A novel augmented reality system of image projection for image-guided neurosurgery.
Mahvash, Mehran; Besharati Tabrizi, Leila
2013-05-01
Augmented reality systems combine virtual images with a real environment. To design and develop an augmented reality system for image-guided surgery of brain tumors using image projection. A virtual image was created in two ways: (1) MRI-based 3D model of the head matched with the segmented lesion of a patient using MRIcro software (version 1.4, freeware, Chris Rorden) and (2) Digital photograph based model in which the tumor region was drawn using image-editing software. The real environment was simulated with a head phantom. For direct projection of the virtual image to the head phantom, a commercially available video projector (PicoPix 1020, Philips) was used. The position and size of the virtual image was adjusted manually for registration, which was performed using anatomical landmarks and fiducial markers position. An augmented reality system for image-guided neurosurgery using direct image projection has been designed successfully and implemented in first evaluation with promising results. The virtual image could be projected to the head phantom and was registered manually. Accurate registration (mean projection error: 0.3 mm) was performed using anatomical landmarks and fiducial markers position. The direct projection of a virtual image to the patients head, skull, or brain surface in real time is an augmented reality system that can be used for image-guided neurosurgery. In this paper, the first evaluation of the system is presented. The encouraging first visualization results indicate that the presented augmented reality system might be an important enhancement of image-guided neurosurgery.
Chen, T N; Yin, X T; Li, X G; Zhao, J; Wang, L; Mu, N; Ma, K; Huo, K; Liu, D; Gao, B Y; Feng, H; Li, F
2018-05-08
Objective: To explore the clinical and teaching application value of virtual reality technology in preoperative planning and intraoperative guide of glioma located in central sulcus region. Method: Ten patients with glioma in the central sulcus region were proposed to surgical treatment. The neuro-imaging data, including CT, CTA, DSA, MRI, fMRI were input to 3dgo sczhry workstation for image fusion and 3D reconstruction. Spatial relationships between the lesions and the surrounding structures on the virtual reality image were obtained. These images were applied to the operative approach design, operation process simulation, intraoperative auxiliary decision and the training of specialist physician. Results: Intraoperative founding of 10 patients were highly consistent with preoperative simulation with virtual reality technology. Preoperative 3D reconstruction virtual reality images improved the feasibility of operation planning and operation accuracy. This technology had not only shown the advantages for neurological function protection and lesion resection during surgery, but also improved the training efficiency and effectiveness of dedicated physician by turning the abstract comprehension to virtual reality. Conclusion: Image fusion and 3D reconstruction based virtual reality technology in glioma resection is helpful for formulating the operation plan, improving the operation safety, increasing the total resection rate, and facilitating the teaching and training of the specialist physician.
Designing 3 Dimensional Virtual Reality Using Panoramic Image
NASA Astrophysics Data System (ADS)
Wan Abd Arif, Wan Norazlinawati; Wan Ahmad, Wan Fatimah; Nordin, Shahrina Md.; Abdullah, Azrai; Sivapalan, Subarna
The high demand to improve the quality of the presentation in the knowledge sharing field is to compete with rapidly growing technology. The needs for development of technology based learning and training lead to an idea to develop an Oil and Gas Plant Virtual Environment (OGPVE) for the benefit of our future. Panoramic Virtual Reality learning based environment is essential in order to help educators overcome the limitations in traditional technical writing lesson. Virtual reality will help users to understand better by providing the simulations of real-world and hard to reach environment with high degree of realistic experience and interactivity. Thus, in order to create a courseware which will achieve the objective, accurate images of intended scenarios must be acquired. The panorama shows the OGPVE and helps to generate ideas to users on what they have learnt. This paper discusses part of the development in panoramic virtual reality. The important phases for developing successful panoramic image are image acquisition and image stitching or mosaicing. In this paper, the combination of wide field-of-view (FOV) and close up image used in this panoramic development are also discussed.
Innovative application of virtual display technique in virtual museum
NASA Astrophysics Data System (ADS)
Zhang, Jiankang
2017-09-01
Virtual museum refers to display and simulate the functions of real museum on the Internet in the form of 3 Dimensions virtual reality by applying interactive programs. Based on Virtual Reality Modeling Language, virtual museum building and its effective interaction with the offline museum lie in making full use of 3 Dimensions panorama technique, virtual reality technique and augmented reality technique, and innovatively taking advantages of dynamic environment modeling technique, real-time 3 Dimensions graphics generating technique, system integration technique and other key virtual reality techniques to make sure the overall design of virtual museum.3 Dimensions panorama technique, also known as panoramic photography or virtual reality, is a technique based on static images of the reality. Virtual reality technique is a kind of computer simulation system which can create and experience the interactive 3 Dimensions dynamic visual world. Augmented reality, also known as mixed reality, is a technique which simulates and mixes the information (visual, sound, taste, touch, etc.) that is difficult for human to experience in reality. These technologies make virtual museum come true. It will not only bring better experience and convenience to the public, but also be conducive to improve the influence and cultural functions of the real museum.
Virtual reality in surgery and medicine.
Chinnock, C
1994-01-01
This report documents the state of development of enhanced and virtual reality-based systems in medicine. Virtual reality systems seek to simulate a surgical procedure in a computer-generated world in order to improve training. Enhanced reality systems seek to augment or enhance reality by providing improved imaging alternatives for specific patient data. Virtual reality represents a paradigm shift in the way we teach and evaluate the skills of medical personnel. Driving the development of virtual reality-based simulators is laparoscopic abdominal surgery, where there is a perceived need for better training techniques; within a year, systems will be fielded for second-year residency students. Further refinements over perhaps the next five years should allow surgeons to evaluate and practice new techniques in a simulator before using them on patients. Technical developments are rapidly improving the realism of these machines to an amazing degree, as well as bringing the price down to affordable levels. In the next five years, many new anatomical models, procedures, and skills are likely to become available on simulators. Enhanced reality systems are generally being developed to improve visualization of specific patient data. Three-dimensional (3-D) stereovision systems for endoscopic applications, head-mounted displays, and stereotactic image navigation systems are being fielded now, with neurosurgery and laparoscopic surgery being major driving influences. Over perhaps the next five years, enhanced and virtual reality systems are likely to merge. This will permit patient-specific images to be used on virtual reality simulators or computer-generated landscapes to be input into surgical visualization instruments. Percolating all around these activities are developments in robotics and telesurgery. An advanced information infrastructure eventually will permit remote physicians to share video, audio, medical records, and imaging data with local physicians in real time. Surgical robots are likely to be deployed for specific tasks in the operating room (OR) and to support telesurgery applications. Technical developments in robotics and motion control are key components of many virtual reality systems. Since almost all of the virtual reality and enhanced reality systems will be digitally based, they are also capable of being put "on-line" for tele-training, consulting, and even surgery. Advancements in virtual and enhanced reality systems will be driven in part by consumer applications of this technology. Many of the companies that will supply systems for medical applications are also working on commercial products. A big consumer hit can benefit the entire industry by increasing volumes and bringing down costs.(ABSTRACT TRUNCATED AT 400 WORDS)
Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng
2017-02-15
Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the "integrated image" on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications.
Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J.; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng
2017-01-01
Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the “integrated image” on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications. PMID:28198442
The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning
ERIC Educational Resources Information Center
Liou, Hsin-Hun; Yang, Stephen J. H.; Chen, Sherry Y.; Tarng, Wernhuar
2017-01-01
Virtual reality (VR) learning environments can provide students with concepts of the simulated phenomena, but users are not allowed to interact with real elements. Conversely, augmented reality (AR) learning environments blend real-world environments so AR could enhance the effects of computer simulation and promote students' realistic experience.…
Liu, Xiujuan; Tao, Haiquan; Xiao, Xigang; Guo, Binbin; Xu, Shangcai; Sun, Na; Li, Maotong; Xie, Li; Wu, Changjun
2018-07-01
This study aimed to compare the diagnostic performance of the stereoscopic virtual reality display system with the conventional computed tomography (CT) workstation and three-dimensional rotational angiography (3DRA) for intracranial aneurysm detection and characterization, with a focus on small aneurysms and those near the bone. First, 42 patients with suspected intracranial aneurysms underwent both 256-row CT angiography (CTA) and 3DRA. Volume rendering (VR) images were captured using the conventional CT workstation. Next, VR images were transferred to the stereoscopic virtual reality display system. Two radiologists independently assessed the results that were obtained using the conventional CT workstation and stereoscopic virtual reality display system. The 3DRA results were considered as the ultimate reference standard. Based on 3DRA images, 38 aneurysms were confirmed in 42 patients. Two cases were misdiagnosed and 1 was missed when the traditional CT workstation was used. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of the conventional CT workstation were 94.7%, 85.7%, 97.3%, 75%, and99.3%, respectively, on a per-aneurysm basis. The stereoscopic virtual reality display system missed a case. The sensitivity, specificity, PPV, NPV, and accuracy of the stereoscopic virtual reality display system were 100%, 85.7%, 97.4%, 100%, and 97.8%, respectively. No difference was observed in the accuracy of the traditional CT workstation, stereoscopic virtual reality display system, and 3DRA in detecting aneurysms. The stereoscopic virtual reality display system has some advantages in detecting small aneurysms and those near the bone. The virtual reality stereoscopic vision obtained through the system was found as a useful tool in intracranial aneurysm diagnosis and pre-operative 3D imaging. Copyright © 2018 Elsevier B.V. All rights reserved.
Qian, Zeng-Hui; Feng, Xu; Li, Yang; Tang, Ke
2018-01-01
Studying the three-dimensional (3D) anatomy of the cavernous sinus is essential for treating lesions in this region with skull base surgeries. Cadaver dissection is a conventional method that has insurmountable flaws with regard to understanding spatial anatomy. The authors' research aimed to build an image model of the cavernous sinus region in a virtual reality system to precisely, individually and objectively elucidate the complete and local stereo-anatomy. Computed tomography and magnetic resonance imaging scans were performed on 5 adult cadaver heads. Latex mixed with contrast agent was injected into the arterial system and then into the venous system. Computed tomography scans were performed again following the 2 injections. Magnetic resonance imaging scans were performed again after the cranial nerves were exposed. Image data were input into a virtual reality system to establish a model of the cavernous sinus. Observation results of the image models were compared with those of the cadaver heads. Visualization of the cavernous sinus region models built using the virtual reality system was good for all the cadavers. High resolutions were achieved for the images of different tissues. The observed results were consistent with those of the cadaver head. The spatial architecture and modality of the cavernous sinus were clearly displayed in the 3D model by rotating the model and conveniently changing its transparency. A 3D virtual reality model of the cavernous sinus region is helpful for globally and objectively understanding anatomy. The observation procedure was accurate, convenient, noninvasive, and time and specimen saving.
ERIC Educational Resources Information Center
Yang, Mau-Tsuen; Liao, Wan-Che
2014-01-01
The physical-virtual immersion and real-time interaction play an essential role in cultural and language learning. Augmented reality (AR) technology can be used to seamlessly merge virtual objects with real-world images to realize immersions. Additionally, computer vision (CV) technology can recognize free-hand gestures from live images to enable…
Ferrer-García, Marta; Gutiérrez-Maldonado, José
2012-01-01
This article reviews research into the use of virtual reality in the study, assessment, and treatment of body image disturbances in eating disorders and nonclinical samples. During the last decade, virtual reality has emerged as a technology that is especially suitable not only for the assessment of body image disturbances but also for its treatment. Indeed, several virtual environment-based software systems have been developed for this purpose. Furthermore, virtual reality seems to be a good alternative to guided imagery and in vivo exposure, and is therefore very useful for studies that require exposure to life-like situations but which are difficult to conduct in the real world. Nevertheless, review highlights the lack of published controlled studies and the presence of methodological drawbacks that should be considered in future studies. This article also discusses the implications of the results obtained and proposes directions for future research. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lee, Jae M; Ku, Jeong H; Jang, Dong P; Kim, Dong H; Choi, Young H; Kim, In Y; Kim, Sun I
2002-06-01
The fear of speaking is often cited as the world's most common social phobia. The rapid growth of computer technology enabled us to use virtual reality (VR) for the treatment of the fear of public speaking. There have been two techniques used to construct a virtual environment for the treatment of the fear of public speaking: model-based and movie-based. Virtual audiences and virtual environments made by model-based technique are unrealistic and unnatural. The movie-based technique has a disadvantage in that each virtual audience cannot be controlled respectively, because all virtual audiences are included in one moving picture file. To address this disadvantage, this paper presents a virtual environment made by using image-based rendering (IBR) and chroma keying simultaneously. IBR enables us to make the virtual environment realistic because the images are stitched panoramically with the photos taken from a digital camera. And the use of chroma keying allows a virtual audience to be controlled individually. In addition, a real-time capture technique was applied in constructing the virtual environment to give the subjects more interaction, in that they can talk with a therapist or another subject.
Virtual reality for spherical images
NASA Astrophysics Data System (ADS)
Pilarczyk, Rafal; Skarbek, Władysław
2017-08-01
Paper presents virtual reality application framework and application concept for mobile devices. Framework uses Google Cardboard library for Android operating system. Framework allows to create virtual reality 360 video player using standard OpenGL ES rendering methods. Framework provides network methods in order to connect to web server as application resource provider. Resources are delivered using JSON response as result of HTTP requests. Web server also uses Socket.IO library for synchronous communication between application and server. Framework implements methods to create event driven process of rendering additional content based on video timestamp and virtual reality head point of view.
Stereoscopic virtual reality models for planning tumor resection in the sellar region.
Wang, Shou-sen; Zhang, Shang-ming; Jing, Jun-jie
2012-11-28
It is difficult for neurosurgeons to perceive the complex three-dimensional anatomical relationships in the sellar region. To investigate the value of using a virtual reality system for planning resection of sellar region tumors. The study included 60 patients with sellar tumors. All patients underwent computed tomography angiography, MRI-T1W1, and contrast enhanced MRI-T1W1 image sequence scanning. The CT and MRI scanning data were collected and then imported into a Dextroscope imaging workstation, a virtual reality system that allows structures to be viewed stereoscopically. During preoperative assessment, typical images for each patient were chosen and printed out for use by the surgeons as references during surgery. All sellar tumor models clearly displayed bone, the internal carotid artery, circle of Willis and its branches, the optic nerve and chiasm, ventricular system, tumor, brain, soft tissue and adjacent structures. Depending on the location of the tumors, we simulated the transmononasal sphenoid sinus approach, transpterional approach, and other approaches. Eleven surgeons who used virtual reality models completed a survey questionnaire. Nine of the participants said that the virtual reality images were superior to other images but that other images needed to be used in combination with the virtual reality images. The three-dimensional virtual reality models were helpful for individualized planning of surgery in the sellar region. Virtual reality appears to be promising as a valuable tool for sellar region surgery in the future.
ViRPET--combination of virtual reality and PET brain imaging
Majewski, Stanislaw; Brefczynski-Lewis, Julie
2017-05-23
Various methods, systems and apparatus are provided for brain imaging during virtual reality stimulation. In one example, among others, a system for virtual ambulatory environment brain imaging includes a mobile brain imager configured to obtain positron emission tomography (PET) scans of a subject in motion, and a virtual reality (VR) system configured to provide one or more stimuli to the subject during the PET scans. In another example, a method for virtual ambulatory environment brain imaging includes providing stimulation to a subject through a virtual reality (VR) system; and obtaining a positron emission tomography (PET) scan of the subject while moving in response to the stimulation from the VR system. The mobile brain imager can be positioned on the subject with an array of imaging photodetector modules distributed about the head of the subject.
NASA Astrophysics Data System (ADS)
Nakagawa, M.; Akano, K.; Kobayashi, T.; Sekiguchi, Y.
2017-09-01
Image-based virtual reality (VR) is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS) positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.
Transforming Clinical Imaging Data for Virtual Reality Learning Objects
ERIC Educational Resources Information Center
Trelease, Robert B.; Rosset, Antoine
2008-01-01
Advances in anatomical informatics, three-dimensional (3D) modeling, and virtual reality (VR) methods have made computer-based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR "learning objects," standardized interactive software modules for anatomical sciences…
Image fusion in craniofacial virtual reality modeling based on CT and 3dMD photogrammetry.
Xin, Pengfei; Yu, Hongbo; Cheng, Huanchong; Shen, Shunyao; Shen, Steve G F
2013-09-01
The aim of this study was to demonstrate the feasibility of building a craniofacial virtual reality model by image fusion of 3-dimensional (3D) CT models and 3 dMD stereophotogrammetric facial surface. A CT scan and stereophotography were performed. The 3D CT models were reconstructed by Materialise Mimics software, and the stereophotogrammetric facial surface was reconstructed by 3 dMD patient software. All 3D CT models were exported as Stereo Lithography file format, and the 3 dMD model was exported as Virtual Reality Modeling Language file format. Image registration and fusion were performed in Mimics software. Genetic algorithm was used for precise image fusion alignment with minimum error. The 3D CT models and the 3 dMD stereophotogrammetric facial surface were finally merged into a single file and displayed using Deep Exploration software. Errors between the CT soft tissue model and 3 dMD facial surface were also analyzed. Virtual model based on CT-3 dMD image fusion clearly showed the photorealistic face and bone structures. Image registration errors in virtual face are mainly located in bilateral cheeks and eyeballs, and the errors are more than 1.5 mm. However, the image fusion of whole point cloud sets of CT and 3 dMD is acceptable with a minimum error that is less than 1 mm. The ease of use and high reliability of CT-3 dMD image fusion allows the 3D virtual head to be an accurate, realistic, and widespread tool, and has a great benefit to virtual face model.
Liu, Kaijun; Fang, Binji; Wu, Yi; Li, Ying; Jin, Jun; Tan, Liwen; Zhang, Shaoxiang
2013-09-01
Anatomical knowledge of the larynx region is critical for understanding laryngeal disease and performing required interventions. Virtual reality is a useful method for surgical education and simulation. Here, we assembled segmented cross-section slices of the larynx region from the Chinese Visible Human dataset. The laryngeal structures were precisely segmented manually as 2D images, then reconstructed and displayed as 3D images in the virtual reality Dextrobeam system. Using visualization and interaction with the virtual reality modeling language model, a digital laryngeal anatomy instruction was constructed using HTML and JavaScript languages. The volume larynx models can thus display an arbitrary section of the model and provide a virtual dissection function. This networked teaching system of the digital laryngeal anatomy can be read remotely, displayed locally, and manipulated interactively.
Cabrilo, Ivan; Bijlenga, Philippe; Schaller, Karl
2014-09-01
Augmented reality technology has been used for intraoperative image guidance through the overlay of virtual images, from preoperative imaging studies, onto the real-world surgical field. Although setups based on augmented reality have been used for various neurosurgical pathologies, very few cases have been reported for the surgery of arteriovenous malformations (AVM). We present our experience with AVM surgery using a system designed for image injection of virtual images into the operating microscope's eyepiece, and discuss why augmented reality may be less appealing in this form of surgery. N = 5 patients underwent AVM resection assisted by augmented reality. Virtual three-dimensional models of patients' heads, skulls, AVM nidi, and feeder and drainage vessels were selectively segmented and injected into the microscope's eyepiece for intraoperative image guidance, and their usefulness was assessed in each case. Although the setup helped in performing tailored craniotomies, in guiding dissection and in localizing drainage veins, it did not provide the surgeon with useful information concerning feeder arteries, due to the complexity of AVM angioarchitecture. The difficulty in intraoperatively conveying useful information on feeder vessels may make augmented reality a less engaging tool in this form of surgery, and might explain its underrepresentation in the literature. Integrating an AVM's hemodynamic characteristics into the augmented rendering could make it more suited to AVM surgery.
Wei, Gaofeng; Tang, Gang; Fu, Zengliang; Sun, Qiuming; Tian, Feng
2010-10-01
The China Mechanical Virtual Human (CMVH) is a human musculoskeletal biomechanical simulation platform based on China Visible Human slice images; it has great realistic application significance. In this paper is introduced the construction method of CMVH 3D models. Then a simulation system solution based on Creator/Vega is put forward for the complex and gigantic data characteristics of the 3D models. At last, combined with MFC technology, the CMVH simulation system is developed and a running simulation scene is given. This paper provides a new way for the virtual reality application of CMVH.
Virtual Reality as an Educational and Training Tool for Medicine.
Izard, Santiago González; Juanes, Juan A; García Peñalvo, Francisco J; Estella, Jesús Mª Gonçalvez; Ledesma, Mª José Sánchez; Ruisoto, Pablo
2018-02-01
Until very recently, we considered Virtual Reality as something that was very close, but it was still science fiction. However, today Virtual Reality is being integrated into many different areas of our lives, from videogames to different industrial use cases and, of course, it is starting to be used in medicine. There are two great general classifications for Virtual Reality. Firstly, we find a Virtual Reality in which we visualize a world completely created by computer, three-dimensional and where we can appreciate that the world we are visualizing is not real, at least for the moment as rendered images are improving very fast. Secondly, there is a Virtual Reality that basically consists of a reflection of our reality. This type of Virtual Reality is created using spherical or 360 images and videos, so we lose three-dimensional visualization capacity (until the 3D cameras are more developed), but on the other hand we gain in terms of realism in the images. We could also mention a third classification that merges the previous two, where virtual elements created by computer coexist with 360 images and videos. In this article we will show two systems that we have developed where each of them can be framed within one of the previous classifications, identifying the technologies used for their implementation as well as the advantages of each one. We will also analize how these systems can improve the current methodologies used for medical training. The implications of these developments as tools for teaching, learning and training are discussed.
Two-photon calcium imaging in mice navigating a virtual reality environment.
Leinweber, Marcus; Zmarz, Pawel; Buchmann, Peter; Argast, Paul; Hübener, Mark; Bonhoeffer, Tobias; Keller, Georg B
2014-02-20
In recent years, two-photon imaging has become an invaluable tool in neuroscience, as it allows for chronic measurement of the activity of genetically identified cells during behavior(1-6). Here we describe methods to perform two-photon imaging in mouse cortex while the animal navigates a virtual reality environment. We focus on the aspects of the experimental procedures that are key to imaging in a behaving animal in a brightly lit virtual environment. The key problems that arise in this experimental setup that we here address are: minimizing brain motion related artifacts, minimizing light leak from the virtual reality projection system, and minimizing laser induced tissue damage. We also provide sample software to control the virtual reality environment and to do pupil tracking. With these procedures and resources it should be possible to convert a conventional two-photon microscope for use in behaving mice.
Computer-Based Technologies in Dentistry: Types and Applications
Albuha Al-Mussawi, Raja’a M.; Farid, Farzaneh
2016-01-01
During dental education, dental students learn how to examine patients, make diagnosis, plan treatment and perform dental procedures perfectly and efficiently. However, progresses in computer-based technologies including virtual reality (VR) simulators, augmented reality (AR) and computer aided design/computer aided manufacturing (CAD/CAM) systems have resulted in new modalities for instruction and practice of dentistry. Virtual reality dental simulators enable repeated, objective and assessable practice in various controlled situations. Superimposition of three-dimensional (3D) virtual images on actual images in AR allows surgeons to simultaneously visualize the surgical site and superimpose informative 3D images of invisible regions on the surgical site to serve as a guide. The use of CAD/CAM systems for designing and manufacturing of dental appliances and prostheses has been well established. This article reviews computer-based technologies, their application in dentistry and their potentials and limitations in promoting dental education, training and practice. Practitioners will be able to choose from a broader spectrum of options in their field of practice by becoming familiar with new modalities of training and practice. PMID:28392819
Computer-Based Technologies in Dentistry: Types and Applications.
Albuha Al-Mussawi, Raja'a M; Farid, Farzaneh
2016-06-01
During dental education, dental students learn how to examine patients, make diagnosis, plan treatment and perform dental procedures perfectly and efficiently. However, progresses in computer-based technologies including virtual reality (VR) simulators, augmented reality (AR) and computer aided design/computer aided manufacturing (CAD/CAM) systems have resulted in new modalities for instruction and practice of dentistry. Virtual reality dental simulators enable repeated, objective and assessable practice in various controlled situations. Superimposition of three-dimensional (3D) virtual images on actual images in AR allows surgeons to simultaneously visualize the surgical site and superimpose informative 3D images of invisible regions on the surgical site to serve as a guide. The use of CAD/CAM systems for designing and manufacturing of dental appliances and prostheses has been well established. This article reviews computer-based technologies, their application in dentistry and their potentials and limitations in promoting dental education, training and practice. Practitioners will be able to choose from a broader spectrum of options in their field of practice by becoming familiar with new modalities of training and practice.
Slobounov, Semyon; Sebastianelli, Wayne; Newell, Karl M
2011-01-01
There is a growing concern that traditional neuropsychological (NP) testing tools are not sensitive to detecting residual brain dysfunctions in subjects suffering from mild traumatic brain injuries (MTBI). Moreover, most MTBI patients are asymptomatic based on anatomical brain imaging (CT, MRI), neurological examinations and patients' subjective reports within 10 days post-injury. Our ongoing research has documented that residual balance and visual-kinesthetic dysfunctions along with its underlying alterations of neural substrates may be detected in "asymptomatic subjects" by means of Virtual Reality (VR) graphics incorporated with brain imaging (EEG) techniques.
Fully Three-Dimensional Virtual-Reality System
NASA Technical Reports Server (NTRS)
Beckman, Brian C.
1994-01-01
Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.
Visuo-Haptic Mixed Reality with Unobstructed Tool-Hand Integration.
Cosco, Francesco; Garre, Carlos; Bruno, Fabio; Muzzupappa, Maurizio; Otaduy, Miguel A
2013-01-01
Visuo-haptic mixed reality consists of adding to a real scene the ability to see and touch virtual objects. It requires the use of see-through display technology for visually mixing real and virtual objects, and haptic devices for adding haptic interaction with the virtual objects. Unfortunately, the use of commodity haptic devices poses obstruction and misalignment issues that complicate the correct integration of a virtual tool and the user's real hand in the mixed reality scene. In this work, we propose a novel mixed reality paradigm where it is possible to touch and see virtual objects in combination with a real scene, using commodity haptic devices, and with a visually consistent integration of the user's hand and the virtual tool. We discuss the visual obstruction and misalignment issues introduced by commodity haptic devices, and then propose a solution that relies on four simple technical steps: color-based segmentation of the hand, tracking-based segmentation of the haptic device, background repainting using image-based models, and misalignment-free compositing of the user's hand. We have developed a successful proof-of-concept implementation, where a user can touch virtual objects and interact with them in the context of a real scene, and we have evaluated the impact on user performance of obstruction and misalignment correction.
Wang, Zun-Rong; Wang, Ping; Xing, Liang; Mei, Li-Ping; Zhao, Jun; Zhang, Tong
2017-11-01
Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).
Wang, Zun-rong; Wang, Ping; Xing, Liang; Mei, Li-ping; Zhao, Jun; Zhang, Tong
2017-01-01
Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238). PMID:29239328
Virtual reality 3D headset based on DMD light modulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Evans, Allan; Tang, Edward
We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.
Virtual Reality Exploration and Planning for Precision Colorectal Surgery.
Guerriero, Ludovica; Quero, Giuseppe; Diana, Michele; Soler, Luc; Agnus, Vincent; Marescaux, Jacques; Corcione, Francesco
2018-06-01
Medical software can build a digital clone of the patient with 3-dimensional reconstruction of Digital Imaging and Communication in Medicine images. The virtual clone can be manipulated (rotations, zooms, etc), and the various organs can be selectively displayed or hidden to facilitate a virtual reality preoperative surgical exploration and planning. We present preliminary cases showing the potential interest of virtual reality in colorectal surgery for both cases of diverticular disease and colonic neoplasms. This was a single-center feasibility study. The study was conducted at a tertiary care institution. Two patients underwent a laparoscopic left hemicolectomy for diverticular disease, and 1 patient underwent a laparoscopic right hemicolectomy for cancer. The 3-dimensional virtual models were obtained from preoperative CT scans. The virtual model was used to perform preoperative exploration and planning. Intraoperatively, one of the surgeons was manipulating the virtual reality model, using the touch screen of a tablet, which was interactively displayed to the surgical team. The main outcome was evaluation of the precision of virtual reality in colorectal surgery planning and exploration. In 1 patient undergoing laparoscopic left hemicolectomy, an abnormal origin of the left colic artery beginning as an extremely short common trunk from the inferior mesenteric artery was clearly seen in the virtual reality model. This finding was missed by the radiologist on CT scan. The precise identification of this vascular variant granted a safe and adequate surgery. In the remaining cases, the virtual reality model helped to precisely estimate the vascular anatomy, providing key landmarks for a safer dissection. A larger sample size would be necessary to definitively assess the efficacy of virtual reality in colorectal surgery. Virtual reality can provide an enhanced understanding of crucial anatomical details, both preoperatively and intraoperatively, which could contribute to improve safety in colorectal surgery.
VirSSPA- a virtual reality tool for surgical planning workflow.
Suárez, C; Acha, B; Serrano, C; Parra, C; Gómez, T
2009-03-01
A virtual reality tool, called VirSSPA, was developed to optimize the planning of surgical processes. Segmentation algorithms for Computed Tomography (CT) images: a region growing procedure was used for soft tissues and a thresholding algorithm was implemented to segment bones. The algorithms operate semiautomati- cally since they only need seed selection with the mouse on each tissue segmented by the user. The novelty of the paper is the adaptation of an enhancement method based on histogram thresholding applied to CT images for surgical planning, which simplifies subsequent segmentation. A substantial improvement of the virtual reality tool VirSSPA was obtained with these algorithms. VirSSPA was used to optimize surgical planning, to decrease the time spent on surgical planning and to improve operative results. The success rate increases due to surgeons being able to see the exact extent of the patient's ailment. This tool can decrease operating room time, thus resulting in reduced costs. Virtual simulation was effective for optimizing surgical planning, which could, consequently, result in improved outcomes with reduced costs.
A 3-D mixed-reality system for stereoscopic visualization of medical dataset.
Ferrari, Vincenzo; Megali, Giuseppe; Troia, Elena; Pietrabissa, Andrea; Mosca, Franco
2009-11-01
We developed a simple, light, and cheap 3-D visualization device based on mixed reality that can be used by physicians to see preoperative radiological exams in a natural way. The system allows the user to see stereoscopic "augmented images," which are created by mixing 3-D virtual models of anatomies obtained by processing preoperative volumetric radiological images (computed tomography or MRI) with real patient live images, grabbed by means of cameras. The interface of the system consists of a head-mounted display equipped with two high-definition cameras. Cameras are mounted in correspondence of the user's eyes and allow one to grab live images of the patient with the same point of view of the user. The system does not use any external tracker to detect movements of the user or the patient. The movements of the user's head and the alignment of virtual patient with the real one are done using machine vision methods applied on pairs of live images. Experimental results, concerning frame rate and alignment precision between virtual and real patient, demonstrate that machine vision methods used for localization are appropriate for the specific application and that systems based on stereoscopic mixed reality are feasible and can be proficiently adopted in clinical practice.
Development of a virtual speaking simulator using Image Based Rendering.
Lee, J M; Kim, H; Oh, M J; Ku, J H; Jang, D P; Kim, I Y; Kim, S I
2002-01-01
The fear of speaking is often cited as the world's most common social phobia. The rapid growth of computer technology has enabled the use of virtual reality (VR) for the treatment of the fear of public speaking. There are two techniques for building virtual environments for the treatment of this fear: a model-based and a movie-based method. Both methods have the weakness that they are unrealistic and not controllable individually. To understand these disadvantages, this paper presents a virtual environment produced with Image Based Rendering (IBR) and a chroma-key simultaneously. IBR enables the creation of realistic virtual environments where the images are stitched panoramically with the photos taken from a digital camera. And the use of chroma-keys puts virtual audience members under individual control in the environment. In addition, real time capture technique is used in constructing the virtual environments enabling spoken interaction between the subject and a therapist or another subject.
Virtual reality 3D headset based on DMD light modulators
NASA Astrophysics Data System (ADS)
Bernacki, Bruce E.; Evans, Allan; Tang, Edward
2014-06-01
We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micromirror devices (DMD). Current methods for presenting information for virtual reality are focused on either polarizationbased modulators such as liquid crystal on silicon (LCoS) devices, or miniature LCD or LED displays often using lenses to place the image at infinity. LCoS modulators are an area of active research and development, and reduce the amount of viewing light by 50% due to the use of polarization. Viewable LCD or LED screens may suffer low resolution, cause eye fatigue, and exhibit a "screen door" or pixelation effect due to the low pixel fill factor. Our approach leverages a mature technology based on silicon micro mirrors delivering 720p resolution displays in a small form-factor with high fill factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high-definition resolution and low power consumption, and many of the design methods developed for DMD projector applications can be adapted to display use. Potential applications include night driving with natural depth perception, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design concept is described in which light from the DMD is imaged to infinity and the user's own eye lens forms a real image on the user's retina resulting in a virtual retinal display.
Learning Rationales and Virtual Reality Technology in Education.
ERIC Educational Resources Information Center
Chiou, Guey-Fa
1995-01-01
Defines and describes virtual reality technology and differentiates between virtual learning environment, learning material, and learning tools. Links learning rationales to virtual reality technology to pave conceptual foundations for application of virtual reality technology education. Constructivism, case-based learning, problem-based learning,…
Agarwal, Nitin; Schmitt, Paul J; Sukul, Vishad; Prestigiacomo, Charles J
2012-08-01
Virtual reality training for complex tasks has been shown to be of benefit in fields involving highly technical and demanding skill sets. The use of a stereoscopic three-dimensional (3D) virtual reality environment to teach a patient-specific analysis of the microsurgical treatment modalities of a complex basilar aneurysm is presented. Three different surgical approaches were evaluated in a virtual environment and then compared to elucidate the best surgical approach. These approaches were assessed with regard to the line-of-sight, skull base anatomy and visualisation of the relevant anatomy at the level of the basilar artery and surrounding structures. Overall, the stereoscopic 3D virtual reality environment with fusion of multimodality imaging affords an excellent teaching tool for residents and medical students to learn surgical approaches to vascular lesions. Future studies will assess the educational benefits of this modality and develop a series of metrics for student assessments.
Computer Vision Assisted Virtual Reality Calibration
NASA Technical Reports Server (NTRS)
Kim, W.
1999-01-01
A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.
A Virtual Reality-Based Simulation of Abdominal Surgery
1994-06-30
415) 591-7881 In! IhNiI 1 SHORT TITLE: A Virtual Reality -Based Simulation of Abdominal Surgery REPORTING PERIOD: October 31, 1993-June 30, 1994 The...Report - A Virtual Reality -Based Simulation Of Abdominal Surgery Page 2 June 21, 1994 TECHNICAL REPORT SUMMARY Virtual Reality is a marriage between...applications of this technology. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations. simulate and
The Use of Virtual Reality Tools in the Reading-Language Arts Classroom
ERIC Educational Resources Information Center
Pilgrim, J. Michael; Pilgrim, Jodi
2016-01-01
This article presents virtual reality as a tool for classroom literacy instruction. Building on the traditional use of images as a way to scaffold prior knowledge, we extend this idea to share ways virtual reality enables experiential learning through field trip-like experiences. The use of technology tools such Google Street view, Google…
Rodrigues-Baroni, Juliana M; Nascimento, Lucas R; Ada, Louise; Teixeira-Salmela, Luci F
2014-01-01
To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions.
Rodrigues-Baroni, Juliana M.; Nascimento, Lucas R.; Ada, Louise; Teixeira-Salmela, Luci F.
2014-01-01
OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. RESULTS: Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. CONCLUSIONS: This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions. PMID:25590442
ERIC Educational Resources Information Center
Auld, Lawrence W. S.; Pantelidis, Veronica S.
1994-01-01
Describes the Virtual Reality and Education Lab (VREL) established at East Carolina University to study the implications of virtual reality for elementary and secondary education. Highlights include virtual reality software evaluation; hardware evaluation; computer-based curriculum objectives which could use virtual reality; and keeping current…
Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee
2015-07-01
[Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.
Generating Contextual Descriptions of Virtual Reality (VR) Spaces
NASA Astrophysics Data System (ADS)
Olson, D. M.; Zaman, C. H.; Sutherland, A.
2017-12-01
Virtual reality holds great potential for science communication, education, and research. However, interfaces for manipulating data and environments in virtual worlds are limited and idiosyncratic. Furthermore, speech and vision are the primary modalities by which humans collect information about the world, but the linking of visual and natural language domains is a relatively new pursuit in computer vision. Machine learning techniques have been shown to be effective at image and speech classification, as well as at describing images with language (Karpathy 2016), but have not yet been used to describe potential actions. We propose a technique for creating a library of possible context-specific actions associated with 3D objects in immersive virtual worlds based on a novel dataset generated natively in virtual reality containing speech, image, gaze, and acceleration data. We will discuss the design and execution of a user study in virtual reality that enabled the collection and the development of this dataset. We will also discuss the development of a hybrid machine learning algorithm linking vision data with environmental affordances in natural language. Our findings demonstrate that it is possible to develop a model which can generate interpretable verbal descriptions of possible actions associated with recognized 3D objects within immersive VR environments. This suggests promising applications for more intuitive user interfaces through voice interaction within 3D environments. It also demonstrates the potential to apply vast bodies of embodied and semantic knowledge to enrich user interaction within VR environments. This technology would allow for applications such as expert knowledge annotation of 3D environments, complex verbal data querying and object manipulation in virtual spaces, and computer-generated, dynamic 3D object affordances and functionality during simulations.
A standardized set of 3-D objects for virtual reality research and applications.
Peeters, David
2018-06-01
The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theories in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3-D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3-D objects for virtual reality research is important, because reaching valid theoretical conclusions hinges critically on the use of well-controlled experimental stimuli. Sharing standardized 3-D objects across different virtual reality labs will allow for science to move forward more quickly.
Shen, Xin; Javidi, Bahram
2018-03-01
We have developed a three-dimensional (3D) dynamic integral-imaging (InIm)-system-based optical see-through augmented reality display with enhanced depth range of a 3D augmented image. A focus-tunable lens is adopted in the 3D display unit to relay the elemental images with various positions to the micro lens array. Based on resolution priority integral imaging, multiple lenslet image planes are generated to enhance the depth range of the 3D image. The depth range is further increased by utilizing both the real and virtual 3D imaging fields. The 3D reconstructed image and the real-world scene are overlaid using an optical see-through display for augmented reality. The proposed system can significantly enhance the depth range of a 3D reconstructed image with high image quality in the micro InIm unit. This approach provides enhanced functionality for augmented information and adjusts the vergence-accommodation conflict of a traditional augmented reality display.
Sun, Guo-Chen; Wang, Fei; Chen, Xiao-Lei; Yu, Xin-Guang; Ma, Xiao-Dong; Zhou, Ding-Biao; Zhu, Ru-Yuan; Xu, Bai-Nan
2016-12-01
The utility of virtual and augmented reality based on functional neuronavigation and intraoperative magnetic resonance imaging (MRI) for glioma surgery has not been previously investigated. The study population consisted of 79 glioma patients and 55 control subjects. Preoperatively, the lesion and related eloquent structures were visualized by diffusion tensor tractography and blood oxygen level-dependent functional MRI. Intraoperatively, microscope-based functional neuronavigation was used to integrate the reconstructed eloquent structure and the real head and brain, which enabled safe resection of the lesion. Intraoperative MRI was used to verify brain shift during the surgical process and provided quality control during surgery. The control group underwent surgery guided by anatomic neuronavigation. Virtual and augmented reality protocols based on functional neuronavigation and intraoperative MRI provided useful information for performing tailored and optimized surgery. Complete resection was achieved in 55 of 79 (69.6%) glioma patients and 20 of 55 (36.4%) control subjects, with average resection rates of 95.2% ± 8.5% and 84.9% ± 15.7%, respectively. Both the complete resection rate and average extent of resection differed significantly between the 2 groups (P < 0.01). Postoperatively, the rate of preservation of neural functions (motor, visual field, and language) was lower in controls than in glioma patients at 2 weeks and 3 months (P < 0.01). Combining virtual and augmented reality based on functional neuronavigation and intraoperative MRI can facilitate resection of gliomas involving eloquent areas. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Ong, Alex
2010-01-01
The use of augmented reality (AR) tools, where virtual objects such as tables and graphs can be displayed and be interacted with in real scenes created from imaging devices, in mainstream school curriculum is uncommon, as they are potentially costly and sometimes bulky. Thus, such learning tools are mainly applied in tertiary institutions, such as…
NASA Astrophysics Data System (ADS)
Thubaasini, P.; Rusnida, R.; Rohani, S. M.
This paper describes Linux, an open source platform used to develop and run a virtual architectural walkthrough application. It proposes some qualitative reflections and observations on the nature of Linux in the concept of Virtual Reality (VR) and on the most popular and important claims associated with the open source approach. The ultimate goal of this paper is to measure and evaluate the performance of Linux used to build the virtual architectural walkthrough and develop a proof of concept based on the result obtain through this project. Besides that, this study reveals the benefits of using Linux in the field of virtual reality and reflects a basic comparison and evaluation between Windows and Linux base operating system. Windows platform is use as a baseline to evaluate the performance of Linux. The performance of Linux is measured based on three main criteria which is frame rate, image quality and also mouse motion.
Virtual Reality: Toward Fundamental Improvements in Simulation-Based Training.
ERIC Educational Resources Information Center
Thurman, Richard A.; Mattoon, Joseph S.
1994-01-01
Considers the role and effectiveness of virtual reality in simulation-based training. The theoretical and practical implications of verity, integration, and natural versus artificial interface are discussed; a three-dimensional classification scheme for virtual reality is described; and the relationship between virtual reality and other…
The virtual mirror: a new interaction paradigm for augmented reality environments.
Bichlmeier, Christoph; Heining, Sandro Michael; Feuerstein, Marco; Navab, Nassir
2009-09-01
Medical augmented reality (AR) has been widely discussed within the medical imaging as well as computer aided surgery communities. Different systems for exemplary medical applications have been proposed. Some of them produced promising results. One major issue still hindering AR technology to be regularly used in medical applications is the interaction between physician and the superimposed 3-D virtual data. Classical interaction paradigms, for instance with keyboard and mouse, to interact with visualized medical 3-D imaging data are not adequate for an AR environment. This paper introduces the concept of a tangible/controllable Virtual Mirror for medical AR applications. This concept intuitively augments the direct view of the surgeon with all desired views on volumetric medical imaging data registered with the operation site without moving around the operating table or displacing the patient. We selected two medical procedures to demonstrate and evaluate the potentials of the Virtual Mirror for the surgical workflow. Results confirm the intuitiveness of this new paradigm and its perceptive advantages for AR-based computer aided interventions.
ERIC Educational Resources Information Center
Woodward, John
As part of a 3-year study to identify emerging issues and trends in technology for special education, this paper addresses the possible contributions of virtual reality technology to educational services for students with disabilities. An example of the use of virtual reality in medical imaging introduces the paper and leads to a brief review of…
Chao, Coline; Chalouhi, Gihad E; Bouhanna, Philippe; Ville, Yves; Dommergues, Marc
2015-09-01
To compare the impact of virtual reality simulation training and theoretical teaching on the ability of inexperienced trainees to produce adequate virtual transvaginal ultrasound images. We conducted a randomized controlled trial with parallel groups. Participants included inexperienced residents starting a training program in Paris. The intervention consisted of 40 minutes of virtual reality simulation training using a haptic transvaginal simulator versus 40 minutes of conventional teaching including a conference with slides and videos and answers to the students' questions. The outcome was a 19-point image quality score calculated from a set of 4 images (sagittal and coronal views of the uterus and left and right ovaries) produced by trainees immediately after the intervention, using the same simulator on which a new virtual patient had been uploaded. Experts assessed the outcome on stored images, presented in a random order, 2 months after the trial was completed. They were blinded to group assignment. The hypothesis was an improved outcome in the intervention group. Randomization was 1 to 1. The mean score was significantly greater in the simulation group (n = 16; mean score, 12; SEM, 0.8) than the control group (n = 18; mean score, 9; SEM, 1.0; P= .0302). The quality of virtual vaginal images produced by inexperienced trainees was greater immediately after a single virtual reality simulation training session than after a single theoretical teaching session. © 2015 by the American Institute of Ultrasound in Medicine.
ERIC Educational Resources Information Center
Gunn, Therese; Jones, Lee; Bridge, Pete; Rowntree, Pam; Nissen, Lisa
2018-01-01
In recent years, simulation has increasingly underpinned the acquisition of pre-clinical skills by undergraduate medical imaging (diagnostic radiography) students. This project aimed to evaluate the impact of an innovative virtual reality (VR) learning environment on the development of technical proficiency by students. The study assessed the…
Fortmeier, Dirk; Mastmeyer, Andre; Schröder, Julian; Handels, Heinz
2016-01-01
This study presents a new visuo-haptic virtual reality (VR) training and planning system for percutaneous transhepatic cholangio-drainage (PTCD) based on partially segmented virtual patient models. We only use partially segmented image data instead of a full segmentation and circumvent the necessity of surface or volume mesh models. Haptic interaction with the virtual patient during virtual palpation, ultrasound probing and needle insertion is provided. Furthermore, the VR simulator includes X-ray and ultrasound simulation for image-guided training. The visualization techniques are GPU-accelerated by implementation in Cuda and include real-time volume deformations computed on the grid of the image data. Computation on the image grid enables straightforward integration of the deformed image data into the visualization components. To provide shorter rendering times, the performance of the volume deformation algorithm is improved by a multigrid approach. To evaluate the VR training system, a user evaluation has been performed and deformation algorithms are analyzed in terms of convergence speed with respect to a fully converged solution. The user evaluation shows positive results with increased user confidence after a training session. It is shown that using partially segmented patient data and direct volume rendering is suitable for the simulation of needle insertion procedures such as PTCD.
Virtual reality in rhinology-a new dimension of clinical experience.
Klapan, Ivica; Raos, Pero; Galeta, Tomislav; Kubat, Goranka
2016-07-01
There is often a need to more precisely identify the extent of pathology and the fine elements of intracranial anatomic features during the diagnostic process and during many operations in the nose, sinus, orbit, and skull base region. In two case reports, we describe the methods used in the diagnostic workup and surgical therapy in the nose and paranasal sinus region. Besides baseline x-ray, multislice computed tomography, and magnetic resonance imaging, operative field imaging was performed via a rapid prototyping model, virtual endoscopy, and 3-D imaging. Different head tissues were visualized in different colors, showing their anatomic interrelations and the extent of pathologic tissue within the operative field. This approach has not yet been used as a standard preoperative or intraoperative procedure in otorhinolaryngology. In this way, we tried to understand the new, visualized "world of anatomic relations within the patient's head" by creating an impression of perception (virtual perception) of the given position of all elements in a particular anatomic region of the head, which does not exist in the real world (virtual world). This approach was aimed at upgrading the diagnostic workup and surgical therapy by ensuring a faster, safer and, above all, simpler operative procedure. In conclusion, any ENT specialist can provide virtual reality support in implementing surgical procedures, with additional control of risks and within the limits of normal tissue, without additional trauma to the surrounding tissue in the anatomic region. At the same time, the virtual reality support provides an impression of the virtual world as the specialist navigates through it and manipulates virtual objects.
Kin, Taichi; Nakatomi, Hirofumi; Shono, Naoyuki; Nomura, Seiji; Saito, Toki; Oyama, Hiroshi; Saito, Nobuhito
2017-10-15
Simulation and planning of surgery using a virtual reality model is becoming common with advances in computer technology. In this study, we conducted a literature search to find trends in virtual simulation of surgery for brain tumors. A MEDLINE search for "neurosurgery AND (simulation OR virtual reality)" retrieved a total of 1,298 articles published in the past 10 years. After eliminating studies designed solely for education and training purposes, 28 articles about the clinical application remained. The finding that the vast majority of the articles were about education and training rather than clinical applications suggests that several issues need be addressed for clinical application of surgical simulation. In addition, 10 of the 28 articles were from Japanese groups. In general, the 28 articles demonstrated clinical benefits of virtual surgical simulation. Simulation was particularly useful in better understanding complicated spatial relations of anatomical landmarks and in examining surgical approaches. In some studies, Virtual reality models were used on either surgical navigation system or augmented reality technology, which projects virtual reality images onto the operating field. Reported problems were difficulties in standardized, objective evaluation of surgical simulation systems; inability to respond to tissue deformation caused by surgical maneuvers; absence of the system functionality to reflect features of tissue (e.g., hardness and adhesion); and many problems with image processing. The amount of description about image processing tended to be insufficient, indicating that the level of evidence, risk of bias, precision, and reproducibility need to be addressed for further advances and ultimately for full clinical application.
[Application of virtual reality in surgical treatment of complex head and neck carcinoma].
Zhou, Y Q; Li, C; Shui, C Y; Cai, Y C; Sun, R H; Zeng, D F; Wang, W; Li, Q L; Huang, L; Tu, J; Jiang, J
2018-01-07
Objective: To investigate the application of virtual reality technology in the preoperative evaluation of complex head and neck carcinoma and he value of virtual reality technology in surgical treatment of head and neck carcinoma. Methods: The image data of eight patients with complex head and neck carcinoma treated from December 2016 to May 2017 was acquired. The data were put into virtual reality system to built the three-dimensional anatomical model of carcinoma and to created the surgical scene. The process of surgery was stimulated by recognizing the relationship between tumor and surrounding important structures. Finally all patients were treated with surgery. And two typical cases were reported. Results: With the help of virtual reality, surgeons could adequately assess the condition of carcinoma and the security of operation and ensured the safety of operations. Conclusions: Virtual reality can provide the surgeons with the sensory experience in virtual surgery scenes and achieve the man-computer cooperation and stereoscopic assessment, which will ensure the safety of surgery. Virtual reality has a huge impact on guiding the traditional surgical procedure of head and neck carcinoma.
Virtual reality measures in neuropsychological assessment: a meta-analytic review.
Neguț, Alexandra; Matu, Silviu-Andrei; Sava, Florin Alin; David, Daniel
2016-02-01
Virtual reality-based assessment is a new paradigm for neuropsychological evaluation, that might provide an ecological assessment, compared to paper-and-pencil or computerized neuropsychological assessment. Previous research has focused on the use of virtual reality in neuropsychological assessment, but no meta-analysis focused on the sensitivity of virtual reality-based measures of cognitive processes in measuring cognitive processes in various populations. We found eighteen studies that compared the cognitive performance between clinical and healthy controls on virtual reality measures. Based on a random effects model, the results indicated a large effect size in favor of healthy controls (g = .95). For executive functions, memory and visuospatial analysis, subgroup analysis revealed moderate to large effect sizes, with superior performance in the case of healthy controls. Participants' mean age, type of clinical condition, type of exploration within virtual reality environments, and the presence of distractors were significant moderators. Our findings support the sensitivity of virtual reality-based measures in detecting cognitive impairment. They highlight the possibility of using virtual reality measures for neuropsychological assessment in research applications, as well as in clinical practice.
Augmented reality on poster presentations, in the field and in the classroom
NASA Astrophysics Data System (ADS)
Hawemann, Friedrich; Kolawole, Folarin
2017-04-01
Augmented reality (AR) is the direct addition of virtual information through an interface to a real-world environment. In practice, through a mobile device such as a tablet or smartphone, information can be projected onto a target- for example, an image on a poster. Mobile devices are widely distributed today such that augmented reality is easily accessible to almost everyone. Numerous studies have shown that multi-dimensional visualization is essential for efficient perception of the spatial, temporal and geometrical configuration of geological structures and processes. Print media, such as posters and handouts lack the ability to display content in the third and fourth dimensions, which might be in space-domain as seen in three-dimensional (3-D) objects, or time-domain (four-dimensional, 4-D) expressible in the form of videos. Here, we show that augmented reality content can be complimentary to geoscience poster presentations, hands-on material and in the field. In the latter example, location based data is loaded and for example, a virtual geological profile can be draped over a real-world landscape. In object based AR, the application is trained to recognize an image or object through the camera of the user's mobile device, such that specific content is automatically downloaded and displayed on the screen of the device, and positioned relative to the trained image or object. We used ZapWorks, a commercially-available software application to create and present examples of content that is poster-based, in which important supplementary information is presented as interactive virtual images, videos and 3-D models. We suggest that the flexibility and real-time interactivity offered by AR makes it an invaluable tool for effective geoscience poster presentation, class-room and field geoscience learning.
HVS: an image-based approach for constructing virtual environments
NASA Astrophysics Data System (ADS)
Zhang, Maojun; Zhong, Li; Sun, Lifeng; Li, Yunhao
1998-09-01
Virtual Reality Systems can construct virtual environment which provide an interactive walkthrough experience. Traditionally, walkthrough is performed by modeling and rendering 3D computer graphics in real-time. Despite the rapid advance of computer graphics technique, the rendering engine usually places a limit on scene complexity and rendering quality. This paper presents a approach which uses the real-world image or synthesized image to comprise a virtual environment. The real-world image or synthesized image can be recorded by camera, or synthesized by off-line multispectral image processing for Landsat TM (Thematic Mapper) Imagery and SPOT HRV imagery. They are digitally warped on-the-fly to simulate walking forward/backward, to left/right and 360-degree watching around. We have developed a system HVS (Hyper Video System) based on these principles. HVS improves upon QuickTime VR and Surround Video in the walking forward/backward.
Cognitive training on stroke patients via virtual reality-based serious games.
Gamito, Pedro; Oliveira, Jorge; Coelho, Carla; Morais, Diogo; Lopes, Paulo; Pacheco, José; Brito, Rodrigo; Soares, Fabio; Santos, Nuno; Barata, Ana Filipa
2017-02-01
Use of virtual reality environments in cognitive rehabilitation offers cost benefits and other advantages. In order to test the effectiveness of a virtual reality application for neuropsychological rehabilitation, a cognitive training program using virtual reality was applied to stroke patients. A virtual reality-based serious games application for cognitive training was developed, with attention and memory tasks consisting of daily life activities. Twenty stroke patients were randomly assigned to two conditions: exposure to the intervention, and waiting list control. The results showed significant improvements in attention and memory functions in the intervention group, but not in the controls. Overall findings provide further support for the use of VR cognitive training applications in neuropsychological rehabilitation. Implications for Rehabilitation Improvements in memory and attention functions following a virtual reality-based serious games intervention. Training of daily-life activities using a virtual reality application. Accessibility to training contents.
Nesaratnam, N; Thomas, P; Vivian, A
2017-10-01
IntroductionDissociated tests of strabismus provide valuable information for diagnosis and monitoring of ocular misalignment in patients with normal retinal correspondence. However, they are vulnerable to operator error and rely on a fixed head position. Virtual reality headsets obviate the need for head fixation, while providing other clear theoretical advantages, including complete control over the illumination and targets presented for the patient's interaction.PurposeWe compared the performance of a virtual reality-based test of ocular misalignment to that of the traditional Lees screen, to establish the feasibility of using virtual reality technology in ophthalmic settings in the future.MethodsThree patients underwent a traditional Lees screen test, and a virtual reality headset-based test of ocular motility. The virtual reality headset-based programme consisted of an initial test to measure horizontal and vertical deviation, followed by a test for torsion.ResultsThe pattern of deviation obtained using the virtual reality-based test showed agreement with that obtained from the Lees screen for patients with a fourth nerve palsy, comitant esotropia, and restrictive thyroid eye disease.ConclusionsThis study reports the first use of a virtual reality headset in assessing ocular misalignment, and demonstrates that it is a feasible dissociative test of strabismus.
Yao, Shujing; Zhang, Jiashu; Zhao, Yining; Hou, Yuanzheng; Xu, Xinghua; Zhang, Zhizhong; Kikinis, Ron; Chen, Xiaolei
2018-05-01
To address the feasibility and predictive value of multimodal image-based virtual reality in detecting and assessing features of neurovascular confliction (NVC), particularly regarding the detection of offending vessels, degree of compression exerted on the nerve root, in patients who underwent microvascular decompression for nonlesional trigeminal neuralgia and hemifacial spasm (HFS). This prospective study includes 42 consecutive patients who underwent microvascular decompression for classic primary trigeminal neuralgia or HFS. All patients underwent preoperative 1.5-T magnetic resonance imaging (MRI) with T2-weighted three-dimensional (3D) sampling perfection with application-optimized contrasts by using different flip angle evolutions, 3D time-of-flight magnetic resonance angiography, and 3D T1-weighted gadolinium-enhanced sequences in combination, whereas 2 patients underwent extra experimental preoperative 7.0-T MRI scans with the same imaging protocol. Multimodal MRIs were then coregistered with open-source software 3D Slicer, followed by 3D image reconstruction to generate virtual reality (VR) images for detection of possible NVC in the cerebellopontine angle. Evaluations were performed by 2 reviewers and compared with the intraoperative findings. For detection of NVC, multimodal image-based VR sensitivity was 97.6% (40/41) and specificity was 100% (1/1). Compared with the intraoperative findings, the κ coefficients for predicting the offending vessel and the degree of compression were >0.75 (P < 0.001). The 7.0-T scans have a clearer view of vessels in the cerebellopontine angle, which may have significant impact on detection of small-caliber offending vessels with relatively slow flow speed in cases of HFS. Multimodal image-based VR using 3D sampling perfection with application-optimized contrasts by using different flip angle evolutions in combination with 3D time-of-flight magnetic resonance angiography sequences proved to be reliable in detecting NVC and in predicting the degree of root compression. The VR image-based simulation correlated well with the real surgical view. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.
1995-01-01
This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.
Demonstration of three gorges archaeological relics based on 3D-visualization technology
NASA Astrophysics Data System (ADS)
Xu, Wenli
2015-12-01
This paper mainly focuses on the digital demonstration of three gorges archeological relics to exhibit the achievements of the protective measures. A novel and effective method based on 3D-visualization technology, which includes large-scaled landscape reconstruction, virtual studio, and virtual panoramic roaming, etc, is proposed to create a digitized interactive demonstration system. The method contains three stages: pre-processing, 3D modeling and integration. Firstly, abundant archaeological information is classified according to its history and geographical information. Secondly, build up a 3D-model library with the technology of digital images processing and 3D modeling. Thirdly, use virtual reality technology to display the archaeological scenes and cultural relics vividly and realistically. The present work promotes the application of virtual reality to digital projects and enriches the content of digital archaeology.
Web-based interactive 3D visualization as a tool for improved anatomy learning.
Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan
2009-01-01
Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain from its use in reaching their anatomical learning objectives. Several 3D vascular VR models were created using an interactive segmentation tool based on the "virtual contrast injection" method. This method allows users, with relative ease, to convert computer tomography or magnetic resonance images into vivid 3D VR movies using the OsiriX software equipped with the CMIV CTA plug-in. Once created using the segmentation tool, the image series were exported in Quick Time Virtual Reality (QTVR) format and integrated within a web framework of the Educational Virtual Anatomy (EVA) program. A total of nine QTVR movies were produced encompassing most of the major arteries of the body. These movies were supplemented with associated information, color keys, and notes. The results indicate that, in general, students' attitudes towards the EVA-program were positive when compared with anatomy textbooks, but results were not the same with dissections. Additionally, knowledge tests suggest a potentially beneficial effect on learning.
Research on 3D virtual campus scene modeling based on 3ds Max and VRML
NASA Astrophysics Data System (ADS)
Kang, Chuanli; Zhou, Yanliu; Liang, Xianyue
2015-12-01
With the rapid development of modem technology, the digital information management and the virtual reality simulation technology has become a research hotspot. Virtual campus 3D model can not only express the real world objects of natural, real and vivid, and can expand the campus of the reality of time and space dimension, the combination of school environment and information. This paper mainly uses 3ds Max technology to create three-dimensional model of building and on campus buildings, special land etc. And then, the dynamic interactive function is realized by programming the object model in 3ds Max by VRML .This research focus on virtual campus scene modeling technology and VRML Scene Design, and the scene design process in a variety of real-time processing technology optimization strategy. This paper guarantees texture map image quality and improve the running speed of image texture mapping. According to the features and architecture of Guilin University of Technology, 3ds Max, AutoCAD and VRML were used to model the different objects of the virtual campus. Finally, the result of virtual campus scene is summarized.
Spherical visual system for real-time virtual reality and surveillance
NASA Astrophysics Data System (ADS)
Chen, Su-Shing
1998-12-01
A spherical visual system has been developed for full field, web-based surveillance, virtual reality, and roundtable video conference. The hardware is a CycloVision parabolic lens mounted on a video camera. The software was developed at the University of Missouri-Columbia. The mathematical model is developed by Su-Shing Chen and Michael Penna in the 1980s. The parabolic image, capturing the full (360 degrees) hemispherical field (except the north pole) of view is transformed into the spherical model of Chen and Penna. In the spherical model, images are invariant under the rotation group and are easily mapped to the image plane tangent to any point on the sphere. The projected image is exactly what the usual camera produces at that angle. Thus a real-time full spherical field video camera is developed by using two pieces of parabolic lenses.
The Use of Virtual Reality in Patients with Eating Disorders: Systematic Review
Clus, Damien; Larsen, Mark Erik; Lemey, Christophe
2018-01-01
Background Patients with eating disorders are characterized by pathological eating habits and a tendency to overestimate their weight and body shape. Virtual reality shows promise for the evaluation and management of patients with eating disorders. This technology, when accepted by this population, allows immersion in virtual environments, assessment, and therapeutic approaches, by exposing users to high-calorie foods or changes in body shape. Objective To better understand the value of virtual reality, we conducted a review of the literature, including clinical studies proposing the use of virtual reality for the evaluation and management of patients with eating disorders. Methods We searched PubMed, PsycINFO, ScienceDirect, the Cochrane Library, Scopus, and Web of Science up to April 2017. We created the list of keywords based on two domains: virtual reality and eating disorders. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify, select, and critically appraise relevant research while minimizing bias. Results The initial database searches identified 311 articles, 149 of which we removed as duplicates. We analyzed the resulting set of 26 unique studies that met the inclusion criteria. Of these, 8 studies were randomized controlled trials, 13 were nonrandomized studies, and 5 were clinical trials with only 1 participant. Most articles focused on clinical populations (19/26, 73%), with the remainder reporting case-control studies (7/26, 27%). Most of the studies used visual immersive equipment (16/26, 62%) with a head-mounted display (15/16, 94%). Two main areas of interest emerged from these studies: virtual work on patients’ body image (7/26, 27%) and exposure to virtual food stimuli (10/26, 38%). Conclusions We conducted a broad analysis of studies on the use of virtual reality in patients with eating disorders. This review of the literature showed that virtual reality is an acceptable and promising therapeutic tool for patients with eating disorders. PMID:29703715
Head Mounted Displays for Virtual Reality
1993-02-01
Produce an Image of Infinity 9 3 The Naval Ocean Systems Center HMD with Front-Mounted CRTs 10 4 The VR Group HMD with Side-Mounted CRTs. The Image is...Convergence Angles 34 vii SECTION 1 INTRODUCTION One of the goals in the development of Virtual Reality ( VR ) is to achieve "total immersion" where one...become transported out of the real world and into the virtual world. The developers of VR have utilized the head mounted display (HMD) as a means of
Psychological benefits of virtual reality for patients in rehabilitation therapy.
Chen, Chih-Hung; Jeng, Ming-Chang; Fung, Chin-Ping; Doong, Ji-Liang; Chuang, Tien-Yow
2009-05-01
Whether virtual rehabilitation is beneficial has not been determined. To investigate the psychological benefits of virtual reality in rehabilitation. An experimental group underwent therapy with a virtual-reality-based exercise bike, and a control group underwent the therapy without virtual-reality equipment. Hospital laboratory. 30 patients suffering from spinal-cord injury. A designed rehabilitation therapy. Endurance, Borg's rating-of-perceived-exertion scale, the Activation-Deactivation Adjective Check List (AD-ACL), and the Simulator Sickness Questionnaire. The differences between the experimental and control groups were significant for AD-ACL calmness and tension. A virtual-reality-based rehabilitation program can ease patients' tension and induce calm.
Shono, Naoyuki; Kin, Taichi; Nomura, Seiji; Miyawaki, Satoru; Saito, Toki; Imai, Hideaki; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito
2018-05-01
A virtual reality simulator for aneurysmal clipping surgery is an attractive research target for neurosurgeons. Brain deformation is one of the most important functionalities necessary for an accurate clipping simulator and is vastly affected by the status of the supporting tissue, such as the arachnoid membrane. However, no virtual reality simulator implementing the supporting tissue of the brain has yet been developed. To develop a virtual reality clipping simulator possessing interactive brain deforming capability closely dependent on arachnoid dissection and apply it to clinical cases. Three-dimensional computer graphics models of cerebral tissue and surrounding structures were extracted from medical images. We developed a new method for modifiable cerebral tissue complex deformation by incorporating a nonmedical image-derived virtual arachnoid/trabecula in a process called multitissue integrated interactive deformation (MTIID). MTIID made it possible for cerebral tissue complexes to selectively deform at the site of dissection. Simulations for 8 cases of actual clipping surgery were performed before surgery and evaluated for their usefulness in surgical approach planning. Preoperatively, each operative field was precisely reproduced and visualized with the virtual brain retraction defined by users. The clear visualization of the optimal approach to treating the aneurysm via an appropriate arachnoid incision was possible with MTIID. A virtual clipping simulator mainly focusing on supporting tissues and less on physical properties seemed to be useful in the surgical simulation of cerebral aneurysm clipping. To our knowledge, this article is the first to report brain deformation based on supporting tissues.
[What do virtual reality tools bring to child and adolescent psychiatry?
Bioulac, S; de Sevin, E; Sagaspe, P; Claret, A; Philip, P; Micoulaud-Franchi, J A; Bouvard, M P
2018-06-01
Virtual reality is a relatively new technology that enables individuals to immerse themselves in a virtual world. It offers several advantages including a more realistic, lifelike environment that may allow subjects to "forget" they are being assessed, allow a better participation and an increased generalization of learning. Moreover, the virtual reality system can provide multimodal stimuli, such as visual and auditory stimuli, and can also be used to evaluate the patient's multimodal integration and to aid rehabilitation of cognitive abilities. The use of virtual reality to treat various psychiatric disorders in adults (phobic anxiety disorders, post-traumatic stress disorder, eating disorders, addictions…) and its efficacy is supported by numerous studies. Similar research for children and adolescents is lagging behind. This may be particularly beneficial to children who often show great interest and considerable success on computer, console or videogame tasks. This article will expose the main studies that have used virtual reality with children and adolescents suffering from psychiatric disorders. The use of virtual reality to treat anxiety disorders in adults is gaining popularity and its efficacy is supported by various studies. Most of the studies attest to the significant efficacy of the virtual reality exposure therapy (or in virtuo exposure). In children, studies have covered arachnophobia social anxiety and school refusal phobia. Despite the limited number of studies, results are very encouraging for treatment in anxiety disorders. Several studies have reported the clinical use of virtual reality technology for children and adolescents with autistic spectrum disorders (ASD). Extensive research has proven the efficiency of technologies as support tools for therapy. Researches are found to be focused on communication and on learning and social imitation skills. Virtual reality is also well accepted by subjects with ASD. The virtual environment offers the opportunity to administer controlled tasks such as the typical neuropsychological tools, but in an environment much more like a standard classroom. The virtual reality classroom offers several advantages compared to classical tools such as more realistic and lifelike environment but also records various measures in standardized conditions. Most of the studies using a virtual classroom have found that children with Attention Deficit/Hyperactivity Disorder make significantly fewer correct hits and more commission errors compared with controls. The virtual classroom has proven to be a good clinical tool for evaluation of attention in ADHD. For eating disorders, cognitive behavioural therapy (CBT) program enhanced by a body image specific component using virtual reality techniques was shown to be more efficient than cognitive behavioural therapy alone. The body image-specific component using virtual reality techniques boots efficiency and accelerates the CBT change process for eating disorders. Virtual reality is a relatively new technology and its application in child and adolescent psychiatry is recent. However, this technique is still in its infancy and much work is needed including controlled trials before it can be introduced in routine clinical use. Virtual reality interventions should also investigate how newly acquired skills are transferred to the real world. At present virtual reality can be considered a useful tool in evaluation and treatment for child and adolescent disorders. Copyright © 2017 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Using Virtual Reality For Outreach Purposes in Planetology
NASA Astrophysics Data System (ADS)
Civet, François; Le Mouélic, Stéphane; Le Menn, Erwan; Beaunay, Stéphanie
2016-10-01
2016 has been a year marked by a technological breakthrough : the availability for the first time to the general public of technologically mature virtual reality devices. Virtual Reality consists in visually immerging a user in a 3D environment reproduced either from real and/or imaginary data, with the possibility to move and eventually interact with the different elements. In planetology, most of the places will remain inaccessible to the public for a while, but a fleet of dedicated spacecraft's such as orbiters, landers and rovers allow the possibility to virtually reconstruct the environments, using image processing, cartography and photogrammetry. Virtual reality can then bridge the gap to virtually "send" any user into the place and enjoy the exploration.We are investigating several type of devices to render orbital or ground based data of planetological interest, mostly from Mars. The most simple system consists of a "cardboard" headset, on which the user can simply use his cellphone as the screen. A more comfortable experience is obtained with more complex systems such as the HTC vive or Oculus Rift headsets, which include a tracking system important to minimize motion sickness. The third environment that we have developed is based on the CAVE concept, were four 3D video projectors are used to project on three 2x3m walls plus the ground. These systems can be used for scientific data analysis, but also prove to be perfectly suited for outreach and education purposes.
Virtual reality for stroke rehabilitation.
Laver, Kate E; George, Stacey; Thomas, Susie; Deutsch, Judith E; Crotty, Maria
2015-02-12
Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation. In particular, commercial gaming consoles have been rapidly adopted in clinical settings. This is an update of a Cochrane Review published in 2011. To determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity. To determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance activity, global motor function, cognitive function, activity limitation, participation restriction and quality of life, voxels or regions of interest identified via imaging, and adverse events. Additionally, we aimed to comment on the feasibility of virtual reality for use with stroke patients by reporting on patient eligibility criteria and recruitment. We searched the Cochrane Stroke Group Trials Register (October 2013), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2013, Issue 11), MEDLINE (1950 to November 2013), EMBASE (1980 to November 2013) and seven additional databases. We also searched trials registries and reference lists. Randomised and quasi-randomised trials of virtual reality ("an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion") in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance function and activity, and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data and assessed risk of bias. A third review author moderated disagreements when required. The authors contacted investigators to obtain missing information. We included 37 trials that involved 1019 participants. Study sample sizes were generally small and interventions varied. The risk of bias present in many studies was unclear due to poor reporting. Thus, while there are a large number of randomised controlled trials, the evidence remains 'low' or 'very low' quality when rated using the GRADE system. Control groups received no intervention or therapy based on a standard care approach. Intervention approaches in the included studies were predominantly designed to improve motor function rather than cognitive function or activity performance. The majority of participants were relatively young and more than one year post stroke. results were statistically significant for upper limb function (standardised mean difference (SMD) 0.28, 95% confidence intervals (CI) 0.08 to 0.49 based on 12 studies with 397 participants). there were no statistically significant effects for grip strength, gait speed or global motor function. Results were statistically significant for the activities of daily living (ADL) outcome (SMD 0.43, 95% CI 0.18 to 0.69 based on eight studies with 253 participants); however, we were unable to pool results for cognitive function, participation restriction, quality of life or imaging studies. There were few adverse events reported across studies and those reported were relatively mild. Studies that reported on eligibility rates showed that only 26% of participants screened were recruited. We found evidence that the use of virtual reality and interactive video gaming may be beneficial in improving upper limb function and ADL function when used as an adjunct to usual care (to increase overall therapy time) or when compared with the same dose of conventional therapy. There was insufficient evidence to reach conclusions about the effect of virtual reality and interactive video gaming on grip strength, gait speed or global motor function. It is unclear at present which characteristics of virtual reality are most important and it is unknown whether effects are sustained in the longer term.
Virtual reality: new method of teaching anorectal and pelvic floor anatomy.
Dobson, Howard D; Pearl, Russell K; Orsay, Charles P; Rasmussen, Mary; Evenhouse, Ray; Ai, Zhuming; Blew, Gregory; Dech, Fred; Edison, Marcia I; Silverstein, Jonathan C; Abcarian, Herand
2003-03-01
A clear understanding of the intricate spatial relationships among the structures of the pelvic floor, rectum, and anal canal is essential for the treatment of numerous pathologic conditions. Virtual-reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereoscopic-vision, viewer-centered perspective, large angles of view, and interactivity. We describe a novel virtual reality-based model designed to teach anorectal and pelvic floor anatomy, pathology, and surgery. A static physical model depicting the pelvic floor and anorectum was created and digitized at 1-mm intervals in a CT scanner. Multiple software programs were used along with endoscopic images to generate a realistic interactive computer model, which was designed to be viewed on a networked, interactive, virtual-reality display (CAVE or ImmersaDesk). A standard examination of ten basic anorectal and pelvic floor anatomy questions was administered to third-year (n = 6) and fourth-year (n = 7) surgical residents. A workshop using the Virtual Pelvic Floor Model was then given, and the standard examination was readministered so that it was possible to evaluate the effectiveness of the Digital Pelvic Floor Model as an educational instrument. Training on the Virtual Pelvic Floor Model produced substantial improvements in the overall average test scores for the two groups, with an overall increase of 41 percent (P = 0.001) and 21 percent (P = 0.0007) for third-year and fourth-year residents, respectively. Resident evaluations after the workshop also confirmed the effectiveness of understanding pelvic anatomy using the Virtual Pelvic Floor Model. This model provides an innovative interactive educational framework that allows educators to overcome some of the barriers to teaching surgical and endoscopic principles based on understanding highly complex three-dimensional anatomy. Using this collaborative, shared virtual-reality environment, teachers and students can interact from locations world-wide to manipulate the components of this model to achieve the educational goals of this project along with the potential for virtual surgery.
[Image fusion, virtual reality, robotics and navigation. Effects on surgical practice].
Maresceaux, J; Soler, L; Ceulemans, R; Garcia, A; Henri, M; Dutson, E
2002-05-01
In the new minimally invasive surgical era, virtual reality, robotics, and image merging have become topics on their own, offering the potential to revolutionize current surgical treatment and assessment. Improved patient care in the digital age seems to be the primary impetus for continued efforts in the field of telesurgery. The progress in endoscopic surgery with regard to telesurgery is manifested by digitization of the pre-, intra-, and postoperative interaction with the patients' surgical disease via computer system integration: so-called Computer Assisted Surgery (CAS). The preoperative assessment can be improved by 3D organ reconstruction, as in virtual colonoscopy or cholangiography, and by planning and practicing surgery using virtual or simulated organs. When integrating all of the data recorded during this preoperative stage, an enhanced reality can be made possible to improve intra-operative patient interactions. CAS allows for increased three-dimensional accuracy, improved precision and the reproducibility of procedures. The ability to store the actions of the surgeon as digitized information also allows for universal, rapid distribution: i.e., the surgeon's activity can be transmitted to the other side of the operating room or to a remote site via high-speed communications links, as was recently demonstrated by our own team during the Lindbergh operation. Furthermore, the surgeon will be able to share his expertise and skill through teleconsultation and telemanipulation, bringing the patient closer to the expert surgical team through electronic means and opening the way to advanced and continuous surgical learning. Finally, for postoperative interaction, virtual reality and simulation can provide us with 4 dimensional images, time being the fourth dimension. This should allow physicians to have a better idea of the disease process in evolution, and treatment modifications based on this view can be anticipated. We are presently determining the accuracy and efficacy of 4 dimensional imaging compared to conventional evaluations.
Education about Hallucinations Using an Internet Virtual Reality System: A Qualitative Survey
ERIC Educational Resources Information Center
Yellowlees, Peter M.; Cook, James N.
2006-01-01
Objective: The authors evaluate an Internet virtual reality technology as an education tool about the hallucinations of psychosis. Method: This is a pilot project using Second Life, an Internet-based virtual reality system, in which a virtual reality environment was constructed to simulate the auditory and visual hallucinations of two patients…
Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation.
Zaveri, Pavan P; Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary
2016-02-09
Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education.
Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation
Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary
2016-01-01
Introduction: Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. Methods: After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. Results: The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Conclusions: Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education. PMID:27014520
Thomsen, Ann Sofia Skou; Bach-Holm, Daniella; Kjærbo, Hadi; Højgaard-Olsen, Klavs; Subhi, Yousif; Saleh, George M; Park, Yoon Soo; la Cour, Morten; Konge, Lars
2017-04-01
To investigate the effect of virtual reality proficiency-based training on actual cataract surgery performance. The secondary purpose of the study was to define which surgeons benefit from virtual reality training. Multicenter masked clinical trial. Eighteen cataract surgeons with different levels of experience. Cataract surgical training on a virtual reality simulator (EyeSi) until a proficiency-based test was passed. Technical performance in the operating room (OR) assessed by 3 independent, masked raters using a previously validated task-specific assessment tool for cataract surgery (Objective Structured Assessment of Cataract Surgical Skill). Three surgeries before and 3 surgeries after the virtual reality training were video-recorded, anonymized, and presented to the raters in random order. Novices (non-independently operating surgeons) and surgeons having performed fewer than 75 independent cataract surgeries showed significant improvements in the OR-32% and 38%, respectively-after virtual reality training (P = 0.008 and P = 0.018). More experienced cataract surgeons did not benefit from simulator training. The reliability of the assessments was high with a generalizability coefficient of 0.92 and 0.86 before and after the virtual reality training, respectively. Clinically relevant cataract surgical skills can be improved by proficiency-based training on a virtual reality simulator. Novices as well as surgeons with an intermediate level of experience showed improvement in OR performance score. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Augmented reality for breast imaging.
Rancati, Alberto; Angrigiani, Claudio; Nava, Maurizio B; Catanuto, Giuseppe; Rocco, Nicola; Ventrice, Fernando; Dorr, Julio
2018-06-01
Augmented reality (AR) enables the superimposition of virtual reality reconstructions onto clinical images of a real patient, in real time. This allows visualization of internal structures through overlying tissues, thereby providing a virtual transparency vision of surgical anatomy. AR has been applied to neurosurgery, which utilizes a relatively fixed space, frames, and bony references; the application of AR facilitates the relationship between virtual and real data. Augmented breast imaging (ABI) is described. Breast MRI studies for breast implant patients with seroma were performed using a Siemens 3T system with a body coil and a four-channel bilateral phased-array breast coil as the transmitter and receiver, respectively. Gadolinium was injected as a contrast agent (0.1 mmol/kg at 2 mL/s) using a programmable power injector. Dicom formatted images data from 10 MRI cases of breast implant seroma and 10 MRI cases with T1-2 N0 M0 breast cancer, were imported and transformed into augmented reality images. ABI demonstrated stereoscopic depth perception, focal point convergence, 3D cursor use, and joystick fly-through. ABI can improve clinical outcomes, providing an enhanced view of the structures to work on. It should be further studied to determine its utility in clinical practice.
The Virtual Pelvic Floor, a tele-immersive educational environment.
Pearl, R. K.; Evenhouse, R.; Rasmussen, M.; Dech, F.; Silverstein, J. C.; Prokasy, S.; Panko, W. B.
1999-01-01
This paper describes the development of the Virtual Pelvic Floor, a new method of teaching the complex anatomy of the pelvic region utilizing virtual reality and advanced networking technology. Virtual reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereo vision, viewer-centered perspective, large angles of view, and interactivity. Two or more ImmersaDesk systems, drafting table format virtual reality displays, are networked together providing an environment where teacher and students share a high quality three-dimensional anatomical model, and are able to converse, see each other, and to point in three dimensions to indicate areas of interest. This project was realized by the teamwork of surgeons, medical artists and sculptors, computer scientists, and computer visualization experts. It demonstrates the future of virtual reality for surgical education and applications for the Next Generation Internet. Images Figure 1 Figure 2 Figure 3 PMID:10566378
Simulators and virtual reality in surgical education.
Chou, Betty; Handa, Victoria L
2006-06-01
This article explores the pros and cons of virtual reality simulators, their abilities to train and assess surgical skills, and their potential future applications. Computer-based virtual reality simulators and more conventional box trainers are compared and contrasted. The virtual reality simulator provides objective assessment of surgical skills and immediate feedback further to enhance training. With this ability to provide standardized, unbiased assessment of surgical skills, the virtual reality trainer has the potential to be a tool for selecting, instructing, certifying, and recertifying gynecologists.
Vision-based overlay of a virtual object into real scene for designing room interior
NASA Astrophysics Data System (ADS)
Harasaki, Shunsuke; Saito, Hideo
2001-10-01
In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).
Virtual Reality: An Instructional Medium for Visual-Spatial Tasks.
ERIC Educational Resources Information Center
Regian, J. Wesley; And Others
1992-01-01
Describes an empirical exploration of the instructional potential of virtual reality as an interface for simulation-based training. Shows that subjects learned spatial-procedural and spatial-navigational skills in virtual reality. (SR)
Designing a Virtual-Reality-Based, Gamelike Math Learning Environment
ERIC Educational Resources Information Center
Xu, Xinhao; Ke, Fengfeng
2016-01-01
This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…
Fischer, Gerrit; Stadie, Axel; Schwandt, Eike; Gawehn, Joachim; Boor, Stephan; Marx, Juergen; Oertel, Joachim
2009-05-01
The aim of the authors in this study was to introduce a minimally invasive superficial temporal artery to middle cerebral artery (STA-MCA) bypass surgery by the preselection of appropriate donor and recipient branches in a 3D virtual reality setting based on 3-T MR angiography data. An STA-MCA anastomosis was performed in each of 5 patients. Before surgery, 3-T MR imaging was performed with 3D magnetization-prepared rapid acquisition gradient echo sequences, and a high-resolution CT 3D dataset was obtained. Image fusion and the construction of a 3D virtual reality model of each patient were completed. In the 3D virtual reality setting, the skin surface, skull surface, and extra- and intracranial arteries as well as the cortical brain surface could be displayed in detail. The surgical approach was successfully visualized in virtual reality. The anatomical relationship of structures of interest could be evaluated based on different values of translucency in all cases. The closest point of the appropriate donor branch of the STA and the most suitable recipient M(3) or M(4) segment could be calculated with high accuracy preoperatively and determined as the center point of the following minicraniotomy. Localization of the craniotomy and the skin incision on top of the STA branch was calculated with the system, and these data were transferred onto the patient's skin before surgery. In all cases the preselected arteries could be found intraoperatively in exact agreement with the preoperative planning data. Successful extracranial-intracranial bypass surgery was achieved without stereotactic neuronavigation via a preselected minimally invasive approach in all cases. Subsequent enlargement of the craniotomy was not necessary. Perioperative complications were not observed. All bypasses remained patent on follow-up. With the application of a 3D virtual reality planning system, the extent of skin incision and tissue trauma as well as the size of the bone flap was minimal. The closest point of the appropriate donor branch of the STA and the most suitable recipient M(3) or M(4) segment could be preoperatively determined with high accuracy so that the STA-MCA bypass could be safely and effectively performed through an optimally located minicraniotomy with a mean diameter of 22 mm without the need for stereotactic guidance.
The Use of Virtual Reality in Patients with Eating Disorders: Systematic Review.
Clus, Damien; Larsen, Mark Erik; Lemey, Christophe; Berrouiguet, Sofian
2018-04-27
Patients with eating disorders are characterized by pathological eating habits and a tendency to overestimate their weight and body shape. Virtual reality shows promise for the evaluation and management of patients with eating disorders. This technology, when accepted by this population, allows immersion in virtual environments, assessment, and therapeutic approaches, by exposing users to high-calorie foods or changes in body shape. To better understand the value of virtual reality, we conducted a review of the literature, including clinical studies proposing the use of virtual reality for the evaluation and management of patients with eating disorders. We searched PubMed, PsycINFO, ScienceDirect, the Cochrane Library, Scopus, and Web of Science up to April 2017. We created the list of keywords based on two domains: virtual reality and eating disorders. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify, select, and critically appraise relevant research while minimizing bias. The initial database searches identified 311 articles, 149 of which we removed as duplicates. We analyzed the resulting set of 26 unique studies that met the inclusion criteria. Of these, 8 studies were randomized controlled trials, 13 were nonrandomized studies, and 5 were clinical trials with only 1 participant. Most articles focused on clinical populations (19/26, 73%), with the remainder reporting case-control studies (7/26, 27%). Most of the studies used visual immersive equipment (16/26, 62%) with a head-mounted display (15/16, 94%). Two main areas of interest emerged from these studies: virtual work on patients’ body image (7/26, 27%) and exposure to virtual food stimuli (10/26, 38%). We conducted a broad analysis of studies on the use of virtual reality in patients with eating disorders. This review of the literature showed that virtual reality is an acceptable and promising therapeutic tool for patients with eating disorders. ©Damien Clus, Mark Erik Larsen, Christophe Lemey, Sofian Berrouiguet. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 27.04.2018.
Assessment method of digital Chinese dance movements based on virtual reality technology
NASA Astrophysics Data System (ADS)
Feng, Wei; Shao, Shuyuan; Wang, Shumin
2008-03-01
Virtual reality has played an increasing role in such areas as medicine, architecture, aviation, engineering science and advertising. However, in the art fields, virtual reality is still in its infancy in the representation of human movements. Based on the techniques of motion capture and reuse of motion capture data in virtual reality environment, this paper presents an assessment method in order to evaluate the quantification of dancers' basic Arm Position movements in Chinese traditional dance. In this paper, the data for quantifying traits of dance motions are defined and measured on dancing which performed by an expert and two beginners, with results indicating that they are beneficial for evaluating dance skills and distinctiveness, and the assessment method of digital Chinese dance movements based on virtual reality technology is validity and feasibility.
Can we use virtual reality tools in the planning of an experiment?
NASA Astrophysics Data System (ADS)
Kucaba-Pietal, Anna; Szumski, Marek; Szczerba, Piotr
2015-03-01
Virtual reality (VR) has proved to be a particularly useful tool in engineering and design. A related area of aviation in which VR is particularly significant is a flight training, as it requires many hours of practice and using real planes for all training is both expensive and more dangerous. Research conducted at the Rzeszow University of Technology (RUT) showed that virtual reality can be successfully used for planning experiment during a flight tests. Motivation to the study were a wing deformation measurements of PW-6 glider in flight by use Image Pattern Correlation Technique (IPCT) planned within the frame of AIM2 project. The tool VirlIPCT was constructed, which permits to perform virtual IPCT setup on an airplane. Using it, we can test a camera position, camera resolution, pattern application. Moreover performed tests on RUT indicate, that VirlIPCT can be used as a virtual IPCT image generator. This paper presents results of the research on VirlIPCT.
[Registration technology for mandibular angle osteotomy based on augmented reality].
Zhu, Ming; Chai, Gang; Zhang, Yan; Ma, Xiao-Fei; Yu, Zhe-Yuan; Zhu, Yi-Jia
2010-12-01
To establish an effective path to register the operative plan to the real model of mandible made by rapid prototyping (RP) technology. Computerize tomography (CT) was performed on 20 patients to create 3D images, and computer aided operation planning information can be merged with the 3D images. Then dental cast was used to fix the signal which can be recognized by the software. The dental cast was transformed to 3D data with a laser scanner and a programmer that run on a personal computer named Rapidform matching the dental cast and the mandible image to generate the virtual image. Then the registration was achieved by video monitoring system. By using this technology, the virtual image of mandible and the cutting planes both can overlay the real model of mandible made by RP. This study found an effective way for registration by using dental cast, and this way might be a powerful option for the registration of augmented reality. Supported by Program for Innovation Research Team of Shanghai Municipal Education Commission.
3D augmented reality with integral imaging display
NASA Astrophysics Data System (ADS)
Shen, Xin; Hua, Hong; Javidi, Bahram
2016-06-01
In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.
Virtual surgery in a (tele-)radiology framework.
Glombitza, G; Evers, H; Hassfeld, S; Engelmann, U; Meinzer, H P
1999-09-01
This paper presents telemedicine as an extension of a teleradiology framework through tools for virtual surgery. To classify the described methods and applications, the research field of virtual reality (VR) is broadly reviewed. Differences with respect to technical equipment, methodological requirements and areas of application are pointed out. Desktop VR, augmented reality, and virtual reality are differentiated and discussed in some typical contexts of diagnostic support, surgical planning, therapeutic procedures, simulation and training. Visualization techniques are compared as a prerequisite for virtual reality and assigned to distinct levels of immersion. The advantage of a hybrid visualization kernel is emphasized with respect to the desktop VR applications that are subsequently shown. Moreover, software design aspects are considered by outlining functional openness in the architecture of the host system. Here, a teleradiology workstation was extended by dedicated tools for surgical planning through a plug-in mechanism. Examples of recent areas of application are introduced such as liver tumor resection planning, diagnostic support in heart surgery, and craniofacial surgery planning. In the future, surgical planning systems will become more important. They will benefit from improvements in image acquisition and communication, new image processing approaches, and techniques for data presentation. This will facilitate preoperative planning and intraoperative applications.
... be detected by optical colonoscopy. Virtual colonoscopy uses virtual reality technology to produce three-dimensional images of the colon and rectum. However, the costs and benefits of virtual colonoscopy are still being investigated, and the technique ...
Ng, Ivan; Hwang, Peter Y K; Kumar, Dinesh; Lee, Cheng Kiang; Kockro, Ralf A; Sitoh, Y Y
2009-05-01
To evaluate the feasibility of surgical planning using a virtual reality platform workstation in the treatment of cerebral arterio-venous malformations (AVMs) Patient-specific data of multiple imaging modalities were co-registered, fused and displayed as a 3D stereoscopic object on the Dextroscope, a virtual reality surgical planning platform. This system allows for manipulation of 3D data and for the user to evaluate and appreciate the angio-architecture of the nidus with regards to position and spatial relationships of critical feeders and draining veins. We evaluated the ability of the Dextroscope to influence surgical planning by providing a better understanding of the angio-architecture as well as its impact on the surgeon's pre- and intra-operative confidence and ability to tackle these lesions. Twenty four patients were studied. The mean age was 29.65 years. Following pre-surgical planning on the Dextroscope, 23 patients underwent microsurgical resection after pre-surgical virtual reality planning, during which all had documented complete resection of the AVM. Planning on the virtual reality platform allowed for identification of critical feeders and draining vessels in all patients. The appreciation of the complex patient specific angio-architecture to establish a surgical plan was found to be invaluable in the conduct of the procedure and was found to enhance the surgeon's confidence significantly. Surgical planning of resection of an AVM with a virtual reality system allowed detailed and comprehensive analysis of 3D multi-modality imaging data and, in our experience, proved very helpful in establishing a good surgical strategy, enhancing intra-operative spatial orientation and increasing surgeon's confidence.
NASA Astrophysics Data System (ADS)
Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng
2010-08-01
In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.
Mobile viewer system for virtual 3D space using infrared LED point markers and camera
NASA Astrophysics Data System (ADS)
Sakamoto, Kunio; Taneji, Shoto
2006-09-01
The authors have developed a 3D workspace system using collaborative imaging devices. A stereoscopic display enables this system to project 3D information. In this paper, we describe the position detecting system for a see-through 3D viewer. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1)2)3)4). The purpose of this paper is to propose the interactive system using these 3D imaging technologies. The observer can view virtual images in the real world when the user watches the screen of a see-through 3D viewer. The goal of our research is to build the display system as follows; when users see the real world through the mobile viewer, the display system gives users virtual 3D images, which is floating in the air, and the observers can touch these floating images and interact them such that kids can make play clay. The key technologies of this system are the position recognition system and the spatial imaging display. The 3D images are presented by the improved parallax barrier 3D display. Here the authors discuss the measuring method of the mobile viewer using infrared LED point markers and a camera in the 3D workspace (augmented reality world). The authors show the geometric analysis of the proposed measuring method, which is the simplest method using a single camera not the stereo camera, and the results of our viewer system.
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170877 (1 Oct. 2010) --- A large monitor is featured in this image during STS-133 crew members? training activities in the virtual reality laboratory in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration
NASA Astrophysics Data System (ADS)
Mastmeyer, Andre; Wilms, Matthias; Handels, Heinz
2018-03-01
Virtual reality (VR) training simulators of liver needle insertion in the hepatic area of breathing virtual patients often need 4D image data acquisitions as a prerequisite. Here, first a population-based breathing virtual patient 4D atlas is built and second the requirement of a dose-relevant or expensive acquisition of a 4D CT or MRI data set for a new patient can be mitigated by warping the mean atlas motion. The breakthrough contribution of this work is the construction and reuse of population-based, learned 4D motion models.
Virtual reality as a tool for cross-cultural communication: an example from military team training
NASA Astrophysics Data System (ADS)
Downes-Martin, Stephen; Long, Mark; Alexander, Joanna R.
1992-06-01
A major problem with communication across cultures, whether professional or national, is that simple language translation if often insufficient to communicate the concepts. This is especially true when the communicators come from highly specialized fields of knowledge or from national cultures with long histories of divergence. This problem becomes critical when the goal of the communication is national negotiation dealing with such high risk items as arms negotiation or trade wars. Virtual Reality technology has considerable potential for facilitating communication across cultures, by immersing the communicators within multiple visual representations of the concepts, and providing control over those representations. Military distributed team training provides a model for virtual reality suitable for cross cultural communication such as negotiation. In both team training and negotiation, the participants must cooperate, agree on a set of goals, and achieve mastery over the concepts being negotiated. Team training technologies suitable for supporting cross cultural negotiation exist (branch wargaming, computer image generation and visualization, distributed simulation), and have developed along different lines than traditional virtual reality technology. Team training de-emphasizes the realism of physiological interfaces between the human and the virtual reality, and emphasizes the interaction of humans with each other and with intelligent simulated agents within the virtual reality. This approach to virtual reality is suggested as being more fruitful for future work.
Korayem, Moharam Habibnejad; Hoshiar, Ali Kafash; Ghofrani, Maedeh
2017-08-01
With the expansion of nanotechnology, robots based on atomic force microscope (AFM) have been widely used as effective tools for displacing nanoparticles and constructing nanostructures. One of the most limiting factors in AFM-based manipulation procedures is the inability of simultaneously observing the controlled pushing and displacing of nanoparticles while performing the operation. To deal with this limitation, a virtual reality environment has been used in this paper for observing the manipulation operation. In the simulations performed in this paper, first, the images acquired by the atomic force microscope have been processed and the positions and dimensions of nanoparticles have been determined. Then, by dynamically modelling the transfer of nanoparticles and simulating the critical force-time diagrams, a controlled displacement of nanoparticles has been accomplished. The simulations have been further developed for the use of rectangular, V-shape and dagger-shape cantilevers. The established virtual reality environment has made it possible to simulate the manipulation of biological particles in a liquid medium. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Defanti, Thomas A.; Acevedo, Daniel; Ainsworth, Richard A.; Brown, Maxine D.; Cutchin, Steven; Dawe, Gregory; Doerr, Kai-Uwe; Johnson, Andrew; Knox, Chris; Kooima, Robert; Kuester, Falko; Leigh, Jason; Long, Lance; Otto, Peter; Petrovic, Vid; Ponto, Kevin; Prudhomme, Andrew; Rao, Ramesh; Renambot, Luc; Sandin, Daniel J.; Schulze, Jurgen P.; Smarr, Larry; Srinivasan, Madhu; Weber, Philip; Wickham, Gregory
2011-03-01
The CAVE, a walk-in virtual reality environment typically consisting of 4-6 3 m-by-3 m sides of a room made of rear-projected screens, was first conceived and built in 1991. In the nearly two decades since its conception, the supporting technology has improved so that current CAVEs are much brighter, at much higher resolution, and have dramatically improved graphics performance. However, rear-projection-based CAVEs typically must be housed in a 10 m-by-10 m-by-10 m room (allowing space behind the screen walls for the projectors), which limits their deployment to large spaces. The CAVE of the future will be made of tessellated panel displays, eliminating the projection distance, but the implementation of such displays is challenging. Early multi-tile, panel-based, virtual-reality displays have been designed, prototyped, and built for the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia by researchers at the University of California, San Diego, and the University of Illinois at Chicago. New means of image generation and control are considered key contributions to the future viability of the CAVE as a virtual-reality device.
NASA Astrophysics Data System (ADS)
Abercrombie, S. P.; Menzies, A.; Goddard, C.
2017-12-01
Virtual and augmented reality enable scientists to visualize environments that are very difficult, or even impossible to visit, such as the surface of Mars. A useful immersive visualization begins with a high quality reconstruction of the environment under study. This presentation will discuss a photogrammetry pipeline developed at the Jet Propulsion Laboratory to reconstruct 3D models of the surface of Mars using stereo images sent back to Earth by the Curiosity Mars rover. The resulting models are used to support a virtual reality tool (OnSight) that allows scientists and engineers to visualize the surface of Mars as if they were standing on the red planet. Images of Mars present challenges to existing scene reconstruction solutions. Surface images of Mars are sparse with minimal overlap, and are often taken from extremely different viewpoints. In addition, the specialized cameras used by Mars rovers are significantly different than consumer cameras, and GPS localization data is not available on Mars. This presentation will discuss scene reconstruction with an emphasis on coping with limited input data, and on creating models suitable for rendering in virtual reality at high frame rate.
Speksnijder, L; Oom, D M J; Koning, A H J; Biesmeijer, C S; Steegers, E A P; Steensma, A B
2016-08-01
Imaging of the levator ani hiatus provides valuable information for the diagnosis and follow-up of patients with pelvic organ prolapse (POP). This study compared measurements of levator ani hiatal volume during rest and on maximum Valsalva, obtained using conventional three-dimensional (3D) translabial ultrasound and virtual reality imaging. Our objectives were to establish their agreement and reliability, and their relationship with prolapse symptoms and POP quantification (POP-Q) stage. One hundred women with an intact levator ani were selected from our tertiary clinic database. Information on clinical symptoms were obtained using standardized questionnaires. Ultrasound datasets were analyzed using a rendered volume with a slice thickness of 1.5 cm, at the level of minimal hiatal dimensions, during rest and on maximum Valsalva. The levator area (in cm(2) ) was measured and multiplied by 1.5 to obtain the levator ani hiatal volume (in cm(3) ) on conventional 3D ultrasound. Levator ani hiatal volume (in cm(3) ) was measured semi-automatically by virtual reality imaging using a segmentation algorithm. Twenty patients were chosen randomly to analyze intra- and interobserver agreement. The mean difference between levator hiatal volume measurements on 3D ultrasound and by virtual reality was 1.52 cm(3) (95% CI, 1.00-2.04 cm(3) ) at rest and 1.16 cm(3) (95% CI, 0.56-1.76 cm(3) ) during maximum Valsalva (P < 0.001). Both intra- and interobserver intraclass correlation coefficients were ≥ 0.96 for conventional 3D ultrasound and > 0.99 for virtual reality. Patients with prolapse symptoms or POP-Q Stage ≥ 2 had significantly larger hiatal measurements than those without symptoms or POP-Q Stage < 2. Levator ani hiatal volume at rest and on maximum Valsalva is significantly smaller when using virtual reality compared with conventional 3D ultrasound; however, this difference does not seem clinically important. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
Virtual reality and hallucination: a technoetic perspective
NASA Astrophysics Data System (ADS)
Slattery, Diana R.
2008-02-01
Virtual Reality (VR), especially in a technologically focused discourse, is defined by a class of hardware and software, among them head-mounted displays (HMDs), navigation and pointing devices; and stereoscopic imaging. This presentation examines the experiential aspect of VR. Putting "virtual" in front of "reality" modifies the ontological status of a class of experience-that of "reality." Reality has also been modified [by artists, new media theorists, technologists and philosophers] as augmented, mixed, simulated, artificial, layered, and enhanced. Modifications of reality are closely tied to modifications of perception. Media theorist Roy Ascott creates a model of three "VR's": Verifiable Reality, Virtual Reality, and Vegetal (entheogenically induced) Reality. The ways in which we shift our perceptual assumptions, create and verify illusions, and enter "the willing suspension of disbelief" that allows us entry into imaginal worlds is central to the experience of VR worlds, whether those worlds are explicitly representational (robotic manipulations by VR) or explicitly imaginal (VR artistic creations). The early rhetoric surrounding VR was interwoven with psychedelics, a perception amplified by Timothy Leary's presence on the historic SIGGRAPH panel, and the Wall Street Journal's tag of VR as "electronic LSD." This paper discusses the connections-philosophical, social-historical, and psychological-perceptual between these two domains.
A usability assessment on a virtual reality system for panic disorder treatment
NASA Astrophysics Data System (ADS)
Lee, Jaelin; Kawai, Takashi; Yoshida, Nahoko; Izawa, Shuhei; Nomura, Shinobu; Eames, Douglas; Kaiya, Hisanobu
2008-02-01
The authors have developed a virtual reality exposure system that reflects the Japanese culture and environment. Concretely, the system focuses on the subway environment, which is the environment most patients receiving treatment for panic disorder at hospitals in Tokyo, Japan tend to avoid. The system is PC based and features realistic video images and highly interactive functionality. In particular, the system enables instant transformation of the virtual space and allows situations to be freely customized according to the condition and symptoms expressed by each patient. Positive results achieved in therapy assessments aimed at patients with panic disorder accompanying agoraphobia indicate the possibility of indoor treatment. Full utilization of the functionality available requires that the interactive functions be easily operable. Accordingly, there appears to be a need for usability testing aimed at determining whether or not a therapist can operate the system naturally while focusing fully on treatment. In this paper, the configuration of the virtual reality exposure system focusing on the subway environment is outlined. Further, the results of usability tests aimed at assessing how naturally it can be operated while focusing fully on treatment are described.
Kong, Seong-Ho; Haouchine, Nazim; Soares, Renato; Klymchenko, Andrey; Andreiuk, Bohdan; Marques, Bruno; Shabat, Galyna; Piechaud, Thierry; Diana, Michele; Cotin, Stéphane; Marescaux, Jacques
2017-07-01
Augmented reality (AR) is the fusion of computer-generated and real-time images. AR can be used in surgery as a navigation tool, by creating a patient-specific virtual model through 3D software manipulation of DICOM imaging (e.g., CT scan). The virtual model can be superimposed to real-time images enabling transparency visualization of internal anatomy and accurate localization of tumors. However, the 3D model is rigid and does not take into account inner structures' deformations. We present a concept of automated AR registration, while the organs undergo deformation during surgical manipulation, based on finite element modeling (FEM) coupled with optical imaging of fluorescent surface fiducials. Two 10 × 1 mm wires (pseudo-tumors) and six 10 × 0.9 mm fluorescent fiducials were placed in ex vivo porcine kidneys (n = 10). Biomechanical FEM-based models were generated from CT scan. Kidneys were deformed and the shape changes were identified by tracking the fiducials, using a near-infrared optical system. The changes were registered automatically with the virtual model, which was deformed accordingly. Accuracy of prediction of pseudo-tumors' location was evaluated with a CT scan in the deformed status (ground truth). In vivo: fluorescent fiducials were inserted under ultrasound guidance in the kidney of one pig, followed by a CT scan. The FEM-based virtual model was superimposed on laparoscopic images by automatic registration of the fiducials. Biomechanical models were successfully generated and accurately superimposed on optical images. The mean measured distance between the estimated tumor by biomechanical propagation and the scanned tumor (ground truth) was 0.84 ± 0.42 mm. All fiducials were successfully placed in in vivo kidney and well visualized in near-infrared mode enabling accurate automatic registration of the virtual model on the laparoscopic images. Our preliminary experiments showed the potential of a biomechanical model with fluorescent fiducials to propagate the deformation of solid organs' surface to their inner structures including tumors with good accuracy and automatized robust tracking.
Lee, Hyung Young; Kim, You Lim; Lee, Suk Min
2015-06-01
[Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training.
Lee, Hyung Young; Kim, You Lim; Lee, Suk Min
2015-01-01
[Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training. PMID:26180341
Fast-response LCDs for virtual reality applications
NASA Astrophysics Data System (ADS)
Chen, Haiwei; Peng, Fenglin; Gou, Fangwang; Wand, Michael; Wu, Shin-Tson
2017-02-01
We demonstrate a fast-response liquid crystal display (LCD) with an ultra-low-viscosity nematic LC mixture. The measured average motion picture response time is only 6.88 ms, which is comparable to 6.66 ms for an OLED at a 120 Hz frame rate. If we slightly increase the TFT frame rate and/or reduce the backlight duty ratio, image blurs can be further suppressed to unnoticeable level. Potential applications of such an image-blur-free LCD for virtual reality, gaming monitors, and TVs are foreseeable.
Virtual Reality on a Desktop Hailed as New Tool in Distance Education.
ERIC Educational Resources Information Center
Young, Jeffrey R.
2000-01-01
Describes college and university educational applications of desktop virtual reality to provide a more human touch to interactive distance education programs and impress the brain with more vivid images. Critics suggest the technology is too costly and time consuming and may even distract students from the content of an online course. (DB)
Linking Audio and Visual Information while Navigating in a Virtual Reality Kiosk Display
ERIC Educational Resources Information Center
Sullivan, Briana; Ware, Colin; Plumlee, Matthew
2006-01-01
3D interactive virtual reality museum exhibits should be easy to use, entertaining, and informative. If the interface is intuitive, it will allow the user more time to learn the educational content of the exhibit. This research deals with interface issues concerning activating audio descriptions of images in such exhibits while the user is…
Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.
Rutkowski, Tomasz M
2016-01-01
The paper reviews nine robotic and virtual reality (VR) brain-computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.
Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms
Rutkowski, Tomasz M.
2016-01-01
The paper reviews nine robotic and virtual reality (VR) brain–computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI–lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms. PMID:27999538
The role of virtual articulator in prosthetic and restorative dentistry.
Koralakunte, Pavankumar Ravi; Aljanakh, Mohammad
2014-07-01
Virtual reality is a computer based technology linked with the future of dentistry and dental practice. The virtual articulator is one such application in prosthetic and restorative dentistry based on virtual reality that will significantly reduce the limitations of the mechanical articulator, and by simulation of real patient data, allow analyses with regard to static and dynamic occlusion as well as to jaw relation. It is the purpose of this article to present the concepts and strategies for a future replacement of the mechanical articulator by a virtual one. Also, a brief note on virtual reality haptic system has been highlighted along with newly developed touch enabled virtual articulator.
Virtual reality to simulate large lighting with high efficiency LEDs
NASA Astrophysics Data System (ADS)
Blandet, Thierry; Coutelier, Gilles; Meyrueis, Patrick
2011-05-01
When a city or a local authority wishes to emphasize its historical heritage, for the lighting of its streets, setting up lights during the festive season, they call upon the skills of a lighting designer. The lighting designer proposes concepts, ideas, lighting, and to be able to present them, he makes use of simulation. On the other hand lighting technologies are evolving very rapidly and new lighting systems offer features that lighting designers are now integrating their projects. The street lights consume lot of energy; light projects are now taking into account the energy saving aspect. Lighting systems based on LEDs today provide good lighting needs, taking into account sustainable development issues while enabling new creative dimension. The lighting simulation can handle these parameters. Images or video simulation are no longer sufficient: stereoscopy and virtual reality techniques allow better communication and better understanding of projects. Virtual reality offers new possibilities of interaction, the freedom of movement in a scene, the presentation of variants or interactive simulations.
Virtual rehabilitation: What are the practical barriers for home-based research?
Threapleton, Kate; Drummond, Avril; Standen, Penny
2016-01-01
Virtual reality technologies are becoming increasingly accessible and affordable to deliver, and consequently the interest in applying virtual reality within rehabilitation is growing. This has resulted in the emergence of research exploring the utility of virtual reality and interactive video gaming interventions for home use by patients. The aim of this paper is to highlight the practical factors and difficulties that may be encountered in research in this area, and to make recommendations for addressing these. Whilst this paper focuses on examples drawn mainly from stroke rehabilitation research, many of the issues raised are relevant to other conditions where virtual reality approaches have the potential to be applied to home-based rehabilitation. PMID:29942551
[Virtual reality in video-assisted thoracoscopic lung segmentectomy].
Onuki, Takamasa
2009-07-01
The branching patterns of pulmonary arteries and veins vary greatly in the pulmonary hilar region and are very complicated. We attempted to reconstruct anatomically correct images using a freeware program. After uploading the images to a personal computer, bronchi, pulmonary arteries and veins were traced by moving up and down in the images and the location and thickness of the bronchi and pulmonary vasculture were indicated as different-sized cylinders. Next, based on the resulting numerical data, a 3D image was reconstructed using Metasequoia shareware. The reconstructed images can be manipulated by virtual surgical procedures such as reshaping, cutting and moving. These system would be very helpful in complicated video-assisted thoracic surgery such as lung segmentectomy.
NASA Technical Reports Server (NTRS)
Ross, M. D.
2001-01-01
Safety of astronauts during long-term space exploration is a priority for NASA. This paper describes efforts to produce Earth-based models for providing expert medical advice when unforeseen medical emergencies occur on spacecraft. These models are Virtual Collaborative Clinics that reach into remote sites using telecommunications and emerging stereo-imaging and sensor technologies. c 2001. Elsevier Science Ltd. All rights reserved.
Studies of the field-of-view resolution tradeoff in virtual-reality systems
NASA Technical Reports Server (NTRS)
Piantanida, Thomas P.; Boman, Duane; Larimer, James; Gille, Jennifer; Reed, Charles
1992-01-01
Most virtual-reality systems use LCD-based displays that achieve a large field-of-view at the expense of resolution. A typical display will consist of approximately 86,000 pixels uniformly distributed over an 80-degree by 60-degree image. Thus, each pixel subtends about 13 minutes of arc at the retina; about the same as the resolvable features of the 20/200 line of a Snellen Eye Chart. The low resolution of LCD-based systems limits task performance in some applications. We have examined target-detection performance in a low-resolution virtual world. Our synthesized three-dimensional virtual worlds consisted of target objects that could be positioned at a fixed distance from the viewer, but at random azimuth and constrained elevation. A virtual world could be bounded by chromatic walls or by wire-frame, or it could be unbounded. Viewers scanned these worlds and indicated by appropriate gestures when they had detected the target object. By manipulating the viewer's field size and the chromatic and luminance contrast of annuli surrounding the field-of-view, we were able to assess the effect of field size on the detection of virtual objects in low-resolution synthetic worlds.
de Mello Monteiro, Carlos Bandeira; da Silva, Talita Dias; de Abreu, Luiz Carlos; Fregni, Felipe; de Araujo, Luciano Vieira; Ferreira, Fernando Henrique Inocêncio Borba; Leone, Claudio
2017-04-14
Down syndrome (DS) has unique physical, motor and cognitive characteristics. Despite cognitive and motor difficulties, there is a possibility of intervention based on the knowledge of motor learning. However, it is important to study the motor learning process in individuals with DS during a virtual reality task to justify the use of virtual reality to organize intervention programs. The aim of this study was to analyze the motor learning process in individuals with DS during a virtual reality task. A total of 40 individuals participated in this study, 20 of whom had DS (24 males and 8 females, mean age of 19 years, ranging between 14 and 30 yrs.) and 20 typically developing individuals (TD) who were matched by age and gender to the individuals with DS. To examine this issue, we used software that uses 3D images and reproduced a coincidence-timing task. The results showed that all individuals improved performance in the virtual task, but the individuals with DS that started the task with worse performance showed higher difference from the beginning. Besides that, they were able to retain and transfer the performance with increase of speed of the task. Individuals with DS are able to learn movements from virtual tasks, even though the movement time was higher compared to the TD individuals. The results showed that individuals with DS who started with low performance improved coincidence- timing task with virtual objects, but were less accurate than typically developing individuals. ClinicalTrials.gov Identifier: NCT02719600 .
ERIC Educational Resources Information Center
Huang, Hsiu-Mei; Liaw, Shu-Sheng; Lai, Chung-Min
2016-01-01
Advanced technologies have been widely applied in medical education, including human-patient simulators, immersive virtual reality Cave Automatic Virtual Environment systems, and video conferencing. Evaluating learner acceptance of such virtual reality (VR) learning environments is a critical issue for ensuring that such technologies are used to…
Model-Based Referenceless Quality Metric of 3D Synthesized Images Using Local Image Description.
Gu, Ke; Jakhetiya, Vinit; Qiao, Jun-Fei; Li, Xiaoli; Lin, Weisi; Thalmann, Daniel
2017-07-28
New challenges have been brought out along with the emerging of 3D-related technologies such as virtual reality (VR), augmented reality (AR), and mixed reality (MR). Free viewpoint video (FVV), due to its applications in remote surveillance, remote education, etc, based on the flexible selection of direction and viewpoint, has been perceived as the development direction of next-generation video technologies and has drawn a wide range of researchers' attention. Since FVV images are synthesized via a depth image-based rendering (DIBR) procedure in the "blind" environment (without reference images), a reliable real-time blind quality evaluation and monitoring system is urgently required. But existing assessment metrics do not render human judgments faithfully mainly because geometric distortions are generated by DIBR. To this end, this paper proposes a novel referenceless quality metric of DIBR-synthesized images using the autoregression (AR)-based local image description. It was found that, after the AR prediction, the reconstructed error between a DIBR-synthesized image and its AR-predicted image can accurately capture the geometry distortion. The visual saliency is then leveraged to modify the proposed blind quality metric to a sizable margin. Experiments validate the superiority of our no-reference quality method as compared with prevailing full-, reduced- and no-reference models.
When Rural Reality Goes Virtual.
ERIC Educational Resources Information Center
Husain, Dilshad D.
1998-01-01
In rural towns where sparse population and few business are barriers, virtual reality may be the only way to bring work-based learning to students. A partnership between a small-town high school, the Ohio Supercomputer Center, and a high-tech business will enable students to explore the workplace using virtual reality. (JOW)
Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery.
Pelargos, Panayiotis E; Nagasawa, Daniel T; Lagman, Carlito; Tenn, Stephen; Demos, Joanna V; Lee, Seung J; Bui, Timothy T; Barnette, Natalie E; Bhatt, Nikhilesh S; Ung, Nolan; Bari, Ausaf; Martin, Neil A; Yang, Isaac
2017-01-01
Neurosurgery has undergone a technological revolution over the past several decades, from trephination to image-guided navigation. Advancements in virtual reality (VR) and augmented reality (AR) represent some of the newest modalities being integrated into neurosurgical practice and resident education. In this review, we present a historical perspective of the development of VR and AR technologies, analyze its current uses, and discuss its emerging applications in the field of neurosurgery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cochrane review: virtual reality for stroke rehabilitation.
Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M
2012-09-01
Virtual reality and interactive video gaming are innovative therapy approaches in the field of stroke rehabilitation. The primary objective of this review was to determine the effectiveness of virtual reality on motor function after stroke. The impact on secondary outcomes including activities of daily living was also assessed. Randomised and quasi-randomised controlled trials that compared virtual reality with an alternative or no intervention were included in the review. The authors searched the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, electronic databases, trial registers, reference lists, Dissertation Abstracts, conference proceedings and contacted key researchers and virtual reality manufacturers. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. Nineteen studies with a total of 565 participants were included in the review. Variation in intervention approaches and outcome data collected limited the extent to which studies could be compared. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardised mean difference, SMD) 0.53, 95% confidence intervals [CI] 0.25 to 0.81)) based on seven studies, and activities of daily living (ADL) function (SMD 0.81, 95% CI 0.39 to 1.22) based on three studies. No statistically significant effects were found for grip strength (based on two studies) or gait speed (based on three studies). Virtual reality appears to be a promising approach however, further studies are required to confirm these findings.
ERIC Educational Resources Information Center
Trelease, Robert B.; Nieder, Gary L.
2013-01-01
Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android…
Virtual reality in mental health : a review of the literature.
Gregg, Lynsey; Tarrier, Nicholas
2007-05-01
Several virtual reality (VR) applications for the understanding, assessment and treatment of mental health problems have been developed in the last 10 years. The purpose of this review is to outline the current state of virtual reality research in the treatment of mental health problems. PubMed and PsycINFO were searched for all articles containing the words "virtual reality". In addition a manual search of the references contained in the papers resulting from this search was conducted and relevant periodicals were searched. Studies reporting the results of treatment utilizing VR in the mental health field and involving at least one patient were identified. More than 50 studies using VR were identified, the majority of which were case studies. Seventeen employed a between groups design: 4 involved patients with fear of flying; 3 involved patients with fear of heights; 3 involved patients with social phobia/public speaking anxiety; 2 involved people with spider phobia; 2 involved patients with agoraphobia; 2 involved patients with body image disturbance and 1 involved obese patients. There are both advantages in terms of delivery and disadvantages in terms of side effects to using VR. Although virtual reality based therapy appears to be superior to no treatment the effectiveness of VR therapy over traditional therapeutic approaches is not supported by the research currently available. There is a lack of good quality research on the effectiveness of VR therapy. Before clinicians will be able to make effective use of this emerging technology greater emphasis must be placed on controlled trials with clinically identified populations.
Virtual reality in surgical skills training.
Palter, Vanessa N; Grantcharov, Teodor P
2010-06-01
With recent concerns regarding patient safety, and legislation regarding resident work hours, it is accepted that a certain amount of surgical skills training will transition to the surgical skills laboratory. Virtual reality offers enormous potential to enhance technical and non-technical skills training outside the operating room. Virtual-reality systems range from basic low-fidelity devices to highly complex virtual environments. These systems can act as training and assessment tools, with the learned skills effectively transferring to an analogous clinical situation. Recent developments include expanding the role of virtual reality to allow for holistic, multidisciplinary team training in simulated operating rooms, and focusing on the role of virtual reality in evidence-based surgical curriculum design. Copyright 2010 Elsevier Inc. All rights reserved.
The Role of Virtual Articulator in Prosthetic and Restorative Dentistry
Aljanakh, Mohammad
2014-01-01
Virtual reality is a computer based technology linked with the future of dentistry and dental practice. The virtual articulator is one such application in prosthetic and restorative dentistry based on virtual reality that will significantly reduce the limitations of the mechanical articulator, and by simulation of real patient data, allow analyses with regard to static and dynamic occlusion as well as to jaw relation. It is the purpose of this article to present the concepts and strategies for a future replacement of the mechanical articulator by a virtual one. Also, a brief note on virtual reality haptic system has been highlighted along with newly developed touch enabled virtual articulator. PMID:25177664
Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis.
Bergeron, Mathieu; Lortie, Catherine L; Guitton, Matthieu J
2015-01-01
Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies.
Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis
Bergeron, Mathieu; Lortie, Catherine L.; Guitton, Matthieu J.
2015-01-01
Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies. PMID:26556560
Functional imaging of hippocampal place cells at cellular resolution during virtual navigation
Dombeck, Daniel A.; Harvey, Christopher D.; Tian, Lin; Looger, Loren L.; Tank, David W.
2010-01-01
Spatial navigation is a widely employed behavior in rodent studies of neuronal circuits underlying cognition, learning and memory. In vivo microscopy combined with genetically-encoded indicators provides important new tools to study neuronal circuits, but has been technically difficult to apply during navigation. We describe methods to image the activity of hippocampal CA1 neurons with sub-cellular resolution in behaving mice. Neurons expressing the genetically encoded calcium indicator GCaMP3 were imaged through a chronic hippocampal window. Head-fixed mice performed spatial behaviors within a setup combining a virtual reality system and a custom built two-photon microscope. Populations of place cells were optically identified, and the correlation between the location of their place fields in the virtual environment and their anatomical location in the local circuit was measured. The combination of virtual reality and high-resolution functional imaging should allow for a new generation of studies to probe neuronal circuit dynamics during behavior. PMID:20890294
NASA Astrophysics Data System (ADS)
Diana, Michele
2016-03-01
Pre-anastomotic bowel perfusion is a key factor for a successful healing process. Clinical judgment has limited accuracy to evaluate intestinal microperfusion. Fluorescence videography is a promising tool for image-guided intraoperative assessment of the bowel perfusion at the future anastomotic site in the setting of minimally invasive procedures. The standard configuration for fluorescence videography includes a Near-Infrared endoscope able to detect the signal emitted by a fluorescent dye, more frequently Indocyanine Green (ICG), which is administered by intravenous injection. Fluorescence intensity is proportional to the amount of fluorescent dye diffusing in the tissue and consequently is a surrogate marker of tissue perfusion. However, fluorescence intensity alone remains a subjective approach and an integrated computer-based analysis of the over-time evolution of the fluorescence signal is required to obtain quantitative data. We have developed a solution integrating computer-based analysis for intra-operative evaluation of the optimal resection site, based on the bowel perfusion as determined by the dynamic fluorescence intensity. The software can generate a "virtual perfusion cartography", based on the "fluorescence time-to-peak". The virtual perfusion cartography can be overlapped onto real-time laparoscopic images to obtain the Enhanced Reality effect. We have defined this approach FLuorescence-based Enhanced Reality (FLER). This manuscript describes the stepwise development of the FLER concept.
Low cost heads-up virtual reality (HUVR) with optical tracking and haptic feedback
NASA Astrophysics Data System (ADS)
Margolis, Todd; DeFanti, Thomas A.; Dawe, Greg; Prudhomme, Andrew; Schulze, Jurgen P.; Cutchin, Steve
2011-03-01
Researchers at the University of California, San Diego, have created a new, relatively low-cost augmented reality system that enables users to touch the virtual environment they are immersed in. The Heads-Up Virtual Reality device (HUVR) couples a consumer 3D HD flat screen TV with a half-silvered mirror to project any graphic image onto the user's hands and into the space surrounding them. With his or her head position optically tracked to generate the correct perspective view, the user maneuvers a force-feedback (haptic) device to interact with the 3D image, literally 'touching' the object's angles and contours as if it was a tangible physical object. HUVR can be used for training and education in structural and mechanical engineering, archaeology and medicine as well as other tasks that require hand-eye coordination. One of the most unique characteristics of HUVR is that a user can place their hands inside of the virtual environment without occluding the 3D image. Built using open-source software and consumer level hardware, HUVR offers users a tactile experience in an immersive environment that is functional, affordable and scalable.
Augmented reality 3D display based on integral imaging
NASA Astrophysics Data System (ADS)
Deng, Huan; Zhang, Han-Le; He, Min-Yang; Wang, Qiong-Hua
2017-02-01
Integral imaging (II) is a good candidate for augmented reality (AR) display, since it provides various physiological depth cues so that viewers can freely change the accommodation and convergence between the virtual three-dimensional (3D) images and the real-world scene without feeling any visual discomfort. We propose two AR 3D display systems based on the theory of II. In the first AR system, a micro II display unit reconstructs a micro 3D image, and the mciro-3D image is magnified by a convex lens. The lateral and depth distortions of the magnified 3D image are analyzed and resolved by the pitch scaling and depth scaling. The magnified 3D image and real 3D scene are overlapped by using a half-mirror to realize AR 3D display. The second AR system uses a micro-lens array holographic optical element (HOE) as an image combiner. The HOE is a volume holographic grating which functions as a micro-lens array for the Bragg-matched light, and as a transparent glass for Bragg mismatched light. A reference beam can reproduce a virtual 3D image from one side and a reference beam with conjugated phase can reproduce the second 3D image from other side of the micro-lens array HOE, which presents double-sided 3D display feature.
Ntourakis, Dimitrios; Memeo, Ricardo; Soler, Luc; Marescaux, Jacques; Mutter, Didier; Pessaux, Patrick
2016-02-01
Modern chemotherapy achieves the shrinking of colorectal cancer liver metastases (CRLM) to such extent that they may disappear from radiological imaging. Disappearing CRLM rarely represents a complete pathological remission and have an important risk of recurrence. Augmented reality (AR) consists in the fusion of real-time patient images with a computer-generated 3D virtual patient model created from pre-operative medical imaging. The aim of this prospective pilot study is to investigate the potential of AR navigation as a tool to help locate and surgically resect missing CRLM. A 3D virtual anatomical model was created from thoracoabdominal CT-scans using customary software (VR RENDER(®), IRCAD). The virtual model was superimposed to the operative field using an Exoscope (VITOM(®), Karl Storz, Tüttlingen, Germany). Virtual and real images were manually registered in real-time using a video mixer, based on external anatomical landmarks with an estimated accuracy of 5 mm. This modality was tested in three patients, with four missing CRLM that had sizes from 12 to 24 mm, undergoing laparotomy after receiving pre-operative oxaliplatin-based chemotherapy. AR display and fine registration was performed within 6 min. AR helped detect all four missing CRLM, and guided their resection. In all cases the planned security margin of 1 cm was clear and resections were confirmed to be R0 by pathology. There was no postoperative major morbidity or mortality. No local recurrence occurred in the follow-up period of 6-22 months. This initial experience suggests that AR may be a helpful navigation tool for the resection of missing CRLM.
Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery.
Robison, R Aaron; Liu, Charles Y; Apuzzo, Michael L J
2011-11-01
To review virtual reality in neurosurgery, including the history of simulation and virtual reality and some of the current implementations; to examine some of the technical challenges involved; and to propose a potential paradigm for the development of virtual reality in neurosurgery going forward. A search was made on PubMed using key words surgical simulation, virtual reality, haptics, collision detection, and volumetric modeling to assess the current status of virtual reality in neurosurgery. Based on previous results, investigators extrapolated the possible integration of existing efforts and potential future directions. Simulation has a rich history in surgical training, and there are numerous currently existing applications and systems that involve virtual reality. All existing applications are limited to specific task-oriented functions and typically sacrifice visual realism for real-time interactivity or vice versa, owing to numerous technical challenges in rendering a virtual space in real time, including graphic and tissue modeling, collision detection, and direction of the haptic interface. With ongoing technical advancements in computer hardware and graphic and physical rendering, incremental or modular development of a fully immersive, multipurpose virtual reality neurosurgical simulator is feasible. The use of virtual reality in neurosurgery is predicted to change the nature of neurosurgical education, and to play an increased role in surgical rehearsal and the continuing education and credentialing of surgical practitioners. Copyright © 2011 Elsevier Inc. All rights reserved.
Visualizing Compound Rotations with Virtual Reality
ERIC Educational Resources Information Center
Flanders, Megan; Kavanagh, Richard C.
2013-01-01
Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…
See-through 3D technology for augmented reality
NASA Astrophysics Data System (ADS)
Lee, Byoungho; Lee, Seungjae; Li, Gang; Jang, Changwon; Hong, Jong-Young
2017-06-01
Augmented reality is recently attracting a lot of attention as one of the most spotlighted next-generation technologies. In order to get toward realization of ideal augmented reality, we need to integrate 3D virtual information into real world. This integration should not be noticed by users blurring the boundary between the virtual and real worlds. Thus, ultimate device for augmented reality can reconstruct and superimpose 3D virtual information on the real world so that they are not distinguishable, which is referred to as see-through 3D technology. Here, we introduce our previous researches to combine see-through displays and 3D technologies using emerging optical combiners: holographic optical elements and index matched optical elements. Holographic optical elements are volume gratings that have angular and wavelength selectivity. Index matched optical elements are partially reflective elements using a compensation element for index matching. Using these optical combiners, we could implement see-through 3D displays based on typical methodologies including integral imaging, digital holographic displays, multi-layer displays, and retinal projection. Some of these methods are expected to be optimized and customized for head-mounted or wearable displays. We conclude with demonstration and analysis of fundamental researches for head-mounted see-through 3D displays.
Real-Time Occlusion Handling in Augmented Reality Based on an Object Tracking Approach
Tian, Yuan; Guan, Tao; Wang, Cheng
2010-01-01
To produce a realistic augmentation in Augmented Reality, the correct relative positions of real objects and virtual objects are very important. In this paper, we propose a novel real-time occlusion handling method based on an object tracking approach. Our method is divided into three steps: selection of the occluding object, object tracking and occlusion handling. The user selects the occluding object using an interactive segmentation method. The contour of the selected object is then tracked in the subsequent frames in real-time. In the occlusion handling step, all the pixels on the tracked object are redrawn on the unprocessed augmented image to produce a new synthesized image in which the relative position between the real and virtual object is correct. The proposed method has several advantages. First, it is robust and stable, since it remains effective when the camera is moved through large changes of viewing angles and volumes or when the object and the background have similar colors. Second, it is fast, since the real object can be tracked in real-time. Last, a smoothing technique provides seamless merging between the augmented and virtual object. Several experiments are provided to validate the performance of the proposed method. PMID:22319278
Research on three-dimensional visualization based on virtual reality and Internet
NASA Astrophysics Data System (ADS)
Wang, Zongmin; Yang, Haibo; Zhao, Hongling; Li, Jiren; Zhu, Qiang; Zhang, Xiaohong; Sun, Kai
2007-06-01
To disclose and display water information, a three-dimensional visualization system based on Virtual Reality (VR) and Internet is researched for demonstrating "digital water conservancy" application and also for routine management of reservoir. To explore and mine in-depth information, after completion of modeling high resolution DEM with reliable quality, topographical analysis, visibility analysis and reservoir volume computation are studied. And also, some parameters including slope, water level and NDVI are selected to classify easy-landslide zone in water-level-fluctuating zone of reservoir area. To establish virtual reservoir scene, two kinds of methods are used respectively for experiencing immersion, interaction and imagination (3I). First virtual scene contains more detailed textures to increase reality on graphical workstation with virtual reality engine Open Scene Graph (OSG). Second virtual scene is for internet users with fewer details for assuring fluent speed.
Application of virtual reality GIS in urban planning: an example in Huangdao district
NASA Astrophysics Data System (ADS)
Han, Yong; Qiao, Xin; Sun, Weichen; Zhang, Litao
2007-06-01
As an important development direction of GIS, Virtual Reality GIS was founded in 1950s. After 1990s, due to the fast development of its theory and the computer technology, Virtual Reality has been applied to many fields: military, aerospace, design, manufactory, information management, business, construction, city management, medical, education, etc.. The most famous project is the Virtual Los Angeles implemented by the Urban Simulation Team (UST) of UCLA. The main focus of the UST is a long-term effort to build a real-time Virtual Reality model of the entire Los Angeles basin for use by architects, urban planners, emergency response teams, and the government entities. When completed, the entire Virtual L.A. model will cover an area well in excess of 10000 square miles and will elegantly scale from satellite images to street level views accurate enough to allow the signs in the window of the shops and the graffiti on the walls to be legible. Till now, the virtual L.A. has been applied to urban environments and design analysis, transportation studies, historic reconstruction and education, etc. Compared to the early development abroad, the development of Virtual Reality GIS in China is relatively late. It is researched in some universities in early years. But recently, it has been attended by the populace and been used in many social fields: urban planning, environmental protection, historic protection and recovery, real estate, tourism, education etc.. The application of Virtual Reality in urban planning of Huangdao District, Qingdao City is introduced in this paper.
Virtual reality simulation: using three-dimensional technology to teach nursing students.
Jenson, Carole E; Forsyth, Diane McNally
2012-06-01
The use of computerized technology is rapidly growing in the classroom and in healthcare. An emerging computer technology strategy for nursing education is the use of virtual reality simulation. This computer-based three-dimensional educational tool simulates real-life patient experiences in a risk-free environment, allows for repeated practice sessions, requires clinical decision making, exposes students to diverse patient conditions, provides immediate feedback, and is portable. The purpose of this article was to review the importance of virtual reality simulation as a computerized teaching strategy. In addition, a project to explore readiness of nursing faculty at one major Midwestern university for the use of virtual reality simulation as a computerized teaching strategy is described where faculty thought virtual reality simulation would increase students' knowledge of an intravenous line insertion procedure. Faculty who practiced intravenous catheter insertion via virtual reality simulation expressed a wide range of learning experiences from using virtual reality simulation that is congruent with the literature regarding the barriers to student learning. Innovative teaching strategies, such as virtual reality simulation, address barriers of increasing patient acuity, high student-to-faculty ratio, patient safety concerns from faculty, and student anxiety and can offer rapid feedback to students.
Hybrid 3D reconstruction and image-based rendering techniques for reality modeling
NASA Astrophysics Data System (ADS)
Sequeira, Vitor; Wolfart, Erik; Bovisio, Emanuele; Biotti, Ester; Goncalves, Joao G. M.
2000-12-01
This paper presents a component approach that combines in a seamless way the strong features of laser range acquisition with the visual quality of purely photographic approaches. The relevant components of the system are: (i) Panoramic images for distant background scenery where parallax is insignificant; (ii) Photogrammetry for background buildings and (iii) High detailed laser based models for the primary environment, structure of exteriors of buildings and interiors of rooms. These techniques have a wide range of applications in visualization, virtual reality, cost effective as-built analysis of architectural and industrial environments, building facilities management, real-estate, E-commerce, remote inspection of hazardous environments, TV production and many others.
Zhu, Ming; Chai, Gang; Lin, Li; Xin, Yu; Tan, Andy; Bogari, Melia; Zhang, Yan; Li, Qingfeng
2016-12-01
Augmented reality (AR) technology can superimpose the virtual image generated by computer onto the real operating field to present an integral image to enhance surgical safety. The purpose of our study is to develop a novel AR-based navigation system for craniofacial surgery. We focus on orbital hypertelorism correction, because the surgery requires high preciseness and is considered tough even for senior craniofacial surgeon. Twelve patients with orbital hypertelorism were selected. The preoperative computed tomography data were imported into 3-dimensional platform for preoperational design. The position and orientation of virtual information and real world were adjusted by image registration process. The AR toolkits were used to realize the integral image. Afterward, computed tomography was also performed after operation for comparing the difference between preoperational plan and actual operational outcome. Our AR-based navigation system was successfully used in these patients, directly displaying 3-dimensional navigational information onto the surgical field. They all achieved a better appearance by the guidance of navigation image. The difference in interdacryon distance and the dacryon point of each side appear no significant (P > 0.05) between preoperational plan and actual surgical outcome. This study reports on an effective visualized approach for guiding orbital hypertelorism correction. Our AR-based navigation system may lay a foundation for craniofacial surgery navigation. The AR technology could be considered as a helpful tool for precise osteotomy in craniofacial surgery.
NASA Astrophysics Data System (ADS)
Tong, Xin; Gromala, Diane; Shaw, Chris D.; Williamson, Owen; Iscen, Ozgun E.
2015-03-01
Body image/body schema (BIBS) is within the larger realm of embodied cognition. Its interdisciplinary literature can inspire Virtual Reality (VR) researchers and designers to develop novel ideas and provide them with approaches to human perception and experience. In this paper, we introduced six fundamental ideas in designing interactions in VR, derived from BIBS literature that demonstrates how the mind is embodied. We discuss our own research, ranging from two mature works to a prototype, to support explorations VR interaction design from a BIBS approach. Based on our experiences, we argue that incorporating ideas of embodiment into design practices requires a shift in the perspective or understanding of the human body, perception and experiences, all of which affect interaction design in unique ways. The dynamic, interactive and distributed understanding of cognition guides our approach to interaction design, where the interrelatedness and plasticity of BIBS play a crucial role.
Yu, Zheng-yang; Zheng, Shu-sen; Chen, Lei-ting; He, Xiao-qian; Wang, Jian-jun
2005-07-01
This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.
Yu, Zheng-yang; Zheng, Shu-sen; Chen, Lei-ting; He, Xiao-qian; Wang, Jian-jun
2005-01-01
This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging. PMID:15973760
A Case-Based Study with Radiologists Performing Diagnosis Tasks in Virtual Reality.
Venson, José Eduardo; Albiero Berni, Jean Carlo; Edmilson da Silva Maia, Carlos; Marques da Silva, Ana Maria; Cordeiro d'Ornellas, Marcos; Maciel, Anderson
2017-01-01
In radiology diagnosis, medical images are most often visualized slice by slice. At the same time, the visualization based on 3D volumetric rendering of the data is considered useful and has increased its field of application. In this work, we present a case-based study with 16 medical specialists to assess the diagnostic effectiveness of a Virtual Reality interface in fracture identification over 3D volumetric reconstructions. We developed a VR volume viewer compatible with both the Oculus Rift and handheld-based head mounted displays (HMDs). We then performed user experiments to validate the approach in a diagnosis environment. In addition, we assessed the subjects' perception of the 3D reconstruction quality, ease of interaction and ergonomics, and also the users opinion on how VR applications can be useful in healthcare. Among other results, we have found a high level of effectiveness of the VR interface in identifying superficial fractures on head CTs.
Telemanipulation, telepresence, and virtual reality for surgery in the year 2000
NASA Astrophysics Data System (ADS)
Satava, Richard M.
1995-12-01
The new technologic revolution in medicine is based upon information technologies, and telemanipulation, telepresence and virtual reality are essential components. Telepresence surgery returns the look and feel of `open surgery' to the surgeon and promises enhancement of physical capabilities above normal human performance. Virtual reality provides basic medical education, simulation of surgical procedures, medical forces and disaster medicine practice, and virtual prototyping of medical equipment.
Virtual reality for dermatologic surgery: virtually a reality in the 21st century.
Gladstone, H B; Raugi, G J; Berg, D; Berkley, J; Weghorst, S; Ganter, M
2000-01-01
In the 20th century, virtual reality has predominantly played a role in training pilots and in the entertainment industry. Despite much publicity, virtual reality did not live up to its perceived potential. During the past decade, it has also been applied for medical uses, particularly as training simulators, for minimally invasive surgery. Because of advances in computer technology, virtual reality is on the cusp of becoming an effective medical educational tool. At the University of Washington, we are developing a virtual reality soft tissue surgery simulator. Based on fast finite element modeling and using a personal computer, this device can simulate three-dimensional human skin deformations with real-time tactile feedback. Although there are many cutaneous biomechanical challenges to solve, it will eventually provide more realistic dermatologic surgery training for medical students and residents than the currently used models.
The Use of Virtual Reality Technology in the Treatment of Anxiety and Other Psychiatric Disorders.
Maples-Keller, Jessica L; Bunnell, Brian E; Kim, Sae-Jin; Rothbaum, Barbara O
After participating in this activity, learners should be better able to:• Evaluate the literature regarding the effectiveness of incorporating virtual reality (VR) in the treatment of psychiatric disorders• Assess the use of exposure-based intervention for anxiety disorders ABSTRACT: Virtual reality (VR) allows users to experience a sense of presence in a computer-generated, three-dimensional environment. Sensory information is delivered through a head-mounted display and specialized interface devices. These devices track head movements so that the movements and images change in a natural way with head motion, allowing for a sense of immersion. VR, which allows for controlled delivery of sensory stimulation via the therapist, is a convenient and cost-effective treatment. This review focuses on the available literature regarding the effectiveness of incorporating VR within the treatment of various psychiatric disorders, with particular attention to exposure-based intervention for anxiety disorders. A systematic literature search was conducted in order to identify studies implementing VR-based treatment for anxiety or other psychiatric disorders. This article reviews the history of the development of VR-based technology and its use within psychiatric treatment, the empirical evidence for VR-based treatment, and the benefits for using VR for psychiatric research and treatment. It also presents recommendations for how to incorporate VR into psychiatric care and discusses future directions for VR-based treatment and clinical research.
Virtual Reality: You Are There
NASA Technical Reports Server (NTRS)
1993-01-01
Telepresence or "virtual reality," allows a person, with assistance from advanced technology devices, to figuratively project himself into another environment. This technology is marketed by several companies, among them Fakespace, Inc., a former Ames Research Center contractor. Fakespace developed a teleoperational motion platform for transmitting sounds and images from remote locations. The "Molly" matches the user's head motion and, when coupled with a stereo viewing device and appropriate software, creates the telepresence experience. Its companion piece is the BOOM-the user's viewing device that provides the sense of involvement in the virtual environment. Either system may be used alone. Because suits, gloves, headphones, etc. are not needed, a whole range of commercial applications is possible, including computer-aided design techniques and virtual reality visualizations. Customers include Sandia National Laboratories, Stanford Research Institute and Mattel Toys.
Teel, Elizabeth; Gay, Michael; Johnson, Brian; Slobounov, Semyon
2016-05-01
Computer-based neuropsychological (NP) evaluation is an effective clinical tool used to assess cognitive function which complements the clinical diagnosis of a concussion. However, some researchers and clinicians argue its lack of ecological validity places limitations on externalizing results to a sensory rich athletic environment. Virtual reality-based NP assessment offers clinical advantages using an immersive environment and evaluating domains not typically assessed by traditional NP assessments. The sensitivity and specificity of detecting lingering cognitive abnormalities was examined on components of a virtual reality-based NP assessment battery to cohort affiliation (concussed vs. controls). Data were retrospectively gathered on 128 controls (no concussion) and 24 concussed college-age athletes on measures of spatial navigation, whole body reaction, attention, and balance in a virtual environment. Concussed athletes were tested within 10 days (M = 8.33, SD = 1.06) of concussion and were clinically asymptomatic at the time of testing. A priori alpha level was set at 0.05 for all tests. Spatial navigation (sensitivity 95.8%/specificity 91.4%, d = 1.89), whole body reaction time (sensitivity 95.2%/specificity 89.1%, d = 1.50) and combined virtual reality modules (sensitivity 95.8%,/specificity 96.1%, d = 3.59) produced high sensitivity/specificity values when determining performance-based variability between groups. Use of a virtual reality-based NP platform can detect lingering cognitive abnormalities resulting from concussion in clinically asymptomatic participants. Virtual reality NP platforms may compliment the traditional concussion assessment battery by providing novel information. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Prochnow, D; Bermúdez i Badia, S; Schmidt, J; Duff, A; Brunheim, S; Kleiser, R; Seitz, R J; Verschure, P F M J
2013-05-01
The Rehabilitation Gaming System (RGS) has been designed as a flexible, virtual-reality (VR)-based device for rehabilitation of neurological patients. Recently, training of visuomotor processing with the RGS was shown to effectively improve arm function in acute and chronic stroke patients. It is assumed that the VR-based training protocol related to RGS creates conditions that aid recovery by virtue of the human mirror neuron system. Here, we provide evidence for this assumption by identifying the brain areas involved in controlling the catching of approaching colored balls in the virtual environment of the RGS. We used functional magnetic resonance imaging of 18 right-handed healthy subjects (24 ± 3 years) in both active and imagination conditions. We observed that the imagery of target catching was related to activation of frontal, parietal, temporal, cingulate and cerebellar regions. We interpret these activations in relation to object processing, attention, mirror mechanisms, and motor intention. Active catching followed an anticipatory mode, and resulted in significantly less activity in the motor control areas. Our results provide preliminary support for the hypothesis underlying RGS that this novel neurorehabilitation approach engages human mirror mechanisms that can be employed for visuomotor training. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Huang, Hsiu-Mei; Liaw, Shu-Sheng
2018-01-01
Within a constructivist paradigm, the virtual reality technology focuses on the learner's actively interactive learning processes and attempts to reduce the gap between the learner's knowledge and a real-life experience. Recently, virtual reality technologies have been developed for a wide range of applications in education, but further research…
Factors to keep in mind when introducing virtual microscopy.
Glatz-Krieger, Katharina; Spornitz, Udo; Spatz, Alain; Mihatsch, Michael J; Glatz, Dieter
2006-03-01
Digitization of glass slides and delivery of so-called virtual slides (VS) emulating a real microscope over the Internet have become reality due to recent improvements in technology. We have implemented a virtual microscope for instruction of medical students and for continuing medical education. Up to 30,000 images per slide are captured using a microscope with an automated stage. The images are post-processed and then served by a plain hypertext transfer protocol (http)-server. A virtual slide client (vMic) based on Macromedia's Flash MX, a highly accepted technology available on every modern Web browser, has been developed. All necessary virtual slide parameters are stored in an XML file together with the image. Evaluation of the courses by questionnaire indicated that most students and many but not all pathologists regard virtual slides as an adequate replacement for traditional slides. All our virtual slides are publicly accessible over the World Wide Web (WWW) at http://vmic.unibas.ch . Recently, several commercially available virtual slide acquisition systems (VSAS) have been developed that use various technologies to acquire and distribute virtual slides. These systems differ in speed, image quality, compatibility, viewer functionalities and price. This paper gives an overview of the factors to keep in mind when introducing virtual microscopy.
Inertial Motion-Tracking Technology for Virtual 3-D
NASA Technical Reports Server (NTRS)
2005-01-01
In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.
NASA Astrophysics Data System (ADS)
Ribeiro, Allan; Santos, Helen
With the advent of new information and communication technologies (ICTs), the communicative interaction changes the way of being and acting of people, at the same time that changes the way of work activities related to education. In this range of possibilities provided by the advancement of computational resources include virtual reality (VR) and augmented reality (AR), are highlighted as new forms of information visualization in computer applications. While the RV allows user interaction with a virtual environment totally computer generated; in RA the virtual images are inserted in real environment, but both create new opportunities to support teaching and learning in formal and informal contexts. Such technologies are able to express representations of reality or of the imagination, as systems in nanoscale and low dimensionality, being imperative to explore, in the most diverse areas of knowledge, the potential offered by ICT and emerging technologies. In this sense, this work presents computer applications of virtual and augmented reality developed with the use of modeling and simulation in computational approaches to topics related to nanoscience and nanotechnology, and articulated with innovative pedagogical practices.
In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy.
Golomb, Meredith R; McDonald, Brenna C; Warden, Stuart J; Yonkman, Janell; Saykin, Andrew J; Shirley, Bridget; Huber, Meghan; Rabin, Bryan; Abdelbaky, Moustafa; Nwosu, Michelle E; Barkat-Masih, Monica; Burdea, Grigore C
2010-01-01
Golomb MR, McDonald BC, Warden SJ, Yonkman J, Saykin AJ, Shirley B, Huber M, Rabin B, AbdelBaky M, Nwosu ME, Barkat-Masih M, Burdea GC. In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. To investigate whether in-home remotely monitored virtual reality videogame-based telerehabilitation in adolescents with hemiplegic cerebral palsy can improve hand function and forearm bone health, and demonstrate alterations in motor circuitry activation. A 3-month proof-of-concept pilot study. Virtual reality videogame-based rehabilitation systems were installed in the homes of 3 participants and networked via secure Internet connections to the collaborating engineering school and children's hospital. Adolescents (N=3) with severe hemiplegic cerebral palsy. Participants were asked to exercise the plegic hand 30 minutes a day, 5 days a week using a sensor glove fitted to the plegic hand and attached to a remotely monitored videogame console installed in their home. Games were custom developed, focused on finger movement, and included a screen avatar of the hand. Standardized occupational therapy assessments, remote assessment of finger range of motion (ROM) based on sensor glove readings, assessment of plegic forearm bone health with dual-energy x-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT), and functional magnetic resonance imaging (fMRI) of hand grip task. All 3 adolescents showed improved function of the plegic hand on occupational therapy testing, including increased ability to lift objects, and improved finger ROM based on remote measurements. The 2 adolescents who were most compliant showed improvements in radial bone mineral content and area in the plegic arm. For all 3 adolescents, fMRI during grip task contrasting the plegic and nonplegic hand showed expanded spatial extent of activation at posttreatment relative to baseline in brain motor circuitry (eg, primary motor cortex and cerebellum). Use of remotely monitored virtual reality videogame telerehabilitation appears to produce improved hand function and forearm bone health (as measured by DXA and pQCT) in adolescents with chronic disability who practice regularly. Improved hand function appears to be reflected in functional brain changes. Copyright (c) 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Using Virtual Reality in the Inference-Based Treatment of Compulsive Hoarding
St-Pierre-Delorme, Marie-Eve; O’Connor, Kieron
2016-01-01
The present study evaluated the efficacy of adding a virtual reality (VR) component to the treatment of compulsive hoarding (CH), following inference-based therapy (IBT). Participants were randomly assigned to either an experimental or a control condition. Seven participants received the experimental and seven received the control condition. Five sessions of 1 h were administered weekly. A significant difference indicated that the level of clutter in the bedroom tended to diminish more in the experimental group as compared to the control group F(2,24) = 2.28, p = 0.10. In addition, the results demonstrated that both groups were immersed and present in the environment. The results on posttreatment measures of CH (Saving Inventory revised, Saving Cognition Inventory and Clutter Image Rating scale) demonstrate the efficacy of IBT in terms of symptom reduction. Overall, these results suggest that the creation of a virtual environment may be effective in the treatment of CH by helping the compulsive hoarders take action over their clutter. PMID:27486574
Chromostereopsis in "virtual reality" adapters with electrically tuneable liquid lens oculars
NASA Astrophysics Data System (ADS)
Ozolinsh, Maris; Muizniece, Kristine; Berzinsh, Janis
2016-10-01
Chromostereopsis can be sight and feel in "Virtual Reality" adapters, that induces the appearance of color dependant depth sense and, finally, combines this sense with the source conceived depth scenario. Present studies are devoted to investigation the induced chromastereopsis when using adapted "Virtual Reality" frame together with mobile devices as smartphones. We did observation of composite visual stimuli presented on the high spatial resolution screen of the mobile phone placed inside a portable "Virtual Reality" adapter. Separated for the left and right eyes stimuli consisted of two areas: a) identical for both eyes color chromostereopsis part, and b) additional conventional color neutral random-dot stereopsis part with a stereodisparity based on the horizontal shift of a random-dot segment in images for the left and right eyes, correspondingly. The observer task was to equalize the depth sense for neutral and colored stimuli areas. Such scheme allows to determine actual observed chromostereopsis disparity value versus eye stimuli color difference. At standard observation conditions for adapter with +2D ocular lenses for mobile red-blue stimuli, the perceptual chromostereopsis depth sensitivity on color difference was linearly approximated with a slope SChS ≈ 2.1[arcmin/(Labcolor difference)] for red-blue pairs. Additional to standard application in adapter the tuneable "Varioptic" liquid lens oculars were incorporated, that allowed stimuli eye magnification, vergence and disparity values control electrically.
Implementation of augmented reality to models sultan deli
NASA Astrophysics Data System (ADS)
Syahputra, M. F.; Lumbantobing, N. P.; Siregar, B.; Rahmat, R. F.; Andayani, U.
2018-03-01
Augmented reality is a technology that can provide visualization in the form of 3D virtual model. With the utilization of augmented reality technology hence image-based modeling to produce 3D model of Sultan Deli Istana Maimun can be applied to restore photo of Sultan of Deli into three dimension model. This is due to the Sultan of Deli which is one of the important figures in the history of the development of the city of Medan is less known by the public because the image of the Sultanate of Deli is less clear and has been very long. To achieve this goal, augmented reality applications are used with image processing methodologies into 3D models through several toolkits. The output generated from this method is the visitor’s photos Maimun Palace with 3D model of Sultan Deli with the detection of markers 20-60 cm apart so as to provide convenience for the public to recognize the Sultan Deli who had ruled in Maimun Palace.
Baus, Oliver; Bouchard, Stéphane
2014-01-01
This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed “safely” to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user’s experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia. PMID:24624073
Baus, Oliver; Bouchard, Stéphane
2014-01-01
This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed "safely" to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user's experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia.
The Role of Visualization in Learning from Computer-Based Images. Research Report
ERIC Educational Resources Information Center
Piburn, Michael D.; Reynolds, Stephen J.; McAuliffe, Carla; Leedy, Debra E.; Birk, James P.; Johnson, Julia K.
2005-01-01
Among the sciences, the practice of geology is especially visual. To assess the role of spatial ability in learning geology, we designed an experiment using: (1) web-based versions of spatial visualization tests, (2) a geospatial test, and (3) multimedia instructional modules built around QuickTime Virtual Reality movies. Students in control and…
Diers, Martin; Kamping, Sandra; Kirsch, Pinar; Rance, Mariela; Bekrater-Bodmann, Robin; Foell, Jens; Trojan, Joerg; Fuchs, Xaver; Bach, Felix; Maaß, Heiko; Cakmak, Hüseyin; Flor, Herta
2015-01-12
Extended viewing of movements of one's intact limb in a mirror as well as motor imagery have been shown to decrease pain in persons with phantom limb pain or complex regional pain syndrome and to increase the movement ability in hemiparesis following stroke. In addition, mirrored movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. However, using a so-called mirror box has technical limitations, some of which can be overcome by virtual reality applications. We developed a virtual reality mirror box application and evaluated its comparability to a classical mirror box setup. We applied both paradigms to 20 healthy controls and analyzed vividness and authenticity of the illusion as well as brain activation patterns. In both conditions, subjects reported similar intensities for the sensation that movements of the virtual left hand felt as if they were executed by their own left hand. We found activation in the primary sensorimotor cortex contralateral to the actual movement, with stronger activation for the virtual reality 'mirror box' compared to the classical mirror box condition, as well as activation in the primary sensorimotor cortex contralateral to the mirrored/virtual movement. We conclude that a virtual reality application of the mirror box is viable and that it might be useful for future research. Copyright © 2014 Elsevier B.V. All rights reserved.
Real-time 3D image reconstruction guidance in liver resection surgery.
Soler, Luc; Nicolau, Stephane; Pessaux, Patrick; Mutter, Didier; Marescaux, Jacques
2014-04-01
Minimally invasive surgery represents one of the main evolutions of surgical techniques. However, minimally invasive surgery adds difficulty that can be reduced through computer technology. From a patient's medical image [US, computed tomography (CT) or MRI], we have developed an Augmented Reality (AR) system that increases the surgeon's intraoperative vision by providing a virtual transparency of the patient. AR is based on two major processes: 3D modeling and visualization of anatomical or pathological structures appearing in the medical image, and the registration of this visualization onto the real patient. We have thus developed a new online service, named Visible Patient, providing efficient 3D modeling of patients. We have then developed several 3D visualization and surgical planning software tools to combine direct volume rendering and surface rendering. Finally, we have developed two registration techniques, one interactive and one automatic providing intraoperative augmented reality view. From January 2009 to June 2013, 769 clinical cases have been modeled by the Visible Patient service. Moreover, three clinical validations have been realized demonstrating the accuracy of 3D models and their great benefit, potentially increasing surgical eligibility in liver surgery (20% of cases). From these 3D models, more than 50 interactive AR-assisted surgical procedures have been realized illustrating the potential clinical benefit of such assistance to gain safety, but also current limits that automatic augmented reality will overcome. Virtual patient modeling should be mandatory for certain interventions that have now to be defined, such as liver surgery. Augmented reality is clearly the next step of the new surgical instrumentation but remains currently limited due to the complexity of organ deformations during surgery. Intraoperative medical imaging used in new generation of automated augmented reality should solve this issue thanks to the development of Hybrid OR.
ERIC Educational Resources Information Center
O'Connor, Eileen A.; Domingo, Jelia
2017-01-01
With the advent of open source virtual environments, the associated cost reductions, and the more flexible options, avatar-based virtual reality environments are within reach of educators. By using and repurposing readily available virtual environments, instructors can bring engaging, community-building, and immersive learning opportunities to…
Can virtual reality be used to conduct mass prophylaxis clinic training? A pilot program.
Yellowlees, Peter; Cook, James N; Marks, Shayna L; Wolfe, Daniel; Mangin, Elanor
2008-03-01
To create and evaluate a pilot bioterrorism defense training environment using virtual reality technology. The present pilot project used Second Life, an internet-based virtual world system, to construct a virtual reality environment to mimic an actual setting that might be used as a Strategic National Stockpile (SNS) distribution site for northern California in the event of a bioterrorist attack. Scripted characters were integrated into the system as mock patients to analyze various clinic workflow scenarios. Users tested the virtual environment over two sessions. Thirteen users who toured the environment were asked to complete an evaluation survey. Respondents reported that the virtual reality system was relevant to their practice and had potential as a method of bioterrorism defense training. Computer simulations of bioterrorism defense training scenarios are feasible with existing personal computer technology. The use of internet-connected virtual environments holds promise for bioterrorism defense training. Recommendations are made for public health agencies regarding the implementation and benefits of using virtual reality for mass prophylaxis clinic training.
Virtual Reality in the Assessment and Treatment of Weight-Related Disorders.
Wiederhold, Brenda K; Riva, Giuseppe; Gutiérrez-Maldonado, José
2016-02-01
Virtual Reality (VR) has, for the past two decades, proven to be a useful adjunctive tool for both assessment and treatment of patients with eating disorders and obesity. VR allows an individual to enter scenarios that simulate real-life situations and to encounter food cues known to trigger his/her disordered eating behavior. As well, VR enables three-dimensional figures of the patient's body to be presented, helping him/her to reach an awareness of body image distortion and then providing the opportunity to confront and correct distortions, resulting in a more realistic body image and a decrease in body image dissatisfaction. In this paper, we describe seminal studies in this research area.
Virtual reality exposure therapy in anxiety disorders: a quantitative meta-analysis.
Opriş, David; Pintea, Sebastian; García-Palacios, Azucena; Botella, Cristina; Szamosközi, Ştefan; David, Daniel
2012-02-01
Virtual reality exposure therapy (VRET) is a promising intervention for the treatment of the anxiety disorders. The main objective of this meta-analysis is to compare the efficacy of VRET, used in a behavioral or cognitive-behavioral framework, with that of the classical evidence-based treatments, in anxiety disorders. A comprehensive search of the literature identified 23 studies (n = 608) that were included in the final analysis. The results show that in the case of anxiety disorders, (1) VRET does far better than the waitlist control; (2) the post-treatment results show similar efficacy between the behavioral and the cognitive behavioral interventions incorporating a virtual reality exposure component and the classical evidence-based interventions, with no virtual reality exposure component; (3) VRET has a powerful real-life impact, similar to that of the classical evidence-based treatments; (4) VRET has a good stability of results over time, similar to that of the classical evidence-based treatments; (5) there is a dose-response relationship for VRET; and (6) there is no difference in the dropout rate between the virtual reality exposure and the in vivo exposure. Implications are discussed. © 2011 Wiley Periodicals, Inc.
Lee, Myung-Mo; Shin, Doo-Chul; Song, Chang-Ho
2016-07-01
[Purpose] This study was aimed at investigating the preliminary therapeutic efficacy and usefulness of canoe game-based virtual reality training for stroke patients. [Subjects and Methods] Ten stroke patients were randomly assigned to an experimental group (EG; n=5) or a control group (CG; n=5). Patients in both groups participated in a conventional rehabilitation program, but those in the EG additionally participated in a 30-min canoe game-based virtual reality training program 3 days a week for 4 weeks. Therapeutic efficacy was assessed based on trunk postural stability, balance, and upper limb motor function. In addition, the usefulness of canoe game-based virtual reality training was assessed in the EG and therapist group (TG; n=20), which consisted of physical and occupational therapists, by using the System Usability Scale (SUS). [Results] Improvements in trunk postural stability, balance, and upper limb motor function were observed in the EG and CG, but were greater in the EG. The mean SUS scores in the EG and TG were 71 ± 5.2 and 74.2 ± 4.8, respectively. [Conclusion] Canoe game-based virtual reality training is an acceptable and effective intervention for improving trunk postural stability, balance, and upper limb motor function in stroke patients.
NASA Astrophysics Data System (ADS)
Ding, Yea-Chung
2010-11-01
In recent years national parks worldwide have introduced online virtual tourism, through which potential visitors can search for tourist information. Most virtual tourism websites are a simulation of an existing location, usually composed of panoramic images, a sequence of hyperlinked still or video images, and/or virtual models of the actual location. As opposed to actual tourism, a virtual tour is typically accessed on a personal computer or an interactive kiosk. Using modern Digital Earth techniques such as high resolution satellite images, precise GPS coordinates and powerful 3D WebGIS, however, it's possible to create more realistic scenic models to present natural terrain and man-made constructions in greater detail. This article explains how to create an online scientific reality tourist guide for the Jinguashi Gold Ecological Park at Jinguashi in northern Taiwan, China. This project uses high-resolution Formosat 2 satellite images and digital aerial images in conjunction with DTM to create a highly realistic simulation of terrain, with the addition of 3DMAX to add man-made constructions and vegetation. Using this 3D Geodatabase model in conjunction with INET 3D WebGIS software, we have found Digital Earth concept can greatly improve and expand the presentation of traditional online virtual tours on the websites.
ERIC Educational Resources Information Center
Keskitalo, Tuulikki
2011-01-01
This research article focuses on virtual reality (VR) and simulation-based training, with a special focus on the pedagogical use of the Virtual Centre of Wellness Campus known as ENVI (Rovaniemi, Finland). In order to clearly understand how teachers perceive teaching and learning in such environments, this research examines the concepts of…
Bol Raap, Goris; Koning, Anton H J; Scohy, Thierry V; ten Harkel, A Derk-Jan; Meijboom, Folkert J; Kappetein, A Pieter; van der Spek, Peter J; Bogers, Ad J J C
2007-02-16
This study was done to investigate the potential additional role of virtual reality, using three-dimensional (3D) echocardiographic holograms, in the postoperative assessment of tricuspid valve function after surgical closure of ventricular septal defect (VSD). 12 data sets from intraoperative epicardial echocardiographic studies in 5 operations (patient age at operation 3 weeks to 4 years and bodyweight at operation 3.8 to 17.2 kg) after surgical closure of VSD were included in the study. The data sets were analysed as two-dimensional (2D) images on the screen of the ultrasound system as well as holograms in an I-space virtual reality (VR) system. The 2D images were assessed for tricuspid valve function. In the I-Space, a 6 degrees-of-freedom controller was used to create the necessary projectory positions and cutting planes in the hologram. The holograms were used for additional assessment of tricuspid valve leaflet mobility. All data sets could be used for 2D as well as holographic analysis. In all data sets the area of interest could be identified. The 2D analysis showed no tricuspid valve stenosis or regurgitation. Leaflet mobility was considered normal. In the virtual reality of the I-Space, all data sets allowed to assess the tricuspid leaflet level in a single holographic representation. In 3 holograms the septal leaflet showed restricted mobility that was not appreciated in the 2D echocardiogram. In 4 data sets the posterior leaflet and the tricuspid papillary apparatus were not completely included. This report shows that dynamic holographic imaging of intraoperative postoperative echocardiographic data regarding tricuspid valve function after VSD closure is feasible. Holographic analysis allows for additional tricuspid valve leaflet mobility analysis. The large size of the probe, in relation to small size of the patient, may preclude a complete data set. At the moment the requirement of an I-Space VR system limits the applicability in virtual reality 3D echocardiography in clinical practice.
True 3D digital holographic tomography for virtual reality applications
NASA Astrophysics Data System (ADS)
Downham, A.; Abeywickrema, U.; Banerjee, P. P.
2017-09-01
Previously, a single CCD camera has been used to record holograms of an object while the object is rotated about a single axis to reconstruct a pseudo-3D image, which does not show detailed depth information from all perspectives. To generate a true 3D image, the object has to be rotated through multiple angles and along multiple axes. In this work, to reconstruct a true 3D image including depth information, a die is rotated along two orthogonal axes, and holograms are recorded using a Mach-Zehnder setup, which are subsequently numerically reconstructed. This allows for the generation of multiple images containing phase (i.e., depth) information. These images, when combined, create a true 3D image with depth information which can be exported to a Microsoft® HoloLens for true 3D virtual reality.
de Carvalho, Marcele Regine; Dias, Thiago Rodrigues de Santana; Duchesne, Monica; Nardi, Antonio Egidio; Appolinario, Jose Carlos
2017-07-09
Several lines of evidence suggest that Virtual Reality (VR) has a potential utility in eating disorders. The objective of this study is to review the literature on the use of VR in bulimia nervosa (BN) and binge eating disorder (BED). Using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement for reporting systematic reviews, we performed a PubMed, Web of Knowledge and SCOPUS search to identify studies employing VR in the assessment and treatment of BN and BED. The following search terms were used: "virtual reality", "eating disorders", "binge eating", and "bulimia nervosa". From the 420 articles identified, 19 were selected, nine investigated VR in assessment and 10 were treatment studies (one case-report, two non-controlled and six randomized controlled trials). The studies using VR in BN and BED are at an early stage. However, considering the available evidence, the use of VR in the assessment of those conditions showed some promise in identifying: (1) how those patients experienced their body image; and (2) environments or specific kinds of foods that may trigger binge-purging cycle. Some studies using VR-based environments associated to cognitive behavioral techniques showed their potential utility in improving motivation for change, self-esteem, body image disturbances and in reducing binge eating and purging behavior.
Haptic feedback in OP:Sense - augmented reality in telemanipulated robotic surgery.
Beyl, T; Nicolai, P; Mönnich, H; Raczkowksy, J; Wörn, H
2012-01-01
In current research, haptic feedback in robot assisted interventions plays an important role. However most approaches to haptic feedback only regard the mapping of the current forces at the surgical instrument to the haptic input devices, whereas surgeons demand a combination of medical imaging and telemanipulated robotic setups. In this paper we describe how this feature is integrated in our robotic research platform OP:Sense. The proposed method allows the automatic transfer of segmented imaging data to the haptic renderer and therefore allows enriching the haptic feedback with virtual fixtures based on imaging data. Anatomical structures are extracted from pre-operative generated medical images or virtual walls are defined by the surgeon inside the imaging data. Combining real forces with virtual fixtures can guide the surgeon to the regions of interest as well as helps to prevent the risk of damage to critical structures inside the patient. We believe that the combination of medical imaging and telemanipulation is a crucial step for the next generation of MIRS-systems.
Jiang, Taoran; Zhu, Ming; Zan, Tao; Gu, Bin; Li, Qingfeng
2017-08-01
In perforator flap transplantation, dissection of the perforator is an important but difficult procedure because of the high variability in vascular anatomy. Preoperative imaging techniques could provide substantial information about vascular anatomy; however, it cannot provide direct guidance for surgeons during the operation. In this study, a navigation system (NS) was established to overlie a vascular map on surgical sites to further provide a direct guide for perforator flap transplantation. The NS was established based on computed tomographic angiography and augmented reality techniques. A virtual vascular map was reconstructed according to computed tomographic angiography data and projected onto real patient images using ARToolKit software. Additionally, a screw-fixation marker holder was created to facilitate registration. With the use of a tracking and display system, we conducted the NS on an animal model and measured the system error on a rapid prototyping model. The NS assistance allowed for correct identification, as well as a safe and precise dissection of the perforator. The mean value of the system error was determined to be 3.474 ± 1.546 mm. Augmented reality-based NS can provide precise navigation information by directly displaying a 3-dimensional individual anatomical virtual model onto the operative field in real time. It will allow rapid identification and safe dissection of a perforator in free flap transplantation surgery.
Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review.
Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M
2015-08-01
Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation settings over the last ten years. The primary objective of this review was to determine the effectiveness of virtual reality on upper limb function and activity after stroke. The impact on secondary outcomes including gait, cognitive function and activities of daily living was also assessed. Randomized and quasi-randomized controlled trials comparing virtual reality with an alternative intervention or no intervention were eligible to be included in the review. The authors searched a number of electronic databases including: the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, clinical trial registers, reference lists, Dissertation Abstracts and contacted key researchers in the field. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. A total of 37 randomized or quasi randomized controlled trials with a total of 1019 participants were included in the review. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardized mean difference [SMD] 0.28, 95% confidence intervals [CI] 0.08 to 0.49) based on 12 studies and significantly more effective than no therapy in improving upper limber function (SMD 0.44 [95% CI 0.15 to 0.73]) based on nine studies. The use of virtual reality also significantly improved activities of daily living function when compared to more conventional therapy approaches (SMD 0.43 [95% CI 0.18 to 0.69]) based on eight studies. While there are a large number of studies assessing the efficacy of virtual reality they tend to be small and many are at risk of bias. While there is evidence to support the use of virtual reality intervention as part of upper limb training programs, more research is required to determine whether it is beneficial in terms of improving lower limb function and gait and cognitive function.
Augmented reality-assisted bypass surgery: embracing minimal invasiveness.
Cabrilo, Ivan; Schaller, Karl; Bijlenga, Philippe
2015-04-01
The overlay of virtual images on the surgical field, defined as augmented reality, has been used for image guidance during various neurosurgical procedures. Although this technology could conceivably address certain inherent problems of extracranial-to-intracranial bypass procedures, this potential has not been explored to date. We evaluate the usefulness of an augmented reality-based setup, which could help in harvesting donor vessels through their precise localization in real-time, in performing tailored craniotomies, and in identifying preoperatively selected recipient vessels for the purpose of anastomosis. Our method was applied to 3 patients with Moya-Moya disease who underwent superficial temporal artery-to-middle cerebral artery anastomoses and 1 patient who underwent an occipital artery-to-posteroinferior cerebellar artery bypass because of a dissecting aneurysm of the vertebral artery. Patients' heads, skulls, and extracranial and intracranial vessels were segmented preoperatively from 3-dimensional image data sets (3-dimensional digital subtraction angiography, angio-magnetic resonance imaging, angio-computed tomography), and injected intraoperatively into the operating microscope's eyepiece for image guidance. In each case, the described setup helped in precisely localizing donor and recipient vessels and in tailoring craniotomies to the injected images. The presented system based on augmented reality can optimize the workflow of extracranial-to-intracranial bypass procedures by providing essential anatomical information, entirely integrated to the surgical field, and help to perform minimally invasive procedures. Copyright © 2015 Elsevier Inc. All rights reserved.
Markerless client-server augmented reality system with natural features
NASA Astrophysics Data System (ADS)
Ning, Shuangning; Sang, Xinzhu; Chen, Duo
2017-10-01
A markerless client-server augmented reality system is presented. In this research, the more extensive and mature virtual reality head-mounted display is adopted to assist the implementation of augmented reality. The viewer is provided an image in front of their eyes with the head-mounted display. The front-facing camera is used to capture video signals into the workstation. The generated virtual scene is merged with the outside world information received from the camera. The integrated video is sent to the helmet display system. The distinguishing feature and novelty is to realize the augmented reality with natural features instead of marker, which address the limitations of the marker, such as only black and white, the inapplicability of different environment conditions, and particularly cannot work when the marker is partially blocked. Further, 3D stereoscopic perception of virtual animation model is achieved. The high-speed and stable socket native communication method is adopted for transmission of the key video stream data, which can reduce the calculation burden of the system.
Ray-based approach to integrated 3D visual communication
NASA Astrophysics Data System (ADS)
Naemura, Takeshi; Harashima, Hiroshi
2001-02-01
For a high sense of reality in the next-generation communications, it is very important to realize three-dimensional (3D) spatial media, instead of existing 2D image media. In order to comprehensively deal with a variety of 3D visual data formats, the authors first introduce the concept of "Integrated 3D Visual Communication," which reflects the necessity of developing a neutral representation method independent of input/output systems. Then, the following discussions are concentrated on the ray-based approach to this concept, in which any visual sensation is considered to be derived from a set of light rays. This approach is a simple and straightforward to the problem of how to represent 3D space, which is an issue shared by various fields including 3D image communications, computer graphics, and virtual reality. This paper mainly presents the several developments in this approach, including some efficient methods of representing ray data, a real-time video-based rendering system, an interactive rendering system based on the integral photography, a concept of virtual object surface for the compression of tremendous amount of data, and a light ray capturing system using a telecentric lens. Experimental results demonstrate the effectiveness of the proposed techniques.
A Discussion of Knowledge Based Design
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Bauer, Steven X. S.
1999-01-01
A discussion of knowledge and Knowledge- Based design as related to the design of aircraft is presented. The paper discusses the perceived problem with existing design studies and introduces the concepts of design and knowledge for a Knowledge- Based design system. A review of several Knowledge-Based design activities is provided. A Virtual Reality, Knowledge-Based system is proposed and reviewed. The feasibility of Virtual Reality to improve the efficiency and effectiveness of aerodynamic and multidisciplinary design, evaluation, and analysis of aircraft through the coupling of virtual reality technology and a Knowledge-Based design system is also reviewed. The final section of the paper discusses future directions for design and the role of Knowledge-Based design.
Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S; Zhou, Shufeng; Huang, Dongfeng
2013-11-05
The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex.
Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S.; Zhou, Shufeng; Huang, Dongfeng
2013-01-01
The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex. PMID:25206611
Virtual reality and telerobotics applications of an Address Recalculation Pipeline
NASA Technical Reports Server (NTRS)
Regan, Matthew; Pose, Ronald
1994-01-01
The technology described in this paper was designed to reduce latency to user interactions in immersive virtual reality environments. It is also ideally suited to telerobotic applications such as interaction with remote robotic manipulators in space or in deep sea operations. in such circumstances the significant latency is observed response to user stimulus which is due to communications delays, and the disturbing jerkiness due to low and unpredictable frame rates on compressed video user feedback or computationally limited virtual worlds, can be masked by our techniques. The user is provided with highly responsive visual feedback independent of communication or computational delays in providing physical video feedback or in rendering virtual world images. Virtual and physical environments can be combined seamlessly using these techniques.
Designing and researching of the virtual display system based on the prism elements
NASA Astrophysics Data System (ADS)
Vasilev, V. N.; Grimm, V. A.; Romanova, G. E.; Smirnov, S. A.; Bakholdin, A. V.; Grishina, N. Y.
2014-05-01
Problems of designing of systems for virtual display systems for augmented reality placed near the observers eye (so called head worn displays) with the light guide prismatic elements are considered. Systems of augmented reality is the complex consists of the image generator (most often it's the microdisplay with the illumination system if the display is not self-luminous), the objective which forms the display image practically in infinity and the combiner which organizes the light splitting so that an observer could see the information of the microdisplay and the surrounding environment as the background at the same time. This work deals with the system with the combiner based on the composite structure of the prism elements. In the work three cases of the prism combiner design are considered and also the results of the modeling with the optical design software are presented. In the model the question of the large pupil zone was analyzed and also the discontinuous character (mosaic structure) of the angular field in transmission of the information from the microdisplay to the observer's eye with the prismatic structure are discussed.
The role of simulation in neurosurgery.
Rehder, Roberta; Abd-El-Barr, Muhammad; Hooten, Kristopher; Weinstock, Peter; Madsen, Joseph R; Cohen, Alan R
2016-01-01
In an era of residency duty-hour restrictions, there has been a recent effort to implement simulation-based training methods in neurosurgery teaching institutions. Several surgical simulators have been developed, ranging from physical models to sophisticated virtual reality systems. To date, there is a paucity of information describing the clinical benefits of existing simulators and the assessment strategies to help implement them into neurosurgical curricula. Here, we present a systematic review of the current models of simulation and discuss the state-of-the-art and future directions for simulation in neurosurgery. Retrospective literature review. Multiple simulators have been developed for neurosurgical training, including those for minimally invasive procedures, vascular, skull base, pediatric, tumor resection, functional neurosurgery, and spine surgery. The pros and cons of existing systems are reviewed. Advances in imaging and computer technology have led to the development of different simulation models to complement traditional surgical training. Sophisticated virtual reality (VR) simulators with haptic feedback and impressive imaging technology have provided novel options for training in neurosurgery. Breakthrough training simulation using 3D printing technology holds promise for future simulation practice, proving high-fidelity patient-specific models to complement residency surgical learning.
Open multi-agent control architecture to support virtual-reality-based man-machine interfaces
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel
2001-10-01
Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.
ERIC Educational Resources Information Center
O'Connor, Eileen A.
2015-01-01
Opening with the history, recent advances, and emerging ways to use avatar-based virtual reality, an instructor who has used virtual environments since 2007 shares how these environments bring more options to community building, teaching, and education. With the open-source movement, where the source code for virtual environments was made…
Subjective visual vertical assessment with mobile virtual reality system.
Ulozienė, Ingrida; Totilienė, Milda; Paulauskas, Andrius; Blažauskas, Tomas; Marozas, Vaidotas; Kaski, Diego; Ulozas, Virgilijus
2017-01-01
The subjective visual vertical (SVV) is a measure of a subject's perceived verticality, and a sensitive test of vestibular dysfunction. Despite this, and consequent upon technical and logistical limitations, SVV has not entered mainstream clinical practice. The aim of the study was to develop a mobile virtual reality based system for SVV test, evaluate the suitability of different controllers and assess the system's usability in practical settings. In this study, we describe a novel virtual reality based system that has been developed to test SVV using integrated software and hardware, and report normative values across healthy population. Participants wore a mobile virtual reality headset in order to observe a 3D stimulus presented across separate conditions - static, dynamic and an immersive real-world ("boat in the sea") SVV tests. The virtual reality environment was controlled by the tester using a Bluetooth connected controllers. Participants controlled the movement of a vertical arrow using either a gesture control armband or a general-purpose gamepad, to indicate perceived verticality. We wanted to compare 2 different methods for object control in the system, determine normal values and compare them with literature data, to evaluate the developed system with the help of the system usability scale questionnaire and evaluate possible virtually induced dizziness with the help of subjective visual analog scale. There were no statistically significant differences in SVV values during static, dynamic and virtual reality stimulus conditions, obtained using the two different controllers and the results are compared to those previously reported in the literature using alternative methodologies. The SUS scores for the system were high, with a median of 82.5 for the Myo controller and of 95.0 for the Gamepad controller, representing a statistically significant difference between the two controllers (P<0.01). The median of virtual reality-induced dizziness for both devices was 0.7. The mobile virtual reality based system for implementation of subjective visual vertical test, is accurate and applicable in the clinical environment. The gamepad-based virtual object control method was preferred by the users. The tests were well tolerated with low dizziness scores in the majority of patients. Copyright © 2018 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Sp. z o.o. All rights reserved.
Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform.
Sucar, Luis Enrique; Orihuela-Espina, Felipe; Velazquez, Roger Luis; Reinkensmeyer, David J; Leder, Ronald; Hernández-Franco, Jorge
2014-05-01
Virtual reality platforms capable of assisting rehabilitation must provide support for rehabilitation principles: promote repetition, task oriented training, appropriate feedback, and a motivating environment. As such, development of these platforms is a complex process which has not yet reached maturity. This paper presents our efforts to contribute to this field, presenting Gesture Therapy, a virtual reality-based platform for rehabilitation of the upper limb. We describe the system architecture and main features of the platform and provide preliminary evidence of the feasibility of the platform in its current status.
Shiri, Shimon; Feintuch, Uri; Lorber-Haddad, Adi; Moreh, Elior; Twito, Dvora; Tuchner-Arieli, Maya; Meiner, Zeev
2012-01-01
To introduce the rationale of a novel virtual reality system based on self-face viewing and mirror visual feedback, and to examine its feasibility as a rehabilitation tool for poststroke patients. A novel motion capture virtual reality system integrating online self-face viewing and mirror visual feedback has been developed for stroke rehabilitation.The system allows the replacement of the impaired arm by a virtual arm. Upon making small movements of the paretic arm, patients view themselves virtually performing healthy full-range movements. A sample of 6 patients in the acute poststroke phase received the virtual reality treatment concomitantly with conservative rehabilitation treatment. Feasibility was assessed during 10 sessions for each participant. All participants succeeded in operating the system, demonstrating its feasibility in terms of adherence and improvement in task performance. Patients' performance within the virtual environment and a set of clinical-functional measures recorded before the virtual reality treatment, at 1 week, and after 3 months indicated neurological status and general functioning improvement. These preliminary results indicate that this newly developed virtual reality system is safe and feasible. Future randomized controlled studies are required to assess whether this system has beneficial effects in terms of enhancing upper limb function and quality of life in poststroke patients.
Virtual reality for stroke rehabilitation.
Laver, Kate E; George, Stacey; Thomas, Susie; Deutsch, Judith E; Crotty, Maria
2011-09-07
Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation. In particular, commercial gaming consoles are being rapidly adopted in clinical settings; however, there is currently little information about their effectiveness. To evaluate the effects of virtual reality and interactive video gaming on upper limb, lower limb and global motor function after stroke. We searched the Cochrane Stroke Group Trials Register (March 2010), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2010, Issue 1), MEDLINE (1950 to March 2010), EMBASE (1980 to March 2010) and seven additional databases. We also searched trials registries, conference proceedings, reference lists and contacted key researchers in the area and virtual reality equipment manufacturers. Randomised and quasi-randomised trials of virtual reality ('an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion') in adults after stroke. The primary outcomes of interest were: upper limb function and activity, gait and balance function and activity and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data and assessed risk of bias. A third review author moderated disagreements when required. The authors contacted all investigators to obtain missing information. We included 19 trials which involved 565 participants. Study sample sizes were generally small and interventions and outcome measures varied, limiting the ability to which studies could be compared. Intervention approaches in the included studies were predominantly designed to improve motor function rather than cognitive function or activity performance. The majority of participants were relatively young and more than one year post stroke. results were statistically significant for arm function (standardised mean difference (SMD) 0.53, 95% confidence intervals (CI) 0.25 to 0.81 based on seven studies with 205 participants). There were no statistically significant effects for grip strength or gait speed. We were unable to determine the effect on global motor function due to insufficient numbers of comparable studies. results were statistically significant for activities of daily living (ADL) outcome (SMD 0.81, 95% CI 0.39 to 1.22 based on three studies with 101 participants); however, we were unable to pool results for cognitive function, participation restriction and quality of life or imaging studies. There were few adverse events reported across studies and those reported were relatively mild. Studies that reported on eligibility rates showed that only 34% (standard deviation (SD) 26, range 17 to 80) of participants screened were recruited. We found limited evidence that the use of virtual reality and interactive video gaming may be beneficial in improving arm function and ADL function when compared with the same dose of conventional therapy. There was insufficient evidence to reach conclusions about the effect of virtual reality and interactive video gaming on grip strength or gait speed. It is unclear at present which characteristics of virtual reality are most important and it is unknown whether effects are sustained in the longer term. Furthermore, there are currently very few studies evaluating the use of commercial gaming consoles (such as the Nintendo Wii).
Production of the next-generation library virtual tour.
Duncan, J M; Roth, L K
2001-10-01
While many libraries offer overviews of their services through their Websites, only a small number of health sciences libraries provide Web-based virtual tours. These tours typically feature photographs of major service areas along with textual descriptions. This article describes the process for planning, producing, and implementing a next-generation virtual tour in which a variety of media elements are integrated: photographic images, 360-degree "virtual reality" views, textual descriptions, and contextual floor plans. Hardware and software tools used in the project are detailed, along with a production timeline and budget, tips for streamlining the process, and techniques for improving production. This paper is intended as a starting guide for other libraries considering an investment in such a project.
Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning
Vorstenbosch, Marc; Kooloos, Jan
2017-01-01
A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F(1) = 5.63 and p = .02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items. PMID:28656109
Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning.
Luursema, Jan-Maarten; Vorstenbosch, Marc; Kooloos, Jan
2017-01-01
A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F (1) = 5.63 and p = .02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items.
Benoit, Michel; Guerchouche, Rachid; Petit, Pierre-David; Chapoulie, Emmanuelle; Manera, Valeria; Chaurasia, Gaurav; Drettakis, George; Robert, Philippe
2015-01-01
Virtual reality (VR) opens up a vast number of possibilities in many domains of therapy. The primary objective of the present study was to evaluate the acceptability for elderly subjects of a VR experience using the image-based rendering virtual environment (IBVE) approach and secondly to test the hypothesis that visual cues using VR may enhance the generation of autobiographical memories. Eighteen healthy volunteers (mean age 68.2 years) presenting memory complaints with a Mini-Mental State Examination score higher than 27 and no history of neuropsychiatric disease were included. Participants were asked to perform an autobiographical fluency task in four conditions. The first condition was a baseline grey screen, the second was a photograph of a well-known location in the participant's home city (FamPhoto), and the last two conditions displayed VR, ie, a familiar image-based virtual environment (FamIBVE) consisting of an image-based representation of a known landmark square in the center of the city of experimentation (Nice) and an unknown image-based virtual environment (UnknoIBVE), which was captured in a public housing neighborhood containing unrecognizable building fronts. After each of the four experimental conditions, participants filled in self-report questionnaires to assess the task acceptability (levels of emotion, motivation, security, fatigue, and familiarity). CyberSickness and Presence questionnaires were also assessed after the two VR conditions. Autobiographical memory was assessed using a verbal fluency task and quality of the recollection was assessed using the "remember/know" procedure. All subjects completed the experiment. Sense of security and fatigue were not significantly different between the conditions with and without VR. The FamPhoto condition yielded a higher emotion score than the other conditions (P<0.05). The CyberSickness questionnaire showed that participants did not experience sickness during the experiment across the VR conditions. VR stimulates autobiographical memory, as demonstrated by the increased total number of responses on the autobiographical fluency task and the increased number of conscious recollections of memories for familiar versus unknown scenes (P<0.01). The study indicates that VR using the FamIBVE system is well tolerated by the elderly. VR can also stimulate recollections of autobiographical memory and convey familiarity of a given scene, which is an essential requirement for use of VR during reminiscence therapy.
Benoit, Michel; Guerchouche, Rachid; Petit, Pierre-David; Chapoulie, Emmanuelle; Manera, Valeria; Chaurasia, Gaurav; Drettakis, George; Robert, Philippe
2015-01-01
Background Virtual reality (VR) opens up a vast number of possibilities in many domains of therapy. The primary objective of the present study was to evaluate the acceptability for elderly subjects of a VR experience using the image-based rendering virtual environment (IBVE) approach and secondly to test the hypothesis that visual cues using VR may enhance the generation of autobiographical memories. Methods Eighteen healthy volunteers (mean age 68.2 years) presenting memory complaints with a Mini-Mental State Examination score higher than 27 and no history of neuropsychiatric disease were included. Participants were asked to perform an autobiographical fluency task in four conditions. The first condition was a baseline grey screen, the second was a photograph of a well-known location in the participant’s home city (FamPhoto), and the last two conditions displayed VR, ie, a familiar image-based virtual environment (FamIBVE) consisting of an image-based representation of a known landmark square in the center of the city of experimentation (Nice) and an unknown image-based virtual environment (UnknoIBVE), which was captured in a public housing neighborhood containing unrecognizable building fronts. After each of the four experimental conditions, participants filled in self-report questionnaires to assess the task acceptability (levels of emotion, motivation, security, fatigue, and familiarity). CyberSickness and Presence questionnaires were also assessed after the two VR conditions. Autobiographical memory was assessed using a verbal fluency task and quality of the recollection was assessed using the “remember/know” procedure. Results All subjects completed the experiment. Sense of security and fatigue were not significantly different between the conditions with and without VR. The FamPhoto condition yielded a higher emotion score than the other conditions (P<0.05). The CyberSickness questionnaire showed that participants did not experience sickness during the experiment across the VR conditions. VR stimulates autobiographical memory, as demonstrated by the increased total number of responses on the autobiographical fluency task and the increased number of conscious recollections of memories for familiar versus unknown scenes (P<0.01). Conclusion The study indicates that VR using the FamIBVE system is well tolerated by the elderly. VR can also stimulate recollections of autobiographical memory and convey familiarity of a given scene, which is an essential requirement for use of VR during reminiscence therapy. PMID:25834437
Manually locating physical and virtual reality objects.
Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G
2014-09-01
In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p < .001) and spent 1.49 times more time (p = .01) targeting virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p < .05) greater than the observed errors for farther virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.
Using Immersive Virtual Reality for Electrical Substation Training
ERIC Educational Resources Information Center
Tanaka, Eduardo H.; Paludo, Juliana A.; Cordeiro, Carlúcio S.; Domingues, Leonardo R.; Gadbem, Edgar V.; Euflausino, Adriana
2015-01-01
Usually, distribution electricians are called upon to solve technical problems found in electrical substations. In this project, we apply problem-based learning to a training program for electricians, with the help of a virtual reality environment that simulates a real substation. Using this virtual substation, users may safely practice maneuvers…
Theoretical Bases for Using Virtual Reality in Education
ERIC Educational Resources Information Center
Chen, Chwen Jen
2009-01-01
This article elaborates on how the technical capabilities of virtual reality support the constructivist learning principles. It introduces VRID, a model for instructional design and development that offers explicit guidance on how to produce an educational virtual environment. The define phase of VRID consists of three main tasks: forming a…
2009-09-01
Environmental Medicine USN United States Navy VAE Virtual Air Environment VACP Visual, Auditory, Cognitive, Psychomotor (demand) VR Virtual Reality ...0 .5 m/s. Another useful approach to capturing leg, trunk, whole body, or movement tasks comes from virtual reality - based training research and...referred to as semi-automated forces (SAF). From: http://www.sedris.org/glossary.htm#C_grp. Constructive Models Abstractions from the reality to
Jensen, Katrine; Ringsted, Charlotte; Hansen, Henrik Jessen; Petersen, René Horsleben; Konge, Lars
2014-06-01
Video-assisted thoracic surgery is gradually replacing conventional open thoracotomy as the method of choice for the treatment of early-stage non-small cell lung cancers, and thoracic surgical trainees must learn and master this technique. Simulation-based training could help trainees overcome the first part of the learning curve, but no virtual-reality simulators for thoracoscopy are commercially available. This study aimed to investigate whether training on a laparoscopic simulator enables trainees to perform a thoracoscopic lobectomy. Twenty-eight surgical residents were randomized to either virtual-reality training on a nephrectomy module or traditional black-box simulator training. After a retention period they performed a thoracoscopic lobectomy on a porcine model and their performance was scored using a previously validated assessment tool. The groups did not differ in age or gender. All participants were able to complete the lobectomy. The performance of the black-box group was significantly faster during the test scenario than the virtual-reality group: 26.6 min (SD 6.7 min) versus 32.7 min (SD 7.5 min). No difference existed between the two groups when comparing bleeding and anatomical and non-anatomical errors. Simulation-based training and targeted instructions enabled the trainees to perform a simulated thoracoscopic lobectomy. Traditional black-box training was more effective than virtual-reality laparoscopy training. Thus, a dedicated simulator for thoracoscopy should be available before establishing systematic virtual-reality training programs for trainees in thoracic surgery.
Peruzzi, Agnese; Zarbo, Ignazio Roberto; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat
2017-07-01
In this single blind randomized controlled trial, we examined the effect of a virtual reality-based training on gait of people with multiple sclerosis. Twenty-five individuals with multiple sclerosis with mild to moderate disability were randomly assigned to either the control group (n = 11) or the experimental group (n = 14). The subjects in the control group received treadmill training. Subjects in the experimental group received virtual reality based treadmill training. Clinical measures and gait parameters were evaluated. Subjects in both the groups significantly improved the walking endurance and speed, cadence and stride length, lower limb joint ranges of motion and powers, during single and dual task gait. Moreover, subjects in the experimental group also improved balance, as indicated by the results of the clinical motor tests (p < 0.05). Between-group comparisons revealed that the experimental group improved significantly more than control group in hip range of motion and hip generated power at terminal stance at post-training. Our results support the perceived benefits of training programs that incorporate virtual reality to improve gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.
Manera, Valeria; Chapoulie, Emmanuelle; Bourgeois, Jérémy; Guerchouche, Rachid; David, Renaud; Ondrej, Jan; Drettakis, George; Robert, Philippe
2016-01-01
Virtual Reality (VR) has emerged as a promising tool in many domains of therapy and rehabilitation, and has recently attracted the attention of researchers and clinicians working with elderly people with MCI, Alzheimer’s disease and related disorders. Here we present a study testing the feasibility of using highly realistic image-based rendered VR with patients with MCI and dementia. We designed an attentional task to train selective and sustained attention, and we tested a VR and a paper version of this task in a single-session within-subjects design. Results showed that participants with MCI and dementia reported to be highly satisfied and interested in the task, and they reported high feelings of security, low discomfort, anxiety and fatigue. In addition, participants reported a preference for the VR condition compared to the paper condition, even if the task was more difficult. Interestingly, apathetic participants showed a preference for the VR condition stronger than that of non-apathetic participants. These findings suggest that VR-based training can be considered as an interesting tool to improve adherence to cognitive training in elderly people with cognitive impairment. PMID:26990298
Palma, Gisele Carla Dos Santos; Freitas, Tatiana Beline; Bonuzzi, Giordano Márcio Gatinho; Soares, Marcos Antonio Arlindo; Leite, Paulo Henrique Wong; Mazzini, Natália Araújo; Almeida, Murilo Ruas Groschitz; Pompeu, José Eduardo; Torriani-Pasin, Camila
2017-05-01
This review determines the effects of virtual reality interventions for stroke subjects based on the International Classification of Functioning, Disability,and Health (ICF) framework. Virtual reality is a promising tool for therapy for stroke rehabilitation, but the effects of virtual reality interventions on post-stroke patients based on the specific ICF domains (Body Structures, Body Functions, Activity, and Participation) have not been investigated. A systematic review was conducted, including trials with adults with a clinical diagnosis of a chronic, subacute, or acute stroke. Eligible trials had to include studies with an intervention protocol and follow-up, with a focus on upper limbs and/or lower limbs and/or balance. The Physiotherapy Evidence Database (PEDro) was used to assess the methodological quality of randomized controlled trials. Each trial was separated according to methodological quality into a high-quality trial (PEDro ≥ 6) and a low-quality trial (PEDro ≤ 6). Only high-quality trials were analyzed specifically based on the outcome of these trials. In total, 54 trials involving 1811 participants were included. Of the papers included and considered high quality, 14 trials evaluated areas of the Body Structures component, 20 trials of the Body Functions domain, 17 trials of the Activity component, and 8 trials of the Participation domain. In relation to ICF Part 2, four trials evaluated areas of the Personal Factors component and one trial evaluated domains of the Environmental Factors component. The effects of virtual reality on stroke rehabilitation based on the ICF framework are positive in Body Function and Body Structure. However, the results in the domains Activity and Participation are inconclusive. More high-quality clinical trials are needed to confirm the effectiveness of virtual reality in the domains of Activity and Participation.
A Feasibility Study of Virtual Reality-Based Coping Skills Training for Nicotine Dependence
ERIC Educational Resources Information Center
Bordnick, Patrick S.; Traylor, Amy C.; Carter, Brian L.; Graap, Ken M.
2012-01-01
Objective: Virtual reality (VR)-based cue reactivity has been successfully used for the assessment of drug craving. Going beyond assessment of cue reactivity, a novel VR-based treatment approach for smoking cessation was developed and tested for feasibility. Method: In a randomized experiment, 10-week treatment feasibility trial, 46…
A computer-based training system combining virtual reality and multimedia
NASA Technical Reports Server (NTRS)
Stansfield, Sharon A.
1993-01-01
Training new users of complex machines is often an expensive and time-consuming process. This is particularly true for special purpose systems, such as those frequently encountered in DOE applications. This paper presents a computer-based training system intended as a partial solution to this problem. The system extends the basic virtual reality (VR) training paradigm by adding a multimedia component which may be accessed during interaction with the virtual environment. The 3D model used to create the virtual reality is also used as the primary navigation tool through the associated multimedia. This method exploits the natural mapping between a virtual world and the real world that it represents to provide a more intuitive way for the student to interact with all forms of information about the system.
Vidal, Victoria L; Ohaeri, Beatrice M; John, Pamela; Helen, Delles
2013-01-01
This quasi-experimental study, with a control group and experimental group, compares the effectiveness of virtual reality simulators on developing phlebotomy skills of nursing students with the effectiveness of traditional methods of teaching. Performance of actual phlebotomy on a live client was assessed after training, using a standardized form. Findings showed that students who were exposed to the virtual reality simulator performed better in the following performance metrics: pain factor, hematoma formation, and number of reinsertions. This study confirms that the use of the virtual reality-based system to supplement the traditional method may be the optimal program for training.
A telescope with augmented reality functions
NASA Astrophysics Data System (ADS)
Hou, Qichao; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian
2016-10-01
This study introduces a telescope with virtual reality (VR) and augmented reality (AR) functions. In this telescope, information on the micro-display screen is integrated to the reticule of telescope through a beam splitter and is then received by the observer. The design and analysis of telescope optical system with AR and VR ability is accomplished and the opto-mechanical structure is designed. Finally, a proof-of-concept prototype is fabricated and demonstrated. The telescope has an exit pupil diameter of 6 mm at an eye relief of 19 mm, 6° field of view, 5 to 8 times visual magnification , and a 30° field of view of the virtual image.
Sense of presence and anxiety during virtual social interactions between a human and virtual humans.
Morina, Nexhmedin; Brinkman, Willem-Paul; Hartanto, Dwi; Emmelkamp, Paul M G
2014-01-01
Virtual reality exposure therapy (VRET) has been shown to be effective in treatment of anxiety disorders. Yet, there is lack of research on the extent to which interaction between the individual and virtual humans can be successfully implanted to increase levels of anxiety for therapeutic purposes. This proof-of-concept pilot study aimed at examining levels of the sense of presence and anxiety during exposure to virtual environments involving social interaction with virtual humans and using different virtual reality displays. A non-clinical sample of 38 participants was randomly assigned to either a head-mounted display (HMD) with motion tracker and sterescopic view condition or a one-screen projection-based virtual reality display condition. Participants in both conditions engaged in free speech dialogues with virtual humans controlled by research assistants. It was hypothesized that exposure to virtual social interactions will elicit moderate levels of sense of presence and anxiety in both groups. Further it was expected that participants in the HMD condition will report higher scores of sense of presence and anxiety than participants in the one-screen projection-based display condition. Results revealed that in both conditions virtual social interactions were associated with moderate levels of sense of presence and anxiety. Additionally, participants in the HMD condition reported significantly higher levels of presence than those in the one-screen projection-based display condition (p = .001). However, contrary to the expectations neither the average level of anxiety nor the highest level of anxiety during exposure to social virtual environments differed between the groups (p = .97 and p = .75, respectively). The findings suggest that virtual social interactions can be successfully applied in VRET to enhance sense of presence and anxiety. Furthermore, our results indicate that one-screen projection-based displays can successfully activate levels of anxiety in social virtual environments. The outcome can prove helpful in using low-cost projection-based virtual reality environments for treating individuals with social phobia.
The 'mad scientists': psychoanalysis, dream and virtual reality.
Leclaire, Marie
2003-04-01
The author explores the concept of reality-testing as a means of assessing the relationship with reality that prevails in dream and in virtual reality. Based on a model developed by Jean Laplanche, she compares these activities in detail in order to determine their respective independence from the function of reality-testing. By carefully examining the concept of hallucination in the writings of Freud and Daniel Dennett, the author seeks to pinpoint the specific modalities of interaction between perceptions, ideas, wishes and actions that converge in the 'belief' and in the 'sense of reality'. The paper's main thesis consists of the distinction that it draws between immediacy-testing and reality-testing, with the further argument that this distinction not only dissipates the conceptual vagueness that generally surrounds the latter of the two concepts but also that it promotes a more precise analysis of the function of reality in dream and in virtual reality.
Meldrum, Dara; Herdman, Susan; Vance, Roisin; Murray, Deirdre; Malone, Kareena; Duffy, Douglas; Glennon, Aine; McConn-Walsh, Rory
2015-07-01
To compare the effectiveness of virtual reality-based balance exercises to conventional balance exercises during vestibular rehabilitation in patients with unilateral peripheral vestibular loss (UVL). Assessor-blind, randomized controlled trial. Two acute care university teaching hospitals. Patients with UVL (N=71) who had dizziness/vertigo, and gait and balance impairment. Patients with UVL were randomly assigned to receive 6 weeks of either conventional (n=36) or virtual reality-based (n=35) balance exercises during vestibular rehabilitation. The virtual reality-based group received an off-the-shelf virtual reality gaming system for home exercise, and the conventional group received a foam balance mat. Treatment comprised weekly visits to a physiotherapist and a daily home exercise program. The primary outcome was self-preferred gait speed. Secondary outcomes included other gait parameters and tasks, Sensory Organization Test (SOT), dynamic visual acuity, Hospital Anxiety and Depression Scale, Vestibular Rehabilitation Benefits Questionnaire, and Activities Balance Confidence Questionnaire. The subjective experience of vestibular rehabilitation was measured with a questionnaire. Both groups improved, but there were no significant differences in gait speed between the groups postintervention (mean difference, -.03m/s; 95% confidence interval [CI], -.09 to .02m/s). There were also no significant differences between the groups in SOT scores (mean difference, .82%; 95% CI, -5.00% to 6.63%) or on any of the other secondary outcomes (P>.05). In both groups, adherence to exercise was high (∼77%), but the virtual reality-based group reported significantly more enjoyment (P=.001), less difficulty with (P=.009) and less tiredness after (P=.03) balance exercises. At 6 months, there were no significant between-group differences in physical outcomes. Virtual reality-based balance exercises performed during vestibular rehabilitation were not superior to conventional balance exercises during vestibular rehabilitation but may provide a more enjoyable method of retraining balance after unilateral peripheral vestibular loss. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.
ERIC Educational Resources Information Center
Bell, John T.; Fogler, H. Scott
1996-01-01
A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in…
A DBR Framework for Designing Mobile Virtual Reality Learning Environments
ERIC Educational Resources Information Center
Cochrane, Thomas Donald; Cook, Stuart; Aiello, Stephen; Christie, Duncan; Sinfield, David; Steagall, Marcus; Aguayo, Claudio
2017-01-01
This paper proposes a design based research (DBR) framework for designing mobile virtual reality learning environments. The application of the framework is illustrated by two design-based research projects that aim to develop more authentic educational experiences and learner-centred pedagogies in higher education. The projects highlight the first…
Virtual Reality: Teaching Tool of the Twenty-First Century?
ERIC Educational Resources Information Center
Hoffman, Helene; Vu, Dzung
1997-01-01
Virtual reality-based procedural and surgical simulations promise to revolutionize medical training. A wide range of simulations representing diverse content areas and varied implementation strategies are under development or in early use. The new systems will make broad-based training experiences available for students at all levels without risks…
Virtual-Reality-Based Social Interaction Training for Children with High-Functioning Autism
ERIC Educational Resources Information Center
Ke, Fengfeng; Im, Tami
2013-01-01
Employing the multiple-baseline across-subjects design, the authors examined the implementation and potential effect of a virtual-reality-based social interaction program on the interaction and communication performance of children with high functioning autism. The data were collected via behavior observation and analysis, questionnaires, and…
ERIC Educational Resources Information Center
Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan
2015-01-01
Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components…
Chalil Madathil, Kapil; Greenstein, Joel S
2017-11-01
Collaborative virtual reality-based systems have integrated high fidelity voice-based communication, immersive audio and screen-sharing tools into virtual environments. Such three-dimensional collaborative virtual environments can mirror the collaboration among usability test participants and facilitators when they are physically collocated, potentially enabling moderated usability tests to be conducted effectively when the facilitator and participant are located in different places. We developed a virtual collaborative three-dimensional remote moderated usability testing laboratory and employed it in a controlled study to evaluate the effectiveness of moderated usability testing in a collaborative virtual reality-based environment with two other moderated usability testing methods: the traditional lab approach and Cisco WebEx, a web-based conferencing and screen sharing approach. Using a mixed methods experimental design, 36 test participants and 12 test facilitators were asked to complete representative tasks on a simulated online shopping website. The dependent variables included the time taken to complete the tasks; the usability defects identified and their severity; and the subjective ratings on the workload index, presence and satisfaction questionnaires. Remote moderated usability testing methodology using a collaborative virtual reality system performed similarly in terms of the total number of defects identified, the number of high severity defects identified and the time taken to complete the tasks with the other two methodologies. The overall workload experienced by the test participants and facilitators was the least with the traditional lab condition. No significant differences were identified for the workload experienced with the virtual reality and the WebEx conditions. However, test participants experienced greater involvement and a more immersive experience in the virtual environment than in the WebEx condition. The ratings for the virtual environment condition were not significantly different from those for the traditional lab condition. The results of this study suggest that participants were productive and enjoyed the virtual lab condition, indicating the potential of a virtual world based approach as an alternative to conventional approaches for synchronous usability testing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Virtual reality adaptive stimulation of limbic networks in the mental readiness training.
Cosić, Kresimir; Popović, Sinisa; Kostović, Ivica; Judas, Milos
2010-01-01
A significant proportion of severe psychological problems in recent large-scale peacekeeping operations underscores the importance of effective methods for strengthening the stress resilience. Virtual reality (VR) adaptive stimulation, based on the estimation of the participant's emotional state from physiological signals, may enhance the mental readiness training (MRT). Understanding neurobiological mechanisms by which the MRT based on VR adaptive stimulation can affect the resilience to stress is important for practical application in the stress resilience management. After the delivery of a traumatic audio-visual stimulus in the VR, the cascade of events occurs in the brain, which evokes various physiological manifestations. In addition to the "limbic" emotional and visceral brain circuitry, other large-scale sensory, cognitive, and memory brain networks participate with less known impact in this physiological response. The MRT based on VR adaptive stimulation may strengthen the stress resilience through targeted brain-body interactions. Integrated interdisciplinary efforts, which would integrate the brain imaging and the proposed approach, may contribute to clarifying the neurobiological foundation of the resilience to stress.
Internet virtual studio: low-cost augmented reality system for WebTV
NASA Astrophysics Data System (ADS)
Sitnik, Robert; Pasko, Slawomir; Karaszewski, Maciej; Witkowski, Marcin
2008-02-01
In this paper a concept of a Internet Virtual Studio as a modern system for production of news, entertainment, educational and training material is proposed. This system is based on virtual studio technology and integrated with multimedia data base. Its was developed for web television content production. In successive subentries the general system architecture, as well as the architecture of modules one by one is discussed. The authors describe each module by presentation of a brief information about work principles and technical limitations. The presentation of modules is strictly connected with a presentation of their capabilities. Results produced by each of them are shown in the form of exemplary images. Finally, exemplary short production is presented and discussed.
Virtual reality and robotics for stroke rehabilitation: where do we go from here?
Wade, Eric; Winstein, Carolee J
2011-01-01
Promoting functional recovery after stroke requires collaborative and innovative approaches to neurorehabilitation research. Task-oriented training (TOT) approaches that include challenging, adaptable, and meaningful activities have led to successful outcomes in several large-scale multisite definitive trials. This, along with recent technological advances of virtual reality and robotics, provides a fertile environment for furthering clinical research in neurorehabilitation. Both virtual reality and robotics make use of multimodal sensory interfaces to affect human behavior. In the therapeutic setting, these systems can be used to quantitatively monitor, manipulate, and augment the users' interaction with their environment, with the goal of promoting functional recovery. This article describes recent advances in virtual reality and robotics and the synergy with best clinical practice. Additionally, we describe the promise shown for automated assessments and in-home activity-based interventions. Finally, we propose a broader approach to ensuring that technology-based assessment and intervention complement evidence-based practice and maintain a patient-centered perspective.
Real-time fusion of endoscopic views with dynamic 3-D cardiac images: a phantom study.
Szpala, Stanislaw; Wierzbicki, Marcin; Guiraudon, Gerard; Peters, Terry M
2005-09-01
Minimally invasive robotically assisted cardiac surgical systems currently do not routinely employ 3-D image guidance. However, preoperative magnetic resonance and computed tomography (CT) images have the potential to be used in this role, if appropriately registered with the patient anatomy and animated synchronously with the motion of the actual heart. This paper discusses the fusion of optical images of a beating heart phantom obtained from an optically tracked endoscope, with volumetric images of the phantom created from a dynamic CT dataset. High quality preoperative dynamic CT images are created by first extracting the motion parameters of the heart from the series of temporal frames, and then applying this information to animate a high-quality heart image acquired at end systole. Temporal synchronization of the endoscopic and CT model is achieved by selecting the appropriate CT image from the dynamic set, based on an electrocardiographic trigger signal. The spatial error between the optical and virtual images is 1.4 +/- 1.1 mm, while the time discrepancy is typically 50-100 ms. Index Terms-Image guidance, image warping, minimally invasive cardiac surgery, virtual endoscopy, virtual reality.
Gokeler, Alli; Bisschop, Marsha; Myer, Gregory D; Benjaminse, Anne; Dijkstra, Pieter U; van Keeken, Helco G; van Raay, Jos J A M; Burgerhof, Johannes G M; Otten, Egbert
2016-07-01
The purpose of this study was to evaluate the influence of immersion in a virtual reality environment on knee biomechanics in patients after ACL reconstruction (ACLR). It was hypothesized that virtual reality techniques aimed to change attentional focus would influence altered knee flexion angle, knee extension moment and peak vertical ground reaction force (vGRF) in patients following ACLR. Twenty athletes following ACLR and 20 healthy controls (CTRL) performed a step-down task in both a non-virtual reality environment and a virtual reality environment displaying a pedestrian traffic scene. A motion analysis system and force plates were used to measure kinematics and kinetics during a step-down task to analyse each single-leg landing. A significant main effect was found for environment for knee flexion excursion (P = n.s.). Significant interaction differences were found between environment and groups for vGRF (P = 0.004), knee moment (P < 0.001), knee angle at peak vGRF (P = 0.01) and knee flexion excursion (P = 0.03). There was larger effect of virtual reality environment on knee biomechanics in patients after ACLR compared with controls. Patients after ACLR immersed in virtual reality environment demonstrated knee joint biomechanics that approximate those of CTRL. The results of this study indicate that a realistic virtual reality scenario may distract patients after ACLR from conscious motor control. Application of clinically available technology may aid in current rehabilitation programmes to target altered movement patterns after ACLR. Diagnostic study, Level III.
Virtual reality training in laparoscopic surgery: A systematic review & meta-analysis.
Alaker, Medhat; Wynn, Greg R; Arulampalam, Tan
2016-05-01
Laparoscopic surgery requires a different and sometimes more complex skill set than does open surgery. Shortened working hours, less training times, and patient safety issues necessitates that these skills need to be acquired outside the operating room. Virtual reality simulation in laparoscopic surgery is a growing field, and many studies have been published to determine its effectiveness. This systematic review and meta-analysis aims to evaluate virtual reality simulation in laparoscopic abdominal surgery in comparison to other simulation models and to no training. A systematic literature search was carried out until January 2014 in full adherence to PRISMA guidelines. All randomised controlled studies comparing virtual reality training to other models of training or to no training were included. Only studies utilizing objective and validated assessment tools were included. Thirty one randomised controlled trials that compare virtual reality training to other models of training or to no training were included. The results of the meta-analysis showed that virtual reality simulation is significantly more effective than video trainers, and at least as good as box trainers. The use of Proficiency-based VR training, under supervision with prompt instructions and feedback, and the use of haptic feedback, has proven to be the most effective way of delivering the virtual reality training. The incorporation of virtual reality training into surgical training curricula is now necessary. A unified platform of training needs to be established. Further studies to assess the impact on patient outcomes and on hospital costs are necessary. (PROSPERO Registration number: CRD42014010030). Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Pantelidis, Veronica S.
2009-01-01
Many studies have been conducted on the use of virtual reality in education and training. This article lists examples of such research. Reasons to use virtual reality are discussed. Advantages and disadvantages of using virtual reality are presented, as well as suggestions on when to use and when not to use virtual reality. A model that can be…
Development of a low-cost virtual reality workstation for training and education
NASA Technical Reports Server (NTRS)
Phillips, James A.
1996-01-01
Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) it involves 3-dimensional computer graphics; (2) it includes real-time feedback and response to user actions; and (3) it must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, but the high cost of VR technology has limited its practical application to fields with big budgets, such as military combat simulation, commercial pilot training, and certain projects within the space program. However, in the last year there has been a revolution in the cost of VR technology. The speed of inexpensive personal computers has increased dramatically, especially with the introduction of the Pentium processor and the PCI bus for IBM-compatibles, and the cost of high-quality virtual reality peripherals has plummeted. The result is that many public schools, colleges, and universities can afford a PC-based workstation capable of running immersive virtual reality applications. My goal this summer was to assemble and evaluate such a system.
[Virtual reality simulation training in gynecology: review and perspectives].
Ricard-Gauthier, Dominique; Popescu, Silvia; Benmohamed, Naida; Petignat, Patrick; Dubuisson, Jean
2016-10-26
Laparoscopic simulation has rapidly become an important tool for learning and acquiring technical skills in surgery. It is based on two different complementary pedagogic tools : the box model trainer and the virtual reality simulator. The virtual reality simulator has shown its efficiency by improving surgical skills, decreasing operating time, improving economy of movements and improving self-confidence. The main objective of this tool is the opportunity to easily organize a regular, structured and uniformed training program enabling an automated individualized feedback.
Park, Jin-Hyuck; Park, Ji-Hyuk
2016-03-01
[Purpose] The purpose of this study was to investigate the effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis. [Subjects] The subjects were chronic stroke patients with hemiparesis. [Methods] Thirty subjects were randomly assigned to either the control group or experimental group. All subjects received 20 sessions (5 days in a week) of virtual reality movement therapy using the Nintendo Wii. In addition to Wii-based virtual reality movement therapy, experimental group subjects performed mental practice consisting of 5 minutes of relaxation, Wii games imagination, and normalization phases before the beginning of Wii games. To compare the two groups, the upper extremity subtest of the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log were performed. [Results] Both groups showed statistically significant improvement in the Fugl-Meyer Assessment, Box and Block Test, and quality of the movement subscale of Motor Activity Log after the interventions. Also, there were significant differences in the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log between the two groups. [Conclusion] Game-based virtual reality movement therapy alone may be helpful to improve functional recovery of the upper extremity, but the addition of MP produces a lager improvement.
Feedback from video for virtual reality Navigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsap, L V
2000-10-27
Important preconditions for wide acceptance of virtual reality (VR) systems include their comfort, ease and naturalness to use. Most existing trackers super from discomfort-related issues. For example, body-based trackers (hand controllers, joysticks, helmet attachments, etc.) restrict spontaneity and naturalness of motion, while ground-based devices (e.g., hand controllers) limit the workspace by literally binding an operator to the ground. There are similar problems with controls. This paper describes using real-time video with registered depth information (from a commercially available camera) for virtual reality navigation. Camera-based setup can replace cumbersome trackers. The method includes selective depth processing for increased speed, and amore » robust skin-color segmentation for accounting illumination variations.« less
Applied virtual reality at the Research Triangle Institute
NASA Technical Reports Server (NTRS)
Montoya, R. Jorge
1994-01-01
Virtual Reality (VR) is a way for humans to use computers in visualizing, manipulating and interacting with large geometric data bases. This paper describes a VR infrastructure and its application to marketing, modeling, architectural walk through, and training problems. VR integration techniques used in these applications are based on a uniform approach which promotes portability and reusability of developed modules. For each problem, a 3D object data base is created using data captured by hand or electronically. The object's realism is enhanced through either procedural or photo textures. The virtual environment is created and populated with the data base using software tools which also support interactions with and immersivity in the environment. These capabilities are augmented by other sensory channels such as voice recognition, 3D sound, and tracking. Four applications are presented: a virtual furniture showroom, virtual reality models of the North Carolina Global TransPark, a walk through the Dresden Fraunenkirche, and the maintenance training simulator for the National Guard.
Real-time 3D image reconstruction guidance in liver resection surgery
Nicolau, Stephane; Pessaux, Patrick; Mutter, Didier; Marescaux, Jacques
2014-01-01
Background Minimally invasive surgery represents one of the main evolutions of surgical techniques. However, minimally invasive surgery adds difficulty that can be reduced through computer technology. Methods From a patient’s medical image [US, computed tomography (CT) or MRI], we have developed an Augmented Reality (AR) system that increases the surgeon’s intraoperative vision by providing a virtual transparency of the patient. AR is based on two major processes: 3D modeling and visualization of anatomical or pathological structures appearing in the medical image, and the registration of this visualization onto the real patient. We have thus developed a new online service, named Visible Patient, providing efficient 3D modeling of patients. We have then developed several 3D visualization and surgical planning software tools to combine direct volume rendering and surface rendering. Finally, we have developed two registration techniques, one interactive and one automatic providing intraoperative augmented reality view. Results From January 2009 to June 2013, 769 clinical cases have been modeled by the Visible Patient service. Moreover, three clinical validations have been realized demonstrating the accuracy of 3D models and their great benefit, potentially increasing surgical eligibility in liver surgery (20% of cases). From these 3D models, more than 50 interactive AR-assisted surgical procedures have been realized illustrating the potential clinical benefit of such assistance to gain safety, but also current limits that automatic augmented reality will overcome. Conclusions Virtual patient modeling should be mandatory for certain interventions that have now to be defined, such as liver surgery. Augmented reality is clearly the next step of the new surgical instrumentation but remains currently limited due to the complexity of organ deformations during surgery. Intraoperative medical imaging used in new generation of automated augmented reality should solve this issue thanks to the development of Hybrid OR. PMID:24812598
Human-machine interface for a VR-based medical imaging environment
NASA Astrophysics Data System (ADS)
Krapichler, Christian; Haubner, Michael; Loesch, Andreas; Lang, Manfred K.; Englmeier, Karl-Hans
1997-05-01
Modern 3D scanning techniques like magnetic resonance imaging (MRI) or computed tomography (CT) produce high- quality images of the human anatomy. Virtual environments open new ways to display and to analyze those tomograms. Compared with today's inspection of 2D image sequences, physicians are empowered to recognize spatial coherencies and examine pathological regions more facile, diagnosis and therapy planning can be accelerated. For that purpose a powerful human-machine interface is required, which offers a variety of tools and features to enable both exploration and manipulation of the 3D data. Man-machine communication has to be intuitive and efficacious to avoid long accustoming times and to enhance familiarity with and acceptance of the interface. Hence, interaction capabilities in virtual worlds should be comparable to those in the real work to allow utilization of our natural experiences. In this paper the integration of hand gestures and visual focus, two important aspects in modern human-computer interaction, into a medical imaging environment is shown. With the presented human- machine interface, including virtual reality displaying and interaction techniques, radiologists can be supported in their work. Further, virtual environments can even alleviate communication between specialists from different fields or in educational and training applications.
Klapan, Ivica; Vranjes, Zeljko; Prgomet, Drago; Lukinović, Juraj
2008-03-01
The real-time requirement means that the simulation should be able to follow the actions of the user that may be moving in the virtual environment. The computer system should also store in its memory a three-dimensional (3D) model of the virtual environment. In that case a real-time virtual reality system will update the 3D graphic visualization as the user moves, so that up-to-date visualization is always shown on the computer screen. Upon completion of the tele-operation, the surgeon compares the preoperative and postoperative images and models of the operative field, and studies video records of the procedure itself Using intraoperative records, animated images of the real tele-procedure performed can be designed. Virtual surgery offers the possibility of preoperative planning in rhinology. The intraoperative use of computer in real time requires development of appropriate hardware and software to connect medical instrumentarium with the computer and to operate the computer by thus connected instrumentarium and sophisticated multimedia interfaces.
Image-Based Techniques for Digitizing Environments and Artifacts
2003-01-01
renderings in Fig. 7, and Maya Martinez arranged for the use of the cultural ar- tifacts used in this work. This work has been funded by Interval...Electronic Imaging and Computer Graphics in Mu- seum and Archaeology , pages 199–209, 1996. [3] R. Baribeau, M. Rioux, and G. Godin. Color reflectance...artifacts. In Proc. 2nd Inter- national Symposium on Virtual Reality, Archaeology , and Cultural Heritage (VAST 2001), pages 333–342, December 2001. [12
Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training.
Cohen, Alan R; Lohani, Subash; Manjila, Sunil; Natsupakpong, Suriya; Brown, Nathan; Cavusoglu, M Cenk
2013-08-01
Virtual reality simulation is a promising alternative to training surgical residents outside the operating room. It is also a useful aide to anatomic study, residency training, surgical rehearsal, credentialing, and recertification. Surgical simulation is based on a virtual reality with varying degrees of immersion and realism. Simulators provide a no-risk environment for harmless and repeatable practice. Virtual reality has three main components of simulation: graphics/volume rendering, model behavior/tissue deformation, and haptic feedback. The challenge of accurately simulating the forces and tactile sensations experienced in neurosurgery limits the sophistication of a virtual simulator. The limited haptic feedback available in minimally invasive neurosurgery makes it a favorable subject for simulation. Virtual simulators with realistic graphics and force feedback have been developed for ventriculostomy, intraventricular surgery, and transsphenoidal pituitary surgery, thus allowing preoperative study of the individual anatomy and increasing the safety of the procedure. The authors also present experiences with their own virtual simulation of endoscopic third ventriculostomy.
Soh, Jung; Turinsky, Andrei L; Trinh, Quang M; Chang, Jasmine; Sabhaney, Ajay; Dong, Xiaoli; Gordon, Paul Mk; Janzen, Ryan Pw; Hau, David; Xia, Jianguo; Wishart, David S; Sensen, Christoph W
2009-01-01
We have developed a computational framework for spatiotemporal integration of molecular and anatomical datasets in a virtual reality environment. Using two case studies involving gene expression data and pharmacokinetic data, respectively, we demonstrate how existing knowledge bases for molecular data can be semantically mapped onto a standardized anatomical context of human body. Our data mapping methodology uses ontological representations of heterogeneous biomedical datasets and an ontology reasoner to create complex semantic descriptions of biomedical processes. This framework provides a means to systematically combine an increasing amount of biomedical imaging and numerical data into spatiotemporally coherent graphical representations. Our work enables medical researchers with different expertise to simulate complex phenomena visually and to develop insights through the use of shared data, thus paving the way for pathological inference, developmental pattern discovery and biomedical hypothesis testing.
Reality check: the role of realism in stress reduction using media technology.
de Kort, Y A W; Ijsselsteijn, W A
2006-04-01
There is a growing interest in the use of virtual and other mediated environments for therapeutic purposes. However, in the domain of restorative environments, virtual reality (VR) technology has hardly been used. Here the tendency has been to use mediated real environments, striving for maximum visual realism. This use of photographic material is mainly based on research in aesthetics judgments that has demonstrated the validity of this type of simulations as representations of real environments. Thus, restoration therapy is developing under the untested assumption that photorealistic images have the optimal level of realism, while in therapeutic applications 'experiential realism' seems to be the key rather than visual realism. The present paper discusses this contrast and briefly describes data of three studies aimed at exploring the importance and meaning of realism in the context of restorative environments.
Ogourtsova, Tatiana; Archambault, Philippe S; Lamontagne, Anouk
2017-11-07
Hemineglect, defined as a failure to attend to the contralesional side of space, is a prevalent and disabling post-stroke deficit. Conventional hemineglect assessments lack sensitivity as they contain mainly non-functional tasks performed in near-extrapersonal space, using static, two-dimensional methods. This is of concern given that hemineglect is a strong predictor for functional deterioration, limited post-stroke recovery, and difficulty in community reintegration. With the emerging field of virtual reality, several virtual tools have been proposed and have reported better sensitivity in neglect-related deficits detection than conventional methods. However, these and future virtual reality-based tools are yet to be implemented in clinical practice. The present study aimed to explore the barriers/facilitators perceived by clinicians in the use of virtual reality for hemineglect assessment; and to identify features of an optimal virtual assessment. A qualitative descriptive process, in the form of focus groups, self-administered questionnaire and individual interviews was used. Two focus groups (n = 11 clinicians) were conducted and experts in the field (n = 3) were individually interviewed. Several barriers and facilitators, including personal, institutional, client suitability, and equipment factors, were identified. Clinicians and experts in the field reported numerous features for the virtual tool optimization. Factors identified through this study lay the foundation for the development of a knowledge translation initiative towards an implementation of a virtual assessment for hemineglect. Addressing the identified barriers/facilitators during implementation and incorporating the optimal features in the design of the virtual assessment could assist and promote its eventual adoption in clinical settings. Implications for rehabilitation A multimodal and active knowledge translation intervention built on the presently identified modifiable factors is suggested to be implemented to support the clinical integration of a virtual reality-based assessment for post-stroke hemineglect. To amplify application and usefulness of a virtual-reality based tool in the assessment of post-stroke hemineglect, optimal features identified in the present study should be incorporated in the design of such technology.
Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI.
Hoffman, Hunter G; Richards, Todd L; Coda, Barbara; Bills, Aric R; Blough, David; Richards, Anne L; Sharar, Sam R
2004-06-07
This study investigated the neural correlates of virtual reality analgesia. Virtual reality significantly reduced subjective pain ratings (i.e. analgesia). Using fMRI, pain-related brain activity was measured for each participant during conditions of no virtual reality and during virtual reality (order randomized). As predicted, virtual reality significantly reduced pain-related brain activity in all five regions of interest; the anterior cingulate cortex, primary and secondary somatosensory cortex, insula, and thalamus (p<0.002, corrected). Results showed direct modulation of human brain pain responses by virtual reality distraction. Copyright 2004 Lippincott Williams and Wilkins
ERIC Educational Resources Information Center
Keskitalo, Tuulikki
2012-01-01
Expectations for simulations in healthcare education are high; however, little is known about healthcare students' expectations of the learning process in virtual reality (VR) and simulation-based learning environments (SBLEs). This research aims to describe first-year healthcare students' (N=97) expectations regarding teaching, studying, and…
ERIC Educational Resources Information Center
Levac, Danielle; Miller, Patricia; Missiuna, Cheryl
2012-01-01
Little is known about how therapists promote learning of functional motor skills for children with acquired brain injuries. This study explores physiotherapists' description of these interventions in comparison to virtual reality (VR) video game-based therapy. Six physiotherapists employed at a children's rehabilitation center participated in…
Virtual Reality versus Computer-Aided Exposure Treatments for Fear of Flying
ERIC Educational Resources Information Center
Tortella-Feliu, Miquel; Botella, Cristina; Llabres, Jordi; Breton-Lopez, Juana Maria; del Amo, Antonio Riera; Banos, Rosa M.; Gelabert, Joan M.
2011-01-01
Evidence is growing that two modalities of computer-based exposure therapies--virtual reality and computer-aided psychotherapy--are effective in treating anxiety disorders, including fear of flying. However, they have not yet been directly compared. The aim of this study was to analyze the efficacy of three computer-based exposure treatments for…
ERIC Educational Resources Information Center
Ke, Fengfeng; Im, Tami; Xue, Xinrong; Xu, Xinhao; Kim, Namju; Lee, Sungwoong
2015-01-01
This phenomenological study explored and described the experiences and perceptions of adult facilitators who facilitated virtual-reality-based social interaction for children with autism. Extensive data were collected from iterative, in-depth interviews; online activities observation; and video analysis. Four salient themes emerged through the…
Clinician perceptions of virtual reality to assess and treat returning veterans.
Kramer, Teresa L; Pyne, Jeffrey M; Kimbrell, Timothy A; Savary, Patricia E; Smith, Jeffrey L; Jegley, Susan M
2010-11-01
Implementation of evidence-based, innovative treatments is necessary to address posttraumatic stress disorder (PTSD) and related mental health problems of Operation Enduring Freedom and Operation Iraqi Freedom (OEF-OIF) military service personnel. The purpose of this study was to characterize mental health clinicians' perceptions of virtual reality as an assessment tool or adjunct to exposure therapy. Focus groups were conducted with 18 prescribing and nonprescribing mental health clinicians within the Veterans Health Administration. Group discussion was digitally recorded, downloaded into Ethnograph software, and coded to arrive at primary, secondary, and tertiary themes. Most frequently mentioned barriers pertained to aspects of virtual reality, followed by veteran characteristics. Organizational barriers were more relevant when implementing virtual reality as a treatment adjunct. Although the study demonstrated that use of virtual reality as a therapy was feasible and acceptable to clinicians, successful implementation of the technology as an assessment and treatment tool will depend on consideration of the facilitators and barriers that were identified.
Investigation of virtual reality concept based on system analysis of conceptual series
NASA Astrophysics Data System (ADS)
Romanova, A.; Shuklin, D. A.; Kalinkina, M. E.; Gotskaya, I. B.; Ponomarev, Y. E.
2018-05-01
The paper covers approaches to the definition of virtual reality from the point of view of the humanitarian sciences and technology. Each approach analyzing problems of concept perception of methods interpreted by representatives of philosophy, psychology and sociology is singled out. Terminological analysis of the basic concepts is carried out and their refinement is constructed in the process of comparing the concepts of virtuality and virtual reality. Using the analysis of selected sources, a number of singularity characteristics of the given concept are singled out and its definition is specified. Results consist in combining the interpretation of all approaches to determine the concept of virtual reality. Due to the use of a comprehensive approach to the definition of the investigated concept, which allows us to consider the object of research as a set of elements that are subject to study with the help of a corresponding set of methods, one can conclude that the concept under study is complex and multifaceted. The authors noted that virtual reality technologies have a flexible concept depending on the field of application.
ConfocalVR: Immersive Visualization Applied to Confocal Microscopy.
Stefani, Caroline; Lacy-Hulbert, Adam; Skillman, Thomas
2018-06-24
ConfocalVR is a virtual reality (VR) application created to improve the ability of researchers to study the complexity of cell architecture. Confocal microscopes take pictures of fluorescently labeled proteins or molecules at different focal planes to create a stack of 2D images throughout the specimen. Current software applications reconstruct the 3D image and render it as a 2D projection onto a computer screen where users need to rotate the image to expose the full 3D structure. This process is mentally taxing, breaks down if you stop the rotation, and does not take advantage of the eye's full field of view. ConfocalVR exploits consumer-grade virtual reality (VR) systems to fully immerse the user in the 3D cellular image. In this virtual environment the user can: 1) adjust image viewing parameters without leaving the virtual space, 2) reach out and grab the image to quickly rotate and scale the image to focus on key features, and 3) interact with other users in a shared virtual space enabling real-time collaborative exploration and discussion. We found that immersive VR technology allows the user to rapidly understand cellular architecture and protein or molecule distribution. We note that it is impossible to understand the value of immersive visualization without experiencing it first hand, so we encourage readers to get access to a VR system, download this software, and evaluate it for yourself. The ConfocalVR software is available for download at http://www.confocalvr.com, and is free for nonprofits. Copyright © 2018. Published by Elsevier Ltd.
Community-based pedestrian safety training in virtual reality : a pragmatic trial.
DOT National Transportation Integrated Search
2015-06-01
Child pedestrian injuries are a leading cause of mortality and morbidity across the United States : and the world. Repeated practice at the cognitive-perceptual task of crossing a street may lead to : safer pedestrian behavior. Virtual reality offers...
Astronauts Prepare for Mission With Virtual Reality Hardware
NASA Technical Reports Server (NTRS)
2001-01-01
Astronauts John M. Grunsfeld (left), STS-109 payload commander, and Nancy J. Currie, mission specialist, use the virtual reality lab at Johnson Space Center to train for upcoming duties aboard the Space Shuttle Columbia. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team to perform its duties for the fourth Hubble Space Telescope Servicing mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.
Truck driver fatigue assessment using a virtual reality system.
DOT National Transportation Integrated Search
2016-10-17
In this study, a fully immersive Virtual Reality (VR) based driving simulator was developed to serve : as a proof-of-concept that VR can be utilized to assess the level of fatigue (or drowsiness) truck : drivers typically experience during real...
Possibilities and Determinants of Using Low-Cost Devices in Virtual Education Applications
ERIC Educational Resources Information Center
Bun, Pawel Kazimierz; Wichniarek, Radoslaw; Górski, Filip; Grajewski, Damian; Zawadzki, Przemyslaw; Hamrol, Adam
2017-01-01
Virtual reality (VR) may be used as an innovative educational tool. However, in order to fully exploit its potential, it is essential to achieve the effect of immersion. To more completely submerge the user in a virtual environment, it is necessary to ensure that the user's actions are directly translated into the image generated by the…
Tremblay, Line; Roy-Vaillancourt, Mélina; Chebbi, Brahim; Bouchard, Stéphane; Daoust, Michael; Dénommée, Jessica; Thorpe, Moriah
2016-02-01
It is well documented that anti-fat attitudes influence the interactions individuals have with overweight people. However, testing attitudes through self-report measures is challenging. In the present study, we explore the use of a haptic virtual reality environment to physically interact with overweight virtual human (VH). We verify the hypothesis that duration and strength of virtual touch vary according to the characteristics of VH in ways similar to those encountered from interaction with real people in anti-fat attitude studies. A group of 61 participants were randomly assigned to one of the experimental conditions involving giving a virtual hug to a female or a male VH of either normal or overweight. We found significant associations between body image satisfaction and anti-fat attitudes and sex differences on these measures. We also found a significant interaction effect of the sex of the participants, sex of the VH, and the body size of the VH. Female participants hugged longer the overweight female VH than overweight male VH. Male participants hugged longer the normal-weight VH than the overweight VH. We conclude that virtual touch is a promising method of measuring attitudes, emotion and social interactions.
ERIC Educational Resources Information Center
Ke, Fengfeng; Lee, Sungwoong
2016-01-01
This exploratory case study examined the process and potential impact of collaborative architectural design and construction in an OpenSimulator-based virtual reality (VR) on the social skills development of children with high-functioning autism (HFA). Two children with a formal medical diagnosis of HFA and one typically developing peer, aged…
Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M
2016-07-01
Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Cognitive therapy using virtual reality could prove highly effective in treating delusions. © The Royal College of Psychiatrists 2016.
Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M.
2016-01-01
Background Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. Aims To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Method Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. Results In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Conclusion Cognitive therapy using virtual reality could prove highly effective in treating delusions. PMID:27151071
Virtual reality and paranoid ideations in people with an 'at-risk mental state' for psychosis.
Valmaggia, Lucia R; Freeman, Daniel; Green, Catherine; Garety, Philippa; Swapp, David; Antley, Angus; Prescott, Corinne; Fowler, David; Kuipers, Elizabeth; Bebbington, Paul; Slater, Mel; Broome, Matthew; McGuire, Philip K
2007-12-01
Virtual reality provides a means of studying paranoid thinking in controlled laboratory conditions. However, this method has not been used with a clinical group. To establish the feasibility and safety of using virtual reality methodology in people with an at-risk mental state and to investigate the applicability of a cognitive model of paranoia to this group. Twenty-one participants with an at-risk mental state were assessed before and after entering a virtual reality environment depicting the inside of an underground train. Virtual reality did not raise levels of distress at the time of testing or cause adverse experiences over the subsequent week. Individuals attributed mental states to virtual reality characters including hostile intent. Persecutory ideation in virtual reality was predicted by higher levels of trait paranoia, anxiety, stress, immersion in virtual reality, perseveration and interpersonal sensitivity. Virtual reality is an acceptable experimental technique for use with individuals with at-risk mental states. Paranoia in virtual reality was understandable in terms of the cognitive model of persecutory delusions.
NASA Astrophysics Data System (ADS)
Soler, Luc; Marescaux, Jacques
2006-04-01
Technological innovations of the 20 th century provided medicine and surgery with new tools, among which virtual reality and robotics belong to the most revolutionary ones. Our work aims at setting up new techniques for detection, 3D delineation and 4D time follow-up of small abdominal lesions from standard mecial images (CT scsan, MRI). It also aims at developing innovative systems making tumor resection or treatment easier with the use of augmented reality and robotized systems, increasing gesture precision. It also permits a realtime great distance connection between practitioners so they can share a same 3D reconstructed patient and interact on a same patient, virtually before the intervention and for real during the surgical procedure thanks to a telesurgical robot. In preclinical studies, our first results obtained from a micro-CT scanner show that these technologies provide an efficient and precise 3D modeling of anatomical and pathological structures of rats and mice. In clinical studies, our first results show the possibility to improve the therapeutic choice thanks to a better detection and and representation of the patient before performing the surgical gesture. They also show the efficiency of augmented reality that provides virtual transparency of the patient in real time during the operative procedure. In the near future, through the exploitation of these systems, surgeons will program and check on the virtual patient clone an optimal procedure without errors, which will be replayed on the real patient by the robot under surgeon control. This medical dream is today about to become reality.
Sangani, Samir; Lamontagne, Anouk; Fung, Joyce
2015-01-01
Sensorimotor integration is a complex process in the central nervous system that produces task-specific motor output based on selective and rapid integration of sensory information from multiple sources. This chapter reviews briefly the role of haptic cues in postural control during tandem stance and locomotion, focusing on sensorimotor enhancement of locomotion post stroke. The use of mixed-reality systems incorporating both haptic cues and virtual reality technology in gait rehabilitation post stroke is discussed. Over the last decade, researchers and clinicians have shown evidence of cerebral reorganization that underlies functional recovery after stroke based on results from neuroimaging techniques such as positron emission tomography and functional magnetic resonance imaging. These imaging modalities are however limited in their capacity to measure cortical changes during extensive body motions in upright stance. Functional near-infrared spectroscopy (fNIRS) on the other hand provides a unique opportunity to measure cortical activity associated with postural control during locomotion. Evidence of cortical changes associated with sensorimotor enhancement induced by haptic touch during locomotion is revealed through fNIRS in a pilot study involving healthy individuals and a case study involving a chronic stroke patient. © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1990-01-01
While a new technology called 'virtual reality' is still at the 'ground floor' level, one of its basic components, 3D computer graphics is already in wide commercial use and expanding. Other components that permit a human operator to 'virtually' explore an artificial environment and to interact with it are being demonstrated routinely at Ames and elsewhere. Virtual reality might be defined as an environment capable of being virtually entered - telepresence, it is called - or interacted with by a human. The Virtual Interface Environment Workstation (VIEW) is a head-mounted stereoscopic display system in which the display may be an artificial computer-generated environment or a real environment relayed from remote video cameras. Operator can 'step into' this environment and interact with it. The DataGlove has a series of fiber optic cables and sensors that detect any movement of the wearer's fingers and transmit the information to a host computer; a computer generated image of the hand will move exactly as the operator is moving his gloved hand. With appropriate software, the operator can use the glove to interact with the computer scene by grasping an object. The DataSuit is a sensor equipped full body garment that greatly increases the sphere of performance for virtual reality simulations.
AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.
Gaffary, Yoren; Le Gouis, Benoit; Marchal, Maud; Argelaguet, Ferran; Arnaldi, Bruno; Lecuyer, Anatole
2017-11-01
Does it feel the same when you touch an object in Augmented Reality (AR) or in Virtual Reality (VR)? In this paper we study and compare the haptic perception of stiffness of a virtual object in two situations: (1) a purely virtual environment versus (2) a real and augmented environment. We have designed an experimental setup based on a Microsoft HoloLens and a haptic force-feedback device, enabling to press a virtual piston, and compare its stiffness successively in either Augmented Reality (the virtual piston is surrounded by several real objects all located inside a cardboard box) or in Virtual Reality (the same virtual piston is displayed in a fully virtual scene composed of the same other objects). We have conducted a psychophysical experiment with 12 participants. Our results show a surprising bias in perception between the two conditions. The virtual piston is on average perceived stiffer in the VR condition compared to the AR condition. For instance, when the piston had the same stiffness in AR and VR, participants would select the VR piston as the stiffer one in 60% of cases. This suggests a psychological effect as if objects in AR would feel "softer" than in pure VR. Taken together, our results open new perspectives on perception in AR versus VR, and pave the way to future studies aiming at characterizing potential perceptual biases.
Tang, Rui; Ma, Long-Fei; Rong, Zhi-Xia; Li, Mo-Dan; Zeng, Jian-Ping; Wang, Xue-Dong; Liao, Hong-En; Dong, Jia-Hong
2018-04-01
Augmented reality (AR) technology is used to reconstruct three-dimensional (3D) images of hepatic and biliary structures from computed tomography and magnetic resonance imaging data, and to superimpose the virtual images onto a view of the surgical field. In liver surgery, these superimposed virtual images help the surgeon to visualize intrahepatic structures and therefore, to operate precisely and to improve clinical outcomes. The keywords "augmented reality", "liver", "laparoscopic" and "hepatectomy" were used for searching publications in the PubMed database. The primary source of literatures was from peer-reviewed journals up to December 2016. Additional articles were identified by manual search of references found in the key articles. In general, AR technology mainly includes 3D reconstruction, display, registration as well as tracking techniques and has recently been adopted gradually for liver surgeries including laparoscopy and laparotomy with video-based AR assisted laparoscopic resection as the main technical application. By applying AR technology, blood vessels and tumor structures in the liver can be displayed during surgery, which permits precise navigation during complex surgical procedures. Liver transformation and registration errors during surgery were the main factors that limit the application of AR technology. With recent advances, AR technologies have the potential to improve hepatobiliary surgical procedures. However, additional clinical studies will be required to evaluate AR as a tool for reducing postoperative morbidity and mortality and for the improvement of long-term clinical outcomes. Future research is needed in the fusion of multiple imaging modalities, improving biomechanical liver modeling, and enhancing image data processing and tracking technologies to increase the accuracy of current AR methods. Copyright © 2018 First Affiliated Hospital, Zhejiang University School of Medicine in China. Published by Elsevier B.V. All rights reserved.
Ding, Yichen; Abiri, Arash; Abiri, Parinaz; Li, Shuoran; Chang, Chih-Chiang; Baek, Kyung In; Hsu, Jeffrey J; Sideris, Elias; Li, Yilei; Lee, Juhyun; Segura, Tatiana; Nguyen, Thao P; Bui, Alexander; Sevag Packard, René R; Fei, Peng; Hsiai, Tzung K
2017-11-16
Currently, there is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3D architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3D and 4D (3D spatial + 1D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods, such as routine optical microscopes. We hereby demonstrate multiscale applicability of VR-LSFM to (a) interrogate skin fibroblasts interacting with a hyaluronic acid-based hydrogel, (b) navigate through the endocardial trabecular network during zebrafish development, and (c) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation algorithm with deformable image registration to interface a VR environment with imaging computation for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution.
Integrating light-sheet imaging with virtual reality to recapitulate developmental cardiac mechanics
Ding, Yichen; Abiri, Arash; Abiri, Parinaz; Li, Shuoran; Chang, Chih-Chiang; Hsu, Jeffrey J.; Sideris, Elias; Li, Yilei; Lee, Juhyun; Segura, Tatiana; Nguyen, Thao P.; Bui, Alexander; Sevag Packard, René R.; Hsiai, Tzung K.
2017-01-01
Currently, there is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3D architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3D and 4D (3D spatial + 1D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods, such as routine optical microscopes. We hereby demonstrate multiscale applicability of VR-LSFM to (a) interrogate skin fibroblasts interacting with a hyaluronic acid–based hydrogel, (b) navigate through the endocardial trabecular network during zebrafish development, and (c) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation algorithm with deformable image registration to interface a VR environment with imaging computation for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution. PMID:29202458
Virtual reality simulators and training in laparoscopic surgery.
Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos
2015-01-01
Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Intercepting real and simulated falling objects: what is the difference?
Baurès, Robin; Benguigui, Nicolas; Amorim, Michel-Ange; Hecht, Heiko
2009-10-30
The use of virtual reality is nowadays common in many studies in the field of human perception and movement control, particularly in interceptive actions. However, the ecological validity of the simulation is often taken for granted without having been formally established. If participants were to perceive the real situation and its virtual equivalent in a different fashion, the generalization of the results obtained in virtual reality to real life would be highly questionable. We tested the ecological validity of virtual reality in this context by comparing the timing of interceptive actions based upon actually falling objects and their simulated counterparts. The results show very limited differences as a function of whether participants were confronted with a real ball or a simulation thereof. And when present, such differences were limited to the first trial only. This result validates the use of virtual reality when studying interceptive actions of accelerated stimuli.
A virtual reality browser for Space Station models
NASA Technical Reports Server (NTRS)
Goldsby, Michael; Pandya, Abhilash; Aldridge, Ann; Maida, James
1993-01-01
The Graphics Analysis Facility at NASA/JSC has created a visualization and learning tool by merging its database of detailed geometric models with a virtual reality system. The system allows an interactive walk-through of models of the Space Station and other structures, providing detailed realistic stereo images. The user can activate audio messages describing the function and connectivity of selected components within his field of view. This paper presents the issues and trade-offs involved in the implementation of the VR system and discusses its suitability for its intended purposes.
Foloppe, Déborah A; Richard, Paul; Yamaguchi, Takehiko; Etcharry-Bouyx, Frédérique; Allain, Philippe
2018-07-01
Impairments in performing activities of daily living occur early in the course of Alzheimer's disease (AD). There is a great need to develop non-pharmacological therapeutic interventions likely to reduce dependency in everyday activities in AD patients. This study investigated whether it was possible to increase autonomy in these patients in cooking activities using interventions based on errorless learning, vanishing-cue, and virtual reality techniques. We recruited a 79-year-old woman who met NINCDS-ADRDA criteria for probable AD. She was trained in four cooking tasks for four days per task, one hour per day, in virtual and in real conditions. Outcome measures included subjective data concerning the therapeutic intervention and the experience of virtual reality, repeated assessments of training activities, neuropsychological scores, and self-esteem and quality of life measures. The results indicated that our patient could relearn some cooking activities using virtual reality techniques. Transfer to real life was also observed. Improvement of the task performance remained stable over time. This case report supports the value of a non-immersive virtual kitchen to help people with AD to relearn cooking activities.
An efficient and scalable deformable model for virtual reality-based medical applications.
Choi, Kup-Sze; Sun, Hanqiu; Heng, Pheng-Ann
2004-09-01
Modeling of tissue deformation is of great importance to virtual reality (VR)-based medical simulations. Considerable effort has been dedicated to the development of interactively deformable virtual tissues. In this paper, an efficient and scalable deformable model is presented for virtual-reality-based medical applications. It considers deformation as a localized force transmittal process which is governed by algorithms based on breadth-first search (BFS). The computational speed is scalable to facilitate real-time interaction by adjusting the penetration depth. Simulated annealing (SA) algorithms are developed to optimize the model parameters by using the reference data generated with the linear static finite element method (FEM). The mechanical behavior and timing performance of the model have been evaluated. The model has been applied to simulate the typical behavior of living tissues and anisotropic materials. Integration with a haptic device has also been achieved on a generic personal computer (PC) platform. The proposed technique provides a feasible solution for VR-based medical simulations and has the potential for multi-user collaborative work in virtual environment.
Creating photorealistic virtual model with polarization-based vision system
NASA Astrophysics Data System (ADS)
Shibata, Takushi; Takahashi, Toru; Miyazaki, Daisuke; Sato, Yoichi; Ikeuchi, Katsushi
2005-08-01
Recently, 3D models are used in many fields such as education, medical services, entertainment, art, digital archive, etc., because of the progress of computational time and demand for creating photorealistic virtual model is increasing for higher reality. In computer vision field, a number of techniques have been developed for creating the virtual model by observing the real object in computer vision field. In this paper, we propose the method for creating photorealistic virtual model by using laser range sensor and polarization based image capture system. We capture the range and color images of the object which is rotated on the rotary table. By using the reconstructed object shape and sequence of color images of the object, parameter of a reflection model are estimated in a robust manner. As a result, then, we can make photorealistic 3D model in consideration of surface reflection. The key point of the proposed method is that, first, the diffuse and specular reflection components are separated from the color image sequence, and then, reflectance parameters of each reflection component are estimated separately. In separation of reflection components, we use polarization filter. This approach enables estimation of reflectance properties of real objects whose surfaces show specularity as well as diffusely reflected lights. The recovered object shape and reflectance properties are then used for synthesizing object images with realistic shading effects under arbitrary illumination conditions.
BIM based virtual environment for fire emergency evacuation.
Wang, Bin; Li, Haijiang; Rezgui, Yacine; Bradley, Alex; Ong, Hoang N
2014-01-01
Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management.
Virtual reality for emergency training
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altinkemer, K.
1995-12-31
Virtual reality is a sequence of scenes generated by a computer as a response to the five different senses. These senses are sight, sound, taste, touch, smell. Other senses that can be used in virtual reality include balance, pheromonal, and immunological senses. Many application areas include: leisure and entertainment, medicine, architecture, engineering, manufacturing, and training. Virtual reality is especially important when it is used for emergency training and management of natural disasters including earthquakes, floods, tornados and other situations which are hard to emulate. Classical training methods for these extraordinary environments lack the realistic surroundings that virtual reality can provide.more » In order for virtual reality to be a successful training tool the design needs to include certain aspects; such as how real virtual reality should be and how much fixed cost is entailed in setting up the virtual reality trainer. There are also pricing questions regarding the price per training session on virtual reality trainer, and the appropriate training time length(s).« less
Immersive virtual reality for visualization of abdominal CT
NASA Astrophysics Data System (ADS)
Lin, Qiufeng; Xu, Zhoubing; Li, Bo; Baucom, Rebeccah; Poulose, Benjamin; Landman, Bennett A.; Bodenheimer, Robert E.
2013-03-01
Immersive virtual environments use a stereoscopic head-mounted display and data glove to create high fidelity virtual experiences in which users can interact with three-dimensional models and perceive relationships at their true scale. This stands in stark contrast to traditional PACS-based infrastructure in which images are viewed as stacks of two dimensional slices, or, at best, disembodied renderings. Although there has substantial innovation in immersive virtual environments for entertainment and consumer media, these technologies have not been widely applied in clinical applications. Here, we consider potential applications of immersive virtual environments for ventral hernia patients with abdominal computed tomography imaging data. Nearly a half million ventral hernias occur in the United States each year, and hernia repair is the most commonly performed general surgery operation worldwide. A significant problem in these conditions is communicating the urgency, degree of severity, and impact of a hernia (and potential repair) on patient quality of life. Hernias are defined by ruptures in the abdominal wall (i.e., the absence of healthy tissues) rather than a growth (e.g., cancer); therefore, understanding a hernia necessitates understanding the entire abdomen. Our environment allows surgeons and patients to view body scans at scale and interact with these virtual models using a data glove. This visualization and interaction allows users to perceive the relationship between physical structures and medical imaging data. The system provides close integration of PACS-based CT data with immersive virtual environments and creates opportunities to study and optimize interfaces for patient communication, operative planning, and medical education.
Immersive Virtual Reality for Visualization of Abdominal CT.
Lin, Qiufeng; Xu, Zhoubing; Li, Bo; Baucom, Rebeccah; Poulose, Benjamin; Landman, Bennett A; Bodenheimer, Robert E
2013-03-28
Immersive virtual environments use a stereoscopic head-mounted display and data glove to create high fidelity virtual experiences in which users can interact with three-dimensional models and perceive relationships at their true scale. This stands in stark contrast to traditional PACS-based infrastructure in which images are viewed as stacks of two-dimensional slices, or, at best, disembodied renderings. Although there has substantial innovation in immersive virtual environments for entertainment and consumer media, these technologies have not been widely applied in clinical applications. Here, we consider potential applications of immersive virtual environments for ventral hernia patients with abdominal computed tomography imaging data. Nearly a half million ventral hernias occur in the United States each year, and hernia repair is the most commonly performed general surgery operation worldwide. A significant problem in these conditions is communicating the urgency, degree of severity, and impact of a hernia (and potential repair) on patient quality of life. Hernias are defined by ruptures in the abdominal wall (i.e., the absence of healthy tissues) rather than a growth (e.g., cancer); therefore, understanding a hernia necessitates understanding the entire abdomen. Our environment allows surgeons and patients to view body scans at scale and interact with these virtual models using a data glove. This visualization and interaction allows users to perceive the relationship between physical structures and medical imaging data. The system provides close integration of PACS-based CT data with immersive virtual environments and creates opportunities to study and optimize interfaces for patient communication, operative planning, and medical education.
ERIC Educational Resources Information Center
Huang, Hsiu-Mei; Rauch, Ulrich; Liaw, Shu-Sheng
2010-01-01
The use of animation and multimedia for learning is now further extended by the provision of entire Virtual Reality Learning Environments (VRLE). This highlights a shift in Web-based learning from a conventional multimedia to a more immersive, interactive, intuitive and exciting VR learning environment. VRLEs simulate the real world through the…
ERIC Educational Resources Information Center
Sabalic, Maja; Schoener, Jason D.
2017-01-01
Virtual reality-based technologies have been used in dentistry for almost two decades. Dental simulators, planning software and CAD/CAM (computer-aided design/computer-aided manufacturing) systems have significantly developed over the years and changed both dental education and clinical practice. This study aimed to assess the knowledge, attitudes…
Fang, Te-Yung; Wang, Pa-Chun; Liu, Chih-Hsien; Su, Mu-Chun; Yeh, Shih-Ching
2014-02-01
Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students. Copyright © 2013. Published by Elsevier Ireland Ltd.
Ekstrand, Chelsea; Jamal, Ali; Nguyen, Ron; Kudryk, Annalise; Mann, Jennifer; Mendez, Ivar
2018-02-23
Spatial 3-dimensional understanding of the brain is essential to learning neuroanatomy, and 3-dimensional learning techniques have been proposed as tools to enhance neuroanatomy training. The aim of this study was to examine the impact of immersive virtual-reality neuroanatomy training and compare it to traditional paper-based methods. In this randomized controlled study, participants consisted of first- or second-year medical students from the University of Saskatchewan recruited via email and posters displayed throughout the medical school. Participants were randomly assigned to the virtual-reality group or the paper-based group and studied the spatial relations between neural structures for 12 minutes after performing a neuroanatomy baseline test, with both test and control questions. A postintervention test was administered immediately after the study period and 5-9 days later. Satisfaction measures were obtained. Of the 66 participants randomly assigned to the study groups, 64 were included in the final analysis, 31 in the virtual-reality group and 33 in the paper-based group. The 2 groups performed comparably on the baseline questions and showed significant performance improvement on the test questions following study. There were no significant differences between groups for the control questions, the postintervention test questions or the 7-day postintervention test questions. Satisfaction survey results indicated that neurophobia was decreased. Results from this study provide evidence that training in neuroanatomy in an immersive and interactive virtual-reality environment may be an effective neuroanatomy learning tool that warrants further study. They also suggest that integration of virtual-reality into neuroanatomy training may improve knowledge retention, increase study motivation and decrease neurophobia. Copyright 2018, Joule Inc. or its licensors.
Ekstrand, Chelsea; Jamal, Ali; Nguyen, Ron; Kudryk, Annalise; Mann, Jennifer; Mendez, Ivar
2018-01-01
Background: Spatial 3-dimensional understanding of the brain is essential to learning neuroanatomy, and 3-dimensional learning techniques have been proposed as tools to enhance neuroanatomy training. The aim of this study was to examine the impact of immersive virtual-reality neuroanatomy training and compare it to traditional paper-based methods. Methods: In this randomized controlled study, participants consisted of first- or second-year medical students from the University of Saskatchewan recruited via email and posters displayed throughout the medical school. Participants were randomly assigned to the virtual-reality group or the paper-based group and studied the spatial relations between neural structures for 12 minutes after performing a neuroanatomy baseline test, with both test and control questions. A postintervention test was administered immediately after the study period and 5-9 days later. Satisfaction measures were obtained. Results: Of the 66 participants randomly assigned to the study groups, 64 were included in the final analysis, 31 in the virtual-reality group and 33 in the paper-based group. The 2 groups performed comparably on the baseline questions and showed significant performance improvement on the test questions following study. There were no significant differences between groups for the control questions, the postintervention test questions or the 7-day postintervention test questions. Satisfaction survey results indicated that neurophobia was decreased. Interpretation: Results from this study provide evidence that training in neuroanatomy in an immersive and interactive virtual-reality environment may be an effective neuroanatomy learning tool that warrants further study. They also suggest that integration of virtual-reality into neuroanatomy training may improve knowledge retention, increase study motivation and decrease neurophobia. PMID:29510979
[Application of virtual reality in the motor aspects of neurorehabilitation].
Peñasco-Martín, Benito; de los Reyes-Guzmán, Ana; Gil-Agudo, Ángel; Bernal-Sahún, Alberto; Pérez-Aguilar, Beatriz; de la Peña-González, Ana Isabel
2010-10-16
Virtual reality allows the user to interact with elements within a simulated scene. In recent times we have been witness to the introduction of virtual reality-based devices as one of the most significant novelties in neurorehabilitation. To review the clinical applications of the developments based on virtual reality for the neurorehabilitation treatment of the motor aspects of the most frequent disabling processes with a neurological origin. A review was carried out of the Medline, Physiotherapy Evidence Database, Ovid and Cochrane Library databases up until April 2009. This was completed with a web search using Google. No clinical trial conducted on its effectiveness has been found to date. The information that was collected is based on the description of the various prototypes produced by the different groups involved in their development. In most cases they are clinical trials conducted with a small number of patients, which have focused more on testing the validity of the device and checking whether it works correctly than on attempting to prove its clinical effectiveness. Although most of the clinical applications refer to patients with stroke, there were also several applications for patients with spinal cord injuries, multiple sclerosis, Parkinson's disease or balance disorders. Virtual reality is a novel tool with a promising future in neurorehabilitation. Further studies are needed to demonstrate its clinical effectiveness as compared to the traditional techniques.
Viewpoints on Medical Image Processing: From Science to Application
Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas
2013-01-01
Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804
Viewpoints on Medical Image Processing: From Science to Application.
Deserno Né Lehmann, Thomas M; Handels, Heinz; Maier-Hein Né Fritzsche, Klaus H; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas
2013-05-01
Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment.
Time multiplexing for increased FOV and resolution in virtual reality
NASA Astrophysics Data System (ADS)
Miñano, Juan C.; Benitez, Pablo; Grabovičkić, Dejan; Zamora, Pablo; Buljan, Marina; Narasimhan, Bharathwaj
2017-06-01
We introduce a time multiplexing strategy to increase the total pixel count of the virtual image seen in a VR headset. This translates into an improvement of the pixel density or the Field of View FOV (or both) A given virtual image is displayed by generating a succession of partial real images, each representing part of the virtual image and together representing the virtual image. Each partial real image uses the full set of physical pixels available in the display. The partial real images are successively formed and combine spatially and temporally to form a virtual image viewable from the eye position. Partial real images are imaged through different optical channels depending of its time slot. Shutters or other schemes are used to avoid that a partial real image be imaged through the wrong optical channels or at the wrong time slot. This time multiplexing strategy needs real images be shown at high frame rates (>120fps). Available display and shutters technologies are discussed. Several optical designs for achieving this time multiplexing scheme in a compact format are shown. This time multiplexing scheme allows increasing the resolution/FOV of the virtual image not only by increasing the physical pixel density but also by decreasing the pixels switching time, a feature that may be simpler to achieve in certain circumstances.
The use of PC based VR in clinical medicine: the VREPAR projects.
Riva, G; Bacchetta, M; Baruffi, M; Borgomainerio, E; Defrance, C; Gatti, F; Galimberti, C; Fontaneto, S; Marchi, S; Molinari, E; Nugues, P; Rinaldi, S; Rovetta, A; Ferretti, G S; Tonci, A; Wann, J; Vincelli, F
1999-01-01
Virtual reality (VR) is an emerging technology that alters the way individuals interact with computers: a 3D computer-generated environment in which a person can move about and interact as if he actually was inside it. Given to the high computational power required to create virtual environments, these are usually developed on expensive high-end workstations. However, the significant advances in PC hardware that have been made over the last three years, are making PC-based VR a possible solution for clinical assessment and therapy. VREPAR - Virtual Reality Environments for Psychoneurophysiological Assessment and Rehabilitation - are two European Community funded projects (Telematics for health - HC 1053/HC 1055 - http://www.psicologia.net) that are trying to develop a modular PC-based virtual reality system for the medical market. The paper describes the rationale of the developed modules and the preliminary results obtained.
Anil, S M; Kato, Y; Hayakawa, M; Yoshida, K; Nagahisha, S; Kanno, T
2007-04-01
Advances in computer imaging and technology have facilitated enhancement in surgical planning with a 3-dimensional model of the surgical plan of action utilizing advanced visualization tools in order to plan individual interactive operations with the aid of the dextroscope. This provides a proper 3-dimensional imaging insight to the pathological anatomy and sets a new dimension in collaboration for training and education. The case of a seventeen-year-old female, being operated with the aid of a preoperative 3-dimensional virtual reality planning and the practical application of the neurosurgical operation, is presented. This young lady presented with a two-year history of recurrent episodes of severe, global, throbbing headache with episodes of projectile vomiting associated with shoulder pain which progressively worsened. She had no obvious neurological deficits on clinical examination. CT and MRI showed a contrast-enhancing midline posterior fossa space-occupying lesion. Utilizing virtual imaging technology with the aid of a dextroscope which generates stereoscopic images, a 3-dimensional image was produced with the CT and MRI images. A preoperative planning for excision of the lesion was made and a real-time 3-dimensional volume was produced and surgical planning with the dextroscope was made and the lesion excised. Virtual reality has brought new proportions in 3-dimensional planning and management of various complex neuroanatomical problems that are faced during various operations. Integration of 3-dimensional imaging with stereoscopic vision makes understanding the complex anatomy easier and helps improve decision making in patient management.
Virtual Reality and the Virtual Library.
ERIC Educational Resources Information Center
Oppenheim, Charles
1993-01-01
Explains virtual reality, including proper and improper uses of the term, and suggests ways that libraries might be affected by it. Highlights include elements of virtual reality systems; possible virtual reality applications, including architecture, the chemical industry, transport planning, armed forces, and entertainment; and the virtual…
Park, Jin-Hyuck; Park, Ji-Hyuk
2016-01-01
[Purpose] The purpose of this study was to investigate the effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis. [Subjects] The subjects were chronic stroke patients with hemiparesis. [Methods] Thirty subjects were randomly assigned to either the control group or experimental group. All subjects received 20 sessions (5 days in a week) of virtual reality movement therapy using the Nintendo Wii. In addition to Wii-based virtual reality movement therapy, experimental group subjects performed mental practice consisting of 5 minutes of relaxation, Wii games imagination, and normalization phases before the beginning of Wii games. To compare the two groups, the upper extremity subtest of the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log were performed. [Results] Both groups showed statistically significant improvement in the Fugl-Meyer Assessment, Box and Block Test, and quality of the movement subscale of Motor Activity Log after the interventions. Also, there were significant differences in the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log between the two groups. [Conclusion] Game-based virtual reality movement therapy alone may be helpful to improve functional recovery of the upper extremity, but the addition of MP produces a lager improvement. PMID:27134363
Renaud, Patrice; Joyal, Christian; Stoleru, Serge; Goyette, Mathieu; Weiskopf, Nikolaus; Birbaumer, Niels
2011-01-01
This chapter proposes a prospective view on using a real-time functional magnetic imaging (rt-fMRI) brain-computer interface (BCI) application as a new treatment for pedophilia. Neurofeedback mediated by interactive virtual stimuli is presented as the key process in this new BCI application. Results on the diagnostic discriminant power of virtual characters depicting sexual stimuli relevant to pedophilia are given. Finally, practical and ethical implications are briefly addressed. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Moro, Christian; Stromberga, Zane; Stirling, Allan
2017-01-01
Consumer-grade virtual reality has recently become available for both desktop and mobile platforms and may redefine the way that students learn. However, the decision regarding which device to utilise within a curriculum is unclear. Desktop-based VR has considerably higher setup costs involved, whereas mobile-based VR cannot produce the quality of…
1993-04-01
until exhausted. SECURITY CLASSIFICATION OF THIS PAGE All other editions are obsolete. UNCLASSIFIED " VIRTUAL REALITY JAMES F. DAILEY, LIEUTENANT COLONEL...US" This paper reviews the exciting field of virtual reality . The author describes the basic concepts of virtual reality and finds that its numerous...potential benefits to society could revolutionize everyday life. The various components that make up a virtual reality system are described in detail
Aharon, S; Robb, R A
1997-01-01
Virtual reality environments provide highly interactive, natural control of the visualization process, significantly enhancing the scientific value of the data produced by medical imaging systems. Due to the computational and real time display update requirements of virtual reality interfaces, however, the complexity of organ and tissue surfaces which can be displayed is limited. In this paper, we present a new algorithm for the production of a polygonal surface containing a pre-specified number of polygons from patient or subject specific volumetric image data. The advantage of this new algorithm is that it effectively tiles complex structures with a specified number of polygons selected to optimize the trade-off between surface detail and real-time display rates.
Creating a Vision Channel for Observing Deep-Seated Anatomy in Medical Augmented Reality
NASA Astrophysics Data System (ADS)
Wimmer, Felix; Bichlmeier, Christoph; Heining, Sandro M.; Navab, Nassir
The intent of medical Augmented Reality (AR) is to augment the surgeon's real view on the patient with the patient's interior anatomy resulting from a suitable visualization of medical imaging data. This paper presents a fast and user-defined clipping technique for medical AR allowing for cutting away any parts of the virtual anatomy and images of the real part of the AR scene hindering the surgeon's view onto the deepseated region of interest. Modeled on cut-away techniques from scientific illustrations and computer graphics, the method creates a fixed vision channel to the inside of the patient. It enables a clear view on the focussed virtual anatomy and moreover improves the perception of spatial depth.
Collaboration and Dialogue in Virtual Reality
ERIC Educational Resources Information Center
Jensen, Camilla Gyldendahl
2017-01-01
"Virtual reality" adds a new dimension to problem-based learning (PBL) environments in the architecture and building construction educations, where a realistic and lifelike presence in a building enables students to assess and discuss how the various solutions interact with each other. Combined with "Building Information…
Piromchai, Patorn; Avery, Alex; Laopaiboon, Malinee; Kennedy, Gregor; O'Leary, Stephen
2015-09-09
Virtual reality simulation uses computer-generated imagery to present a simulated training environment for learners. This review seeks to examine whether there is evidence to support the introduction of virtual reality surgical simulation into ear, nose and throat surgical training programmes. 1. To assess whether surgeons undertaking virtual reality simulation-based training achieve surgical ('patient') outcomes that are at least as good as, or better than, those achieved through conventional training methods.2. To assess whether there is evidence from either the operating theatre, or from controlled (simulation centre-based) environments, that virtual reality-based surgical training leads to surgical skills that are comparable to, or better than, those achieved through conventional training. The Cochrane Ear, Nose and Throat Disorders Group (CENTDG) Trials Search Co-ordinator searched the CENTDG Trials Register; Central Register of Controlled Trials (CENTRAL 2015, Issue 6); PubMed; EMBASE; ERIC; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 27 July 2015. We included all randomised controlled trials and controlled trials comparing virtual reality training and any other method of training in ear, nose or throat surgery. We used the standard methodological procedures expected by The Cochrane Collaboration. We evaluated both technical and non-technical aspects of skill competency. We included nine studies involving 210 participants. Out of these, four studies (involving 61 residents) assessed technical skills in the operating theatre (primary outcomes). Five studies (comprising 149 residents and medical students) assessed technical skills in controlled environments (secondary outcomes). The majority of the trials were at high risk of bias. We assessed the GRADE quality of evidence for most outcomes across studies as 'low'. Operating theatre environment (primary outcomes) In the operating theatre, there were no studies that examined two of three primary outcomes: real world patient outcomes and acquisition of non-technical skills. The third primary outcome (technical skills in the operating theatre) was evaluated in two studies comparing virtual reality endoscopic sinus surgery training with conventional training. In one study, psychomotor skill (which relates to operative technique or the physical co-ordination associated with instrument handling) was assessed on a 10-point scale. A second study evaluated the procedural outcome of time-on-task. The virtual reality group performance was significantly better, with a better psychomotor score (mean difference (MD) 1.66, 95% CI 0.52 to 2.81; 10-point scale) and a shorter time taken to complete the operation (MD -5.50 minutes, 95% CI -9.97 to -1.03). Controlled training environments (secondary outcomes) In a controlled environment five studies evaluated the technical skills of surgical trainees (one study) and medical students (three studies). One study was excluded from the analysis. Surgical trainees: One study (80 participants) evaluated the technical performance of surgical trainees during temporal bone surgery, where the outcome was the quality of the final dissection. There was no difference in the end-product scores between virtual reality and cadaveric temporal bone training. Medical students: Two other studies (40 participants) evaluated technical skills achieved by medical students in the temporal bone laboratory. Learners' knowledge of the flow of the operative procedure (procedural score) was better after virtual reality than conventional training (SMD 1.11, 95% CI 0.44 to 1.79). There was also a significant difference in end-product score between the virtual reality and conventional training groups (SMD 2.60, 95% CI 1.71 to 3.49). One study (17 participants) revealed that medical students acquired anatomical knowledge (on a scale of 0 to 10) better during virtual reality than during conventional training (MD 4.3, 95% CI 2.05 to 6.55). No studies in a controlled training environment assessed non-technical skills. There is limited evidence to support the inclusion of virtual reality surgical simulation into surgical training programmes, on the basis that it can allow trainees to develop technical skills that are at least as good as those achieved through conventional training. Further investigations are required to determine whether virtual reality training is associated with better real world outcomes for patients and the development of non-technical skills. Virtual reality simulation may be considered as an additional learning tool for medical students.
Virtual Reality Applications for Stress Management Training in the Military.
Pallavicini, Federica; Argenton, Luca; Toniazzi, Nicola; Aceti, Luciana; Mantovani, Fabrizia
2016-12-01
Stress Management Training programs are increasingly being adopted in the military field for resilience empowerment and primary stress prevention. In the last several years, advanced technologies (virtual reality in particular) have been integrated in order to develop more innovative and effective stress training programs for military personnel, including soldiers, pilots, and other aircrew professionals. This systematic review describes experimental studies that have been conducted in recent years to test the effectiveness of virtual reality-based Stress Management Training programs developed for military personnel. This promising state-of-the-art technology has the potential to be a successful new approach in empowering soldiers and increasing their resilience to stress. To provide an overview from 2001 to 2016 of the application of virtual reality for Stress Management Training programs developed for the military, a computer-based search for relevant publications was performed in several databases. Databases used in the search were PsycINFO, Web of Science (Web of Knowledge), PubMed, and Medline. The search string was: ("Virtual Reality") AND ("Military") AND ["Stress Training" OR ("Stress Management")]. There were 14 studies that met the inclusion criteria and were included in the review. The main observation to be drawn from this review is that virtual reality can provide interactive Stress Management Training to decrease levels of perceived stress and negative affect in military personnel. This technology appears to be a promising tool for assessing individuals' resilience to stress and for identifying the impact that stress can have on physiological reactivity and performance.Pallavicini F, Argenton L, Toniazzi N, Aceti L, Mantovani F. Virtual realtiy applications for stress management training in the military. Aerosp Med Hum Perform. 2016; 87(12):1021-1030.
Knowledge and Valorization of Historical Sites Through 3d Documentation and Modeling
NASA Astrophysics Data System (ADS)
Farella, E.; Menna, F.; Nocerino, E.; Morabito, D.; Remondino, F.; Campi, M.
2016-06-01
The paper presents the first results of an interdisciplinary project related to the 3D documentation, dissemination, valorization and digital access of archeological sites. Beside the mere 3D documentation aim, the project has two goals: (i) to easily explore and share via web references and results of the interdisciplinary work, including the interpretative process and the final reconstruction of the remains; (ii) to promote and valorize archaeological areas using reality-based 3D data and Virtual Reality devices. This method has been verified on the ruins of the archeological site of Pausilypon, a maritime villa of Roman period (Naples, Italy). Using Unity3D, the virtual tour of the heritage site was integrated and enriched with the surveyed 3D data, text documents, CAAD reconstruction hypotheses, drawings, photos, etc. In this way, starting from the actual appearance of the ruins (panoramic images), passing through the 3D digital surveying models and several other historical information, the user is able to access virtual contents and reconstructed scenarios, all in a single virtual, interactive and immersive environment. These contents and scenarios allow to derive documentation and geometrical information, understand the site, perform analyses, see interpretative processes, communicate historical information and valorize the heritage location.
Presence capture cameras - a new challenge to the image quality
NASA Astrophysics Data System (ADS)
Peltoketo, Veli-Tapani
2016-04-01
Commercial presence capture cameras are coming to the markets and a new era of visual entertainment starts to get its shape. Since the true presence capturing is still a very new technology, the real technical solutions are just passed a prototyping phase and they vary a lot. Presence capture cameras have still the same quality issues to tackle as previous phases of digital imaging but also numerous new ones. This work concentrates to the quality challenges of presence capture cameras. A camera system which can record 3D audio-visual reality as it is has to have several camera modules, several microphones and especially technology which can synchronize output of several sources to a seamless and smooth virtual reality experience. Several traditional quality features are still valid in presence capture cameras. Features like color fidelity, noise removal, resolution and dynamic range create the base of virtual reality stream quality. However, co-operation of several cameras brings a new dimension for these quality factors. Also new quality features can be validated. For example, how the camera streams should be stitched together with 3D experience without noticeable errors and how to validate the stitching? The work describes quality factors which are still valid in the presence capture cameras and defines the importance of those. Moreover, new challenges of presence capture cameras are investigated in image and video quality point of view. The work contains considerations how well current measurement methods can be used in presence capture cameras.
Virtual Reality Used to Serve the Glenn Engineering Community
NASA Technical Reports Server (NTRS)
Carney, Dorothy V.
2001-01-01
There are a variety of innovative new visualization tools available to scientists and engineers for the display and analysis of their models. At the NASA Glenn Research Center, we have an ImmersaDesk, a large, single-panel, semi-immersive display device. This versatile unit can interactively display three-dimensional images in visual stereo. Our challenge is to make this virtual reality platform accessible and useful to researchers. An example of a successful application of this computer technology is the display of blade out simulations. NASA Glenn structural dynamicists, Dr. Kelly Carney and Dr. Charles Lawrence, funded by the Ultra Safe Propulsion Project under Base R&T, are researching blade outs, when turbine engines lose a fan blade during operation. Key objectives of this research include minimizing danger to the aircraft via effective blade containment, predicting destructive loads due to the imbalance following a blade loss, and identifying safe, cost-effective designs and materials for future engines.
Takalo, Jouni; Piironen, Arto; Honkanen, Anna; Lempeä, Mikko; Aikio, Mika; Tuukkanen, Tuomas; Vähäsöyrinki, Mikko
2012-01-01
Ideally, neuronal functions would be studied by performing experiments with unconstrained animals whilst they behave in their natural environment. Although this is not feasible currently for most animal models, one can mimic the natural environment in the laboratory by using a virtual reality (VR) environment. Here we present a novel VR system based upon a spherical projection of computer generated images using a modified commercial data projector with an add-on fish-eye lens. This system provides equidistant visual stimulation with extensive coverage of the visual field, high spatio-temporal resolution and flexible stimulus generation using a standard computer. It also includes a track-ball system for closed-loop behavioural experiments with walking animals. We present a detailed description of the system and characterize it thoroughly. Finally, we demonstrate the VR system's performance whilst operating in closed-loop conditions by showing the movement trajectories of the cockroaches during exploratory behaviour in a VR forest.
A review of the use of simulation in dental education.
Perry, Suzanne; Bridges, Susan Margaret; Burrow, Michael Francis
2015-02-01
In line with the advances in technology and communication, medical simulations are being developed to support the acquisition of requisite psychomotor skills before real-life clinical applications. This review article aimed to give a general overview of simulation in a cognate field, clinical dental education. Simulations in dentistry are not a new phenomenon; however, recent developments in virtual-reality technology using computer-generated medical simulations of 3-dimensional images or environments are providing more optimal practice conditions to smooth the transition from the traditional model-based simulation laboratory to the clinic. Evidence as to the positive aspects of virtual reality include increased effectiveness in comparison with traditional simulation teaching techniques, more efficient learning, objective and reproducible feedback, unlimited training hours, and enhanced cost-effectiveness for teaching establishments. Negative aspects have been indicated as initial setup costs, faculty training, and the lack of a variety of content and current educational simulation programs.
PC-Based Virtual Reality for CAD Model Viewing
ERIC Educational Resources Information Center
Seth, Abhishek; Smith, Shana S.-F.
2004-01-01
Virtual reality (VR), as an emerging visualization technology, has introduced an unprecedented communication method for collaborative design. VR refers to an immersive, interactive, multisensory, viewer-centered, 3D computer-generated environment and the combination of technologies required to build such an environment. This article introduces the…
Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.
Handels, H; Ehrhardt, J
2009-01-01
Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or operation planning is a complex interdisciplinary process. Image computing methods enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.
Virtual Reality and Its Potential Application in Education and Training.
ERIC Educational Resources Information Center
Milheim, William D.
1995-01-01
An overview is provided of current trends in virtual reality research and development, including discussion of hardware, types of virtual reality, and potential problems with virtual reality. Implications for education and training are explored. (Author/JKP)
3D interactive augmented reality-enhanced digital learning systems for mobile devices
NASA Astrophysics Data System (ADS)
Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie
2013-03-01
With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.
Wagner, A; Ploder, O; Enislidis, G; Truppe, M; Ewers, R
1996-04-01
Interventional video tomography (IVT), a new imaging modality, achieves virtual visualization of anatomic structures in three dimensions for intraoperative stereotactic navigation. Partial immersion into a virtual data space, which is orthotopically coregistered to the surgical field, enhances, by means of a see-through head-mounted display (HMD), the surgeon's visual perception and technique by providing visual access to nonvisual data of anatomy, physiology, and function. The presented cases document the potential of augmented reality environments in maxillofacial surgery.
Lee, Kyoung-Hee
2015-01-01
This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program. PMID:26180287
Lee, Kyoung-Hee
2015-06-01
This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program.
Applications of virtual reality technology in pathology.
Grimes, G J; McClellan, S A; Goldman, J; Vaughn, G L; Conner, D A; Kujawski, E; McDonald, J; Winokur, T; Fleming, W
1997-01-01
TelePath(SM) a telerobotic system utilizing virtual microscope concepts based on high quality still digital imaging and aimed at real-time support for surgery by remote diagnosis of frozen sections. Many hospitals and clinics have an application for the remote practice of pathology, particularly in the area of reading frozen sections in support of surgery, commonly called anatomic pathology. The goal is to project the expertise of the pathologist into the remote setting by giving the pathologist access to the microscope slides with an image quality and human interface comparable to what the pathologist would experience at a real rather than a virtual microscope. A working prototype of a virtual microscope has been defined and constructed which has the needed performance in both the image quality and human interface areas for a pathologist to work remotely. This is accomplished through the use of telerobotics and an image quality which provides the virtual microscope the same diagnostic capabilities as a real microscope. The examination of frozen sections is performed a two-dimensional world. The remote pathologist is in a virtual world with the same capabilities as a "real" microscope, but response times may be slower depending on the specific computing and telecommunication environments. The TelePath system has capabilities far beyond a normal biological microscope, such as the ability to create a low power image of the entire sample using multiple images digitally matched together; the ability to digitally retrace a viewing trajectory; and the ability to archive images using CD ROM and other mass storage devices.
[3D Virtual Reality Laparoscopic Simulation in Surgical Education - Results of a Pilot Study].
Kneist, W; Huber, T; Paschold, M; Lang, H
2016-06-01
The use of three-dimensional imaging in laparoscopy is a growing issue and has led to 3D systems in laparoscopic simulation. Studies on box trainers have shown differing results concerning the benefit of 3D imaging. There are currently no studies analysing 3D imaging in virtual reality laparoscopy (VRL). Five surgical fellows, 10 surgical residents and 29 undergraduate medical students performed abstract and procedural tasks on a VRL simulator using conventional 2D and 3D imaging in a randomised order. No significant differences between the two imaging systems were shown for students or medical professionals. Participants who preferred three-dimensional imaging showed significantly better results in 2D as wells as in 3D imaging. First results on three-dimensional imaging on box trainers showed different results. Some studies resulted in an advantage of 3D imaging for laparoscopic novices. This study did not confirm the superiority of 3D imaging over conventional 2D imaging in a VRL simulator. In the present study on 3D imaging on a VRL simulator there was no significant advantage for 3D imaging compared to conventional 2D imaging. Georg Thieme Verlag KG Stuttgart · New York.
Paolini, Gabriele; Peruzzi, Agnese; Mirelman, Anat; Cereatti, Andrea; Gaukrodger, Stephen; Hausdorff, Jeffrey M; Della Croce, Ugo
2014-09-01
The use of virtual reality for the provision of motor-cognitive gait training has been shown to be effective for a variety of patient populations. The interaction between the user and the virtual environment is achieved by tracking the motion of the body parts and replicating it in the virtual environment in real time. In this paper, we present the validation of a novel method for tracking foot position and orientation in real time, based on the Microsoft Kinect technology, to be used for gait training combined with virtual reality. The validation of the motion tracking method was performed by comparing the tracking performance of the new system against a stereo-photogrammetric system used as gold standard. Foot position errors were in the order of a few millimeters (average RMSD from 4.9 to 12.1 mm in the medio-lateral and vertical directions, from 19.4 to 26.5 mm in the anterior-posterior direction); the foot orientation errors were also small (average %RMSD from 5.6% to 8.8% in the medio-lateral and vertical directions, from 15.5% to 18.6% in the anterior-posterior direction). The results suggest that the proposed method can be effectively used to track feet motion in virtual reality and treadmill-based gait training programs.
Habanapp: Havana's Architectural Heritage a Click Away
NASA Astrophysics Data System (ADS)
Morganti, C.; Bartolomei, C.
2018-05-01
The research treats the application of technologies related with augmented and virtual reality to architectural and historical context in the city of Havana, Cuba, on the basis of historical studies and Range-Imaging techniques on buildings bordering old city's five main squares. The specific aim is to transfer all of the data received thanks to the most recent mobiles apps about Augmented Reality (AR) and Virtual reality (VR), in order to give birth to an innovative App never seen before in Cuba. The "Oficina del Historiador de la ciudad de La Habana", institution supervising architectural and cultural asset in Cuba, is widely interested in the topic in order to develop a new educational, cultural and artistic tool to be used both online and offline.
Virtual reality-based cognitive training for drug abusers: A randomised controlled trial.
Man, David W K
2018-05-08
Non-pharmacological means are being developed to enhance cognitive abilities in drug abusers. This study evaluated virtual reality (VR) as an intervention tool for enhancing cognitive and vocational outcomes in 90 young ketamine users (KU) randomly assigned to a treatment group (virtual reality group, VRG; tutor-administered group, TAG) or wait-listed control group (CG). Two training programmes with similar content but different delivery modes (VR-based and manual-based) were applied using a virtual boutique as a training scenario. Outcome assessments comprised the Digit Vigilance Test, Rivermead Behavioural Memory Test, Wisconsin Cart Sorting Test, work-site test and self-efficacy pre- and post-test and during 3- and 6-month follow-ups. The VRG exhibited significant improvements in attention and improvements in memory that were maintained after 3 months. Both the VRG and TAG exhibited significantly improved vocational skills after training which were maintained during follow-up, and improved self-efficacy. VR-based cognitive training might target cognitive problems in KU.
Seraglia, Bruno; Gamberini, Luciano; Priftis, Konstantinos; Scatturin, Pietro; Martinelli, Massimiliano; Cutini, Simone
2011-01-01
For over two decades Virtual Reality (VR) has been used as a useful tool in several fields, from medical and psychological treatments, to industrial and military applications. Only in recent years researchers have begun to study the neural correlates that subtend VR experiences. Even if the functional Magnetic Resonance Imaging (fMRI) is the most common and used technique, it suffers several limitations and problems. Here we present a methodology that involves the use of a new and growing brain imaging technique, functional Near-infrared Spectroscopy (fNIRS), while participants experience immersive VR. In order to allow a proper fNIRS probe application, a custom-made VR helmet was created. To test the adapted helmet, a virtual version of the line bisection task was used. Participants could bisect the lines in a virtual peripersonal or extrapersonal space, through the manipulation of a Nintendo Wiimote ® controller in order for the participants to move a virtual laser pointer. Although no neural correlates of the dissociation between peripersonal and extrapersonal space were found, a significant hemodynamic activity with respect to the baseline was present in the right parietal and occipital areas. Both advantages and disadvantages of the presented methodology are discussed.
Virtual reality training for surgical trainees in laparoscopic surgery.
Nagendran, Myura; Gurusamy, Kurinchi Selvan; Aggarwal, Rajesh; Loizidou, Marilena; Davidson, Brian R
2013-08-27
Standard surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time-consuming, costly, and of variable effectiveness. Training using a virtual reality simulator is an option to supplement standard training. Virtual reality training improves the technical skills of surgical trainees such as decreased time for suturing and improved accuracy. The clinical impact of virtual reality training is not known. To assess the benefits (increased surgical proficiency and improved patient outcomes) and harms (potentially worse patient outcomes) of supplementary virtual reality training of surgical trainees with limited laparoscopic experience. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE and Science Citation Index Expanded until July 2012. We included all randomised clinical trials comparing virtual reality training versus other forms of training including box-trainer training, no training, or standard laparoscopic training in surgical trainees with little laparoscopic experience. We also planned to include trials comparing different methods of virtual reality training. We included only trials that assessed the outcomes in people undergoing laparoscopic surgery. Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager 5 analysis. For each outcome we calculated the mean difference (MD) or standardised mean difference (SMD) with 95% confidence intervals based on intention-to-treat analysis. We included eight trials covering 109 surgical trainees with limited laparoscopic experience. Of the eight trials, six compared virtual reality versus no supplementary training. One trial compared virtual reality training versus box-trainer training and versus no supplementary training, and one trial compared virtual reality training versus box-trainer training. There were no trials that compared different forms of virtual reality training. All the trials were at high risk of bias. Operating time and operative performance were the only outcomes reported in the trials. The remaining outcomes such as mortality, morbidity, quality of life (the primary outcomes of this review) and hospital stay (a secondary outcome) were not reported. Virtual reality training versus no supplementary training: The operating time was significantly shorter in the virtual reality group than in the no supplementary training group (3 trials; 49 participants; MD -11.76 minutes; 95% CI -15.23 to -8.30). Two trials that could not be included in the meta-analysis also showed a reduction in operating time (statistically significant in one trial). The numerical values for operating time were not reported in these two trials. The operative performance was significantly better in the virtual reality group than the no supplementary training group using the fixed-effect model (2 trials; 33 participants; SMD 1.65; 95% CI 0.72 to 2.58). The results became non-significant when the random-effects model was used (2 trials; 33 participants; SMD 2.14; 95% CI -1.29 to 5.57). One trial could not be included in the meta-analysis as it did not report the numerical values. The authors stated that the operative performance of virtual reality group was significantly better than the control group. Virtual reality training versus box-trainer training: The only trial that reported operating time did not report the numerical values. In this trial, the operating time in the virtual reality group was significantly shorter than in the box-trainer group. Of the two trials that reported operative performance, only one trial reported the numerical values. The operative performance was significantly better in the virtual reality group than in the box-trainer group (1 trial; 19 participants; SMD 1.46; 95% CI 0.42 to 2.50). In the other trial that did not report the numerical values, the authors stated that the operative performance in the virtual reality group was significantly better than the box-trainer group. Virtual reality training appears to decrease the operating time and improve the operative performance of surgical trainees with limited laparoscopic experience when compared with no training or with box-trainer training. However, the impact of this decreased operating time and improvement in operative performance on patients and healthcare funders in terms of improved outcomes or decreased costs is not known. Further well-designed trials at low risk of bias and random errors are necessary. Such trials should assess the impact of virtual reality training on clinical outcomes.
Deutsch, Judith E
2009-01-01
Improving walking for individuals with musculoskeletal and neuromuscular conditions is an important aspect of rehabilitation. The capabilities of clinicians who address these rehabilitation issues could be augmented with innovations such as virtual reality gaming based technologies. The chapter provides an overview of virtual reality gaming based technologies currently being developed and tested to improve motor and cognitive elements required for ambulation and mobility in different patient populations. Included as well is a detailed description of a single VR system, consisting of the rationale for development and iterative refinement of the system based on clinical science. These concepts include: neural plasticity, part-task training, whole task training, task specific training, principles of exercise and motor learning, sensorimotor integration, and visual spatial processing.
NASA Astrophysics Data System (ADS)
Thoma, George R.
1996-03-01
The virtual digital library, a concept that is quickly becoming a reality, offers rapid and geography-independent access to stores of text, images, graphics, motion video and other datatypes. Furthermore, a user may move from one information source to another through hypertext linkages. The projects described here further the notion of such an information paradigm from an end user viewpoint.
Virtual reality neurosurgery: a simulator blueprint.
Spicer, Mark A; van Velsen, Martin; Caffrey, John P; Apuzzo, Michael L J
2004-04-01
This article details preliminary studies undertaken to integrate the most relevant advancements across multiple disciplines in an effort to construct a highly realistic neurosurgical simulator based on a distributed computer architecture. Techniques based on modified computational modeling paradigms incorporating finite element analysis are presented, as are current and projected efforts directed toward the implementation of a novel bidirectional haptic device. Patient-specific data derived from noninvasive magnetic resonance imaging sequences are used to construct a computational model of the surgical region of interest. Magnetic resonance images of the brain may be coregistered with those obtained from magnetic resonance angiography, magnetic resonance venography, and diffusion tensor imaging to formulate models of varying anatomic complexity. The majority of the computational burden is encountered in the presimulation reduction of the computational model and allows realization of the required threshold rates for the accurate and realistic representation of real-time visual animations. Intracranial neurosurgical procedures offer an ideal testing site for the development of a totally immersive virtual reality surgical simulator when compared with the simulations required in other surgical subspecialties. The material properties of the brain as well as the typically small volumes of tissue exposed in the surgical field, coupled with techniques and strategies to minimize computational demands, provide unique opportunities for the development of such a simulator. Incorporation of real-time haptic and visual feedback is approached here and likely will be accomplished soon.
Marescaux, J; Clément, J M; Nord, M; Russier, Y; Tassetti, V; Mutter, D; Cotin, S; Ayache, N
1997-11-01
Surgical simulation increasingly appears to be an essential aspect of tomorrow's surgery. The development of a hepatic surgery simulator is an advanced concept calling for a new writing system which will transform the medical world: virtual reality. Virtual reality extends the perception of our five senses by representing more than the real state of things by the means of computer sciences and robotics. It consists of three concepts: immersion, navigation and interaction. Three reasons have led us to develop this simulator: the first is to provide the surgeon with a comprehensive visualisation of the organ. The second reason is to allow for planning and surgical simulation that could be compared with the detailed flight-plan for a commercial jet pilot. The third lies in the fact that virtual reality is an integrated part of the concept of computer assisted surgical procedure. The project consists of a sophisticated simulator which has to include five requirements: visual fidelity, interactivity, physical properties, physiological properties, sensory input and output. In this report we will describe how to get a realistic 3D model of the liver from bi-dimensional 2D medical images for anatomical and surgical training. The introduction of a tumor and the consequent planning and virtual resection is also described, as are force feedback and real-time interaction.
Are Spatial Visualization Abilities Relevant to Virtual Reality?
ERIC Educational Resources Information Center
Chen, Chwen Jen
2006-01-01
This study aims to investigate the effects of virtual reality (VR)-based learning environment on learners of different spatial visualization abilities. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the Guided VR mode, irrespective of their spatial visualization abilities. This indicates that…
Virtual Reality Social Cognition Training for Young Adults with High-Functioning Autism
ERIC Educational Resources Information Center
Kandalaft, Michelle R.; Didehbani, Nyaz; Krawczyk, Daniel C.; Allen, Tandra T.; Chapman, Sandra B.
2013-01-01
Few evidence-based social interventions exist for young adults with high-functioning autism, many of whom encounter significant challenges during the transition into adulthood. The current study investigated the feasibility of an engaging Virtual Reality Social Cognition Training intervention focused on enhancing social skills, social cognition,…
Rodríguez-Tizcareño, Mario H; Barajas, Lizbeth; Pérez-Gásque, Marisol; Gómez, Salvador
2012-06-01
This report presents a protocol used to transfer the virtual treatment plan data to the surgical and prosthetic reality and its clinical application, bone site augmentation with computer-custom milled bovine bone graft blocks to their ideal architecture form, implant insertion based on image-guided stent fabrication, and the restorative manufacturing process through computed tomography-based software programs and navigation systems and the computer-aided design and manufacturing techniques for the treatment of the edentulous maxilla.
Marco, José H; Perpiñá, Conxa; Botella, Cristina
2013-10-30
Body image disturbance is a significant maintenance and prognosis factor in eating disorders. Hence, existing eating disorder treatments can benefit from direct intervention in patients' body image. No controlled studies have yet compared eating disorder treatments with and without a treatment component centered on body image. This paper includes a controlled study comparing Cognitive Behavioral Treatment (CBT) for eating disorders with and without a component for body image treatment using Virtual Reality techniques. Thirty-four participants diagnosed with eating disorders were evaluated and treated. The clinical improvement was analyzed from statistical and clinical points of view. Results showed that the patients who received the component for body image treatment improved more than the group without this component. Furthermore, improvement was maintained in post-treatment and at one year follow-up. The results reveal the advantage of including a treatment component addressing body image disturbances in the protocol for general treatment of eating disorders. The implications and limitations of these results are discussed below. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Virtual endoscopy in neurosurgery: a review.
Neubauer, André; Wolfsberger, Stefan
2013-01-01
Virtual endoscopy is the computerized creation of images depicting the inside of patient anatomy reconstructed in a virtual reality environment. It permits interactive, noninvasive, 3-dimensional visual inspection of anatomical cavities or vessels. This can aid in diagnostics, potentially replacing an actual endoscopic procedure, and help in the preparation of a surgical intervention by bridging the gap between plain 2-dimensional radiologic images and the 3-dimensional depiction of anatomy during actual endoscopy. If not only the endoscopic vision but also endoscopic handling, including realistic haptic feedback, is simulated, virtual endoscopy can be an effective training tool for novice surgeons. In neurosurgery, the main fields of the application of virtual endoscopy are third ventriculostomy, endonasal surgery, and the evaluation of pathologies in cerebral blood vessels. Progress in this very active field of research is achieved through cooperation between the technical and the medical communities. While the technology advances and new methods for modeling, reconstruction, and simulation are being developed, clinicians evaluate existing simulators, steer the development of new ones, and explore new fields of application. This review introduces some of the most interesting virtual reality systems for endoscopic neurosurgery developed in recent years and presents clinical studies conducted either on areas of application or specific systems. In addition, benefits and limitations of single products and simulated neuroendoscopy in general are pointed out.
Virtual Reality as Innovative Approach to the Interior Designing
NASA Astrophysics Data System (ADS)
Kaleja, Pavol; Kozlovská, Mária
2017-06-01
We can observe significant potential of information and communication technologies (ICT) in interior designing field, by development of software and hardware virtual reality tools. Using ICT tools offer realistic perception of proposal in its initial idea (the study). A group of real-time visualization, supported by hardware tools like Oculus Rift HTC Vive, provides free walkthrough and movement in virtual interior with the possibility of virtual designing. By improving of ICT software tools for designing in virtual reality we can achieve still more realistic virtual environment. The contribution presented proposal of an innovative approach of interior designing in virtual reality, using the latest software and hardware ICT virtual reality technologies
Lemole, G Michael; Banerjee, P Pat; Luciano, Cristian; Neckrysh, Sergey; Charbel, Fady T
2007-07-01
Mastery of the neurosurgical skill set involves many hours of supervised intraoperative training. Convergence of political, economic, and social forces has limited neurosurgical resident operative exposure. There is need to develop realistic neurosurgical simulations that reproduce the operative experience, unrestricted by time and patient safety constraints. Computer-based, virtual reality platforms offer just such a possibility. The combination of virtual reality with dynamic, three-dimensional stereoscopic visualization, and haptic feedback technologies makes realistic procedural simulation possible. Most neurosurgical procedures can be conceptualized and segmented into critical task components, which can be simulated independently or in conjunction with other modules to recreate the experience of a complex neurosurgical procedure. We use the ImmersiveTouch (ImmersiveTouch, Inc., Chicago, IL) virtual reality platform, developed at the University of Illinois at Chicago, to simulate the task of ventriculostomy catheter placement as a proof-of-concept. Computed tomographic data are used to create a virtual anatomic volume. Haptic feedback offers simulated resistance and relaxation with passage of a virtual three-dimensional ventriculostomy catheter through the brain parenchyma into the ventricle. A dynamic three-dimensional graphical interface renders changing visual perspective as the user's head moves. The simulation platform was found to have realistic visual, tactile, and handling characteristics, as assessed by neurosurgical faculty, residents, and medical students. We have developed a realistic, haptics-based virtual reality simulator for neurosurgical education. Our first module recreates a critical component of the ventriculostomy placement task. This approach to task simulation can be assembled in a modular manner to reproduce entire neurosurgical procedures.
Yoon, Jisun; Chun, Min Ho; Lee, Sook Joung; Kim, Bo Ryun
2015-06-01
The aim of this study was to evaluate the benefit of virtual reality-based rehabilitation on upper-extremity function in patients with brain tumor. Patients with upper-extremity dysfunction were divided into age-matched and tumor type-matched two groups. The intervention group performed the virtual reality program 30 mins per session for 9 sessions and conventional occupational therapy 30 mins per session for 6 sessions for 3 wks, whereas the control group received conventional occupational therapy alone 30 mins per session for 15 sessions for 3 wks. The Box and Block test, the Manual Function test, and the Fugl-Meyer scale were used to evaluate upper-extremity function. The Korean version of the Modified Barthel Index was used to assess activities of daily living. Forty patients completed the study (20 for each group). Each group exhibited significant posttreatment improvements in the Box and Block test, Manual Function test, Fugl-Meyer scale, and Korean version of the Modified Barthel Index scores. The Box and Block test, the Fugl-Meyer scale, and the Manual Function test showed greater improvements in shoulder/elbow/forearm function in the intervention group and hand function in the control group. Virtual reality-based rehabilitation combined with conventional occupational therapy may be more effective than conventional occupational therapy, especially for proximal upper-extremity function in patients with brain tumor. Further studies considering hand function, such as use of virtual reality programs that targeting hand use, are required.
The virtues of virtual reality in exposure therapy.
Gega, Lina
2017-04-01
Virtual reality can be more effective and less burdensome than real-life exposure. Optimal virtual reality delivery should incorporate in situ direct dialogues with a therapist, discourage safety behaviours, allow for a mismatch between virtual and real exposure tasks, and encourage self-directed real-life practice between and beyond virtual reality sessions. © The Royal College of Psychiatrists 2017.
Virtual Reality in the Classroom.
ERIC Educational Resources Information Center
Pantelidis, Veronica S.
1993-01-01
Considers the concept of virtual reality; reviews its history; describes general uses of virtual reality, including entertainment, medicine, and design applications; discusses classroom uses of virtual reality, including a software program called Virtus WalkThrough for use with a computer monitor; and suggests future possibilities. (34 references)…
Astronaut Prepares for Mission With Virtual Reality Hardware
NASA Technical Reports Server (NTRS)
2001-01-01
Astronaut John M. Grunsfeld, STS-109 payload commander, uses virtual reality hardware at Johnson Space Center to rehearse some of his duties prior to the STS-109 mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. This technology allows NASA astronauts to practice International Space Station work missions in advance. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.
ERIC Educational Resources Information Center
Fadzil, Azman
2006-01-01
At present, the development of Virtual Reality (VR) technology is expanding due to the importance and needs to use the 3D elements and 360 degrees panorama in expressing a clearer picture to consumers in various fields such as education, military, medicine, entertainment and so on. The web based VR kiosk project in Darulaman's Teacher Training…
van Dongen, Koen W; Ahlberg, Gunnar; Bonavina, Luigi; Carter, Fiona J; Grantcharov, Teodor P; Hyltander, Anders; Schijven, Marlies P; Stefani, Alessandro; van der Zee, David C; Broeders, Ivo A M J
2011-01-01
Virtual reality (VR) simulators have been demonstrated to improve basic psychomotor skills in endoscopic surgery. The exercise configuration settings used for validation in studies published so far are default settings or are based on the personal choice of the tutors. The purpose of this study was to establish consensus on exercise configurations and on a validated training program for a virtual reality simulator, based on the experience of international experts to set criterion levels to construct a proficiency-based training program. A consensus meeting was held with eight European teams, all extensively experienced in using the VR simulator. Construct validity of the training program was tested by 20 experts and 60 novices. The data were analyzed by using the t test for equality of means. Consensus was achieved on training designs, exercise configuration, and examination. Almost all exercises (7/8) showed construct validity. In total, 50 of 94 parameters (53%) showed significant difference. A European, multicenter, validated, training program was constructed according to the general consensus of a large international team with extended experience in virtual reality simulation. Therefore, a proficiency-based training program can be offered to training centers that use this simulator for training in basic psychomotor skills in endoscopic surgery.
Simulation Of Assembly Processes With Technical Of Virtual Reality
NASA Astrophysics Data System (ADS)
García García, Manuel; Arenas Reina, José Manuel; Lite, Alberto Sánchez; Sebastián Pérez, Miguel Ángel
2009-11-01
Virtual reality techniques use at industrial processes provides a real approach to product life cycle. For components manual assembly, the use of virtual surroundings facilitates a simultaneous engineering in which variables such as human factors and productivity take a real act. On the other hand, in the actual phase of industrial competition it is required a rapid adjustment to client needs and to market situation. In this work it is analyzed the assembly of the front components of a vehicle using virtual reality tools and following up a product-process design methodology which includes every life service stage. This study is based on workstations design, taking into account productive and human factors from the ergonomic point of view implementing a postural study of every assembly operation, leaving the rest of stages for a later study. Design is optimized applying this methodology together with the use of virtual reality tools. It is also achieved a 15% reduction on time assembly and of 90% reduction in muscle—skeletal diseases at every assembly operation.
Development of a virtual reality training system for endoscope-assisted submandibular gland removal.
Miki, Takehiro; Iwai, Toshinori; Kotani, Kazunori; Dang, Jianwu; Sawada, Hideyuki; Miyake, Minoru
2016-11-01
Endoscope-assisted surgery has widely been adopted as a basic surgical procedure, with various training systems using virtual reality developed for this procedure. In the present study, a basic training system comprising virtual reality for the removal of submandibular glands under endoscope assistance was developed. The efficacy of the training system was verified in novice oral surgeons. A virtual reality training system was developed using existing haptic devices. Virtual reality models were constructed from computed tomography data to ensure anatomical accuracy. Novice oral surgeons were trained using the developed virtual reality training system. The developed virtual reality training system included models of the submandibular gland and surrounding connective tissues and blood vessels entering the submandibular gland. Cutting or abrasion of the connective tissue and manipulations, such as elevation of blood vessels, were reproduced by the virtual reality system. A training program using the developed system was devised. Novice oral surgeons were trained in accordance with the devised training program. Our virtual reality training system for endoscope-assisted removal of the submandibular gland is effective in the training of novice oral surgeons in endoscope-assisted surgery. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
The Use of Virtual Reality in the Study of People's Responses to Violent Incidents.
Rovira, Aitor; Swapp, David; Spanlang, Bernhard; Slater, Mel
2009-01-01
This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on field data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unification of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call 'plausibility' - including the fidelity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram's 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents.
The Use of Virtual Reality in the Study of People's Responses to Violent Incidents
Rovira, Aitor; Swapp, David; Spanlang, Bernhard; Slater, Mel
2009-01-01
This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on field data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unification of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call ‘plausibility’ – including the fidelity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram's 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents. PMID:20076762
Virtual reality: past, present and future.
Gobbetti, E; Scateni, R
1998-01-01
This report provides a short survey of the field of virtual reality, highlighting application domains, technological requirements, and currently available solutions. The report is organized as follows: section 1 presents the background and motivation of virtual environment research and identifies typical application domain, section 2 discusses the characteristics a virtual reality system must have in order to exploit the perceptual and spatial skills of users, section 3 surveys current input/output devices for virtual reality, section 4 surveys current software approaches to support the creation of virtual reality systems, and section 5 summarizes the report.
Virtual Reality in Schools: The Ultimate Educational Technology.
ERIC Educational Resources Information Center
Reid, Robert D.; Sykes, Wylmarie
1999-01-01
Discusses the use of virtual reality as an educational tool. Highlights include examples of virtual reality in public schools that lead to a more active learning process, simulated environments, integrating virtual reality into any curriculum, benefits to teachers and students, and overcoming barriers to implementation. (LRW)
BIM Based Virtual Environment for Fire Emergency Evacuation
Rezgui, Yacine; Ong, Hoang N.
2014-01-01
Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management. PMID:25197704
Virtual Reality as a Story Telling Platform for Geoscience Communication
NASA Astrophysics Data System (ADS)
Lazar, K.; Moysey, S. M.
2017-12-01
Capturing the attention of students and the public is a critical step for increasing societal interest and literacy in earth science issues. Virtual reality (VR) provides a means for geoscience engagement that is well suited to place-based learning through exciting and immersive experiences. One approach is to create fully-immersive virtual gaming environments where players interact with physical objects, such as rock samples and outcrops, to pursue geoscience learning goals. Developing an experience like this, however, can require substantial programming expertise and resources. At the other end of the development spectrum, it is possible for anyone to create immersive virtual experiences with 360-degree imagery, which can be made interactive using easy to use VR editing software to embed videos, audio, images, and other content within the 360-degree image. Accessible editing tools like these make the creation of VR experiences something that anyone can tackle. Using the VR editor ThingLink and imagery from Google Maps, for example, we were able to create an interactive tour of the Grand Canyon, complete with embedded assessments, in a matter of hours. The true power of such platforms, however, comes from the potential to engage students as content authors to create and share stories of place that explore geoscience issues from their personal perspective. For example, we have used combinations of 360-degree images with interactive mapping and web platforms to enable students with no programming experience to create complex web apps as highly engaging story telling platforms. We highlight here examples of how we have implemented such story telling approaches with students to assess learning in courses, to share geoscience research outcomes, and to communicate issues of societal importance.
Ventura, Joseph; Welikson, Tamara; Subotnik, Kenneth L; Ered, Arielle; Keefe, Richard; Hellemann, Gerhard H; Nuechterlein, Keith H
2018-01-01
Abstract Background Research using virtual reality assessment of functional capacity has shown promise as a reliable and valid way to assess treatment response in patients with established schizophrenia. There has been little work on virtual reality based assessments of functional capacity for patients in the early phase of schizophrenia. We examined whether virtual reality based assessment methods reveal functional capacity deficits in young patients and relevant relationships with established measures of neurocognition, functional capacity performance, and daily functioning. Methods The sample consisted of UCLA Aftercare Research Program patients (n=42) who were diagnosed by trained raters administering the SCID and who met criteria for schizophrenia, schizoaffective disorder, or schizophreniform disorder, and screened normal control subjects (n=13). Patients were within 2 years of their first psychotic episode upon clinic entry, were an average of 23.2 years old, and had an average of 12.9 years of education. The Virtual Reality Functional Capacity Assessment Tool (VRFCAT) was the computer-based measure of functional capacity. We used the MATRICS Consensus Cognitive Battery (MCCB) as an objective measure of neurocognition and the UCSD Performance-Based Skills Assessment (UPSA) to assess functional capacity performance. The Global Functioning Scale: Role and Social, and the Role Functioning Scale were used to assess work and school performance, familial interactions, and social functioning. Results We were able to confirm that the deficit in functional capacity performance measured using VRFCAT is present in the early course of schizophrenia in that the patients were slower and committed more errors (M=830.41) as compared with normal controls (M=716.84; t=3.0, p<.01). Virtual reality based assessment of functional capacity was correlated with objective measures of neurocognition (MCCB Overall Composite), r=-.71, p=<.01, standard approaches to functional capacity assessment (UPSA), r=-.66, p=<.01, work and school functioning (r=-.52, p<.01), and level of social relationships (r=-.43, p=<.03), but not familial relationships (r=-.03, p=.87). Interestingly, neither neurocognition (MCCB) nor functional capacity performance (UPSA) were correlated with the level of familial relationships. Discussion We extend previous findings in that even patients in the early course of schizophrenia showed virtual reality based functional capacity performance deficits when compared with normal control subjects. Virtual reality based performance was correlated with neurocognition, suggesting that it may be sensitive to changes in cognition. Furthermore, correlations with everyday work/school and social functioning indicate promise as a co-primary measure to index change in functioning in response to treatment. Interestingly, none of our measures of functional capacity or neurocognition were correlated with familial relationships indicating that the determinates of family interactions might be driven by factors other than cognitive capacities.
Codd, Anthony M; Choudhury, Bipasha
2011-01-01
The use of cadavers to teach anatomy is well established, but limitations with this approach have led to the introduction of alternative teaching methods. One such method is the use of three-dimensional virtual reality computer models. An interactive, three-dimensional computer model of human forearm anterior compartment musculoskeletal anatomy was produced using the open source 3D imaging program "Blender." The aim was to evaluate the use of 3D virtual reality when compared with traditional anatomy teaching methods. Three groups were identified from the University of Manchester second year Human Anatomy Research Skills Module class: a "control" group (no prior knowledge of forearm anatomy), a "traditional methods" group (taught using dissection and textbooks), and a "model" group (taught solely using e-resource). The groups were assessed on anatomy of the forearm by a ten question practical examination. ANOVA analysis showed the model group mean test score to be significantly higher than the control group (mean 7.25 vs. 1.46, P < 0.001) and not significantly different to the traditional methods group (mean 6.87, P > 0.5). Feedback from all users of the e-resource was positive. Virtual reality anatomy learning can be used to compliment traditional teaching methods effectively. Copyright © 2011 American Association of Anatomists.
Visualizing Mars Using Virtual Reality: A State of the Art Mapping Technique Used on Mars Pathfinder
NASA Technical Reports Server (NTRS)
Stoker, C.; Zbinden, E.; Blackmon, T.; Nguyen, L.
1999-01-01
We describe an interactive terrain visualization system which rapidly generates and interactively displays photorealistic three-dimensional (3-D) models produced from stereo images. This product, first demonstrated in Mars Pathfinder, is interactive, 3-D, and can be viewed in an immersive display which qualifies it for the name Virtual Reality (VR). The use of this technology on Mars Pathfinder was the first use of VR for geologic analysis. A primary benefit of using VR to display geologic information is that it provides an improved perception of depth and spatial layout of the remote site. The VR aspect of the display allows an operator to move freely in the environment, unconstrained by the physical limitations of the perspective from which the data were acquired. Virtual Reality offers a way to archive and retrieve information in a way that is intuitively obvious. Combining VR models with stereo display systems can give the user a sense of presence at the remote location. The capability, to interactively perform measurements from within the VR model offers unprecedented ease in performing operations that are normally time consuming and difficult using other techniques. Thus, Virtual Reality can be a powerful a cartographic tool. Additional information is contained in the original extended abstract.
The need for virtual reality simulators in dental education: A review.
Roy, Elby; Bakr, Mahmoud M; George, Roy
2017-04-01
Virtual reality simulators are becoming an essential part of modern education. The benefits of Virtual reality in dentistry is constantly being assessed as a method or an adjunct to improve fine motor skills, hand-eye coordination in pre-clinical settings and overcome the monetary and intellectual challenges involved with such training. This article, while providing an overview of the virtual reality dental simulators, also looks at the link between virtual reality simulation and current pedagogical knowledge.
Therapists' perception of benefits and costs of using virtual reality treatments.
Segal, Robert; Bhatia, Maneet; Drapeau, Martin
2011-01-01
Research indicates that virtual reality is effective in the treatment of many psychological difficulties and is being used more frequently. However, little is known about therapists' perception of the benefits and costs related to the use of virtual therapy in treatment delivery. In the present study, 271 therapists completed an online questionnaire that assessed their perceptions about the potential benefits and costs of using virtual reality in psychotherapy. Results indicated that therapists perceived the potential benefits as outweighing the potential costs. Therapists' self-reported knowledge of virtual reality, theoretical orientation, and interest in using virtual reality were found to be associated with perceptual measures. These findings contribute to the current knowledge of the perception of virtual reality amongst psychotherapists.
Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project.
Zucchella, Chiara; Sinforiani, Elena; Tassorelli, Cristina; Cavallini, Elena; Tost-Pardell, Daniela; Grau, Sergi; Pazzi, Stefania; Puricelli, Stefano; Bernini, Sara; Bottiroli, Sara; Vecchi, Tomaso; Sandrini, Giorgio; Nappi, Giuseppe
2014-01-01
Conventional cognitive assessment is based on a pencil-and-paper neuropsychological evaluation, which is time consuming, expensive and requires the involvement of several professionals. Information and communication technology could be exploited to allow the development of tools that are easy to use, reduce the amount of data processing, and provide controllable test conditions. Serious games (SGs) have the potential to be new and effective tools in the management and treatment of cognitive impairments Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project in the elderly. Moreover, by adopting SGs in 3D virtual reality settings, cognitive functions might be evaluated using tasks that simulate daily activities, increasing the "ecological validity" of the assessment. In this commentary we report our experience in the creation of the Smart Aging platform, a 3D SGand virtual environment-based platform for the early identification and characterization of mild cognitive impairment.
Virtual reality goes to war: a brief review of the future of military behavioral healthcare.
Rizzo, Albert; Parsons, Thomas D; Lange, Belinda; Kenny, Patrick; Buckwalter, John G; Rothbaum, Barbara; Difede, JoAnn; Frazier, John; Newman, Brad; Williams, Josh; Reger, Greg
2011-06-01
Numerous reports indicate that the incidence of posttraumatic stress disorder (PTSD) in returning OEF/OIF military personnel is creating a significant healthcare challenge. These findings have served to motivate research on how to better develop and disseminate evidence-based treatments for PTSD. Virtual Reality delivered exposure therapy for PTSD has been previously used with reports of positive outcomes. This article details how virtual reality applications are being designed and implemented across various points in the military deployment cycle to prevent, identify and treat combat-related PTSD in OIF/OEF Service Members and Veterans. The summarized projects in these areas have been developed at the University of Southern California Institute for Creative Technologies, a U.S. Army University Affiliated Research Center, and this paper will detail efforts to use virtual reality to deliver exposure therapy, assess PTSD and cognitive function and provide stress resilience training prior to deployment.
ERIC Educational Resources Information Center
Taçgin, Zeynep; Arslan, Ahmet
2017-01-01
The purpose of this study is to determine perception of postgraduate Computer Education and Instructional Technologies (CEIT) students regarding the concepts of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), Augmented Virtuality (AV) and Mirror Reality; and to offer a table that includes differences and similarities between…
Yang, Yea-Ru; Tsai, Meng-Pin; Chuang, Tien-Yow; Sung, Wen-Hsu; Wang, Ray-Yau
2008-08-01
This is a single blind randomized controlled trial to examine the effect of virtual reality-based training on the community ambulation in individuals with stroke. Twenty subjects with stroke were assigned randomly to either the control group (n=9) or the experimental group (n=11). Subjects in the control group received the treadmill training. Subjects in the experimental group underwent the virtual reality-based treadmill training. Walking speed, community walking time, walking ability questionnaire (WAQ), and activities-specific balance confidence (ABC) scale were evaluated. Subjects in the experimental group improved significantly in walking speed, community walking time, and WAQ score at posttraining and 1-month follow-up periods. Their ABC score also significantly increased at posttraining but did not maintain at follow-up period. Regarding the between-group comparisons, the experimental group improved significantly more than control group in walking speed (P=0.03) and community walking time (P=0.04) at posttraining period and in WAQ score (P=0.03) at follow-up period. Our results support the perceived benefits of gait training programs that incorporate virtual reality to augment the community ambulation of individuals with stroke.
Ambient Intelligence in Multimeda and Virtual Reality Environments for the rehabilitation
NASA Astrophysics Data System (ADS)
Benko, Attila; Cecilia, Sik Lanyi
This chapter presents a general overview about the use of multimedia and virtual reality in rehabilitation and assistive and preventive healthcare. This chapter deals with multimedia, virtual reality applications based AI intended for use by medical doctors, nurses, special teachers and further interested persons. It describes methods how multimedia and virtual reality is able to assist their work. These include the areas how multimedia and virtual reality can help the patients everyday life and their rehabilitation. In the second part of the chapter we present the Virtual Therapy Room (VTR) a realized application for aphasic patients that was created for practicing communication and expressing emotions in a group therapy setting. The VTR shows a room that contains a virtual therapist and four virtual patients (avatars). The avatars are utilizing their knowledge base in order to answer the questions of the user providing an AI environment for the rehabilitation. The user of the VTR is the aphasic patient who has to solve the exercises. The picture that is relevant for the actual task appears on the virtual blackboard. Patient answers questions of the virtual therapist. Questions are about pictures describing an activity or an object in different levels. Patient can ask an avatar for answer. If the avatar knows the answer the avatars emotion changes to happy instead of sad. The avatar expresses its emotions in different dimensions. Its behavior, face-mimic, voice-tone and response also changes. The emotion system can be described as a deterministic finite automaton where places are emotion-states and the transition function of the automaton is derived from the input-response reaction of an avatar. Natural language processing techniques were also implemented in order to establish highquality human-computer interface windows for each of the avatars. Aphasic patients are able to interact with avatars via these interfaces. At the end of the chapter we visualize the possible future research field.
Kanumuri, Prathima; Ganai, Sabha; Wohaibi, Eyad M.; Bush, Ronald W.; Grow, Daniel R.
2008-01-01
Background: The study aim was to compare the effectiveness of virtual reality and computer-enhanced video-scopic training devices for training novice surgeons in complex laparoscopic skills. Methods: Third-year medical students received instruction on laparoscopic intracorporeal suturing and knot tying and then underwent a pretraining assessment of the task using a live porcine model. Students were then randomized to objectives-based training on either the virtual reality (n=8) or computer-enhanced (n=8) training devices for 4 weeks, after which the assessment was repeated. Results: Posttraining performance had improved compared with pretraining performance in both task completion rate (94% versus 18%; P<0.001*) and time [181±58 (SD) versus 292±24*]. Performance of the 2 groups was comparable before and after training. Of the subjects, 88% thought that haptic cues were important in simulators. Both groups agreed that their respective training systems were effective teaching tools, but computer-enhanced device trainees were more likely to rate their training as representative of reality (P<0.01). Conclusions: Training on virtual reality and computer-enhanced devices had equivalent effects on skills improvement in novices. Despite the perception that haptic feedback is important in laparoscopic simulation training, its absence in the virtual reality device did not impede acquisition of skill. PMID:18765042
Multiaccommodative stimuli in VR systems: problems & solutions.
Marran, L; Schor, C
1997-09-01
Virtual reality environments can introduce multiple and sometimes conflicting accommodative stimuli. For instance, with the high-powered lenses commonly used in head-mounted displays, small discrepancies in screen lens placement, caused by manufacturer error or user adjustment focus error, can change the focal depths of the image by a couple of diopters. This can introduce a binocular accommodative stimulus or, if the displacement between the two screens is unequal, an unequal (anisometropic) accommodative stimulus for the two eyes. Systems that allow simultaneous viewing of virtual and real images can also introduce a conflict in accommodative stimuli: When real and virtual images are at different focal planes, both cannot be in focus at the same time, though they may appear to be in similar locations in space. In this paper four unique designs are described that minimize the range of accommodative stimuli and maximize the visual system's ability to cope efficiently with the focus conflicts that remain: pinhole optics, monocular lens addition combined with aniso-accommodation, chromatic bifocal, and bifocal lens system. The advantages and disadvantages of each design are described and recommendation for design choice is given after consideration of the end use of the virtual reality system (e.g., low or high end, entertainment, technical, or medical use). The appropriate design modifications should allow greater user comfort and better performance.
Enhancing an Instructional Design Model for Virtual Reality-Based Learning
ERIC Educational Resources Information Center
Chen, Chwen Jen; Teh, Chee Siong
2013-01-01
In order to effectively utilize the capabilities of virtual reality (VR) in supporting the desired learning outcomes, careful consideration in the design of instruction for VR learning is crucial. In line with this concern, previous work proposed an instructional design model that prescribes instructional methods to guide the design of VR-based…
Are Learning Styles Relevant to Virtual Reality?
ERIC Educational Resources Information Center
Chen, Chwen Jen; Toh, Seong Chong; Ismail, Wan Mohd Fauzy Wan
2005-01-01
This study aims to investigate the effects of a virtual reality (VR)-based learning environment on learners with different learning styles. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the VR (guided exploration) mode, irrespective of their learning styles. This shows that the VR-based…
The Design, Development and Evaluation of a Virtual Reality Based Learning Environment
ERIC Educational Resources Information Center
Chen, Chwen Jen
2006-01-01
Many researchers and instructional designers increasingly recognise the benefits of utilising three dimensional virtual reality (VR) technology in instruction. In general, there are two types of VR system, the immersive system and the non-immersive system. This article focuses on the latter system that merely uses the conventional personal…
Use of Virtual Reality Technology to Enhance Undergraduate Learning in Abnormal Psychology
ERIC Educational Resources Information Center
Stark-Wroblewski, Kim; Kreiner, David S.; Boeding, Christopher M.; Lopata, Ashley N.; Ryan, Joseph J.; Church, Tina M.
2008-01-01
We examined whether using virtual reality (VR) technology to provide students with direct exposure to evidence-based psychological treatment approaches would enhance their understanding of and appreciation for such treatments. Students enrolled in an abnormal psychology course participated in a VR session designed to help clients overcome the fear…
Comparing two types of navigational interfaces for Virtual Reality.
Teixeira, Luís; Vilar, Elisângela; Duarte, Emília; Rebelo, Francisco; da Silva, Fernando Moreira
2012-01-01
Previous studies suggest significant differences between navigating virtual environments in a life-like walking manner (i.e., using treadmills or walk-in-place techniques) and virtual navigation (i.e., flying while really standing). The latter option, which usually involves hand-centric devices (e.g., joysticks), is the most common in Virtual Reality-based studies, mostly due to low costs, less space and technology demands. However, recently, new interaction devices, originally conceived for videogames have become available offering interesting potentialities for research. This study aimed to explore the potentialities of the Nintendo Wii Balance Board as a navigation interface in a Virtual Environment presented in an immersive Virtual Reality system. Comparing participants' performance while engaged in a simulated emergency egress allows determining the adequacy of such alternative navigation interface on the basis of empirical results. Forty university students participated in this study. Results show that participants were more efficient when performing navigation tasks using the Joystick than with the Balance Board. However there were no significantly differences in the behavioral compliance with exit signs. Therefore, this study suggests that, at least for tasks similar to the studied, the Balance Board have good potentiality to be used as a navigation interface for Virtual Reality systems.
Virtual environments simulation in research reactor
NASA Astrophysics Data System (ADS)
Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin
2017-01-01
Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.
Virtual surgical telesimulations in otolaryngology.
Navarro Newball, Andrés A; Hernández, Carlos J; Velez, Jorge A; Munera, Luis E; García, Gregorio B; Gamboa, Carlos A; Reyes, Antonio J
2005-01-01
Distance learning can be enhanced with the use of virtual reality; this paper describes the design and initial validation of a Web Environment for Surgery Skills Training on Otolaryngology (WESST-OT). WESST-OT was created aimed to help trainees to gain the skills required in order to perform the Functional Endoscopic Sinus Surgery procedure (FESS), since training centers and specialist in this knowledge are scarce in Colombia; also, it is part of a web based educational cycle which simulates the stages of a real procedure. WESST-OT is one from the WESST family of telesimulators which started to be developed from an architecture proposed at the Medicine Meets Virtual Reality conference 2002; also, it is a step towards the use of virtual reality technologies in Latin America.
The use of virtual reality technology in the treatment of anxiety and other psychiatric disorders
Maples-Keller, Jessica L.; Bunnell, Brian E.; Kim, Sae-Jin; Rothbaum, Barbara O.
2016-01-01
Virtual reality, or VR, allows users to experience a sense of presence in a computer-generated three-dimensional environment. Sensory information is delivered through a head mounted display and specialized interface devices. These devices track head movements so that the movements and images change in a natural way with head motion, allowing for a sense of immersion. VR allows for controlled delivery of sensory stimulation via the therapist and is a convenient and cost-effective treatment. The primary focus of this article is to review the available literature regarding the effectiveness of incorporating VR within the psychiatric treatment of a wide range of psychiatric disorders, with a specific focus on exposure-based intervention for anxiety disorders. A systematic literature search was conducted in order to identify studies implementing VR based treatment for anxiety or other psychiatric disorders. This review will provide an overview of the history of the development of VR based technology and its use within psychiatric treatment, an overview of the empirical evidence for VR based treatment, the benefits for using VR for psychiatric research and treatment, recommendations for how to incorporate VR into psychiatric care, and future directions for VR based treatment and clinical research. PMID:28475502
ME science as mobile learning based on virtual reality
NASA Astrophysics Data System (ADS)
Fradika, H. D.; Surjono, H. D.
2018-04-01
The purpose of this article described about ME Science (Mobile Education Science) as mobile learning application learning of Fisika Inti. ME Science is a product of research and development (R&D) that was using Alessi and Trollip model. Alessi and Trollip model consists three stages that are: (a) planning include analysis of problems, goals, need, and idea of development product, (b) designing includes collecting of materials, designing of material content, creating of story board, evaluating and review product, (c) developing includes development of product, alpha testing, revision of product, validation of product, beta testing, and evaluation of product. The article describes ME Science only to development of product which include development stages. The result of development product has been generates mobile learning application based on virtual reality that can be run on android-based smartphone. These application consist a brief description of learning material, quizzes, video of material summery, and learning material based on virtual reality.
Will Anything Useful Come Out of Virtual Reality? Examination of a Naval Application
1993-05-01
The term virtual reality can encompass varying meanings, but some generally accepted attributes of a virtual environment are that it is immersive...technology, but at present there are few practical applications which are utilizing the broad range of virtual reality technology. This paper will discuss an...Operability, operator functions, Virtual reality , Man-machine interface, Decision aids/decision making, Decision support. ASW.
Image-guided laser projection for port placement in minimally invasive surgery.
Marmurek, Jonathan; Wedlake, Chris; Pardasani, Utsav; Eagleson, Roy; Peters, Terry
2006-01-01
We present an application of an augmented reality laser projection system in which procedure-specific optimal incision sites, computed from pre-operative image acquisition, are superimposed on a patient to guide port placement in minimally invasive surgery. Tests were conducted to evaluate the fidelity of computed and measured port configurations, and to validate the accuracy with which a surgical tool-tip can be placed at an identified virtual target. A high resolution volumetric image of a thorax phantom was acquired using helical computed tomography imaging. Oriented within the thorax, a phantom organ with marked targets was visualized in a virtual environment. A graphical interface enabled marking the locations of target anatomy, and calculation of a grid of potential port locations along the intercostal rib lines. Optimal configurations of port positions and tool orientations were determined by an objective measure reflecting image-based indices of surgical dexterity, hand-eye alignment, and collision detection. Intra-operative registration of the computed virtual model and the phantom anatomy was performed using an optical tracking system. Initial trials demonstrated that computed and projected port placement provided direct access to target anatomy with an accuracy of 2 mm.
[Use of virtual reality in forensic psychiatry. A new paradigm?].
Fromberger, P; Jordan, K; Müller, J L
2014-03-01
For more than 20 years virtual realities (VR) have been successfully used in the assessment and treatment of psychiatric disorders. The most important advantages of VR are the high ecological validity of virtual environments, the entire controllability of virtual stimuli in the virtual environment and the capability to induce the sensation of being in the virtual environment instead of the physical environment. VRs provide the opportunity to face the user with stimuli and situations which are not available or too risky in reality. Despite these advantages VR-based applications have not yet been applied in forensic psychiatry. On the basis of an overview of the recent state-of-the-art in VR-based applications in general psychiatry, the article demonstrates the advantages and possibilities of VR-based applications in forensic psychiatry. Up to now only preliminary studies regarding the VR-based assessment of pedophilic interests exist. These studies demonstrate the potential of ecologically valid VR-based applications for the assessment of forensically relevant disorders. One of the most important advantages is the possibility of VR to assess the behavior of forensic inpatients in crime-related situations without endangering others. This provides completely new possibilities not only regarding the assessment but also for the treatment of forensic inpatients. Before utilizing these possibilities in the clinical practice exhaustive research and development will be necessary. Given the high potential of VR-based applications, this effort would be worth it.
Using smartphone technology to deliver a virtual pedestrian environment: usability and validation.
Schwebel, David C; Severson, Joan; He, Yefei
2017-09-01
Various programs effectively teach children to cross streets more safely, but all are labor- and cost-intensive. Recent developments in mobile phone technology offer opportunity to deliver virtual reality pedestrian environments to mobile smartphone platforms. Such an environment may offer a cost- and labor-effective strategy to teach children to cross streets safely. This study evaluated usability, feasibility, and validity of a smartphone-based virtual pedestrian environment. A total of 68 adults completed 12 virtual crossings within each of two virtual pedestrian environments, one delivered by smartphone and the other a semi-immersive kiosk virtual environment. Participants completed self-report measures of perceived realism and simulator sickness experienced in each virtual environment, plus self-reported demographic and personality characteristics. All participants followed system instructions and used the smartphone-based virtual environment without difficulty. No significant simulator sickness was reported or observed. Users rated the smartphone virtual environment as highly realistic. Convergent validity was detected, with many aspects of pedestrian behavior in the smartphone-based virtual environment matching behavior in the kiosk virtual environment. Anticipated correlations between personality and kiosk virtual reality pedestrian behavior emerged for the smartphone-based system. A smartphone-based virtual environment can be usable and valid. Future research should develop and evaluate such a training system.
Development of virtual environment for treating acrophobia.
Ku, J; Jang, D; Shin, M; Jo, H; Ahn, H; Lee, J; Cho, B; Kim, S I
2001-01-01
Virtual Reality (VR) is a new technology that makes humans communicate with computer. It allows the user to see, hear, feel and interact in a three-dimensional virtual world created graphically. Virtual Reality Therapy (VRT), based on this sophisticated technology, has been recently used in the treatment of subjects diagnosed with acrophobia, a disorder that is characterized by marked anxiety upon exposure to heights, avoidance of heights, and a resulting interference in functioning. Conventional virtual reality system for the treatment of acrophobia has a limitation in scope that it is based on over-costly devices or somewhat unrealistic graphic scene. The goal of this study was to develop a inexpensive and more realistic virtual environment for the exposure therapy of acrophobia. We constructed two types virtual environment. One is constituted a bungee-jump tower in the middle of a city. It includes the open lift surrounded by props beside tower that allowed the patient to feel sense of heights. Another is composed of diving boards which have various heights. It provides a view of a lower diving board and people swimming in the pool to serve the patient stimuli upon exposure to heights.
The Potential of Using Virtual Reality Technology in Physical Activity Settings
ERIC Educational Resources Information Center
Pasco, Denis
2013-01-01
In recent years, virtual reality technology has been successfully used for learning purposes. The purposes of the article are to examine current research on the role of virtual reality in physical activity settings and discuss potential application of using virtual reality technology to enhance learning in physical education. The article starts…
ERIC Educational Resources Information Center
Morales, Teresa M.; Bang, EunJin; Andre, Thomas
2013-01-01
This paper presents a qualitative case analysis of a new and unique, high school, student-directed, project-based learning (PBL), virtual reality (VR) class. In order to create projects, students learned, on an independent basis, how to program an industrial-level VR machine. A constraint was that students were required to produce at least one…
ERIC Educational Resources Information Center
Azman, Fadzil
2004-01-01
At present the development of Virtual Reality (VR) technology is expanding due to the importance and needs to use the 3D elements and 360 degrees panorama. In expressing a clearer picture to consumers in various fields such as education, military, medicine, entertainment and so on. In live with the development the web based VR kiosk project in…
Schuster-Amft, Corina; Eng, Kynan; Lehmann, Isabelle; Schmid, Ludwig; Kobashi, Nagisa; Thaler, Irène; Verra, Martin L; Henneke, Andrea; Signer, Sandra; McCaskey, Michael; Kiper, Daniel
2014-09-06
In recent years, virtual reality has been introduced to neurorehabilitation, in particular with the intention of improving upper-limb training options and facilitating motor function recovery. The proposed study incorporates a quantitative part and a qualitative part, termed a mixed-methods approach: (1) a quantitative investigation of the efficacy of virtual reality training compared to conventional therapy in upper-limb motor function are investigated, (2a) a qualitative investigation of patients' experiences and expectations of virtual reality training and (2b) a qualitative investigation of therapists' experiences using the virtual reality training system in the therapy setting. At three participating clinics, 60 patients at least 6 months after stroke onset will be randomly allocated to an experimental virtual reality group (EG) or to a control group that will receive conventional physiotherapy or occupational therapy (16 sessions, 45 minutes each, over the course of 4 weeks). Using custom data gloves, patients' finger and arm movements will be displayed in real time on a monitor, and they will move and manipulate objects in various virtual environments. A blinded assessor will test patients' motor and cognitive performance twice before, once during, and twice after the 4-week intervention. The primary outcome measure is the Box and Block Test. Secondary outcome measures are the Chedoke-McMaster Stroke Assessments (hand, arm and shoulder pain subscales), the Chedoke-McMaster Arm and Hand Activity Inventory, the Line Bisection Test, the Stroke Impact Scale, the MiniMentalState Examination and the Extended Barthel Index. Semistructured face-to-face interviews will be conducted with patients in the EG after intervention finalization with a focus on the patients' expectations and experiences regarding the virtual reality training. Therapists' perspectives on virtual reality training will be reviewed in three focus groups comprising four to six occupational therapists and physiotherapists. The interviews will help to gain a deeper understanding of the phenomena under investigation to provide sound recommendations for the implementation of the virtual reality training system for routine use in neurorehabilitation complementing the quantitative clinical assessments. Cliniclatrials.gov Identifier: NCT01774669 (15 January 2013).
Usability evaluation of low-cost virtual reality hand and arm rehabilitation games.
Seo, Na Jin; Arun Kumar, Jayashree; Hur, Pilwon; Crocher, Vincent; Motawar, Binal; Lakshminarayanan, Kishor
2016-01-01
The emergence of lower-cost motion tracking devices enables home-based virtual reality rehabilitation activities and increased accessibility to patients. Currently, little documentation on patients' expectations for virtual reality rehabilitation is available. This study surveyed 10 people with stroke for their expectations of virtual reality rehabilitation games. This study also evaluated the usability of three lower-cost virtual reality rehabilitation games using a survey and House of Quality analysis. The games (kitchen, archery, and puzzle) were developed in the laboratory to encourage coordinated finger and arm movements. Lower-cost motion tracking devices, the P5 Glove and Microsoft Kinect, were used to record the movements. People with stroke were found to desire motivating and easy-to-use games with clinical insights and encouragement from therapists. The House of Quality analysis revealed that the games should be improved by obtaining evidence for clinical effectiveness, including clinical feedback regarding improving functional abilities, adapting the games to the user's changing functional ability, and improving usability of the motion-tracking devices. This study reports the expectations of people with stroke for rehabilitation games and usability analysis that can help guide development of future games.
Dias, Thiago Rodrigues de Santana; Duchesne, Monica; Appolinario, Jose Carlos
2017-01-01
Several lines of evidence suggest that Virtual Reality (VR) has a potential utility in eating disorders. The objective of this study is to review the literature on the use of VR in bulimia nervosa (BN) and binge eating disorder (BED). Using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement for reporting systematic reviews, we performed a PubMed, Web of Knowledge and SCOPUS search to identify studies employing VR in the assessment and treatment of BN and BED. The following search terms were used: “virtual reality”, “eating disorders”, “binge eating”, and “bulimia nervosa”. From the 420 articles identified, 19 were selected, nine investigated VR in assessment and 10 were treatment studies (one case-report, two non-controlled and six randomized controlled trials). The studies using VR in BN and BED are at an early stage. However, considering the available evidence, the use of VR in the assessment of those conditions showed some promise in identifying: (1) how those patients experienced their body image; and (2) environments or specific kinds of foods that may trigger binge–purging cycle. Some studies using VR-based environments associated to cognitive behavioral techniques showed their potential utility in improving motivation for change, self-esteem, body image disturbances and in reducing binge eating and purging behavior. PMID:28698483
Virtual reality training improves balance function.
Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng
2014-09-01
Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.
Virtual reality training improves balance function
Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng
2014-01-01
Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651
Chau, Brian; Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc
2017-01-01
Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain.
Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc
2017-01-01
Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain. PMID:29616149
Virtual reality simulation training for health professions trainees in gastrointestinal endoscopy.
Walsh, Catharine M; Sherlock, Mary E; Ling, Simon C; Carnahan, Heather
2012-06-13
Traditionally, training in gastrointestinal endoscopy has been based upon an apprenticeship model, with novice endoscopists learning basic skills under the supervision of experienced preceptors in the clinical setting. Over the last two decades, however, the growing awareness of the need for patient safety has brought the issue of simulation-based training to the forefront. While the use of simulation-based training may have important educational and societal advantages, the effectiveness of virtual reality gastrointestinal endoscopy simulators has yet to be clearly demonstrated. To determine whether virtual reality simulation training can supplement and/or replace early conventional endoscopy training (apprenticeship model) in diagnostic oesophagogastroduodenoscopy, colonoscopy and/or sigmoidoscopy for health professions trainees with limited or no prior endoscopic experience. Health professions, educational and computer databases were searched until November 2011 including The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, Scopus, Web of Science, Biosis Previews, CINAHL, Allied and Complementary Medicine Database, ERIC, Education Full Text, CBCA Education, Career and Technical Education @ Scholars Portal, Education Abstracts @ Scholars Portal, Expanded Academic ASAP @ Scholars Portal, ACM Digital Library, IEEE Xplore, Abstracts in New Technologies and Engineering and Computer & Information Systems Abstracts. The grey literature until November 2011 was also searched. Randomised and quasi-randomised clinical trials comparing virtual reality endoscopy (oesophagogastroduodenoscopy, colonoscopy and sigmoidoscopy) simulation training versus any other method of endoscopy training including conventional patient-based training, in-job training, training using another form of endoscopy simulation (e.g. low-fidelity simulator), or no training (however defined by authors) were included. Trials comparing one method of virtual reality training versus another method of virtual reality training (e.g. comparison of two different virtual reality simulators) were also included. Only trials measuring outcomes on humans in the clinical setting (as opposed to animals or simulators) were included. Two authors (CMS, MES) independently assessed the eligibility and methodological quality of trials, and extracted data on the trial characteristics and outcomes. Due to significant clinical and methodological heterogeneity it was not possible to pool study data in order to perform a meta-analysis. Where data were available for each continuous outcome we calculated standardized mean difference with 95% confidence intervals based on intention-to-treat analysis. Where data were available for dichotomous outcomes we calculated relative risk with 95% confidence intervals based on intention-to-treat-analysis. Thirteen trials, with 278 participants, met the inclusion criteria. Four trials compared simulation-based training with conventional patient-based endoscopy training (apprenticeship model) whereas nine trials compared simulation-based training with no training. Only three trials were at low risk of bias. Simulation-based training, as compared with no training, generally appears to provide participants with some advantage over their untrained peers as measured by composite score of competency, independent procedure completion, performance time, independent insertion depth, overall rating of performance or competency error rate and mucosal visualization. Alternatively, there was no conclusive evidence that simulation-based training was superior to conventional patient-based training, although data were limited. The results of this systematic review indicate that virtual reality endoscopy training can be used to effectively supplement early conventional endoscopy training (apprenticeship model) in diagnostic oesophagogastroduodenoscopy, colonoscopy and/or sigmoidoscopy for health professions trainees with limited or no prior endoscopic experience. However, there remains insufficient evidence to advise for or against the use of virtual reality simulation-based training as a replacement for early conventional endoscopy training (apprenticeship model) for health professions trainees with limited or no prior endoscopic experience. There is a great need for the development of a reliable and valid measure of endoscopic performance prior to the completion of further randomised clinical trials with high methodological quality.
Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei
2016-01-01
Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365
Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei
2016-01-01
To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.
Perspectives on Imaging: Advanced Applications. Introduction and Overview.
ERIC Educational Resources Information Center
Lynch, Clifford A.; Lunin, Lois F.
1991-01-01
Provides an overview of six articles that address relationships between electronic imaging technology and information science. Articles discuss the areas of technology; applications in the fields of visual arts, medicine, and textile history; conceptual foundations; and future visions, including work in virtual reality and cyberspace. (LRW)
Mixed reality ultrasound guidance system: a case study in system development and a cautionary tale.
Ameri, Golafsoun; Baxter, John S H; Bainbridge, Daniel; Peters, Terry M; Chen, Elvis C S
2018-04-01
Real-time ultrasound has become a crucial aspect of several image-guided interventions. One of the main constraints of such an approach is the difficulty in interpretability of the limited field of view of the image, a problem that has recently been addressed using mixed reality, such as augmented reality and augmented virtuality. The growing popularity and maturity of mixed reality has led to a series of informal guidelines to direct development of new systems and to facilitate regulatory approval. However, the goals of mixed reality image guidance systems and the guidelines for their development have not been thoroughly discussed. The purpose of this paper is to identify and critically examine development guidelines in the context of a mixed reality ultrasound guidance system through a case study. A mixed reality ultrasound guidance system tailored to central line insertions was developed in close collaboration with an expert user. This system outperformed ultrasound-only guidance in a novice user study and has obtained clearance for clinical use in humans. A phantom study with 25 experienced physicians was carried out to compare the performance of the mixed reality ultrasound system against conventional ultrasound-only guidance. Despite the previous promising results, there was no statistically significant difference between the two systems. Guidelines for developing mixed reality image guidance systems cannot be applied indiscriminately. Each design decision, no matter how well justified, should be the subject of scientific and technical investigation. Iterative and small-scale evaluation can readily unearth issues and previously unknown or implicit system requirements. We recommend a wary eye in development of mixed reality ultrasound image guidance systems emphasizing small-scale iterative evaluation alongside system development. Ultimately, we recommend that the image-guided intervention community furthers and deepens this discussion into best practices in developing image-guided interventions.
Virtual Realities and the Future of Text.
ERIC Educational Resources Information Center
Marcus, Stephen
1992-01-01
Discusses issues surrounding virtual reality and "virtual books." Suggests that those who are exploring the territory of virtual realities are already helping to expand and enrich expectations and visions for integrating technology into reading and writing. (RS)
Van Herzeele, Isabelle; O'Donoghue, Kevin G L; Aggarwal, Rajesh; Vermassen, Frank; Darzi, Ara; Cheshire, Nicholas J W
2010-04-01
This study evaluated virtual reality (VR) simulation for endovascular training of medical students to determine whether innate perceptual, visuospatial, and psychomotor aptitude (VSA) can predict initial and plateau phase of technical endovascular skills acquisition. Twenty medical students received didactic and endovascular training on a commercially available VR simulator. Each student treated a series of 10 identical noncomplex renal artery stenoses endovascularly. The simulator recorded performance data instantly and objectively. An experienced interventionalist rated the performance at the initial and final sessions using generic (out of 40) and procedure-specific (out of 30) rating scales. VSA were tested with fine motor dexterity (FMD, Perdue Pegboard), psychomotor ability (minimally invasive virtual reality surgical trainer [MIST-VR]), image recall (Rey-Osterrieth), and organizational aptitude (map-planning). VSA performance scores were correlated with the assessment parameters of endovascular skills at commencement and completion of training. Medical students exhibited statistically significant learning curves from the initial to the plateau performance for contrast usage (medians, 28 vs 17 mL, P < .001), total procedure time (2120 vs 867 seconds, P < .001), and fluoroscopy time (993 vs. 507 seconds, P < .001). Scores on generic and procedure-specific rating scales improved significantly (10 vs 25, P < .001; 8 vs 17 P < .001). Significant correlations were noted for FMD with initial and plateau sessions for fluoroscopy time (r(s) = -0.564, P = .010; r(s) = -.449, P = .047). FMD correlated with procedure-specific scores at the initial session (r(s) = .607, P = .006). Image recall correlated with generic skills at the end of training (r(s) = .587, P = .006). Simulator-based training in endovascular skills improved performance in medical students. There were significant correlations between initial endovascular skill and fine motor dexterity as well as with image recall at end of the training period. In addition to current recruitment strategies, VSA may be a useful tool for predictive validity studies.
NASA Astrophysics Data System (ADS)
Demir, I.
2015-12-01
Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.
Effect of virtual reality on cognition in stroke patients.
Kim, Bo Ryun; Chun, Min Ho; Kim, Lee Suk; Park, Ji Young
2011-08-01
To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients.
Yang, Wen-Chieh; Wang, Hsing-Kuo; Wu, Ruey-Meei; Lo, Chien-Shun; Lin, Kwan-Hwa
2016-09-01
Virtual reality has the advantage to provide rich sensory feedbacks for training balance function. This study tested if the home-based virtual reality balance training is more effective than the conventional home balance training in improving balance, walking, and quality of life in patients with Parkinson's disease (PD). Twenty-three patients with idiopathic PD were recruited and underwent twelve 50-minute training sessions during the 6-week training period. The experimental group (n = 11) was trained with a custom-made virtual reality balance training system, and the control group (n = 12) was trained by a licensed physical therapist. Outcomes were measured at Week 0 (pretest), Week 6 (posttest), and Week 8 (follow-up). The primary outcome was the Berg Balance Scale. The secondary outcomes included the Dynamic Gait Index, timed Up-and-Go test, Parkinson's Disease Questionnaire, and the motor score of the Unified Parkinson's Disease Rating Scale. The experimental and control groups were comparable at pretest. After training, both groups performed better in the Berg Balance Scale, Dynamic Gait Index, timed Up-and-Go test, and Parkinson's Disease Questionnaire at posttest and follow-up than at pretest. However, no significant differences were found between these two groups at posttest and follow-up. This study did not find any difference between the effects of the home-based virtual reality balance training and conventional home balance training. The two training options were equally effective in improving balance, walking, and quality of life among community-dwelling patients with PD. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gonizzi Barsanti, S.; Malatesta, S. G.; Lella, F.; Fanini, B.; Sala, F.; Dodero, E.; Petacco, L.
2018-05-01
The best way to disseminate culture is, nowadays, the creation of scenarios with virtual and augmented reality that supply the visitors of museums with a powerful, interactive tool that allows to learn sometimes difficult concepts in an easy, entertaining way. 3D models derived from reality-based techniques are nowadays used to preserve, document and restore historical artefacts. These digital contents are also powerful instrument to interactively communicate their significance to non-specialist, making easier to understand concepts sometimes complicated or not clear. Virtual and Augmented Reality are surely a valid tool to interact with 3D models and a fundamental help in making culture more accessible to the wide public. These technologies can help the museum curators to adapt the cultural proposal and the information about the artefacts based on the different type of visitor's categories. These technologies allow visitors to travel through space and time and have a great educative function permitting to explain in an easy and attractive way information and concepts that could prove to be complicated. The aim of this paper is to create a virtual scenario and an augmented reality app to recreate specific spaces in the Capitoline Museum in Rome as they were during Winckelmann's time, placing specific statues in their original position in the 18th century.
Marker Registration Technique for Handwritten Text Marker in Augmented Reality Applications
NASA Astrophysics Data System (ADS)
Thanaborvornwiwat, N.; Patanukhom, K.
2018-04-01
Marker registration is a fundamental process to estimate camera poses in marker-based Augmented Reality (AR) systems. We developed AR system that creates correspondence virtual objects on handwritten text markers. This paper presents a new method for registration that is robust for low-content text markers, variation of camera poses, and variation of handwritten styles. The proposed method uses Maximally Stable Extremal Regions (MSER) and polygon simplification for a feature point extraction. The experiment shows that we need to extract only five feature points per image which can provide the best registration results. An exhaustive search is used to find the best matching pattern of the feature points in two images. We also compared performance of the proposed method to some existing registration methods and found that the proposed method can provide better accuracy and time efficiency.
Lloréns, Roberto; Gil-Gómez, José-Antonio; Alcañiz, Mariano; Colomer, Carolina; Noé, Enrique
2015-03-01
To study the clinical effectiveness and the usability of a virtual reality-based intervention compared with conventional physical therapy in the balance recovery of individuals with chronic stroke. Randomized controlled trial. Outpatient neurorehabilitation unit. A total of 20 individuals with chronic stroke. The intervention consisted of 20 one-hour sessions, five sessions per week. The experimental group combined 30 minutes with the virtual reality-based intervention with 30 minutes of conventional training. The control group underwent one hour conventional therapy. Balance performance was assessed at the beginning and at the end of the trial using the Berg Balance Scale, the balance and gait subscales of the Tinetti Performance-Oriented Mobility Assessment, the Brunel Balance Assessment, and the 10-m Walking Test. Subjective data of the virtual reality-based intervention were collected from the experimental group, with a feedback questionnaire at the end of the trial. The results revealed a significant group-by-time interaction in the scores of the Berg Balance Scale (p < 0.05) and in the 10-m Walking Test (p < 0.05). Post-hoc analyses showed greater improvement in the experimental group: 3.8 ±2.6 vs. 1.8 ±1.4 in the Berg Balance Scale, -1.9 ±1.6 seconds vs. 0.0 ±2.3 seconds in the 10-m Walking Test, and also in the number of participants who increased level in the Brunel Balance Assessment (χ(2) = 2.5, p < 0.01). Virtual reality interventions can be an effective resource to enhance the improvement of balance in individuals with chronic stroke. © The Author(s) 2014.
ERIC Educational Resources Information Center
Cheng, Yufang; Huang, Ruowen
2012-01-01
The focus of this study is using data glove to practice Joint attention skill in virtual reality environment for people with pervasive developmental disorder (PDD). The virtual reality environment provides a safe environment for PDD people. Especially, when they made errors during practice in virtual reality environment, there is no suffering or…
Naval Applications of Virtual Reality,
1993-01-01
Expert Virtual Reality Special Report , pp. 67- 72. 14. SUBJECT TERMS 15 NUMBER o0 PAGES man-machine interface virtual reality decision support...collective and individual performance. -" Virtual reality projects could help *y by Mark Gembicki Av-t-abilty CodesA Avafllat Idt Iofe and David Rousseau...alt- 67 VIRTUAL . REALITY SPECIAl, REPORT r-OPY avcriaikxb to DD)C qg .- 154,41X~~~~~~~~~~~~j 1411 iI..:41 T a].’ 1,1 4 1111 I 4 1 * .11 ~ 4 l.~w111511 I
Virtual reality: a reality for future military pilotage?
NASA Astrophysics Data System (ADS)
McIntire, John P.; Martinsen, Gary L.; Marasco, Peter L.; Havig, Paul R.
2009-05-01
Virtual reality (VR) systems provide exciting new ways to interact with information and with the world. The visual VR environment can be synthetic (computer generated) or be an indirect view of the real world using sensors and displays. With the potential opportunities of a VR system, the question arises about what benefits or detriments a military pilot might incur by operating in such an environment. Immersive and compelling VR displays could be accomplished with an HMD (e.g., imagery on the visor), large area collimated displays, or by putting the imagery on an opaque canopy. But what issues arise when, instead of viewing the world directly, a pilot views a "virtual" image of the world? Is 20/20 visual acuity in a VR system good enough? To deliver this acuity over the entire visual field would require over 43 megapixels (MP) of display surface for an HMD or about 150 MP for an immersive CAVE system, either of which presents a serious challenge with current technology. Additionally, the same number of sensor pixels would be required to drive the displays to this resolution (and formidable network architectures required to relay this information), or massive computer clusters are necessary to create an entirely computer-generated virtual reality with this resolution. Can we presently implement such a system? What other visual requirements or engineering issues should be considered? With the evolving technology, there are many technological issues and human factors considerations that need to be addressed before a pilot is placed within a virtual cockpit.
Visuospatial Orientation Learning through Virtual Reality for People with Severe Disability
ERIC Educational Resources Information Center
de la Torre-Luque, Alejandro; Valero-Aguayo, Luis; de la Rubia-Cuestas, Ernesto J.
2017-01-01
This study aims to test how an intervention based on virtual reality (VR) may enhance visuospatial skills amongst people with disability. A quasi-experimental intra-group study was therefore conducted. Participants were 20 people with severe disability (65% males; 34.35 years, on average, and 84.95% of disability rate according to the Andalusian…
A Virtual Reality Dance Training System Using Motion Capture Technology
ERIC Educational Resources Information Center
Chan, J. C. P.; Leung, H.; Tang, J. K. T.; Komura, T.
2011-01-01
In this paper, a new dance training system based on the motion capture and virtual reality (VR) technologies is proposed. Our system is inspired by the traditional way to learn new movements-imitating the teacher's movements and listening to the teacher's feedback. A prototype of our proposed system is implemented, in which a student can imitate…
Design and Development of Virtual Reality: Analysis of Challenges Faced by Educators
ERIC Educational Resources Information Center
Hanson, Kami; Shelton, Brett E.
2008-01-01
There exists an increasingly attractive lure of using virtual reality applications for teaching in all areas of education, but perhaps the largest detriment to its use is the intimidating nature of VR technology for non-technical instructors. What are the challenges to using VR technology for the design and development of VR-based instructional…
ERIC Educational Resources Information Center
Chuah, Kee Man; Chen, Chwen Jen; Teh, Chee Siong
2008-01-01
In recent years, the application of virtual reality (VR) technology in education is rapidly gaining momentum. The educational benefits offered by such technology have prompted many educators as well as instructional designers to investigate ways to create effective and engaging VR learning. Instructional designers have examined widely the…
ERIC Educational Resources Information Center
Paschall, Mallie J.; Fishbein, Diana H.; Hubal, Robert C.; Eldreth, Diana
2005-01-01
This study examined the psychometric properties of performance measures for three novel, interactive virtual reality vignette exercises developed to assess social competency skills of at-risk adolescents. Performance data were collected from 117 African-American male 15-17 year olds. Data for 18 performance measures were obtained, based on…
Feasibility of Using Virtual Reality to Assess Nicotine Cue Reactivity during Treatment
ERIC Educational Resources Information Center
Kaganoff, Eili; Bordnick, Patrick S.; Carter, Brian Lee
2012-01-01
Cue reactivity assessments have been widely used to assess craving and attention to cues among cigarette smokers. Cue reactivity has the potential to offer insights into treatment decisions; however, the use of cue reactivity in treatment studies has been limited. This study assessed the feasibility of using a virtual reality-based cue reactivity…
Magical Stories: Blending Virtual Reality and Artificial Intelligence.
ERIC Educational Resources Information Center
McLellan, Hilary
Artificial intelligence (AI) techniques and virtual reality (VR) make possible powerful interactive stories, and this paper focuses on examples of virtual characters in three dimensional (3-D) worlds. Waldern, a virtual reality game designer, has theorized about and implemented software design of virtual teammates and opponents that incorporate AI…
ERIC Educational Resources Information Center
Franchi, Jorge
1994-01-01
Highlights of this overview of virtual reality include optics; interface devices; virtual worlds; potential applications, including medicine and archaeology; problems, including costs; current research and development; future possibilities; and a listing of vendors and suppliers of virtual reality products. (Contains 11 references.) (LRW)
Framework and Implications of Virtual Neurorobotics
Goodman, Philip H.; Zou, Quan; Dascalu, Sergiu-Mihai
2008-01-01
Despite decades of societal investment in artificial learning systems, truly “intelligent” systems have yet to be realized. These traditional models are based on input-output pattern optimization and/or cognitive production rule modeling. One response has been social robotics, using the interaction of human and robot to capture important cognitive dynamics such as cooperation and emotion; to date, these systems still incorporate traditional learning algorithms. More recently, investigators are focusing on the core assumptions of the brain “algorithm” itself—trying to replicate uniquely “neuromorphic” dynamics such as action potential spiking and synaptic learning. Only now are large-scale neuromorphic models becoming feasible, due to the availability of powerful supercomputers and an expanding supply of parameters derived from research into the brain's interdependent electrophysiological, metabolomic and genomic networks. Personal computer technology has also led to the acceptance of computer-generated humanoid images, or “avatars”, to represent intelligent actors in virtual realities. In a recent paper, we proposed a method of virtual neurorobotics (VNR) in which the approaches above (social-emotional robotics, neuromorphic brain architectures, and virtual reality projection) are hybridized to rapidly forward-engineer and develop increasingly complex, intrinsically intelligent systems. In this paper, we synthesize our research and related work in the field and provide a framework for VNR, with wider implications for research and practical applications. PMID:18982115
NASA Astrophysics Data System (ADS)
Starodubtsev, Illya
2017-09-01
The paper describes the implementation of the system of interaction with virtual objects based on gestures. The paper describes the common problems of interaction with virtual objects, specific requirements for the interfaces for virtual and augmented reality.
VR-Planets : a 3D immersive application for real-time flythrough images of planetary surfaces
NASA Astrophysics Data System (ADS)
Civet, François; Le Mouélic, Stéphane
2015-04-01
During the last two decades, a fleet of planetary probes has acquired several hundred gigabytes of images of planetary surfaces. Mars has been particularly well covered thanks to the Mars Global Surveyor, Mars Express and Mars Reconnaissance Orbiter spacecrafts. HRSC, CTX, HiRISE instruments allowed the computation of Digital Elevation Models with a resolution from hundreds of meters up to 1 meter per pixel, and corresponding orthoimages with a resolution from few hundred of meters up to 25 centimeters per pixel. The integration of such huge data sets into a system allowing user-friendly manipulation either for scientific investigation or for public outreach can represent a real challenge. We are investigating how innovative tools can be used to freely fly over reconstructed landscapes in real time, using technologies derived from the game industry and virtual reality. We have developed an application based on a game engine, using planetary data, to immerse users in real martian landscapes. The user can freely navigate in each scene at full spatial resolution using a game controller. The actual rendering is compatible with several visualization devices such as 3D active screen, virtual reality headsets (Oculus Rift), and android devices.
NASA Astrophysics Data System (ADS)
Ding, Yichen; Yu, Jing; Abiri, Arash; Abiri, Parinaz; Lee, Juhyun; Chang, Chih-Chiang; Baek, Kyung In; Sevag Packard, René R.; Hsiai, Tzung K.
2018-02-01
There currently is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3- dimensional (3-D) architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3-D and 4-D (3-D spatial + 1-D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods such as routine optical microscopes. We hereby demonstrate multi-scale applicability of VR-LSFM to 1) interrogate skin fibroblasts interacting with a hyaluronic acid-based hydrogel, 2) navigate through the endocardial trabecular network during zebrafish development, and 3) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation (BINS) algorithm with deformable image registration (DIR) to interface a VR environment for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution.
NASA Astrophysics Data System (ADS)
McFadden, D.; Tavakkoli, A.; Regenbrecht, J.; Wilson, B.
2017-12-01
Virtual Reality (VR) and Augmented Reality (AR) applications have recently seen an impressive growth, thanks to the advent of commercial Head Mounted Displays (HMDs). This new visualization era has opened the possibility of presenting researchers from multiple disciplines with data visualization techniques not possible via traditional 2D screens. In a purely VR environment researchers are presented with the visual data in a virtual environment, whereas in a purely AR application, a piece of virtual object is projected into the real world with which researchers could interact. There are several limitations to the purely VR or AR application when taken within the context of remote planetary exploration. For example, in a purely VR environment, contents of the planet surface (e.g. rocks, terrain, or other features) should be created off-line from a multitude of images using image processing techniques to generate 3D mesh data that will populate the virtual surface of the planet. This process usually takes a tremendous amount of computational resources and cannot be delivered in real-time. As an alternative, video frames may be superimposed on the virtual environment to save processing time. However, such rendered video frames will lack 3D visual information -i.e. depth information. In this paper, we present a technique to utilize a remotely situated robot's stereoscopic cameras to provide a live visual feed from the real world into the virtual environment in which planetary scientists are immersed. Moreover, the proposed technique will blend the virtual environment with the real world in such a way as to preserve both the depth and visual information from the real world while allowing for the sensation of immersion when the entire sequence is viewed via an HMD such as Oculus Rift. The figure shows the virtual environment with an overlay of the real-world stereoscopic video being presented in real-time into the virtual environment. Notice the preservation of the object's shape, shadows, and depth information. The distortions shown in the image are due to the rendering of the stereoscopic data into a 2D image for the purposes of taking screenshots.
An exploratory fNIRS study with immersive virtual reality: a new method for technical implementation
Seraglia, Bruno; Gamberini, Luciano; Priftis, Konstantinos; Scatturin, Pietro; Martinelli, Massimiliano; Cutini, Simone
2011-01-01
For over two decades Virtual Reality (VR) has been used as a useful tool in several fields, from medical and psychological treatments, to industrial and military applications. Only in recent years researchers have begun to study the neural correlates that subtend VR experiences. Even if the functional Magnetic Resonance Imaging (fMRI) is the most common and used technique, it suffers several limitations and problems. Here we present a methodology that involves the use of a new and growing brain imaging technique, functional Near-infrared Spectroscopy (fNIRS), while participants experience immersive VR. In order to allow a proper fNIRS probe application, a custom-made VR helmet was created. To test the adapted helmet, a virtual version of the line bisection task was used. Participants could bisect the lines in a virtual peripersonal or extrapersonal space, through the manipulation of a Nintendo Wiimote ® controller in order for the participants to move a virtual laser pointer. Although no neural correlates of the dissociation between peripersonal and extrapersonal space were found, a significant hemodynamic activity with respect to the baseline was present in the right parietal and occipital areas. Both advantages and disadvantages of the presented methodology are discussed. PMID:22207843
The Design and Implementation of Virtual Roaming in Yunnan Diqing Tibetan traditional Villages
NASA Astrophysics Data System (ADS)
Cao, Lucheng; Xu, Wu; Li, Ke; Jin, Chunjie; Su, Ying; He, Jin
2018-06-01
Traditional residence is the continuation of intangible cultural heritage and the primitive soil for development. At present, the protection and inheritance of traditional villages have been impacted by the process of modernization, and the phenomenon of assimilation is very serious. This article takes the above questions as the breakthrough point, and then analyzes why and how to use virtual reality technology to better solve the above problems, and take the Yunnan Diqing Tibetan traditional dwellings as the specific example to explore. First, using VR technology, with real images and sound, the paper simulate a near real virtual world. Secondly, we collect a large amount of real image information, and make the visualization model of building by using 3DMAX software platform, UV Mapping and Rendering optimization. Finally, the Vizard virtual reality development platform was used to establish the roaming system and realize the virtual interaction. The roaming system was posted online so that overcome the disadvantages of not intuitive and low capability of interaction, and these new ideas can give a whole new meaning in the protection projects of the cultural relic buildings. At the same time, visitors could enjoy the "Dian-style" architectural style and cultural connotation of dwelling house in Diqing Yunnan.
Augmented reality in the surgery of cerebral aneurysms: a technical report.
Cabrilo, Ivan; Bijlenga, Philippe; Schaller, Karl
2014-06-01
Augmented reality is the overlay of computer-generated images on real-world structures. It has previously been used for image guidance during surgical procedures, but it has never been used in the surgery of cerebral aneurysms. To report our experience of cerebral aneurysm surgery aided by augmented reality. Twenty-eight patients with 39 unruptured aneurysms were operated on in a prospective manner with augmented reality. Preoperative 3-dimensional image data sets (angio-magnetic resonance imaging, angio-computed tomography, and 3-dimensional digital subtraction angiography) were used to create virtual segmentations of patients' vessels, aneurysms, aneurysm necks, skulls, and heads. These images were injected intraoperatively into the eyepiece of the operating microscope. An example case of an unruptured posterior communicating artery aneurysm clipping is illustrated in a video. The described operating procedure allowed continuous monitoring of the accuracy of patient registration with neuronavigation data and assisted in the performance of tailored surgical approaches and optimal clipping with minimized exposition. Augmented reality may add to the performance of a minimally invasive approach, although further studies need to be performed to evaluate whether certain groups of aneurysms are more likely to benefit from it. Further technological development is required to improve its user friendliness.
Ben-Moussa, Maher; Rubo, Marius; Debracque, Coralie; Lange, Wolf-Gero
2017-01-01
The present paper explores the benefits and the capabilities of various emerging state-of-the-art interactive 3D and Internet of Things technologies and investigates how these technologies can be exploited to develop a more effective technology supported exposure therapy solution for social anxiety disorder. "DJINNI" is a conceptual design of an in vivo augmented reality (AR) exposure therapy mobile support system that exploits several capturing technologies and integrates the patient's state and situation by vision-based, audio-based, and physiology-based analysis as well as by indoor/outdoor localization techniques. DJINNI also comprises an innovative virtual reality exposure therapy system that is adaptive and customizable to the demands of the in vivo experience and therapeutic progress. DJINNI follows a gamification approach where rewards and achievements are utilized to motivate the patient to progress in her/his treatment. The current paper reviews the state of the art of technologies needed for such a solution and recommends how these technologies could be integrated in the development of an individually tailored and yet feasible and effective AR/virtual reality-based exposure therapy. Finally, the paper outlines how DJINNI could be part of classical cognitive behavioral treatment and how to validate such a setup.
Ben-Moussa, Maher; Rubo, Marius; Debracque, Coralie; Lange, Wolf-Gero
2017-01-01
The present paper explores the benefits and the capabilities of various emerging state-of-the-art interactive 3D and Internet of Things technologies and investigates how these technologies can be exploited to develop a more effective technology supported exposure therapy solution for social anxiety disorder. “DJINNI” is a conceptual design of an in vivo augmented reality (AR) exposure therapy mobile support system that exploits several capturing technologies and integrates the patient’s state and situation by vision-based, audio-based, and physiology-based analysis as well as by indoor/outdoor localization techniques. DJINNI also comprises an innovative virtual reality exposure therapy system that is adaptive and customizable to the demands of the in vivo experience and therapeutic progress. DJINNI follows a gamification approach where rewards and achievements are utilized to motivate the patient to progress in her/his treatment. The current paper reviews the state of the art of technologies needed for such a solution and recommends how these technologies could be integrated in the development of an individually tailored and yet feasible and effective AR/virtual reality-based exposure therapy. Finally, the paper outlines how DJINNI could be part of classical cognitive behavioral treatment and how to validate such a setup. PMID:28503155
Ruppert, Barb
2011-03-01
Virtual reality is increasingly used for education and treatment in the fields of health and medicine. What is the health potential of virtual reality technology from the software development industry perspective? This article presents interviews with Ben Sawyer of Games for Health, Dr. Walter Greenleaf of InWorld Solutions, and Dr. Ernie Medina of MedPlay Technologies. Games for Health brings together researchers, medical professionals, and game developers to share information on the impact that game technologies can have on health, health care, and policy. InWorld is an Internet-based virtual environment designed specifically for behavioral health care. MedPlay Technologies develops wellness training programs that include exergaming technology. The interviewees share their views on software development and other issues that must be addressed to advance the field of virtual reality for health applications. © 2011 Diabetes Technology Society.
Real-time 3D human capture system for mixed-reality art and entertainment.
Nguyen, Ta Huynh Duy; Qui, Tran Cong Thien; Xu, Ke; Cheok, Adrian David; Teo, Sze Lee; Zhou, ZhiYing; Mallawaarachchi, Asitha; Lee, Shang Ping; Liu, Wei; Teo, Hui Siang; Thang, Le Nam; Li, Yu; Kato, Hirokazu
2005-01-01
A real-time system for capturing humans in 3D and placing them into a mixed reality environment is presented in this paper. The subject is captured by nine cameras surrounding her. Looking through a head-mounted-display with a camera in front pointing at a marker, the user can see the 3D image of this subject overlaid onto a mixed reality scene. The 3D images of the subject viewed from this viewpoint are constructed using a robust and fast shape-from-silhouette algorithm. The paper also presents several techniques to produce good quality and speed up the whole system. The frame rate of our system is around 25 fps using only standard Intel processor-based personal computers. Besides a remote live 3D conferencing and collaborating system, we also describe an application of the system in art and entertainment, named Magic Land, which is a mixed reality environment where captured avatars of human and 3D computer generated virtual animations can form an interactive story and play with each other. This system demonstrates many technologies in human computer interaction: mixed reality, tangible interaction, and 3D communication. The result of the user study not only emphasizes the benefits, but also addresses some issues of these technologies.
ERIC Educational Resources Information Center
Allison, John
2008-01-01
This paper will undertake a critical review of the impact of virtual reality tools on the teaching of history. Virtual reality is useful in several different ways. History educators, elementary and secondary school teachers and professors, can all profit from the digital environment. Challenges arise quickly however. Virtual reality technologies…
Immersive virtual reality simulations in nursing education.
Kilmon, Carol A; Brown, Leonard; Ghosh, Sumit; Mikitiuk, Artur
2010-01-01
This article explores immersive virtual reality as a potential educational strategy for nursing education and describes an immersive learning experience now being developed for nurses. This pioneering project is a virtual reality application targeting speed and accuracy of nurse response in emergency situations requiring cardiopulmonary resuscitation. Other potential uses and implications for the development of virtual reality learning programs are discussed.
Virtual Reality at the PC Level
NASA Technical Reports Server (NTRS)
Dean, John
1998-01-01
The main objective of my research has been to incorporate virtual reality at the desktop level; i.e., create virtual reality software that can be run fairly inexpensively on standard PC's. The standard language used for virtual reality on PC's is VRML (Virtual Reality Modeling Language). It is a new language so it is still undergoing a lot of changes. VRML 1.0 came out only a couple years ago and VRML 2.0 came out around last September. VRML is an interpreted language that is run by a web browser plug-in. It is fairly flexible in terms of allowing you to create different shapes and animations. Before this summer, I knew very little about virtual reality and I did not know VRML at all. I learned the VRML language by reading two books and experimenting on a PC. The following topics are presented: CAD to VRML, VRML 1.0 to VRML 2.0, VRML authoring tools, VRML browsers, finding virtual reality applications, the AXAF project, the VRML generator program, web communities and future plans.
Interpretations of virtual reality.
Voiskounsky, Alexander
2011-01-01
University students were surveyed to learn what they know about virtual realities. The two studies were administered with a half-year interval in which the students (N=90, specializing either in mathematics and science, or in social science and humanities) were asked to name particular examples of virtual realities. The second, but not the first study, was administered after the participants had the chance to see the movie "Avatar" (no investigation was held into whether they really saw it). While the students in both studies widely believed that activities such as social networking and online gaming represent virtual realities, some other examples provided by the students in the two studies differ: in the second study the participants expressed a better understanding of the items related to virtual realities. At the same time, not a single participant reported particular psychological states (either regular or altered) as examples of virtual realities. Profound popularization efforts need to be done to acquaint the public, including college students, with virtual realities and let the public adequately understand how such systems work.
Riva, Giuseppe
2011-03-01
Obesity and eating disorders are usually considered unrelated problems with different causes. However, various studies identify unhealthful weight-control behaviors (fasting, vomiting, or laxative abuse), induced by a negative experience of the body, as the common antecedents of both obesity and eating disorders. But how might negative body image--common to most adolescents, not only to medical patients--be behind the development of obesity and eating disorders? In this paper, I review the "allocentric lock theory" of negative body image as the possible antecedent of both obesity and eating disorders. Evidence from psychology and neuroscience indicates that our bodily experience involves the integration of different sensory inputs within two different reference frames: egocentric (first-person experience) and allocentric (third-person experience). Even though functional relations between these two frames are usually limited, they influence each other during the interaction between long- and short-term memory processes in spatial cognition. If this process is impaired either through exogenous (e.g., stress) or endogenous causes, the egocentric sensory inputs are unable to update the contents of the stored allocentric representation of the body. In other words, these patients are locked in an allocentric (observer view) negative image of their body, which their sensory inputs are no longer able to update even after a demanding diet and a significant weight loss. This article discusses the possible role of virtual reality in addressing this problem within an integrated treatment approach based on the allocentric lock theory. © 2011 Diabetes Technology Society.
Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System.
Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama
2017-01-01
Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one's center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one's individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one's overall performance in balance-related tasks belonging to different difficulty levels.
Development of a Virtual Museum Including a 4d Presentation of Building History in Virtual Reality
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Tschirschwitz, F.; Deggim, S.
2017-02-01
In the last two decades the definition of the term "virtual museum" changed due to rapid technological developments. Using today's available 3D technologies a virtual museum is no longer just a presentation of collections on the Internet or a virtual tour of an exhibition using panoramic photography. On one hand, a virtual museum should enhance a museum visitor's experience by providing access to additional materials for review and knowledge deepening either before or after the real visit. On the other hand, a virtual museum should also be used as teaching material in the context of museum education. The laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has developed a virtual museum (VM) of the museum "Alt-Segeberger Bürgerhaus", a historic town house. The VM offers two options for visitors wishing to explore the museum without travelling to the city of Bad Segeberg, Schleswig-Holstein, Germany. Option a, an interactive computer-based, tour for visitors to explore the exhibition and to collect information of interest or option b, to immerse into virtual reality in 3D with the HTC Vive Virtual Reality System.
Role of virtual reality simulation in endoscopy training
Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen
2015-01-01
Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed. PMID:26675895
Role of virtual reality simulation in endoscopy training.
Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen
2015-12-10
Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed.
Hybrid Reality Lab Capabilities - Video 2
NASA Technical Reports Server (NTRS)
Delgado, Francisco J.; Noyes, Matthew
2016-01-01
Our Hybrid Reality and Advanced Operations Lab is developing incredibly realistic and immersive systems that could be used to provide training, support engineering analysis, and augment data collection for various human performance metrics at NASA. To get a better understanding of what Hybrid Reality is, let's go through the two most commonly known types of immersive realities: Virtual Reality, and Augmented Reality. Virtual Reality creates immersive scenes that are completely made up of digital information. This technology has been used to train astronauts at NASA, used during teleoperation of remote assets (arms, rovers, robots, etc.) and other activities. One challenge with Virtual Reality is that if you are using it for real time-applications (like landing an airplane) then the information used to create the virtual scenes can be old (i.e. visualized long after physical objects moved in the scene) and not accurate enough to land the airplane safely. This is where Augmented Reality comes in. Augmented Reality takes real-time environment information (from a camera, or see through window, and places digitally created information into the scene so that it matches with the video/glass information). Augmented Reality enhances real environment information collected with a live sensor or viewport (e.g. camera, window, etc.) with the information-rich visualization provided by Virtual Reality. Hybrid Reality takes Augmented Reality even further, by creating a higher level of immersion where interactivity can take place. Hybrid Reality takes Virtual Reality objects and a trackable, physical representation of those objects, places them in the same coordinate system, and allows people to interact with both objects' representations (virtual and physical) simultaneously. After a short period of adjustment, the individuals begin to interact with all the objects in the scene as if they were real-life objects. The ability to physically touch and interact with digitally created objects that have the same shape, size, location to their physical object counterpart in virtual reality environment can be a game changer when it comes to training, planning, engineering analysis, science, entertainment, etc. Our Project is developing such capabilities for various types of environments. The video outlined with this abstract is a representation of an ISS Hybrid Reality experience. In the video you can see various Hybrid Reality elements that provide immersion beyond just standard Virtual Reality or Augmented Reality.
Eye gazing direction inspection based on image processing technique
NASA Astrophysics Data System (ADS)
Hao, Qun; Song, Yong
2005-02-01
According to the research result in neural biology, human eyes can obtain high resolution only at the center of view of field. In the research of Virtual Reality helmet, we design to detect the gazing direction of human eyes in real time and feed it back to the control system to improve the resolution of the graph at the center of field of view. In the case of current display instruments, this method can both give attention to the view field of virtual scene and resolution, and improve the immersion of virtual system greatly. Therefore, detecting the gazing direction of human eyes rapidly and exactly is the basis of realizing the design scheme of this novel VR helmet. In this paper, the conventional method of gazing direction detection that based on Purklinje spot is introduced firstly. In order to overcome the disadvantage of the method based on Purklinje spot, this paper proposed a method based on image processing to realize the detection and determination of the gazing direction. The locations of pupils and shapes of eye sockets change with the gazing directions. With the aid of these changes, analyzing the images of eyes captured by the cameras, gazing direction of human eyes can be determined finally. In this paper, experiments have been done to validate the efficiency of this method by analyzing the images. The algorithm can carry out the detection of gazing direction base on normal eye image directly, and it eliminates the need of special hardware. Experiment results show that the method is easy to implement and have high precision.
2001-08-08
Astronauts John M. Grunsfeld (left), STS-109 payload commander, and Nancy J. Currie, mission specialist, use the virtual reality lab at Johnson Space Center to train for upcoming duties aboard the Space Shuttle Columbia. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team to perform its duties for the fourth Hubble Space Telescope Servicing mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.
Virtual reality exposure in the treatment of social phobia.
Klinger, Evelyne; Légeron, Patrick; Roy, Stéphane; Chemin, Isabelle; Lauer, Françoise; Nugues, Pierre
2004-01-01
Social phobia is one of the most frequent psychiatric disorders and is accessible to two forms of scientifically validated treatments: anti-depressant drugs and cognitive-behavioral therapies. Graded exposure to feared social situations (either in vivo or by imagining the situations) is fundamental to obtain an improvement of the anxious symptoms. Virtual reality (VR) may be an alternative to these standard exposure techniques and seems to bring significant advantages by allowing exposures to numerous and varied situations. Moreover studies have shown that human subjects are appropriately sensitive to virtual environments. This chapter reports the definition of a VR-based clinical protocol and a study to treat social phobia using virtual reality techniques. The virtual environments used in the treatment reproduce four situations that social phobics feel the most threatening: performance, intimacy, scrutiny and assertiveness. With the help of the therapist, the patient learns adapted cognitions and behaviors when coping with social situations, with the aim of reducing her or his anxiety in the corresponding real life situations. Some studies have been carried out using virtual reality in the treatment of fear of public speaking, which is only a small part of the symptomatology of most of social phobic patients. The novelty of our work is to address a larger group of situations that the phobic patients experience with high anxiety. In our protocol, the efficacy of the virtual reality treatment is compared to well established and well validated group cognitive-behavioral treatment.
Cardiovascular effects of Zumba® performed in a virtual environment using XBOX Kinect
Neves, Luceli Eunice Da Silva; Cerávolo, Mariza Paver Da Silva; Silva, Elisangela; De Freitas, Wagner Zeferino; Da Silva, Fabiano Fernandes; Higino, Wonder Passoni; Carvalho, Wellington Roberto Gomes; De Souza, Renato Aparecido
2015-01-01
[Purpose] This study evaluated the acute cardiovascular responses during a session of Zumba® Fitness in a virtual reality environment. [Subjects] Eighteen healthy volunteers were recruited. [Methods] The following cardiovascular variables: heart rate, systolic blood pressure, diastolic blood pressure, and double product were assessed before and after the practice of virtual Zumba®, which was performed as a continuous sequence of five choreographed movements lasting for 22 min. The game Zumba Fitness Core®, with the Kinect-based virtual reality system for the XBOX 360, was used to create the virtual environment. Comparisons were made among mean delta values (delta=post-Zumba® minus pre-Zumba® values) for systolic and diastolic blood pressure, heart rate, and double product using Student’s t-test for paired samples. [Results] After a single session, a significant increase was noted in all the analyzed parameters (Systolic blood pressure=18%; Diastolic blood pressure=13%; Heart rate=67%; and Double product=97%). [Conclusion] The results support the feasibility of the use of Zumba Fitness Core® with the Kinect-based virtual reality system for the XBOX 360 in physical activity programs and further favor its indication for this purpose. PMID:26504312
A Virtual Campus Based on Human Factor Engineering
ERIC Educational Resources Information Center
Yang, Yuting; Kang, Houliang
2014-01-01
Three Dimensional or 3D virtual reality has become increasingly popular in many areas, especially in building a digital campus. This paper introduces a virtual campus, which is based on a 3D model of The Tourism and Culture College of Yunnan University (TCYU). Production of the virtual campus was aided by Human Factor and Ergonomics (HF&E), an…
Augmented reality-guided artery-first pancreatico-duodenectomy.
Marzano, Ettore; Piardi, Tullio; Soler, Luc; Diana, Michele; Mutter, Didier; Marescaux, Jacques; Pessaux, Patrick
2013-11-01
Augmented Reality (AR) in surgery consists in the fusion of synthetic computer-generated images (3D virtual model) obtained from medical imaging preoperative work-up and real-time patient images with the aim to visualize unapparent anatomical details. The potential of AR navigation as a tool to improve safety of the surgical dissection is presented in a case of pancreatico-duodenectomy (PD). A 77-year-old male patient underwent an AR-assisted PD. The 3D virtual anatomical model was obtained from thoraco-abdominal CT scan using customary software (VR-RENDER®, IRCAD). The virtual model was superimposed to the operative field using an Exoscope (VITOM®, Karl Storz, Tüttlingen, Germany) as well as different visible landmarks (inferior vena cava, left renal vein, aorta, superior mesenteric vein, inferior margin of the pancreas). A computer scientist manually registered virtual and real images using a video mixer (MX 70; Panasonic, Secaucus, NJ) in real time. Dissection of the superior mesenteric artery and the hanging maneuver were performed under AR guidance along the hanging plane. AR allowed for precise and safe recognition of all the important vascular structures. Operative time was 360 min. AR display and fine registration was performed within 6 min. The postoperative course was uneventful. The pathology was positive for ampullary adenocarcinoma; the final stage was pT1N0 (0/43 retrieved lymph nodes) with clear surgical margins. AR is a valuable navigation tool that can enhance the ability to achieve a safe surgical resection during PD.
Virtual reality in surgical training.
Lange, T; Indelicato, D J; Rosen, J M
2000-01-01
Virtual reality in surgery and, more specifically, in surgical training, faces a number of challenges in the future. These challenges are building realistic models of the human body, creating interface tools to view, hear, touch, feel, and manipulate these human body models, and integrating virtual reality systems into medical education and treatment. A final system would encompass simulators specifically for surgery, performance machines, telemedicine, and telesurgery. Each of these areas will need significant improvement for virtual reality to impact medicine successfully in the next century. This article gives an overview of, and the challenges faced by, current systems in the fast-changing field of virtual reality technology, and provides a set of specific milestones for a truly realistic virtual human body.
Creating 3D models of historical buildings using geospatial data
NASA Astrophysics Data System (ADS)
Alionescu, Adrian; Bǎlǎ, Alina Corina; Brebu, Floarea Maria; Moscovici, Anca-Maria
2017-07-01
Recently, a lot of interest has been shown to understand a real world object by acquiring its 3D images of using laser scanning technology and panoramic images. A realistic impression of geometric 3D data can be generated by draping real colour textures simultaneously captured by a colour camera images. In this context, a new concept of geospatial data acquisition has rapidly revolutionized the method of determining the spatial position of objects, which is based on panoramic images. This article describes an approach that comprises inusing terrestrial laser scanning and panoramic images captured with Trimble V10 Imaging Rover technology to enlarge the details and realism of the geospatial data set, in order to obtain 3D urban plans and virtual reality applications.
Immersive Education, an Annotated Webliography
ERIC Educational Resources Information Center
Pricer, Wayne F.
2011-01-01
In this second installment of a two-part feature on immersive education a webliography will provide resources discussing the use of various types of computer simulations including: (a) augmented reality, (b) virtual reality programs, (c) gaming resources for teaching with technology, (d) virtual reality lab resources, (e) virtual reality standards…
Virtual reality social cognition training for young adults with high-functioning autism.
Kandalaft, Michelle R; Didehbani, Nyaz; Krawczyk, Daniel C; Allen, Tandra T; Chapman, Sandra B
2013-01-01
Few evidence-based social interventions exist for young adults with high-functioning autism, many of whom encounter significant challenges during the transition into adulthood. The current study investigated the feasibility of an engaging Virtual Reality Social Cognition Training intervention focused on enhancing social skills, social cognition, and social functioning. Eight young adults diagnosed with high-functioning autism completed 10 sessions across 5 weeks. Significant increases on social cognitive measures of theory of mind and emotion recognition, as well as in real life social and occupational functioning were found post-training. These findings suggest that the virtual reality platform is a promising tool for improving social skills, cognition, and functioning in autism.
Re-Dimensional Thinking in Earth Science: From 3-D Virtual Reality Panoramas to 2-D Contour Maps
ERIC Educational Resources Information Center
Park, John; Carter, Glenda; Butler, Susan; Slykhuis, David; Reid-Griffin, Angelia
2008-01-01
This study examines the relationship of gender and spatial perception on student interactivity with contour maps and non-immersive virtual reality. Eighteen eighth-grade students elected to participate in a six-week activity-based course called "3-D GeoMapping." The course included nine days of activities related to topographic mapping.…
ERIC Educational Resources Information Center
Strickland, Dorothy C.; McAllister, David; Coles, Claire D.; Osborne, Susan
2007-01-01
This article describes an evolution of training programs to use first-person interaction in virtual reality (VR) situations to teach safety skills to children with autism spectrum disorder (ASD) and fetal alcohol spectrum disorder (FASD). Multiple VR programs for children aged 2 to 9 were built and tested between 1992 and 2007. Based on these…
The Input-Interface of Webcam Applied in 3D Virtual Reality Systems
ERIC Educational Resources Information Center
Sun, Huey-Min; Cheng, Wen-Lin
2009-01-01
Our research explores a virtual reality application based on Web camera (Webcam) input-interface. The interface can replace with the mouse to control direction intention of a user by the method of frame difference. We divide a frame into nine grids from Webcam and make use of the background registration to compute the moving object. In order to…
ERIC Educational Resources Information Center
Thorsteinsson, Gisli; Page, Tom
2007-01-01
Innovation Education (IE) is a new subject area in Icelandic schools. The aim of the subject is to train students to identify the needs and problems in their environment and to develop solutions: a process of ideation. This activity has been classroom based but now a Virtual Reality Learning Environment technology (VRLE) has been designed to…
Fundamental arthroscopic skill differentiation with virtual reality simulation.
Rose, Kelsey; Pedowitz, Robert
2015-02-01
The purpose of this study was to investigate the use and validity of virtual reality modules as part of the educational approach to mastering arthroscopy in a safe environment by assessing the ability to distinguish between experience levels. Additionally, the study aimed to evaluate whether experts have greater ambidexterity than do novices. Three virtual reality modules (Swemac/Augmented Reality Systems, Linkoping, Sweden) were created to test fundamental arthroscopic skills. Thirty participants-10 experts consisting of faculty, 10 intermediate participants consisting of orthopaedic residents, and 10 novices consisting of medical students-performed each exercise. Steady and Telescope was designed to train centering and image stability. Steady and Probe was designed to train basic triangulation. Track and Moving Target was designed to train coordinated motions of arthroscope and probe. Metrics reflecting speed, accuracy, and efficiency of motion were used to measure construct validity. Steady and Probe and Track a Moving Target both exhibited construct validity, with better performance by experts and intermediate participants than by novices (P < .05), whereas Steady and Telescope did not show validity. There was an overall trend toward better ambidexterity as a function of greater surgical experience, with experts consistently more proficient than novices throughout all 3 modules. This study represents a new way to assess basic arthroscopy skills using virtual reality modules developed through task deconstruction. Participants with the most arthroscopic experience performed better and were more consistent than novices on all 3 virtual reality modules. Greater arthroscopic experience correlates with more symmetry of ambidextrous performance. However, further adjustment of the modules may better simulate fundamental arthroscopic skills and discriminate between experience levels. Arthroscopy training is a critical element of orthopaedic surgery resident training. Developing techniques to safely and effectively train these skills is critical for patient safety and resident education. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-01-01
Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy. Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention). Participants then completed two post-training virtual procedures for assessment and comparison. Cognitive load during the post-training procedures was estimated by reaction time testing on an integrated secondary task. Final-product analysis by two blinded expert raters was used to assess the virtual mastoidectomy performances. Participants in the intervention group had a significantly increased cognitive load during the post-training procedures compared with the control group (52 vs. 41 %, p = 0.02). This was also reflected in the final-product performance: the intervention group had a significantly lower final-product score than the control group (13.0 vs. 15.4, p < 0.005). Initial instruction using worked examples followed by a problem completion exercise did not reduce the cognitive load or improve the performance of the following procedures in novices. Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices.
Riva, G; Bacchetta, M; Baruffi, M; Borgomainerio, E; Defrance, C; Gatti, F; Galimberti, C; Fontaneto, S; Marchi, S; Molinari, E; Nugues, P; Rinaldi, S; Rovetta, A; Ferretti, G S; Tonci, A; Wann, J; Vincelli, F
1999-01-01
Due, in large part, to the significant advances in PC hardware that have been made over the last 3 years, PC-based virtual environments are approaching reality. Virtual Reality Environments for Psychoneurophysiological Assessment and Rehabilitation (VREPAR) are two European Community funded projects (Telematics for health-HC 1053/HC 1055, http:// www.psicologia.net) that are trying to develop a PC-based virtual reality system (PC-VRS) for the medical market that can be marketed at a price that is accessible to its possible endusers (hospitals, universities, and research centres) and that would have the modular, connectability, and interoperability characteristics that the existing systems lack. In particular, the projects are developing three hardware/software modules for the application of the PCVRS in psycho-neuro-physiological assessment and rehabilitation. The chosen development areas are eating disorders (bulimia, anorexia, and obesity), movement disorders (Parkinson's disease and torsion dystonia) and stroke disorders (unilateral neglect and hemiparesis). This article describes the rationale of the modules and the preliminary results obtained.
Virtual-reality-based system for controlled study of cataplexy
NASA Astrophysics Data System (ADS)
Augustine, Kurt E.; Cameron, Bruce M.; Camp, Jon J.; Krahn, Lois E.; Robb, Richard A.
2002-05-01
Cataplexy is a sudden loss of voluntary muscle control experienced by narcolepsy patients. It is usually triggered by strong, spontaneous emotions and is more common in times of stress. The Sleep Disorders Unit and the Biomedical Imaging Resource at Mayo Clinic are developing interactive display technology for reliably inducing cataplexy during clinical monitoring. The project is referred to as the Cataplexy/Narcolepsy Activation Program, or CatNAP. We have developed an automobile driving simulation that introduces humorous, surprising, and stress-inducing events and objects as the patient attempts to navigate a vehicle through a virtual town. The patient wears a head-mounted display and controls the vehicle via a driving simulator steering wheel and pedal cluster. As the patient attempts to drive through the town, various objects, sounds or conditions occur that distract, startle, frustrate or amuse. These responses may trigger a cataplectic episode, which can then be clinically evaluated. We believe CatNAP is a novel and innovative example of the effective application of virtual reality technology to study an important clinical problem that has resisted previous approaches. An evaluation phase with volunteer patients previously diagnosed with cataplexy has been completed. The prototype system is being prepared for a full clinical study.
Generating classes of 3D virtual mandibles for AR-based medical simulation.
Hippalgaonkar, Neha R; Sider, Alexa D; Hamza-Lup, Felix G; Santhanam, Anand P; Jaganathan, Bala; Imielinska, Celina; Rolland, Jannick P
2008-01-01
Simulation and modeling represent promising tools for several application domains from engineering to forensic science and medicine. Advances in 3D imaging technology convey paradigms such as augmented reality (AR) and mixed reality inside promising simulation tools for the training industry. Motivated by the requirement for superimposing anatomically correct 3D models on a human patient simulator (HPS) and visualizing them in an AR environment, the purpose of this research effort was to develop and validate a method for scaling a source human mandible to a target human mandible within a 2 mm root mean square (RMS) error. Results show that, given a distance between 2 same landmarks on 2 different mandibles, a relative scaling factor may be computed. Using this scaling factor, results show that a 3D virtual mandible model can be made morphometrically equivalent to a real target-specific mandible within a 1.30 mm RMS error. The virtual mandible may be further used as a reference target for registering other anatomic models, such as the lungs, on the HPS. Such registration will be made possible by physical constraints among the mandible and the spinal column in the horizontal normal rest position.
Simulation and augmented reality in endovascular neurosurgery: lessons from aviation.
Mitha, Alim P; Almekhlafi, Mohammed A; Janjua, Major Jameel J; Albuquerque, Felipe C; McDougall, Cameron G
2013-01-01
Endovascular neurosurgery is a discipline strongly dependent on imaging. Therefore, technology that improves how much useful information we can garner from a single image has the potential to dramatically assist decision making during endovascular procedures. Furthermore, education in an image-enhanced environment, especially with the incorporation of simulation, can improve the safety of the procedures and give interventionalists and trainees the opportunity to study or perform simulated procedures before the intervention, much like what is practiced in the field of aviation. Here, we examine the use of simulators in the training of fighter pilots and discuss how similar benefits can compensate for current deficiencies in endovascular training. We describe the types of simulation used for endovascular procedures, including virtual reality, and discuss the relevant data on its utility in training. Finally, the benefit of augmented reality during endovascular procedures is discussed, along with future computerized image enhancement techniques.
Khurana, Meetika; Walia, Shefali
2017-01-01
Objective: To determine whether there is any difference between virtual reality game–based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test–post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game–based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure–III (SCIM-III). Results: There was a significant difference for time (p = .001) and Time × Group effect (p = .001) in mFRT scores, group effect (p = .05) in t-shirt test scores, and time effect (p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game–based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training. PMID:29339902
Khurana, Meetika; Walia, Shefali; Noohu, Majumi M
2017-01-01
Objective: To determine whether there is any difference between virtual reality game-based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test-post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game-based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure-III (SCIM-III). Results: There was a significant difference for time ( p = .001) and Time × Group effect ( p = .001) in mFRT scores, group effect ( p = .05) in t-shirt test scores, and time effect ( p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game-based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training.
Transduction between worlds: using virtual and mixed reality for earth and planetary science
NASA Astrophysics Data System (ADS)
Hedley, N.; Lochhead, I.; Aagesen, S.; Lonergan, C. D.; Benoy, N.
2017-12-01
Virtual reality (VR) and augmented reality (AR) have the potential to transform the way we visualize multidimensional geospatial datasets in support of geoscience research, exploration and analysis. The beauty of virtual environments is that they can be built at any scale, users can view them at many levels of abstraction, move through them in unconventional ways, and experience spatial phenomena as if they had superpowers. Similarly, augmented reality allows you to bring the power of virtual 3D data visualizations into everyday spaces. Spliced together, these interface technologies hold incredible potential to support 21st-century geoscience. In my ongoing research, my team and I have made significant advances to connect data and virtual simulations with real geographic spaces, using virtual environments, geospatial augmented reality and mixed reality. These research efforts have yielded new capabilities to connect users with spatial data and phenomena. These innovations include: geospatial x-ray vision; flexible mixed reality; augmented 3D GIS; situated augmented reality 3D simulations of tsunamis and other phenomena interacting with real geomorphology; augmented visual analytics; and immersive GIS. These new modalities redefine the ways in which we can connect digital spaces of spatial analysis, simulation and geovisualization, with geographic spaces of data collection, fieldwork, interpretation and communication. In a way, we are talking about transduction between real and virtual worlds. Taking a mixed reality approach to this, we can link real and virtual worlds. This paper presents a selection of our 3D geovisual interface projects in terrestrial, coastal, underwater and other environments. Using rigorous applied geoscience data, analyses and simulations, our research aims to transform the novelty of virtual and augmented reality interface technologies into game-changing mixed reality geoscience.
The Virtual Reality Roving Vehicle Project.
ERIC Educational Resources Information Center
Winn, William
1995-01-01
Describes the Virtual Reality Roving Vehicle project developed at the University of Washington to teach students in grades 4 through 12 about virtual reality. Topics include teacher workshops; virtual worlds created by students; learning outcomes compared with traditional instruction; and the effect of student characteristics, including gender, on…
World Reaction to Virtual Space
NASA Technical Reports Server (NTRS)
1999-01-01
DRaW Computing developed virtual reality software for the International Space Station. Open Worlds, as the software has been named, can be made to support Java scripting and virtual reality hardware devices. Open Worlds permits the use of VRML script nodes to add virtual reality capabilities to the user's applications.
Classification and overview of research in real-time imaging
NASA Astrophysics Data System (ADS)
Sinha, Purnendu; Gorinsky, Sergey V.; Laplante, Phillip A.; Stoyenko, Alexander D.; Marlowe, Thomas J.
1996-10-01
Real-time imaging has application in areas such as multimedia, virtual reality, medical imaging, and remote sensing and control. Recently, the imaging community has witnessed a tremendous growth in research and new ideas in these areas. To lend structure to this growth, we outline a classification scheme and provide an overview of current research in real-time imaging. For convenience, we have categorized references by research area and application.
Mixed Reality with HoloLens: Where Virtual Reality Meets Augmented Reality in the Operating Room.
Tepper, Oren M; Rudy, Hayeem L; Lefkowitz, Aaron; Weimer, Katie A; Marks, Shelby M; Stern, Carrie S; Garfein, Evan S
2017-11-01
Virtual reality and augmented reality devices have recently been described in the surgical literature. The authors have previously explored various iterations of these devices, and although they show promise, it has become clear that virtual reality and/or augmented reality devices alone do not adequately meet the demands of surgeons. The solution may lie in a hybrid technology known as mixed reality, which merges many virtual reality and augmented realty features. Microsoft's HoloLens, the first commercially available mixed reality device, provides surgeons intraoperative hands-free access to complex data, the real environment, and bidirectional communication. This report describes the use of HoloLens in the operating room to improve decision-making and surgical workflow. The pace of mixed reality-related technological development will undoubtedly be rapid in the coming years, and plastic surgeons are ideally suited to both lead and benefit from this advance.
The CAVE (TM) automatic virtual environment: Characteristics and applications
NASA Technical Reports Server (NTRS)
Kenyon, Robert V.
1995-01-01
Virtual reality may best be defined as the wide-field presentation of computer-generated, multi-sensory information that tracks a user in real time. In addition to the more well-known modes of virtual reality -- head-mounted displays and boom-mounted displays -- the Electronic Visualization Laboratory at the University of Illinois at Chicago recently introduced a third mode: a room constructed from large screens on which the graphics are projected on to three walls and the floor. The CAVE is a multi-person, room sized, high resolution, 3D video and audio environment. Graphics are rear projected in stereo onto three walls and the floor, and viewed with stereo glasses. As a viewer wearing a location sensor moves within its display boundaries, the correct perspective and stereo projections of the environment are updated, and the image moves with and surrounds the viewer. The other viewers in the CAVE are like passengers in a bus, along for the ride. 'CAVE,' the name selected for the virtual reality theater, is both a recursive acronym (Cave Automatic Virtual Environment) and a reference to 'The Simile of the Cave' found in Plato's 'Republic,' in which the philosopher explores the ideas of perception, reality, and illusion. Plato used the analogy of a person facing the back of a cave alive with shadows that are his/her only basis for ideas of what real objects are. Rather than having evolved from video games or flight simulation, the CAVE has its motivation rooted in scientific visualization and the SIGGRAPH 92 Showcase effort. The CAVE was designed to be a useful tool for scientific visualization. The Showcase event was an experiment; the Showcase chair and committee advocated an environment for computational scientists to interactively present their research at a major professional conference in a one-to-many format on high-end workstations attached to large projection screens. The CAVE was developed as a 'virtual reality theater' with scientific content and projection that met the criteria of Showcase.
Park, Yu-Hyung; Lee, Chi-Ho; Lee, Byoung-Hee
2013-01-01
This study is a single blind randomized controlled trial to determine the effect of virtual reality-based postural control training on the gait ability in patients with chronic stroke. Sixteen subjects were randomly assigned to either experimental group (VR, n= 8) or control group (CPT, n= 8). Subjects in both groups received conventional physical therapy for 60 min per day, five days per week during a period of four weeks. Subjects in the VR group received additional augmented reality-based training for 30 min per day, three days per week during a period of four weeks. The subjects were evaluated one week before and after participating in a four week training and follow-up at one month post-training. Data derived from the gait analyses included spatiotemporal gait parameters, 10 meters walking test (10 mWT). In the gait parameters, subjects in the VR group showed significant improvement, except for cadence at post-training and follow-up within the experimental group. However, no obvious significant improvement was observed within the control group. In between group comparisons, the experimental group (VR group) showed significantly greater improvement only in stride length compared with the control group (P< 0.05), however, no significant difference was observed in other gait parameters. In conclusion, we demonstrate significant improvement in gait ability in chronic stroke patients who received virtual reality based postural control training. These findings suggest that virtual reality (VR) postural control training using real-time information may be a useful approach for enhancement of gait ability in patients with chronic stroke.
Effect of Virtual Reality on Cognition in Stroke Patients
Kim, Bo Ryun; Kim, Lee Suk; Park, Ji Young
2011-01-01
Objective To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Method Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. Results The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Conclusion Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients. PMID:22506159
Goh, Rachel L Z; Kong, Yu Xiang George; McAlinden, Colm; Liu, John; Crowston, Jonathan G; Skalicky, Simon E
2018-01-01
To evaluate the use of smartphone-based virtual reality to objectively assess activity limitation in glaucoma. Cross-sectional study of 93 patients (54 mild, 22 moderate, 17 severe glaucoma). Sociodemographics, visual parameters, Glaucoma Activity Limitation-9 and Visual Function Questionnaire - Utility Index (VFQ-UI) were collected. Mean age was 67.4 ± 13.2 years; 52.7% were male; 65.6% were driving. A smartphone placed inside virtual reality goggles was used to administer the Virtual Reality Glaucoma Visual Function Test (VR-GVFT) to participants, consisting of three parts: stationary, moving ball, driving. Rasch analysis and classical validity tests were conducted to assess performance of VR-GVFT. Twenty-four of 28 stationary test items showed acceptable fit to the Rasch model (person separation 3.02, targeting 0). Eleven of 12 moving ball test items showed acceptable fit (person separation 3.05, targeting 0). No driving test items showed acceptable fit. Stationary test person scores showed good criterion validity, differentiating between glaucoma severity groups ( P = 0.014); modest convergence validity, with mild to moderate correlation with VFQ-UI, better eye (BE) mean deviation, BE pattern deviation, BE central scotoma, worse eye (WE) visual acuity, and contrast sensitivity (CS) in both eyes ( R = 0.243-0.381); and suboptimal divergent validity. Multivariate analysis showed that lower WE CS ( P = 0.044) and greater age ( P = 0.009) were associated with worse stationary test person scores. Smartphone-based virtual reality may be a portable objective simulation test of activity limitation related to glaucomatous visual loss. The use of simulated virtual environments could help better understand the activity limitations that affect patients with glaucoma.
Goh, Rachel L. Z.; McAlinden, Colm; Liu, John; Crowston, Jonathan G.; Skalicky, Simon E.
2018-01-01
Purpose To evaluate the use of smartphone-based virtual reality to objectively assess activity limitation in glaucoma. Methods Cross-sectional study of 93 patients (54 mild, 22 moderate, 17 severe glaucoma). Sociodemographics, visual parameters, Glaucoma Activity Limitation-9 and Visual Function Questionnaire – Utility Index (VFQ-UI) were collected. Mean age was 67.4 ± 13.2 years; 52.7% were male; 65.6% were driving. A smartphone placed inside virtual reality goggles was used to administer the Virtual Reality Glaucoma Visual Function Test (VR-GVFT) to participants, consisting of three parts: stationary, moving ball, driving. Rasch analysis and classical validity tests were conducted to assess performance of VR-GVFT. Results Twenty-four of 28 stationary test items showed acceptable fit to the Rasch model (person separation 3.02, targeting 0). Eleven of 12 moving ball test items showed acceptable fit (person separation 3.05, targeting 0). No driving test items showed acceptable fit. Stationary test person scores showed good criterion validity, differentiating between glaucoma severity groups (P = 0.014); modest convergence validity, with mild to moderate correlation with VFQ-UI, better eye (BE) mean deviation, BE pattern deviation, BE central scotoma, worse eye (WE) visual acuity, and contrast sensitivity (CS) in both eyes (R = 0.243–0.381); and suboptimal divergent validity. Multivariate analysis showed that lower WE CS (P = 0.044) and greater age (P = 0.009) were associated with worse stationary test person scores. Conclusions Smartphone-based virtual reality may be a portable objective simulation test of activity limitation related to glaucomatous visual loss. Translational Relevance The use of simulated virtual environments could help better understand the activity limitations that affect patients with glaucoma. PMID:29372112
Virtual Reality and Augmented Reality in Plastic Surgery: A Review.
Kim, Youngjun; Kim, Hannah; Kim, Yong Oock
2017-05-01
Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.
Virtual Reality and Augmented Reality in Plastic Surgery: A Review
Kim, Youngjun; Kim, Hannah
2017-01-01
Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed. PMID:28573091
Liu, Yong-Kuo; Chao, Nan; Xia, Hong; Peng, Min-Jun; Ayodeji, Abiodun
2018-05-17
This paper presents an improved and efficient virtual reality-based adaptive dose assessment method (VRBAM) applicable to the cutting and dismantling tasks in nuclear facility decommissioning. The method combines the modeling strength of virtual reality with the flexibility of adaptive technology. The initial geometry is designed with the three-dimensional computer-aided design tools, and a hybrid model composed of cuboids and a point-cloud is generated automatically according to the virtual model of the object. In order to improve the efficiency of dose calculation while retaining accuracy, the hybrid model is converted to a weighted point-cloud model, and the point kernels are generated by adaptively simplifying the weighted point-cloud model according to the detector position, an approach that is suitable for arbitrary geometries. The dose rates are calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The geometric modeling capability of VRBAM was verified by simulating basic geometries, which included a convex surface, a concave surface, a flat surface and their combination. The simulation results show that the VRBAM is more flexible and superior to other approaches in modeling complex geometries. In this paper, the computation time and dose rate results obtained from the proposed method were also compared with those obtained using the MCNP code and an earlier virtual reality-based method (VRBM) developed by the same authors. © 2018 IOP Publishing Ltd.
Rosa, Pedro J; Morais, Diogo; Gamito, Pedro; Oliveira, Jorge; Saraiva, Tomaz
2016-03-01
Immersive virtual reality is thought to be advantageous by leading to higher levels of presence. However, and despite users getting actively involved in immersive three-dimensional virtual environments that incorporate sound and motion, there are individual factors, such as age, video game knowledge, and the predisposition to immersion, that may be associated with the quality of virtual reality experience. Moreover, one particular concern for users engaged in immersive virtual reality environments (VREs) is the possibility of side effects, such as cybersickness. The literature suggests that at least 60% of virtual reality users report having felt symptoms of cybersickness, which reduces the quality of the virtual reality experience. The aim of this study was thus to profile the right user to be involved in a VRE through head-mounted display. To examine which user characteristics are associated with the most effective virtual reality experience (lower cybersickness), a multiple correspondence analysis combined with cluster analysis technique was performed. Results revealed three distinct profiles, showing that the PC gamer profile is more associated with higher levels of virtual reality effectiveness, that is, higher predisposition to be immersed and reduced cybersickness symptoms in the VRE than console gamer and nongamer. These findings can be a useful orientation in clinical practice and future research as they help identify which users are more predisposed to benefit from immersive VREs.
Neri, Silvia Gr; Cardoso, Jefferson R; Cruz, Lorena; Lima, Ricardo M; de Oliveira, Ricardo J; Iversen, Maura D; Carregaro, Rodrigo L
2017-10-01
To summarize evidence on the effectiveness of virtual reality games and conventional therapy or no-intervention for fall prevention in the elderly. An electronic data search (last searched December 2016) was performed on 10 databases (Web of Science, EMBASE, PUBMED, CINAHL, LILACS, SPORTDiscus, Cochrane Library, Scopus, SciELO, PEDro) and retained only randomized controlled trials. Sample characteristics and intervention parameters were compared, focusing on clinical homogeneity of demographic characteristics, type/duration of interventions, outcomes (balance, reaction time, mobility, lower limb strength and fear of falling) and low risk of bias. Based on homogeneity, a meta-analysis was considered. Two independent reviewers assessed the risk of bias. A total of 28 studies met the inclusion criteria and were appraised ( n: 1121 elderly participants). We found that virtual reality games presented positive effects on balance and fear of falling compared with no-intervention. Virtual reality games were also superior to conventional interventions for balance improvements and fear of falling. The six studies included in the meta-analysis demonstrated that virtual reality games significantly improved mobility and balance after 3-6 and 8-12 weeks of intervention when compared with no-intervention. The risk of bias revealed that less than one-third of the studies correctly described the random sequence generation and allocation concealment procedures. Our review suggests positive clinical effects of virtual reality games for balance and mobility improvements compared with no-treatment and conventional interventions. However, owing to the high risk of bias and large variability of intervention protocols, the evidence remains inconclusive and further research is warranted.
NASA Technical Reports Server (NTRS)
Dumas, Joseph D., II
1998-01-01
Several virtual reality I/O peripherals were successfully configured and integrated as part of the author's 1997 Summer Faculty Fellowship work. These devices, which were not supported by the developers of VR software packages, use new software drivers and configuration files developed by the author to allow them to be used with simulations developed using those software packages. The successful integration of these devices has added significant capability to the ANVIL lab at MSFC. In addition, the author was able to complete the integration of a networked virtual reality simulation of the Space Shuttle Remote Manipulator System docking Space Station modules which was begun as part of his 1996 Fellowship. The successful integration of this simulation demonstrates the feasibility of using VR technology for ground-based training as well as on-orbit operations.
Virtual Reality: Emerging Applications and Future Directions
ERIC Educational Resources Information Center
Ludlow, Barbara L.
2015-01-01
Virtual reality is an emerging technology that has resulted in rapid expansion in the development of virtual immersive environments for use as educational simulations in schools, colleges and universities. This article presents an overview of virtual reality, describes a number of applications currently being used by special educators for…
Virtual Reality: A Dream Come True or a Nightmare.
ERIC Educational Resources Information Center
Cornell, Richard; Bailey, Dan
Virtual Reality (VR) is a new medium which allows total stimulation of one's senses through human/computer interfaces. VR has applications in training simulators, nano-science, medicine, entertainment, electronic technology, and manufacturing. This paper focuses on some current and potential problems of virtual reality and virtual environments…
Enhancement of panoramic image resolution based on swift interpolation of Bezier surface
NASA Astrophysics Data System (ADS)
Xiao, Xiao; Yang, Guo-guang; Bai, Jian
2007-01-01
Panoramic annular lens project the view of the entire 360 degrees around the optical axis onto an annular plane based on the way of flat cylinder perspective. Due to the infinite depth of field and the linear mapping relationship between an object and an image, the panoramic imaging system plays important roles in the applications of robot vision, surveillance and virtual reality. An annular image needs to be unwrapped to conventional rectangular image without distortion, in which interpolation algorithm is necessary. Although cubic splines interpolation can enhance the resolution of unwrapped image, it occupies too much time to be applied in practices. This paper adopts interpolation method based on Bezier surface and proposes a swift interpolation algorithm for panoramic image, considering the characteristic of panoramic image. The result indicates that the resolution of the image is well enhanced compared with the image by cubic splines and bilinear interpolation. Meanwhile the time consumed is shortened up by 78% than the time consumed cubic interpolation.
ERIC Educational Resources Information Center
Cooper, Rory A.; Ding, Dan; Simpson, Richard; Fitzgerald, Shirley G.; Spaeth, Donald M.; Guo, Songfeng; Koontz, Alicia M.; Cooper, Rosemarie; Kim, Jongbae; Boninger, Michael L.
2005-01-01
Some aspects of assistive technology can be enhanced by the application of virtual reality. Although virtual simulation offers a range of new possibilities, learning to navigate in a virtual environment is not equivalent to learning to navigate in the real world. Therefore, virtual reality simulation is advocated as a useful preparation for…
The benefits of virtual reality simulator training for laparoscopic surgery.
Hart, Roger; Karthigasu, Krishnan
2007-08-01
Virtual reality is a computer-generated system that provides a representation of an environment. This review will analyse the literature with regard to any benefit to be derived from training with virtual reality equipment and to describe the current equipment available. Virtual reality systems are not currently realistic of the live operating environment because they lack tactile sensation, and do not represent a complete operation. The literature suggests that virtual reality training is a valuable learning tool for gynaecologists in training, particularly those in the early stages of their careers. Furthermore, it may be of benefit for the ongoing audit of surgical skills and for the early identification of a surgeon's deficiencies before operative incidents occur. It is only a matter of time before realistic virtual reality models of most complete gynaecological operations are available, with improved haptics as a result of improved computer technology. It is inevitable that in the modern climate of litigation virtual reality training will become an essential part of clinical training, as evidence for its effectiveness as a training tool exists, and in many countries training by operating on live animals is not possible.
Augmented reality glass-free three-dimensional display with the stereo camera
NASA Astrophysics Data System (ADS)
Pang, Bo; Sang, Xinzhu; Chen, Duo; Xing, Shujun; Yu, Xunbo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu
2017-10-01
An improved method for Augmented Reality (AR) glass-free three-dimensional (3D) display based on stereo camera used for presenting parallax contents from different angle with lenticular lens array is proposed. Compared with the previous implementation method of AR techniques based on two-dimensional (2D) panel display with only one viewpoint, the proposed method can realize glass-free 3D display of virtual objects and real scene with 32 virtual viewpoints. Accordingly, viewers can get abundant 3D stereo information from different viewing angles based on binocular parallax. Experimental results show that this improved method based on stereo camera can realize AR glass-free 3D display, and both of virtual objects and real scene have realistic and obvious stereo performance.
Construction and Evaluation of an Ultra Low Latency Frameless Renderer for VR.
Friston, Sebastian; Steed, Anthony; Tilbury, Simon; Gaydadjiev, Georgi
2016-04-01
Latency - the delay between a user's action and the response to this action - is known to be detrimental to virtual reality. Latency is typically considered to be a discrete value characterising a delay, constant in time and space - but this characterisation is incomplete. Latency changes across the display during scan-out, and how it does so is dependent on the rendering approach used. In this study, we present an ultra-low latency real-time ray-casting renderer for virtual reality, implemented on an FPGA. Our renderer has a latency of ~1 ms from 'tracker to pixel'. Its frameless nature means that the region of the display with the lowest latency immediately follows the scan-beam. This is in contrast to frame-based systems such as those using typical GPUs, for which the latency increases as scan-out proceeds. Using a series of high and low speed videos of our system in use, we confirm its latency of ~1 ms. We examine how the renderer performs when driving a traditional sequential scan-out display on a readily available HMO, the Oculus Rift OK2. We contrast this with an equivalent apparatus built using a GPU. Using captured human head motion and a set of image quality measures, we assess the ability of these systems to faithfully recreate the stimuli of an ideal virtual reality system - one with a zero latency tracker, renderer and display running at 1 kHz. Finally, we examine the results of these quality measures, and how each rendering approach is affected by velocity of movement and display persistence. We find that our system, with a lower average latency, can more faithfully draw what the ideal virtual reality system would. Further, we find that with low display persistence, the sensitivity to velocity of both systems is lowered, but that it is much lower for ours.
NASA Technical Reports Server (NTRS)
1995-01-01
Proceedings from symposia of the Technology 2004 Conference, November 8-10, 1994, Washington, DC. Volume 2 features papers on computers and software, virtual reality simulation, environmental technology, video and imaging, medical technology and life sciences, robotics and artificial intelligence, and electronics.
Riva, Giuseppe; Cárdenas-López, Georgina; Duran, Ximena; Torres-Villalobos, Gonzalo M; Gaggioli, Andrea
2012-01-01
Bariatric surgery is an operation on the stomach and/or intestines that helps patients with extreme obesity to lose weight. Even if bariatric surgery, compared with traditional obesity treatment, is more effective in reducing BMI, this approach does not achieve equal results in every patient. More, following bariatric surgery common problems are body image dissatisfaction and body disparagement: there is a significant difference between the weight loss clinicians consider successful (50% of excess weight) and the weight loss potential patients expect to achieve (at least 67% of the excess weight). The paper discusses the possible role of virtual reality (VR) in addressing this problem within an integrated treatment approach. More, the clinical case of a female bariatric patient who experienced body dissatisfaction even after a 30% body weight loss and a 62% excess body weight loss, is presented and discussed.
Virtual reality for stroke rehabilitation.
Laver, Kate E; Lange, Belinda; George, Stacey; Deutsch, Judith E; Saposnik, Gustavo; Crotty, Maria
2017-11-20
Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation with commercial gaming consoles in particular, being rapidly adopted in clinical settings. This is an update of a Cochrane Review published first in 2011 and then again in 2015. Primary objective: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity.Secondary objectives: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance, global motor function, cognitive function, activity limitation, participation restriction, quality of life, and adverse events. We searched the Cochrane Stroke Group Trials Register (April 2017), CENTRAL, MEDLINE, Embase, and seven additional databases. We also searched trials registries and reference lists. Randomised and quasi-randomised trials of virtual reality ("an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion") in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data, and assessed risk of bias. A third review author moderated disagreements when required. The review authors contacted investigators to obtain missing information. We included 72 trials that involved 2470 participants. This review includes 35 new studies in addition to the studies included in the previous version of this review. Study sample sizes were generally small and interventions varied in terms of both the goals of treatment and the virtual reality devices used. The risk of bias present in many studies was unclear due to poor reporting. Thus, while there are a large number of randomised controlled trials, the evidence remains mostly low quality when rated using the GRADE system. Control groups usually received no intervention or therapy based on a standard-care approach. results were not statistically significant for upper limb function (standardised mean difference (SMD) 0.07, 95% confidence intervals (CI) -0.05 to 0.20, 22 studies, 1038 participants, low-quality evidence) when comparing virtual reality to conventional therapy. However, when virtual reality was used in addition to usual care (providing a higher dose of therapy for those in the intervention group) there was a statistically significant difference between groups (SMD 0.49, 0.21 to 0.77, 10 studies, 210 participants, low-quality evidence). when compared to conventional therapy approaches there were no statistically significant effects for gait speed or balance. Results were statistically significant for the activities of daily living (ADL) outcome (SMD 0.25, 95% CI 0.06 to 0.43, 10 studies, 466 participants, moderate-quality evidence); however, we were unable to pool results for cognitive function, participation restriction, or quality of life. Twenty-three studies reported that they monitored for adverse events; across these studies there were few adverse events and those reported were relatively mild. We found evidence that the use of virtual reality and interactive video gaming was not more beneficial than conventional therapy approaches in improving upper limb function. Virtual reality may be beneficial in improving upper limb function and activities of daily living function when used as an adjunct to usual care (to increase overall therapy time). There was insufficient evidence to reach conclusions about the effect of virtual reality and interactive video gaming on gait speed, balance, participation, or quality of life. This review found that time since onset of stroke, severity of impairment, and the type of device (commercial or customised) were not strong influencers of outcome. There was a trend suggesting that higher dose (more than 15 hours of total intervention) was preferable as were customised virtual reality programs; however, these findings were not statistically significant.
Integrating Computerized Virtual Reality with Traditional Methods of Teaching Skull Anatomy
2002-12-01
assisting students as they maneuver through the myriad of systems and structures of human anatomy . The global implications of VR are expanding with...2000). This project also seeks to find a way to integrate the print library of human anatomy with a Web-based structural anatomical image library...from their colleagues can potentially utilize a program such as VR from anywhere in the world to explore and reexamine the human anatomy at a time
NASA Astrophysics Data System (ADS)
Lam, Walter Y. H.; Ngan, Henry Y. T.; Wat, Peter Y. P.; Luk, Henry W. K.; Goto, Tazuko K.; Pow, Edmond H. N.
2015-02-01
Medical radiography is the use of radiation to "see through" a human body without breaching its integrity (surface). With computed tomography (CT)/cone beam computed tomography (CBCT), three-dimensional (3D) imaging can be produced. These imagings not only facilitate disease diagnosis but also enable computer-aided surgical planning/navigation. In dentistry, the common method for transfer of the virtual surgical planning to the patient (reality) is the use of surgical stent either with a preloaded planning (static) like a channel or a real time surgical navigation (dynamic) after registration with fiducial markers (RF). This paper describes using the corner of a cube as a radiopaque fiducial marker on an acrylic (plastic) stent, this RF allows robust calibration and registration of Cartesian (x, y, z)- coordinates for linking up the patient (reality) and the imaging (virtuality) and hence the surgical planning can be transferred in either static or dynamic way. The accuracy of computer-aided implant surgery was measured with reference to coordinates. In our preliminary model surgery, a dental implant was planned virtually and placed with preloaded surgical guide. The deviation of the placed implant apex from the planning was x=+0.56mm [more right], y=- 0.05mm [deeper], z=-0.26mm [more lingual]) which was within clinically 2mm safety range. For comparison with the virtual planning, the physically placed implant was CT/CBCT scanned and errors may be introduced. The difference of the actual implant apex to the virtual apex was x=0.00mm, y=+0.21mm [shallower], z=-1.35mm [more lingual] and this should be brought in mind when interpret the results.
Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy.
Pessaux, Patrick; Diana, Michele; Soler, Luc; Piardi, Tullio; Mutter, Didier; Marescaux, Jacques
2015-04-01
Augmented reality (AR) in surgery consists in the fusion of synthetic computer-generated images (3D virtual model) obtained from medical imaging preoperative workup and real-time patient images in order to visualize unapparent anatomical details. The 3D model could be used for a preoperative planning of the procedure. The potential of AR navigation as a tool to improve safety of the surgical dissection is outlined for robotic hepatectomy. Three patients underwent a fully robotic and AR-assisted hepatic segmentectomy. The 3D virtual anatomical model was obtained using a thoracoabdominal CT scan with a customary software (VR-RENDER®, IRCAD). The model was then processed using a VR-RENDER® plug-in application, the Virtual Surgical Planning (VSP®, IRCAD), to delineate surgical resection planes including the elective ligature of vascular structures. Deformations associated with pneumoperitoneum were also simulated. The virtual model was superimposed to the operative field. A computer scientist manually registered virtual and real images using a video mixer (MX 70; Panasonic, Secaucus, NJ) in real time. Two totally robotic AR segmentectomy V and one segmentectomy VI were performed. AR allowed for the precise and safe recognition of all major vascular structures during the procedure. Total time required to obtain AR was 8 min (range 6-10 min). Each registration (alignment of the vascular anatomy) required a few seconds. Hepatic pedicle clamping was never performed. At the end of the procedure, the remnant liver was correctly vascularized. Resection margins were negative in all cases. The postoperative period was uneventful without perioperative transfusion. AR is a valuable navigation tool which may enhance the ability to achieve safe surgical resection during robotic hepatectomy.
ERIC Educational Resources Information Center
Lotan, Meir; Yalon-Chamovitz, Shira; Weiss, Patrice L.
2009-01-01
Individuals with intellectual and developmental disabilities (IDD) are in need of effective physical fitness training programs. The aim was to test the effectiveness of a Virtual Reality (VR)-based exercise program in improving the physical fitness of adults with IDD. A research group (N = 30; mean age = 52.3 plus or minus 5.8 years; moderate IDD…
ERIC Educational Resources Information Center
Lotan, Meir; Yalon-Chamovitz, Shira; Weiss, Patrice L.
2010-01-01
Individuals with intellectual and developmental disabilities (IDD) are in need of effective and motivating physical fitness training programs. The aim was to test the effectiveness of a virtual reality (VR)-based exercise program in improving the physical fitness of adults with severe IDD when implemented by on-site caregivers. A research group (N…
Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool
2016-10-01
AWARD NUMBER: W81XWH-14-2-0150 TITLE: Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool PRINCIPAL...AND SUBTITLE Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The proposed study will implement and evaluate a novel, low-cost, Virtual Reality (VR
Review of virtual reality treatment for mental health.
Gourlay, D; Lun, K C; Liya, G
2001-01-01
This paper describes recent research that proposes virtual reality techniques as a therapy for patients with cognitive and psychological problems. Specifically this applies to victims of conditions such as traumatic brain injury, Alzheimers and Parkinsons. Additionally virtual reality therapy offers an alternative to current desensitization techniques for the treatment of phobias Some important issues are examined including means of user interaction, skills transfer to the real world, and side-effects of virtual reality exposure.
A review of virtual reality based training simulators for orthopaedic surgery.
Vaughan, Neil; Dubey, Venketesh N; Wainwright, Thomas W; Middleton, Robert G
2016-02-01
This review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 hip replacements pre-operative planning tools were analysed, plus 9 hip trauma fracture training simulators. Additionally 9 knee arthroscopy simulators and 8 other orthopaedic simulators were included for comparison. The findings are that for orthopaedic surgery simulators in general, there is increasing use of patient-specific virtual models which reduce the learning curve. Modelling is also being used for patient-specific implant design and manufacture. Simulators are being increasingly validated for assessment as well as training. There are very few training simulators available for hip replacement, yet more advanced virtual reality is being used for other procedures such as hip trauma and drilling. Training simulators for hip replacement and orthopaedic surgery in general lag behind other surgical procedures for which virtual reality has become more common. Further developments are required to bring hip replacement training simulation up to date with other procedures. This suggests there is a gap in the market for a new high fidelity hip replacement and resurfacing training simulator. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Stereoscopic vascular models of the head and neck: A computed tomography angiography visualization.
Cui, Dongmei; Lynch, James C; Smith, Andrew D; Wilson, Timothy D; Lehman, Michael N
2016-01-01
Computer-assisted 3D models are used in some medical and allied health science schools; however, they are often limited to online use and 2D flat screen-based imaging. Few schools take advantage of 3D stereoscopic learning tools in anatomy education and clinically relevant anatomical variations when teaching anatomy. A new approach to teaching anatomy includes use of computed tomography angiography (CTA) images of the head and neck to create clinically relevant 3D stereoscopic virtual models. These high resolution images of the arteries can be used in unique and innovative ways to create 3D virtual models of the vasculature as a tool for teaching anatomy. Blood vessel 3D models are presented stereoscopically in a virtual reality environment, can be rotated 360° in all axes, and magnified according to need. In addition, flexible views of internal structures are possible. Images are displayed in a stereoscopic mode, and students view images in a small theater-like classroom while wearing polarized 3D glasses. Reconstructed 3D models enable students to visualize vascular structures with clinically relevant anatomical variations in the head and neck and appreciate spatial relationships among the blood vessels, the skull and the skin. © 2015 American Association of Anatomists.
An Intelligent Virtual Human System For Providing Healthcare Information And Support
2011-01-01
for clinical purposes. Shifts in the social and scientific landscape have now set the stage for the next major movement in Clinical Virtual Reality ...College; dMadigan Army Medical Center Army Abstract. Over the last 15 years, a virtual revolution has taken place in the use of Virtual Reality ... Virtual Reality with the “birth” of intelligent virtual humans. Seminal research and development has appeared in the creation of highly interactive
On-the-fly augmented reality for orthopedic surgery using a multimodal fiducial.
Andress, Sebastian; Johnson, Alex; Unberath, Mathias; Winkler, Alexander Felix; Yu, Kevin; Fotouhi, Javad; Weidert, Simon; Osgood, Greg; Navab, Nassir
2018-04-01
Fluoroscopic x-ray guidance is a cornerstone for percutaneous orthopedic surgical procedures. However, two-dimensional (2-D) observations of the three-dimensional (3-D) anatomy suffer from the effects of projective simplification. Consequently, many x-ray images from various orientations need to be acquired for the surgeon to accurately assess the spatial relations between the patient's anatomy and the surgical tools. We present an on-the-fly surgical support system that provides guidance using augmented reality and can be used in quasiunprepared operating rooms. The proposed system builds upon a multimodality marker and simultaneous localization and mapping technique to cocalibrate an optical see-through head mounted display to a C-arm fluoroscopy system. Then, annotations on the 2-D x-ray images can be rendered as virtual objects in 3-D providing surgical guidance. We quantitatively evaluate the components of the proposed system and, finally, design a feasibility study on a semianthropomorphic phantom. The accuracy of our system was comparable to the traditional image-guided technique while substantially reducing the number of acquired x-ray images as well as procedure time. Our promising results encourage further research on the interaction between virtual and real objects that we believe will directly benefit the proposed method. Further, we would like to explore the capabilities of our on-the-fly augmented reality support system in a larger study directed toward common orthopedic interventions.
Meldrum, Dara; Herdman, Susan; Moloney, Roisin; Murray, Deirdre; Duffy, Douglas; Malone, Kareena; French, Helen; Hone, Stephen; Conroy, Ronan; McConn-Walsh, Rory
2012-03-26
Unilateral peripheral vestibular loss results in gait and balance impairment, dizziness and oscillopsia. Vestibular rehabilitation benefits patients but optimal treatment remains unknown. Virtual reality is an emerging tool in rehabilitation and provides opportunities to improve both outcomes and patient satisfaction with treatment. The Nintendo Wii Fit Plus® (NWFP) is a low cost virtual reality system that challenges balance and provides visual and auditory feedback. It may augment the motor learning that is required to improve balance and gait, but no trials to date have investigated efficacy. In a single (assessor) blind, two centre randomised controlled superiority trial, 80 patients with unilateral peripheral vestibular loss will be randomised to either conventional or virtual reality based (NWFP) vestibular rehabilitation for 6 weeks. The primary outcome measure is gait speed (measured with three dimensional gait analysis). Secondary outcomes include computerised posturography, dynamic visual acuity, and validated questionnaires on dizziness, confidence and anxiety/depression. Outcome will be assessed post treatment (8 weeks) and at 6 months. Advances in the gaming industry have allowed mass production of highly sophisticated low cost virtual reality systems that incorporate technology previously not accessible to most therapists and patients. Importantly, they are not confined to rehabilitation departments, can be used at home and provide an accurate record of adherence to exercise. The benefits of providing augmented feedback, increasing intensity of exercise and accurately measuring adherence may improve conventional vestibular rehabilitation but efficacy must first be demonstrated. Clinical trials.gov identifier: NCT01442623.
A scalable multi-DLP pico-projector system for virtual reality
NASA Astrophysics Data System (ADS)
Teubl, F.; Kurashima, C.; Cabral, M.; Fels, S.; Lopes, R.; Zuffo, M.
2014-03-01
Virtual Reality (VR) environments can offer immersion, interaction and realistic images to users. A VR system is usually expensive and requires special equipment in a complex setup. One approach is to use Commodity-Off-The-Shelf (COTS) desktop multi-projectors manually or camera based calibrated to reduce the cost of VR systems without significant decrease of the visual experience. Additionally, for non-planar screen shapes, special optics such as lenses and mirrors are required thus increasing costs. We propose a low-cost, scalable, flexible and mobile solution that allows building complex VR systems that projects images onto a variety of arbitrary surfaces such as planar, cylindrical and spherical surfaces. This approach combines three key aspects: 1) clusters of DLP-picoprojectors to provide homogeneous and continuous pixel density upon arbitrary surfaces without additional optics; 2) LED lighting technology for energy efficiency and light control; 3) smaller physical footprint for flexibility purposes. Therefore, the proposed system is scalable in terms of pixel density, energy and physical space. To achieve these goals, we developed a multi-projector software library called FastFusion that calibrates all projectors in a uniform image that is presented to viewers. FastFusion uses a camera to automatically calibrate geometric and photometric correction of projected images from ad-hoc positioned projectors, the only requirement is some few pixels overlapping amongst them. We present results with eight Pico-projectors, with 7 lumens (LED) and DLP 0.17 HVGA Chipset.
Virtual Reality Glasses and "Eye-Hands Blind Technique" for Microsurgical Training in Neurosurgery.
Choque-Velasquez, Joham; Colasanti, Roberto; Collan, Juhani; Kinnunen, Riina; Rezai Jahromi, Behnam; Hernesniemi, Juha
2018-04-01
Microsurgical skills and eye-hand coordination need continuous training to be developed and refined. However, well-equipped microsurgical laboratories are not so widespread as their setup is expensive. Herein, we present a novel microsurgical training system that requires a high-resolution personal computer screen, smartphones, and virtual reality glasses. A smartphone placed on a holder at a height of about 15-20 cm from the surgical target field is used as the webcam of the computer. A specific software is used to duplicate the video camera image. The video may be transferred from the computer to another smartphone, which may be connected to virtual reality glasses. Using the previously described training model, we progressively performed more and more complex microsurgical exercises. It did not take long to set up our system, thus saving time for the training sessions. Our proposed training model may represent an affordable and efficient system to improve eye-hand coordination and dexterity in using not only the operating microscope but also endoscopes and exoscopes. Copyright © 2018 Elsevier Inc. All rights reserved.
Riva, Giuseppe
2011-01-01
Obesity and eating disorders are usually considered unrelated problems with different causes. However, various studies identify unhealthful weight-control behaviors (fasting, vomiting, or laxative abuse), induced by a negative experience of the body, as the common antecedents of both obesity and eating disorders. But how might negative body image—common to most adolescents, not only to medical patients—be behind the development of obesity and eating disorders? In this paper, I review the “allocentric lock theory” of negative body image as the possible antecedent of both obesity and eating disorders. Evidence from psychology and neuroscience indicates that our bodily experience involves the integration of different sensory inputs within two different reference frames: egocentric (first-person experience) and allocentric (third-person experience). Even though functional relations between these two frames are usually limited, they influence each other during the interaction between long- and short-term memory processes in spatial cognition. If this process is impaired either through exogenous (e.g., stress) or endogenous causes, the egocentric sensory inputs are unable to update the contents of the stored allocentric representation of the body. In other words, these patients are locked in an allocentric (observer view) negative image of their body, which their sensory inputs are no longer able to update even after a demanding diet and a significant weight loss. This article discusses the possible role of virtual reality in addressing this problem within an integrated treatment approach based on the allocentric lock theory. PMID:21527095
Reality Check: Basics of Augmented, Virtual, and Mixed Reality.
Brigham, Tara J
2017-01-01
Augmented, virtual, and mixed reality applications all aim to enhance a user's current experience or reality. While variations of this technology are not new, within the last few years there has been a significant increase in the number of artificial reality devices or applications available to the general public. This column will explain the difference between augmented, virtual, and mixed reality and how each application might be useful in libraries. It will also provide an overview of the concerns surrounding these different reality applications and describe how and where they are currently being used.
Visualizing the process of interaction in a 3D environment
NASA Astrophysics Data System (ADS)
Vaidya, Vivek; Suryanarayanan, Srikanth; Krishnan, Kajoli; Mullick, Rakesh
2007-03-01
As the imaging modalities used in medicine transition to increasingly three-dimensional data the question of how best to interact with and analyze this data becomes ever more pressing. Immersive virtual reality systems seem to hold promise in tackling this, but how individuals learn and interact in these environments is not fully understood. Here we will attempt to show some methods in which user interaction in a virtual reality environment can be visualized and how this can allow us to gain greater insight into the process of interaction/learning in these systems. Also explored is the possibility of using this method to improve understanding and management of ergonomic issues within an interface.
Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A
2016-11-01
To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.
Price, Matthew; Anderson, Page L.
2012-01-01
Outcome expectancy, the extent that clients anticipate benefiting from therapy, is theorized to be an important predictor of treatment response for cognitive–behavioral therapy. However, there is a relatively small body of empirical research on outcome expectancy and the treatment of social anxiety disorder. This literature, which has examined the association mostly in group-based interventions, has yielded mixed findings. The current study sought to further evaluate the effect of outcome expectancy as a predictor of treatment response for public-speaking fears across both individual virtual reality and group-based cognitive– behavioral therapies. The findings supported outcome expectancy as a predictor of the rate of change in public-speaking anxiety during both individual virtual reality exposure therapy and group cognitive– behavioral therapy. Furthermore, there was no evidence to suggest that the impact of outcome expectancy differed across virtual reality or group treatments. PMID:21967073
Simulation for transthoracic echocardiography of aortic valve
Nanda, Navin C.; Kapur, K. K.; Kapoor, Poonam Malhotra
2016-01-01
Simulation allows interactive transthoracic echocardiography (TTE) learning using a virtual three-dimensional model of the heart and may aid in the acquisition of the cognitive and technical skills needed to perform TTE. The ability to link probe manipulation, cardiac anatomy, and echocardiographic images using a simulator has been shown to be an effective model for training anesthesiology residents in transesophageal echocardiography. A proposed alternative to real-time reality patient-based learning is simulation-based training that allows anesthesiologists to learn complex concepts and procedures, especially for specific structures such as aortic valve. PMID:27397455
The RoboCup Mixed Reality League - A Case Study
NASA Astrophysics Data System (ADS)
Gerndt, Reinhard; Bohnen, Matthias; da Silva Guerra, Rodrigo; Asada, Minoru
In typical mixed reality systems there is only a one-way interaction from real to virtual. A human user or the physics of a real object may influence the behavior of virtual objects, but real objects usually cannot be influenced by the virtual world. By introducing real robots into the mixed reality system, we allow a true two-way interaction between virtual and real worlds. Our system has been used since 2007 to implement the RoboCup mixed reality soccer games and other applications for research and edutainment. Our framework system is freely programmable to generate any virtual environment, which may then be further supplemented with virtual and real objects. The system allows for control of any real object based on differential drive robots. The robots may be adapted for different applications, e.g., with markers for identification or with covers to change shape and appearance. They may also be “equipped” with virtual tools. In this chapter we present the hardware and software architecture of our system and some applications. The authors believe this can be seen as a first implementation of Ivan Sutherland’s 1965 idea of the ultimate display: “The ultimate display would, of course, be a room within which the computer can control the existence of matter …” (Sutherland, 1965, Proceedings of IFIPS Congress 2:506-508).
Computer Based Training: Field Deployable Trainer and Shared Virtual Reality
NASA Technical Reports Server (NTRS)
Mullen, Terence J.
1997-01-01
Astronaut training has traditionally been conducted at specific sites with specialized facilities. Because of its size and nature the training equipment is generally not portable. Efforts are now under way to develop training tools that can be taken to remote locations, including into orbit. Two of these efforts are the Field Deployable Trainer and Shared Virtual Reality projects. Field Deployable Trainer NASA has used the recent shuttle mission by astronaut Shannon Lucid to the Russian space station, Mir, as an opportunity to develop and test a prototype of an on-orbit computer training system. A laptop computer with a customized user interface, a set of specially prepared CD's, and video tapes were taken to the Mir by Ms. Lucid. Based upon the feedback following the launch of the Lucid flight, our team prepared materials for the next Mir visitor. Astronaut John Blaha will fly on NASA/MIR Long Duration Mission 3, set to launch in mid September. He will take with him a customized hard disk drive and a package of compact disks containing training videos, references and maps. The FDT team continues to explore and develop new and innovative ways to conduct offsite astronaut training using personal computers. Shared Virtual Reality Training NASA's Space Flight Training Division has been investigating the use of virtual reality environments for astronaut training. Recent efforts have focused on activities requiring interaction by two or more people, called shared VR. Dr. Bowen Loftin, from the University of Houston, directs a virtual reality laboratory that conducts much of the NASA sponsored research. I worked on a project involving the development of a virtual environment that can be used to train astronauts and others to operate a science unit called a Biological Technology Facility (BTF). Facilities like this will be used to house and control microgravity experiments on the space station. It is hoped that astronauts and instructors will ultimately be able to share common virtual environments and, using telephone links, conduct interactive training from separate locations.
Schmitt, Yuko S; Hoffman, Hunter G; Blough, David K; Patterson, David R; Jensen, Mark P; Soltani, Maryam; Carrougher, Gretchen J; Nakamura, Dana; Sharar, Sam R
2011-02-01
This randomized, controlled, within-subjects (crossover design) study examined the effects of immersive virtual reality as an adjunctive analgesic technique for hospitalized pediatric burn inpatients undergoing painful physical therapy. Fifty-four subjects (6-19 years old) performed range-of-motion exercises under a therapist's direction for 1-5 days. During each session, subjects spent equivalent time in both the virtual reality and the control conditions (treatment order randomized and counterbalanced). Graphic rating scale scores assessing the sensory, affective, and cognitive components of pain were obtained for each treatment condition. Secondary outcomes assessed subjects' perception of the virtual reality experience and maximum range-of-motion. Results showed that on study day one, subjects reported significant decreases (27-44%) in pain ratings during virtual reality. They also reported improved affect ("fun") during virtual reality. The analgesia and affect improvements were maintained with repeated virtual reality use over multiple therapy sessions. Maximum range-of-motion was not different between treatment conditions, but was significantly greater after the second treatment condition (regardless of treatment order). These results suggest that immersive virtual reality is an effective nonpharmacologic, adjunctive pain reduction technique in the pediatric burn population undergoing painful rehabilitation therapy. The magnitude of the analgesic effect is clinically meaningful and is maintained with repeated use. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.