finite-Element Method with PML for Nonlinear and Lossy Plasmonic Waveguide

    NASA Astrophysics Data System (ADS)

    Karimi, Hossein; Nikmehr, Saeid; Khodapanah, Ehsan

    2016-09-01

    In this paper, we develop a B-spline finite-element method (FEM) based on a locally modal wave propagation with anisotropic perfectly matched layers (PMLs), for the first time, to simulate nonlinear and lossy plasmonic waveguides. Conventional approaches like beam propagation method, inherently omit the wave spectrum and do not provide physical insight into nonlinear modes especially in the plasmonic applications, where nonlinear modes are constructed by linear modes with very close propagation constant quantities. Our locally modal B-spline finite element method (LMBS-FEM) does not suffer from the weakness of the conventional approaches. To validate our method, first, propagation of wave for various kinds of linear, nonlinear, lossless and lossy materials of metal-insulator plasmonic structures are simulated using LMBS-FEM in MATLAB and the comparisons are made with FEM-BPM module of COMSOL Multiphysics simulator and B-spline finite-element finite-difference wide angle beam propagation method (BSFEFD-WABPM). The comparisons show that not only our developed numerical approach is computationally more accurate and efficient than conventional approaches but also it provides physical insight into the nonlinear nature of the propagation modes.

  14. On the mechanics of growing thin biological membranes

    NASA Astrophysics Data System (ADS)

    Rausch, Manuel K.; Kuhl, Ellen

    2014-02-01

    Despite their seemingly delicate appearance, thin biological membranes fulfill various crucial roles in the human body and can sustain substantial mechanical loads. Unlike engineering structures, biological membranes are able to grow and adapt to changes in their mechanical environment. Finite element modeling of biological growth holds the potential to better understand the interplay of membrane form and function and to reliably predict the effects of disease or medical intervention. However, standard continuum elements typically fail to represent thin biological membranes efficiently, accurately, and robustly. Moreover, continuum models are typically cumbersome to generate from surface-based medical imaging data. Here we propose a computational model for finite membrane growth using a classical midsurface representation compatible with standard shell elements. By assuming elastic incompressibility and membrane-only growth, the model a priori satisfies the zero-normal stress condition. To demonstrate its modular nature, we implement the membrane growth model into the general-purpose non-linear finite element package Abaqus/Standard using the concept of user subroutines. To probe efficiently and robustness, we simulate selected benchmark examples of growing biological membranes under different loading conditions. To demonstrate the clinical potential, we simulate the functional adaptation of a heart valve leaflet in ischemic cardiomyopathy. We believe that our novel approach will be widely applicable to simulate the adaptive chronic growth of thin biological structures including skin membranes, mucous membranes, fetal membranes, tympanic membranes, corneoscleral membranes, and heart valve membranes. Ultimately, our model can be used to identify diseased states, predict disease evolution, and guide the design of interventional or pharmaceutic therapies to arrest or revert disease progression.

  15. On the mechanics of growing thin biological membranes

    PubMed Central

    Rausch, Manuel K.; Kuhl, Ellen

    2013-01-01

    Despite their seemingly delicate appearance, thin biological membranes fulfill various crucial roles in the human body and can sustain substantial mechanical loads. Unlike engineering structures, biological membranes are able to grow and adapt to changes in their mechanical environment. Finite element modeling of biological growth holds the potential to better understand the interplay of membrane form and function and to reliably predict the effects of disease or medical intervention. However, standard continuum elements typically fail to represent thin biological membranes efficiently, accurately, and robustly. Moreover, continuum models are typically cumbersome to generate from surface-based medical imaging data. Here we propose a computational model for finite membrane growth using a classical midsurface representation compatible with standard shell elements. By assuming elastic incompressibility and membrane-only growth, the model a priori satisfies the zero-normal stress condition. To demonstrate its modular nature, we implement the membrane growth model into the general-purpose non-linear finite element package Abaqus/Standard using the concept of user subroutines. To probe efficiently and robustness, we simulate selected benchmark examples of growing biological membranes under different loading conditions. To demonstrate the clinical potential, we simulate the functional adaptation of a heart valve leaflet in ischemic cardiomyopathy. We believe that our novel approach will be widely applicable to simulate the adaptive chronic growth of thin biological structures including skin membranes, mucous membranes, fetal membranes, tympanic membranes, corneoscleral membranes, and heart valve membranes. Ultimately, our model can be used to identify diseased states, predict disease evolution, and guide the design of interventional or pharmaceutic therapies to arrest or revert disease progression. PMID:24563551

  16. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method.

    PubMed

    Deng, Yongbo; Korvink, Jan G

    2016-05-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.

  17. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method

    PubMed Central

    Korvink, Jan G.

    2016-01-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766

  18. Scaling in biomechanical experimentation: a finite similitude approach.

    PubMed

    Ochoa-Cabrero, Raul; Alonso-Rasgado, Teresa; Davey, Keith

    2018-06-01

    Biological experimentation has many obstacles: resource limitations, unavailability of materials, manufacturing complexities and ethical compliance issues; any approach that resolves all or some of these is of some interest. The aim of this study is applying the recently discovered concept of finite similitude as a novel approach for the design of scaled biomechanical experiments supported with analysis using a commercial finite-element package and validated by means of image correlation software. The study of isotropic scaling of synthetic bones leads to the selection of three-dimensional (3D) printed materials for the trial-space materials. These materials conforming to the theory are analysed in finite-element models of a cylinder and femur geometries undergoing compression, tension, torsion and bending tests to assess the efficacy of the approach using reverse scaling of the approach. The finite-element results show similar strain patterns in the surface for the cylinder with a maximum difference of less than 10% and for the femur with a maximum difference of less than 4% across all tests. Finally, the trial-space, physical-trial experimentation using 3D printed materials for compression and bending testing provides a good agreement in a Bland-Altman statistical analysis, providing good supporting evidence for the practicality of the approach. © 2018 The Author(s).

  19. Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis.

    PubMed

    Rohani, S Alireza; Ghomashchi, Soroush; Agrawal, Sumit K; Ladak, Hanif M

    2017-03-01

    Finite-element models of the tympanic membrane are sensitive to the Young's modulus of the pars tensa. The aim of this work is to estimate the Young's modulus under a different experimental paradigm than currently used on the human tympanic membrane. These additional values could potentially be used by the auditory biomechanics community for building consensus. The Young's modulus of the human pars tensa was estimated through inverse finite-element modelling of an in-situ pressurization experiment. The experiments were performed on three specimens with a custom-built pressurization unit at a quasi-static pressure of 500 Pa. The shape of each tympanic membrane before and after pressurization was recorded using a Fourier transform profilometer. The samples were also imaged using micro-computed tomography to create sample-specific finite-element models. For each sample, the Young's modulus was then estimated by numerically optimizing its value in the finite-element model so simulated pressurized shapes matched experimental data. The estimated Young's modulus values were 2.2 MPa, 2.4 MPa and 2.0 MPa, and are similar to estimates obtained using in-situ single-point indentation testing. The estimates were obtained under the assumptions that the pars tensa is linearly elastic, uniform, isotropic with a thickness of 110 μm, and the estimates are limited to quasi-static loading. Estimates of pars tensa Young's modulus are sensitive to its thickness and inclusion of the manubrial fold. However, they do not appear to be sensitive to optimization initialization, height measurement error, pars flaccida Young's modulus, and tympanic membrane element type (shell versus solid). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin

    2013-06-01

    In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses tomore » induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of ‘skin region’ on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.« less

  1. Subject specific finite element modeling of periprosthetic femoral fracture using element deactivation to simulate bone failure.

    PubMed

    Miles, Brad; Kolos, Elizabeth; Walter, William L; Appleyard, Richard; Shi, Angela; Li, Qing; Ruys, Andrew J

    2015-06-01

    Subject-specific finite element (FE) modeling methodology could predict peri-prosthetic femoral fracture (PFF) for cementless hip arthoplasty in the early postoperative period. This study develops methodology for subject-specific finite element modeling by using the element deactivation technique to simulate bone failure and validate with experimental testing, thereby predicting peri-prosthetic femoral fracture in the early postoperative period. Material assignments for biphasic and triphasic models were undertaken. Failure modeling with the element deactivation feature available in ABAQUS 6.9 was used to simulate a crack initiation and propagation in the bony tissue based upon a threshold of fracture strain. The crack mode for the biphasic models was very similar to the experimental testing crack mode, with a similar shape and path of the crack. The fracture load is sensitive to the friction coefficient at the implant-bony interface. The development of a novel technique to simulate bone failure by element deactivation of subject-specific finite element models could aid prediction of fracture load in addition to fracture risk characterization for PFF. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Exploratory study on the methodology of fast imaging of unilateral stroke lesions by electrical impedance asymmetry in human heads.

    PubMed

    Ma, Jieshi; Xu, Canhua; Dai, Meng; You, Fusheng; Shi, Xuetao; Dong, Xiuzhen; Fu, Feng

    2014-01-01

    Stroke has a high mortality and disability rate and should be rapidly diagnosed to improve prognosis. Diagnosing stroke is not a problem for hospitals with CT, MRI, and other imaging devices but is difficult for community hospitals without these devices. Based on the mechanism that the electrical impedance of the two hemispheres of a normal human head is basically symmetrical and a stroke can alter this symmetry, a fast electrical impedance imaging method called symmetrical electrical impedance tomography (SEIT) is proposed. In this technique, electrical impedance tomography (EIT) data measured from the undamaged craniocerebral hemisphere (CCH) is regarded as reference data for the remaining EIT data measured from the other CCH for difference imaging to identify the differences in resistivity distribution between the two CCHs. The results of SEIT imaging based on simulation data from the 2D human head finite element model and that from the physical phantom of human head verified this method in detection of unilateral stroke.

  3. Exploratory Study on the Methodology of Fast Imaging of Unilateral Stroke Lesions by Electrical Impedance Asymmetry in Human Heads

    PubMed Central

    Xu, Canhua; Dai, Meng; You, Fusheng; Shi, Xuetao

    2014-01-01

    Stroke has a high mortality and disability rate and should be rapidly diagnosed to improve prognosis. Diagnosing stroke is not a problem for hospitals with CT, MRI, and other imaging devices but is difficult for community hospitals without these devices. Based on the mechanism that the electrical impedance of the two hemispheres of a normal human head is basically symmetrical and a stroke can alter this symmetry, a fast electrical impedance imaging method called symmetrical electrical impedance tomography (SEIT) is proposed. In this technique, electrical impedance tomography (EIT) data measured from the undamaged craniocerebral hemisphere (CCH) is regarded as reference data for the remaining EIT data measured from the other CCH for difference imaging to identify the differences in resistivity distribution between the two CCHs. The results of SEIT imaging based on simulation data from the 2D human head finite element model and that from the physical phantom of human head verified this method in detection of unilateral stroke. PMID:25006594

  4. The Distributed Lambda (?) Model (DLM): A 3-D, Finite-Element Muscle Model Based on Feldman's ? Model; Assessment of Orofacial Gestures

    ERIC Educational Resources Information Center

    Nazari, Mohammad Ali; Perrier, Pascal; Payan, Yohan

    2013-01-01

    Purpose: The authors aimed to design a distributed lambda model (DLM), which is well adapted to implement three-dimensional (3-D), finite-element descriptions of muscles. Method: A muscle element model was designed. Its stress-strain relationships included the active force-length characteristics of the ? model along the muscle fibers, together…

  5. Sensitivity Analysis for Multidisciplinary Systems (SAMS)

    DTIC Science & Technology

    2016-12-01

    support both mode-based structural representations and time-dependent, nonlinear finite element structural dynamics. This interim report describes...Adaptation, & Sensitivity Toolkit • Elasticity, heat transfer, & compressible flow • Adjoint solver for sensitivity analysis • High-order finite elements ...PROGRAM ELEMENT NUMBER 62201F 6. AUTHOR(S) Richard D. Snyder 5d. PROJECT NUMBER 2401 5e. TASK NUMBER N/A 5f. WORK UNIT NUMBER Q1FS 7

  6. A comparison of the finite difference and finite element methods for heat transfer calculations

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Mortazavi, H. R.

    1982-01-01

    The finite difference method and finite element method for heat transfer calculations are compared by describing their bases and their application to some common heat transfer problems. In general it is noted that neither method is clearly superior, and in many instances, the choice is quite arbitrary and depends more upon the codes available and upon the personal preference of the analyst than upon any well defined advantages of one method. Classes of problems for which one method or the other is better suited are defined.

  7. SutraPlot, a graphical post-processor for SUTRA, a model for ground-water flow with solute or energy transport

    USGS Publications Warehouse

    Souza, W.R.

    1999-01-01

    This report documents a graphical display post-processor (SutraPlot) for the U.S. Geological Survey Saturated-Unsaturated flow and solute or energy TRAnsport simulation model SUTRA, Version 2D3D.1. This version of SutraPlot is an upgrade to SutraPlot for the 2D-only SUTRA model (Souza, 1987). It has been modified to add 3D functionality, a graphical user interface (GUI), and enhanced graphic output options. Graphical options for 2D SUTRA (2-dimension) simulations include: drawing the 2D finite-element mesh, mesh boundary, and velocity vectors; plots of contours for pressure, saturation, concentration, and temperature within the model region; 2D finite-element based gridding and interpolation; and 2D gridded data export files. Graphical options for 3D SUTRA (3-dimension) simulations include: drawing the 3D finite-element mesh; plots of contours for pressure, saturation, concentration, and temperature in 2D sections of the 3D model region; 3D finite-element based gridding and interpolation; drawing selected regions of velocity vectors (projected on principal coordinate planes); and 3D gridded data export files. Installation instructions and a description of all graphic options are presented. A sample SUTRA problem is described and three step-by-step SutraPlot applications are provided. In addition, the methodology and numerical algorithms for the 2D and 3D finite-element based gridding and interpolation, developed for SutraPlot, are described. 1

  8. Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Wei

    Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equationsmore » such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.« less

  9. Comparison of experimental three-band IR detection of buried objects and multiphysics simulations

    NASA Astrophysics Data System (ADS)

    Rabelo, Renato C.; Tilley, Heather P.; Catterlin, Jeffrey K.; Karunasiri, Gamani; Alves, Fabio D. P.

    2018-04-01

    A buried-object detection system composed of a LWIR, a MWIR and a SWIR camera, along with a set of ground and ambient temperature sensors was constructed and tested. The objects were buried in a 1.2x1x0.3 m3 sandbox and surface temperature (using LWIR and MWIR cameras) and reflection (using SWIR camera) were recoded throughout the day. Two objects (aluminum and Teflon) with volume of about 2.5x10-4 m3 , were placed at varying depths during the measurements. Ground temperature sensors buried at three different depths measured the vertical temperature profile within the sandbox, while the weather station recorded the ambient temperature and solar radiation intensity. Images from the three cameras were simultaneously acquired in five-minute intervals throughout many days. An algorithm to postprocess and combine the images was developed in order to maximize the probability of detection by identifying thermal anomalies (temperature contrast) resulting from the presence of the buried object in an otherwise homogeneous medium. A simplified detection metric based on contrast differences was established to allow the evaluation of the image processing method. Finite element simulations were performed, reproducing the experiment conditions and, when possible, incorporated with data coming from actual measurements. Comparisons between experiment and simulation results were performed and the simulation parameters were adjusted until images generated from both methods are matched, aiming at obtaining insights of the buried material properties. Preliminary results show a great potential for detection of shallowburied objects such as land mines and IEDs and possible identification using finite element generated maps fitting measured surface maps.

  10. Application of Finite Element Modeling Methods in Magnetic Resonance Imaging-Based Research and Clinical Management

    NASA Astrophysics Data System (ADS)

    Fwu, Peter Tramyeon

    The medical image is very complex by its nature. Modeling built upon the medical image is challenging due to the lack of analytical solution. Finite element method (FEM) is a numerical technique which can be used to solve the partial differential equations. It utilized the transformation from a continuous domain into solvable discrete sub-domains. In three-dimensional space, FEM has the capability dealing with complicated structure and heterogeneous interior. That makes FEM an ideal tool to approach the medical-image based modeling problems. In this study, I will address the three modeling in (1) photon transport inside the human breast by implanting the radiative transfer equation to simulate the diffuse optical spectroscopy imaging (DOSI) in order to measurement the percent density (PD), which has been proven as a cancer risk factor in mammography. Our goal is to use MRI as the ground truth to optimize the DOSI scanning protocol to get a consistent measurement of PD. Our result shows DOSI measurement is position and depth dependent and proper scanning scheme and body configuration are needed; (2) heat flow in the prostate by implementing the Penne's bioheat equation to evaluate the cooling performance of regional hypothermia during the robot assisted radical prostatectomy for the individual patient in order to achieve the optimal cooling setting. Four factors are taken into account during the simulation: blood abundance, artery perfusion, cooling balloon temperature, and the anatomical distance. The result shows that blood abundance, prostate size, and anatomical distance are significant factors to the equilibrium temperature of neurovascular bundle; (3) shape analysis in hippocampus by using the radial distance mapping, and two registration methods to find the correlation between sub-regional change to the age and cognition performance, which might not reveal in the volumetric analysis. The result gives a fundamental knowledge of normal distribution in young preadolescent children who may be compared to children with, or at risk of, neurological diseases for early diagnosis.

  11. The Role of Multiphysics Simulation in Multidisciplinary Analysis

    NASA Technical Reports Server (NTRS)

    Rifai, Steven M.; Ferencz, Robert M.; Wang, Wen-Ping; Spyropoulos, Evangelos T.; Lawrence, Charles; Melis, Matthew E.

    1998-01-01

    This article describes the applications of the Spectrum(Tm) Solver in Multidisciplinary Analysis (MDA). Spectrum, a multiphysics simulation software based on the finite element method, addresses compressible and incompressible fluid flow, structural, and thermal modeling as well as the interaction between these disciplines. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena. Interaction constraints are enforced in a fully-coupled manner using the augmented-Lagrangian method. Within the multiphysics framework, the finite element treatment of fluids is based on Galerkin-Least-Squares (GLS) method with discontinuity capturing operators. The arbitrary-Lagrangian-Eulerian method is utilized to account for deformable fluid domains. The finite element treatment of solids and structures is based on the Hu-Washizu variational principle. The multiphysics architecture lends itself naturally to high-performance parallel computing. Aeroelastic, propulsion, thermal management and manufacturing applications are presented.

  12. A finite element analysis of viscoelastically damped sandwich plates

    NASA Astrophysics Data System (ADS)

    Ma, B.-A.; He, J.-F.

    1992-01-01

    A finite element analysis associated with an asymptotic solution method for the harmonic flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The element formulation is based on generalization of the discrete Kirchhoff theory (DKT) element formulation. The results obtained with the first order approximation of the asymptotic solution presented here are the same as those obtained by means of the modal strain energy (MSE) method. By taking more terms of the asymptotic solution, with successive calculations and use of the Padé approximants method, accuracy can be improved. The finite element computation has been verified by comparison with an analytical exact solution for rectangular plates with simply supported edges. Results for the same plates with clamped edges are also presented.

  13. Discontinuous dual-primal mixed finite elements for elliptic problems

    NASA Technical Reports Server (NTRS)

    Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo

    2000-01-01

    We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.

  14. New Multigrid Method Including Elimination Algolithm Based on High-Order Vector Finite Elements in Three Dimensional Magnetostatic Field Analysis

    NASA Astrophysics Data System (ADS)

    Hano, Mitsuo; Hotta, Masashi

    A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.

  15. [Chest modelling and automotive accidents].

    PubMed

    Trosseille, Xavier

    2011-11-01

    Automobile development is increasingly based on mathematical modeling. Accurate models of the human body are now available and serve to develop new means of protection. These models used to consist of rigid, articulated bodies but are now made of several million finite elements. They are now capable of predicting some risks of injury. To develop these models, sophisticated tests were conducted on human cadavers. For example, chest modeling started with material characterization and led to complete validation in the automobile environment. Model personalization, based on medical imaging, will permit studies of the behavior and tolerances of the entire population.

  16. Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties.

    PubMed

    Zhang, Jing; Tian, Jiabin; Ta, Na; Huang, Xinsheng; Rao, Zhushi

    2016-08-01

    Finite element method was employed in this study to analyze the change in performance of implantable hearing devices due to the consideration of soft tissues' viscoelasticity. An integrated finite element model of human ear including the external ear, middle ear and inner ear was first developed via reverse engineering and analyzed by acoustic-structure-fluid coupling. Viscoelastic properties of soft tissues in the middle ear were taken into consideration in this model. The model-derived dynamic responses including middle ear and cochlea functions showed a better agreement with experimental data at high frequencies above 3000 Hz than the Rayleigh-type damping. On this basis, a coupled finite element model consisting of the human ear and a piezoelectric actuator attached to the long process of incus was further constructed. Based on the electromechanical coupling analysis, equivalent sound pressure and power consumption of the actuator corresponding to viscoelasticity and Rayleigh damping were calculated using this model. The analytical results showed that the implant performance of the actuator evaluated using a finite element model considering viscoelastic properties gives a lower output above about 3 kHz than does Rayleigh damping model. Finite element model considering viscoelastic properties was more accurate to numerically evaluate implantable hearing devices. © IMechE 2016.

  17. A comparative study of an ABC and an artificial absorber for truncating finite element meshes

    NASA Technical Reports Server (NTRS)

    Oezdemir, T.; Volakis, John L.

    1993-01-01

    The type of mesh termination used in the context of finite element formulations plays a major role on the efficiency and accuracy of the field solution. The performance of an absorbing boundary condition (ABC) and an artificial absorber (a new concept) for terminating the finite element mesh was evaluated. This analysis is done in connection with the problem of scattering by a finite slot array in a thick ground plane. The two approximate mesh truncation schemes are compared with the exact finite element-boundary integral (FEM-BI) method in terms of accuracy and efficiency. It is demonstrated that both approximate truncation schemes yield reasonably accurate results even when the mesh is extended only 0.3 wavelengths away from the array aperture. However, the artificial absorber termination method leads to a substantially more efficient solution. Moreover, it is shown that the FEM-BI method remains quite competitive with the FEM-artificial absorber method when the FFT is used for computing the matrix-vector products in the iterative solution algorithm. These conclusions are indeed surprising and of major importance in electromagnetic simulations based on the finite element method.

  18. A curvilinear, anisotropic, p-version, brick finite element based on geometric entities

    NASA Technical Reports Server (NTRS)

    Hinnant, Howard E.

    1992-01-01

    A 'brick' solid finite element is presently developed on the basis of the p-version analysis, and used to demonstrate the FEM concept of 'geometric entities'. This method eliminates interelement discontinuities between low- and high-order elements, allowing very fine control over the shape-function order in various parts of the model. Attention is given to the illustrative cases of a one-element model of an elliptic pipe, and a square cross-section cantilevered beam.

  19. Pelvic modelling and the comparison between plate position for double pelvic osteotomy using artificial cancellous bone and finite element analysis.

    PubMed

    McCartney, William; MacDonald, Bryan; Ober, Ciprian Andrei; Lostado-Lorza, Rubén; Gómez, Fátima Somovilla

    2018-03-20

    Finite element analysis was used to compare fixation methods for double pelvic osteotomy (DPO). Using 3D scanning a stereolithography (stl) image was produced of a canine pelvis and this was subsequently refined in computer aided design (CAD). Using the CAD files, the images were imported in MSC Marc software to produce a working finite element (FE) model with 3 dimensional tetrahedral elements with linear shaped functions. The dimensions of a precontoured pelvic osteotomy plate with eight screws and a twisted seven screw straight plate were used to build the 2 fixations implants for the FE models. An equivalent load of 300 N was applied progressively on all FE models in order to facilitate its convergence. The load was applied in a distributed manner on the femur-hip joint contact area in order to simulate the actual behavior of the joint. The aim of the present study was to analyze the difference in stiffness and behavior under loading between a lateral vs ventral plate fixation, with unlocked screws and different gap scenarios, for stabilization of a pelvic osteotomy using finite element analysis. From both configurations the maximum displacement of the ventral plate with 7 screws without gap had a value of 1.988 mm, while in the DPO plate had a maximum displacement of 2.191 mm. The load applied for each of the different configurations studied when a gap of 1° was considered and also when a condition of no gap was considered. The ventral plate was stiffer than the lateral plate when a gap was not present. When the gap was closed in the ventral plate, the stiffness increased until a point that remained constant. Ventral plate fixation can be as or more stiff as lateral plate fixation and provides flexible fixation. This behavior should reduce screw loosening. Using ventral plate fixation is recommended to reduce screw loosening or failure.

  20. Modeling of Structural-Acoustic Interaction Using Coupled FE/BE Method and Control of Interior Acoustic Pressure Using Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Shi, Yacheng

    1997-01-01

    A coupled finite element (FE) and boundary element (BE) approach is presented to model full coupled structural/acoustic/piezoelectric systems. The dual reciprocity boundary element method is used so that the natural frequencies and mode shapes of the coupled system can be obtained, and to extend this approach to time dependent problems. The boundary element method is applied to interior acoustic domains, and the results are very accurate when compared with limited exact solutions. Structural-acoustic problems are then analyzed with the coupled finite element/boundary element method, where the finite element method models the structural domain and the boundary element method models the acoustic domain. Results for a system consisting of an isotropic panel and a cubic cavity are in good agreement with exact solutions and experiment data. The response of a composite panel backed cavity is then obtained. The results show that the mass and stiffness of piezoelectric layers have to be considered. The coupled finite element and boundary element equations are transformed into modal coordinates, which is more convenient for transient excitation. Several transient problems are solved based on this formulation. Two control designs, a linear quadratic regulator (LQR) and a feedforward controller, are applied to reduce the acoustic pressure inside the cavity based on the equations in modal coordinates. The results indicate that both controllers can reduce the interior acoustic pressure and the plate deflection.

  1. NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics.

    PubMed

    Johnsen, Stian F; Taylor, Zeike A; Clarkson, Matthew J; Hipwell, John; Modat, Marc; Eiben, Bjoern; Han, Lianghao; Hu, Yipeng; Mertzanidou, Thomy; Hawkes, David J; Ourselin, Sebastien

    2015-07-01

    NiftySim, an open-source finite element toolkit, has been designed to allow incorporation of high-performance soft tissue simulation capabilities into biomedical applications. The toolkit provides the option of execution on fast graphics processing unit (GPU) hardware, numerous constitutive models and solid-element options, membrane and shell elements, and contact modelling facilities, in a simple to use library. The toolkit is founded on the total Lagrangian explicit dynamics (TLEDs) algorithm, which has been shown to be efficient and accurate for simulation of soft tissues. The base code is written in C[Formula: see text], and GPU execution is achieved using the nVidia CUDA framework. In most cases, interaction with the underlying solvers can be achieved through a single Simulator class, which may be embedded directly in third-party applications such as, surgical guidance systems. Advanced capabilities such as contact modelling and nonlinear constitutive models are also provided, as are more experimental technologies like reduced order modelling. A consistent description of the underlying solution algorithm, its implementation with a focus on GPU execution, and examples of the toolkit's usage in biomedical applications are provided. Efficient mapping of the TLED algorithm to parallel hardware results in very high computational performance, far exceeding that available in commercial packages. The NiftySim toolkit provides high-performance soft tissue simulation capabilities using GPU technology for biomechanical simulation research applications in medical image computing, surgical simulation, and surgical guidance applications.

  2. Finite element design procedure for correcting the coining die profiles

    NASA Astrophysics Data System (ADS)

    Alexandrino, Paulo; Leitão, Paulo J.; Alves, Luis M.; Martins, Paulo A. F.

    2018-05-01

    This paper presents a new finite element based design procedure for correcting the coining die profiles in order to optimize the distribution of pressure and the alignment of the resultant vertical force at the end of the die stroke. The procedure avoids time consuming and costly try-outs, does not interfere with the creative process of the sculptors and extends the service life of the coining dies by significantly decreasing the applied pressure and bending moments. The numerical simulations were carried out in a computer program based on the finite element flow formulation that is currently being developed by the authors in collaboration with the Portuguese Mint. A new experimental procedure based on the stack compression test is also proposed for determining the stress-strain curve of the materials directly from the coin blanks.

  3. Dynamic characteristics of a wind turbine blade using 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Carr, Jennifer; Lundstrom, Troy; Niezrecki, Christopher; Avitabile, Peter; Slattery, Micheal

    2012-04-01

    Digital image correlation (DIC) has been becoming increasingly popular as a means to perform structural health monitoring because of its full-field, non-contacting measurement ability. In this paper, 3D DIC techniques are used to identify the mode shapes of a wind turbine blade. The blade containing a handful of optical targets is excited at different frequencies using a shaker as well as a pluck test. The response is recorded using two PHOTRON™ high speed cameras. Time domain data is transferred to the frequency domain to extract mode shapes and natural frequencies using an Operational Modal Approach. A finite element model of the blade is also used to compare the mode shapes. Furthermore, a modal hammer impact test is performed using a more conventional approach with an accelerometer. A comparison of mode shapes from the photogrammetric, finite element, and impact test approaches are presented to show the accuracy of the DIC measurement approach.

  4. A Coupled/Uncoupled Computational Scheme for Deformation and Fatigue Damage Analysis of Unidirectional Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Wilt, Thomas E.; Arnold, Steven M.; Saleeb, Atef F.

    1997-01-01

    A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum-based fatigue damage model for unidirectional metal-matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress that fully couples the fatigue damage calculations with the finite element deformation solution. Two applications using the fatigue damage algorithm are presented. First, an axisymmetric stress analysis of a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. Second, a micromechanics analysis of a fiber/matrix unit cell using both the finite element method and the generalized method of cells (GMC). Results are presented in the form of S-N curves and damage distribution plots.

  5. The Relation of Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1976-01-01

    Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.

  6. Toward patient-specific articular contact mechanics

    PubMed Central

    Ateshian, Gerard A.; Henak, Corinne R.; Weiss, Jeffrey A.

    2015-01-01

    The mechanics of contacting cartilage layers is fundamentally important to understanding the development, homeostasis and pathology of diarthrodial joints. Because of the highly nonlinear nature of both the materials and the contact problem itself, numerical methods such as the finite element method are typically incorporated to obtain solutions. Over the course of five decades, we have moved from an initial qualitative understanding of articular cartilage material behavior to the ability to perform complex, three-dimensional contact analysis, including multiphasic material representations. This history includes the development of analytical and computational contact analysis methods that now provide the ability to perform highly nonlinear analyses. Numerical implementations of contact analysis based on the finite element method are rapidly advancing and will soon enable patient-specific analysis of joint contact mechanics using models based on medical image data. In addition to contact stress on the articular surfaces, these techniques can predict variations in strain and strain through the cartilage layers, providing the basis to predict damage and failure. This opens up exciting areas for future research and application to patient-specific diagnosis and treatment planning applied to a variety of pathologies that affect joint function and cartilage homeostasis. PMID:25698236

  7. Finite Element Modelling and Analysis of Conventional Pultrusion Processes

    NASA Astrophysics Data System (ADS)

    Akishin, P.; Barkanov, E.; Bondarchuk, A.

    2015-11-01

    Pultrusion is one of many composite manufacturing techniques and one of the most efficient methods for producing fiber reinforced polymer composite parts with a constant cross-section. Numerical simulation is helpful for understanding the manufacturing process and developing scientific means for the pultrusion tooling design. Numerical technique based on the finite element method has been developed for the simulation of pultrusion processes. It uses the general purpose finite element software ANSYS Mechanical. It is shown that the developed technique predicts the temperature and cure profiles, which are in good agreement with those published in the open literature.

  8. Verification of a Finite Element Model for Pyrolyzing Ablative Materials

    NASA Technical Reports Server (NTRS)

    Risch, Timothy K.

    2017-01-01

    Ablating thermal protection system (TPS) materials have been used in many reentering spacecraft and in other applications such as rocket nozzle linings, fire protection materials, and as countermeasures for directed energy weapons. The introduction of the finite element model to the analysis of ablation has arguably resulted in improved computational capabilities due the flexibility and extended applicability of the method, especially to complex geometries. Commercial finite element codes often provide enhanced capability compared to custom, specially written programs based on versatility, usability, pre- and post-processing, grid generation, total life-cycle costs, and speed.

  9. Application of finite-element methods to dynamic analysis of flexible spatial and co-planar linkage systems, part 2

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven

    1989-01-01

    An approach is described to modeling the flexibility effects in spatial mechanisms and manipulator systems. The method is based on finite element representations of the individual links in the system. However, it should be noted that conventional finite element methods and software packages will not handle the highly nonlinear dynamic behavior of these systems which results form their changing geometry. In order to design high-performance lightweight systems and their control systems, good models of their dynamic behavior which include the effects of flexibility are required.

  10. Heterogeneous structure and surface tension effects on mechanical response in pulmonary acinus: A finite element analysis.

    PubMed

    Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo

    2018-01-20

    The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. How Do Tissues Respond and Adapt to Stresses Around a Prosthesis? A Primer on Finite Element Stress Analysis for Orthopaedic Surgeons

    PubMed Central

    Brand, Richard A; Stanford, Clark M; Swan, Colby C

    2003-01-01

    Joint implant design clearly affects long-term outcome. While many implant designs have been empirically-based, finite element analysis has the potential to identify beneficial and deleterious features prior to clinical trials. Finite element analysis is a powerful analytic tool allowing computation of the stress and strain distribution throughout an implant construct. Whether it is useful depends upon many assumptions and details of the model. Since ultimate failure is related to biological factors in addition to mechanical, and since the mechanical causes of failure are related to load history, rather than a few loading conditions, chief among them is whether the stresses or strains under limited loading conditions relate to outcome. Newer approaches can minimize this and the many other model limitations. If the surgeon is to critically and properly interpret the results in scientific articles and sales literature, he or she must have a fundamental understanding of finite element analysis. We outline here the major capabilities of finite element analysis, as well as the assumptions and limitations. PMID:14575244

  12. Fatigue assessment of an existing steel bridge by finite element modelling and field measurements

    NASA Astrophysics Data System (ADS)

    Kwad, J.; Alencar, G.; Correia, J.; Jesus, A.; Calçada, R.; Kripakaran, P.

    2017-05-01

    The evaluation of fatigue life of structural details in metallic bridges is a major challenge for bridge engineers. A reliable and cost-effective approach is essential to ensure appropriate maintenance and management of these structures. Typically, local stresses predicted by a finite element model of the bridge are employed to assess the fatigue life of fatigue-prone details. This paper illustrates an approach for fatigue assessment based on measured data for a connection in an old bascule steel bridge located in Exeter (UK). A finite element model is first developed from the design information. The finite element model of the bridge is calibrated using measured responses from an ambient vibration test. The stress time histories are calculated through dynamic analysis of the updated finite element model. Stress cycles are computed through the rainflow counting algorithm, and the fatigue prone details are evaluated using the standard SN curves approach and the Miner’s rule. Results show that the proposed approach can estimate the fatigue damage of a fatigue prone detail in a structure using measured strain data.

  13. A method of selecting grid size to account for Hertz deformation in finite element analysis of spur gears

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Chao, C. H. C.

    1981-01-01

    A method of selecting grid size for the finite element analysis of gear tooth deflection is presented. The method is based on a finite element study of two cylinders in line contact, where the criterion for establishing element size was that there be agreement with the classical Hertzian solution for deflection. The results are applied to calculate deflection for the gear specimen used in the NASA spur gear test rig. Comparisons are made between the present results and the results of two other methods of calculation. The results have application in design of gear tooth profile modifications to reduce noise and dynamic loads.

  14. Three-dimensional finite element analysis for high velocity impact. [of projectiles from space debris

    NASA Technical Reports Server (NTRS)

    Chan, S. T. K.; Lee, C. H.; Brashears, M. R.

    1975-01-01

    A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.

  15. Finite element analysis of two disk rotor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Harsh Kumar

    A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding amore » relationship between natural whirl frequencies and rotation of the rotor.« less

  16. Finite element mesh refinement criteria for stress analysis

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.

    1990-01-01

    This paper discusses procedures for finite-element mesh selection and refinement. The objective is to improve accuracy. The procedures are based on (1) the minimization of the stiffness matrix race (optimizing node location); (2) the use of h-version refinement (rezoning, element size reduction, and increasing the number of elements); and (3) the use of p-version refinement (increasing the order of polynomial approximation of the elements). A step-by-step procedure of mesh selection, improvement, and refinement is presented. The criteria for 'goodness' of a mesh are based on strain energy, displacement, and stress values at selected critical points of a structure. An analysis of an aircraft lug problem is presented as an example.

  17. A finite element based method for solution of optimal control problems

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.; Calise, Anthony J.

    1989-01-01

    A temporal finite element based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables that are expanded in terms of elemental values and simple shape functions. Unlike other variational approaches to optimal control problems, however, time derivatives of the states and costates do not appear in the governing variational equation. Instead, the only quantities whose time derivatives appear therein are virtual states and virtual costates. Also noteworthy among characteristics of the finite element formulation is the fact that in the algebraic equations which contain costates, they appear linearly. Thus, the remaining equations can be solved iteratively without initial guesses for the costates; this reduces the size of the problem by about a factor of two. Numerical results are presented herein for an elementary trajectory optimization problem which show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The goal is to evaluate the feasibility of this approach for real-time guidance applications. To this end, a simplified two-stage, four-state model for an advanced launch vehicle application is presented which is suitable for finite element solution.

  18. Analysis of wave motion in one-dimensional structures through fast-Fourier-transform-based wavelet finite element method

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping

    2017-07-01

    This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.

  19. Finite Element Model Development and Validation for Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.

  20. Improved Life Prediction of Turbine Engine Components Using a Finite Element Based Software Called Zencrack

    DTIC Science & Technology

    2003-09-01

    application .................................................. 5-42 5.10 Different materials within crack-block...5-30 Figure 5-29 - Application of required user edge node sets... applications . Users have at their disposal all of the capabilities within these finite element programs and may, if desired, include any number of

  1. SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)

    EPA Science Inventory

    Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...

  2. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.

    PubMed

    Walckiers, Grégoire; Fuchs, Benjamin; Thiran, Jean-Philippe; Mosig, Juan R; Pollo, Claudio

    2010-01-30

    Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%). (c) 2009 Elsevier B.V. All rights reserved.

  3. Evaluation of the clavicular tunnel placement on coracoclavicular ligament reconstruction for acromioclavicular dislocations: a finite element analysis.

    PubMed

    Kocadal, Onur; Yüksel, Korcan; Güven, Melih

    2018-01-27

    The two-tunnel coracoclavicular ligament reconstruction (CLR) technique is one of the treatment approaches commonly used in the surgical treatment of acromioclavicular (AC) injuries. Clavicular tunnel malposition is one of the major causes of failure in coracoclavicular ligament reconstruction. The main purpose of this study was to investigate the effects of clavicular tunnel placement on tendon loading in the CLR technique with finite element analysis. Models of clavicle and scapula were constructed using computerized tomography images. Two clavicular bone tunnel reconstruction models were created with the tendon passing through the conoid and trapezoid tunnels. Four models based on the tunnel ratio (TR) method and defined as primary, anatomic, medialized, and lateralized were constructed to evaluate the effect of tunnel placement on loading conditions during tendon graft. All models were loaded by insertion from the trapezius and sternocleidomastoid muscles. The loading on the tendon were evaluated with the finite element analysis. The highest load value measured on the tendon was in the anatomic model (0.789 kPa), and the lowest load value (0.598 kPa) was measured in the lateralized tunnel model. The load value of the primary model was (0.657 kPa), and the medialized model's value was (0.752 kPa). In two-tunnel CLR technique, tendon loadings are related to tunnel placement. Medialized tunnel placement increases tendon loading. The TR method may be an appropriate option for determining tunnel placement.

  4. Studies of biaxial mechanical properties and nonlinear finite element modeling of skin.

    PubMed

    Shang, Xituan; Yen, Michael R T; Gaber, M Waleed

    2010-06-01

    The objective of this research is to conduct mechanical property studies of skin from two individual but potentially connected aspects. One is to determine the mechanical properties of the skin experimentally by biaxial tests, and the other is to use the finite element method to model the skin properties. Dynamic biaxial tests were performed on 16 pieces of abdominal skin specimen from rats. Typical biaxial stress-strain responses show that skin possesses anisotropy, nonlinearity and hysteresis. To describe the stress-strain relationship in forms of strain energy function, the material constants of each specimen were obtained and the results show a high correlation between theory and experiments. Based on the experimental results, a finite element model of skin was built to model the skin's special properties including anisotropy and nonlinearity. This model was based on Arruda and Boyce's eight-chain model and Bischoff et al.'s finite element model of skin. The simulation results show that the isotropic, nonlinear eight-chain model could predict the skin's anisotropic and nonlinear responses to biaxial loading by the presence of an anisotropic prestress state.

  5. Avalanches, loading and finite size effects in 2D amorphous plasticity: results from a finite element model

    NASA Astrophysics Data System (ADS)

    Sandfeld, Stefan; Budrikis, Zoe; Zapperi, Stefano; Fernandez Castellanos, David

    2015-02-01

    Crystalline plasticity is strongly interlinked with dislocation mechanics and nowadays is relatively well understood. Concepts and physical models of plastic deformation in amorphous materials on the other hand—where the concept of linear lattice defects is not applicable—still are lagging behind. We introduce an eigenstrain-based finite element lattice model for simulations of shear band formation and strain avalanches. Our model allows us to study the influence of surfaces and finite size effects on the statistics of avalanches. We find that even with relatively complex loading conditions and open boundary conditions, critical exponents describing avalanche statistics are unchanged, which validates the use of simpler scalar lattice-based models to study these phenomena.

  6. Advanced composites structural concepts and materials technologies for primary aircraft structures: Structural response and failure analysis

    NASA Technical Reports Server (NTRS)

    Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.

  7. Finite element method framework for RF-based through-the-wall mapping

    NASA Astrophysics Data System (ADS)

    Campos, Rafael Saraiva; Lovisolo, Lisandro; de Campos, Marcello Luiz R.

    2017-05-01

    Radiofrequency (RF) Through-the-Wall Mapping (TWM) employs techniques originally applied in X-Ray Computerized Tomographic Imaging to map obstacles behind walls. It aims to provide valuable information for rescuing efforts in damaged buildings, as well as for military operations in urban scenarios. This work defines a Finite Element Method (FEM) based framework to allow fast and accurate simulations of the reconstruction of floors blueprints, using Ultra High-Frequency (UHF) signals at three different frequencies (500 MHz, 1 GHz and 2 GHz). To the best of our knowledge, this is the first use of FEM in a TWM scenario. This framework allows quick evaluation of different algorithms without the need to assemble a full test setup, which might not be available due to budgetary and time constraints. Using this, the present work evaluates a collection of reconstruction methods (Filtered Backprojection Reconstruction, Direct Fourier Reconstruction, Algebraic Reconstruction and Simultaneous Iterative Reconstruction) under a parallel-beam acquisition geometry for different spatial sampling rates, number of projections, antenna gains and operational frequencies. The use of multiple frequencies assesses the trade-off between higher resolution at shorter wavelengths and lower through-the-wall penetration. Considering all the drawbacks associated with such a complex problem, a robust and reliable computational setup based on a flexible method such as FEM can be very useful.

  8. Single-trabecula building block for large-scale finite element models of cancellous bone.

    PubMed

    Dagan, D; Be'ery, M; Gefen, A

    2004-07-01

    Recent development of high-resolution imaging of cancellous bone allows finite element (FE) analysis of bone tissue stresses and strains in individual trabeculae. However, specimen-specific stress/strain analyses can include effects of anatomical variations and local damage that can bias the interpretation of the results from individual specimens with respect to large populations. This study developed a standard (generic) 'building-block' of a trabecula for large-scale FE models. Being parametric and based on statistics of dimensions of ovine trabeculae, this building block can be scaled for trabecular thickness and length and be used in commercial or custom-made FE codes to construct generic, large-scale FE models of bone, using less computer power than that currently required to reproduce the accurate micro-architecture of trabecular bone. Orthogonal lattices constructed with this building block, after it was scaled to trabeculae of the human proximal femur, provided apparent elastic moduli of approximately 150 MPa, in good agreement with experimental data for the stiffness of cancellous bone from this site. Likewise, lattices with thinner, osteoporotic-like trabeculae could predict a reduction of approximately 30% in the apparent elastic modulus, as reported in experimental studies of osteoporotic femora. Based on these comparisons, it is concluded that the single-trabecula element developed in the present study is well-suited for representing cancellous bone in large-scale generic FE simulations.

  9. Utilization of a hybrid finite-element based registration method to quantify heterogeneous tumor response for adaptive treatment for lung cancer patients

    NASA Astrophysics Data System (ADS)

    Sharifi, Hoda; Zhang, Hong; Bagher-Ebadian, Hassan; Lu, Wei; Ajlouni, Munther I.; Jin, Jian-Yue; (Spring Kong, Feng-Ming; Chetty, Indrin J.; Zhong, Hualiang

    2018-03-01

    Tumor response to radiation treatment (RT) can be evaluated from changes in metabolic activity between two positron emission tomography (PET) images. Activity changes at individual voxels in pre-treatment PET images (PET1), however, cannot be derived until their associated PET-CT (CT1) images are appropriately registered to during-treatment PET-CT (CT2) images. This study aimed to investigate the feasibility of using deformable image registration (DIR) techniques to quantify radiation-induced metabolic changes on PET images. Five patients with non-small-cell lung cancer (NSCLC) treated with adaptive radiotherapy were considered. PET-CTs were acquired two weeks before RT and 18 fractions after the start of RT. DIR was performed from CT1 to CT2 using B-Spline and diffeomorphic Demons algorithms. The resultant displacements in the tumor region were then corrected using a hybrid finite element method (FEM). Bitmap masks generated from gross tumor volumes (GTVs) in PET1 were deformed using the four different displacement vector fields (DVFs). The conservation of total lesion glycolysis (TLG) in GTVs was used as a criterion to evaluate the quality of these registrations. The deformed masks were united to form a large mask which was then partitioned into multiple layers from center to border. The averages of SUV changes over all the layers were 1.0  ±  1.3, 1.0  ±  1.2, 0.8  ±  1.3, 1.1  ±  1.5 for the B-Spline, B-Spline  +  FEM, Demons and Demons  +  FEM algorithms, respectively. TLG changes before and after mapping using B-Spline, Demons, hybrid-B-Spline, and hybrid-Demons registrations were 20.2%, 28.3%, 8.7%, and 2.2% on average, respectively. Compared to image intensity-based DIR algorithms, the hybrid FEM modeling technique is better in preserving TLG and could be useful for evaluation of tumor response for patients with regressing tumors.

  10. Updating finite element dynamic models using an element-by-element sensitivity methodology

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel; Hemez, Francois M.

    1993-01-01

    A sensitivity-based methodology for improving the finite element model of a given structure using test modal data and a few sensors is presented. The proposed method searches for both the location and sources of the mass and stiffness errors and does not interfere with the theory behind the finite element model while correcting these errors. The updating algorithm is derived from the unconstrained minimization of the squared L sub 2 norms of the modal dynamic residuals via an iterative two-step staggered procedure. At each iteration, the measured mode shapes are first expanded assuming that the model is error free, then the model parameters are corrected assuming that the expanded mode shapes are exact. The numerical algorithm is implemented in an element-by-element fashion and is capable of 'zooming' on the detected error locations. Several simulation examples which demonstate the potential of the proposed methodology are discussed.

  11. Thermal analysis of fused deposition modeling process using infrared thermography imaging and finite element modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Xunfei; Hsieh, Sheng-Jen

    2017-05-01

    After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.

  12. DOUAR: A new three-dimensional creeping flow numerical model for the solution of geological problems

    NASA Astrophysics Data System (ADS)

    Braun, Jean; Thieulot, Cédric; Fullsack, Philippe; DeKool, Marthijn; Beaumont, Christopher; Huismans, Ritske

    2008-12-01

    We present a new finite element code for the solution of the Stokes and energy (or heat transport) equations that has been purposely designed to address crustal-scale to mantle-scale flow problems in three dimensions. Although it is based on an Eulerian description of deformation and flow, the code, which we named DOUAR ('Earth' in Breton language), has the ability to track interfaces and, in particular, the free surface, by using a dual representation based on a set of particles placed on the interface and the computation of a level set function on the nodes of the finite element grid, thus ensuring accuracy and efficiency. The code also makes use of a new method to compute the dynamic Delaunay triangulation connecting the particles based on non-Euclidian, curvilinear measure of distance, ensuring that the density of particles remains uniform and/or dynamically adapted to the curvature of the interface. The finite element discretization is based on a non-uniform, yet regular octree division of space within a unit cube that allows efficient adaptation of the finite element discretization, i.e. in regions of strong velocity gradient or high interface curvature. The finite elements are cubes (the leaves of the octree) in which a q1- p0 interpolation scheme is used. Nodal incompatibilities across faces separating elements of differing size are dealt with by introducing linear constraints among nodal degrees of freedom. Discontinuities in material properties across the interfaces are accommodated by the use of a novel method (which we called divFEM) to integrate the finite element equations in which the elemental volume is divided by a local octree to an appropriate depth (resolution). A variety of rheologies have been implemented including linear, non-linear and thermally activated creep and brittle (or plastic) frictional deformation. A simple smoothing operator has been defined to avoid checkerboard oscillations in pressure that tend to develop when using a highly irregular octree discretization and the tri-linear (or q1- p0) finite element. A three-dimensional cloud of particles is used to track material properties that depend on the integrated history of deformation (the integrated strain, for example); its density is variable and dynamically adapted to the computed flow. The large system of algebraic equations that results from the finite element discretization and linearization of the basic partial differential equations is solved using a multi-frontal massively parallel direct solver that can efficiently factorize poorly conditioned systems resulting from the highly non-linear rheology and the presence of the free surface. The code is almost entirely parallelized. We present example results including the onset of a Rayleigh-Taylor instability, the indentation of a rigid-plastic material and the formation of a fold beneath a free eroding surface, that demonstrate the accuracy, efficiency and appropriateness of the new code to solve complex geodynamical problems in three dimensions.

  13. ANSYS duplicate finite-element checker routine

    NASA Technical Reports Server (NTRS)

    Ortega, R.

    1995-01-01

    An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.

  14. A voxel-based finite element model for the prediction of bladder deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai Xiangfei; Herk, Marcel van; Hulshof, Maarten C. C. M.

    2012-01-15

    Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classicalmore » FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to manual contours and <0.02 cm difference in mean standard deviation of residual errors). The average equation solving time (without manual intervention) for the first two types of hexahedral meshes increased to 2.3 h and 2.6 h compared to the 1.1 h needed for the tetrahedral mesh, however, the low-resolution nonuniform hexahedral mesh dramatically decreased the equation solving time to 3 min without reducing accuracy. Conclusions: Voxel-based mesh generation allows fast, automatic, and robust creation of finite element bladder models directly from binary segmentation images without user intervention. Even the low-resolution voxel-based hexahedral mesh yields comparable accuracy in bladder shape prediction and more than 20 times faster in computational speed compared to the tetrahedral mesh. This approach makes it more feasible and accessible to apply FE method to model bladder deformation in adaptive radiotherapy.« less

  15. Comparison of Nonlinear Random Response Using Equivalent Linearization and Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2000-01-01

    A recently developed finite-element-based equivalent linearization approach for the analysis of random vibrations of geometrically nonlinear multiple degree-of-freedom structures is validated. The validation is based on comparisons with results from a finite element based numerical simulation analysis using a numerical integration technique in physical coordinates. In particular, results for the case of a clamped-clamped beam are considered for an extensive load range to establish the limits of validity of the equivalent linearization approach.

  16. Development and Validation of a Statistical Shape Modeling-Based Finite Element Model of the Cervical Spine Under Low-Level Multiple Direction Loading Conditions

    PubMed Central

    Bredbenner, Todd L.; Eliason, Travis D.; Francis, W. Loren; McFarland, John M.; Merkle, Andrew C.; Nicolella, Daniel P.

    2014-01-01

    Cervical spinal injuries are a significant concern in all trauma injuries. Recent military conflicts have demonstrated the substantial risk of spinal injury for the modern warfighter. Finite element models used to investigate injury mechanisms often fail to examine the effects of variation in geometry or material properties on mechanical behavior. The goals of this study were to model geometric variation for a set of cervical spines, to extend this model to a parametric finite element model, and, as a first step, to validate the parametric model against experimental data for low-loading conditions. Individual finite element models were created using cervical spine (C3–T1) computed tomography data for five male cadavers. Statistical shape modeling (SSM) was used to generate a parametric finite element model incorporating variability of spine geometry, and soft-tissue material property variation was also included. The probabilistic loading response of the parametric model was determined under flexion-extension, axial rotation, and lateral bending and validated by comparison to experimental data. Based on qualitative and quantitative comparison of the experimental loading response and model simulations, we suggest that the model performs adequately under relatively low-level loading conditions in multiple loading directions. In conclusion, SSM methods coupled with finite element analyses within a probabilistic framework, along with the ability to statistically validate the overall model performance, provide innovative and important steps toward describing the differences in vertebral morphology, spinal curvature, and variation in material properties. We suggest that these methods, with additional investigation and validation under injurious loading conditions, will lead to understanding and mitigating the risks of injury in the spine and other musculoskeletal structures. PMID:25506051

  17. Finite Element Simulations of Kaikoura, NZ Earthquake using DInSAR and High-Resolution DSMs

    NASA Astrophysics Data System (ADS)

    Barba, M.; Willis, M. J.; Tiampo, K. F.; Glasscoe, M. T.; Clark, M. K.; Zekkos, D.; Stahl, T. A.; Massey, C. I.

    2017-12-01

    Three-dimensional displacements from the Kaikoura, NZ, earthquake in November 2016 are imaged here using Differential Interferometric Synthetic Aperture Radar (DInSAR) and high-resolution Digital Surface Model (DSM) differencing and optical pixel tracking. Full-resolution co- and post-seismic interferograms of Sentinel-1A/B images are constructed using the JPL ISCE software. The OSU SETSM software is used to produce repeat 0.5 m posting DSMs from commercial satellite imagery, which are supplemented with UAV derived DSMs over the Kaikoura fault rupture on the eastern South Island, NZ. DInSAR provides long-wavelength motions while DSM differencing and optical pixel tracking provides both horizontal and vertical near fault motions, improving the modeling of shallow rupture dynamics. JPL GeoFEST software is used to perform finite element modeling of the fault segments and slip distributions and, in turn, the associated asperity distribution. The asperity profile is then used to simulate event rupture, the spatial distribution of stress drop, and the associated stress changes. Finite element modeling of slope stability is accomplished using the ultra high-resolution UAV derived DSMs to examine the evolution of post-earthquake topography, landslide dynamics and volumes. Results include new insights into shallow dynamics of fault slip and partitioning, estimates of stress change, and improved understanding of its relationship with the associated seismicity, deformation, and triggered cascading hazards.

  18. Subspace-based optimization method for inverse scattering problems with an inhomogeneous background medium

    NASA Astrophysics Data System (ADS)

    Chen, Xudong

    2010-07-01

    This paper proposes a version of the subspace-based optimization method to solve the inverse scattering problem with an inhomogeneous background medium where the known inhomogeneities are bounded in a finite domain. Although the background Green's function at each discrete point in the computational domain is not directly available in an inhomogeneous background scenario, the paper uses the finite element method to simultaneously obtain the Green's function at all discrete points. The essence of the subspace-based optimization method is that part of the contrast source is determined from the spectrum analysis without using any optimization, whereas the orthogonally complementary part is determined by solving a lower dimension optimization problem. This feature significantly speeds up the convergence of the algorithm and at the same time makes it robust against noise. Numerical simulations illustrate the efficacy of the proposed algorithm. The algorithm presented in this paper finds wide applications in nondestructive evaluation, such as through-wall imaging.

  19. Contact stresses, pressure and area in a fixed-bearing total ankle replacement: a finite element analysis.

    PubMed

    Martinelli, Nicolo; Baretta, Silvia; Pagano, Jenny; Bianchi, Alberto; Villa, Tomaso; Casaroli, Gloria; Galbusera, Fabio

    2017-11-25

    Mobile-bearing ankle implants with good clinical results continued to increase the popularity of total ankle arthroplasty to address endstage ankle osteoarthritis preserving joint movement. Alternative solutions used fixed-bearing designs, which increase stability and reduce the risk of bearing dislocation, but with a theoretical increase of contact stresses leading to a higher polyethylene wear. The purpose of this study was to investigate the contact stresses, pressure and area in the polyethylene component of a new total ankle replacement with a fixed-bearing design, using 3D finite element analysis. A three-dimensional finite element model of the Zimmer Trabecular Metal Total Ankle was developed and assembled based on computed tomography images. Three different sizes of the polyethylene insert were modeled, and a finite element analysis was conducted to investigate the contact pressure, the von Mises stresses and the contact area of the polyethylene component during the stance phase of the gait cycle. The peak value of pressure was found in the anterior region of the articulating surface, where it reached 19.8 MPa at 40% of the gait cycle. The average contact pressure during the stance phase was 6.9 MPa. The maximum von Mises stress of 14.1 MPa was reached at 40% of the gait cycle in the anterior section. In the central section, the maximum von Mises stress of 10.8 MPa was reached at 37% of the gait cycle, whereas in the posterior section the maximum stress of 5.4 MPa was reached at the end of the stance phase. The new fixed-bearing total ankle replacement showed a safe mechanical behavior and many clinical advantages. However, advanced models to quantitatively estimate the wear are need. To the light of the clinical advantages, we conclude that the presented prosthesis is a good alternative to the other products present in the market.

  20. Generalization of mixed multiscale finite element methods with applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C S

    Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixedmore » multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii« less

  1. Inverse axial mounting stiffness design for lithographic projection lenses.

    PubMed

    Wen-quan, Yuan; Hong-bo, Shang; Wei, Zhang

    2014-09-01

    In order to balance axial mounting stiffness of lithographic projection lenses and the image quality under dynamic working conditions, an easy inverse axial mounting stiffness design method is developed in this article. Imaging quality deterioration at the wafer under different axial vibration levels is analyzed. The desired image quality can be determined according to practical requirements, and axial vibrational tolerance of each lens is solved with the damped least-squares method. Based on adaptive interval adjustment, a binary search algorithm, and the finite element method, the axial mounting stiffness of each lens can be traveled in a large interval, and converges to a moderate numerical solution which makes the axial vibrational amplitude of the lens converge to its axial vibrational tolerance. Model simulation is carried out to validate the effectiveness of the method.

  2. Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Sobel, Eric; Jiang, Huabei

    2009-11-01

    We present for the first time in vivo full three-dimensional (3-D) photoacoustic tomography (PAT) of the distal interphalangeal joint in a human subject. Both absorbed energy density and absorption coefficient images of the joint are quantitatively obtained using our finite-element-based photoacoustic image reconstruction algorithm coupled with the photon diffusion equation. The results show that major anatomical features in the joint along with the side arteries can be imaged with a 1-MHz transducer in a spherical scanning geometry. In addition, the cartilages associated with the joint can be quantitatively differentiated from the phalanx. This in vivo study suggests that the 3-D PAT method described has the potential to be used for early diagnosis of joint diseases such as osteoarthritis and rheumatoid arthritis.

  3. Creating a Test Validated Structural Dynamic Finite Element Model of the Multi-Utility Technology Test Bed Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truong, Samson S.

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test Bed, X-56A, aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of X-56A. The ground vibration test validated structural dynamic finite element model of the X-56A is created in this study. The structural dynamic finite element model of the X-56A is improved using a model tuning tool. In this study, two different weight configurations of the X-56A have been improved in a single optimization run.

  4. A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: A dynamic variational multiscale approach [A simple, stable, and accurate tetrahedral finite element for transient, nearly incompressible, linear and nonlinear elasticity: A dynamic variational multiscale approach

    DOE PAGES

    Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...

    2015-11-12

    Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less

  5. A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: A dynamic variational multiscale approach [A simple, stable, and accurate tetrahedral finite element for transient, nearly incompressible, linear and nonlinear elasticity: A dynamic variational multiscale approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi

    Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less

  6. Symmetric tridiagonal structure preserving finite element model updating problem for the quadratic model

    NASA Astrophysics Data System (ADS)

    Rakshit, Suman; Khare, Swanand R.; Datta, Biswa Nath

    2018-07-01

    One of the most important yet difficult aspect of the Finite Element Model Updating Problem is to preserve the finite element inherited structures in the updated model. Finite element matrices are in general symmetric, positive definite (or semi-definite) and banded (tridiagonal, diagonal, penta-diagonal, etc.). Though a large number of papers have been published in recent years on various aspects of solutions of this problem, papers dealing with structure preservation almost do not exist. A novel optimization based approach that preserves the symmetric tridiagonal structures of the stiffness and damping matrices is proposed in this paper. An analytical expression for the global minimum solution of the associated optimization problem along with the results of numerical experiments obtained by both the analytical expressions and by an appropriate numerical optimization algorithm are presented. The results of numerical experiments support the validity of the proposed method.

  7. Failure Behavior Characterization of Mo-Modified Ti Surface by Impact Test and Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Qin, Jianfeng; Zhang, Xiangyu; Lin, Naiming; Huang, Xiaobo; Tang, Bin

    2015-07-01

    Using the impact test and finite element simulation, the failure behavior of the Mo-modified layer on pure Ti was investigated. In the impact test, four loads of 100, 300, 500, and 700 N and 104 impacts were adopted. The three-dimensional residual impact dents were examined using an optical microscope (Olympus-DSX500i), indicating that the impact resistance of the Ti surface was improved. Two failure modes cohesive and wearing were elucidated by electron backscatter diffraction and energy-dispersive spectrometer performed in a field-emission scanning electron microscope. Through finite element forward analysis performed at a typical impact load of 300 N, stress-strain distributions in the Mo-modified Ti were quantitatively determined. In addition, the failure behavior of the Mo-modified layer was determined and an ideal failure model was proposed for high-load impact, based on the experimental and finite element forward analysis results.

  8. Free Mesh Method: fundamental conception, algorithms and accuracy study

    PubMed Central

    YAGAWA, Genki

    2011-01-01

    The finite element method (FEM) has been commonly employed in a variety of fields as a computer simulation method to solve such problems as solid, fluid, electro-magnetic phenomena and so on. However, creation of a quality mesh for the problem domain is a prerequisite when using FEM, which becomes a major part of the cost of a simulation. It is natural that the concept of meshless method has evolved. The free mesh method (FMM) is among the typical meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, especially on parallel processors. FMM is an efficient node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm for the finite element calculations. In this paper, FMM and its variation are reviewed focusing on their fundamental conception, algorithms and accuracy. PMID:21558752

  9. ESCHER: An interactive mesh-generating editor for preparing finite-element input

    NASA Technical Reports Server (NTRS)

    Oakes, W. R., Jr.

    1984-01-01

    ESCHER is an interactive mesh generation and editing program designed to help the user create a finite-element mesh, create additional input for finite-element analysis, including initial conditions, boundary conditions, and slidelines, and generate a NEUTRAL FILE that can be postprocessed for input into several finite-element codes, including ADINA, ADINAT, DYNA, NIKE, TSAAS, and ABUQUS. Two important ESCHER capabilities, interactive geometry creation and mesh archival storge are described in detail. Also described is the interactive command language and the use of interactive graphics. The archival storage and restart file is a modular, entity-based mesh data file. Modules of this file correspond to separate editing modes in the mesh editor, with data definition syntax preserved between the interactive commands and the archival storage file. Because ESCHER was expected to be highly interactive, extensive user documentation was provided in the form of an interactive HELP package.

  10. A New Linearized Crank-Nicolson Mixed Element Scheme for the Extended Fisher-Kolmogorov Equation

    PubMed Central

    Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei

    2013-01-01

    We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L 2(Ω))2 space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L 2 and H 1-norm for both the scalar unknown u and the diffusion term w = −Δu and a priori error estimates in (L 2)2-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes. PMID:23864831

  11. A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation.

    PubMed

    Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei; Liu, Yang

    2013-01-01

    We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L²(Ω))² space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L² and H¹-norm for both the scalar unknown u and the diffusion term w = -Δu and a priori error estimates in (L²)²-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes.

  12. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  13. Biomechanical properties of the pelvic floor muscles of continent and incontinent women using an inverse finite element analysis.

    PubMed

    Silva, M E T; Brandão, S; Parente, M P L; Mascarenhas, T; Natal Jorge, R M

    2017-06-01

    Pelvic disorders can be associated with changes in the biomechanical properties in the muscle, ligaments and/or connective tissue form fascia and ligaments. In this sense, the study of their mechanical behavior is important to understand the structure and function of these biological soft tissues. The aim of this study was to establish the biomechanical properties of the pelvic floor muscles of continent and incontinent women, using an inverse finite element analysis (FEA). The numerical models, including the pubovisceral muscle and pelvic bones were built from magnetic resonance (MR) images acquired at rest. The numerical simulation of Valsalva maneuver was based on the finite element method and the material constants were determined for different constitutive models (Neo-Hookean, Mooney-Rivlin and Yeoh) using an iterative process. The material constants (MPa) for Neo-Hookean (c 1 ) were 0.039 ± 0.022 and 0.024 ± 0.004 for continent vs. incontinent women. For Mooney-Rivlin (c 1 ) the values obtained were 0.026 ± 0.010 vs. 0.016 ± 0.003, and for Yeoh (c 1 ) the values obtained were 0.031 ± 0.023 vs. 0.016 ± 0.002, (p < 0.05). Muscle displacements obtained in the numerical simulations of Valsalva maneuver were compared with the muscle displacements obtained through additional dynamic MRI. Incontinent women presented a higher antero-posterior displacement than the continent women. The results were also similar between MRI and numerical simulations (40.27% vs. 42.17% for Neo-Hookean, 39.87% for Mooney-Rivlin and 41.61% for Yeoh). Using an inverse FEA coupled with MR images allowed to obtain the in vivo biomechanical properties of the pelvic floor muscles, leading to a relationship between them for the continent and incontinent women in a non-invasive manner.

  14. Hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis method for mid-frequency analysis of built-up systems with epistemic uncertainties

    NASA Astrophysics Data System (ADS)

    Yin, Shengwen; Yu, Dejie; Yin, Hui; Lü, Hui; Xia, Baizhan

    2017-09-01

    Considering the epistemic uncertainties within the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model when it is used for the response analysis of built-up systems in the mid-frequency range, the hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis (ETFE/SEA) model is established by introducing the evidence theory. Based on the hybrid ETFE/SEA model and the sub-interval perturbation technique, the hybrid Sub-interval Perturbation and Evidence Theory-based Finite Element/Statistical Energy Analysis (SIP-ETFE/SEA) approach is proposed. In the hybrid ETFE/SEA model, the uncertainty in the SEA subsystem is modeled by a non-parametric ensemble, while the uncertainty in the FE subsystem is described by the focal element and basic probability assignment (BPA), and dealt with evidence theory. Within the hybrid SIP-ETFE/SEA approach, the mid-frequency response of interest, such as the ensemble average of the energy response and the cross-spectrum response, is calculated analytically by using the conventional hybrid FE/SEA method. Inspired by the probability theory, the intervals of the mean value, variance and cumulative distribution are used to describe the distribution characteristics of mid-frequency responses of built-up systems with epistemic uncertainties. In order to alleviate the computational burdens for the extreme value analysis, the sub-interval perturbation technique based on the first-order Taylor series expansion is used in ETFE/SEA model to acquire the lower and upper bounds of the mid-frequency responses over each focal element. Three numerical examples are given to illustrate the feasibility and effectiveness of the proposed method.

  15. The least-squares finite element method for low-mach-number compressible viscous flows

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao

    1994-01-01

    The present paper reports the development of the Least-Squares Finite Element Method (LSFEM) for simulating compressible viscous flows at low Mach numbers in which the incompressible flows pose as an extreme. Conventional approach requires special treatments for low-speed flows calculations: finite difference and finite volume methods are based on the use of the staggered grid or the preconditioning technique; and, finite element methods rely on the mixed method and the operator-splitting method. In this paper, however, we show that such difficulty does not exist for the LSFEM and no special treatment is needed. The LSFEM always leads to a symmetric, positive-definite matrix through which the compressible flow equations can be effectively solved. Two numerical examples are included to demonstrate the method: first, driven cavity flows at various Reynolds numbers; and, buoyancy-driven flows with significant density variation. Both examples are calculated by using full compressible flow equations.

  16. Numerical Study of the Effect of Presence of Geometric Singularities on the Mechanical Behavior of Laminated Plates

    NASA Astrophysics Data System (ADS)

    Khechai, Abdelhak; Tati, Abdelouahab; Guettala, Abdelhamid

    2017-05-01

    In this paper, an effort is made to understand the effects of geometric singularities on the load bearing capacity and stress distribution in thin laminated plates. Composite plates with variously shaped cutouts are frequently used in both modern and classical aerospace, mechanical and civil engineering structures. Finite element investigation is undertaken to show the effect of geometric singularities on stress distribution. In this study, the stress concentration factors (SCFs) in cross-and-angle-ply laminated as well as in isotropic plates subjected to uniaxial loading are studied using a quadrilateral finite element of four nodes with thirty-two degrees-of-freedom per element. The varying parameters such as the cutout shape and hole sizes (a/b) are considered. The numerical results obtained by the present element are compared favorably with those obtained using the finite element software Freefem++ and the analytic findings published in literature, which demonstrates the accuracy of the present element. Freefem++ is open source software based on the finite element method, which could be helpful to study and improving the analyses of the stress distribution in composite plates with cutouts. The Freefem++ and the quadrilateral finite element formulations will be given in the beginning of this paper. Finally, to show the effect of the fiber orientation angle and anisotropic modulus ratio on the (SCF), number of figures are given for various ratio (a/b).

  17. An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, S.W.; Heinstein, M.W.; Stone, C.M.

    1997-12-31

    Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite elementmore » enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.« less

  18. Geometrically nonlinear analysis of layered composite plates and shells

    NASA Technical Reports Server (NTRS)

    Chao, W. C.; Reddy, J. N.

    1983-01-01

    A degenerated three dimensional finite element, based on the incremental total Lagrangian formulation of a three dimensional layered anisotropic medium was developed. Its use in the geometrically nonlinear, static and dynamic, analysis of layered composite plates and shells is demonstrated. A two dimenisonal finite element based on the Sanders shell theory with the von Karman (nonlinear) strains was developed. It is shown that the deflections obtained by the 2D shell element deviate from those obtained by the more accurate 3D element for deep shells. The 3D degenerated element can be used to model general shells that are not necessarily doubly curved. The 3D degenerated element is computationally more demanding than the 2D shell theory element for a given problem. It is found that the 3D element is an efficient element for the analysis of layered composite plates and shells undergoing large displacements and transient motion.

  19. Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device.

    PubMed

    Coogan, Jessica S; Francis, W Loren; Eliason, Travis D; Bredbenner, Todd L; Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A; Nicolella, Daniel P

    2016-01-01

    Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3-L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3-L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus.

  20. Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device

    PubMed Central

    Coogan, Jessica S.; Francis, W. Loren; Eliason, Travis D.; Bredbenner, Todd L.; Stemper, Brian D.; Yoganandan, Narayan; Pintar, Frank A.; Nicolella, Daniel P.

    2016-01-01

    Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3–L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3–L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus. PMID:27990418

  1. A point-value enhanced finite volume method based on approximate delta functions

    NASA Astrophysics Data System (ADS)

    Xuan, Li-Jun; Majdalani, Joseph

    2018-02-01

    We revisit the concept of an approximate delta function (ADF), introduced by Huynh (2011) [1], in the form of a finite-order polynomial that holds identical integral properties to the Dirac delta function when used in conjunction with a finite-order polynomial integrand over a finite domain. We show that the use of generic ADF polynomials can be effective at recovering and generalizing several high-order methods, including Taylor-based and nodal-based Discontinuous Galerkin methods, as well as the Correction Procedure via Reconstruction. Based on the ADF concept, we then proceed to formulate a Point-value enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged values inside each element as well as the unknown quantities and, if needed, their derivatives on nodal points. The sharing of nodal information with surrounding elements saves the number of degrees of freedom compared to other compact methods at the same order. To ensure conservation, cell-averaged values are updated using an identical approach to that adopted in the finite volume method. Here, the updating of nodal values and their derivatives is achieved through an ADF concept that leverages all of the elements within the domain of integration that share the same nodal point. The resulting scheme is shown to be very stable at successively increasing orders. Both accuracy and stability of the PFV method are verified using a Fourier analysis and through applications to the linear wave and nonlinear Burgers' equations in one-dimensional space.

  2. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study.

    PubMed

    Marcián, Petr; Borák, Libor; Valášek, Jiří; Kaiser, Jozef; Florian, Zdeněk; Wolff, Jan

    2014-12-18

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1 ±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Rigorous joining of advanced reduced-dimensional beam models to three-dimensional finite element models

    NASA Astrophysics Data System (ADS)

    Song, Huimin

    In the aerospace and automotive industries, many finite element analyses use lower-dimensional finite elements such as beams, plates and shells, to simplify the modeling. These simplified models can greatly reduce the computation time and cost; however, reduced-dimensional models may introduce inaccuracies, particularly near boundaries and near portions of the structure where reduced-dimensional models may not apply. Another factor in creation of such models is that beam-like structures frequently have complex geometry, boundaries and loading conditions, which may make them unsuitable for modeling with single type of element. The goal of this dissertation is to develop a method that can accurately and efficiently capture the response of a structure by rigorous combination of a reduced-dimensional beam finite element model with a model based on full two-dimensional (2D) or three-dimensional (3D) finite elements. The first chapter of the thesis gives the background of the present work and some related previous work. The second chapter is focused on formulating a system of equations that govern the joining of a 2D model with a beam model for planar deformation. The essential aspect of this formulation is to find the transformation matrices to achieve deflection and load continuity on the interface. Three approaches are provided to obtain the transformation matrices. An example based on joining a beam to a 2D finite element model is examined, and the accuracy of the analysis is studied by comparing joint results with the full 2D analysis. The third chapter is focused on formulating the system of equations for joining a beam to a 3D finite element model for static and free-vibration problems. The transition between the 3D elements and beam elements is achieved by use of the stress recovery technique of the variational-asymptotic method as implemented in VABS (the Variational Asymptotic Beam Section analysis). The formulations for an interface transformation matrix and the generalized Timoshenko beam are discussed in this chapter. VABS is also used to obtain the beam constitutive properties and warping functions for stress recovery. Several 3D-beam joint examples are presented to show the convergence and accuracy of the analysis. Accuracy is accessed by comparing the joint results with the full 3D analysis. The fourth chapter provides conclusions from present studies and recommendations for future work.

  4. Penalty-Based Interface Technology for Prediction of Delamination Growth in Laminated Structures

    NASA Technical Reports Server (NTRS)

    Averill, Ronald C.

    2004-01-01

    An effective interface element technology has been developed for connecting and simulating crack growth between independently modeled finite element subdomains (e.g., composite plies). This method has been developed using penalty constraints and allows coupling of finite element models whose nodes do not necessarily coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. The present interface element has been implemented in the commercial finite element code ABAQUS as a User Element Subroutine (UEL), making it easy to test the approach for a wide range of problems. The interface element technology has been formulated to simulate delamination growth in composite laminates. Thanks to its special features, the interface element approach makes it possible to release portions of the interface surface whose length is smaller than that of the finite elements. In addition, the penalty parameter can vary within the interface element, allowing the damage model to be applied to a desired fraction of the interface between the two meshes. Results for double cantilever beam DCB, end-loaded split (ELS) and fixed-ratio mixed mode (FRMM) specimens are presented. These results are compared to measured data to assess the ability of the present damage model to simulate crack growth.

  5. Elastic properties of rigid fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Chen, J.; Thorpe, M. F.; Davis, L. C.

    1995-05-01

    We study the elastic properties of rigid fiber-reinforced composites with perfect bonding between fibers and matrix, and also with sliding boundary conditions. In the dilute region, there exists an exact analytical solution. Around the rigidity threshold we find the elastic moduli and Poisson's ratio by decomposing the deformation into a compression mode and a rotation mode. For perfect bonding, both modes are important, whereas only the compression mode is operative for sliding boundary conditions. We employ the digital-image-based method and a finite element analysis to perform computer simulations which confirm our analytical predictions.

  6. [Three-dimensional finite element stress distribution and displacement analysis of alveolar ridge retained by conical telescope].

    PubMed

    Lin, Ying-he; Man, Yi; Liang, Xing; Qu, Yi-li; Lu, Xuan

    2004-11-01

    To study the stress distribution and displacement of edentulous alveolar ridge of removable partial denture which is retained by using conical telescope. An ideal three dimensional finite element model was constructed by using SCT image reconstruction technique, self-programming and ANSYS software. The static load was applied. The stress and displacement characteristics of these different types of materials which form the metal part of the conical telescope were compared and analyzed. Generally, the four materials produced almost the same stress and displacement at the site of the edentulous alveolar ridge. From the viewpoint of dynamics, the application of different materials in making the metal part of conical telescope is feasible.

  7. Finite Element Analysis and Test Results Comparison for the Hybrid Wing Body Center Section Test Article

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.

    2016-01-01

    This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.

  8. Progressive Failure Studies of Stiffened Panels Subjected to Shear Loading

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Hilburger, Mark W.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Experimental and analytical results are presented for progressive failure of stiffened composite panels with and without a notch and subjected to in plane shear loading well into their postbuckling regime. Initial geometric imperfections are included in the finite element models. Ply damage modes such as matrix cracking, fiber-matrix shear, and fiber failure are modeled by degrading the material properties. Experimental results from the test include strain field data from video image correlation in three dimensions in addition to other strain and displacement measurements. Results from nonlinear finite element analyses are compared with experimental data. Good agreement between experimental data and numerical results are observed for the stitched stiffened composite panels studied.

  9. Ceramic component reliability with the restructured NASA/CARES computer program

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Starlinger, Alois; Gyekenyesi, John P.

    1992-01-01

    The Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design program on statistical fast fracture reliability and monolithic ceramic components is enhanced to include the use of a neutral data base, two-dimensional modeling, and variable problem size. The data base allows for the efficient transfer of element stresses, temperatures, and volumes/areas from the finite element output to the reliability analysis program. Elements are divided to insure a direct correspondence between the subelements and the Gaussian integration points. Two-dimensional modeling is accomplished by assessing the volume flaw reliability with shell elements. To demonstrate the improvements in the algorithm, example problems are selected from a round-robin conducted by WELFEP (WEakest Link failure probability prediction by Finite Element Postprocessors).

  10. Analysis of Flexible Bars and Frames with Large Displacements of Nodes By Finite Element Method in the Form of Classical Mixed Method

    NASA Astrophysics Data System (ADS)

    Ignatyev, A. V.; Ignatyev, V. A.; Onischenko, E. V.

    2017-11-01

    This article is the continuation of the work made bt the authors on the development of the algorithms that implement the finite element method in the form of a classical mixed method for the analysis of geometrically nonlinear bar systems [1-3]. The paper describes an improved algorithm of the formation of the nonlinear governing equations system for flexible plane frames and bars with large displacements of nodes based on the finite element method in a mixed classical form and the use of the procedure of step-by-step loading. An example of the analysis is given.

  11. Solving the incompressible surface Navier-Stokes equation by surface finite elements

    NASA Astrophysics Data System (ADS)

    Reuther, Sebastian; Voigt, Axel

    2018-01-01

    We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces with arbitrary genus g (S ) . The approach is based on a reformulation of the equation in Cartesian coordinates of the embedding R3, penalization of the normal component, a Chorin projection method, and discretization in space by surface finite elements for each component. The approach thus requires only standard ingredients which most finite element implementations can offer. We compare computational results with discrete exterior calculus simulations on a torus and demonstrate the interplay of the flow field with the topology by showing realizations of the Poincaré-Hopf theorem on n-tori.

  12. AutoCAD-To-GIFTS Translator Program

    NASA Technical Reports Server (NTRS)

    Jones, Andrew

    1989-01-01

    AutoCAD-to-GIFTS translator program, ACTOG, developed to facilitate quick generation of small finite-element models using CASA/GIFTS finite-element modeling program. Reads geometric data of drawing from Data Exchange File (DXF) used in AutoCAD and other PC-based drafting programs. Geometric entities recognized by ACTOG include points, lines, arcs, solids, three-dimensional lines, and three-dimensional faces. From this information, ACTOG creates GIFTS SRC file, which then reads into GIFTS preprocessor BULKM or modified and reads into EDITM to create finite-element model. SRC file used as is or edited for any number of uses. Written in Microsoft Quick-Basic (Version 2.0).

  13. Modeling plaque fissuring and dissection during balloon angioplasty intervention.

    PubMed

    Gasser, T Christian; Holzapfel, Gerhard A

    2007-05-01

    Balloon angioplasty intervention is traumatic to arterial tissue. Fracture mechanisms such as plaque fissuring and/or dissection occur and constitute major contributions to the lumen enlargement. However, these types of mechanically-based traumatization of arterial tissue are also contributing factors to both acute procedural complications and chronic restenosis of the treatment site. We propose physical and finite element models, which are generally useable to trace fissuring and/or dissection in atherosclerotic plaques during balloon angioplasty interventions. The arterial wall is described as an anisotropic, heterogeneous, highly deformable, nearly incompressible body, whereas tissue failure is captured by a strong discontinuity kinematics and a novel cohesive zone model. The numerical implementation is based on the partition of unity finite element method and the interface element method. The later is used to link together meshes of the different tissue components. The balloon angioplasty-based failure mechanisms are numerically studied in 3D by means of an atherosclerotic-prone human external iliac artery, with a type V lesion. Image-based 3D geometry is generated and tissue-specific material properties are considered. Numerical results show that in a primary phase the plaque fissures at both shoulders of the fibrous cap and stops at the lamina elastica interna. In a secondary phase, local dissections between the intima and the media develop at the fibrous cap location with the smallest thickness. The predicted results indicate that plaque fissuring and dissection cause localized mechanical trauma, but prevent the main portion of the stenosis from high stress, and hence from continuous tissue damage.

  14. Model-based position correlation between breast images

    NASA Astrophysics Data System (ADS)

    Georgii, J.; Zöhrer, F.; Hahn, H. K.

    2013-02-01

    Nowadays, breast diagnosis is based on images of different projections and modalities, such that sensitivity and specificity of the diagnosis can be improved. However, this emburdens radiologists to find corresponding locations in these data sets, which is a time consuming task, especially since the resolution of the images increases and thus more and more data have to be considered in the diagnosis. Therefore, we aim at support radiologist by automatically synchronizing cursor positions between different views of the breast. Specifically, we present an automatic approach to compute the spatial correlation between MLO and CC mammogram or tomosynthesis projections of the breast. It is based on pre-computed finite element simulations of generic breast models, which are adapted to the patient-specific breast using a contour mapping approach. Our approach is designed to be fully automatic and efficient, such that it can be implemented directly into existing multimodal breast workstations. Additionally, it is extendable to support other breast modalities in future, too.

  15. Quantitative Imaging of Young's Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study

    PubMed Central

    Lu, Min-Hua; Mao, Rui; Lu, Yin; Liu, Zheng; Wang, Tian-Fu; Chen, Si-Ping

    2012-01-01

    Indentation testing is a widely used approach to evaluate mechanical characteristics of soft tissues quantitatively. Young's modulus of soft tissue can be calculated from the force-deformation data with known tissue thickness and Poisson's ratio using Hayes' equation. Our group previously developed a noncontact indentation system using a water jet as a soft indenter as well as the coupling medium for the propagation of high-frequency ultrasound. The novel system has shown its ability to detect the early degeneration of articular cartilage. However, there is still lack of a quantitative method to extract the intrinsic mechanical properties of soft tissue from water jet indentation. The purpose of this study is to investigate the relationship between the loading-unloading curves and the mechanical properties of soft tissues to provide an imaging technique of tissue mechanical properties. A 3D finite element model of water jet indentation was developed with consideration of finite deformation effect. An improved Hayes' equation has been derived by introducing a new scaling factor which is dependent on Poisson's ratios v, aspect ratio a/h (the radius of the indenter/the thickness of the test tissue), and deformation ratio d/h. With this model, the Young's modulus of soft tissue can be quantitatively evaluated and imaged with the error no more than 2%. PMID:22927890

  16. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU.

    PubMed

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ∼600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ∼0.25  s/excitation source. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  17. An Analysis of the Magneto-Optic Imaging System

    NASA Technical Reports Server (NTRS)

    Nath, Shridhar

    1996-01-01

    The Magneto-Optic Imaging system is being used for the detection of defects in airframes and other aircraft structures. The system has been successfully applied to detecting surface cracks, but has difficulty in the detection of sub-surface defects such as corrosion. The intent of the grant was to understand the physics of the MOI better, in order to use it effectively for detecting corrosion and for classifying surface defects. Finite element analysis, image classification, and image processing are addressed.

  18. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.

    PubMed

    Heidenreich, Elvio A; Ferrero, José M; Doblaré, Manuel; Rodríguez, José F

    2010-07-01

    Many problems in biology and engineering are governed by anisotropic reaction-diffusion equations with a very rapidly varying reaction term. This usually implies the use of very fine meshes and small time steps in order to accurately capture the propagating wave while avoiding the appearance of spurious oscillations in the wave front. This work develops a family of macro finite elements amenable for solving anisotropic reaction-diffusion equations with stiff reactive terms. The developed elements are incorporated on a semi-implicit algorithm based on operator splitting that includes adaptive time stepping for handling the stiff reactive term. A linear system is solved on each time step to update the transmembrane potential, whereas the remaining ordinary differential equations are solved uncoupled. The method allows solving the linear system on a coarser mesh thanks to the static condensation of the internal degrees of freedom (DOF) of the macroelements while maintaining the accuracy of the finer mesh. The method and algorithm have been implemented in parallel. The accuracy of the method has been tested on two- and three-dimensional examples demonstrating excellent behavior when compared to standard linear elements. The better performance and scalability of different macro finite elements against standard finite elements have been demonstrated in the simulation of a human heart and a heterogeneous two-dimensional problem with reentrant activity. Results have shown a reduction of up to four times in computational cost for the macro finite elements with respect to equivalent (same number of DOF) standard linear finite elements as well as good scalability properties.

  19. Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves

    NASA Astrophysics Data System (ADS)

    Yao, Jianyao; Liu, G. R.; Narmoneva, Daria A.; Hinton, Robert B.; Zhang, Zhi-Qian

    2012-12-01

    This paper presents a novel numerical method for simulating the fluid-structure interaction (FSI) problems when blood flows over aortic valves. The method uses the immersed boundary/element method and the smoothed finite element method and hence it is termed as IS-FEM. The IS-FEM is a partitioned approach and does not need a body-fitted mesh for FSI simulations. It consists of three main modules: the fluid solver, the solid solver and the FSI force solver. In this work, the blood is modeled as incompressible viscous flow and solved using the characteristic-based-split scheme with FEM for spacial discretization. The leaflets of the aortic valve are modeled as Mooney-Rivlin hyperelastic materials and solved using smoothed finite element method (or S-FEM). The FSI force is calculated on the Lagrangian fictitious fluid mesh that is identical to the moving solid mesh. The octree search and neighbor-to-neighbor schemes are used to detect efficiently the FSI pairs of fluid and solid cells. As an example, a 3D idealized model of aortic valve is modeled, and the opening process of the valve is simulated using the proposed IS-FEM. Numerical results indicate that the IS-FEM can serve as an efficient tool in the study of aortic valve dynamics to reveal the details of stresses in the aortic valves, the flow velocities in the blood, and the shear forces on the interfaces. This tool can also be applied to animal models studying disease processes and may ultimately translate to a new adaptive methods working with magnetic resonance images, leading to improvements on diagnostic and prognostic paradigms, as well as surgical planning, in the care of patients.

  20. Finite element model for brittle fracture and fragmentation

    DOE PAGES

    Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; ...

    2016-06-01

    A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.

  1. Finite element model for brittle fracture and fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin

    A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.

  2. Geometry control of long-span continuous girder concrete bridge during construction through finite element model updating

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Yan, Quan-sheng; Li, Jian; Hu, Min-yi

    2016-04-01

    In bridge construction, geometry control is critical to ensure that the final constructed bridge has the consistent shape as design. A common method is by predicting the deflections of the bridge during each construction phase through the associated finite element models. Therefore, the cambers of the bridge during different construction phases can be determined beforehand. These finite element models are mostly based on the design drawings and nominal material properties. However, the accuracy of these bridge models can be large due to significant uncertainties of the actual properties of the materials used in construction. Therefore, the predicted cambers may not be accurate to ensure agreement of bridge geometry with design, especially for long-span bridges. In this paper, an improved geometry control method is described, which incorporates finite element (FE) model updating during the construction process based on measured bridge deflections. A method based on the Kriging model and Latin hypercube sampling is proposed to perform the FE model updating due to its simplicity and efficiency. The proposed method has been applied to a long-span continuous girder concrete bridge during its construction. Results show that the method is effective in reducing construction error and ensuring the accuracy of the geometry of the final constructed bridge.

  3. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].

    PubMed

    Zeng, Zhi-Li; Cheng, Li-Ming; Zhu, Rui; Wang, Jian-Jie; Yu, Yan

    2011-08-23

    To build an effective nonlinear three-dimensional finite-element (FE) model of T(11)-L(3) segments for a further biomechanical study of thoracolumbar spine. The CT (computed tomography) scan images of healthy adult T(11)-L(3) segments were imported into software Simpleware 2.0 to generate a triangular mesh model. Using software Geomagic 8 for model repair and optimization, a solid model was generated into the finite element software Abaqus 6.9. The reasonable element C3D8 was selected for bone structures. Created between bony endplates, the intervertebral disc was subdivided into nucleus pulposus and annulus fibrosus (44% nucleus, 56% annulus). The nucleus was filled with 5 layers of 8-node solid elements and annulus reinforced by 8 crisscross collagenous fiber layers. The nucleus and annulus were meshed by C3D8RH while the collagen fibers meshed by two node-truss elements. The anterior (ALL) and posterior (PLL) longitudinal ligaments, flavum (FL), supraspinous (SSL), interspinous (ISL) and intertransverse (ITL) ligaments were modeled with S4R shell elements while capsular ligament (CL) was modeled with 3-node shell element. All surrounding ligaments were represented by envelope of 1 mm uniform thickness. The discs and bone structures were modeled with hyper-elastic and elasto-plastic material laws respectively while the ligaments governed by visco-elastic material law. The nonlinear three-dimensional finite-element model of T(11)-L(3) segments was generated and its efficacy verified through validating the geometric similarity and disc load-displacement and stress distribution under the impact of violence. Using ABAQUS/ EXPLICIT 6.9 the explicit dynamic finite element solver, the impact test was simulated in vitro. In this study, a 3-dimensional, nonlinear FE model including 5 vertebrae, 4 intervertebral discs and 7 ligaments consisted of 78 887 elements and 71 939 nodes. The model had good geometric similarity under the same conditions. The results of FEM intervertebral disc load-displacement curve were similar to those of in vitro test. The stress distribution results of vertebral cortical bone, posterior complex and cancellous bone were similar to those of other static experiments in a dynamic impact test under the observation of stress cloud. With the advantages of high geometric and mechanical similarity and complete thoracolumbar, hexahedral meshes, nonlinear finite element model may facilitate the impact loading test for a further dynamic analysis of injury mechanism for thoracolumbar burst fracture.

  4. Modeling of Complex Coupled Fluid-Structure Interaction Systems in Arbitrary Water Depth

    DTIC Science & Technology

    2008-01-01

    model in a particle finite element method ( PFEM ) based framework for the ALE-RANS solver and submitted a journal paper recently [1]. In the paper, we...developing a fluid-flexible structure interaction model without free surface using ALE-RANS and k-ε turbulence closure model implemented by PFEM . In...the ALE_RANS and k-ε turbulence closure model based on the particle finite element Method ( PFEM ) and obtained some satisfying results [1-2]. The

  5. Investigation of the effects of metal-wire resonators in sub-wavelength array based on time-reversal technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Hui-Lin, E-mail: tuhl-uestc@163.com, E-mail: xiaoshaoqiu@uestc.edu.cn; Xiao, Shao-Qiu, E-mail: tuhl-uestc@163.com, E-mail: xiaoshaoqiu@uestc.edu.cn

    The resonant metalens consisting of metal-wire resonators with equally finite length can break the diffraction barrier well suited for super-resolution imaging. In this study, a basic combination constructed by two metal-wire resonators with different lengths is proposed, and its resonant characteristics is analyzed using the method of moments (MoM). Based on the time reversal (TR) technique, this kind of combination can be applied to a sub-wavelength two-element antenna array with a 1/40-wavelength interval to make the elements work simultaneously with little interference in the frequency band of 1.0-1.5 GHz and 1.5-2.0 GHz, respectively. The simulations and experiments show that analysismore » of MoM and the application of the resonators can be used to design multi-frequency sub-wavelength antenna arrays efficiently. This general design method is convenient and can be used for many applications, such as weakening jamming effectiveness in communication systems, and sub-wavelength imaging in a broad frequency band.« less

  6. A New Method to Measure Crack Extension in Nuclear Graphite Based on Digital Image Correlation

    DOE PAGES

    Lai, Shigang; Shi, Li; Fok, Alex; ...

    2017-01-01

    Graphite components, used as moderators, reflectors, and core-support structures in a High-Temperature Gas-Cooled Reactor, play an important role in the safety of the reactor. Specifically, they provide channels for the fuel elements, control rods, and coolant flow. Fracture is the main failure mode for graphite, and breaching of the above channels by crack extension will seriously threaten the safety of a reactor. In this paper, a new method based on digital image correlation (DIC) is introduced for measuring crack extension in brittle materials. Cross-correlation of the displacements measured by DIC with a step function was employed to identify the advancingmore » crack tip in a graphite beam specimen under three-point bending. The load-crack extension curve, which is required for analyzing the R-curve and tension softening behaviors, was obtained for this material. Furthermore, a sensitivity analysis of the threshold value employed for the cross-correlation parameter in the crack identification process was conducted. Finally, the results were verified using the finite element method.« less

  7. A New Method to Measure Crack Extension in Nuclear Graphite Based on Digital Image Correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Shigang; Shi, Li; Fok, Alex

    Graphite components, used as moderators, reflectors, and core-support structures in a High-Temperature Gas-Cooled Reactor, play an important role in the safety of the reactor. Specifically, they provide channels for the fuel elements, control rods, and coolant flow. Fracture is the main failure mode for graphite, and breaching of the above channels by crack extension will seriously threaten the safety of a reactor. In this paper, a new method based on digital image correlation (DIC) is introduced for measuring crack extension in brittle materials. Cross-correlation of the displacements measured by DIC with a step function was employed to identify the advancingmore » crack tip in a graphite beam specimen under three-point bending. The load-crack extension curve, which is required for analyzing the R-curve and tension softening behaviors, was obtained for this material. Furthermore, a sensitivity analysis of the threshold value employed for the cross-correlation parameter in the crack identification process was conducted. Finally, the results were verified using the finite element method.« less

  8. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  9. Validation Assessment of a Glass-to-Metal Seal Finite-Element Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamison, Ryan Dale; Buchheit, Thomas E.; Emery, John M

    Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element modelmore » of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.« less

  10. Maxillofacial fractures and craniocerebral injuries - stress propagation from face to neurocranium in a finite element analysis.

    PubMed

    Huempfner-Hierl, Heike; Schaller, Andreas; Hierl, Thomas

    2015-04-21

    Severe facial trauma is often associated with intracerebral injuries. So it seemed to be of interest to study stress propagation from face to neurocranium after a fistlike impact on the facial skull in a finite element analysis. A finite element model of the human skull without mandible consisting of nearly 740,000 tetrahedrons was built. Fistlike impacts on the infraorbital rim, the nasoorbitoethmoid region, and the supraorbital arch were simulated and stress propagations were depicted in a time-dependent display. Finite element simulation revealed von Mises stresses beyond the yield criterion of facial bone at the site of impacts and propagation of stresses in considerable amount towards skull base in the scenario of the fistlike impact on the infraorbital rim and on the nasoorbitoethmoid region. When impact was given on the supraorbital arch stresses seemed to be absorbed. As patients presenting with facial fractures have a risk for craniocerebral injuries attention should be paid to this and the indication for a CT-scan should be put widely. Efforts have to be made to generate more precise finite element models for a better comprehension of craniofacial and brain injury.

  11. Ultrasound imaging based on nonlinear pressure field properties

    NASA Astrophysics Data System (ADS)

    Bouakaz, Ayache; Frinking, Peter J. A.; de Jong, Nico

    2000-07-01

    Ultrasound image quality has experienced a significant improvement over the past years with the utilization of harmonic frequencies. This brings the need to understand the physical processes involved in the propagation of finite amplitude sound beams, and the issues for redesigning and optimizing the phased array transducers. New arrays with higher imaging performances are essential for tissue imaging and contrast imaging as well. This study presents measurements and simulations on a 4.6 MHz square transducer. The numerical scheme used solves the KZK equation in the time domain. Comparison of measured and computed data showed good agreement for low and high excitation levels. In a similar way, a numerical simulation was performed on a linear array with five elements. The simulation showed that the second harmonic beam is narrower than the fundamental with less energy in the near field. In addition, the grating lobes are significantly lower. Accordingly, selective harmonic imaging shows less near field artifacts and will lower the clutter, resulting in much cleaner images.

  12. Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants.

    PubMed

    Qasim, M; Farinella, G; Zhang, J; Li, X; Yang, L; Eastell, R; Viceconti, M

    2016-09-01

    A finite element modelling pipeline was adopted to predict femur strength in a retrospective cohort of 100 women. The effects of the imaging protocol and the meshing technique on the ability of the femur strength to classify the fracture and the control groups were analysed. The clinical standard to estimate the risk of osteoporotic hip fracture is based on the areal bone mineral density (aBMD). A few retrospective studies have concluded that finite element (FE)-based femoral strength is a better classifier of fracture and control groups than the aBMD, while others could not find significant differences. We investigated the effect of the imaging protocol and of the FE modelling techniques on the discriminatory power of femoral strength. A retrospective cohort of 100 post-menopausal women (50 with hip fracture, 50 controls) was examined. Each subject received a dual-energy absorptiometry (DXA) exam and a computed tomography (CT) scan of the proximal femur region. Each case was modelled a number of times, using different modelling pipelines, and the results were compared in terms of accuracy in discriminating the fracture and the control cases. The baseline pipeline involved local anatomical orientation and mesh morphing. Revised pipelines involved global anatomical orientation using a full-femur atlas registration and an optimised meshing algorithm. Minimum physiological (MPhyS) and pathological (MPatS) strengths were estimated for each subject. Area under the receiver operating characteristic (ROC) curve (AUC) was calculated to compare the ability of MPhyS, MPatS and aBMD to classify the control and the cases. Differences in the modelling protocol were found to considerably affect the accuracy of the FE predictors. For the most optimised protocol, logistic regression showed aBMDNeck, MPhyS and MPatS to be significantly associated with the facture status, with AUC of 0.75, 0.75 and 0.79, respectively. The study emphasized the necessity of modelling the whole femur anatomy to develop a robust FE-based tool for hip fracture risk assessment. FE-strength performed only slightly better than the aBMD in discriminating the fracture and control cases. Differences between the published studies can be explained in terms of differences in the modelling protocol and cohort design.

  13. Robust QCT/FEA Models of Proximal Femur Stiffness and Fracture Load During a Sideways Fall on the Hip

    PubMed Central

    Dragomir-Daescu, Dan; Buijs, Jorn Op Den; McEligot, Sean; Dai, Yifei; Entwistle, Rachel C.; Salas, Christina; Melton, L. Joseph; Bennet, Kevin E.; Khosla, Sundeep; Amin, Shreyasee

    2013-01-01

    Clinical implementation of quantitative computed tomography-based finite element analysis (QCT/FEA) of proximal femur stiffness and strength to assess the likelihood of proximal femur (hip) fractures requires a unified modeling procedure, consistency in predicting bone mechanical properties, and validation with realistic test data that represent typical hip fractures, specifically, a sideways fall on the hip. We, therefore, used two sets (n = 9, each) of cadaveric femora with bone densities varying from normal to osteoporotic to build, refine, and validate a new class of QCT/FEA models for hip fracture under loading conditions that simulate a sideways fall on the hip. Convergence requirements of finite element models of the first set of femora led to the creation of a new meshing strategy and a robust process to model proximal femur geometry and material properties from QCT images. We used a second set of femora to cross-validate the model parameters derived from the first set. Refined models were validated experimentally by fracturing femora using specially designed fixtures, load cells, and high speed video capture. CT image reconstructions of fractured femora were created to classify the fractures. The predicted stiffness (cross-validation R2 = 0.87), fracture load (cross-validation R2 = 0.85), and fracture patterns (83% agreement) correlated well with experimental data. PMID:21052839

  14. Characterizing the lung tissue mechanical properties using a micromechanical model of alveolar sac

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Seify, Behzad; Moghadas, Hadi; Sabsalinejad, Masoomeh; Lee, Ting-Yim; Samani, Abbas

    2017-03-01

    According to statistics, lung disease is among the leading causes of death worldwide. As such, many research groups are developing powerful tools for understanding, diagnosis and treatment of various lung diseases. Recently, biomechanical modeling has emerged as an effective tool for better understanding of human physiology, disease diagnosis and computer assisted medical intervention. Mechanical properties of lung tissue are important requirements for methods developed for lung disease diagnosis and medical intervention. As such, the main objective of this study is to develop an effective tool for estimating the mechanical properties of normal and pathological lung parenchyma tissue based on its microstructure. For this purpose, a micromechanical model of the lung tissue was developed using finite element (FE) method, and the model was demonstrated to have application in estimating the mechanical properties of lung alveolar wall. The proposed model was developed by assembling truncated octahedron tissue units resembling the alveoli. A compression test was simulated using finite element method on the created geometry and the hyper-elastic parameters of the alveoli wall were calculated using reported alveolar wall stress-strain data and an inverse optimization framework. Preliminary results indicate that the proposed model can be potentially used to reconstruct microstructural images of lung tissue using macro-scale tissue response for normal and different pathological conditions. Such images can be used for effective diagnosis of lung diseases such as Chronic Obstructive Pulmonary Disease (COPD).

  15. Calculation of skin-stiffener interface stresses in stiffened composite panels

    NASA Technical Reports Server (NTRS)

    Cohen, David; Hyer, Michael W.

    1987-01-01

    A method for computing the skin-stiffener interface stresses in stiffened composite panels is developed. Both geometrically linear and nonlinear analyses are considered. Particular attention is given to the flange termination region where stresses are expected to exhibit unbounded characteristics. The method is based on a finite-element analysis and an elasticity solution. The finite-element analysis is standard, while the elasticity solution is based on an eigenvalue expansion of the stress functions. The eigenvalue expansion is assumed to be valid in the local flange termination region and is coupled with the finite-element analysis using collocation of stresses on the local region boundaries. Accuracy and convergence of the local elasticity solution are assessed using a geometrically linear analysis. Using this analysis procedure, the influence of geometric nonlinearities and stiffener parameters on the skin-stiffener interface stresses is evaluated.

  16. Post-1906 stress recovery of the San Andreas fault system calculated from three-dimensional finite element analysis

    USGS Publications Warehouse

    Parsons, T.

    2002-01-01

    The M = 7.8 1906 San Francisco earthquake cast a stress shadow across the San Andreas fault system, inhibiting other large earthquakes for at least 75 years. The duration of the stress shadow is a key question in San Francisco Bay area seismic hazard assessment. This study presents a three-dimensional (3-D) finite element simulation of post-1906 stress recovery. The model reproduces observed geologic slip rates on major strike-slip faults and produces surface velocity vectors comparable to geodetic measurements. Fault stressing rates calculated with the finite element model are evaluated against numbers calculated using deep dislocation slip. In the finite element model, tectonic stressing is distributed throughout the crust and upper mantle, whereas tectonic stressing calculated with dislocations is focused mostly on faults. In addition, the finite element model incorporates postseismic effects such as deep afterslip and viscoelastic relaxation in the upper mantle. More distributed stressing and postseismic effects in the finite element model lead to lower calculated tectonic stressing rates and longer stress shadow durations (17-74 years compared with 7-54 years). All models considered indicate that the 1906 stress shadow was completely erased by tectonic loading no later than 1980. However, the stress shadow still affects present-day earthquake probability. Use of stressing rate parameters calculated with the finite element model yields a 7-12% reduction in 30-year probability caused by the 1906 stress shadow as compared with calculations not incorporating interactions. The aggregate interaction-based probability on selected segments (not including the ruptured San Andreas fault) is 53-70% versus the noninteraction range of 65-77%.

  17. Quasi-automatic 3D finite element model generation for individual single-rooted teeth and periodontal ligament.

    PubMed

    Clement, R; Schneider, J; Brambs, H-J; Wunderlich, A; Geiger, M; Sander, F G

    2004-02-01

    The paper demonstrates how to generate an individual 3D volume model of a human single-rooted tooth using an automatic workflow. It can be implemented into finite element simulation. In several computational steps, computed tomography data of patients are used to obtain the global coordinates of the tooth's surface. First, the large number of geometric data is processed with several self-developed algorithms for a significant reduction. The most important task is to keep geometrical information of the real tooth. The second main part includes the creation of the volume model for tooth and periodontal ligament (PDL). This is realized with a continuous free form surface of the tooth based on the remaining points. Generating such irregular objects for numerical use in biomechanical research normally requires enormous manual effort and time. The finite element mesh of the tooth, consisting of hexahedral elements, is composed of different materials: dentin, PDL and surrounding alveolar bone. It is capable of simulating tooth movement in a finite element analysis and may give valuable information for a clinical approach without the restrictions of tetrahedral elements. The mesh generator of FE software ANSYS executed the mesh process for hexahedral elements successfully.

  18. Finite Element Analysis of Drilling of Carbon Fibre Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Isbilir, Ozden; Ghassemieh, Elaheh

    2012-06-01

    Despite the increased applications of the composite materials in aerospace due to their exceptional physical and mechanical properties, the machining of composites remains a challenge. Fibre reinforced laminated composites are prone to different damages during machining process such as delamination, fibre pull-out, microcracks, thermal damages. Optimization of the drilling process parameters can reduces the probability of these damages. In the current research, a 3D finite element (FE) model is developed of the process of drilling in the carbon fibre reinforced composite (CFC). The FE model is used to investigate the effects of cutting speed and feed rate on thrust force, torque and delamination in the drilling of carbon fiber reinforced laminated composite. A mesoscale FE model taking into account of the different oriented plies and interfaces has been proposed to predict different damage modes in the plies and delamination. For validation purposes, experimental drilling tests have been performed and compared to the results of the finite element analysis. Using Matlab a digital image analysis code has been developed to assess the delamination factor produced in CFC as a result of drilling.

  19. A three-dimensional finite element model for biomechanical analysis of the hip.

    PubMed

    Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe

    2013-11-01

    The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.

  20. Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements

    NASA Astrophysics Data System (ADS)

    Lohmann, Christoph; Kuzmin, Dmitri; Shadid, John N.; Mabuza, Sibusiso

    2017-09-01

    This work extends the flux-corrected transport (FCT) methodology to arbitrary order continuous finite element discretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier net. The design of accuracy-preserving FCT schemes for high order Bernstein-Bézier finite elements requires the development of new algorithms and/or generalization of limiting techniques tailored for linear and multilinear Lagrange elements. In this paper, we propose (i) a new discrete upwinding strategy leading to local extremum bounded low order approximations with compact stencils, (ii) high order variational stabilization based on the difference between two gradient approximations, and (iii) new localized limiting techniques for antidiffusive element contributions. The optional use of a smoothness indicator, based on a second derivative test, makes it possible to potentially avoid unnecessary limiting at smooth extrema and achieve optimal convergence rates for problems with smooth solutions. The accuracy of the proposed schemes is assessed in numerical studies for the linear transport equation in 1D and 2D.

  1. Computational design and engineering of polymeric orthodontic aligners.

    PubMed

    Barone, S; Paoli, A; Razionale, A V; Savignano, R

    2016-10-05

    Transparent and removable aligners represent an effective solution to correct various orthodontic malocclusions through minimally invasive procedures. An aligner-based treatment requires patients to sequentially wear dentition-mating shells obtained by thermoforming polymeric disks on reference dental models. An aligner is shaped introducing a geometrical mismatch with respect to the actual tooth positions to induce a loading system, which moves the target teeth toward the correct positions. The common practice is based on selecting the aligner features (material, thickness, and auxiliary elements) by only considering clinician's subjective assessments. In this article, a computational design and engineering methodology has been developed to reconstruct anatomical tissues, to model parametric aligner shapes, to simulate orthodontic movements, and to enhance the aligner design. The proposed approach integrates computer-aided technologies, from tomographic imaging to optical scanning, from parametric modeling to finite element analyses, within a 3-dimensional digital framework. The anatomical modeling provides anatomies, including teeth (roots and crowns), jaw bones, and periodontal ligaments, which are the references for the down streaming parametric aligner shaping. The biomechanical interactions between anatomical models and aligner geometries are virtually reproduced using a finite element analysis software. The methodology allows numerical simulations of patient-specific conditions and the comparative analyses of different aligner configurations. In this article, the digital framework has been used to study the influence of various auxiliary elements on the loading system delivered to a maxillary and a mandibular central incisor during an orthodontic tipping movement. Numerical simulations have shown a high dependency of the orthodontic tooth movement on the auxiliary element configuration, which should then be accurately selected to maximize the aligner's effectiveness. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Quantitative analysis and feature recognition in 3-D microstructural data sets

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Suh, C.; Stukowski, M.; Geltmacher, A. B.; Spanos, G.; Rajan, K.

    2006-12-01

    A three-dimensional (3-D) reconstruction of an austenitic stainless-steel microstructure was used as input for an image-based finite-element model to simulate the anisotropic elastic mechanical response of the microstructure. The quantitative data-mining and data-warehousing techniques used to correlate regions of high stress with critical microstructural features are discussed. Initial analysis of elastic stresses near grain boundaries due to mechanical loading revealed low overall correlation with their location in the microstructure. However, the use of data-mining and feature-tracking techniques to identify high-stress outliers revealed that many of these high-stress points are generated near grain boundaries and grain edges (triple junctions). These techniques also allowed for the differentiation between high stresses due to boundary conditions of the finite volume reconstructed, and those due to 3-D microstructural features.

  3. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  4. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  5. A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Qian; Liu, G. R.; Khoo, Boo Cheong

    2013-02-01

    A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.

  6. Computer Aided Modeling to Determine the Effectiveness of Resistive Exercises as Countermeasures for Bone Mineral Density Loss

    NASA Technical Reports Server (NTRS)

    Murphy, Benjamin M.

    1999-01-01

    Due to the loss of gravitational loading, astronauts have a tendency to lose bone mineral density in their lumbar spine and lower extremities on orbit. NASA requires astronauts to perform exercises during space flight to help reduce the amount of demineralization. To test these exercises on earth, 17 week bed rest studies are conducted that consist of specific diet and exercise regimes. Developing a finite element model of these exercises will help to quantify the stress distribution imposed by of each of these exercises. To help develop this model, MRI images are acquired from individuals participating in the bed rest studies. The MRIs can be used to create a subject specific model of each individual for testing. The MRIs are processed in the Magnetic Resonance Imaging Data Transfer System program to develop a three-dimensional finite element model of the femur for evaluation. Modifications were made to the MRIDTS that simplified the model creation process. These modifications made it possible to construct two separate models of different portions of a bone simultaneously and then later connect them manually. This helped alleviate the warping problem associated with the drastic changes in geometry found in some body parts, such as the joints. The code was also modified to incorporate material properties of various bone components into the model. Interior meshing was also incorporated into the program to allow for both the cortical shell and the entire bone to be modeled. A prototype model of the right femur of an adult female is being constructed and tested to determine the feasibility of finite element analysis as a tool for evaluating exercise effectiveness. The model is being run through the ANSYS finite element program on the Alabama Super Computer Network. After the model is validated, models of bedrest subjects can be generated to investigate exercise countermeasures.

  7. Guidelines and Recommendations on the Use of Higher Order Finite Elements for Bending Analysis of Plates

    NASA Astrophysics Data System (ADS)

    Carrera, E.; Miglioretti, F.; Petrolo, M.

    2011-11-01

    This paper compares and evaluates various plate finite elements to analyse the static response of thick and thin plates subjected to different loading and boundary conditions. Plate elements are based on different assumptions for the displacement distribution along the thickness direction. Classical (Kirchhoff and Reissner-Mindlin), refined (Reddy and Kant), and other higher-order displacement fields are implemented up to fourth-order expansion. The Unified Formulation UF by the first author is used to derive finite element matrices in terms of fundamental nuclei which consist of 3×3 arrays. The MITC4 shear-locking free type formulation is used for the FE approximation. Accuracy of a given plate element is established in terms of the error vs. thickness-to-length parameter. A significant number of finite elements for plates are implemented and compared using displacement and stress variables for various plate problems. Reduced models that are able to detect the 3D solution are built and a Best Plate Diagram (BPD) is introduced to give guidelines for the construction of plate theories based on a given accuracy and number of terms. It is concluded that the UF is a valuable tool to establish, for a given plate problem, the most accurate FE able to furnish results within a certain accuracy range. This allows us to obtain guidelines and recommendations in building refined elements in the bending analysis of plates for various geometries, loadings, and boundary conditions.

  8. Dynamic load balancing of applications

    DOEpatents

    Wheat, Stephen R.

    1997-01-01

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated.

  9. Finite elements based on consistently assumed stresses and displacements

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1985-01-01

    Finite element stiffness matrices are derived using an extended Hellinger-Reissner principle in which internal displacements are added to serve as Lagrange multipliers to introduce the equilibrium constraint in each element. In a consistent formulation the assumed stresses are initially unconstrained and complete polynomials and the total displacements are also complete such that the corresponding strains are complete in the same order as the stresses. Several examples indicate that resulting properties for elements constructed by this consistent formulation are ideal and are less sensitive to distortions of element geometries. The method has been used to find the optimal stress terms for plane elements, 3-D solids, axisymmetric solids, and plate bending elements.

  10. Three-dimensional finite element models of the human pubic symphysis with viscohyperelastic soft tissues.

    PubMed

    Li, Zuoping; Alonso, Jorge E; Kim, Jong-Eun; Davidson, James S; Etheridge, Brandon S; Eberhardt, Alan W

    2006-09-01

    Three-dimensional finite element (FE) models of human pubic symphyses were constructed from computed tomography image data of one male and one female cadaver pelvis. The pubic bones, interpubic fibrocartilaginous disc and four pubic ligaments were segmented semi-automatically and meshed with hexahedral elements using automatic mesh generation schemes. A two-term viscoelastic Prony series, determined by curve fitting results of compressive creep experiments, was used to model the rate-dependent effects of the interpubic disc and the pubic ligaments. Three-parameter Mooney-Rivlin material coefficients were calculated for the discs using a heuristic FE approach based on average experimental joint compression data. Similarly, a transversely isotropic hyperelastic material model was applied to the ligaments to capture average tensile responses. Linear elastic isotropic properties were assigned to bone. The applicability of the resulting models was tested in bending simulations in four directions and in tensile tests of varying load rates. The model-predicted results correlated reasonably with the joint bending stiffnesses and rate-dependent tensile responses measured in experiments, supporting the validity of the estimated material coefficients and overall modeling approach. This study represents an important and necessary step in the eventual development of biofidelic pelvis models to investigate symphysis response under high-energy impact conditions, such as motor vehicle collisions.

  11. Experimental validation of a finite-difference model for the prediction of transcranial ultrasound fields based on CT images

    NASA Astrophysics Data System (ADS)

    Bouchoux, Guillaume; Bader, Kenneth B.; Korfhagen, Joseph J.; Raymond, Jason L.; Shivashankar, Ravishankar; Abruzzo, Todd A.; Holland, Christy K.

    2012-12-01

    The prevalence of stroke worldwide and the paucity of effective therapies have triggered interest in the use of transcranial ultrasound as an adjuvant to thrombolytic therapy. Previous studies have shown that 120 kHz ultrasound enhanced thrombolysis and allowed efficient penetration through the temporal bone. The objective of our study was to develop an accurate finite-difference model of acoustic propagation through the skull based on computed tomography (CT) images. The computational approach, which neglected shear waves, was compared with a simple analytical model including shear waves. Acoustic pressure fields from a two-element annular array (120 and 60 kHz) were acquired in vitro in four human skulls. Simulations were performed using registered CT scans and a source term determined by acoustic holography. Mean errors below 14% were found between simulated pressure fields and corresponding measurements. Intracranial peak pressures were systematically underestimated and reflections from the contralateral bone were overestimated. Determination of the acoustic impedance of the bone from the CT images was the likely source of error. High correlation between predictions and measurements (R2 = 0.93 and R2 = 0.88 for transmitted and reflected waves amplitude, respectively) demonstrated that this model is suitable for a quantitative estimation of acoustic fields generated during 40-200 kHz ultrasound-enhanced ischemic stroke treatment.

  12. Comparison of the Young-Laplace law and finite element based calculation of ventricular wall stress: implications for postinfarct and surgical ventricular remodeling.

    PubMed

    Zhang, Zhihong; Tendulkar, Amod; Sun, Kay; Saloner, David A; Wallace, Arthur W; Ge, Liang; Guccione, Julius M; Ratcliffe, Mark B

    2011-01-01

    Both the Young-Laplace law and finite element (FE) based methods have been used to calculate left ventricular wall stress. We tested the hypothesis that the Young-Laplace law is able to reproduce results obtained with the FE method. Magnetic resonance imaging scans with noninvasive tags were used to calculate three-dimensional myocardial strain in 5 sheep 16 weeks after anteroapical myocardial infarction, and in 1 of those sheep 6 weeks after a Dor procedure. Animal-specific FE models were created from the remaining 5 animals using magnetic resonance images obtained at early diastolic filling. The FE-based stress in the fiber, cross-fiber, and circumferential directions was calculated and compared to stress calculated with the assumption that wall thickness is very much less than the radius of curvature (Young-Laplace law), and without that assumption (modified Laplace). First, circumferential stress calculated with the modified Laplace law is closer to results obtained with the FE method than stress calculated with the Young-Laplace law. However, there are pronounced regional differences, with the largest difference between modified Laplace and FE occurring in the inner and outer layers of the infarct borderzone. Also, stress calculated with the modified Laplace is very different than stress in the fiber and cross-fiber direction calculated with FE. As a consequence, the modified Laplace law is inaccurate when used to calculate the effect of the Dor procedure on regional ventricular stress. The FE method is necessary to determine stress in the left ventricle with postinfarct and surgical ventricular remodeling. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Mechanical properties and motion of the cupula of the human semicircular canal.

    PubMed

    Selva, Pierre; Oman, Charles M; Stone, Howard A

    2009-01-01

    The mathematical model for the dynamics of the cupula-endolymph system of the inner ear semicircular canal, as elaborated by numerous investigators, remains a foundational tool in all of vestibular physiology. Most models represent the cupula as a linear spring-like element of stiffness K=DeltaP/DeltaV, where DeltaV is the volume displaced upon application of a pressure difference DeltaP. The parameter K directly influences the long time constant of the cupula-endolymph system. Given estimates of K based on experiments, we use thick and thin bending membrane theory, and also finite-element simulations based on more realistic cupula morphologies, to estimate the human cupula's Young's modulus E approximately 5.4 Pa. We show that for a model morphology, thick bending membrane theory and finite-element predictions are in good agreement, and conclude that the morphology of the attachment of the cupula to the slope of the crista should not greatly influence the volume displacement. We note, however, that other biological materials with very low E are hydrogels that have significant viscoelastic properties. Experiments to directly measure E and investigate potential viscoelastic behavior ultimately may be needed. In addition, based on experimental images we study two other different shapes for the cupula and quantify their impact on the deflection of the cupula. We also use a three-dimensional finite-element model to analyze both the shear strain distribution and its time evolution near the sensory epithelium. We conclude that stimulation of sensory hair cells probably begins at the centre of the crista and spreads toward the periphery of the cupula and down the sides of the crista. Thus, spatio-temporal variations in the shearing stimulus are predicted to impact subsequent transduction and encoding. Finally, modeling the fluid-filled vertical channels believed to lie within the cupula, we investigate the impact of different tube diameters on the transverse displacement field. We show that, for the assumed diameters and grid spacing, cupula displacements should be highly sensitive to the diameter of the tubes. Experiments to verify the existence of cupular channels and accurately measure their diameter and spacing are needed.

  14. BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework

    DOE PAGES

    Wang, Qi; Sprague, Michael A.; Jonkman, Jason; ...

    2017-03-14

    Here, this paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre-spectral-finite-element (LSFE) method. The displacement-based geometrically exact beam theory is presented, and the special treatment of three-dimensional rotation parameters is reviewed. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades within the FAST aeroelastic engineering model. The frameworkmore » allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand-alone high-fidelity beam tool.« less

  15. Design of Software for Design of Finite Element for Structural Analysis. Ph.D. Thesis - Stuttgart Univ., 22 Nov. 1983

    NASA Technical Reports Server (NTRS)

    Helfrich, Reinhard

    1987-01-01

    The concepts of software engineering which allow a user of the finite element method to describe a model, to collect and to check the model data in a data base as well as to form the matrices required for a finite element calculation are examined. Next the components of the model description are conceived including the mesh tree, the topology, the configuration, the kinematic boundary conditions, the data for each element, and the loads. The possibilities for description and review of the data are considered. The concept of the segments for the modularization of the programs follows the components of the model description. The significance of the mesh tree as a globular guiding structure will be understood in view of the principle of the unity of the model, the mesh tree, and the data base. The user-friendly aspects of the software system will be summarized: the principle of language communication, the data generators, error processing, and data security.

  16. Binary tree eigen solver in finite element analysis

    NASA Technical Reports Server (NTRS)

    Akl, F. A.; Janetzke, D. C.; Kiraly, L. J.

    1993-01-01

    This paper presents a transputer-based binary tree eigensolver for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on the method of recursive doubling, which parallel implementation of a number of associative operations on an arbitrary set having N elements is of the order of o(log2N), compared to (N-1) steps if implemented sequentially. The hardware used in the implementation of the binary tree consists of 32 transputers. The algorithm is written in OCCAM which is a high-level language developed with the transputers to address parallel programming constructs and to provide the communications between processors. The algorithm can be replicated to match the size of the binary tree transputer network. Parallel and sequential finite element analysis programs have been developed to solve for the set of the least-order eigenpairs using the modified subspace method. The speed-up obtained for a typical analysis problem indicates close agreement with the theoretical prediction given by the method of recursive doubling.

  17. BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qi; Sprague, Michael A.; Jonkman, Jason

    Here, this paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre-spectral-finite-element (LSFE) method. The displacement-based geometrically exact beam theory is presented, and the special treatment of three-dimensional rotation parameters is reviewed. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades within the FAST aeroelastic engineering model. The frameworkmore » allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand-alone high-fidelity beam tool.« less

  18. Investigation of a Macromechanical Approach to Analyzing Triaxially-Braided Polymer Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Blinzler, Brina J.; Binienda, Wieslaw K.

    2010-01-01

    A macro level finite element-based model has been developed to simulate the mechanical and impact response of triaxially-braided polymer matrix composites. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. The material stiffness and strength values required for the constitutive model are determined based on coupon level tests on the braided composite. Simulations of quasi-static coupon tests of a representative braided composite are conducted. Varying the strength values that are input to the material model is found to have a significant influence on the effective material response predicted by the finite element analysis, sometimes in ways that at first glance appear non-intuitive. A parametric study involving the input strength parameters provides guidance on how the analysis model can be improved.

  19. Frame analysis of UNNES electric bus chassis construction using finite element method

    NASA Astrophysics Data System (ADS)

    Nugroho, Untoro; Anis, Samsudin; Kusumawardani, Rini; Khoiron, Ahmad Mustamil; Maulana, Syahdan Sigit; Irvandi, Muhammad; Mashdiq, Zia Putra

    2018-03-01

    Designing the chassis needs to be done element simulation analysis to gain chassis strength on an electric bus. The purpose of this research is to get the results of chassis simulation on an electric bus when having load use FEM (Finite element method). This research was conduct in several stages of process, such as modeling chassis by Autodesk Inventor and finite element simulation software. The frame is going to be simulated with static loading by determine fixed support and then will be given the vertical force. The fixed on the frame is clamped at both the front and rear suspensions. After the simulation based on FEM it can conclude that frame is still under elastic zone, until the frame design is safe to use.

  20. Dynamic analysis of suspension cable based on vector form intrinsic finite element method

    NASA Astrophysics Data System (ADS)

    Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun

    2017-10-01

    A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.

Top