Sample records for image-based wavefront sensing

  1. Contrast-based sensorless adaptive optics for retinal imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.

  2. Broadband Phase Retrieval for Image-Based Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature wavefront sensing, and Shack-Hartmann sensing, all of which entail disadvantages in comparison with image-based methods. The main disadvantages of these non-image based methods are complexity of test equipment and the need for a wavefront reference.

  3. Contrast-based sensorless adaptive optics for retinal imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T.O.; He, Zheng; Metha, Andrew

    2015-01-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525

  4. Sequential deconvolution from wave-front sensing using bivariate simplex splines

    NASA Astrophysics Data System (ADS)

    Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai

    2015-05-01

    Deconvolution from wave-front sensing (DWFS) is an imaging compensation technique for turbulence degraded images based on simultaneous recording of short exposure images and wave-front sensor data. This paper employs the multivariate splines method for the sequential DWFS: a bivariate simplex splines based average slopes measurement model is built firstly for Shack-Hartmann wave-front sensor; next, a well-conditioned least squares estimator for the spline coefficients is constructed using multiple Shack-Hartmann measurements; then, the distorted wave-front is uniquely determined by the estimated spline coefficients; the object image is finally obtained by non-blind deconvolution processing. Simulated experiments in different turbulence strength show that our method performs superior image restoration results and noise rejection capability especially when extracting the multidirectional phase derivatives.

  5. Wavefront Sensing for WFIRST with a Linear Optical Model

    NASA Technical Reports Server (NTRS)

    Jurling, Alden S.; Content, David A.

    2012-01-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  6. Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering.

    PubMed

    Wang, Shuai; Yang, Ping; Xu, Bing; Dong, Lizhi; Ao, Mingwu

    2015-02-23

    Spot centroid detection is required by Shack-Hartmann wavefront sensing since the technique was first proposed. For a Shack-Hartmann wavefront sensor, the standard structure is to place a camera behind a lenslet array to record the image of spots. We proposed a new Shack-Hartmann wavefront sensing technique without using spot centroid detection. Based on the principle of binary-aberration-mode filtering, for each subaperture, only one light-detecting unit is used to measure the local wavefront slopes. It is possible to adopt single detectors in Shack-Hartmann wavefront sensor. Thereby, the method is able to gain noise benefits from using singe detectors behind each subaperture when used for sensing rapid varying wavefront in weak light. Moreover, due to non-discrete pixel imaging, this method is a potential solution for high measurement precision with fewer detecting units. Our simulations demonstrate the validity of the theoretical model. In addition, the results also indicate the advantage in measurement accuracy.

  7. Filter Function for Wavefront Sensing Over a Field of View

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A filter function has been derived as a means of optimally weighting the wavefront estimates obtained in image-based phase retrieval performed at multiple points distributed over the field of view of a telescope or other optical system. When the data obtained in wavefront sensing and, more specifically, image-based phase retrieval, are used for controlling the shape of a deformable mirror or other optic used to correct the wavefront, the control law obtained by use of the filter function gives a more balanced optical performance over the field of view than does a wavefront-control law obtained by use of a wavefront estimate obtained from a single point in the field of view.

  8. Wavefront detection method of a single-sensor based adaptive optics system.

    PubMed

    Wang, Chongchong; Hu, Lifa; Xu, Huanyu; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Mu, Quanquan; Yang, Chengliang; Cao, Zhaoliang; Lu, Xinghai; Xuan, Li

    2015-08-10

    In adaptive optics system (AOS) for optical telescopes, the reported wavefront sensing strategy consists of two parts: a specific sensor for tip-tilt (TT) detection and another wavefront sensor for other distortions detection. Thus, a part of incident light has to be used for TT detection, which decreases the light energy used by wavefront sensor and eventually reduces the precision of wavefront correction. In this paper, a single Shack-Hartmann wavefront sensor based wavefront measurement method is presented for both large amplitude TT and other distortions' measurement. Experiments were performed for testing the presented wavefront method and validating the wavefront detection and correction ability of the single-sensor based AOS. With adaptive correction, the root-mean-square of residual TT was less than 0.2 λ, and a clear image was obtained in the lab. Equipped on a 1.23-meter optical telescope, the binary stars with angle distance of 0.6″ were clearly resolved using the AOS. This wavefront measurement method removes the separate TT sensor, which not only simplifies the AOS but also saves light energy for subsequent wavefront sensing and imaging, and eventually improves the detection and imaging capability of the AOS.

  9. Common-Path Wavefront Sensing for Advanced Coronagraphs

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Serabyn, Eugene; Mawet, Dimitri

    2012-01-01

    Imaging of faint companions around nearby stars is not limited by either intrinsic resolution of a coronagraph/telescope system, nor is it strictly photon limited. Typically, it is both the magnitude and temporal variation of small phase and amplitude errors imparted to the electric field by elements in the optical system which will limit ultimate performance. Adaptive optics systems, particularly those with multiple deformable mirrors, can remove these errors, but they need to be sensed in the final image plane. If the sensing system is before the final image plane, which is typical for most systems, then the non-common path optics between the wavefront sensor and science image plane will lead to un-sensed errors. However, a new generation of high-performance coronagraphs naturally lend themselves to wavefront sensing in the final image plane. These coronagraphs and the wavefront sensing will be discussed, as well as plans for demonstrating this with a high-contrast system on the ground. Such a system will be a key system-level proof for a future space-based coronagraph mission, which will also be discussed.

  10. Experimental results for correlation-based wavefront sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyneer, L A; Palmer, D W; LaFortune, K N

    2005-07-01

    Correlation wave-front sensing can improve Adaptive Optics (AO) system performance in two keys areas. For point-source-based AO systems, Correlation is more accurate, more robust to changing conditions and provides lower noise than a centroiding algorithm. Experimental results from the Lick AO system and the SSHCL laser AO system confirm this. For remote imaging, Correlation enables the use of extended objects for wave-front sensing. Results from short horizontal-path experiments will show algorithm properties and requirements.

  11. Method and apparatus for detecting internal structures of bulk objects using acoustic imaging

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2002-01-01

    Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.

  12. Laboratory MCAO Test-Bed for Developing Wavefront Sensing Concepts.

    PubMed

    Goncharov, A V; Dainty, J C; Esposito, S; Puglisi, A

    2005-07-11

    An experimental optical bench test-bed for developing new wavefront sensing concepts for Multi-Conjugate Adaptive Optics (MCAO) systems is described. The main objective is to resolve imaging problems associated with wavefront sensing of the atmospheric turbulence for future MCAO systems on Extremely Large Telescopes (ELTs). The test-bed incorporates five reference sources, two deformable mirrors (DMs) and atmospheric phase screens to simulate a scaled version of a 10-m adaptive telescope operating at the K band. A recently proposed compact tomographic wavefront sensor is employed for star-oriented DMs control in the MCAO system. The MCAO test-bed is used to verify the feasibility of the wavefront sensing concept utilizing a field lenslet array for multi-pupil imaging on a single detector. First experimental results of MCAO correction with the proposed tomographic wavefront sensor are presented and compared to the theoretical prediction based on the characteristics of the phase screens, actuator density of the DMs and the guide star configuration.

  13. Parallel-Computing Architecture for JWST Wavefront-Sensing Algorithms

    DTIC Science & Technology

    2011-09-01

    results due to the increasing cost and complexity of each test. 2. ALGORITHM OVERVIEW Phase retrieval is an image-based wavefront-sensing...broadband illumination problems we have found that hand-tuning the right matrix sizes can account for a speedup of 86x faster. This comes from hand-picking...Wavefront Sensing and Control”. Proceedings of SPIE (2007) vol. 6687 (08). [5] Greenhouse, M. A., Drury , M. P., Dunn, J. L., Glazer, S. D., Greville, E

  14. Underwater Turbulence Detection Using Gated Wavefront Sensing Technique

    PubMed Central

    Bi, Ying; Xu, Xiping; Chow, Eddy Mun Tik

    2018-01-01

    Laser sensing has been applied in various underwater applications, ranging from underwater detection to laser underwater communications. However, there are several great challenges when profiling underwater turbulence effects. Underwater detection is greatly affected by the turbulence effect, where the acquired image suffers excessive noise, blurring, and deformation. In this paper, we propose a novel underwater turbulence detection method based on a gated wavefront sensing technique. First, we elaborate on the operating principle of gated wavefront sensing and wavefront reconstruction. We then setup an experimental system in order to validate the feasibility of our proposed method. The effect of underwater turbulence on detection is examined at different distances, and under different turbulence levels. The experimental results obtained from our gated wavefront sensing system indicate that underwater turbulence can be detected and analyzed. The proposed gated wavefront sensing system has the advantage of a simple structure and high detection efficiency for underwater environments. PMID:29518889

  15. Imaging photorefractive optical vibration measurement method and device

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.; Hale, Thomas C.

    2000-01-01

    A method and apparatus are disclosed for characterizing a vibrating image of an object of interest. The method includes providing a sensing media having a detection resolution within a limited bandwidth and providing an object of interest having a vibrating medium. Two or more wavefronts are provided, with at least one of the wavefronts being modulated by interacting the one wavefront with the vibrating medium of the object of interest. The another wavefront is modulated such that the difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. The modulated one wavefront and another wavefront are combined in association with the sensing media to interfere and produce simultaneous vibration measurements that are distributed over the object so as to provide an image of the vibrating medium. The image has an output intensity that is substantially linear with small physical variations within the vibrating medium. Furthermore, the method includes detecting the image. In one implementation, the apparatus comprises a vibration spectrum analyzer having an emitter, a modulator, sensing media and a detector configured so as to realize such method. According to another implementation, the apparatus comprises a vibration imaging device.

  16. High-NA metrology and sensing on Berkeley MET5

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ryan; Anderson, Chris; Naulleau, Patrick

    2017-03-01

    In this paper we compare two non-interferometric wavefront sensors suitable for in-situ high-NA EUV optical testing. The first is the AIS sensor, which has been deployed in both inspection and exposure tools. AIS is a compact, optical test that directly measures a wavefront by probing various parts of the imaging optic pupil and measuring localized wavefront curvature. The second is an image-based technique that uses an iterative algorithm based on simulated annealing to reconstruct a wavefront based on matching aerial images through focus. In this technique, customized illumination is used to probe the pupil at specific points to optimize differences in aberration signatures.

  17. Apparatus and method for measuring and imaging traveling waves

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.

    2001-01-01

    An apparatus is provided for imaging traveling waves in a medium. The apparatus includes a vibration excitation source configured to impart traveling waves within a medium. An emitter is configured to produce two or more wavefronts, at least one wavefront modulated by a vibrating medium. A modulator is configured to modulate another wavefront in synchronization with the vibrating medium. A sensing media is configured to receive in combination the modulated one wavefront and the another wavefront and having a detection resolution within a limited bandwidth. The another wavefront is modulated at a frequency such that a difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. Such modulation produces an image of the vibrating medium having an output intensity that is substantially linear with small physical variations within the vibrating medium for all vibration frequencies above the sensing media's response bandwidth. A detector is configured to detect an image of traveling waves in the vibrating medium resulting from interference between the modulated one wavefront and the another wavefront when combined in association with the sensing media. The traveling wave can be used to characterize certain material properties of the medium. Furthermore, a method is provided for imaging and characterizing material properties according to the apparatus.

  18. Direct-Solve Image-Based Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2009-01-01

    A method of wavefront sensing (more precisely characterized as a method of determining the deviation of a wavefront from a nominal figure) has been invented as an improved means of assessing the performance of an optical system as affected by such imperfections as misalignments, design errors, and fabrication errors. The method is implemented by software running on a single-processor computer that is connected, via a suitable interface, to the image sensor (typically, a charge-coupled device) in the system under test. The software collects a digitized single image from the image sensor. The image is displayed on a computer monitor. The software directly solves for the wavefront in a time interval of a fraction of a second. A picture of the wavefront is displayed. The solution process involves, among other things, fast Fourier transforms. It has been reported to the effect that some measure of the wavefront is decomposed into modes of the optical system under test, but it has not been reported whether this decomposition is postprocessing of the solution or part of the solution process.

  19. Research in the Optical Sciences.

    DTIC Science & Technology

    1987-12-15

    been chosen for the wavefront sensor. REFERENCES 1. C. L. Koliopoulos, " Wavefront sensing of the turbulent atmosphere using a lateral shearing...technique would permit wavefront sensing in the image plane without employing an elaborate method to obtain a reference wavefront . Background Initial...and R. H. Potoff ......... 87 0rd . . .. El WAVEFRONT SENSING AND ADAPTIVE OPTICS C . K oliopoulos ............................................. 97

  20. Wavefront Sensing with the Fine Guidance Sensor for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Smith, J. Scott; Aronstein, David; Dean, Bruce H.; Howard,Joe; Shiri, Ron

    2008-01-01

    An analysis is presented that utilizes the Fine Guidance Sensor (FGS) for focal-plane wavefront sensing (WFS) for the James Webb Space Telescope (JWST). WFS with FGS increases the number of wavefront measurements taken in field of the telescope, but has many challenges over the other JWST instruments that make it unique, such as; less sampling of the Point Spread Function (PSF), a smaller diversity-defocus range, a smaller image detector size, and a polychromatic object or source. Additionally, presented is an analysis of sampling for wavefront sensing. Results are shown based on simulations of flight and the cryogenic optical testing at NASA Johnson Space Center.

  1. Wavefront Sensing With Switched Lenses for Defocus Diversity

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    In an alternative hardware design for an apparatus used in image-based wavefront sensing, defocus diversity is introduced by means of fixed lenses that are mounted in a filter wheel (see figure) so that they can be alternately switched into a position in front of the focal plane of an electronic camera recording the image formed by the optical system under test. [The terms image-based, wavefront sensing, and defocus diversity are defined in the first of the three immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] Each lens in the filter wheel is designed so that the optical effect of placing it at the assigned position is equivalent to the optical effect of translating the camera a specified defocus distance along the optical axis. Heretofore, defocus diversity has been obtained by translating the imaging camera along the optical axis to various defocus positions. Because data must be taken at multiple, accurately measured defocus positions, it is necessary to mount the camera on a precise translation stage that must be calibrated for each defocus position and/or to use an optical encoder for measurement and feedback control of the defocus positions. Additional latency is introduced into the wavefront sensing process as the camera is translated to the various defocus positions. Moreover, if the optical system under test has a large focal length, the required defocus values are large, making it necessary to use a correspondingly bulky translation stage. By eliminating the need for translation of the camera, the alternative design simplifies and accelerates the wavefront-sensing process. This design is cost-effective in that the filterwheel/lens mechanism can be built from commercial catalog components. After initial calibration of the defocus value of each lens, a selected defocus value is introduced by simply rotating the filter wheel to place the corresponding lens in front of the camera. The rotation of the wheel can be automated by use of a motor drive, and further calibration is not necessary. Because a camera-translation stage is no longer needed, the size of the overall apparatus can be correspondingly reduced.

  2. Coadding Techniques for Image-based Wavefront Sensing for Segmented-mirror Telescopes

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Aronstein, David; Dean, Bruce; Acton, Scott

    2007-01-01

    Image-based wavefront sensing algorithms are being used to characterize optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be coadded in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on every set of PSFs individually and average the resulting wavefronts. The choice of coadd methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using data collected on and simulations of the James Webb Space Telescope Testbed Telescope (TBT) commissioned at Ball Aerospace, we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the coadd method. Of particular interest, segment piston is more accurately recovered in "image-plane space" coadding, while segment tip/tilt is recovered in "pupil-plane space" coadding.

  3. Adaptive wavefront sensor based on the Talbot phenomenon.

    PubMed

    Podanchuk, Dmytro V; Goloborodko, Andrey A; Kotov, Myhailo M; Kovalenko, Andrey V; Kurashov, Vitalij N; Dan'ko, Volodymyr P

    2016-04-20

    A new adaptive method of wavefront sensing is proposed and demonstrated. The method is based on the Talbot self-imaging effect, which is observed in an illuminating light beam with strong second-order aberration. Compensation of defocus and astigmatism is achieved with an appropriate choice of size of the rectangular unit cell of the diffraction grating, which is performed iteratively. A liquid-crystal spatial light modulator is used for this purpose. Self-imaging of rectangular grating in the astigmatic light beam is demonstrated experimentally. High-order aberrations are detected with respect to the compensated second-order aberration. The comparative results of wavefront sensing with a Shack-Hartmann sensor and the proposed sensor are adduced.

  4. Precise calibration of pupil images in pyramid wavefront sensor.

    PubMed

    Liu, Yong; Mu, Quanquan; Cao, Zhaoliang; Hu, Lifa; Yang, Chengliang; Xuan, Li

    2017-04-20

    The pyramid wavefront sensor (PWFS) is a novel wavefront sensor with several inspiring advantages compared with Shack-Hartmann wavefront sensors. The PWFS uses four pupil images to calculate the local tilt of the incoming wavefront. Pupil images are conjugated with a telescope pupil so that each pixel in the pupil image is diffraction-limited by the telescope pupil diameter, thus the sensing error of the PWFS is much lower than that of the Shack-Hartmann sensor and is related to the extraction and alignment accuracy of pupil images. However, precise extraction of these images is difficult to conduct in practice. Aiming at improving the sensing accuracy, we analyzed the physical model of calibration of a PWFS and put forward an extraction algorithm. The process was verified via a closed-loop correction experiment. The results showed that the sensing accuracy of the PWFS increased after applying the calibration and extraction method.

  5. Co-adding techniques for image-based wavefront sensing for segmented-mirror telescopes

    NASA Astrophysics Data System (ADS)

    Smith, J. S.; Aronstein, David L.; Dean, Bruce H.; Acton, D. S.

    2007-09-01

    Image-based wavefront sensing algorithms are being used to characterize the optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be co-added in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on each PSF frame individually and average the resulting wavefronts. The choice of co-add methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using models and data from the James Webb Space Telescope (JWST) Testbed Telescope (TBT), we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the co-add method. Of particular interest, segment piston is more accurately recovered in "image-plane space" co-adding, while segment tip/tilt is recovered in "pupil-plane space" co-adding.

  6. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2014-09-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.

  7. Local sharpening and subspace wavefront correction with predictive dynamic digital holography

    NASA Astrophysics Data System (ADS)

    Sulaiman, Sennan; Gibson, Steve

    2017-09-01

    Digital holography holds several advantages over conventional imaging and wavefront sensing, chief among these being significantly fewer and simpler optical components and the retrieval of complex field. Consequently, many imaging and sensing applications including microscopy and optical tweezing have turned to using digital holography. A significant obstacle for digital holography in real-time applications, such as wavefront sensing for high energy laser systems and high speed imaging for target racking, is the fact that digital holography is computationally intensive; it requires iterative virtual wavefront propagation and hill-climbing to optimize some sharpness criteria. It has been shown recently that minimum-variance wavefront prediction can be integrated with digital holography and image sharpening to reduce significantly large number of costly sharpening iterations required to achieve near-optimal wavefront correction. This paper demonstrates further gains in computational efficiency with localized sharpening in conjunction with predictive dynamic digital holography for real-time applications. The method optimizes sharpness of local regions in a detector plane by parallel independent wavefront correction on reduced-dimension subspaces of the complex field in a spectral plane.

  8. Low-order wavefront sensing for coronagraphic telescopes

    NASA Astrophysics Data System (ADS)

    Subedi, Hari; Kasdin, Jeremy; Peter Varnai

    2018-01-01

    Space telescopes equipped with a coronagraph to detect and characterize exoplanets must have the ability to sense and control low-order wavefront aberrations. Most concepts for low-order wavefront sensing use the starlight rejected by the coronagraph to sense these aberrations. The sensor must be able to make precise estimates and be robust to photon and read noise. A thorough study of various differential low-order wavefront sensors (LOWFSs) would be beneficial for future space-based observatories designed for exoplanet detection and characterization. In this talk, we will expand on the comparison of different LOWFSs that use the rejected starlight either from the coronagraphic focal plane or the Lyot plane to estimate these aberrations. We will also present the experimental results of the sparse aperture mask (SAM) LOWFS that we have designed at the Princeton High Contrast Imaging Lab (PHCIL).

  9. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope

    PubMed Central

    Sulai, Yusufu N.; Dubra, Alfredo

    2014-01-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth. PMID:25401020

  10. Measurement of wave-front aberration in a small telescope remote imaging system using scene-based wave-front sensing

    DOEpatents

    Poyneer, Lisa A; Bauman, Brian J

    2015-03-31

    Reference-free compensated imaging makes an estimation of the Fourier phase of a series of images of a target. The Fourier magnitude of the series of images is obtained by dividing the power spectral density of the series of images by an estimate of the power spectral density of atmospheric turbulence from a series of scene based wave front sensor (SBWFS) measurements of the target. A high-resolution image of the target is recovered from the Fourier phase and the Fourier magnitude.

  11. System and Method for Null-Lens Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Hill, Peter C. (Inventor); Thompson, Patrick L. (Inventor); Aronstein, David L. (Inventor); Bolcar, Matthew R. (Inventor); Smith, Jeffrey S. (Inventor)

    2015-01-01

    A method of measuring aberrations in a null-lens including assembly and alignment aberrations. The null-lens may be used for measuring aberrations in an aspheric optic with the null-lens. Light propagates from the aspheric optic location through the null-lens, while sweeping a detector through the null-lens focal plane. Image data being is collected at locations about said focal plane. Light is simulated propagating to the collection locations for each collected image. Null-lens aberrations may extracted, e.g., applying image-based wavefront-sensing to collected images and simulation results. The null-lens aberrations improve accuracy in measuring aspheric optic aberrations.

  12. Wavefront sensing with a thin diffuser

    NASA Astrophysics Data System (ADS)

    Berto, Pascal; Rigneault, Hervé; Guillon, Marc

    2017-12-01

    We propose and implement a broadband, compact, and low-cost wavefront sensing scheme by simply placing a thin diffuser in the close vicinity of a camera. The local wavefront gradient is determined from the local translation of the speckle pattern. The translation vector map is computed thanks to a fast diffeomorphic image registration algorithm and integrated to reconstruct the wavefront profile. The simple translation of speckle grains under local wavefront tip/tilt is ensured by the so-called "memory effect" of the diffuser. Quantitative wavefront measurements are experimentally demonstrated both for the few first Zernike polynomials and for phase-imaging applications requiring high resolution. We finally provided a theoretical description of the resolution limit that is supported experimentally.

  13. Complex wavefront sensing with a plenoptic sensor

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.

    2016-09-01

    There are many techniques to achieve basic wavefront sensing tasks in the weak atmospheric turbulence regime. However, in strong and deep turbulence situations, the complexity of a propagating wavefront increases significantly. Typically, beam breakup will happen and various portions of the beam will randomly interfere with each other. Consequently, some conventional techniques for wavefront sensing turn out to be inaccurate and misleading. For example, a Shack-Hartmann sensor will be confused by multi-spot/zero-spot result in some cells. The curvature sensor will be affected by random interference patterns for both the image acquired before the focal plane and the image acquired after the focal plane. We propose the use of a plenoptic sensor to solve complex wavefront sensing problems. In fact, our results show that even for multiple beams (their wavelengths can be the same) passing through the same turbulent channel, the plenoptic sensor can reconstruct the turbulence-induced distortion accurately. In this paper, we will demonstrate the plenoptic mapping principle to analyze and reconstruct the complex wavefront of a distorted laser beam.

  14. Quantitative phase imaging using a programmable wavefront sensor

    NASA Astrophysics Data System (ADS)

    Soldevila, F.; Durán, V.; Clemente, P.; Lancis, J.; Tajahuerce, E.

    2018-02-01

    We perform phase imaging using a non-interferometric approach to measure the complex amplitude of a wavefront. We overcome the limitations in spatial resolution, optical efficiency, and dynamic range that are found in Shack-Hartmann wavefront sensing. To do so, we sample the wavefront with a high-speed spatial light modulator. A single lens forms a time-dependent light distribution on its focal plane, where a position detector is placed. Our approach is lenslet-free and does not rely on any kind of iterative or unwrap algorithm. The validity of our technique is demonstrated by performing both aberration sensing and phase imaging of transparent samples.

  15. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront error maps.

  16. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) F-number and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated and/or rotated across the exit pupil of the system. Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront-error maps.

  17. Closed-loop focal plane wavefront control with the SCExAO instrument

    NASA Astrophysics Data System (ADS)

    Martinache, Frantz; Jovanovic, Nemanja; Guyon, Olivier

    2016-09-01

    Aims: This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. Methods: This absolute sensor is used here in a closed-loop to compensate for the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low-order modes corresponding to eight zernike modes (from focus to spherical). Results: This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper details the range of errors this wavefront-sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Conclusions: Beyond this application, because of its low hardware impact, the asymmetric pupil Fourier wavefront sensor (APF-WFS) can easily be ported in a wide variety of wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.

  18. Simulating the Effects of an Extended Source on the Shack-Hartmann Wavefront Sensor Through Turbulence

    DTIC Science & Technology

    2011-03-01

    wavefront distortions in real time. Often, it is used to correct for optical fluctuations due to atmospheric turbulence and improve imaging system...propagation paths, the overall turbulence is relatively weak, with a Rytov number of only 0.045. The atmospheric parameters were then used to program a three...on an adaptive optics (AO) system, it enables further research on the effects of deep turbulence on AO systems and correlation based wavefront sensing

  19. Pupil-segmentation-based adaptive optics for microscopy

    NASA Astrophysics Data System (ADS)

    Ji, Na; Milkie, Daniel E.; Betzig, Eric

    2011-03-01

    Inhomogeneous optical properties of biological samples make it difficult to obtain diffraction-limited resolution in depth. Correcting the sample-induced optical aberrations needs adaptive optics (AO). However, the direct wavefront-sensing approach commonly used in astronomy is not suitable for most biological samples due to their strong scattering of light. We developed an image-based AO approach that is insensitive to sample scattering. By comparing images of the sample taken with different segments of the pupil illuminated, local tilt in the wavefront is measured from image shift. The aberrated wavefront is then obtained either by measuring the local phase directly using interference or with phase reconstruction algorithms similar to those used in astronomical AO. We implemented this pupil-segmentation-based approach in a two-photon fluorescence microscope and demonstrated that diffraction-limited resolution can be recovered from nonbiological and biological samples.

  20. Adaptive optics for array telescopes using piston-and-tilt wave-front sensing

    NASA Technical Reports Server (NTRS)

    Wizinowich, P.; Mcleod, B.; Lloyd-Yhart, M.; Angel, J. R. P.; Colucci, D.; Dekany, R.; Mccarthy, D.; Wittman, D.; Scott-Fleming, I.

    1992-01-01

    A near-infrared adaptive optics system operating at about 50 Hz has been used to control phase errors adaptively between two mirrors of the Multiple Mirror Telescope by stabilizing the position of the interference fringe in the combined unresolved far-field image. The resultant integrated images have angular resolutions of better than 0.1 arcsec and fringe contrasts of more than 0.6. Measurements of wave-front tilt have confirmed the wavelength independence of image motion. These results show that interferometric sensing of phase errors, when combined with a system for sensing the wave-front tilt of the individual telescopes, will provide a means of achieving a stable diffraction-limited focus with segmented telescopes or arrays of telescopes.

  1. Investigation of the confocal wavefront sensor and its application to biological microscopy.

    PubMed

    Shaw, Michael; O'Holleran, Kevin; Paterson, Carl

    2013-08-12

    Wavefront sensing in the presence of background light sources is complicated by the need to restrict the effective depth of field of the wavefront sensor. This problem is particularly significant in direct wavefront sensing adaptive optic (AO) schemes for correcting imaging aberrations in biological microscopy. In this paper we investigate how a confocal pinhole can be used to reject out of focus light whilst still allowing effective wavefront sensing. Using a scaled set of phase screens with statistical properties derived from measurements of wavefront aberrations induced by C. elegans specimens, we investigate and quantify how the size of the pinhole and the aberration amplitude affect the transmitted wavefront. We suggest a lower bound for the pinhole size for a given aberration strength and quantify the optical sectioning provided by the system. For our measured aberration data we find that a pinhole of size approximately 3 Airy units represents a good compromise, allowing effective transmission of the wavefront and thin optical sections. Finally, we discuss some of the practical implications of confocal wavefront sensing for AO systems in microscopy.

  2. Distributed Computing Architecture for Image-Based Wavefront Sensing and 2 D FFTs

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

    2006-01-01

    Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors such as optical design simplicity and stability. However, the image-based approach is computational intensive, and therefore, specialized high-performance computing architectures are required in applications utilizing the image-based approach. The development and testing of these high-performance computing architectures are essential to such missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and scientifically computationally complex problems.

  3. Keck adaptive optics: control subsystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J.M.; An, J.; Avicola, K.

    1996-03-08

    Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval formore » the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.« less

  4. Phase-sensitive two-dimensional neutron shearing interferometer and Hartmann sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kevin

    2015-12-08

    A neutron imaging system detects both the phase shift and absorption of neutrons passing through an object. The neutron imaging system is based on either of two different neutron wavefront sensor techniques: 2-D shearing interferometry and Hartmann wavefront sensing. Both approaches measure an entire two-dimensional neutron complex field, including its amplitude and phase. Each measures the full-field, two-dimensional phase gradients and, concomitantly, the two-dimensional amplitude mapping, requiring only a single measurement.

  5. Single-Grating Talbot Imaging for Wavefront Sensing and X-Ray Metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grizolli, Walan; Shi, Xianbo; Kolodziej, Tomasz

    2017-01-01

    Single-grating Talbot imaging relies on high-spatial-resolution detectors to perform accurate measurements of X-ray beam wavefronts. The wavefront can be retrieved with a single image, and a typical measurement and data analysis can be performed in few seconds. These qualities make it an ideal tool for synchrotron beamline diagnostics and in-situ metrology. The wavefront measurement can be used both to obtain a phase contrast image of an object and to characterize an X-ray beam. In this work, we explore the concept in two cases: at-wavelength metrology of 2D parabolic beryllium lenses and a wavefront sensor using a diamond crystal beam splitter.

  6. Numerical tilting compensation in microscopy based on wavefront sensing using transport of intensity equation method

    NASA Astrophysics Data System (ADS)

    Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu

    2018-03-01

    Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.

  7. The Gemini Planet Imager Calibration Wavefront Sensor Instrument

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Burruss, Rick S.; Bartos, Randall D.; Trinh, Thang Q.; Pueyo, Laurent A.; Fregoso, Santos F.; Angione, John R.; Shelton, J. Chris

    2010-01-01

    The Gemini Planet Imager is an extreme adaptive optics system that will employ an apodized-pupil coronagraph to make direct detections of faint companions of nearby stars to a contrast level of the 10(exp -7) within a few lambda/D of the parent star. Such high contrasts from the ground require exquisite wavefront sensing and control both for the AO system as well as for the coronagraph. Un-sensed non-common path phase and amplitude errors after the wavefront sensor dichroic but before the coronagraph would lead to speckles which would ultimately limit the contrast. The calibration wavefront system for GPI will measure the complex wavefront at the system pupil before the apodizer and provide slow phase corrections to the AO system to mitigate errors that would cause a loss in contrast. The calibration wavefront sensor instrument for GPI has been built. We will describe the instrument and its performance.

  8. Hybrid architecture active wavefront sensing and control system, and method

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D. (Inventor); Dean, Bruce H. (Inventor); Hyde, Tristram T. (Inventor)

    2011-01-01

    According to various embodiments, provided herein is an optical system and method that can be configured to perform image analysis. The optical system can comprise a telescope assembly and one or more hybrid instruments. The one or more hybrid instruments can be configured to receive image data from the telescope assembly and perform a fine guidance operation and a wavefront sensing operation, simultaneously, on the image data received from the telescope assembly.

  9. The NIRCam Optical Telescope Simulator (NOTES)

    NASA Technical Reports Server (NTRS)

    Kubalak, David; Hakun, Claef; Greeley, Bradford; Eichorn, William; Leviton, Douglas; Guishard, Corina; Gong, Qian; Warner, Thomas; Bugby, David; Robinson, Frederick; hide

    2007-01-01

    The Near Infra-Red Camera (NIRCam), the 0.6-5.0 micron imager and wavefront sensing instrument for the James Webb Space Telescope (JWST), will be used on orbit both as a science instrument, and to tune the alignment of the telescope. The NIRCam Optical Telescope Element Simulator (NOTES) will be used during ground testing to provide an external stimulus to verify wavefront error, imaging characteristics, and wavefront sensing performance of this crucial instrument. NOTES is being designed and built by NASA Goddard Space Flight Center with the help of Swales Aerospace and Orbital Sciences Corporation. It is a single-point imaging system that uses an elliptical mirror to form an U20 image of a point source. The point source will be fed via optical fibers from outside the vacuum chamber. A tip/tilt mirror is used to change the chief ray angle of the beam as it passes through the aperture stop and thus steer the image over NIRCam's field of view without moving the pupil or introducing field aberrations. Interchangeable aperture stop elements allow us to simulate perfect JWST wavefronts for wavefront error testing, or introduce transmissive phase plates to simulate a misaligned JWST segmented mirror for wavefront sensing verification. NOTES will be maintained at an operating temperature of 80K during testing using thermal switches, allowing it to operate within the same test chamber as the NIRCam instrument. We discuss NOTES' current design status and on-going development activities.

  10. Optimal wavefront control for adaptive segmented mirrors

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    A ground-based astronomical telescope with a segmented primary mirror will suffer image-degrading wavefront aberrations from at least two sources: (1) atmospheric turbulence and (2) segment misalignment or figure errors of the mirror itself. This paper describes the derivation of a mirror control feedback matrix that assumes the presence of both types of aberration and is optimum in the sense that it minimizes the mean-squared residual wavefront error. Assumptions of the statistical nature of the wavefront measurement errors, atmospheric phase aberrations, and segment misalignment errors are made in the process of derivation. Examples of the degree of correlation are presented for three different types of wavefront measurement data and compared to results of simple corrections.

  11. Estimate Low and High Order Wavefront Using P1640 Calibrator Measurements

    NASA Technical Reports Server (NTRS)

    Zhai, C.; Vasisht, G.; Shao, M.; Lockhart, T.; Cady, E.; Oppenheimer, B.; Burruss, R.; Roberts, J.; Beichman, C.; Brenner, D.; hide

    2013-01-01

    P1640 high contrast imaging system on the Palomar 200 inch Telescope consists of an apodized-pupil Lyot coronagraph, the PALM-3000 adaptive optics (P3K-AO), and P1640 Calibrator (CAL). Science images are recorded by an integral field spectrograph covering J-H bands for detecting and characterizing stellar companions. With aberrations from atmosphere corrected by the P3K-AO, instrument performance is limited mainly by the quasi-static speckles due to noncommon path wavefront aberrations for the light to propagate to the P3K-AO wavefront sensor and to the coronagraph mask. The non-common path wavefront aberrations are sensed by CAL, which measures the post-coronagraph E-field using interferometry, and can be effectively corrected by offsetting the P3K-AO deformable mirror target position accordingly. Previously, we have demonstrated using CAL measurements to correct high order wavefront aberrations, which is directly connected to the static speckles in the image plane. Low order wavefront, on the other hand, usually of larger amplitudes, causes light to leak through the coronagraph making the whole image plane brighter. Knowledge error in low order wavefront aberrations can also affect the estimation of the high order wavefront. Even though, CAL is designed to sense efficiently high order wavefront aberrations, the low order wavefront front can be inferred with less sensitivity. Here, we describe our method for estimating both low and high order wavefront aberrations using CAL measurements by propagating the post-coronagraph E-field to a pupil before the coronagraph. We present the results from applying this method to both simulated and experiment data.

  12. Distributed Two-Dimensional Fourier Transforms on DSPs with an Application for Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey Scott

    2006-01-01

    Many applications of two-dimensional Fourier Transforms require fixed timing as defined by system specifications. One example is image-based wavefront sensing. The image-based approach has many benefits, yet it is a computational intensive solution for adaptive optic correction, where optical adjustments are made in real-time to correct for external (atmospheric turbulence) and internal (stability) aberrations, which cause image degradation. For phase retrieval, a type of image-based wavefront sensing, numerous two-dimensional Fast Fourier Transforms (FFTs) are used. To meet the required real-time specifications, a distributed system is needed, and thus, the 2-D FFT necessitates an all-to-all communication among the computational nodes. The 1-D floating point FFT is very efficient on a digital signal processor (DSP). For this study, several architectures and analysis of such are presented which address the all-to-all communication with DSPs. Emphasis of this research is on a 64-node cluster of Analog Devices TigerSharc TS-101 DSPs.

  13. Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry

    NASA Astrophysics Data System (ADS)

    Thornton, Douglas E.; Spencer, Mark F.; Perram, Glen P.

    2017-09-01

    The effects of deep turbulence in long-range imaging applications presents unique challenges to properly measure and correct for aberrations incurred along the atmospheric path. In practice, digital holography can detect the path-integrated wavefront distortions caused by deep turbulence, and di erent recording geometries offer different benefits depending on the application of interest. Previous studies have evaluated the performance of the off-axis image and pupil plane recording geometries for deep-turbulence sensing. This study models digital holography in the on-axis phase shifting recording geometry using wave optics simulations. In particular, the analysis models spherical-wave propagation through varying deep-turbulence conditions to estimate the complex optical field, and performance is evaluated by calculating the field-estimated Strehl ratio and RMS wavefront error. Altogether, the results show that digital holography in the on-axis phase shifting recording geometry is an effective wavefront-sensing method in the presence of deep turbulence.

  14. Myopic aberrations: Simulation based comparison of curvature and Hartmann Shack wavefront sensors

    NASA Astrophysics Data System (ADS)

    Basavaraju, Roopashree M.; Akondi, Vyas; Weddell, Stephen J.; Budihal, Raghavendra Prasad

    2014-02-01

    In comparison with a Hartmann Shack wavefront sensor, the curvature wavefront sensor is known for its higher sensitivity and greater dynamic range. The aim of this study is to numerically investigate the merits of using a curvature wavefront sensor, in comparison with a Hartmann Shack (HS) wavefront sensor, to analyze aberrations of the myopic eye. Aberrations were statistically generated using Zernike coefficient data of 41 myopic subjects obtained from the literature. The curvature sensor is relatively simple to implement, and the processing of extra- and intra-focal images was linearly resolved using the Radon transform to provide Zernike modes corresponding to statistically generated aberrations. Simulations of the HS wavefront sensor involve the evaluation of the focal spot pattern from simulated aberrations. Optical wavefronts were reconstructed using the slope geometry of Southwell. Monte Carlo simulation was used to find critical parameters for accurate wavefront sensing and to investigate the performance of HS and curvature sensors. The performance of the HS sensor is highly dependent on the number of subapertures and the curvature sensor is largely dependent on the number of Zernike modes used to represent the aberration and the effective propagation distance. It is shown that in order to achieve high wavefront sensing accuracy while measuring aberrations of the myopic eye, a simpler and cost effective curvature wavefront sensor is a reliable alternative to a high resolution HS wavefront sensor with a large number of subapertures.

  15. The AOLI low-order non-linear curvature wavefront sensor: laboratory and on-sky results

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; King, David; MacKay, Craig

    2014-08-01

    Many adaptive optics (AO) systems in use today require the use of bright reference objects to determine the effects of atmospheric distortions. Typically these systems use Shack-Hartmann Wavefront sensors (SHWFS) to distribute incoming light from a reference object between a large number of sub-apertures. Guyon et al. evaluated the sensitivity of several different wavefront sensing techniques and proposed the non-linear Curvature Wavefront Sensor (nlCWFS) offering improved sensitivity across a range of orders of distortion. On large ground-based telescopes this can provide nearly 100% sky coverage using natural guide stars. We present work being undertaken on the nlCWFS development for the Adaptive Optics Lucky Imager (AOLI) project. The wavefront sensor is being developed as part of a low-order adaptive optics system for use in a dedicated instrument providing an AO corrected beam to a Lucky Imaging based science detector. The nlCWFS provides a total of four reference images on two photon-counting EMCCDs for use in the wavefront reconstruction process. We present results from both laboratory work using a calibration system and the first on-sky data obtained with the nlCWFS at the 4.2 metre William Herschel Telescope, La Palma. In addition, we describe the updated optical design of the wavefront sensor, strategies for minimising intrinsic effects and methods to maximise sensitivity using photon-counting detectors. We discuss on-going work to develop the high speed reconstruction algorithm required for the nlCWFS technique. This includes strategies to implement the technique on graphics processing units (GPUs) and to minimise computing overheads to obtain a prior for a rapid convergence of the wavefront reconstruction. Finally we evaluate the sensitivity of the wavefront sensor based upon both data and low-photon count strategies.

  16. Wavefront sensing in space: flight demonstration II of the PICTURE sounding rocket payload

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Mendillo, Christopher B.; Cook, Timothy A.; Cahoy, Kerri L.; Chakrabarti, Supriya

    2018-01-01

    A NASA sounding rocket for high-contrast imaging with a visible nulling coronagraph, the Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) payload, has made two suborbital attempts to observe the warm dust disk inferred around Epsilon Eridani. The first flight in 2011 demonstrated a 5 mas fine pointing system in space. The reduced flight data from the second launch, on November 25, 2015, presented herein, demonstrate active sensing of wavefront phase in space. Despite several anomalies in flight, postfacto reduction phase stepping interferometer data provide insight into the wavefront sensing precision and the system stability for a portion of the pupil. These measurements show the actuation of a 32 × 32-actuator microelectromechanical system deformable mirror. The wavefront sensor reached a median precision of 1.4 nm per pixel, with 95% of samples between 0.8 and 12.0 nm per pixel. The median system stability, including telescope and coronagraph wavefront errors other than tip, tilt, and piston, was 3.6 nm per pixel, with 95% of samples between 1.2 and 23.7 nm per pixel.

  17. Experimental Verification of Sparse Aperture Mask for Low Order Wavefront Sensing

    NASA Astrophysics Data System (ADS)

    Subedi, Hari; Kasdin, N. Jeremy

    2017-01-01

    To directly image exoplanets, future space-based missions are equipped with coronagraphs which manipulate the diffraction of starlight and create regions of high contrast called dark holes. Theoretically, coronagraphs can be designed to achieve the high level of contrast required to image exoplanets, which are billions of times dimmer than their host stars, however the aberrations caused by optical imperfections and thermal fluctuations cause the degradation of contrast in the dark holes. Focal plane wavefront control (FPWC) algorithms using deformable mirrors (DMs) are used to mitigate the quasi-static aberrations caused by optical imperfections. Although the FPWC methods correct the quasi-static aberrations, they are blind to dynamic errors caused by telescope jitter and thermal fluctuations. At Princeton's High Contrast Imaging Lab we have developed a new technique that integrates a sparse aperture mask with the coronagraph to estimate these low-order dynamic wavefront errors. This poster shows the effectiveness of a SAM Low-Order Wavefront Sensor in estimating and correcting these errors via simulation and experiment and compares the results to other methods, such as the Zernike Wavefront Sensor planned for WFIRST.

  18. Guaranteeing Failsafe Operation of Extended-Scene Shack-Hartmann Wavefront Sensor Algorithm

    NASA Technical Reports Server (NTRS)

    Sidick, Erikin

    2009-01-01

    A Shack-Hartmann sensor (SHS) is an optical instrument consisting of a lenslet array and a camera. It is widely used for wavefront sensing in optical testing and astronomical adaptive optics. The camera is placed at the focal point of the lenslet array and points at a star or any other point source. The image captured is an array of spot images. When the wavefront error at the lenslet array changes, the position of each spot measurably shifts from its original position. Determining the shifts of the spot images from their reference points shows the extent of the wavefront error. An adaptive cross-correlation (ACC) algorithm has been developed to use scenes as well as point sources for wavefront error detection. Qualifying an extended scene image is often not an easy task due to changing conditions in scene content, illumination level, background, Poisson noise, read-out noise, dark current, sampling format, and field of view. The proposed new technique based on ACC algorithm analyzes the effects of these conditions on the performance of the ACC algorithm and determines the viability of an extended scene image. If it is viable, then it can be used for error correction; if it is not, the image fails and will not be further processed. By potentially testing for a wide variety of conditions, the algorithm s accuracy can be virtually guaranteed. In a typical application, the ACC algorithm finds image shifts of more than 500 Shack-Hartmann camera sub-images relative to a reference sub -image or cell when performing one wavefront sensing iteration. In the proposed new technique, a pair of test and reference cells is selected from the same frame, preferably from two well-separated locations. The test cell is shifted by an integer number of pixels, say, for example, from m= -5 to 5 along the x-direction by choosing a different area on the same sub-image, and the shifts are estimated using the ACC algorithm. The same is done in the y-direction. If the resulting shift estimate errors are less than a pre-determined threshold (e.g., 0.03 pixel), the image is accepted. Otherwise, it is rejected.

  19. Design, development, and testing of the DCT Cassegrain instrument support assembly

    NASA Astrophysics Data System (ADS)

    Bida, Thomas A.; Dunham, Edward W.; Nye, Ralph A.; Chylek, Tomas; Oliver, Richard C.

    2012-09-01

    The 4.3m Discovery Channel Telescope delivers an f/6.1 unvignetted 0.5° field to its RC focal plane. In order to support guiding, wavefront sensing, and instrument installations, a Cassegrain instrument support assembly has been developed which includes a facility guider and wavefront sensor package (GWAVES) and multiple interfaces for instrumentation. A 2-element, all-spherical, fused-silica corrector compensates for field curvature and astigmatism over the 0.5° FOV, while reducing ghost pupil reflections to minimal levels. Dual roving GWAVES camera probes pick off stars in the outer annulus of the corrected field, providing simultaneous guiding and wavefront sensing for telescope operations. The instrument cube supports 5 co-mounted instruments with rapid feed selection via deployable fold mirrors. The corrected beam passes through a dual filter wheel before imaging with the 6K x 6K single CCD of the Large Monolithic Imager (LMI). We describe key development strategies for the DCT Cassegrain instrument assembly and GWAVES, including construction of a prime focus test assembly with wavefront sensor utilized in fall 2011 to begin characterization of the DCT primary mirror support. We also report on 2012 on-sky test results of wavefront sensing, guiding, and imaging with the integrated Cassegrain cube.

  20. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits.

    PubMed

    Aull, Brian

    2016-04-08

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging.

  1. Method and apparatus for assessing material properties of sheet-like materials

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.

    2002-01-01

    Apparatus for producing an indication of a material property of a sheet-like material according to the present invention may comprise an excitation source for vibrating the sheet-like material to produce at least one traveling wave therein. A light source configured to produce an object wavefront and a reference wavefront directs the object wavefront toward the sheet-like material to produce a modulated object wavefront. A modulator operatively associated with the reference wavefront modulates the reference wavefront in synchronization with the traveling wave on the sheet-like material to produce a modulated reference wavefront. A sensing medium positioned to receive the modulated object wavefront and the modulated reference wavefront produces an image of the traveling wave in the sheet-like material, the image of the anti-symmetric traveling wave being related to a displacement amplitude of the anti-symmetric traveling wave over a two-dimensional area of the vibrating sheet-like material. A detector detects the image of the traveling wave in the sheet-like material.

  2. The PALM-3000 high-order adaptive optics system for Palomar Observatory

    NASA Astrophysics Data System (ADS)

    Bouchez, Antonin H.; Dekany, Richard G.; Angione, John R.; Baranec, Christoph; Britton, Matthew C.; Bui, Khanh; Burruss, Rick S.; Cromer, John L.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; McKenna, Daniel L.; Moore, Anna M.; Roberts, Jennifer E.; Trinh, Thang Q.; Troy, Mitchell; Truong, Tuan N.; Velur, Viswa

    2008-07-01

    Deployed as a multi-user shared facility on the 5.1 meter Hale Telescope at Palomar Observatory, the PALM-3000 highorder upgrade to the successful Palomar Adaptive Optics System will deliver extreme AO correction in the near-infrared, and diffraction-limited images down to visible wavelengths, using both natural and sodium laser guide stars. Wavefront control will be provided by two deformable mirrors, a 3368 active actuator woofer and 349 active actuator tweeter, controlled at up to 3 kHz using an innovative wavefront processor based on a cluster of 17 graphics processing units. A Shack-Hartmann wavefront sensor with selectable pupil sampling will provide high-order wavefront sensing, while an infrared tip/tilt sensor and visible truth wavefront sensor will provide low-order LGS control. Four back-end instruments are planned at first light: the PHARO near-infrared camera/spectrograph, the SWIFT visible light integral field spectrograph, Project 1640, a near-infrared coronagraphic integral field spectrograph, and 888Cam, a high-resolution visible light imager.

  3. Development of a hard x-ray wavefront sensor for the EuXFEL

    NASA Astrophysics Data System (ADS)

    Berujon, Sebastien; Ziegler, Eric; Cojocaru, Ruxandra; Martin, Thierry

    2017-05-01

    We present developments on a hard X-ray wavefront sensing instrument for characterizing and monitoring the beam of the European X-ray Free Electron Lasers (EuXFEL). The pulsed nature of the intense X-ray beam delivered by this new class of facility gives rise to strong challenges for the optics and their diagnostic. In the frame of the EUCALL project Work Package 7, we are developing a sensor able to observe the beam in the X-ray energy range [8-40] keV without altering it. The sensor is based on the speckle tracking principle and employs two semi-transparent optics optimized such that their X-ray absorption is reduced. Furthermore, this instrument requires a scattering object with small random features placed in the beam and two cameras to record images of the beam at two different propagation distances. The analysis of the speckle pattern and its distortion from one image to the other allows absolute or differential wavefront recovery from pulse to pulse. Herein, we introduce the stakes and challenges of wavefront sensing at an XFEL source and explain the strategies adopted to fulfil the high requirements set by such a source.

  4. Designing and testing the coronagraphic Modal Wavefront Sensor: a fast non-common path error sensor for high-contrast imaging

    NASA Astrophysics Data System (ADS)

    Wilby, M. J.; Keller, C. U.; Haffert, S.; Korkiakoski, V.; Snik, F.; Pietrow, A. G. M.

    2016-07-01

    Non-Common Path Errors (NCPEs) are the dominant factor limiting the performance of current astronomical high-contrast imaging instruments. If uncorrected, the resulting quasi-static speckle noise floor limits coronagraph performance to a raw contrast of typically 10-4, a value which does not improve with increasing integration time. The coronagraphic Modal Wavefront Sensor (cMWS) is a hybrid phase optic which uses holographic PSF copies to supply focal-plane wavefront sensing information directly from the science camera, whilst maintaining a bias-free coronagraphic PSF. This concept has already been successfully implemented on-sky at the William Herschel Telescope (WHT), La Palma, demonstrating both real-time wavefront sensing capability and successful extraction of slowly varying wavefront errors under a dominant and rapidly changing atmospheric speckle foreground. In this work we present an overview of the development of the cMWS and recent first light results obtained using the Leiden EXoplanet Instrument (LEXI), a high-contrast imager and high-dispersion spectrograph pathfinder instrument for the WHT.

  5. An optical wavefront sensor based on a double layer microlens array.

    PubMed

    Lin, Vinna; Wei, Hsiang-Chun; Hsieh, Hsin-Ta; Su, Guo-Dung John

    2011-01-01

    In order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA) to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector. In order to extend focal length, we used polydimethysiloxane (PDMS) above MLA on a glass substrate. Because of small refractive index difference between PDMS and MLA interface (UV-resin), the incident light is less refracted and focused in further distance. Other specific focal lengths could also be realized by modifying the refractive index difference without changing the MLA size. Thus, the wavefront sensor could be improved with better sensitivity and higher spatial resolution.

  6. Testbed Demonstration of Low Order Wavefront Sensing and Control Technology for WFIRST Coronagraph

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Balasubramanian, K.; Cady, E.; Kern, B.; Lam, R.; Mandic, M.; Patterson, K.; Poberezhskiy, I.; Shields, J.; Seo, J.; Tang, H.; Truong, T.; Wilson, D.

    2017-01-01

    NASA’s WFIRST-AFTA Coronagraph will be capable of directly imaging and spectrally characterizing giant exoplanets similar to Neptune and Jupiter, and possibly even super-Earths, around nearby stars. To maintain the required coronagraph performance in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The LOWFS/C will use the rejected stellar light to sense and suppress the telescope pointing drift and jitter as well as low order wavefront errors due to the changes in thermal loading of the telescope and the rest of the observatory. The LOWFS/C uses a Zernike phase contrast wavefront sensor with the phase shifting disk combined with the stellar light rejecting occulting mask, a key concept to minimize the non-common path error. Developed as a part of the Dynamic High Contrast Imaging Testbed (DHCIT), the LOWFS/C subsystem also consists of an Optical Telescope Assembly Simulator (OTA-S) to generate the realistic line-of-sight (LoS) drift and jitter as well as low order wavefront error from WFIRST-AFTA telescope’s vibration and thermal drift. The entire LOWFS/C subsystem have been integrated, calibrated, and tested in the Dynamic High Contrast Imaging Testbed. In this presentation we will show the results of LOWFS/C performance during the dynamic coronagraph tests in which we have demonstrated that LOWFS/C is able to maintain the coronagraph contrast with the presence of WFIRST like line-of-sight drift and jitter as well as low order wavefront drifts.

  7. Adaptive Cross-correlation Algorithm and Experiment of Extended Scene Shack-Hartmann Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Morgan, Rhonda M.; Green, Joseph J.; Ohara, Catherine M.; Redding, David C.

    2007-01-01

    We have developed a new, adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels in two extended-scene images captured by a Shack-Hartmann wavefront sensor (SH-WFS). It determines the positions of all of the extended-scene image cells relative to a reference cell using an FFT-based iterative image shifting algorithm. It works with both point-source spot images as well as extended scene images. We have also set up a testbed for extended0scene SH-WFS, and tested the ACC algorithm with the measured data of both point-source and extended-scene images. In this paper we describe our algorithm and present out experimental results.

  8. Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions

    PubMed Central

    Barrett, Harrison H.; Dainty, Christopher; Lara, David

    2008-01-01

    Maximum-likelihood (ML) estimation in wavefront sensing requires careful attention to all noise sources and all factors that influence the sensor data. We present detailed probability density functions for the output of the image detector in a wavefront sensor, conditional not only on wavefront parameters but also on various nuisance parameters. Practical ways of dealing with nuisance parameters are described, and final expressions for likelihoods and Fisher information matrices are derived. The theory is illustrated by discussing Shack–Hartmann sensors, and computational requirements are discussed. Simulation results show that ML estimation can significantly increase the dynamic range of a Shack–Hartmann sensor with four detectors and that it can reduce the residual wavefront error when compared with traditional methods. PMID:17206255

  9. Adaptive Full Aperture Wavefront Sensor Study

    NASA Technical Reports Server (NTRS)

    Robinson, William G.

    1997-01-01

    This grant and the work described was in support of a Seven Segment Demonstrator (SSD) and review of wavefront sensing techniques proposed by the Government and Contractors for the Next Generation Space Telescope (NGST) Program. A team developed the SSD concept. For completeness, some of the information included in this report has also been included in the final report of a follow-on contract (H-27657D) entitled "Construction of Prototype Lightweight Mirrors". The original purpose of this GTRI study was to investigate how various wavefront sensing techniques might be most effectively employed with large (greater than 10 meter) aperture space based telescopes used for commercial and scientific purposes. However, due to changes in the scope of the work performed on this grant and in light of the initial studies completed for the NGST program, only a portion of this report addresses wavefront sensing techniques. The wavefront sensing techniques proposed by the Government and Contractors for the NGST were summarized in proposals and briefing materials developed by three study teams including NASA Goddard Space Flight Center, TRW, and Lockheed-Martin. In this report, GTRI reviews these approaches and makes recommendations concerning the approaches. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities: Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form a space telescope with large aperture. Provide very large (greater than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches.

  10. Hybrid wavefront sensor for the fast detection of wavefront disturbances.

    PubMed

    Dong, Shihao; Haist, Tobias; Osten, Wolfgang

    2012-09-01

    Strongly aberrated wavefronts lead to inaccuracies and nonlinearities in holography-based modal wavefront sensing (HMWS). In this contribution, a low-resolution Shack-Hartmann sensor (LRSHS) is incorporated into HMWS via a compact holographic design to extend the dynamic range of HMWS. A static binary-phase computer-generated hologram is employed to generate the desired patterns for Shack-Hartmann sensing and HMWS. The low-order aberration modes dominating the wavefront error are first sensed with the LRSHS and corrected by the wavefront modulator. The system then switches to HMWS to obtain better sensor sensitivity and accuracy. Simulated as well as experimental results are shown for validating the proposed method.

  11. NASA Tech Briefs, April 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Topics include: Wearable Environmental and Physiological Sensing Unit; Broadband Phase Retrieval for Image-Based Wavefront Sensing; Filter Function for Wavefront Sensing Over a Field of View; Iterative-Transform Phase Retrieval Using Adaptive Diversity; Wavefront Sensing With Switched Lenses for Defocus Diversity; Smooth Phase Interpolated Keying; Maintaining Stability During a Conducted-Ripple EMC Test; Photodiode Preamplifier for Laser Ranging With Weak Signals; Advanced High-Definition Video Cameras; Circuit for Full Charging of Series Lithium-Ion Cells; Analog Nonvolatile Computer Memory Circuits; JavaGenes Molecular Evolution; World Wind 3D Earth Viewing; Lithium Dinitramide as an Additive in Lithium Power Cells; Accounting for Uncertainties in Strengths of SiC MEMS Parts; Ion-Conducting Organic/Inorganic Polymers; MoO3 Cathodes for High-Temperature Lithium Thin-Film Cells; Counterrotating-Shoulder Mechanism for Friction Stir Welding; Strain Gauges Indicate Differential-CTE-Induced Failures; Antibodies Against Three Forms of Urokinase; Understanding and Counteracting Fatigue in Flight Crews; Active Correction of Aberrations of Low-Quality Telescope Optics; Dual-Beam Atom Laser Driven by Spinor Dynamics; Rugged, Tunable Extended-Cavity Diode Laser; Balloon for Long-Duration, High-Altitude Flight at Venus; and Wide-Temperature-Range Integrated Operational Amplifier.

  12. Phase retrieval based wavefront sensing experimental implementation and wavefront sensing accuracy calibration

    NASA Astrophysics Data System (ADS)

    Mao, Heng; Wang, Xiao; Zhao, Dazun

    2009-05-01

    As a wavefront sensing (WFS) tool, Baseline algorithm, which is classified as the iterative-transform algorithm of phase retrieval, estimates the phase distribution at pupil from some known PSFs at defocus planes. By using multiple phase diversities and appropriate phase unwrapping methods, this algorithm can accomplish reliable unique solution and high dynamic phase measurement. In the paper, a Baseline algorithm based wavefront sensing experiment with modification of phase unwrapping has been implemented, and corresponding Graphical User Interfaces (GUI) software has also been given. The adaptability and repeatability of Baseline algorithm have been validated in experiments. Moreover, referring to the ZYGO interferometric results, the WFS accuracy of this algorithm has been exactly calibrated.

  13. Focal plane based wavefront sensing with random DM probes

    NASA Astrophysics Data System (ADS)

    Pluzhnik, Eugene; Sirbu, Dan; Belikov, Ruslan; Bendek, Eduardo; Dudinov, Vladimir N.

    2017-09-01

    An internal coronagraph with an adaptive optical system for wavefront control is being considered for direct imaging of exoplanets with upcoming space missions and concepts, including WFIRST, HabEx, LUVOIR, EXCEDE and ACESat. The main technical challenge associated with direct imaging of exoplanets is to control of both diffracted and scattered light from the star so that even a dim planetary companion can be imaged. For a deformable mirror (DM) to create a dark hole with 10-10 contrast in the image plane, wavefront errors must be accurately measured on the science focal plane detector to ensure a common optical path. We present here a method that uses a set of random phase probes applied to the DM to obtain a high accuracy wavefront estimate even for a dynamically changing optical system. The presented numerical simulations and experimental results show low noise sensitivity, high reliability, and robustness of the proposed approach. The method does not use any additional optics or complex calibration procedures and can be used during the calibration stage of any direct imaging mission. It can also be used in any optical experiment that uses a DM as an active optical element in the layout.

  14. Innovative Methods for High Resolution Imaging

    DTIC Science & Technology

    2012-08-02

    findings, recent publication, and presentations in the areas of lenslet array imaging , wavefront encoding, and non-negative matrix factorization for...on their findings, recent publication, and presentations in the areas of lenslet array imaging , wavefront encoding, and non-negative matrix...Computational Optical Sensing and Imaging . 2007/06/18 00:00:00, . : , 2012/07/16 15:30:42 9 Kelly N. Smith, V. Paul Pauca, Arun Ross, Todd Torgersen, Michael C

  15. Advanced Wavefront Sensing and Control Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell

    2010-01-01

    The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.

  16. Live imaging using adaptive optics with fluorescent protein guide-stars

    PubMed Central

    Tao, Xiaodong; Crest, Justin; Kotadia, Shaila; Azucena, Oscar; Chen, Diana C.; Sullivan, William; Kubby, Joel

    2012-01-01

    Spatially and temporally dependent optical aberrations induced by the inhomogeneous refractive index of live samples limit the resolution of live dynamic imaging. We introduce an adaptive optical microscope with a direct wavefront sensing method using a Shack-Hartmann wavefront sensor and fluorescent protein guide-stars for live imaging. The results of imaging Drosophila embryos demonstrate its ability to correct aberrations and achieve near diffraction limited images of medial sections of large Drosophila embryos. GFP-polo labeled centrosomes can be observed clearly after correction but cannot be observed before correction. Four dimensional time lapse images are achieved with the correction of dynamic aberrations. These studies also demonstrate that the GFP-tagged centrosome proteins, Polo and Cnn, serve as excellent biological guide-stars for adaptive optics based microscopy. PMID:22772285

  17. High-contrast imager for complex aperture telescopes (HiCAT): 3. first lab results with wavefront control

    NASA Astrophysics Data System (ADS)

    N'Diaye, Mamadou; Mazoyer, Johan; Choquet, Élodie; Pueyo, Laurent; Perrin, Marshall D.; Egron, Sylvain; Leboulleux, Lucie; Levecq, Olivier; Carlotti, Alexis; Long, Chris A.; Lajoie, Rachel; Soummer, Rémi

    2015-09-01

    HiCAT is a high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The pupil geometry of such observatories includes primary mirror segmentation, central obstruction, and spider vanes, which make the direct imaging of habitable worlds very challenging. The testbed alignment was completed in the summer of 2014, exceeding specifications with a total wavefront error of 12nm rms over a 18mm pupil. The installation of two deformable mirrors for wavefront control is to be completed in the winter of 2015. In this communication, we report on the first testbed results using a classical Lyot coronagraph. We also present the coronagraph design for HiCAT geometry, based on our recent development of Apodized Pupil Lyot Coronagraph (APLC) with shaped-pupil type optimizations. These new APLC-type solutions using two-dimensional shaped-pupil apodizer render the system quasi-insensitive to jitter and low-order aberrations, while improving the performance in terms of inner working angle, bandpass and contrast over a classical APLC.

  18. Implementation of a Wavefront-Sensing Algorithm

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce; Aronstein, David

    2013-01-01

    A computer program has been written as a unique implementation of an image-based wavefront-sensing algorithm reported in "Iterative-Transform Phase Retrieval Using Adaptive Diversity" (GSC-14879-1), NASA Tech Briefs, Vol. 31, No. 4 (April 2007), page 32. This software was originally intended for application to the James Webb Space Telescope, but is also applicable to other segmented-mirror telescopes. The software is capable of determining optical-wavefront information using, as input, a variable number of irradiance measurements collected in defocus planes about the best focal position. The software also uses input of the geometrical definition of the telescope exit pupil (otherwise denoted the pupil mask) to identify the locations of the segments of the primary telescope mirror. From the irradiance data and mask information, the software calculates an estimate of the optical wavefront (a measure of performance) of the telescope generally and across each primary mirror segment specifically. The software is capable of generating irradiance data, wavefront estimates, and basis functions for the full telescope and for each primary-mirror segment. Optionally, each of these pieces of information can be measured or computed outside of the software and incorporated during execution of the software.

  19. An Optical Wavefront Sensor Based on a Double Layer Microlens Array

    PubMed Central

    Lin, Vinna; Wei, Hsiang-Chun; Hsieh, Hsin-Ta; Su, Guo-Dung John

    2011-01-01

    In order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA) to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector. In order to extend focal length, we used polydimethysiloxane (PDMS) above MLA on a glass substrate. Because of small refractive index difference between PDMS and MLA interface (UV-resin), the incident light is less refracted and focused in further distance. Other specific focal lengths could also be realized by modifying the refractive index difference without changing the MLA size. Thus, the wavefront sensor could be improved with better sensitivity and higher spatial resolution. PMID:22346643

  20. Prototype of a laser guide star wavefront sensor for the Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Patti, M.; Lombini, M.; Schreiber, L.; Bregoli, G.; Arcidiacono, C.; Cosentino, G.; Diolaiti, E.; Foppiani, I.

    2018-06-01

    The new class of large telescopes, like the future Extremely Large Telescope (ELT), are designed to work with a laser guide star (LGS) tuned to a resonance of atmospheric sodium atoms. This wavefront sensing technique presents complex issues when applied to big telescopes for many reasons, mainly linked to the finite distance of the LGS, the launching angle, tip-tilt indetermination and focus anisoplanatism. The implementation of a laboratory prototype for the LGS wavefront sensor (WFS) at the beginning of the phase study of MAORY (Multi-conjugate Adaptive Optics Relay) for ELT first light has been indispensable in investigating specific mitigation strategies for the LGS WFS issues. This paper presents the test results of the LGS WFS prototype under different working conditions. The accuracy within which the LGS images are generated on the Shack-Hartmann WFS has been cross-checked with the MAORY simulation code. The experiments show the effect of noise on centroiding precision, the impact of LGS image truncation on wavefront sensing accuracy as well as the temporal evolution of the sodium density profile and LGS image under-sampling.

  1. ARGOS wavefront sensing: from detection to correction

    NASA Astrophysics Data System (ADS)

    Orban de Xivry, Gilles; Bonaglia, M.; Borelli, J.; Busoni, L.; Connot, C.; Esposito, S.; Gaessler, W.; Kulas, M.; Mazzoni, T.; Puglisi, A.; Rabien, S.; Storm, J.; Ziegleder, J.

    2014-08-01

    Argos is the ground-layer adaptive optics system for the Large Binocular Telescope. In order to perform its wide-field correction, Argos uses three laser guide stars which sample the atmospheric turbulence. To perform the correction, Argos has at disposal three different wavefront sensing measurements : its three laser guide stars, a NGS tip-tilt, and a third wavefront sensor. We present the wavefront sensing architecture and its individual components, in particular: the finalized Argos pnCCD camera detecting the 3 laser guide stars at 1kHz, high quantum efficiency and 4e- noise; the Argos tip-tilt sensor based on a quad-cell avalanche photo-diodes; and the Argos wavefront computer. Being in the middle of the commissioning, we present the first wavefront sensing configurations and operations performed at LBT, and discuss further improvements in the measurements of the 3 laser guide star slopes as detected by the pnCCD.

  2. Developmental Cryogenic Active Telescope Testbed, a Wavefront Sensing and Control Testbed for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Leboeuf, Claudia M.; Davila, Pamela S.; Redding, David C.; Morell, Armando; Lowman, Andrew E.; Wilson, Mark E.; Young, Eric W.; Pacini, Linda K.; Coulter, Dan R.

    1998-01-01

    As part of the technology validation strategy of the next generation space telescope (NGST), a system testbed is being developed at GSFC, in partnership with JPL and Marshall Space Flight Center (MSFC), which will include all of the component functions envisioned in an NGST active optical system. The system will include an actively controlled, segmented primary mirror, actively controlled secondary, deformable, and fast steering mirrors, wavefront sensing optics, wavefront control algorithms, a telescope simulator module, and an interferometric wavefront sensor for use in comparing final obtained wavefronts from different tests. The developmental. cryogenic active telescope testbed (DCATT) will be implemented in three phases. Phase 1 will focus on operating the testbed at ambient temperature. During Phase 2, a cryocapable segmented telescope will be developed and cooled to cryogenic temperature to investigate the impact on the ability to correct the wavefront and stabilize the image. In Phase 3, it is planned to incorporate industry developed flight-like components, such as figure controlled mirror segments, cryogenic, low hold power actuators, or different wavefront sensing and control hardware or software. A very important element of the program is the development and subsequent validation of the integrated multidisciplinary models. The Phase 1 testbed objectives, plans, configuration, and design will be discussed.

  3. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    PubMed Central

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo. PMID:24575347

  4. Concepts, laboratory, and telescope test results of the plenoptic camera as a wavefront sensor

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, L. F.; Montilla, I.; Fernández-Valdivia, J. J.; Trujillo-Sevilla, J. L.; Rodríguez-Ramos, J. M.

    2012-07-01

    The plenoptic camera has been proposed as an alternative wavefront sensor adequate for extended objects within the context of the design of the European Solar Telescope (EST), but it can also be used with point sources. Originated in the field of the Electronic Photography, the plenoptic camera directly samples the Light Field function, which is the four - dimensional representation of all the light entering a camera. Image formation can then be seen as the result of the photography operator applied to this function, and many other features of the light field can be exploited to extract information of the scene, like depths computation to extract 3D imaging or, as it will be specifically addressed in this paper, wavefront sensing. The underlying concept of the plenoptic camera can be adapted to the case of a telescope by using a lenslet array of the same f-number placed at the focal plane, thus obtaining at the detector a set of pupil images corresponding to every sampled point of view. This approach will generate a generalization of Shack-Hartmann, Curvature and Pyramid wavefront sensors in the sense that all those could be considered particular cases of the plenoptic wavefront sensor, because the information needed as the starting point for those sensors can be derived from the plenoptic image. Laboratory results obtained with extended objects, phase plates and commercial interferometers, and even telescope observations using stars and the Moon as an extended object are presented in the paper, clearly showing the capability of the plenoptic camera to behave as a wavefront sensor.

  5. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer

    PubMed Central

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A. Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-01-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm. PMID:23082292

  6. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer.

    PubMed

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-10-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

  7. An adaptive optics approach for laser beam correction in turbulence utilizing a modified plenoptic camera

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2015-09-01

    Adaptive optics has been widely used in the field of astronomy to correct for atmospheric turbulence while viewing images of celestial bodies. The slightly distorted incoming wavefronts are typically sensed with a Shack-Hartmann sensor and then corrected with a deformable mirror. Although this approach has proven to be effective for astronomical purposes, a new approach must be developed when correcting for the deep turbulence experienced in ground to ground based optical systems. We propose the use of a modified plenoptic camera as a wavefront sensor capable of accurately representing an incoming wavefront that has been significantly distorted by strong turbulence conditions (C2n <10-13 m- 2/3). An intelligent correction algorithm can then be developed to reconstruct the perturbed wavefront and use this information to drive a deformable mirror capable of correcting the major distortions. After the large distortions have been corrected, a secondary mode utilizing more traditional adaptive optics algorithms can take over to fine tune the wavefront correction. This two-stage algorithm can find use in free space optical communication systems, in directed energy applications, as well as for image correction purposes.

  8. Hybrid wavefront sensing and image correction algorithm for imaging through turbulent media

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Robertson Rzasa, John; Ko, Jonathan; Davis, Christopher C.

    2017-09-01

    It is well known that passive image correction of turbulence distortions often involves using geometry-dependent deconvolution algorithms. On the other hand, active imaging techniques using adaptive optic correction should use the distorted wavefront information for guidance. Our work shows that a hybrid hardware-software approach is possible to obtain accurate and highly detailed images through turbulent media. The processing algorithm also takes much fewer iteration steps in comparison with conventional image processing algorithms. In our proposed approach, a plenoptic sensor is used as a wavefront sensor to guide post-stage image correction on a high-definition zoomable camera. Conversely, we show that given the ground truth of the highly detailed image and the plenoptic imaging result, we can generate an accurate prediction of the blurred image on a traditional zoomable camera. Similarly, the ground truth combined with the blurred image from the zoomable camera would provide the wavefront conditions. In application, our hybrid approach can be used as an effective way to conduct object recognition in a turbulent environment where the target has been significantly distorted or is even unrecognizable.

  9. More Zernike modes' open-loop measurement in the sub-aperture of the Shack-Hartmann wavefront sensor.

    PubMed

    Zhu, Zhaoyi; Mu, Quanquan; Li, Dayu; Yang, Chengliang; Cao, Zhaoliang; Hu, Lifa; Xuan, Li

    2016-10-17

    The centroid-based Shack-Hartmann wavefront sensor (SHWFS) treats the sampled wavefronts in the sub-apertures as planes, and the slopes of the sub-wavefronts are used to reconstruct the whole pupil wavefront. The problem is that the centroid method may fail to sense the high-order modes for strong turbulences, decreasing the precision of the whole pupil wavefront reconstruction. To solve this problem, we propose a sub-wavefront estimation method for SHWFS based on the focal plane sensing technique, by which more Zernike modes than the two slopes can be sensed in each sub-aperture. In this paper, the effects on the sub-wavefront estimation method of the related parameters, such as the spot size, the phase offset with its set amplitude and the pixels number in each sub-aperture, are analyzed and these parameters are optimized to achieve high efficiency. After the optimization, open-loop measurement is realized. For the sub-wavefront sensing, we achieve a large linearity range of 3.0 rad RMS for Zernike modes Z2 and Z3, and 2.0 rad RMS for Zernike modes Z4 to Z6 when the pixel number does not exceed 8 × 8 in each sub-aperture. The whole pupil wavefront reconstruction with the modified SHWFS is realized to analyze the improvements brought by the optimized sub-wavefront estimation method. Sixty-five Zernike modes can be reconstructed with a modified SHWFS containing only 7 × 7 sub-apertures, which could reconstruct only 35 modes by the centroid method, and the mean RMS errors of the residual phases are less than 0.2 rad2, which is lower than the 0.35 rad2 by the centroid method.

  10. An Analysis of Fundamental Waffle Mode in Early AEOS Adaptive Optics Images

    NASA Astrophysics Data System (ADS)

    Makidon, Russell B.; Sivaramakrishnan, Anand; Perrin, Marshall D.; Roberts, Lewis C., Jr.; Oppenheimer, Ben R.; Soummer, Rémi; Graham, James R.

    2005-08-01

    Adaptive optics (AO) systems have significantly improved astronomical imaging capabilities over the last decade and are revolutionizing the kinds of science possible with 4-5 m class ground-based telescopes. A thorough understanding of AO system performance at the telescope can enable new frontiers of science as observations push AO systems to their performance limits. We look at recent advances with wave-front reconstruction (WFR) on the Advanced Electro-Optical System (AEOS) 3.6 m telescope to show how progress made in improving WFR can be measured directly in improved science images. We describe how a ``waffle mode'' wave-front error (which is not sensed by a Fried geometry Shack-Hartmann wave-front sensor) affects the AO point-spread function. We model details of AEOS AO to simulate a PSF that matches the actual AO PSF in the I band and show that while the older observed AEOS PSF contained several times more waffle error than expected, improved WFR techniques noticeably improve AEOS AO performance. We estimate the impact of these improved WFRs on H-band imaging at AEOS, chosen based on the optimization of the Lyot Project near-infrared coronagraph at this bandpass. Based on observations made at the Maui Space Surveillance System, operated by Detachment 15 of the US Air Force Research Laboratory's Directed Energy Directorate.

  11. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    PubMed Central

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-01-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains. PMID:21934779

  12. Design of the deformable mirror demonstration CubeSat (DeMi)

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Allan, Gregory; Barnes, Derek; Figura, Joseph S.; Haughwout, Christian A.; Gubner, Jennifer N.; Knoedler, Alex A.; LeClair, Sarah; Murphy, Thomas J.; Skouloudis, Nikolaos; Merck, John; Opperman, Roedolph A.; Cahoy, Kerri L.

    2017-09-01

    The Deformable Mirror Demonstration Mission (DeMi) was recently selected by DARPA to demonstrate in-space operation of a wavefront sensor and Microelectromechanical system (MEMS) deformable mirror (DM) payload on a 6U CubeSat. Space telescopes designed to make high-contrast observations using internal coronagraphs for direct characterization of exoplanets require the use of high-actuator density deformable mirrors. These DMs can correct image plane aberrations and speckles caused by imperfections, thermal distortions, and diffraction in the telescope and optics that would otherwise corrupt the wavefront and allow leaking starlight to contaminate coronagraphic images. DeMi is provide on-orbit demonstration and performance characterization of a MEMS deformable mirror and closed loop wavefront sensing. The DeMi payload has two operational modes, one mode that images an internal light source and another mode which uses an external aperture to images stars. Both the internal and external modes include image plane and pupil plane wavefront sensing. The objectives of the internal measurement of the 140-actuator MEMS DM actuator displacement are characterization of the mirror performance and demonstration of closed-loop correction of aberrations in the optical path. Using the external aperture to observe stars of magnitude 2 or brighter, assuming 3-axis stability with less than 0.1 degree of attitude knowledge and jitter below 10 arcsec RMSE, per observation, DeMi will also demonstrate closed loop wavefront control on an astrophysical target. We present an updated payload design, results from simulations and laboratory optical prototyping, as well as present our design for accommodating high-voltage multichannel drive electronics for the DM on a CubeSat.

  13. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue

    PubMed Central

    Wang, Kai; Sun, Wenzhi; Richie, Christopher T.; Harvey, Brandon K.; Betzig, Eric; Ji, Na

    2015-01-01

    Adaptive optics by direct imaging of the wavefront distortions of a laser-induced guide star has long been used in astronomy, and more recently in microscopy to compensate for aberrations in transparent specimens. Here we extend this approach to tissues that strongly scatter visible light by exploiting the reduced scattering of near-infrared guide stars. The method enables in vivo two-photon morphological and functional imaging down to 700 μm inside the mouse brain. PMID:26073070

  14. Adaptive optical microscope for brain imaging in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Kai

    2017-04-01

    The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.

  15. Asymmetric cryptography based on wavefront sensing.

    PubMed

    Peng, Xiang; Wei, Hengzheng; Zhang, Peng

    2006-12-15

    A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.

  16. Wavefront sensing and control aspects in a high energy laser optical train

    NASA Astrophysics Data System (ADS)

    Bartosewcz, M.; Bareket, N.

    1981-01-01

    In this paper we review the major elements of a HEL (high energy laser) wavefront sensing and control system with particular emphasis on experimental demonstrations and hardware components developed at Lockheed Missiles & Space Company, Inc. The review concentrates on three important elements of wavefront control: wavefront sampling, wavefront sensing and active mirrors. Methods of wavefront sampling by diffraction gratings are described. Some new developments in wavefront sensing are explored. Hardware development efforts of fast steering mirrors and edge controlled deformable mirrors are described.

  17. Horizon: A Proposal for Large Aperture, Active Optics in Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis; Jenstrom, Del

    2000-01-01

    In 1999, NASA's New Millennium Program called for proposals to validate new technology in high-earth orbit for the Earth Observing-3 (NMP EO3) mission to fly in 2003. In response, we proposed to test a large aperture, active optics telescope in geosynchronous orbit. This would flight-qualify new technologies for both Earth and Space science: 1) a future instrument with LANDSAT image resolution and radiometric quality watching continuously from geosynchronous station, and 2) the Next Generation Space Telescope (NGST) for deep space imaging. Six enabling technologies were to be flight-qualified: 1) a 3-meter, lightweight segmented primary mirror, 2) mirror actuators and mechanisms, 3) a deformable mirror, 4) coarse phasing techniques, 5) phase retrieval for wavefront control during stellar viewing, and 6) phase diversity for wavefront control during Earth viewing. Three enhancing technologies were to be flight- validated: 1) mirror deployment and latching mechanisms, 2) an advanced microcontroller, and 3) GPS at GEO. In particular, two wavefront sensing algorithms, phase retrieval by JPL and phase diversity by ERIM International, were to sense optical system alignment and focus errors, and to correct them using high-precision mirror mechanisms. Active corrections based on Earth scenes are challenging because phase diversity images must be collected from extended, dynamically changing scenes. In addition, an Earth-facing telescope in GEO orbit is subject to a powerful diurnal thermal and radiometric cycle not experienced by deep-space astronomy. The Horizon proposal was a bare-bones design for a lightweight large-aperture, active optical system that is a practical blend of science requirements, emerging technologies, budget constraints, launch vehicle considerations, orbital mechanics, optical hardware, phase-determination algorithms, communication strategy, computational burdens, and first-rate cooperation among earth and space scientists, engineers and managers. This manuscript presents excerpts from the Horizon proposal's sections that describe the Earth science requirements, the structural -thermal-optical design, the wavefront sensing and control, and the on-orbit validation.

  18. Zernike Wavefront Sensor Modeling Development for LOWFS on WFIRST-AFTA

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Wallace, J. Kent; Shi, Fang

    2015-01-01

    WFIRST-AFTA design makes use of an existing 2.4m telescope for direct imaging of exoplanets. To maintain the high contrast needed for the coronagraph, wavefront error (WFE) of the optical system needs to be continuously sensed and controlled. Low Order Wavefront Sensing (LOWFS) uses the rejected starlight from an immediate focal plane to sense wavefront changes (mostly thermally induced low order WFE) by combining the LOWFS mask (a phase plate located at the small center region with reflective layer) with the starlight rejection masks, i.e. Hybrid Lyot Coronagraph (HLC)'s occulter or Shaped Pupil Coronagraph (SPC)'s field stop. Zernike wavefront sensor (ZWFS) measures phase via the phase-contrast method and is known to be photon noise optimal for measuring low order aberrations. Recently, ZWFS was selected as the baseline LOWFS technology on WFIST/AFTA for its good sensitivity, accuracy, and its easy integration with the starlight rejection mask. In this paper, we review the theory of ZWFS operation, describe the ZWFS algorithm development, and summarize various numerical sensitivity studies on the sensor performance. In the end, the predicted sensor performance on SPC and HLC configurations are presented.

  19. Extended use of two crossed Babinet compensators for wavefront sensing in adaptive optics

    NASA Astrophysics Data System (ADS)

    Paul, Lancelot; Kumar Saxena, Ajay

    2010-12-01

    An extended use of two crossed Babinet compensators as a wavefront sensor for adaptive optics applications is proposed. This method is based on the lateral shearing interferometry technique in two directions. A single record of the fringes in a pupil plane provides the information about the wavefront. The theoretical simulations based on this approach for various atmospheric conditions and other errors of optical surfaces are provided for better understanding of this method. Derivation of the results from a laboratory experiment using simulated atmospheric conditions demonstrates the steps involved in data analysis and wavefront evaluation. It is shown that this method has a higher degree of freedom in terms of subapertures and on the choice of detectors, and can be suitably adopted for real-time wavefront sensing for adaptive optics.

  20. Adaptive Optics for Industry and Medicine

    NASA Astrophysics Data System (ADS)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead at Iris AO (poster paper) / Michael A. Helmbrecht ... [et al.]. Electrostatic push pull mirror improvernents in visual optics (poster paper) / S. Bonora and L. Poletto. 25cm bimorph mirror for petawatt laser / S. Bonora ... [et al.]. Hysteresis compensation for piezo deformable mirror (poster paper) / H. Song ... [et al.]. Static and dynamic responses of an adaptive optics ferrofluidic mirror (poster paper) / A. Seaman ... [et al.]. New HDTV (1920 x 1080) phase-only SLM (poster paper) / Stefan Osten and Sven Krueger. Monomorph large aperture deformable mirror for laser applications (poster paper) / J-C Sinquin, J-M Lurcon, C. Guillemard. Low cost, high speed for adaptive optics control (oral paper) / Christopher D. Saunter and Gordon D. Love. Open loop woofer-tweeter adaptive control on the LAO multi-conjugate adaptive optics testbed (oral paper) / Edward Laag, Don Gavel and Mark Ammons -- pt. 2. Wavefront sensors. Wave front sensorless adaptive optics for imaging and microscopy (invited paper) / Martin J. Booth, Delphine Débarre and Tony Wilson. A fundamental limit for wavefront sensing (oral paper) / Carl Paterson. Coherent fibre-bundle wavefront sensor (oral paper) / Brian Vohnsen, I. Iglesias and Pablo Artal. Maximum-likelihood methods in wave-front sensing: nuisance parameters (oral paper) / David Lara, Harrison H. Barrett, and Chris Dainty. Real-time wavefront sensing for ultrafast high-power laser beams (oral paper) / Juan M. Bueno ... [et al.]. Wavefront sensing using a random phase screen (oral paper) / M. Loktev, G. Vdovin and O. Soloviev. Quadri-Wave Lateral Shearing Interferometry: a new mature technique for wave front sensing in adaptive optics (oral paper) / Benoit Wattellier ... [et al.]. In vivo measurement of ocular aberrations with a distorted grating wavefront sensor (oral paper) / P. Harrison ... [et al.]. Position-sensitive detector designed with unusual CMOS layout strategies for a Hartman-Shack wavefront sensor (oral Paper) / Davies W. de Lima Monteiro ... [et al.]. Adaptive optics system to compensate complex-shaped wavefronts (oral paper) / Miguel Ares, and Santiago Royo. A kind of novel linear phase retrieval wavefront sensor and its application in close-loop adaptive optics system (oral paper) / Xinyang Li ... [et al.]. Ophthalmic Shack-Hatmann wavefront sensor applications (oral paper) / Daniel R. Neal. Wave front sensing of an optical vortex and its correction with the help of bimorph mirror (poster paper) / F. A. Starikov ... [et al.]. Recent advances in laser metrology and correction of high numerical aperture laser beams using quadri-wave lateral shearing-interferometry (poster paper) / Benoit Wattellier, Ivan Doudet and William Boucher. Thin film optical metrology using principles of wavefront sensing and interference (poster paper) / D. M. Faichnie, A. H. Greenaway and I. Bain. Direct diffractive image simulation (poster paper) / A. P. Maryasov, N. P. Maryasov, A. P. Layko. High speed smart CMOS sensor for adaptive optics (poster paper) / T. D. Raymond ... [et al.]. Traceable astigmatism measurements for wavefront sensors (poster paper) / S. R. G. Hall, S. D. Knox, R. F. Stevens -- pt. 3. Adaptive optics in vision science. Dual-conjugate adaptive optics instrument for wide-field retinal imaging (oral paper) / Jörgen Thaung, Mette-Owner Petersen and Zoran Popovic. Visual simulation using electromagnetic adaptive-optics (oral paper) / Laurent Vabre ... [et al.]. High-resolution field-of-view widening in human eye retina imaging (oral paper) / Alexander V. Dubinin, Tatyana Yu. Cherezova, Alexis V. Kudryashov. Psychophysical experiments on visual performance with an ocular adaptive optics system (oral paper) / E. Dalimier, J. C. Dainty and J. Barbur. Does the accommodative mechanism of the eye calibrate itself using aberration dynamics? (oral paper) / K. M. Hampson, S. S. Chin and E. A. H. Mallen. A study of field aberrations in the human eye (oral paper) / Alexander V. Goncharov ... [et al.]. Dual wavefront corrector ophthalmic adaptive optics: design and alignment (oral paper) / Alfredo Dubra and David Williams. High speed simultaneous SLO/OCT imaging of the human retina with adaptive optics (oral paper) / M. Pircher ... [et al.]. Characterization of an AO-OCT system (oral paper) / Julia W. Evans ... [et al.]. Adaptive optics optical coherence tomography for retina imaging (oral paper) / Guohua Shi ... [et al.]. Development, calibration and performance of an electromagnetic-mirror-based adaptive optics system for visual optics (oral paper) / Enrique Gambra ... [et al.]. Adaptive eye model (poster paper) / Sergey O. Galetskzy and Alexty V. Kudryashov. Adaptive optics system for retinal imaging based on a pyramid wavefront sensor (poster paper) / Sabine Chiesa ... [et al.]. Modeling of non-stationary dynamic ocular aberrations (poster paper) / Conor Leahy and Chris Dainty. High-order aberrations and accommodation of human eye (poster paper) / Lixia Xue ... [et al.]. Electromagnetic deformable mirror: experimental assessment and first ophthalmic applications (poster paper) / L. Vabre ... [et al.]. Correcting ocular aberrations in optical coherence tomography (poster paper) / Simon Tuohy ... [et al.] -- pt. 4. Adaptive optics in optical storage and microscopy. The application of liquid crystal aberration compensator for the optical disc systems (invited paper) / Masakazu Ogasawara. Commercialization of the adaptive scanning optical microscope (ASOM) (oral paper) / Benjamin Potsaid ... [et al.]. A practical implementation of adaptive optics for aberration compensation in optical microscopy (oral paper) / A. J. Wright ... [et al.]. Active focus locking in an optically sectioning microscope using adaptive optics (poster paper) / S. Poland, A. J. Wright, J. M. Girkin. Towards four dimensional particle tracking for biological applications / Heather I. Campbell ... [et al.]. Adaptive optics for microscopy (poster paper) / Xavier Levecq -- pt. 5. Adaptive optics in lasers. Improved beam quality of a high power Yb: YAG laser (oral paper) / Dennis G. Harris ... [et al.]. Intracavity adaptive optics optimization of an end-pumped Nd:YVO4 laser (oral paper) / Petra Welp, Ulrich Wittrock. New results in high power lasers beam correction (oral paper) / Alexis Kudryashov ... [et al.]. Adaptive optical systems for the Shenguang-III prototype facility (oral paper) / Zeping Yang ... [et al.]. Adaptive optics control of solid-state lasers (poster paper) / Walter Lubeigt ... [et al.]. Gerchberg-Saxton algorithm for multimode beam reshaping (poster paper) / Inna V. Ilyina, Tatyana Yu. Cherezova. New algorithm of combining for spatial coherent beams (poster paper) / Ruofu Yang ... [et al.]. Intracavity mode control of a solid-state laser using a 19-element deformable mirror (poster paper) / Ping Yang ... [et al.] -- pt. 6. Adaptive optics in communication and atmospheric compensation. Fourier image sharpness sensor for laser communications (oral paper) / Kristin N. Walker and Robert K. Tyson. Fast closed-loop adaptive optics system for imaging through strong turbulence layers (oral paper) / Ivo Buske and Wolfgang Riede. Correction of wavefront aberrations and optical communication using aperture synthesis (oral paper) / R. J. Eastwood ... [et al.]. Adaptive optics system for a small telescope (oral paper) / G. Vdovin, M. Loktev and O. Soloviev. Fast correction of atmospheric turbulence using a membrane deformable mirror (poster paper) / Ivan Capraro, Stefano Bonora, Paolo Villoresi. Atmospheric turbulence measurements over a 3km horizontal path with a Shack-Hartmann wavefront sensor (poster paper) / Ruth Mackey, K. Murphy and Chris Dainty. Field-oriented wavefront sensor for laser guide stars (poster paper) / Lidija Bolbasova, Alexander Goncharov and Vladimir Lukin.

  1. The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments

    NASA Astrophysics Data System (ADS)

    Wilby, M. J.; Keller, C. U.; Snik, F.; Korkiakoski, V.; Pietrow, A. G. M.

    2017-01-01

    The raw coronagraphic performance of current high-contrast imaging instruments is limited by the presence of a quasi-static speckle (QSS) background, resulting from instrumental Non-Common Path Errors (NCPEs). Rapid development of efficient speckle subtraction techniques in data reduction has enabled final contrasts of up to 10-6 to be obtained, however it remains preferable to eliminate the underlying NCPEs at the source. In this work we introduce the coronagraphic Modal Wavefront Sensor (cMWS), a new wavefront sensor suitable for real-time NCPE correction. This combines the Apodizing Phase Plate (APP) coronagraph with a holographic modal wavefront sensor to provide simultaneous coronagraphic imaging and focal-plane wavefront sensing with the science point-spread function. We first characterise the baseline performance of the cMWS via idealised closed-loop simulations, showing that the sensor is able to successfully recover diffraction-limited coronagraph performance over an effective dynamic range of ±2.5 radians root-mean-square (rms) wavefront error within 2-10 iterations, with performance independent of the specific choice of mode basis. We then present the results of initial on-sky testing at the William Herschel Telescope, which demonstrate that the sensor is capable of NCPE sensing under realistic seeing conditions via the recovery of known static aberrations to an accuracy of 10 nm (0.1 radians) rms error in the presence of a dominant atmospheric speckle foreground. We also find that the sensor is capable of real-time measurement of broadband atmospheric wavefront variance (50% bandwidth, 158 nm rms wavefront error) at a cadence of 50 Hz over an uncorrected telescope sub-aperture. When combined with a suitable closed-loop adaptive optics system, the cMWS holds the potential to deliver an improvement of up to two orders of magnitude over the uncorrected QSS floor. Such a sensor would be eminently suitable for the direct imaging and spectroscopy of exoplanets with both existing and future instruments, including EPICS and METIS for the E-ELT.

  2. Hybrid Architecture Active Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Hyde, Tupper

    2010-01-01

    A method was developed for performing relatively high-speed wavefront sensing and control to overcome thermal instabilities in a segmented primary mirror telescope [e.g., James Webb Space Telescope (JWST) at L2], by using the onboard fine guidance sensor (FGS) to minimize expense and complexity. This FGS performs centroiding on a bright star to feed the information to the pointing and control system. The proposed concept is to beam split the image of the guide star (or use a single defocused guide star image) to perform wavefront sensing using phase retrieval techniques. Using the fine guidance sensor star image for guiding and fine phasing eliminates the need for other, more complex ways of achieving very accurate sensing and control that is needed for UV-optical applications. The phase retrieval occurs nearly constantly, so passive thermal stability over fourteen days is not required. Using the FGS as the sensor, one can feed segment update information to actuators on the primary mirror that can update the primary mirror segment fine phasing with this frequency. Because the thermal time constants of the primary mirror are very slow compared to this duration, the mirror will appear extremely stable during observations (to the level of accuracy of the sensing and control). The sensing can use the same phase retrieval techniques as the JWST by employing an additional beam splitter, and having each channel go through a weak lens (one positive and one negative). The channels can use common or separate detectors. Phase retrieval can be performed onboard. The actuation scheme would include a coarse stage able to achieve initial alignment of several millimeters of range (similar to JWST and can use a JWST heritage sensing approach in the science camera) and a fine stage capable of continual updates.

  3. Sensing more modes with fewer sub-apertures: the LIFTed Shack-Hartmann wavefront sensor.

    PubMed

    Meimon, Serge; Fusco, Thierry; Michau, Vincent; Plantet, Cédric

    2014-05-15

    We propose here a novel way to analyze Shack-Hartmann wavefront sensor images in order to retrieve more modes than the two centroid coordinates per sub-aperture. To do so, we use the linearized focal-plane technique (LIFT) phase retrieval method for each sub-aperture. We demonstrate that we can increase the number of modes sensed with the same computational burden per mode. For instance, we show the ability to control a 21×21 actuator deformable mirror using a 10×10 lenslet array.

  4. Integrated Approach to Airborne Laser Communication

    DTIC Science & Technology

    2008-12-01

    deformable mirror [66, 69, 80]. Some researchers have proposed complicated wavefront control systems to sense and correct the transmitted signals in real...Sensors at the imaging system or laser transmitter measure how the turbulence affects the beacon. If the differences between the phase effects ( wavefront ...communications are severely affected by clouds, dust, and atmospheric turbulence , causing deep, long fades at the receiver. Ultimately a hybrid

  5. Design and realization of adaptive optical principle system without wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wang, Xiaobin; Niu, Chaojun; Guo, Yaxing; Han, Xiang'e.

    2018-02-01

    In this paper, we focus on the performance improvement of the free space optical communication system and carry out the research on wavefront-sensorless adaptive optics. We use a phase only liquid crystal spatial light modulator (SLM) as the wavefront corrector. The optical intensity distribution of the distorted wavefront is detected by a CCD. We develop a wavefront controller based on ARM and a software based on the Linux operating system. The wavefront controller can control the CCD camera and the wavefront corrector. There being two SLMs in the experimental system, one simulates atmospheric turbulence and the other is used to compensate the wavefront distortion. The experimental results show that the performance quality metric (the total gray value of 25 pixels) increases from 3037 to 4863 after 200 iterations. Besides, it is demonstrated that our wavefront-sensorless adaptive optics system based on SPGD algorithm has a good performance in compensating wavefront distortion.

  6. Phase-sensitive X-ray imager

    DOEpatents

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  7. FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Codona, Johanan L.; Kenworthy, Matthew, E-mail: jlcodona@gmail.com

    2013-04-20

    Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance the Strehl ratio or suppress the residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphsmore » and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly changing residual atmospheric speckles at the 6.5 m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor measurements are used to estimate the residual wavefront, allowing us to approximately compute the rapidly evolving phase and amplitude of speckle halo. When combined with relatively short, synchronized science camera images, the complex speckle estimates can be used to interferometrically analyze the images, leading to an estimate of the static diffraction halo with NCP effects included. In an operational system, this information could be collected continuously and used to iteratively correct quasi-static NCP errors or suppress imperfect coronagraphic halos.« less

  8. An Adaptive Cross-Correlation Algorithm for Extended-Scene Shack-Hartmann Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Green, Joseph J.; Ohara, Catherine M.; Redding, David C.

    2007-01-01

    This viewgraph presentation reviews the Adaptive Cross-Correlation (ACC) Algorithm for extended scene-Shack Hartmann wavefront (WF) sensing. A Shack-Hartmann sensor places a lenslet array at a plane conjugate to the WF error source. Each sub-aperture lenslet samples the WF in the corresponding patch of the WF. A description of the ACC algorithm is included. The ACC has several benefits; amongst them are: ACC requires only about 4 image-shifting iterations to achieve 0.01 pixel accuracy and ACC is insensitive to both background light and noise much more robust than centroiding,

  9. Terahertz adaptive optics with a deformable mirror.

    PubMed

    Brossard, Mathilde; Sauvage, Jean-François; Perrin, Mathias; Abraham, Emmanuel

    2018-04-01

    We report on the wavefront correction of a terahertz (THz) beam using adaptive optics, which requires both a wavefront sensor that is able to sense the optical aberrations, as well as a wavefront corrector. The wavefront sensor relies on a direct 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. By measuring the phase variation of the THz electric field in the crystal, we were able to minimize the geometrical aberrations of the beam, thanks to the action of a deformable mirror. This phase control will open the route to THz adaptive optics in order to optimize the THz beam quality for both practical and fundamental applications.

  10. Discrete Fourier Transform in a Complex Vector Space

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2015-01-01

    An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.

  11. Bottlenecks of the wavefront sensor based on the Talbot effect.

    PubMed

    Podanchuk, Dmytro; Kovalenko, Andrey; Kurashov, Vitalij; Kotov, Myhaylo; Goloborodko, Andrey; Danko, Volodymyr

    2014-04-01

    Physical constraints and peculiarities of the wavefront sensing technique, based on the Talbot effect, are discussed. The limitation on the curvature of the measurable wavefront is derived. The requirements to the Fourier spectrum of the periodic mask are formulated. Two kinds of masks are studied for their performance in the wavefront sensor. It is shown that the boundary part of the mask aperture does not contribute to the initial data for wavefront restoration. It is verified by experiment and computer simulation that the performance of the Talbot sensor, which meets established conditions, is similar to that of the Shack-Hartmann sensor.

  12. HIGH-SPEED IMAGING AND WAVEFRONT SENSING WITH AN INFRARED AVALANCHE PHOTODIODE ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranec, Christoph; Atkinson, Dani; Hall, Donald

    2015-08-10

    Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e{sup −} in the lab, and a total noise of 2.52 e{sup −} on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible andmore » infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.« less

  13. Phase Contrast Wavefront Sensing for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.; Bloemhof, E. E.

    2004-01-01

    Most ground-based adaptive optics systems use one of a small number of wavefront sensor technologies, notably (for relatively high-order systems) the Shack-Hartmann sensor, which provides local measurements of the phase slope (first-derivative) at a number of regularly-spaced points across the telescope pupil. The curvature sensor, with response proportional to the second derivative of the phase, is also sometimes used, but has undesirable noise propagation properties during wavefront reconstruction as the number of actuators becomes large. It is interesting to consider the use for astronomical adaptive optics of the "phase contrast" technique, originally developed for microscopy by Zemike to allow convenient viewing of phase objects. In this technique, the wavefront sensor provides a direct measurement of the local value of phase in each sub-aperture of the pupil. This approach has some obvious disadvantages compared to Shack-Hartmann wavefront sensing, but has some less obvious but substantial advantages as well. Here we evaluate the relative merits in a practical ground-based adaptive optics system.

  14. Study of optimal wavefront sensing with elongated laser guide stars

    NASA Astrophysics Data System (ADS)

    Thomas, S. J.; Adkins, S.; Gavel, D.; Fusco, T.; Michau, V.

    2008-06-01

    Over the past decade, adaptive optics (AO) has become an established method for overcoming the effects of atmospheric turbulence on both astronomical imaging and spectroscopic observations. These systems are now beginning to make extensive use of laser guide star (LGS) techniques to improve performance and provide increased sky coverage. Sodium LGS AO employs one or more lasers at 589-nm wavelength to produce an artificial guide star through excitation of sodium atoms in the mesosphere (90 km altitude). Because of its dependence on the abundance and distribution of sodium atoms in the mesosphere, this approach has its own unique set of difficulties not seen with natural stars. The sodium layer exhibits time-dependent variations in density and altitude, and since it is at a finite range, the LGS images become elongated due to the thickness of the layer and the offset between the laser projection point and the subapertures of a Shack-Hartmann wavefront sensor (SHWFS). Elongation causes the LGS image to be spread out resulting in a decrease in the signal-to-noise ratio which, in turn, leads to an increase in SHWFS measurement error and therefore an increased error in wavefront phase reconstruction. To address the problem of elongation, and also to provide a higher level of readout performance and reduced readout noise, a new type of charge-coupled device (CCD) is now under development for Shack-Hartmann wavefront sensing called the polar coordinate CCD. In this device, discrete imaging arrays are provided in each SHWFS subaperture and the size, shape and orientation of each discrete imaging array are adjusted to optimally sample the LGS image. The device is referred to as the polar coordinate CCD because the location of each imager is defined by a polar coordinate system centred on the laser guide star projection point. This concept is especially suited to Extremely Large Telescopes (ELTs) where the effect of perspective elongation is a significant factor. In this paper, we evaluate the performance of centroiders based on this CCD geometry by evaluating the centroid error variance and also the linearity issues associated with LGS image sampling and truncation. We also describe how we will extend this work to address the problems presented by the time variability of the sodium layer and how this will impact SHWFS performance in LGS AO systems.

  15. Ultrahigh-frame CCD imagers

    NASA Astrophysics Data System (ADS)

    Lowrance, John L.; Mastrocola, V. J.; Renda, George F.; Swain, Pradyumna K.; Kabra, R.; Bhaskaran, Mahalingham; Tower, John R.; Levine, Peter A.

    2004-02-01

    This paper describes the architecture, process technology, and performance of a family of high burst rate CCDs. These imagers employ high speed, low lag photo-detectors with local storage at each photo-detector to achieve image capture at rates greater than 106 frames per second. One imager has a 64 x 64 pixel array with 12 frames of storage. A second imager has a 80 x 160 array with 28 frames of storage, and the third imager has a 64 x 64 pixel array with 300 frames of storage. Application areas include capture of rapid mechanical motion, optical wavefront sensing, fluid cavitation research, combustion studies, plasma research and wind-tunnel-based gas dynamics research.

  16. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays

    PubMed Central

    Fan, Qingbin; Huo, Pengcheng; Wang, Daopeng; Liang, Yuzhang; Yan, Feng; Xu, Ting

    2017-01-01

    Conventional metasurface reflector-arrays based on metallic resonant nanoantenna to control the wavefront of light for focusing always suffer from strong ohmic loss at optical frequencies. Here, we overcome this challenge by constructing a non-resonant, hybrid dielectric-metal configuration consisting of TiO2 nanofins associated with an Ag reflector substrate that provides a broadband response and high polarization conversion efficiency in the visible range. A reflective flat lens based on this configuration shows an excellent focusing performance with the spot size close to the diffraction limit. Furthermore, by employing the superimposed phase distribution design to manipulate the wavefront of the reflected light, various functionalities, such as multifocal and achromatic focusing, are demonstrated for the flat lenses. Such a reflective flat lens will find various applications in visible light imaging and sensing systems. PMID:28332611

  17. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Miyamura, Norihide

    2017-09-01

    For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.

  18. Volumetric imaging of fast biological dynamics in deep tissue via wavefront engineering

    NASA Astrophysics Data System (ADS)

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-03-01

    To reveal fast biological dynamics in deep tissue, we combine two wavefront engineering methods that were developed in our laboratory, namely optical phase-locked ultrasound lens (OPLUL) based volumetric imaging and iterative multiphoton adaptive compensation technique (IMPACT). OPLUL is used to generate oscillating defocusing wavefront for fast axial scanning, and IMPACT is used to compensate the wavefront distortions for deep tissue imaging. We show its promising applications in neuroscience and immunology.

  19. C-RED one: ultra-high speed wavefront sensing in the infrared made possible

    NASA Astrophysics Data System (ADS)

    Gach, J.-L.; Feautrier, Philippe; Stadler, Eric; Greffe, Timothee; Clop, Fabien; Lemarchand, Stéphane; Carmignani, Thomas; Boutolleau, David; Baker, Ian

    2016-07-01

    First Light Imaging's CRED-ONE infrared camera is capable of capturing up to 3500 full frames per second with a subelectron readout noise. This breakthrough has been made possible thanks to the use of an e-APD infrared focal plane array which is a real disruptive technology in imagery. We will show the performances of the camera, its main features and compare them to other high performance wavefront sensing cameras like OCAM2 in the visible and in the infrared. The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N° 673944.

  20. Curvature wavefront sensing performance evaluation for active correction of the Large Synoptic Survey Telescope (LSST).

    PubMed

    Manuel, Anastacia M; Phillion, Donald W; Olivier, Scot S; Baker, Kevin L; Cannon, Brice

    2010-01-18

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, modified Paul-Baker design, with an 8.4-meter primary mirror, a 3.4-m secondary, and a 5.0-m tertiary, along with three refractive corrector lenses to produce a flat focal plane with a field of view of 9.6 square degrees. In order to maintain image quality during operation, the deformations and rigid body motions of the three large mirrors must be actively controlled to minimize optical aberrations, which arise primarily from forces due to gravity and thermal expansion. We describe the methodology for measuring the telescope aberrations using a set of curvature wavefront sensors located in the four corners of the LSST camera focal plane. We present a comprehensive analysis of the wavefront sensing system, including the availability of reference stars, demonstrating that this system will perform to the specifications required to meet the LSST performance goals.

  1. Numerical analysis of wavefront measurement characteristics by using plenoptic camera

    NASA Astrophysics Data System (ADS)

    Lv, Yang; Ma, Haotong; Zhang, Xuanzhe; Ning, Yu; Xu, Xiaojun

    2016-01-01

    To take advantage of the large-diameter telescope for high-resolution imaging of extended targets, it is necessary to detect and compensate the wave-front aberrations induced by atmospheric turbulence. Data recorded by Plenoptic cameras can be used to extract the wave-front phases associated to the atmospheric turbulence in an astronomical observation. In order to recover the wave-front phase tomographically, a method of completing the large Field Of View (FOV), multi-perspective wave-front detection simultaneously is urgently demanded, and it is plenoptic camera that possesses this unique advantage. Our paper focuses more on the capability of plenoptic camera to extract the wave-front from different perspectives simultaneously. In this paper, we built up the corresponding theoretical model and simulation system to discuss wave-front measurement characteristics utilizing plenoptic camera as wave-front sensor. And we evaluated the performance of plenoptic camera with different types of wave-front aberration corresponding to the occasions of applications. In the last, we performed the multi-perspective wave-front sensing employing plenoptic camera as wave-front sensor in the simulation. Our research of wave-front measurement characteristics employing plenoptic camera is helpful to select and design the parameters of a plenoptic camera, when utilizing which as multi-perspective and large FOV wave-front sensor, which is expected to solve the problem of large FOV wave-front detection, and can be used for AO in giant telescopes.

  2. Solar tomography adaptive optics.

    PubMed

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  3. NASA Tech Briefs, October 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: Control Architecture for Robotic Agent Command and Sensing; Algorithm for Wavefront Sensing Using an Extended Scene; CO2 Sensors Based on Nanocrystalline SnO2 Doped with CuO; Improved Airborne System for Sensing Wildfires; VHF Wide-Band, Dual-Polarization Microstrip-Patch Antenna; Onboard Data Processor for Change-Detection Radar Imaging; Using LDPC Code Constraints to Aid Recovery of Symbol Timing; System for Measuring Flexing of a Large Spaceborne Structure; Integrated Formation Optical Communication and Estimation System; Making Superconducting Welds between Superconducting Wires; Method for Thermal Spraying of Coatings Using Resonant-Pulsed Combustion; Coating Reduces Ice Adhesion; Hybrid Multifoil Aerogel Thermal Insulation; SHINE Virtual Machine Model for In-flight Updates of Critical Mission Software; Mars Image Collection Mosaic Builder; Providing Internet Access to High-Resolution Mars Images; Providing Internet Access to High-Resolution Lunar Images; Expressions Module for the Satellite Orbit Analysis Program Virtual Satellite; Small-Body Extensions for the Satellite Orbit Analysis Program (SOAP); Scripting Module for the Satellite Orbit Analysis Program (SOAP); XML-Based SHINE Knowledge Base Interchange Language; Core Technical Capability Laboratory Management System; MRO SOW Daily Script; Tool for Inspecting Alignment of Twinaxial Connectors; An ATP System for Deep-Space Optical Communication; Polar Traverse Rover Instrument; Expert System Control of Plant Growth in an Enclosed Space; Detecting Phycocyanin-Pigmented Microbes in Reflected Light; DMAC and NMP as Electrolyte Additives for Li-Ion Cells; Mass Spectrometer Containing Multiple Fixed Collectors; Waveguide Harmonic Generator for the SIM; Whispering Gallery Mode Resonator with Orthogonally Reconfigurable Filter Function; Stable Calibration of Raman Lidar Water-Vapor Measurements; Bimaterial Thermal Compensators for WGM Resonators; Root Source Analysis/ValuStream[Trade Mark] - A Methodology for Identifying and Managing Risks; Ensemble: an Architecture for Mission-Operations Software; Object Recognition Using Feature-and Color-Based Methods; On-Orbit Multi-Field Wavefront Control with a Kalman Filter; and The Interplanetary Overlay Networking Protocol Accelerator.

  4. Phase retrieval algorithm for JWST Flight and Testbed Telescope

    NASA Astrophysics Data System (ADS)

    Dean, Bruce H.; Aronstein, David L.; Smith, J. Scott; Shiri, Ron; Acton, D. Scott

    2006-06-01

    An image-based wavefront sensing and control algorithm for the James Webb Space Telescope (JWST) is presented. The algorithm heritage is discussed in addition to implications for algorithm performance dictated by NASA's Technology Readiness Level (TRL) 6. The algorithm uses feedback through an adaptive diversity function to avoid the need for phase-unwrapping post-processing steps. Algorithm results are demonstrated using JWST Testbed Telescope (TBT) commissioning data and the accuracy is assessed by comparison with interferometer results on a multi-wave phase aberration. Strategies for minimizing aliasing artifacts in the recovered phase are presented and orthogonal basis functions are implemented for representing wavefronts in irregular hexagonal apertures. Algorithm implementation on a parallel cluster of high-speed digital signal processors (DSPs) is also discussed.

  5. Coronagraphic Wavefront Control for the ATLAST-9.2m Telescope

    NASA Technical Reports Server (NTRS)

    Lyon, RIchard G.; Oegerle, William R.; Feinberg, Lee D.; Bolcar, Matthew R.; Dean, Bruce H.; Mosier, Gary E.; Postman, Marc

    2010-01-01

    The Advanced Technology for Large Aperture Space Telescope (ATLAST) concept was assessed as one of the NASA Astrophysics Strategic Mission Concepts (ASMC) studies. Herein we discuss the 9.2-meter diameter segmented aperture version and its wavefront sensing and control (WFSC) with regards to coronagraphic detection and spectroscopic characterization of exoplanets. The WFSC would consist of at least two levels of sensing and control: (i) an outer coarser level of sensing and control to phase and control the segments and secondary mirror in a manner similar to the James Webb Space Telescope but operating at higher temporal bandwidth, and (ii) an inner, coronagraphic instrument based, fine level of sensing and control for both amplitude and wavefront errors operating at higher temporal bandwidths. The outer loop would control rigid-body actuators on the primary and secondary mirrors while the inner loop would control one or more segmented deformable mirror to suppress the starlight within the coronagraphic field-of view. Herein we discuss the visible nulling coronagraph (VNC) and the requirements it levies on wavefront sensing and control and show the results of closed-loop simulations to assess performance and evaluate the trade space of system level stability versus control bandwidth.

  6. Low Order Wavefront Sensing and Control for WFIRST-AFTA Coronagraph

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Balasubramanian, Kunjithapatha; Bartos, Randall; Hien, Randall; Kern, Brian; Krist, John; Lam, Raymond; Moore, Douglas; Moore, James; Patterson, Keith; hide

    2015-01-01

    To maintain the required WFIRST Coronagraph performance in a realistic space environment, a low order wavefront sensing and control (LOWFS/C) subsystem is necessary. The LOWFS/C use s the rejected stellar light from coronagraph to sense and suppress the telescope pointing drift and jitter as well as the low order wavefront errors due to changes in thermal loading of the telescope and the rest of the observatory. In this paper we will present an overview of the low order wavefront sensing and control subsystem for the WFIRST -AFTA Coronagraph. We will describe LOWFS/C's Zernike wavefront sensor concept and WFIRST LOWFS/C control design. We will present an overview of our analysis and modeling results on the Zernike wavefront sensor, the line -of-sight jitter suppression loop performance, as well as the low order wavefront error correction with the coronagraph's deformable mirror. In this paper we will also report the LOWFS/C testbed design and the preliminary in-air test results, which show a very promising performance of the Zernike wavefront sensor and FSM feedback loop.

  7. Multispectral Wavefronts Retrieval in Digital Holographic Three-Dimensional Imaging Spectrometry

    NASA Astrophysics Data System (ADS)

    Yoshimori, Kyu

    2010-04-01

    This paper deals with a recently developed passive interferometric technique for retrieving a set of spectral components of wavefronts that are propagating from a spatially incoherent, polychromatic object. The technique is based on measurement of 5-D spatial coherence function using a suitably designed interferometer. By applying signal processing, including aperture synthesis and spectral decomposition, one may obtains a set of wavefronts of different spectral bands. Since each wavefront is equivalent to the complex Fresnel hologram at a particular spectrum of the polychromatic object, application of the conventional Fresnel transform yields 3-D image of different spectrum. Thus, this technique of multispectral wavefronts retrieval provides a new type of 3-D imaging spectrometry based on a fully passive interferometry. Experimental results are also shown to demonstrate the validity of the method.

  8. Revisiting the comparison between the Shack-Hartmann and the pyramid wavefront sensors via the Fisher information matrix.

    PubMed

    Plantet, C; Meimon, S; Conan, J-M; Fusco, T

    2015-11-02

    Exoplanet direct imaging with large ground based telescopes requires eXtreme Adaptive Optics that couples high-order adaptive optics and coronagraphy. A key element of such systems is the high-order wavefront sensor. We study here several high-order wavefront sensing approaches, and more precisely compare their sensitivity to noise. Three techniques are considered: the classical Shack-Hartmann sensor, the pyramid sensor and the recently proposed LIFTed Shack-Hartmann sensor. They are compared in a unified framework based on precise diffractive models and on the Fisher information matrix, which conveys the information present in the data whatever the estimation method. The diagonal elements of the inverse of the Fisher information matrix, which we use as a figure of merit, are similar to noise propagation coefficients. With these diagonal elements, so called "Fisher coefficients", we show that the LIFTed Shack-Hartmann and pyramid sensors outperform the classical Shack-Hartmann sensor. In photon noise regime, the LIFTed Shack-Hartmann and modulated pyramid sensors obtain a similar overall noise propagation. The LIFTed Shack-Hartmann sensor however provides attractive noise properties on high orders.

  9. Optical design of a novel instrument that uses the Hartmann-Shack sensor and Zernike polynomials to measure and simulate customized refraction correction surgery outcomes and patient satisfaction

    NASA Astrophysics Data System (ADS)

    Yasuoka, Fatima M. M.; Matos, Luciana; Cremasco, Antonio; Numajiri, Mirian; Marcato, Rafael; Oliveira, Otavio G.; Sabino, Luis G.; Castro N., Jarbas C.; Bagnato, Vanderlei S.; Carvalho, Luis A. V.

    2016-03-01

    An optical system that conjugates the patient's pupil to the plane of a Hartmann-Shack (HS) wavefront sensor has been simulated using optical design software. And an optical bench prototype is mounted using mechanical eye device, beam splitter, illumination system, lenses, mirrors, mirrored prism, movable mirror, wavefront sensor and camera CCD. The mechanical eye device is used to simulate aberrations of the eye. From this device the rays are emitted and travelled by the beam splitter to the optical system. Some rays fall on the camera CCD and others pass in the optical system and finally reach the sensor. The eye models based on typical in vivo eye aberrations is constructed using the optical design software Zemax. The computer-aided outcomes of each HS images for each case are acquired, and these images are processed using customized techniques. The simulated and real images for low order aberrations are compared using centroid coordinates to assure that the optical system is constructed precisely in order to match the simulated system. Afterwards a simulated version of retinal images is constructed to show how these typical eyes would perceive an optotype positioned 20 ft away. Certain personalized corrections are allowed by eye doctors based on different Zernike polynomial values and the optical images are rendered to the new parameters. Optical images of how that eye would see with or without corrections of certain aberrations are generated in order to allow which aberrations can be corrected and in which degree. The patient can then "personalize" the correction to their own satisfaction. This new approach to wavefront sensing is a promising change in paradigm towards the betterment of the patient-physician relationship.

  10. Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects.

    PubMed

    Tong, Qing; Lei, Yu; Xin, Zhaowei; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2016-02-08

    In this paper, we present a kind of dual-mode photosensitive arrays (DMPAs) constructed by hybrid integration a liquid crystal microlens array (LCMLA) driven electrically and a CMOS sensor array, which can be used to measure both the conventional intensity images and corresponding wavefronts of objects. We utilize liquid crystal materials to shape the microlens array with the electrically tunable focal length. Through switching the voltage signal on and off, the wavefronts and the intensity images can be acquired through the DMPAs, sequentially. We use white light to obtain the object's wavefronts for avoiding losing important wavefront information. We separate the white light wavefronts with a large number of spectral components and then experimentally compare them with single spectral wavefronts of typical red, green and blue lasers, respectively. Then we mix the red, green and blue wavefronts to a composite wavefront containing more optical information of the object.

  11. The design of wavefront coded imaging system

    NASA Astrophysics Data System (ADS)

    Lan, Shun; Cen, Zhaofeng; Li, Xiaotong

    2016-10-01

    Wavefront Coding is a new method to extend the depth of field, which combines optical design and signal processing together. By using optical design software ZEMAX ,we designed a practical wavefront coded imaging system based on a conventional Cooke triplet system .Unlike conventional optical system, the wavefront of this new system is modulated by a specially designed phase mask, which makes the point spread function (PSF)of optical system not sensitive to defocus. Therefore, a series of same blurred images obtained at the image plane. In addition, the optical transfer function (OTF) of the wavefront coded imaging system is independent of focus, which is nearly constant with misfocus and has no regions of zeros. All object information can be completely recovered through digital filtering at different defocus positions. The focus invariance of MTF is selected as merit function in this design. And the coefficients of phase mask are set as optimization goals. Compared to conventional optical system, wavefront coded imaging system obtains better quality images under different object distances. Some deficiencies appear in the restored images due to the influence of digital filtering algorithm, which are also analyzed in this paper. The depth of field of the designed wavefront coded imaging system is about 28 times larger than initial optical system, while keeping higher optical power and resolution at the image plane.

  12. Model-based sensor-less wavefront aberration correction in optical coherence tomography.

    PubMed

    Verstraete, Hans R G W; Wahls, Sander; Kalkman, Jeroen; Verhaegen, Michel

    2015-12-15

    Several sensor-less wavefront aberration correction methods that correct nonlinear wavefront aberrations by maximizing the optical coherence tomography (OCT) signal are tested on an OCT setup. A conventional coordinate search method is compared to two model-based optimization methods. The first model-based method takes advantage of the well-known optimization algorithm (NEWUOA) and utilizes a quadratic model. The second model-based method (DONE) is new and utilizes a random multidimensional Fourier-basis expansion. The model-based algorithms achieve lower wavefront errors with up to ten times fewer measurements. Furthermore, the newly proposed DONE method outperforms the NEWUOA method significantly. The DONE algorithm is tested on OCT images and shows a significantly improved image quality.

  13. Qualification of a Null Lens Using Image-Based Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.

    2012-01-01

    In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.

  14. Waffle mode error in the AEOS adaptive optics point-spread function

    NASA Astrophysics Data System (ADS)

    Makidon, Russell B.; Sivaramakrishnan, Anand; Roberts, Lewis C., Jr.; Oppenheimer, Ben R.; Graham, James R.

    2003-02-01

    Adaptive optics (AO) systems have improved astronomical imaging capabilities significantly over the last decade, and have the potential to revolutionize the kinds of science done with 4-5m class ground-based telescopes. However, provided sufficient detailed study and analysis, existing AO systems can be improved beyond their original specified error budgets. Indeed, modeling AO systems has been a major activity in the past decade: sources of noise in the atmosphere and the wavefront sensing WFS) control loop have received a great deal of attention, and many detailed and sophisticated control-theoretic and numerical models predicting AO performance are already in existence. However, in terms of AO system performance improvements, wavefront reconstruction (WFR) and wavefront calibration techniques have commanded relatively little attention. We elucidate the nature of some of these reconstruction problems, and demonstrate their existence in data from the AEOS AO system. We simulate the AO correction of AEOS in the I-band, and show that the magnitude of the `waffle mode' error in the AEOS reconstructor is considerably larger than expected. We suggest ways of reducing the magnitude of this error, and, in doing so, open up ways of understanding how wavefront reconstruction might handle bad actuators and partially-illuminated WFS subapertures.

  15. Two-photon Shack-Hartmann wavefront sensor.

    PubMed

    Xia, Fei; Sinefeld, David; Li, Bo; Xu, Chris

    2017-03-15

    We introduce a simple wavefront sensing scheme for aberration measurement of pulsed laser beams in near-infrared wavelengths (<2200  nm), where detectors are not always available or are very expensive. The method is based on two-photon absorption in a silicon detector array for longer wavelengths detection. We demonstrate the simplicity of such implementations with a commercially available Shack-Hartmann wavefront sensor and discuss the detection sensitivity of this method.

  16. Wavefront sensor-driven variable-geometry pupil for ground-based aperture synthesis imaging

    NASA Astrophysics Data System (ADS)

    Tyler, David W.

    2000-07-01

    I describe a variable-geometry pupil (VGP) to increase image resolution for ground-based near-IR and optical imaging. In this scheme, a curvature-type wavefront sensor provides an estimate of the wavefront curvature to the controller of a high-resolution spatial light modulator (SLM) or micro- electromechanical (MEM) mirror, positioned at an image of the telescope pupil. This optical element, the VGP, passes or reflects the incident beam only where the wavefront phase is sufficiently smooth, viz., where the curvature is sufficiently low. Using a computer simulation, I show the VGP can sharpen and smooth the long-exposure PSF and increase the OTF SNR for tilt-only and low-order AO systems, allowing higher resolution and more stable deconvolution with dimmer AO guidestars.

  17. Digital pyramid wavefront sensor with tunable modulation.

    PubMed

    Akondi, Vyas; Castillo, Sara; Vohnsen, Brian

    2013-07-29

    The pyramid wavefront sensor is known for its high sensitivity and dynamic range that can be tuned by mechanically altering its modulation amplitude. Here, a novel modulating digital scheme employing a reflecting phase only spatial light modulator is demonstrated. The use of the modulator allows an easy reconfigurable pyramid with digital control of the apex angle and modulation geometry without the need of any mechanically moving parts. Aberrations introduced by a 140-actuator deformable mirror were simultaneously sensed with the help of a commercial Hartmann-Shack wavefront sensor. The wavefronts reconstructed using the digital pyramid wavefront sensor matched very closely with those sensed by the Hartmann-Shack. It is noted that a tunable modulation is necessary to operate the wavefront sensor in the linear regime and to accurately sense aberrations. Through simulations, it is shown that the wavefront sensor can be extended to astronomical applications as well. This novel digital pyramid wavefront sensor has the potential to become an attractive option in both open and closed loop adaptive optics systems.

  18. James Webb Space Telescope optical simulation testbed III: first experimental results with linear-control alignment

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Lajoie, Charles-Philippe; Leboulleux, Lucie; N'Diaye, Mamadou; Pueyo, Laurent; Choquet, Élodie; Perrin, Marshall D.; Ygouf, Marie; Michau, Vincent; Bonnefois, Aurélie; Fusco, Thierry; Escolle, Clément; Ferrari, Marc; Hugot, Emmanuel; Soummer, Rémi

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science and Operations Center. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the full linear control alignment infrastructure developed for JOST, with an emphasis on multi-field wavefront sensing and control. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is experimentally tested. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by small misalignments of the three lenses, are tested and validated on simulations.

  19. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    PubMed

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  20. Measuring seeing with a Shack-Hartmann wave-front sensor during an active-optics experiment.

    PubMed

    Zhang, Yong; Yang, Dehua; Cui, Xiangqun

    2004-02-01

    We describe the measurement of atmospheric enclosure seeing along a 120-m light path by use of a Shack-Hartmann wave-front sensor (S-H WFS) for the first time to our knowledge in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) outdoor active-optics experiment system, based on the differential image motion method and a S-H WFS. Seeing estimates that were gained with the S-H WFS were analyzed and found to be in close agreement with the actual seeing conditions, the estimates of refractive-index structure constant, and the thin-mirror active optics results, which usually include the shape sensing precision and the active correction precision of the experimental system. Finally, some countermeasures against poor seeing conditions were considered and adopted.

  1. Grazing Incidence Wavefront Sensing and Verification of X-Ray Optics Performance

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Rohrbach, Scott; Zhang, William W.

    2011-01-01

    Evaluation of interferometrically measured mirror metrology data and characterization of a telescope wavefront can be powerful tools in understanding of image characteristics of an x-ray optical system. In the development of soft x-ray telescope for the International X-Ray Observatory (IXO), we have developed new approaches to support the telescope development process. Interferometrically measuring the optical components over all relevant spatial frequencies can be used to evaluate and predict the performance of an x-ray telescope. Typically, the mirrors are measured using a mount that minimizes the mount and gravity induced errors. In the assembly and mounting process the shape of the mirror segments can dramatically change. We have developed wavefront sensing techniques suitable for the x-ray optical components to aid us in the characterization and evaluation of these changes. Hartmann sensing of a telescope and its components is a simple method that can be used to evaluate low order mirror surface errors and alignment errors. Phase retrieval techniques can also be used to assess and estimate the low order axial errors of the primary and secondary mirror segments. In this paper we describe the mathematical foundation of our Hartmann and phase retrieval sensing techniques. We show how these techniques can be used in the evaluation and performance prediction process of x-ray telescopes.

  2. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.

    PubMed

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V

    2015-08-24

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.

  3. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics

    PubMed Central

    Vinas, Maria; Dorronsoro, Carlos; Cortes, Daniel; Pascual, Daniel; Marcos, Susana

    2015-01-01

    Longitudinal Chromatic Aberration (LCA) influences the optical quality of the eye. However, the reported LCA varies across studies, likely associated to differences in the measurement techniques. We present LCA measured in subjects using wavefront sensing, double-pass retinal images, and psychophysical methods with a custom-developed polychromatic Adaptive Optics system in a wide spectral range (450-950 nm), with control of subjects’ natural aberrations. LCA measured psychophysically was significantly higher than that from reflectometric techniques (1.51 D vs 1.00 D in the 488-700 nm range). Ours results indicate that the presence of natural aberrations is not the cause for the discrepancies across techniques. PMID:25798317

  4. Phase Adaptation and Correction by Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Tiziani, Hans J.

    2010-04-01

    Adaptive optical elements and systems for imaging or laser beam propagation are used for some time in particular in astronomy, where the image quality is degraded by atmospheric turbulence. In astronomical telescopes a deformable mirror is frequently used to compensate wavefront-errors due to deformations of the large mirror, vibrations as well as turbulence and hence to increase the image quality. In the last few years interesting elements like Spatial Light Modulators, SLM's, such as photorefractive crystals, liquid crystals and micro mirrors and membrane mirrors were introduced. The development of liquid crystals and micro mirrors was driven by data projectors as consumer products. They contain typically a matrix of individually addressable pixels of liquid crystals and flip mirrors respectively or more recently piston mirrors for special applications. Pixel sizes are in the order of a few microns and therefore also appropriate as active diffractive elements in digital holography or miniature masks. Although liquid crystals are mainly optimized for intensity modulation; they can be used for phase modulation. Adaptive optics is a technology for beam shaping and wavefront adaptation. The application of spatial light modulators for wavefront adaptation and correction and defect analysis as well as sensing will be discussed. Dynamic digital holograms are generated with liquid crystal devices (LCD) and used for wavefront correction as well as for beam shaping and phase manipulation, for instance. Furthermore, adaptive optics is very useful to extend the measuring range of wavefront sensors and for the wavefront adaptation in order to measure and compare the shape of high precision aspherical surfaces.

  5. Statistical virtual eye model based on wavefront aberration

    PubMed Central

    Wang, Jie-Mei; Liu, Chun-Ling; Luo, Yi-Ning; Liu, Yi-Guang; Hu, Bing-Jie

    2012-01-01

    Wavefront aberration affects the quality of retinal image directly. This paper reviews the representation and reconstruction of wavefront aberration, as well as the construction of virtual eye model based on Zernike polynomial coefficients. In addition, the promising prospect of virtual eye model is emphasized. PMID:23173112

  6. Projected Pupil Plane Pattern: an alternative LGS wavefront sensing technique

    NASA Astrophysics Data System (ADS)

    Yang, Huizhe; Bharmal, Nazim A.; Myers, Richard M.

    2018-07-01

    We have analysed and simulated a novel alternative Laser Guide Star (LGS) configuration termed Projected Pupil Plane Pattern (PPPP), including wavefront sensing and the reconstruction method. A key advantage of this method is that a collimated beam is launched through the telescope primary mirror, therefore the wavefront measurements do not suffer from the effects of focal anisoplanatism. A detailed simulation including the upward wave optics propagation, return path imaging, and linearized wavefront reconstruction has been presented. The conclusions that we draw from the simulation include the optimum pixel number across the pupilN = 32, the optimum number of Zernike modes (which is 78), propagation altitudes h1 = 10 km and h2 = 20 km for Rayleigh scattered returns, and the choice for the laser beam modulation (Gaussian beam). We also investigate the effects of turbulence profiles with multiple layers and find that it does not reduce PPPP performance as long as the turbulence layers are below h1. A signal-to-noise ratio analysis has been given when photon and read noise are introduced. Finally, we compare the PPPP performance with a conventional Shack-Hartmann Wavefront Sensor in an open loop, using Rayleigh LGS or sodium LGS, for 4-m and 10-m telescopes, respectively. For this purpose, we use a full Monte Carlo end-to-end AO simulation tool, Soapy. From these results, we confirm that PPPP does not suffer from focus anisoplanatism.

  7. Projected Pupil Plane Pattern: an alternative LGS wavefront sensing technique

    NASA Astrophysics Data System (ADS)

    Yang, Huizhe; Bharmal, Nazim A.; Myers, Richard M.

    2018-04-01

    We have analyzed and simulated a novel alternative LGS configuration termed Projected Pupil Plane Pattern (PPPP), including wavefront sensing and the reconstruction method. A key advantage of this method is that a collimated beam is launched through the telescope primary mirror, therefore the wavefront measurements do not suffer from the effects of focal anisoplanatism. A detailed simulation including the upward wave optics propagation, return path imaging and linearized wavefront reconstruction has been presented. The conclusions that we draw from the simulation include the optimum pixel number across the pupil N=32, the optimum number of Zernike modes (which is 78), propagation altitudes h1 = 10 km and h2 = 20 km for Rayleigh scattered returns, and the choice for the laser beam modulation (Gaussian beam). We also investigate the effects of turbulence profiles with multiple layers and find that it does not reduce PPPP performance as long as the turbulence layers are below h1. A signal-to-noise ratio (SNR) analysis has been given when photon and read noise are introduced. Finally, we compare the PPPP performance with a conventional Shack-Hartmann Wavefront Sensor (WFS) in open loop, using Rayleigh LGS or sodium LGS, for 4-m and 10-m telescopes respectively. For this purpose we use a full Monte-Carlo end-to-end AO simulation tool, Soapy. From these results we confirm that PPPP does not suffer from focus anisoplanatism.

  8. Non-invasive three-dimension control of light between turbid layers using a surface quasi-point light source for precorrection.

    PubMed

    Qiao, Mu; Liu, Honglin; Pang, Guanghui; Han, Shensheng

    2017-08-29

    Manipulating light non-invasively through inhomogeneous media is an attractive goal in many disciplines. Wavefront shaping and optical phase conjugation can focus light to a point. Transmission matrix method can control light on multiple output modes simultaneously. Here we report a non-invasive approach which enables three-dimension (3D) light control between two turbid layers. A digital optical phase conjugation mirror measured and conjugated the diffused wavefront, which originated from a quasi-point source on the front turbid layer and passed through the back turbid layer. And then, because of memory effect, the phase-conjugated wavefront could be used as a carrier wave to transport a pre-calculated wavefront through the back turbid layer. The pre-calculated wavefront could project a desired 3D light field inside the sample, which, in our experiments, consisted of two 220-grid ground glass plates spaced by a 20 mm distance. The controllable range of light, according to the memory effect, was calculated to be 80 mrad in solid angle and 16 mm on z-axis. Due to the 3D light control ability, our approach may find applications in photodynamic therapy and optogenetics. Besides, our approach can also be combined with ghost imaging or compressed sensing to achieve 3D imaging between turbid layers.

  9. Atmospherical wavefront phases using the plenoptic sensor (real data)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, L. F.; Montilla, I.; Lüke, J. P.; López, R.; Marichal-Hernández, J. G.; Trujillo-Sevilla, J.; Femenía, B.; López, M.; Fernández-Valdivia, J. J.; Puga, M.; Rosa, F.; Rodríguez-Ramos, J. M.

    2012-06-01

    Plenoptic cameras have been developed the last years as a passive method for 3d scanning, allowing focal stack capture from a single shot. But data recorded by this kind of sensors can also be used to extract the wavefront phases associated to the atmospheric turbulence in an astronomical observation. The terrestrial atmosphere degrades the telescope images due to the diffraction index changes associated to the turbulence. Na artificial Laser Guide Stars (Na-LGS, 90km high) must be used to obtain the reference wavefront phase and the Optical Transfer Function of the system, but they are affected by defocus because of the finite distance to the telescope. Using the telescope as a plenoptic camera allows us to correct the defocus and to recover the wavefront phase tomographically, taking advantage of the two principal characteristics of the plenoptic sensors at the same time: 3D scanning and wavefront sensing. Then, the plenoptic sensors can be studied and used as an alternative wavefront sensor for Adaptive Optics, particularly relevant when Extremely Large Telescopes projects are being undertaken. In this paper, we will present the first observational wavefront phases extracted from real astronomical observations, using punctual and extended objects, and we show that the restored wavefronts match the Kolmogorov atmospheric turbulence.

  10. Performance of Dispersed Fringe Sensor in the Presence of Segmented Mirror Aberrations: Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Basinger, Scott A.; Redding, David C.

    2006-01-01

    Dispersed Fringe Sensing (DFS) is an efficient and robust method for coarse phasing of a segmented primary mirror such as the James Webb Space Telescope (JWST). In this paper, modeling and simulations are used to study the effect of segmented mirror aberrations on the fringe image, DFS signals and DFS detection accuracy. The study has shown due to the pixilation spatial filter effect from DFS signal extraction the effect of wavefront error is reduced and DFS algorithm will be more robust against wavefront aberration by using multi-trace DFS approach. We also studied the JWST Dispersed Hartmann Sensor (DHS) performance in presence of wavefront aberrations caused by the gravity sag and we use the scaled gravity sag to explore the JWST DHS performance relationship with the level of the wavefront aberration. This also includes the effect from line-of-sight jitter.

  11. Wavefront Sensing Analysis of Grazing Incidence Optical Systems

    NASA Technical Reports Server (NTRS)

    Rohrbach, Scott; Saha, Timo

    2012-01-01

    Wavefront sensing is a process by which optical system errors are deduced from the aberrations in the image of an ideal source. The method has been used successfully in near-normal incidence, but not for grazing incidence systems. This innovation highlights the ability to examine out-of-focus images from grazing incidence telescopes (typically operating in the x-ray wavelengths, but integrated using optical wavelengths) and determine the lower-order deformations. This is important because as a metrology tool, this method would allow the integration of high angular resolution optics without the use of normal incidence interferometry, which requires direct access to the front surface of each mirror. Measuring the surface figure of mirror segments in a highly nested x-ray telescope mirror assembly is difficult due to the tight packing of elements and blockage of all but the innermost elements to normal incidence light. While this can be done on an individual basis in a metrology mount, once the element is installed and permanently bonded into the assembly, it is impossible to verify the figure of each element and ensure that the necessary imaging quality will be maintained. By examining on-axis images of an ideal point source, one can gauge the low-order figure errors of individual elements, even when integrated into an assembly. This technique is known as wavefront sensing (WFS). By shining collimated light down the optical axis of the telescope and looking at out-of-focus images, the blur due to low-order figure errors of individual elements can be seen, and the figure error necessary to produce that blur can be calculated. The method avoids the problem of requiring normal incidence access to the surface of each mirror segment. Mirror figure errors span a wide range of spatial frequencies, from the lowest-order bending to the highest order micro-roughness. While all of these can be measured in normal incidence, only the lowest-order contributors can be determined through this WFS technique.

  12. Comparison between non-modulation four-sided and two-sided pyramid wavefront sensor.

    PubMed

    Wang, Jianxin; Bai, Fuzhong; Ning, Yu; Huang, Linhai; Wang, Shengqian

    2010-12-20

    Based on the diffraction theory the paper analyzes non-modulation Pyramid wavefront sensor (PWFS, namely, four-sided pyramid) and two-sided pyramid wavefront sensor (TSPWFS), and expresses the detected signals as a function of the measured wavefront. The expressions of the detected signals show that non-modulation PWFS and TSPWFS hold the same properties of both slope and direct phase sensors. We compare both sensors working in slope and phase sensing by theory and numerical simulations. The results demonstrate that the performance of TSPWFS excels that of PWFS. Additionally, the influence of interference between adjacent pupils is discussed.

  13. Accelerated Adaptive MGS Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  14. Influence of wave-front sampling in adaptive optics retinal imaging

    PubMed Central

    Laslandes, Marie; Salas, Matthias; Hitzenberger, Christoph K.; Pircher, Michael

    2017-01-01

    A wide range of sampling densities of the wave-front has been used in retinal adaptive optics (AO) instruments, compared to the number of corrector elements. We developed a model in order to characterize the link between number of actuators, number of wave-front sampling points and AO correction performance. Based on available data from aberration measurements in the human eye, 1000 wave-fronts were generated for the simulations. The AO correction performance in the presence of these representative aberrations was simulated for different deformable mirror and Shack Hartmann wave-front sensor combinations. Predictions of the model were experimentally tested through in vivo measurements in 10 eyes including retinal imaging with an AO scanning laser ophthalmoscope. According to our study, a ratio between wavefront sampling points and actuator elements of 2 is sufficient to achieve high resolution in vivo images of photoreceptors. PMID:28271004

  15. Zonal wavefront sensing using a grating array printed on a polyester film

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Kumar, Suraj; Boruah, Bosanta R.

    2015-12-01

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.

  16. Phase Diversity Wavefront Sensing for Control of Space Based Adaptive Optics Systems

    DTIC Science & Technology

    2007-12-01

    given a cursory review below. 1. The Fast-Steering Mirror or “Tip- Tilt ” mirror is the simplest image corrector. It is capable of correcting for...movements either onboard the optical platform or the majority of atmospherics by applying 2-dimensional offsets in “tip and tilt .” It is used in the...SRDC 3 loop AO system discussed in Chapter V and identified in Figure 24 2. Piezoelectric Deformable Mirrors (PDM’s) use glass, silicon or fused

  17. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens

    PubMed Central

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169

  18. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy

    PubMed Central

    Cha, Jae Won; Ballesta, Jerome; So, Peter T.C.

    2010-01-01

    The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration. PMID:20799824

  19. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy.

    PubMed

    Cha, Jae Won; Ballesta, Jerome; So, Peter T C

    2010-01-01

    The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration.

  20. High-contrast imager for Complex Aperture Telescopes (HiCAT): APLC/shaped-pupil hybrid coronagraph designs

    NASA Astrophysics Data System (ADS)

    N'Diaye, Mamadou; Choquet, Elodie; Carlotti, Alexis; Pueyo, Laurent; Egron, Sylvain; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D.; Wallace, J. Kent; Long, Chris; Lajoie, Rachel; Lajoie, Charles-Philippe; Eldorado Riggs, A. J.; Zimmerman, Neil T.; Groff, Tyler Dean; Kasdin, N. Jeremy; Vanderbei, Robert J.; Mawet, Dimitri; Macintosh, Bruce; Shaklan, Stuart; Soummer, Remi

    2015-01-01

    HiCAT is a high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. Primary mirror segmentation, central obstruction and spiders in the pupil of an on-axis telescope introduces additional diffraction features in the point spread function, which make high-contrast imaging very challenging. The testbed alignment was completed in the summer of 2014, exceeding specifications with a total wavefront error of 12nm rms with a 18mm pupil. Two deformable mirrors are to be installed for wavefront control in the fall of 2014. In this communication, we report on the first testbed results using a classical Lyot coronagraph. We have developed novel coronagraph designs combining an Apodized Pupil Lyot Coronagraph (APLC) with shaped-pupil type optimizations. We present the results of these new APLC-type solutions with two-dimensional shaped-pupil apodizers for the HiCAT geometry. These solutions render the system quasi-insensitive to jitter and low-order aberrations, while improving the performance in terms of inner working angle, bandpass and contrast over a classical APLC.

  1. Closed Loop, DM Diversity-based, Wavefront Correction Algorithm for High Contrast Imaging Systems

    NASA Technical Reports Server (NTRS)

    Give'on, Amir; Belikov, Ruslan; Shaklan, Stuart; Kasdin, Jeremy

    2007-01-01

    High contrast imaging from space relies on coronagraphs to limit diffraction and a wavefront control systems to compensate for imperfections in both the telescope optics and the coronagraph. The extreme contrast required (up to 10(exp -10) for terrestrial planets) puts severe requirements on the wavefront control system, as the achievable contrast is limited by the quality of the wavefront. This paper presents a general closed loop correction algorithm for high contrast imaging coronagraphs by minimizing the energy in a predefined region in the image where terrestrial planets could be found. The estimation part of the algorithm reconstructs the complex field in the image plane using phase diversity caused by the deformable mirror. This method has been shown to achieve faster and better correction than classical speckle nulling.

  2. Accelerated wavefront determination technique for optical imaging through scattering medium

    NASA Astrophysics Data System (ADS)

    He, Hexiang; Wong, Kam Sing

    2016-03-01

    Wavefront shaping applied on scattering light is a promising optical imaging method in biological systems. Normally, optimized modulation can be obtained by a Liquid-Crystal Spatial Light Modulator (LC-SLM) and CCD hardware iteration. Here we introduce an improved method for this optimization process. The core of the proposed method is to firstly detect the disturbed wavefront, and then to calculate the modulation phase pattern by computer simulation. In particular, phase retrieval method together with phase conjugation is most effective. In this way, the LC-SLM based system can complete the wavefront optimization and imaging restoration within several seconds which is two orders of magnitude faster than the conventional technique. The experimental results show good imaging quality and may contribute to real time imaging recovery in scattering medium.

  3. Report to the Congress on the Strategic Defense Initiative, 1991

    DTIC Science & Technology

    1991-05-01

    ultraviolet, and infrared radiation-hardened charge-coupled device images , step-stare sensor signal processing algorithms , and processor...Demonstration Experiment (LODE) resolved central issues associated with wavefront sensing and control and the 4-meter I Large Advanced Mirror Program (LAMP...21 Figure 4-16 Firepond CO 2 Imaging Radar Demonstration .......................... 4-22 Figure 4-17 IBSS and the Shuttle

  4. Modelling MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for both wavefront sensing and correction. In this scheme, the DM is used to introduce known aberrations (speckles in the focal plane), which interfere with existing speckles. By monitoring the interference between the pre-existing speckles and the speckles added deliberately by the DM, it is possible to reconstruct the complex amplitude (amplitude and phase) of the focal plane speckles. Thus, the DM is used for wavefront sensing, in a scheme akin to phase diversity. For SCExAO and other HCI systems using phase diversity, the wavefront compensation is a mix of closed-loop and open-loop control of the DM. The successful implementation of MEMS DMs open-loop control relies on a thorough modelling of the DM response to the control system commands. The work presented in this thesis, motivated by the need to provide accurate DM control for the wavefront control system of SCExAO, was centred around the development of MEMS DM models. This dissertation reports the characterization of MEMS DMs and the development of two efficient modelling approaches. The open-loop performance of both approaches has been investigated. The model providing the best result has been implemented within the SCExAO wavefront control software. Within SCExAO, the model was used to command the DM to create focal plane speckles. The work is now focused on using the model within a full speckle nulling process and on increasing the execution speed to make the model suitable for on-sky operation.

  5. Scene-based Shack-Hartmann wavefront sensor for light-sheet microscopy

    NASA Astrophysics Data System (ADS)

    Lawrence, Keelan; Liu, Yang; Dale, Savannah; Ball, Rebecca; VanLeuven, Ariel J.; Sornborger, Andrew; Lauderdale, James D.; Kner, Peter

    2018-02-01

    Light-sheet microscopy is an ideal imaging modality for long-term live imaging in model organisms. However, significant optical aberrations can be present when imaging into an organism that is hundreds of microns or greater in size. To measure and correct optical aberrations, an adaptive optics system must be incorporated into the microscope. Many biological samples lack point sources that can be used as guide stars with conventional Shack-Hartmann wavefront sensors. We have developed a scene-based Shack-Hartmann wavefront sensor for measuring the optical aberrations in a light-sheet microscopy system that does not require a point-source and can measure the aberrations for different parts of the image. The sensor has 280 lenslets inside the pupil, creates an image from each lenslet with a 500 micron field of view and a resolution of 8 microns, and has a resolution for the wavefront gradient of 75 milliradians per lenslet. We demonstrate the system on both fluorescent bead samples and zebrafish embryos.

  6. Comparative theoretical and experimental study of a Shack-Hartmann and a phase diversity sensor, for high-precision wavefront sensing dedicated to space active optics

    NASA Astrophysics Data System (ADS)

    Montmerle Bonnefois, A.; Fusco, T.; Meimon, S.; Michau, V.; Mugnier, L.; Sauvage, J.-F.; Engel, C.; Escolle, C.; Ferrari, M.; Hugot, E.; Liotard, A.; Bernot, M.; Carlavan, M.; Falzon, F.; Bret-Dibat, T.; Laubier, D.

    2017-11-01

    Earth-imaging or Universe Science satellites are always in need of higher spatial resolutions, in order to discern finer and finer details in images. This means that every new generation of satellites must have a larger main mirror than the previous one, because of the diffraction. Since it allows the use of larger mirrors, active optics is presently studied for the next generation of satellites. To measure the aberrations of such an active telescope, the Shack-Hartmann (SH), and the phase-diversity (PD) are the two wavefront sensors (WFS) considered preferentially because they are able to work with an extended source like the Earth's surface, as well as point sources like stars. The RASCASSE project was commissioned by the French spatial agency (CNES) to study the SH and PD sensors for high-performance wavefront sensing. It involved ONERA and Thales Alenia Space (TAS), and LAM. Papers by TAS and LAM on the same project are available in this conference, too [1,2]. The purpose of our work at ONERA was to explore what the best performance both wavefront sensors can achieve in a space optics context. So we first performed a theoretical study in order to identify the main sources of errors and quantify them - then we validated those results experimentally. The outline of this paper follows this approach: we first discuss phase diversity theoretical results, then Shack-Hartmann's, then experimental results - to finally conclude on each sensor's performance, and compare their weak and strong points.

  7. 110 °C range athermalization of wavefront coding infrared imaging systems

    NASA Astrophysics Data System (ADS)

    Feng, Bin; Shi, Zelin; Chang, Zheng; Liu, Haizheng; Zhao, Yaohong

    2017-09-01

    110 °C range athermalization is significant but difficult for designing infrared imaging systems. Our wavefront coding athermalized infrared imaging system adopts an optical phase mask with less manufacturing errors and a decoding method based on shrinkage function. The qualitative experiments prove that our wavefront coding athermalized infrared imaging system has three prominent merits: (1) working well over a temperature range of 110 °C; (2) extending the focal depth up to 15.2 times; (3) achieving a decoded image being approximate to its corresponding in-focus infrared image, with a mean structural similarity index (MSSIM) value greater than 0.85.

  8. Zonal wavefront sensing with enhanced spatial resolution.

    PubMed

    Pathak, Biswajit; Boruah, Bosanta R

    2016-12-01

    In this Letter, we introduce a scheme to enhance the spatial resolution of a zonal wavefront sensor. The zonal wavefront sensor comprises an array of binary gratings implemented by a ferroelectric spatial light modulator (FLCSLM) followed by a lens, in lieu of the array of lenses in the Shack-Hartmann wavefront sensor. We show that the fast response of the FLCSLM device facilitates quick display of several laterally shifted binary grating patterns, and the programmability of the device enables simultaneous capturing of each focal spot array. This eventually leads to a wavefront estimation with an enhanced spatial resolution without much sacrifice on the sensor frame rate, thus making the scheme suitable for high spatial resolution measurement of transient wavefronts. We present experimental and numerical simulation results to demonstrate the importance of the proposed wavefront sensing scheme.

  9. Zonal wavefront sensing using a grating array printed on a polyester film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Biswajit; Boruah, Bosanta R., E-mail: brboruah@iitg.ernet.in; Kumar, Suraj

    2015-12-15

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing framemore » rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.« less

  10. Systems and Methods for Automated Vessel Navigation Using Sea State Prediction

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance L. (Inventor); Howard, Andrew B. (Inventor); Reinhart, Rene Felix (Inventor); Aghazarian, Hrand (Inventor); Rankin, Arturo (Inventor)

    2017-01-01

    Systems and methods for sea state prediction and autonomous navigation in accordance with embodiments of the invention are disclosed. One embodiment of the invention includes a method of predicting a future sea state including generating a sequence of at least two 3D images of a sea surface using at least two image sensors, detecting peaks and troughs in the 3D images using a processor, identifying at least one wavefront in each 3D image based upon the detected peaks and troughs using the processor, characterizing at least one propagating wave based upon the propagation of wavefronts detected in the sequence of 3D images using the processor, and predicting a future sea state using at least one propagating wave characterizing the propagation of wavefronts in the sequence of 3D images using the processor. Another embodiment includes a method of autonomous vessel navigation based upon a predicted sea state and target location.

  11. Systems and Methods for Automated Vessel Navigation Using Sea State Prediction

    NASA Technical Reports Server (NTRS)

    Aghazarian, Hrand (Inventor); Reinhart, Rene Felix (Inventor); Huntsberger, Terrance L. (Inventor); Rankin, Arturo (Inventor); Howard, Andrew B. (Inventor)

    2015-01-01

    Systems and methods for sea state prediction and autonomous navigation in accordance with embodiments of the invention are disclosed. One embodiment of the invention includes a method of predicting a future sea state including generating a sequence of at least two 3D images of a sea surface using at least two image sensors, detecting peaks and troughs in the 3D images using a processor, identifying at least one wavefront in each 3D image based upon the detected peaks and troughs using the processor, characterizing at least one propagating wave based upon the propagation of wavefronts detected in the sequence of 3D images using the processor, and predicting a future sea state using at least one propagating wave characterizing the propagation of wavefronts in the sequence of 3D images using the processor. Another embodiment includes a method of autonomous vessel navigation based upon a predicted sea state and target location.

  12. Adaptive optics image restoration algorithm based on wavefront reconstruction and adaptive total variation method

    NASA Astrophysics Data System (ADS)

    Li, Dongming; Zhang, Lijuan; Wang, Ting; Liu, Huan; Yang, Jinhua; Chen, Guifen

    2016-11-01

    To improve the adaptive optics (AO) image's quality, we study the AO image restoration algorithm based on wavefront reconstruction technology and adaptive total variation (TV) method in this paper. Firstly, the wavefront reconstruction using Zernike polynomial is used for initial estimated for the point spread function (PSF). Then, we develop our proposed iterative solutions for AO images restoration, addressing the joint deconvolution issue. The image restoration experiments are performed to verify the image restoration effect of our proposed algorithm. The experimental results show that, compared with the RL-IBD algorithm and Wiener-IBD algorithm, we can see that GMG measures (for real AO image) from our algorithm are increased by 36.92%, and 27.44% respectively, and the computation time are decreased by 7.2%, and 3.4% respectively, and its estimation accuracy is significantly improved.

  13. Development and recent results from the Subaru coronagraphic extreme adaptive optics system

    NASA Astrophysics Data System (ADS)

    Jovanovic, N.; Guyon, O.; Martinache, F.; Clergeon, C.; Singh, G.; Kudo, T.; Newman, K.; Kuhn, J.; Serabyn, E.; Norris, B.; Tuthill, P.; Stewart, P.; Huby, E.; Perrin, G.; Lacour, S.; Vievard, S.; Murakami, N.; Fumika, O.; Minowa, Y.; Hayano, Y.; White, J.; Lai, O.; Marchis, F.; Duchene, G.; Kotani, T.; Woillez, J.

    2014-07-01

    The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is one of a handful of extreme adaptive optics systems set to come online in 2014. The extreme adaptive optics correction is realized by a combination of precise wavefront sensing via a non-modulated pyramid wavefront sensor and a 2000 element deformable mirror. This system has recently begun on-sky commissioning and was operated in closed loop for several minutes at a time with a loop speed of 800 Hz, on ~150 modes. Further suppression of quasi-static speckles is possible via a process called "speckle nulling" which can create a dark hole in a portion of the frame allowing for an enhancement in contrast, and has been successfully tested on-sky. In addition to the wavefront correction there are a suite of coronagraphs on board to null out the host star which include the phase induced amplitude apodization (PIAA), the vector vortex, 8 octant phase mask, 4 quadrant phase mask and shaped pupil versions which operate in the NIR (y-K bands). The PIAA and vector vortex will allow for high contrast imaging down to an angular separation of 1 λ/D to be reached; a factor of 3 closer in than other extreme AO systems. Making use of the left over visible light not used by the wavefront sensor is VAMPIRES and FIRST. These modules are based on aperture masking interferometry and allow for sub-diffraction limited imaging with moderate contrasts of ~100-1000:1. Both modules have undergone initial testing on-sky and are set to be fully commissioned by the end of 2014.

  14. Wavefront sensing and adaptive control in phased array of fiber collimators

    NASA Astrophysics Data System (ADS)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.

    2011-03-01

    A new wavefront control approach for mitigation of atmospheric turbulence-induced wavefront phase aberrations in coherent fiber-array-based laser beam projection systems is introduced and analyzed. This approach is based on integration of wavefront sensing capabilities directly into the fiber-array transmitter aperture. In the coherent fiber array considered, we assume that each fiber collimator (subaperture) of the array is capable of precompensation of local (onsubaperture) wavefront phase tip and tilt aberrations using controllable rapid displacement of the tip of the delivery fiber at the collimating lens focal plane. In the technique proposed, this tip and tilt phase aberration control is based on maximization of the optical power received through the same fiber collimator using the stochastic parallel gradient descent (SPGD) technique. The coordinates of the fiber tip after the local tip and tilt aberrations are mitigated correspond to the coordinates of the focal-spot centroid of the optical wave backscattered off the target. Similar to a conventional Shack-Hartmann wavefront sensor, phase function over the entire fiber-array aperture can then be retrieved using the coordinates obtained. The piston phases that are required for coherent combining (phase locking) of the outgoing beams at the target plane can be further calculated from the reconstructed wavefront phase. Results of analysis and numerical simulations are presented. Performance of adaptive precompensation of phase aberrations in this laser beam projection system type is compared for various system configurations characterized by the number of fiber collimators and atmospheric turbulence conditions. The wavefront control concept presented can be effectively applied for long-range laser beam projection scenarios for which the time delay related with the double-pass laser beam propagation to the target and back is compared or even exceeds the characteristic time of the atmospheric turbulence change - scenarios when conventional target-in-the-loop phase-locking techniques fail.

  15. Flight path-driven mitigation of wavefront curvature effects in SAR images

    DOEpatents

    Doerry, Armin W [Albuquerque, NM

    2009-06-23

    A wavefront curvature effect associated with a complex image produced by a synthetic aperture radar (SAR) can be mitigated based on which of a plurality of possible flight paths is taken by the SAR when capturing the image. The mitigation can be performed differently for different ones of the flight paths.

  16. Performance analysis of coherent free space optical communications with sequential pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Yao, Kainan; Chen, Lu; Huang, Danian; Cao, Jingtai; Gu, Haijun

    2018-03-01

    Based-on the previous study on the theory of the sequential pyramid wavefront sensor (SPWFS), in this paper, the SPWFS is first applied to the coherent free space optical communications (FSOC) with more flexible spatial resolution and higher sensitivity than the Shack-Hartmann wavefront sensor, and with higher uniformity of intensity distribution and much simpler than the pyramid wavefront sensor. Then, the mixing efficiency (ME) and the bit error rate (BER) of the coherent FSOC are analyzed during the aberrations correction through numerical simulation with binary phase shift keying (BPSK) modulation. Finally, an experimental AO system based-on SPWFS is setup, and the experimental data is used to analyze the ME and BER of homodyne detection with BPSK modulation. The results show that the AO system based-on SPWFS can increase ME and decrease BER effectively. The conclusions of this paper provide a new method of wavefront sensing for designing the AO system for a coherent FSOC system.

  17. Wavefront error sensing for LDR

    NASA Technical Reports Server (NTRS)

    Tubbs, Eldred F.; Glavich, T. A.

    1988-01-01

    Wavefront sensing is a significant aspect of the LDR control problem and requires attention at an early stage of the control system definition and design. A combination of a Hartmann test for wavefront slope measurement and an interference test for piston errors of the segments was examined and is presented as a point of departure for further discussion. The assumption is made that the wavefront sensor will be used for initial alignment and periodic alignment checks but that it will not be used during scientific observations. The Hartmann test and the interferometric test are briefly examined.

  18. James Webb Space Telescope optical simulation testbed IV: linear control alignment of the primary segmented mirror

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Soummer, Rémi; Lajoie, Charles-Philippe; Bonnefois, Aurélie; Long, Joseph; Michau, Vincent; Choquet, Elodie; Ferrari, Marc; Leboulleux, Lucie; Levecq, Olivier; Mazoyer, Johan; N'Diaye, Mamadou; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Sivaramakrishnan, Anand

    2017-09-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, such as JWST. With the JWST Science and Operations Center co-located at STScI, JOST was developed to provide both a platform for staff training and to test alternate wavefront sensing and control strategies for independent validation or future improvements beyond the baseline operations. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the most recent experimental results for the segmented mirror alignment. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is tested on simulation and experimentally. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by misalignment of the secondary lens and the segmented mirror, are tested and validated both on simulations and experimentally. In this proceeding, we present the performance of the full active optic control loop in presence of perturbations on the segmented mirror, and we detail the quality of the alignment correction.

  19. Wavefront division digital holography

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhui; Cao, Liangcai; Li, Rujia; Zhang, Hua; Zhang, Hao; Jiang, Qiang; Jin, Guofan

    2018-05-01

    Digital holography (DH), mostly Mach-Zehnder configuration based, belongs to non-common path amplitude splitting interference imaging whose stability and fringe contrast are environmental sensitive. This paper presents a wavefront division DH configuration with both high stability and high-contrast fringes benefitting from quasi common path wavefront-splitting interference. In our proposal, two spherical waves with similar curvature coming from the same wavefront are used, which makes full use of the physical sampling capacity of the detectors. The interference fringe spacing can be adjusted flexibly for both in-line and off-axis mode due to the independent modulation to these two waves. Only a few optical elements, including the mirror-beam splitter interference component, are used without strict alignments, which makes it robust and easy-to-implement. The proposed wavefront division DH promotes interference imaging physics into the practical and miniaturized a step forward. The feasibility of this method is proved by the imaging of a resolution target and a water flea.

  20. Two-level image authentication by two-step phase-shifting interferometry and compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-01-01

    A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.

  1. Response analysis of holography-based modal wavefront sensor.

    PubMed

    Dong, Shihao; Haist, Tobias; Osten, Wolfgang; Ruppel, Thomas; Sawodny, Oliver

    2012-03-20

    The crosstalk problem of holography-based modal wavefront sensing (HMWS) becomes more severe with increasing aberration. In this paper, crosstalk effects on the sensor response are analyzed statistically for typical aberrations due to atmospheric turbulence. For specific turbulence strength, we optimized the sensor by adjusting the detector radius and the encoded phase bias for each Zernike mode. Calibrated response curves of low-order Zernike modes were further utilized to improve the sensor accuracy. The simulation results validated our strategy. The number of iterations for obtaining a residual RMS wavefront error of 0.1λ is reduced from 18 to 3. © 2012 Optical Society of America

  2. Wavefront control with a spatial light modulator containing dual-frequency liquid crystal

    NASA Astrophysics Data System (ADS)

    Gu, Dong-Feng; Winker, Bruce; Wen, Bing; Taber, Don; Brackley, Andrew; Wirth, Allan; Albanese, Marc; Landers, Frank

    2004-10-01

    A versatile, scalable wavefront control approach based upon proven liquid crystal (LC) spatial light modulator (SLM) technology was extended for potential use in high-energy near-infrared laser applications. The reflective LC SLM module demonstrated has a two-inch diameter active aperture with 812 pixels. Using an ultra-low absorption transparent conductor in the LC SLM, a high laser damage threshold was demonstrated. Novel dual frequency liquid crystal materials and addressing schemes were implemented to achieve fast switching speed (<1ms at 1.31 microns). Combining this LCSLM with a novel wavefront sensing method, a closed loop wavefront controller is being demonstrated. Compared to conventional deformable mirrors, this non-mechanical wavefront control approach offers substantial improvements in speed (bandwidth), resolution, power consumption and system weight/volume.

  3. Sandia technology & entrepreneurs improve Lasik

    ScienceCinema

    Neal, Dan; Turner, Tim

    2018-05-11

    Former Sandian Dan Neal started his company, WaveFront Sciences, based on wavefront sensing metrology technologies licensed from Sandia National Laboratories and by taking advantage of its Entrepreneurial Separation to Transfer Technology (ESTT) program. Abbott Medical Optics since acquired WaveFront and estimates that one million patients have improved the quality of their vision thanks to its products. ESTT is a valuable tool which allows Sandia to transfer technology to the private sector and Sandia employees to leave the Labs in order to start up new technology companies or help expand existing companies.

  4. Sandia technology & entrepreneurs improve Lasik

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, Dan; Turner, Tim

    2013-11-21

    Former Sandian Dan Neal started his company, WaveFront Sciences, based on wavefront sensing metrology technologies licensed from Sandia National Laboratories and by taking advantage of its Entrepreneurial Separation to Transfer Technology (ESTT) program. Abbott Medical Optics since acquired WaveFront and estimates that one million patients have improved the quality of their vision thanks to its products. ESTT is a valuable tool which allows Sandia to transfer technology to the private sector and Sandia employees to leave the Labs in order to start up new technology companies or help expand existing companies.

  5. Phase and amplitude wave front sensing and reconstruction with a modified plenoptic camera

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Nelson, William; Davis, Christopher C.

    2014-10-01

    A plenoptic camera is a camera that can retrieve the direction and intensity distribution of light rays collected by the camera and allows for multiple reconstruction functions such as: refocusing at a different depth, and for 3D microscopy. Its principle is to add a micro-lens array to a traditional high-resolution camera to form a semi-camera array that preserves redundant intensity distributions of the light field and facilitates back-tracing of rays through geometric knowledge of its optical components. Though designed to process incoherent images, we found that the plenoptic camera shows high potential in solving coherent illumination cases such as sensing both the amplitude and phase information of a distorted laser beam. Based on our earlier introduction of a prototype modified plenoptic camera, we have developed the complete algorithm to reconstruct the wavefront of the incident light field. In this paper the algorithm and experimental results will be demonstrated, and an improved version of this modified plenoptic camera will be discussed. As a result, our modified plenoptic camera can serve as an advanced wavefront sensor compared with traditional Shack- Hartmann sensors in handling complicated cases such as coherent illumination in strong turbulence where interference and discontinuity of wavefronts is common. Especially in wave propagation through atmospheric turbulence, this camera should provide a much more precise description of the light field, which would guide systems in adaptive optics to make intelligent analysis and corrections.

  6. Control code for laboratory adaptive optics teaching system

    NASA Astrophysics Data System (ADS)

    Jin, Moonseob; Luder, Ryan; Sanchez, Lucas; Hart, Michael

    2017-09-01

    By sensing and compensating wavefront aberration, adaptive optics (AO) systems have proven themselves crucial in large astronomical telescopes, retinal imaging, and holographic coherent imaging. Commercial AO systems for laboratory use are now available in the market. One such is the ThorLabs AO kit built around a Boston Micromachines deformable mirror. However, there are limitations in applying these systems to research and pedagogical projects since the software is written with limited flexibility. In this paper, we describe a MATLAB-based software suite to interface with the ThorLabs AO kit by using the MATLAB Engine API and Visual Studio. The software is designed to offer complete access to the wavefront sensor data, through the various levels of processing, to the command signals to the deformable mirror and fast steering mirror. In this way, through a MATLAB GUI, an operator can experiment with every aspect of the AO system's functioning. This is particularly valuable for tests of new control algorithms as well as to support student engagement in an academic environment. We plan to make the code freely available to the community.

  7. Novel asymmetric cryptosystem based on distorted wavefront beam illumination and double-random phase encoding.

    PubMed

    Yu, Honghao; Chang, Jun; Liu, Xin; Wu, Chuhan; He, Yifan; Zhang, Yongjian

    2017-04-17

    Herein, we propose a new security enhancing method that employs wavefront aberrations as optical keys to improve the resistance capabilities of conventional double-random phase encoding (DRPE) optical cryptosystems. This study has two main innovations. First, we exploit a special beam-expander afocal-reflecting to produce different types of aberrations, and the wavefront distortion can be altered by changing the shape of the afocal-reflecting system using a deformable mirror. Then, we reconstruct the wavefront aberrations via the surface fitting of Zernike polynomials and use the reconstructed aberrations as novel asymmetric vector keys. The ideal wavefront and the distorted wavefront obtained by wavefront sensing can be regarded as a pair of private and public keys. The wavelength and focal length of the Fourier lens can be used as additional keys to increase the number of degrees of freedom. This novel cryptosystem can enhance the resistance to various attacks aimed at DRPE systems. Finally, we conduct ZEMAX and MATLAB simulations to demonstrate the superiority of this method.

  8. Iterative Transform Phase Diversity: An Image-Based Object and Wavefront Recovery

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey

    2012-01-01

    The Iterative Transform Phase Diversity algorithm is designed to solve the problem of recovering the wavefront in the exit pupil of an optical system and the object being imaged. This algorithm builds upon the robust convergence capability of Variable Sampling Mapping (VSM), in combination with the known success of various deconvolution algorithms. VSM is an alternative method for enforcing the amplitude constraints of a Misell-Gerchberg-Saxton (MGS) algorithm. When provided the object and additional optical parameters, VSM can accurately recover the exit pupil wavefront. By combining VSM and deconvolution, one is able to simultaneously recover the wavefront and the object.

  9. Algorithm for Wavefront Sensing Using an Extended Scene

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Green, Joseph; Ohara, Catherine

    2008-01-01

    A recently conceived algorithm for processing image data acquired by a Shack-Hartmann (SH) wavefront sensor is not subject to the restriction, previously applicable in SH wavefront sensing, that the image be formed from a distant star or other equivalent of a point light source. That is to say, the image could be of an extended scene. (One still has the option of using a point source.) The algorithm can be implemented in commercially available software on ordinary computers. The steps of the algorithm are the following: 1. Suppose that the image comprises M sub-images. Determine the x,y Cartesian coordinates of the centers of these sub-images and store them in a 2xM matrix. 2. Within each sub-image, choose an NxN-pixel cell centered at the coordinates determined in step 1. For the ith sub-image, let this cell be denoted as si(x,y). Let the cell of another subimage (preferably near the center of the whole extended-scene image) be designated a reference cell, denoted r(x,y). 3. Calculate the fast Fourier transforms of the sub-sub-images in the central NxN portions (where N < N and both are preferably powers of 2) of r(x,y) and si(x,y). 4. Multiply the two transforms to obtain a cross-correlation function Ci(u,v), in the Fourier domain. Then let the phase of Ci(u, v) constitute a phase function, phi(u,v). 5. Fit u and v slopes to phi (u,v) over a small u,v subdomain. 6. Compute the fast Fourier transform, Si(u,v) of the full NxN cell si(x,y). Multiply this transform by the u and phase slopes obtained in step 4. Then compute the inverse fast Fourier transform of the product. 7. Repeat steps 4 through 6 in an iteration loop, cumulating the u and slopes, until a maximum iteration number is reached or the change in image shift becomes smaller than a predetermined tolerance. 8. Repeat steps 4 through 7 for the cells of all other sub-images.

  10. End-To-End performance test of the LINC-NIRVANA Wavefront-Sensor system.

    NASA Astrophysics Data System (ADS)

    Berwein, Juergen; Bertram, Thomas; Conrad, Al; Briegel, Florian; Kittmann, Frank; Zhang, Xiangyu; Mohr, Lars

    2011-09-01

    LINC-NIRVANA is an imaging Fizeau interferometer, for use in near infrared wavelengths, being built for the Large Binocular Telescope. Multi-conjugate adaptive optics (MCAO) increases the sky coverage and the field of view over which diffraction limited images can be obtained. For its MCAO implementation, Linc-Nirvana utilizes four total wavefront sensors; each of the two beams is corrected by both a ground-layer wavefront sensor (GWS) and a high-layer wavefront sensor (HWS). The GWS controls the adaptive secondary deformable mirror (DM), which is based on an DSP slope computing unit. Whereas the HWS controls an internal DM via computations provided by an off-the-shelf multi-core Linux system. Using wavefront sensor data collected from a prior lab experiment, we have shown via simulation that the Linux based system is sufficient to operate at 1kHz, with jitter well below the needs of the final system. Based on that setup we tested the end-to-end performance and latency through all parts of the system which includes the camera, the wavefront controller, and the deformable mirror. We will present our loop control structure and the results of those performance tests.

  11. Wavefront Compensation Segmented Mirror Sensing and Control

    NASA Technical Reports Server (NTRS)

    Redding, David C.; Lou, John Z.; Kissil, Andrew; Bradford, Charles M.; Woody, David; Padin, Stephen

    2012-01-01

    The primary mirror of very large submillimeter-wave telescopes will necessarily be segmented into many separate mirror panels. These panels must be continuously co-phased to keep the telescope wavefront error less than a small fraction of a wavelength, to ten microns RMS (root mean square) or less. This performance must be maintained continuously across the full aperture of the telescope, in all pointing conditions, and in a variable thermal environment. A wavefront compensation segmented mirror sensing and control system, consisting of optical edge sensors, Wavefront Compensation Estimator/Controller Soft ware, and segment position actuators is proposed. Optical edge sensors are placed two per each segment-to-segment edge to continuously measure changes in segment state. Segment position actuators (three per segment) are used to move the panels. A computer control system uses the edge sensor measurements to estimate the state of all of the segments and to predict the wavefront error; segment actuator commands are computed that minimize the wavefront error. Translational or rotational motions of one segment relative to the other cause lateral displacement of the light beam, which is measured by the imaging sensor. For high accuracy, the collimator uses a shaped mask, such as one or more slits, so that the light beam forms a pattern on the sensor that permits sensing accuracy of better than 0.1 micron in two axes: in the z or local surface normal direction, and in the y direction parallel to the mirror surface and perpendicular to the beam direction. Using a co-aligned pair of sensors, with the location of the detector and collimated light source interchanged, four degrees of freedom can be sensed: transverse x and y displacements, as well as two bending angles (pitch and yaw). In this approach, each optical edge sensor head has a collimator and an imager, placing one sensor head on each side of a segment gap, with two parallel light beams crossing the gap. Two sets of optical edge sensors are used per segment-to-segment edge, separated by a finite distance along the segment edge, for four optical heads, each with an imager and a collimator. By orienting the beam direction of one edge sensor pair to be +45 away from the segment edge direction, and the other sensor pair to be oriented -45 away from the segment edge direction, all six degrees of freedom of relative motion between the segments can be measured with some redundancy. The software resides in a computer that receives each of the optical edge sensor signals, as well as telescope pointing commands. It feeds back the edge sensor signals to keep the primary mirror figure within specification. It uses a feed-forward control to compensate for global effects such as decollimation of the primary and secondary mirrors due to gravity sag as the telescope pointing changes to track science objects. Three segment position actuators will be provided per segment to enable controlled motions in the piston, tip, and tilt degrees of freedom. These actuators are driven by the software, providing the optical changes needed to keep the telescope phased.

  12. Development of a pyramidal wavefront sensor test-bench at INO

    NASA Astrophysics Data System (ADS)

    Turbide, Simon; Wang, Min; Gauvin, Jonny; Martin, Olivier; Savard, Maxime; Bourqui, Pascal; Veran, Jean-Pierre; Deschenes, William; Anctil, Genevieve; Chateauneuf, François

    2013-12-01

    The key technical element of the adaptive optics in astronomy is the wavefront sensing (WFS). One of the advantages of the pyramid wavefront sensor (P-WFS) over the widely used Shack-Hartmann wavefront sensor seems to be the increased sensitivity in closed-loop applications. A high-sensitivity and large dynamic-range WFS, such as P-WFS technology, still needs to be further investigated for proper justification in future Extremely Large Telescopes application. At INO, we have recently carried out the optical design, testing and performance evaluation of a P-WFS bench setup. The optical design of the bench setup mainly consists of the super-LED fiber source, source collimator, spatial light modulator (SLM), relay lenses, tip-tilt mirror, Fourier-transforming lens, and a four-faceted glass pyramid with a large vertex angle as well as pupil re-imaged optics. The phase-only SLM has been introduced in the bench setup to generate atmospheric turbulence with a maximum phase shift of more than 2π at each pixel (256 grey levels). Like a modified Foucault knife-edge test, the refractive pyramid element is used to produce four images of the entrance pupil on a CCD camera. The Fourier-transforming lens, which is used before the pyramid prism, is designed for telecentric output to allow dynamic modulation (rotation of the beam around the pyramid-prism center) from a tip-tilt mirror. Furthermore, a P-WFS diffraction-based model has been developed. This model includes most of the system limitations such as the SLM discrete voltage steps and the CCD pixel pitch. The pyramid effects (edges and tip) are considered as well. The modal wavefront reconstruction algorithm relies on the construction of an interaction matrix (one for each modulation's amplitude). Each column of the interaction matrix represents the combination of the four pupil images for a given wavefront aberration. The nice agreement between the data and the model suggest that the limitation of the system is not the P-WFS itself, but rather its environment such as source intensity fluctuation and vibration of the optical bench. Finally, the phase-reconstruction errors of the P-WFS have been compared to those of a Shack-Hartmann, showing the regions of interest of the former system. The bench setup will be focusing on the astronomy application as well as commercial applications, such as bio-medical application etc.

  13. An Improved Wavefront Control Algorithm for Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Basinger, Scott A.; Redding, David C.

    2008-01-01

    Wavefront sensing and control is required throughout the mission lifecycle of large space telescopes such as James Webb Space Telescope (JWST). When an optic of such a telescope is controlled with both surface-deforming and rigid-body actuators, the sensitivity-matrix obtained from the exit pupil wavefront vector divided by the corresponding actuator command value can sometimes become singular due to difference in actuator types and in actuator command values. In this paper, we propose a simple approach for preventing a sensitivity-matrix from singularity. We also introduce a new "minimum-wavefront and optimal control compensator". It uses an optimal control gain matrix obtained by feeding back the actuator commands along with the measured or estimated wavefront phase information to the estimator, thus eliminating the actuator modes that are not observable in the wavefront sensing process.

  14. Sub-pixel spatial resolution wavefront phase imaging

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Mooney, James T. (Inventor)

    2012-01-01

    A phase imaging method for an optical wavefront acquires a plurality of phase images of the optical wavefront using a phase imager. Each phase image is unique and is shifted with respect to another of the phase images by a known/controlled amount that is less than the size of the phase imager's pixels. The phase images are then combined to generate a single high-spatial resolution phase image of the optical wavefront.

  15. Wavefront error sensing

    NASA Technical Reports Server (NTRS)

    Tubbs, Eldred F.

    1986-01-01

    A two-step approach to wavefront sensing for the Large Deployable Reflector (LDR) was examined as part of an effort to define wavefront-sensing requirements and to determine particular areas for more detailed study. A Hartmann test for coarse alignment, particularly segment tilt, seems feasible if LDR can operate at 5 microns or less. The direct measurement of the point spread function in the diffraction limited region may be a way to determine piston error, but this can only be answered by a detailed software model of the optical system. The question of suitable astronomical sources for either test must also be addressed.

  16. Study of the performance of image restoration under different wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Wang, Xinqiu; Hu, Xinqi

    2016-10-01

    Image restoration is an effective way to improve the quality of images degraded by wave-front aberrations. If the wave-front aberration is too large, the performance of the image restoration will not be good. In this paper, the relationship between the performance of image restoration and the degree of wave-front aberrations is studied. A set of different wave-front aberrations is constructed by Zernike polynomials, and the corresponding PSF under white-light illumination is calculated. A set of blurred images is then obtained through convolution methods. Next we recover the images with the regularized Richardson-Lucy algorithm and use the RMS of the original image and the homologous deblurred image to evaluate the quality of restoration. Consequently, we determine the range of wave-front errors in which the recovered images are acceptable.

  17. Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems.

    PubMed

    Correia, Carlos M; Teixeira, Joel

    2014-12-01

    Computationally efficient wave-front reconstruction techniques for astronomical adaptive-optics (AO) systems have seen great development in the past decade. Algorithms developed in the spatial-frequency (Fourier) domain have gathered much attention, especially for high-contrast imaging systems. In this paper we present the Wiener filter (resulting in the maximization of the Strehl ratio) and further develop formulae for the anti-aliasing (AA) Wiener filter that optimally takes into account high-order wave-front terms folded in-band during the sensing (i.e., discrete sampling) process. We employ a continuous spatial-frequency representation for the forward measurement operators and derive the Wiener filter when aliasing is explicitly taken into account. We further investigate and compare to classical estimates using least-squares filters the reconstructed wave-front, measurement noise, and aliasing propagation coefficients as a function of the system order. Regarding high-contrast systems, we provide achievable performance results as a function of an ensemble of forward models for the Shack-Hartmann wave-front sensor (using sparse and nonsparse representations) and compute point-spread-function raw intensities. We find that for a 32×32 single-conjugated AOs system the aliasing propagation coefficient is roughly 60% of the least-squares filters, whereas the noise propagation is around 80%. Contrast improvements of factors of up to 2 are achievable across the field in the H band. For current and next-generation high-contrast imagers, despite better aliasing mitigation, AA Wiener filtering cannot be used as a standalone method and must therefore be used in combination with optical spatial filters deployed before image formation actually takes place.

  18. Advancing spaceborne tools for the characterization of planetary ionospheres and circumstellar environments

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan Streets

    This work explores remote sensing of planetary atmospheres and their circumstellar surroundings. The terrestrial ionosphere is a highly variable space plasma embedded in the thermosphere. Generated by solar radiation and predominantly composed of oxygen ions at high altitudes, the ionosphere is dynamically and chemically coupled to the neutral atmosphere. Variations in ionospheric plasma density impact radio astronomy and communications. Inverting observations of 83.4 nm photons resonantly scattered by singly ionized oxygen holds promise for remotely sensing the ionospheric plasma density. This hypothesis was tested by comparing 83.4 nm limb profiles recorded by the Remote Atmospheric and Ionospheric Detection System aboard the International Space Station to a forward model driven by coincident plasma densities measured independently via ground-based incoherent scatter radar. A comparison study of two separate radar overflights with different limb profile morphologies found agreement between the forward model and measured limb profiles. A new implementation of Chapman parameter retrieval via Markov chain Monte Carlo techniques quantifies the precision of the plasma densities inferred from 83.4 nm emission profiles. This first study demonstrates the utility of 83.4 nm emission for ionospheric remote sensing. Future visible and ultraviolet spectroscopy will characterize the composition of exoplanet atmospheres; therefore, the second study advances technologies for the direct imaging and spectroscopy of exoplanets. Such spectroscopy requires the development of new technologies to separate relatively dim exoplanet light from parent star light. High-contrast observations at short wavelengths require spaceborne telescopes to circumvent atmospheric aberrations. The Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) team designed a suborbital sounding rocket payload to demonstrate visible light high-contrast imaging with a visible nulling coronagraph. Laboratory operations of the PICTURE coronagraph achieved the high-contrast imaging sensitivity necessary to test for the predicted warm circumstellar belt around Epsilon Eridani. Interferometric wavefront measurements of calibration target Beta Orionis recorded during the second test flight in November 2015 demonstrate the first active wavefront sensing with a piezoelectric mirror stage and activation of a micromachine deformable mirror in space. These two studies advance our "close-to-home'' knowledge of atmospheres and move exoplanetary studies closer to detailed measurements of atmospheres outside our solar system.

  19. Wavefront sensorless adaptive optics versus sensor-based adaptive optics for in vivo fluorescence retinal imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wahl, Daniel J.; Zhang, Pengfei; Jian, Yifan; Bonora, Stefano; Sarunic, Marinko V.; Zawadzki, Robert J.

    2017-02-01

    Adaptive optics (AO) is essential for achieving diffraction limited resolution in large numerical aperture (NA) in-vivo retinal imaging in small animals. Cellular-resolution in-vivo imaging of fluorescently labeled cells is highly desirable for studying pathophysiology in animal models of retina diseases in pre-clinical vision research. Currently, wavefront sensor-based (WFS-based) AO is widely used for retinal imaging and has demonstrated great success. However, the performance can be limited by several factors including common path errors, wavefront reconstruction errors and an ill-defined reference plane on the retina. Wavefront sensorless (WFS-less) AO has the advantage of avoiding these issues at the cost of algorithmic execution time. We have investigated WFS-less AO on a fluorescence scanning laser ophthalmoscopy (fSLO) system that was originally designed for WFS-based AO. The WFS-based AO uses a Shack-Hartmann WFS and a continuous surface deformable mirror in a closed-loop control system to measure and correct for aberrations induced by the mouse eye. The WFS-less AO performs an open-loop modal optimization with an image quality metric. After WFS-less AO aberration correction, the WFS was used as a control of the closed-loop WFS-less AO operation. We can easily switch between WFS-based and WFS-less control of the deformable mirror multiple times within an imaging session for the same mouse. This allows for a direct comparison between these two types of AO correction for fSLO. Our results demonstrate volumetric AO-fSLO imaging of mouse retinal cells labeled with GFP. Most significantly, we have analyzed and compared the aberration correction results for WFS-based and WFS-less AO imaging.

  20. Linear-constraint wavefront control for exoplanet coronagraphic imaging systems

    NASA Astrophysics Data System (ADS)

    Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean

    2017-01-01

    A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.

  1. Reference-free Shack-Hartmann wavefront sensor.

    PubMed

    Zhao, Liping; Guo, Wenjiang; Li, Xiang; Chen, I-Ming

    2011-08-01

    The traditional Shack-Hartmann wavefront sensing (SHWS) system measures the wavefront slope by calculating the centroid shift between the sample and a reference piece, and then the wavefront is reconstructed by a suitable iterative reconstruction method. Because of the necessity of a reference, many issues are brought up, which limit the system in most applications. This Letter proposes a reference-free wavefront sensing (RFWS) methodology, and an RFWS system is built up where wavefront slope changes are measured by introducing a lateral disturbance to the sampling aperture. By using Southwell reconstruction two times to process the measured data, the form of the wavefront at the sampling plane can be well reconstructed. A theoretical simulation platform of RFWS is established, and various surface forms are investigated. Practical measurements with two measurement systems-SHWS and our RFWS-are conducted, analyzed, and compared. All the simulation and measurement results prove and demonstrate the correctness and effectiveness of the method. © 2011 Optical Society of America

  2. Plenoptic camera wavefront sensing with extended sources

    NASA Astrophysics Data System (ADS)

    Jiang, Pengzhi; Xu, Jieping; Liang, Yonghui; Mao, Hongjun

    2016-09-01

    The wavefront sensor is used in adaptive optics to detect the atmospheric distortion, which feeds back to the deformable mirror to compensate for this distortion. Different from the Shack-Hartmann sensor that has been widely used with point sources, the plenoptic camera wavefront sensor has been proposed as an alternative wavefront sensor adequate for extended objects in recent years. In this paper, the plenoptic camera wavefront sensing with extended sources is discussed systematically. Simulations are performed to investigate the wavefront measurement error and the closed-loop performance of the plenoptic sensor. The results show that there are an optimal lenslet size and an optimal number of pixels to make the best performance. The RMS of the resulting corrected wavefront in closed-loop adaptive optics system is less than 108 nm (0.2λ) when D/r0 ≤ 10 and the magnitude M ≤ 5. Our investigation indicates that the plenoptic sensor is efficient to operate on extended sources in the closed-loop adaptive optics system.

  3. Phase retrieval on broadband and under-sampled images for the JWST testbed telescope

    NASA Astrophysics Data System (ADS)

    Smith, J. Scott; Aronstein, David L.; Dean, Bruce H.; Acton, D. Scott

    2009-08-01

    The James Webb Space Telescope (JWST) consists of an optical telescope element (OTE) that sends light to five science instruments. The initial steps for commissioning the telescope are performed with the Near-Infrared Camera (NIRCam) instrument, but low-order optical aberrations in the remaining science instruments must be determined (using phase retrieval) in order to ensure good performance across the entire field of view. These remaining instruments were designed to collect science data, and not to serve as wavefront sensors. Thus, the science cameras are not ideal phase-retrieval imagers for several reasons: they record under-sampled data and have a limited range of diversity defocus, and only one instrument has an internal, narrowband filter. To address these issues, we developed the capability of sensing these aberrations using an extension of image-based iterative-transform phase retrieval called Variable Sampling Mapping (VSM). The results show that VSM-based phase retrieval is capable of sensing low-order aberrations to a few nm RMS from images that are consistent with the non-ideal conditions expected during JWST multi-field commissioning. The algorithm is validated using data collected from the JWST Testbed Telescope (TBT).

  4. Wavefront Control and Image Restoration with Less Computing

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2010-01-01

    PseudoDiversity is a method of recovering the wavefront in a sparse- or segmented- aperture optical system typified by an interferometer or a telescope equipped with an adaptive primary mirror consisting of controllably slightly moveable segments. (PseudoDiversity should not be confused with a radio-antenna-arraying method called pseudodiversity.) As in the cases of other wavefront- recovery methods, the streams of wavefront data generated by means of PseudoDiversity are used as feedback signals for controlling electromechanical actuators of the various segments so as to correct wavefront errors and thereby, for example, obtain a clearer, steadier image of a distant object in the presence of atmospheric turbulence. There are numerous potential applications in astronomy, remote sensing from aircraft and spacecraft, targeting missiles, sighting military targets, and medical imaging (including microscopy) through such intervening media as cells or water. In comparison with prior wavefront-recovery methods used in adaptive optics, PseudoDiversity involves considerably simpler equipment and procedures and less computation. For PseudoDiversity, there is no need to install separate metrological equipment or to use any optomechanical components beyond those that are already parts of the optical system to which the method is applied. In Pseudo- Diversity, the actuators of a subset of the segments or subapertures are driven to make the segments dither in the piston, tilt, and tip degrees of freedom. Each aperture is dithered at a unique frequency at an amplitude of a half wavelength of light. During the dithering, images on the focal plane are detected and digitized at a rate of at least four samples per dither period. In the processing of the image samples, the use of different dither frequencies makes it possible to determine the separate effects of the various dithered segments or apertures. The digitized image-detector outputs are processed in the spatial-frequency (Fourier-transform) domain to obtain measures of the piston, tip, and tilt errors over each segment or subaperture. Once these measures are known, they are fed back to the actuators to correct the errors. In addition, measures of errors that remain after correction by use of the actuators are further utilized in an algorithm in which the image is phase-corrected in the spatial-frequency domain and then transformed back to the spatial domain at each time step and summed with the images from all previous time steps to obtain a final image having a greater signal-to-noise ratio (and, hence, a visual quality) higher than would otherwise be attainable.

  5. Wavefront sensing with all-digital Stokes measurements

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Milione, Giovanni; Alfano, Robert R.; Forbes, Andrew

    2014-09-01

    A long-standing question in optics has been to efficiently measure the phase (or wavefront) of an optical field. This has led to numerous publications and commercial devices such as phase shift interferometry, wavefront reconstruction via modal decomposition and Shack-Hartmann wavefront sensors. In this work we develop a new technique to extract the phase which in contrast to previously mentioned methods is based on polarization (or Stokes) measurements. We outline a simple, all-digital approach using only a spatial light modulator and a polarization grating to exploit the amplitude and phase relationship between the orthogonal states of polarization to determine the phase of an optical field. We implement this technique to reconstruct the phase of static and propagating optical vortices.

  6. Wavefront Curvature Sensing from Image Projections

    DTIC Science & Technology

    2006-09-01

    entrance pupil. The generalized pupil function, denoted P, provides a basic 1-7 mathematical model for the optical �eld at the system pupil: P(x; y...pupil or aperture radius, RP , may be included in Zernike functions and windowing functions to give the notation more generality . Given some ...promises a much faster read out time from the CCD along with some amount of information useful for estimating pupil phase. A General Image Projection

  7. Wave-Optics Analysis of Pupil Imaging

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.; Bos, Brent J.

    2006-01-01

    Pupil imaging performance is analyzed from the perspective of physical optics. A multi-plane diffraction model is constructed by propagating the scalar electromagnetic field, surface by surface, along the optical path comprising the pupil imaging optical system. Modeling results are compared with pupil images collected in the laboratory. The experimental setup, although generic for pupil imaging systems in general, has application to the James Webb Space Telescope (JWST) optical system characterization where the pupil images are used as a constraint to the wavefront sensing and control process. Practical design considerations follow from the diffraction modeling which are discussed in the context of the JWST Observatory.

  8. Wavefront Sensing and Control Technology for Submillimeter and Far-Infrared Space Telescopes

    NASA Technical Reports Server (NTRS)

    Redding, Dave

    2004-01-01

    The NGST wavefront sensing and control system will be developed to TRL6 over the next few years, including testing in a cryogenic vacuum environment with traceable hardware. Doing this in the far-infrared and submillimeter is probably easier, as some aspects of the problem scale with wavelength, and the telescope is likely to have a more stable environment; however, detectors may present small complications. Since this is a new system approach, it warrants a new look. For instance, a large space telescope based on the DART membrane mirror design requires a new actuation approach. Other mirror and actuation technologies may prove useful as well.

  9. Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique.

    PubMed

    Liu, Rui; Milkie, Daniel E; Kerlin, Aaron; MacLennan, Bryan; Ji, Na

    2014-01-27

    In traditional zonal wavefront sensing for adaptive optics, after local wavefront gradients are obtained, the entire wavefront can be calculated by assuming that the wavefront is a continuous surface. Such an approach will lead to sub-optimal performance in reconstructing wavefronts which are either discontinuous or undersampled by the zonal wavefront sensor. Here, we report a new method to reconstruct the wavefront by directly measuring local wavefront phases in parallel using multidither coherent optical adaptive technique. This method determines the relative phases of each pupil segment independently, and thus produces an accurate wavefront for even discontinuous wavefronts. We implemented this method in an adaptive optical two-photon fluorescence microscopy and demonstrated its superior performance in correcting large or discontinuous aberrations.

  10. Generalised optical differentiation wavefront sensor: a sensitive high dynamic range wavefront sensor.

    PubMed

    Haffert, S Y

    2016-08-22

    Current wavefront sensors for high resolution imaging have either a large dynamic range or a high sensitivity. A new kind of wavefront sensor is developed which can have both: the Generalised Optical Differentiation wavefront sensor. This new wavefront sensor is based on the principles of optical differentiation by amplitude filters. We have extended the theory behind linear optical differentiation and generalised it to nonlinear filters. We used numerical simulations and laboratory experiments to investigate the properties of the generalised wavefront sensor. With this we created a new filter that can decouple the dynamic range from the sensitivity. These properties make it suitable for adaptive optic systems where a large range of phase aberrations have to be measured with high precision.

  11. A zonal wavefront sensor with multiple detector planes

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Boruah, Bosanta R.

    2018-03-01

    A conventional zonal wavefront sensor estimates the wavefront from the data captured in a single detector plane using a single camera. In this paper, we introduce a zonal wavefront sensor which comprises multiple detector planes instead of a single detector plane. The proposed sensor is based on an array of custom designed plane diffraction gratings followed by a single focusing lens. The laser beam whose wavefront is to be estimated is incident on the grating array and one of the diffracted orders from each grating is focused on the detector plane. The setup, by employing a beam splitter arrangement, facilitates focusing of the diffracted beams on multiple detector planes where multiple cameras can be placed. The use of multiple cameras in the sensor can offer several advantages in the wavefront estimation. For instance, the proposed sensor can provide superior inherent centroid detection accuracy that can not be achieved by the conventional system. It can also provide enhanced dynamic range and reduced crosstalk performance. We present here the results from a proof of principle experimental arrangement that demonstrate the advantages of the proposed wavefront sensing scheme.

  12. Acoustic imaging microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-10-17

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  13. Efficient Terahertz Wide-Angle NUFFT-Based Inverse Synthetic Aperture Imaging Considering Spherical Wavefront.

    PubMed

    Gao, Jingkun; Deng, Bin; Qin, Yuliang; Wang, Hongqiang; Li, Xiang

    2016-12-14

    An efficient wide-angle inverse synthetic aperture imaging method considering the spherical wavefront effects and suitable for the terahertz band is presented. Firstly, the echo signal model under spherical wave assumption is established, and the detailed wavefront curvature compensation method accelerated by 1D fast Fourier transform (FFT) is discussed. Then, to speed up the reconstruction procedure, the fast Gaussian gridding (FGG)-based nonuniform FFT (NUFFT) is employed to focus the image. Finally, proof-of-principle experiments are carried out and the results are compared with the ones obtained by the convolution back-projection (CBP) algorithm. The results demonstrate the effectiveness and the efficiency of the presented method. This imaging method can be directly used in the field of nondestructive detection and can also be used to provide a solution for the calculation of the far-field RCSs (Radar Cross Section) of targets in the terahertz regime.

  14. Tunable wavefront coded imaging system based on detachable phase mask: Mathematical analysis, optimization and underlying applications

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Wei, Jingxuan

    2014-09-01

    The key to the concept of tunable wavefront coding lies in detachable phase masks. Ojeda-Castaneda et al. (Progress in Electronics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010) described a typical design in which two components with cosinusoidal phase variation operate together to make defocus sensitivity tunable. The present study proposes an improved design and makes three contributions: (1) A mathematical derivation based on the stationary phase method explains why the detachable phase mask of Ojeda-Castaneda et al. tunes the defocus sensitivity. (2) The mathematical derivations show that the effective bandwidth wavefront coded imaging system is also tunable by making each component of the detachable phase mask move asymmetrically. An improved Fisher information-based optimization procedure was also designed to ascertain the optimal mask parameters corresponding to specific bandwidth. (3) Possible applications of the tunable bandwidth are demonstrated by simulated imaging.

  15. The Infrared Imaging Spectrograph (IRIS) for TMT: multi-tiered wavefront measurements and novel mechanical design

    NASA Astrophysics Data System (ADS)

    Dunn, Jennifer; Andersen, David; Chapin, Edward; Reshetov, Vlad; Wierzbicki, Ramunas; Herriot, Glen; Chalmer, Dean; Isbrucker, Victor; Larkin, James E.; Moore, Anna M.; Suzuki, Ryuji

    2016-08-01

    The InfraRed Imaging Spectrograph (IRIS) will be the first light adaptive optics instrument on the Thirty Meter Telescope (TMT). IRIS is being built by a collaboration between Caltech, the University of California, NAOJ and NRC Herzberg. In this paper we present novel aspects of the Support Structure, Rotator and On-Instrument Wavefront Sensor systems being developed at NRC Herzberg. IRIS is suspended from the bottom port of the Narrow Field Infrared Adaptive Optics System (NFIRAOS), and provides its own image de-rotation to compensate for sidereal rotation of the focal plane. This arrangement is a challenge because NFIRAOS is designed to host two other science instruments, which imposes strict mass requirements on IRIS. As the mechanical design of all elements has progressed, we have been tasked with keeping the instrument mass under seven tonnes. This requirement has resulted in a mass reduction of 30 percent for the support structure and rotator compared to the most recent IRIS designs. To accomplish this goal, while still being able to withstand earthquakes, we developed a new design with composite materials. As IRIS is a client instrument of NFIRAOS, it benefits from NFIRAOS's superior AO correction. IRIS plays an important role in providing this correction by sensing low-order aberrations with three On-Instrument Wavefront Sensors (OIWFS). The OIWFS consists of three independently positioned natural guide star wavefront sensor probe arms that patrol a 2-arcminute field of view. We expect tip-tilt measurements from faint stars within the IRIS imager focal plane will further stabilize the delivered image quality. We describe how the use of On-Detector Guide Windows (ODGWs) in the IRIS imaging detector can be incorporated into the AO correction. In this paper, we present our strategies for acquiring and tracking sources with this complex AO system, and for mitigating and measuring the various potential sources of image blur and misalignment due to properties of the mechanical structure and interfaces.

  16. The AOLI Non-Linear Curvature Wavefront Sensor: High sensitivity reconstruction for low-order AO

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; King, David; Mackay, Craig

    2013-12-01

    Many adaptive optics (AO) systems in use today require bright reference objects to determine the effects of atmospheric distortions on incoming wavefronts. This requirement is because Shack Hartmann wavefront sensors (SHWFS) distribute incoming light from reference objects into a large number of sub-apertures. Bright natural reference objects occur infrequently across the sky leading to the use of laser guide stars which add complexity to wavefront measurement systems. The non-linear curvature wavefront sensor as described by Guyon et al. has been shown to offer a significant increase in sensitivity when compared to a SHWFS. This facilitates much greater sky coverage using natural guide stars alone. This paper describes the current status of the non-linear curvature wavefront sensor being developed as part of an adaptive optics system for the Adaptive Optics Lucky Imager (AOLI) project. The sensor comprises two photon-counting EMCCD detectors from E2V Technologies, recording intensity at four near-pupil planes. These images are used with a reconstruction algorithm to determine the phase correction to be applied by an ALPAO 241-element deformable mirror. The overall system is intended to provide low-order correction for a Lucky Imaging based multi CCD imaging camera. We present the current optical design of the instrument including methods to minimise inherent optical effects, principally chromaticity. Wavefront reconstruction methods are discussed and strategies for their optimisation to run at the required real-time speeds are introduced. Finally, we discuss laboratory work with a demonstrator setup of the system.

  17. Study of an instrument for sensing errors in a telescope wavefront

    NASA Technical Reports Server (NTRS)

    Golden, L. J.; Shack, R. V.; Slater, P. N.

    1974-01-01

    Focal plane sensors for determining the error in a telescope wavefront were investigated. The construction of three candidate test instruments and their evaluation in terms of small wavefront error aberration measurements are described. A laboratory wavefront simulator was designed and fabricated to evaluate the test instruments. The laboratory wavefront error simulator was used to evaluate three tests; a Hartmann test, a polarization shearing interferometer test, and an interferometric Zernike test.

  18. Actuated Hybrid Mirrors for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Ealey, Mark; Redding, David

    2010-01-01

    This paper describes new, large, ultra-lightweight, replicated, actively controlled mirrors, for use in space telescopes. These mirrors utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. Called Actuated Hybrid Mirrors (AHMs), they use replication techniques for high optical quality as well as rapid, low cost manufacturing. They enable an Active Optics space telescope architecture that uses periodic image-based wavefront sensing and control to assure diffraction-limited performance, while relaxing optical system fabrication, integration and test requirements. The proposed International Space Station Observatory seeks to demonstrate this architecture in space.

  19. Advances in detector technologies for visible and infrared wavefront sensing

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Downing, Mark; Jorden, Paul; Kolb, Johann; Rothman, Johan; Fusco, Thierry; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Destefanis, Gérard; Lhermet, Nicolas; Pacaud, Olivier; Vuillermet, Michel; Kerlain, Alexandre; Hubin, Norbert; Reyes, Javier; Kasper, Markus; Ivert, Olaf; Suske, Wolfgang; Walker, Andrew; Skegg, Michael; Derelle, Sophie; Deschamps, Joel; Robert, Clélia; Vedrenne, Nicolas; Chazalet, Frédéric; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Preis, Olivier

    2012-07-01

    The purpose of this paper is to give an overview of the state of the art wavefront sensor detectors developments held in Europe for the last decade. The success of the next generation of instruments for 8 to 40-m class telescopes will depend on the ability of Adaptive Optics (AO) systems to provide excellent image quality and stability. This will be achieved by increasing the sampling, wavelength range and correction quality of the wave front error in both spatial and time domains. The modern generation of AO wavefront sensor detectors development started in the late nineties with the CCD50 detector fabricated by e2v technologies under ESO contract for the ESO NACO AO system. With a 128x128 pixels format, this 8 outputs CCD offered a 500 Hz frame rate with a readout noise of 7e-. A major breakthrough has been achieved with the recent development by e2v technologies of the CCD220. This 240x240 pixels 8 outputs EMCCD (CCD with internal multiplication) has been jointly funded by ESO and Europe under the FP6 programme. The CCD220 and the OCAM2 camera that operates the detector are now the most sensitive system in the world for advanced adaptive optics systems, offering less than 0.2 e readout noise at a frame rate of 1500 Hz with negligible dark current. Extremely easy to operate, OCAM2 only needs a 24 V power supply and a modest water cooling circuit. This system, commercialized by First Light Imaging, is extensively described in this paper. An upgrade of OCAM2 is foreseen to boost its frame rate to 2 kHz, opening the window of XAO wavefront sensing for the ELT using 4 synchronized cameras and pyramid wavefront sensing. Since this major success, new developments started in Europe. One is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with ESO involvement. The spot elongation from a LGS Shack Hartman wavefront sensor necessitates an increase of the pixel format. Two detectors are currently developed by e2v. The NGSD will be a 880x840 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate. The LGSD is a scaling of the NGSD with 1760x1680 pixels and 3 e readout noise (goal 1e) at 700 Hz (goal 1000 Hz) frame rate. New technologies will be developed for that purpose: advanced CMOS pixel architecture, CMOS back thinned and back illuminated device for very high QE, full digital outputs with signal digital conversion on chip. In addition, the CMOS technology is extremely robust in a telescope environment. Both detectors will be used on the European ELT but also interest potentially all giant telescopes under development. Additional developments also started for wavefront sensing in the infrared based on a new technological breakthrough using ultra low noise Avalanche Photodiode (APD) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter will offer a 320x240 8 outputs 30 microns IR array, sensitive from 0.4 to 3.2 microns, with 2 e readout noise at 1500 Hz frame rate. The high QE response is almost flat over this wavelength range. Advanced packaging with miniature cryostat using liquid nitrogen free pulse tube cryocoolers is currently developed for this programme in order to allow use on this detector in any type of environment. First results of this project are detailed here. These programs are held with several partners, among them are the French astronomical laboratories (LAM, OHP, IPAG), the detector manufacturers (e2v technologies, Sofradir, CEA/LETI) and other partners (ESO, ONERA, IAC, GTC). Funding is: Opticon FP6 and FP7 from European Commission, ESO, CNRS and Université de Provence, Sofradir, ONERA, CEA/LETI and the French FUI (DGCIS).

  20. High-speed adaptive optics for imaging of the living human eye

    PubMed Central

    Yu, Yongxin; Zhang, Tianjiao; Meadway, Alexander; Wang, Xiaolin; Zhang, Yuhua

    2015-01-01

    The discovery of high frequency temporal fluctuation of human ocular wave aberration dictates the necessity of high speed adaptive optics (AO) correction for high resolution retinal imaging. We present a high speed AO system for an experimental adaptive optics scanning laser ophthalmoscope (AOSLO). We developed a custom high speed Shack-Hartmann wavefront sensor and maximized the wavefront detection speed based upon a trade-off among the wavefront spatial sampling density, the dynamic range, and the measurement sensitivity. We examined the temporal dynamic property of the ocular wavefront under the AOSLO imaging condition and improved the dual-thread AO control strategy. The high speed AO can be operated with a closed-loop frequency up to 110 Hz. Experiment results demonstrated that the high speed AO system can provide improved compensation for the wave aberration up to 30 Hz in the living human eye. PMID:26368408

  1. Shear Wave Wavefront Mapping Using Ultrasound Color Flow Imaging.

    PubMed

    Yamakoshi, Yoshiki; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi

    2015-10-01

    A wavefront reconstruction method for a continuous shear wave is proposed. The method uses ultrasound color flow imaging (CFI) to detect the shear wave's wavefront. When the shear wave vibration frequency satisfies the required frequency condition and the displacement amplitude satisfies the displacement amplitude condition, zero and maximum flow velocities appear at the shear wave vibration phases of zero and π rad, respectively. These specific flow velocities produce the shear wave's wavefront map in CFI. An important feature of this method is that the shear wave propagation is observed in real time without addition of extra functions to the ultrasound imaging system. The experiments are performed using a 6.5 MHz CFI system. The shear wave is excited by a multilayer piezoelectric actuator. In a phantom experiment, the shear wave velocities estimated using the proposed method and those estimated using a system based on displacement measurement show good agreement. © The Author(s) 2015.

  2. Ultra high frequency imaging acoustic microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-05-23

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  3. Optical properties of the mouse eye

    PubMed Central

    Geng, Ying; Schery, Lee Anne; Sharma, Robin; Dubra, Alfredo; Ahmad, Kamran; Libby, Richard T.; Williams, David R.

    2011-01-01

    The Shack-Hartmann wavefront sensor (SHWS) spots upon which ocular aberration measurements depend have poor quality in mice due to light reflected from multiple retinal layers. We have designed and implemented a SHWS that can favor light from a specific retinal layer and measured monochromatic aberrations in 20 eyes from 10 anesthetized C57BL/6J mice. Using this instrument, we show that mice are myopic, not hyperopic as is frequently reported. We have also measured longitudinal chromatic aberration (LCA) of the mouse eye and found that it follows predictions of the water-filled schematic mouse eye. Results indicate that the optical quality of the mouse eye assessed by measurement of its aberrations is remarkably good, better for retinal imaging than the human eye. The dilated mouse eye has a much larger numerical aperture (NA) than that of the dilated human eye (0.5 NA vs. 0.2 NA), but it has a similar amount of root mean square (RMS) higher order aberrations compared to the dilated human eye. These measurements predict that adaptive optics based on this method of wavefront sensing will provide improvements in retinal image quality and potentially two times higher lateral resolution than that in the human eye. PMID:21483598

  4. Curvature sensor for ocular wavefront measurement.

    PubMed

    Díaz-Doutón, Fernando; Pujol, Jaume; Arjona, Montserrat; Luque, Sergio O

    2006-08-01

    We describe a new wavefront sensor for ocular aberration determination, based on the curvature sensing principle, which adapts the classical system used in astronomy for the living eye's measurements. The actual experimental setup is presented and designed following a process guided by computer simulations to adjust the design parameters for optimal performance. We present results for artificial and real young eyes, compared with the Hartmann-Shack estimations. Both methods show a similar performance for these cases. This system will allow for the measurement of higher order aberrations than the currently used wavefront sensors in situations in which they are supposed to be significant, such as postsurgery eyes.

  5. Single-shot digital holography by use of the fractional Talbot effect.

    PubMed

    Martínez-León, Lluís; Araiza-E, María; Javidi, Bahram; Andrés, Pedro; Climent, Vicent; Lancis, Jesús; Tajahuerce, Enrique

    2009-07-20

    We present a method for recording in-line single-shot digital holograms based on the fractional Talbot effect. In our system, an image sensor records the interference between the light field scattered by the object and a properly codified parallel reference beam. A simple binary two-dimensional periodic grating is used to codify the reference beam generating a periodic three-step phase distribution over the sensor plane by fractional Talbot effect. This provides a method to perform single-shot phase-shifting interferometry at frame rates only limited by the sensor capabilities. Our technique is well adapted for dynamic wavefront sensing applications. Images of the object are digitally reconstructed from the digital hologram. Both computer simulations and experimental results are presented.

  6. Phase discrepancy induced from least squares wavefront reconstruction of wrapped phase measurements with high noise or large localized wavefront gradients

    NASA Astrophysics Data System (ADS)

    Steinbock, Michael J.; Hyde, Milo W.

    2012-10-01

    Adaptive optics is used in applications such as laser communication, remote sensing, and laser weapon systems to estimate and correct for atmospheric distortions of propagated light in real-time. Within an adaptive optics system, a reconstruction process interprets the raw wavefront sensor measurements and calculates an estimate for the unwrapped phase function to be sent through a control law and applied to a wavefront correction device. This research is focused on adaptive optics using a self-referencing interferometer wavefront sensor, which directly measures the wrapped wavefront phase. Therefore, its measurements must be reconstructed for use on a continuous facesheet deformable mirror. In testing and evaluating a novel class of branch-point- tolerant wavefront reconstructors based on the post-processing congruence operation technique, an increase in Strehl ratio compared to a traditional least squares reconstructor was noted even in non-scintillated fields. To investigate this further, this paper uses wave-optics simulations to eliminate many of the variables from a hardware adaptive optics system, so as to focus on the reconstruction techniques alone. The simulation results along with a discussion of the physical reasoning for this phenomenon are provided. For any applications using a self-referencing interferometer wavefront sensor with low signal levels or high localized wavefront gradients, understanding this phenomena is critical when applying a traditional least squares wavefront reconstructor.

  7. Wave front sensing for next generation earth observation telescope

    NASA Astrophysics Data System (ADS)

    Delvit, J.-M.; Thiebaut, C.; Latry, C.; Blanchet, G.

    2017-09-01

    High resolution observations systems are highly dependent on optics quality and are usually designed to be nearly diffraction limited. Such a performance allows to set a Nyquist frequency closer to the cut off frequency, or equivalently to minimize the pupil diameter for a given ground sampling distance target. Up to now, defocus is the only aberration that is allowed to evolve slowly and that may be inflight corrected, using an open loop correction based upon ground estimation and refocusing command upload. For instance, Pleiades satellites defocus is assessed from star acquisitions and refocusing is done with a thermal actuation of the M2 mirror. Next generation systems under study at CNES should include active optics in order to allow evolving aberrations not only limited to defocus, due for instance to in orbit thermal variable conditions. Active optics relies on aberration estimations through an onboard Wave Front Sensor (WFS). One option is using a Shack Hartmann. The Shack-Hartmann wave-front sensor could be used on extended scenes (unknown landscapes). A wave-front computation algorithm should then be implemented on-board the satellite to provide the control loop wave-front error measure. In the worst case scenario, this measure should be computed before each image acquisition. A robust and fast shift estimation algorithm between Shack-Hartmann images is then needed to fulfill this last requirement. A fast gradient-based algorithm using optical flows with a Lucas-Kanade method has been studied and implemented on an electronic device developed by CNES. Measurement accuracy depends on the Wave Front Error (WFE), the landscape frequency content, the number of searched aberrations, the a priori knowledge of high order aberrations and the characteristics of the sensor. CNES has realized a full scale sensitivity analysis on the whole parameter set with our internally developed algorithm.

  8. Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects.

    PubMed

    Yang, Huizhen; Soloviev, Oleg; Verhaegen, Michel

    2015-09-21

    A model-based wavefront sensorless (WFSless) adaptive optics (AO) system with a 61-element deformable mirror is simulated to correct the imaging of a turbulence-degraded extended object. A fast closed-loop control algorithm, which is based on the linear relation between the mean square of the aberration gradients and the second moment of the image intensity distribution, is used to generate the control signals for the actuators of the deformable mirror (DM). The restoration capability and the convergence rate of the AO system are investigated with different turbulence strength wave-front aberrations. Simulation results show the model-based WFSless AO system can restore those images degraded by different turbulence strengths successfully and obtain the correction very close to the achievable capability of the given DM. Compared with the ideal correction of 61-element DM, the averaged relative error of RMS value is 6%. The convergence rate of AO system is independent of the turbulence strength and only depends on the number of actuators of DM.

  9. An adaptive optics package designed for astronomical use with a laser guide star tuned to an absorption line of atomic sodium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon, J.T.; Avicola, K.; Brase, J.M.

    1994-04-11

    We present the design and implementation of a very compact adaptive optic system that senses the return light from a sodium guide-star and controls a deformable mirror and a pointing mirror to compensate atmospheric perturbations in the wavefront. The deformable mirror has 19 electrostrictive actuators and triangular subapertures. The wavefront sensor is a Hartmann sensor with lenslets on triangular centers. The high-bandwidth steering mirror assembly incorporates an analog controller that samples the tilt with an avalanche photodiode quad cell. An {line_integral}/25 imaging leg focuses the light into a science camera that can either obtain long-exposure images or speckle data. Inmore » laboratory tests overall Strehl ratios were improved by a factor of 3 when a mylar sheet was used as an aberrator. The crossover frequency at unity gain is 30 Hz.« less

  10. Wavefront Control Testbed (WCT) Experiment Results

    NASA Technical Reports Server (NTRS)

    Burns, Laura A.; Basinger, Scott A.; Campion, Scott D.; Faust, Jessica A.; Feinberg, Lee D.; Hayden, William L.; Lowman, Andrew E.; Ohara, Catherine M.; Petrone, Peter P., III

    2004-01-01

    The Wavefront Control Testbed (WCT) was created to develop and test wavefront sensing and control algorithms and software for the segmented James Webb Space Telescope (JWST). Last year, we changed the system configuration from three sparse aperture segments to a filled aperture with three pie shaped segments. With this upgrade we have performed experiments on fine phasing with line-of-sight and segment-to-segment jitter, dispersed fringe visibility and grism angle;. high dynamic range tilt sensing; coarse phasing with large aberrations, and sampled sub-aperture testing. This paper reviews the results of these experiments.

  11. Real time optimization algorithm for wavefront sensorless adaptive optics OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel J.; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Sarunic, Marinko V.; Verhaegen, Michel; Jian, Yifan

    2017-02-01

    Optical Coherence Tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. A limitation of the performance and utilization of the OCT systems has been the lateral resolution. Through the combination of wavefront sensorless adaptive optics with dual variable optical elements, we present a compact lens based OCT system that is capable of imaging the photoreceptor mosaic. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient eyes, and a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators for aberration correction to obtain near diffraction limited imaging at the retina. A parallel processing computational platform permitted real-time image acquisition and display. The Data-based Online Nonlinear Extremum seeker (DONE) algorithm was used for real time optimization of the wavefront sensorless adaptive optics OCT, and the performance was compared with a coordinate search algorithm. Cross sectional images of the retinal layers and en face images of the cone photoreceptor mosaic acquired in vivo from research volunteers before and after WSAO optimization are presented. Applying the DONE algorithm in vivo for wavefront sensorless AO-OCT demonstrates that the DONE algorithm succeeds in drastically improving the signal while achieving a computational time of 1 ms per iteration, making it applicable for high speed real time applications.

  12. Dispersed Fringe Sensing Analysis - DFSA

    NASA Technical Reports Server (NTRS)

    Sigrist, Norbert; Shi, Fang; Redding, David C.; Basinger, Scott A.; Ohara, Catherine M.; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.; Spechler, Joshua A.

    2012-01-01

    Dispersed Fringe Sensing (DFS) is a technique for measuring and phasing segmented telescope mirrors using a dispersed broadband light image. DFS is capable of breaking the monochromatic light ambiguity, measuring absolute piston errors between segments of large segmented primary mirrors to tens of nanometers accuracy over a range of 100 micrometers or more. The DFSA software tool analyzes DFS images to extract DFS encoded segment piston errors, which can be used to measure piston distances between primary mirror segments of ground and space telescopes. This information is necessary to control mirror segments to establish a smooth, continuous primary figure needed to achieve high optical quality. The DFSA tool is versatile, allowing precise piston measurements from a variety of different optical configurations. DFSA technology may be used for measuring wavefront pistons from sub-apertures defined by adjacent segments (such as Keck Telescope), or from separated sub-apertures used for testing large optical systems (such as sub-aperture wavefront testing for large primary mirrors using auto-collimating flats). An experimental demonstration of the coarse-phasing technology with verification of DFSA was performed at the Keck Telescope. DFSA includes image processing, wavelength and source spectral calibration, fringe extraction line determination, dispersed fringe analysis, and wavefront piston sign determination. The code is robust against internal optical system aberrations and against spectral variations of the source. In addition to the DFSA tool, the software package contains a simple but sophisticated MATLAB model to generate dispersed fringe images of optical system configurations in order to quickly estimate the coarse phasing performance given the optical and operational design requirements. Combining MATLAB (a high-level language and interactive environment developed by MathWorks), MACOS (JPL s software package for Modeling and Analysis for Controlled Optical Systems), and DFSA provides a unique optical development, modeling and analysis package to study current and future approaches to coarse phasing controlled segmented optical systems.

  13. Remote sensing with intense filaments enhanced by adaptive optics

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Kamali, Y.; Châteauneuf, M.; Tremblay, G.; Théberge, F.; Dubois, J.; Roy, G.; Chin, S. L.

    2009-11-01

    A method involving a closed loop adaptive optic system is investigated as a tool to significantly enhance the collected optical emissions, for remote sensing applications involving ultrafast laser filamentation. The technique combines beam expansion and geometrical focusing, assisted by an adaptive optics system to correct the wavefront aberrations. Targets, such as a gaseous mixture of air and hydrocarbons, solid lead and airborne clouds of contaminated aqueous aerosols, were remotely probed with filaments generated at distances up to 118 m after the focusing beam expander. The integrated backscattered signals collected by the detection system (15-28 m from the filaments) were increased up to a factor of 7, for atmospheric N2 and solid lead, when the wavefronts were corrected by the adaptive optic system. Moreover, an extrapolation based on a simplified version of the LIDAR equation showed that the adaptive optic system improved the detection distance for N2 molecular fluorescence, from 45 m for uncorrected wavefronts to 125 m for corrected.

  14. Wavefront Measurement in Ophthalmology

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl

    Wavefront sensing or aberration measurement in the eye is a key problem in refractive surgery and vision correction with laser. The accuracy of these measurements is critical for the outcome of the surgery. Practically all clinical methods use laser as a source of light. To better understand the background, we analyze the pre-laser techniques developed over centuries. They allowed new discoveries of the nature of the optical system of the eye, and many served as prototypes for laser-based wavefront sensing technologies. Hartmann's test was strengthened by Platt's lenslet matrix and the CCD two-dimensional photodetector acquired a new life as a Hartmann-Shack sensor in Heidelberg. Tscherning's aberroscope, invented in France, was transformed into a laser device known as a Dresden aberrometer, having seen its reincarnation in Germany with Seiler's help. The clinical ray tracing technique was brought to life by Molebny in Ukraine, and skiascopy was created by Fujieda in Japan. With the maturation of these technologies, new demands now arise for their wider implementation in optometry and vision correction with customized contact and intraocular lenses.

  15. 13-fold resolution gain through turbid layer via translated unknown speckle illumination

    PubMed Central

    Guo, Kaikai; Zhang, Zibang; Jiang, Shaowei; Liao, Jun; Zhong, Jingang; Eldar, Yonina C.; Zheng, Guoan

    2017-01-01

    Fluorescence imaging through a turbid layer holds great promise for various biophotonics applications. Conventional wavefront shaping techniques aim to create and scan a focus spot through the turbid layer. Finding the correct input wavefront without direct access to the target plane remains a critical challenge. In this paper, we explore a new strategy for imaging through turbid layer with a large field of view. In our setup, a fluorescence sample is sandwiched between two turbid layers. Instead of generating one focus spot via wavefront shaping, we use an unshaped beam to illuminate the turbid layer and generate an unknown speckle pattern at the target plane over a wide field of view. By tilting the input wavefront, we raster scan the unknown speckle pattern via the memory effect and capture the corresponding low-resolution fluorescence images through the turbid layer. Different from the wavefront-shaping-based single-spot scanning, the proposed approach employs many spots (i.e., speckles) in parallel for extending the field of view. Based on all captured images, we jointly recover the fluorescence object, the unknown optical transfer function of the turbid layer, the translated step size, and the unknown speckle pattern. Without direct access to the object plane or knowledge of the turbid layer, we demonstrate a 13-fold resolution gain through the turbid layer using the reported strategy. We also demonstrate the use of this technique to improve the resolution of a low numerical aperture objective lens allowing to obtain both large field of view and high resolution at the same time. The reported method provides insight for developing new fluorescence imaging platforms and may find applications in deep-tissue imaging. PMID:29359102

  16. Post-Coronagraph Wavefront Sensor for Gemini Planet Imager

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Burruss, Rick; Pueyo, Laurent; Soummer, Remi; Shelton, Chris; Bartos, Randall; Fregoso, Felipe; Nemati, Bijan; Best, Paul; Angione, John

    2009-01-01

    The calibration wavefront system for the Gemini Planet Imager (GPI) will measure the complex wavefront at the apodized pupil and provide slow phase errors to the AO system to mitigate against image plane speckles that would cause a loss in contrast. This talk describes both the low-order and high-order sensors in the calibration wavefront sensor and how the information is combined to form the wavefront estimate before the coronagraph. We will show laboratory results from our calibration testbed that demonstrate the subsystem performance at levels commensurate with those required on the final instrument.

  17. High resolution imaging and wavefront aberration correction in plenoptic systems.

    PubMed

    Trujillo-Sevilla, J M; Rodríguez-Ramos, L F; Montilla, I; Rodríguez-Ramos, J M

    2014-09-01

    Plenoptic imaging systems are becoming more common since they provide capabilities unattainable in conventional imaging systems, but one of their main limitations is the poor bidimensional resolution. Combining the wavefront phase measurement and the plenoptic image deconvolution, we propose a system capable of improving the resolution when a wavefront aberration is present and the image is blurred. In this work, a plenoptic system is simulated using Fourier optics, and the results show that an improved resolution is achieved, even in the presence of strong wavefront aberrations.

  18. Application of fluidic lens technology to an adaptive holographic optical element see-through autophoropter

    NASA Astrophysics Data System (ADS)

    Chancy, Carl H.

    A device for performing an objective eye exam has been developed to automatically determine ophthalmic prescriptions. The closed loop fluidic auto-phoropter has been designed, modeled, fabricated and tested for the automatic measurement and correction of a patient's prescriptions. The adaptive phoropter is designed through the combination of a spherical-powered fluidic lens and two cylindrical fluidic lenses that are orientated 45o relative to each other. In addition, the system incorporates Shack-Hartmann wavefront sensing technology to identify the eye's wavefront error and corresponding prescription. Using the wavefront error information, the fluidic auto-phoropter nulls the eye's lower order wavefront error by applying the appropriate volumes to the fluidic lenses. The combination of the Shack-Hartmann wavefront sensor the fluidic auto-phoropter allows for the identification and control of spherical refractive error, as well as cylinder error and axis; thus, creating a truly automated refractometer and corrective system. The fluidic auto-phoropter is capable of correcting defocus error ranging from -20D to 20D and astigmatism from -10D to 10D. The transmissive see-through design allows for the observation of natural scenes through the system at varying object planes with no additional imaging optics in the patient's line of sight. In this research, two generations of the fluidic auto-phoropter are designed and tested; the first generation uses traditional glass optics for the measurement channel. The second generation of the fluidic auto-phoropter takes advantage of the progress in the development of holographic optical elements (HOEs) to replace all the traditional glass optics. The addition of the HOEs has enabled the development of a more compact, inexpensive and easily reproducible system without compromising its performance. Additionally, the fluidic lenses were tested during a National Aeronautics Space Administration (NASA) parabolic flight campaign, to determine the effect of varying gravitational acceleration on the performance and image quality of the fluidic lenses. Wavefront analysis has indicated that flight turbulence and the varying levels of gravitational acceleration ranging from zero-G (microgravity) to 2G (hypergravity) had minimal effect on the performance of the fluidic lenses, except for small changes in defocus; making them suitable for potential use in a portable space-based fluidic auto-phoropter.

  19. Fast Holographic Wavefront Sensor

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Ghebremichael, F.; Gurley, K.

    There are several different types of wavefront sensors that can be used to measure the phase of an input beam. While they have widely varying modes of operation, they all require some computational overhead in order to deconstruct the phase from an optical measurement which greatly reduces the sensing speed. Furthermore, zonal detection methods, such as the Shack-Hartmann wavefront sensor (SHWFS) are not well suited to temporal changes in pupil obscuration such as can occur with scintillation. Here we present a modal detector that incorporates a multiplexed hologram to give a full description of wavefront error without the need for any calculations. The holographic wavefront sensor (HWFS) uses a hologram that is "pre-programmed" with all desired Zernike aberration components. An input beam of arbitrary phase will diffract into pairs of focused beams. Each pair represents a different aberration, and the amplitude is obtained by measuring the relative brightness of the pair of foci. This can be easily achieved by using conventional position sensing devices. In this manner, the amplitudes of each aberration components are directly sensed without the need for any calculations. As such, a complete characterization of the wavefront can be made at speeds of up to 100 kHz in a compact device and without the need for a computer or sophisticated electronics. In this talk we will detail the operation of the holographic wavefront sensor and present results of a prototype sensor as well as a modified design suitable for a closed-loop adaptive optics system. This new wavefront sensor will not only permit faster correction, but permit adaptive optics systems to work in extremely turbulent environments such as those encountered in fast-tracking systems and the Airborne Laser project.

  20. Discovery Channel Telescope active optics system early integration and test

    NASA Astrophysics Data System (ADS)

    Venetiou, Alexander J.; Bida, Thomas A.

    2012-09-01

    The Discovery Channel Telescope (DCT) is a 4.3-meter telescope with a thin meniscus primary mirror (M1) and a honeycomb secondary mirror (M2). The optical design is an f/6.1 Ritchey-Chrétien (RC) with an unvignetted 0.5° Field of View (FoV) at the Cassegrain focus. We describe the design, implementation and performance of the DCT active optics system (AOS). The DCT AOS maintains collimation and controls the figure of the mirror to provide seeing-limited images across the focal plane. To minimize observing overhead, rapid settling times are achieved using a combination of feed-forward and low-bandwidth feedback control using a wavefront sensing system. In 2011, we mounted a Shack-Hartmann wavefront sensor at the prime focus of M1, the Prime Focus Test Assembly (PFTA), to test the AOS with the wavefront sensor, and the feedback loop. The incoming wavefront is decomposed using Zernike polynomials, and the mirror figure is corrected with a set of bending modes. Components of the system that we tested and tuned included the Zernike to Bending Mode transformations. We also started open-loop feed-forward coefficients determination. In early 2012, the PFTA was replaced by M2, and the wavefront sensor moved to its normal location on the Cassegrain instrument assembly. We present early open loop wavefront test results with the full optical system and instrument cube, along with refinements to the overall control loop operating at RC Cassegrain focus.

  1. Generating Artificial Reference Images for Open Loop Correlation Wavefront Sensors

    NASA Astrophysics Data System (ADS)

    Townson, M. J.; Love, G. D.; Saunter, C. D.

    2018-05-01

    Shack-Hartmann wavefront sensors for both solar and laser guide star adaptive optics (with elongated spots) need to observe extended objects. Correlation techniques have been successfully employed to measure the wavefront gradient in solar adaptive optics systems and have been proposed for laser guide star systems. In this paper we describe a method for synthesising reference images for correlation Shack-Hartmann wavefront sensors with a larger field of view than individual sub-apertures. We then show how these supersized reference images can increase the performance of correlation wavefront sensors in regimes where large relative shifts are induced between sub-apertures, such as those observed in open-loop wavefront sensors. The technique we describe requires no external knowledge outside of the wavefront-sensor images, making it available as an entirely "software" upgrade to an existing adaptive optics system. For solar adaptive optics we show the supersized reference images extend the magnitude of shifts which can be accurately measured from 12% to 50% of the field of view of a sub-aperture and in laser guide star wavefront sensors the magnitude of centroids that can be accurately measured is increased from 12% to 25% of the total field of view of the sub-aperture.

  2. Rapid and highly integrated FPGA-based Shack-Hartmann wavefront sensor for adaptive optics system

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Pin; Chang, Chia-Yuan; Chen, Shean-Jen

    2018-02-01

    In this study, a field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) programmed on LabVIEW can be highly integrated into customized applications such as adaptive optics system (AOS) for performing real-time wavefront measurement. Further, a Camera Link frame grabber embedded with FPGA is adopted to enhance the sensor speed reacting to variation considering its advantage of the highest data transmission bandwidth. Instead of waiting for a frame image to be captured by the FPGA, the Shack-Hartmann algorithm are implemented in parallel processing blocks design and let the image data transmission synchronize with the wavefront reconstruction. On the other hand, we design a mechanism to control the deformable mirror in the same FPGA and verify the Shack-Hartmann sensor speed by controlling the frequency of the deformable mirror dynamic surface deformation. Currently, this FPGAbead SHWS design can achieve a 266 Hz cyclic speed limited by the camera frame rate as well as leaves 40% logic slices for additionally flexible design.

  3. Parallel Implementation of a Frozen Flow Based Wavefront Reconstructor

    NASA Astrophysics Data System (ADS)

    Nagy, J.; Kelly, K.

    2013-09-01

    Obtaining high resolution images of space objects from ground based telescopes is challenging, often requiring the use of a multi-frame blind deconvolution (MFBD) algorithm to remove blur caused by atmospheric turbulence. In order for an MFBD algorithm to be effective, it is necessary to obtain a good initial estimate of the wavefront phase. Although wavefront sensors work well in low turbulence situations, they are less effective in high turbulence, such as when imaging in daylight, or when imaging objects that are close to the Earth's horizon. One promising approach, which has been shown to work very well in high turbulence settings, uses a frozen flow assumption on the atmosphere to capture the inherent temporal correlations present in consecutive frames of wavefront data. Exploiting these correlations can lead to more accurate estimation of the wavefront phase, and the associated PSF, which leads to more effective MFBD algorithms. However, with the current serial implementation, the approach can be prohibitively expensive in situations when it is necessary to use a large number of frames. In this poster we describe a parallel implementation that overcomes this constraint. The parallel implementation exploits sparse matrix computations, and uses the Trilinos package developed at Sandia National Laboratories. Trilinos provides a variety of core mathematical software for parallel architectures that have been designed using high quality software engineering practices, The package is open source, and portable to a variety of high-performance computing architectures.

  4. Wavefront metrology for coherent hard X-rays by scanning a microsphere.

    PubMed

    Skjønsfjell, Eirik Torbjørn Bakken; Chushkin, Yuriy; Zontone, Federico; Patil, Nilesh; Gibaud, Alain; Breiby, Dag W

    2016-05-16

    Characterization of the wavefront of an X-ray beam is of primary importance for all applications where coherence plays a major role. Imaging techniques based on numerically retrieving the phase from interference patterns are often relying on an a-priori assumption of the wavefront shape. In Coherent X-ray Diffraction Imaging (CXDI) a planar incoming wave field is often assumed for the inversion of the measured diffraction pattern, which allows retrieving the real space image via simple Fourier transformation. It is therefore important to know how reliable the plane wave approximation is to describe the real wavefront. Here, we demonstrate that the quantitative wavefront shape and flux distribution of an X-ray beam used for CXDI can be measured by using a micrometer size metal-coated polymer sphere serving in a similar way as the hole array in a Hartmann wavefront sensor. The method relies on monitoring the shape and center of the scattered intensity distribution in the far field using a 2D area detector while raster-scanning the microsphere with respect to the incoming beam. The reconstructed X-ray wavefront was found to have a well-defined central region of approximately 16 µm diameter and a weaker, asymmetric, intensity distribution extending 30 µm from the beam center. The phase front distortion was primarily spherical with an effective radius of 0.55 m which matches the distance to the last upstream beam-defining slit, and could be accurately represented by Zernike polynomials.

  5. Gaussian Process Kalman Filter for Focal Plane Wavefront Correction and Exoplanet Signal Extraction

    NASA Astrophysics Data System (ADS)

    Sun, He; Kasdin, N. Jeremy

    2018-01-01

    Currently, the ultimate limitation of space-based coronagraphy is the ability to subtract the residual PSF after wavefront correction to reveal the planet. Called reference difference imaging (RDI), the technique consists of conducting wavefront control to collect the reference point spread function (PSF) by observing a bright star, and then extracting target planet signals by subtracting a weighted sum of reference PSFs. Unfortunately, this technique is inherently inefficient because it spends a significant fraction of the observing time on the reference star rather than the target star with the planet. Recent progress in model based wavefront estimation suggests an alternative approach. A Kalman filter can be used to estimate the stellar PSF for correction by the wavefront control system while simultaneously estimating the planet signal. Without observing the reference star, the (extended) Kalman filter directly utilizes the wavefront correction data and combines the time series observations and model predictions to estimate the stellar PSF and planet signals. Because wavefront correction is used during the entire observation with no slewing, the system has inherently better stability. In this poster we show our results aimed at further improving our Kalman filter estimation accuracy by including not only temporal correlations but also spatial correlations among neighboring pixels in the images. This technique is known as a Gaussian process Kalman filter (GPKF). We also demonstrate the advantages of using a Kalman filter rather than RDI by simulating a real space exoplanet detection mission.

  6. Peak-locking centroid bias in Shack-Hartmann wavefront sensing

    NASA Astrophysics Data System (ADS)

    Anugu, Narsireddy; Garcia, Paulo J. V.; Correia, Carlos M.

    2018-05-01

    Shack-Hartmann wavefront sensing relies on accurate spot centre measurement. Several algorithms were developed with this aim, mostly focused on precision, i.e. minimizing random errors. In the solar and extended scene community, the importance of the accuracy (bias error due to peak-locking, quantization, or sampling) of the centroid determination was identified and solutions proposed. But these solutions only allow partial bias corrections. To date, no systematic study of the bias error was conducted. This article bridges the gap by quantifying the bias error for different correlation peak-finding algorithms and types of sub-aperture images and by proposing a practical solution to minimize its effects. Four classes of sub-aperture images (point source, elongated laser guide star, crowded field, and solar extended scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity, Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-noise conditions. The best performing peak-finding algorithm depends on the sub-aperture image type, but none is satisfactory to both bias and random errors. A practical solution is proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the true centre. The solution decreases the bias by a factor of ˜7 to values of ≲ 0.02 pix. The computational cost is typically twice of current cross-correlation algorithms.

  7. NASA Tech Briefs, April 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Topics covered include: Direct-Solve Image-Based Wavefront Sensing; Use of UV Sources for Detection and Identification of Explosives; Using Fluorescent Viruses for Detecting Bacteria in Water; Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System; Volcano Monitor: Autonomous Triggering of In-Situ Sensors; Wireless Fluid-Level Sensors for Harsh Environments; Interference-Detection Module in a Digital Radar Receiver; Modal Vibration Analysis of Large Castings; Structural/Radiation-Shielding Epoxies; Integrated Multilayer Insulation; Apparatus for Screening Multiple Oxygen-Reduction Catalysts; Determining Aliasing in Isolated Signal Conditioning Modules; Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems; Spectrum Analyzers Incorporating Tunable WGM Resonators; Quantum-Well Thermophotovoltaic Cells; Bounded-Angle Iterative Decoding of LDPC Codes; Conversion from Tree to Graph Representation of Requirements; Parallel Hybrid Vehicle Optimal Storage System; and Anaerobic Digestion in a Flooded Densified Leachbed.

  8. x-y curvature wavefront sensor.

    PubMed

    Cagigal, Manuel P; Valle, Pedro J

    2015-04-15

    In this Letter, we propose a new curvature wavefront sensor based on the principles of optical differentiation. The theoretically modeled setup consists of a diffractive optical mask placed at the intermediate plane of a classical two-lens coherent optical processor. The resulting image is composed of a number of local derivatives of the entrance pupil function whose proper combination provides the wavefront curvature. In contrast to the common radial curvature sensors, this one is able to provide the x and y wavefront curvature maps simultaneously. The sensor offers other additional advantages like having high spatial resolution, adjustable dynamic range, and not being sensitive to misalignment.

  9. Fizeau interferometric cophasing of segmented mirrors: experimental validation.

    PubMed

    Cheetham, Anthony; Cvetojevic, Nick; Norris, Barnaby; Sivaramakrishnan, Anand; Tuthill, Peter

    2014-06-02

    We present an optical testbed demonstration of the Fizeau Interferometric Cophasing of Segmented Mirrors (FICSM) algorithm. FICSM allows a segmented mirror to be phased with a science imaging detector and three filters (selected among the normal science complement). It requires no specialised, dedicated wavefront sensing hardware. Applying random piston and tip/tilt aberrations of more than 5 wavelengths to a small segmented mirror array produced an initial unphased point spread function with an estimated Strehl ratio of 9% that served as the starting point for our phasing algorithm. After using the FICSM algorithm to cophase the pupil, we estimated a Strehl ratio of 94% based on a comparison between our data and simulated encircled energy metrics. Our final image quality is limited by the accuracy of our segment actuation, which yields a root mean square (RMS) wavefront error of 25 nm. This is the first hardware demonstration of coarse and fine phasing an 18-segment pupil with the James Webb Space Telescope (JWST) geometry using a single algorithm. FICSM can be implemented on JWST using any of its scientic imaging cameras making it useful as a fall-back in the event that accepted phasing strategies encounter problems. We present an operational sequence that would co-phase such an 18-segment primary in 3 sequential iterations of the FICSM algorithm. Similar sequences can be readily devised for any segmented mirror.

  10. Detecting higher-order wavefront errors with an astigmatic hybrid wavefront sensor.

    PubMed

    Barwick, Shane

    2009-06-01

    The reconstruction of wavefront errors from measurements over subapertures can be made more accurate if a fully characterized quadratic surface can be fitted to the local wavefront surface. An astigmatic hybrid wavefront sensor with added neural network postprocessing is shown to have this capability, provided that the focal image of each subaperture is sufficiently sampled. Furthermore, complete local curvature information is obtained with a single image without splitting beam power.

  11. A 3D metrology system for the GMT

    NASA Astrophysics Data System (ADS)

    Rakich, A.; Dettmann, Lee; Leveque, S.; Guisard, S.

    2016-08-01

    The Giant Magellan Telescope (GMT)1 is a 25 m telescope composed of seven 8.4 m "unit telescopes", on a common mount. Each primary and conjugated secondary mirror segment will feed a common instrument interface, their focal planes co-aligned and co-phased. During telescope operation, the alignment of the optical components will deflect due to variations in thermal environment and gravity induced structural flexure of the mount. The ultimate co-alignment and co-phasing of the telescope is achieved by a combination of the Acquisition Guiding and Wavefront Sensing system and two segment edge-sensing systems2. An analysis of the capture range of the wavefront sensing system indicates that it is unlikely that that system will operate efficiently or reliably with initial mirror positions provided by open-loop corrections alone3. The project is developing a Telescope Metrology System (TMS) which incorporates a large number of absolute distance measuring interferometers. The system will align optical components of the telescope to the instrument interface to (well) within the capture range of the active optics wavefront sensing systems. The advantages offered by this technological approach to a TMS, over a network of laser trackers, are discussed. Initial investigations of the Etalon Absolute Multiline Technology™ by Etalon Ag4 show that a metrology network based on this product is capable of meeting requirements. A conceptual design of the system is presented and expected performance is discussed.

  12. Comparison of laser ray-tracing and skiascopic ocular wavefront-sensing devices

    PubMed Central

    Bartsch, D-UG; Bessho, K; Gomez, L; Freeman, WR

    2009-01-01

    Purpose To compare two wavefront-sensing devices based on different principles. Methods Thirty-eight healthy eyes of 19 patients were measured five times in the reproducibility study. Twenty eyes of 10 patients were measured in the comparison study. The Tracey Visual Function Analyzer (VFA), based on the ray-tracing principle and the Nidek optical pathway difference (OPD)-Scan, based on the dynamic skiascopy principle were compared. Standard deviation (SD) of root mean square (RMS) errors was compared to verify the reproducibility. We evaluated RMS errors, Zernike terms and conventional refractive indexes (Sph, Cyl, Ax, and spherical equivalent). Results In RMS errors reading, both devices showed similar ratios of SD to the mean measurement value (VFA: 57.5±11.7%, OPD-Scan: 53.9±10.9%). Comparison on the same eye showed that almost all terms were significantly greater using the VFA than using the OPD-Scan. However, certain high spatial frequency aberrations (tetrafoil, pentafoil, and hexafoil) were consistently measured near zero with the OPD-Scan. Conclusion Both devices showed similar level of reproducibility; however, there was considerable difference in the wavefront reading between machines when measuring the same eye. Differences in the number of sample points, centration, and measurement algorithms between the two instruments may explain our results. PMID:17571088

  13. Research of the aberrations of human eyes with accommodation based on eye model

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Wang, Feng-lin; Wang, Zhao-qi

    2011-06-01

    The variation of the wavefront aberration with accommodation was investigated based on the eye model of Gullstrand-Le Grand. The anterior lens radius was optimized at different accommodation to focus the image at the retina, and the RMS and PV wave-front error of human eye were compared at different accommodation. The PV value of wavefront aberration from 0.718 waves increases gradually to 0.904 waves and RMS value from 0.21 waves to 0.26 waves when accommodative stimuli varies from 0 to - 5 diopters. The change of PV value is 0.186 waves which is less than the Rayleigh diffraction limit λ/4, and the change of RMS is 0.05 which under Marechal diffraction limit λ/14. Therefore, the change of the wavefront aberration caused accommodation can be ignored when wavefront aberrations in the human eye are corrected with surgery or wearing glasses.

  14. Framework to trade optimality for local processing in large-scale wavefront reconstruction problems.

    PubMed

    Haber, Aleksandar; Verhaegen, Michel

    2016-11-15

    We show that the minimum variance wavefront estimation problems permit localized approximate solutions, in the sense that the wavefront value at a point (excluding unobservable modes, such as the piston mode) can be approximated by a linear combination of the wavefront slope measurements in the point's neighborhood. This enables us to efficiently compute a wavefront estimate by performing a single sparse matrix-vector multiplication. Moreover, our results open the possibility for the development of wavefront estimators that can be easily implemented in a decentralized/distributed manner, and in which the estimate optimality can be easily traded for computational efficiency. We numerically validate our approach on Hudgin wavefront sensor geometries, and the results can be easily generalized to Fried geometries.

  15. Advanced Imaging Optics Utilizing Wavefront Coding.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scrymgeour, David; Boye, Robert; Adelsberger, Kathleen

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise.more » Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.« less

  16. MEMS deformable mirror embedded wavefront sensing and control system

    NASA Astrophysics Data System (ADS)

    Owens, Donald; Schoen, Michael; Bush, Keith

    2006-01-01

    Electrostatic Membrane Deformable Mirror (MDM) technology developed using silicon bulk micro-machining techniques offers the potential of providing low-cost, compact wavefront control systems for diverse optical system applications. Electrostatic mirror construction using bulk micro-machining allows for custom designs to satisfy wavefront control requirements for most optical systems. An electrostatic MDM consists of a thin membrane, generally with a thin metal or multi-layer high-reflectivity coating, suspended over an actuator pad array that is connected to a high-voltage driver. Voltages applied to the array elements deflect the membrane to provide an optical surface capable of correcting for measured optical aberrations in a given system. Electrostatic membrane DM designs are derived from well-known principles of membrane mechanics and electrostatics, the desired optical wavefront control requirements, and the current limitations of mirror fabrication and actuator drive electronics. MDM performance is strongly dependent on mirror diameter and air damping in meeting desired spatial and temporal frequency requirements. In this paper, we present wavefront control results from an embedded wavefront control system developed around a commercially available high-speed camera and an AgilOptics Unifi MDM driver using USB 2.0 communications and the Linux development environment. This new product, ClariFast TM, combines our previous Clarifi TM product offering into a faster more streamlined version dedicated strictly to Hartmann Wavefront sensing.

  17. Analysis of wave propagation and wavefront sensing in target-in-the-loop beam control systems

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeri V.

    2004-10-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual intensity function (MIF) for the backscattered (returned) wave. The resulting evolution equation for the MIF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.

  18. In situ wavefront correction and its application to micromanipulation

    NASA Astrophysics Data System (ADS)

    Čižmár, Tomáš; Mazilu, Michael; Dholakia, Kishan

    2010-06-01

    In any optical system, distortions to a propagating wavefront reduce the spatial coherence of a light field, making it increasingly difficult to obtain the theoretical diffraction-limited spot size. Such aberrations are severely detrimental to optimal performance in imaging, nanosurgery, nanofabrication and micromanipulation, as well as other techniques within modern microscopy. We present a generic method based on complex modulation for true in situ wavefront correction that allows compensation of all aberrations along the entire optical train. The power of the method is demonstrated for the field of micromanipulation, which is very sensitive to wavefront distortions. We present direct trapping with optimally focused laser light carrying power of a fraction of a milliwatt as well as the first trapping through highly turbid and diffusive media. This opens up new perspectives for optical micromanipulation in colloidal and biological physics and may be useful for various forms of advanced imaging.

  19. Common-Path Interferometric Wavefront Sensing for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Wallace, James Kent

    2011-01-01

    This paper presents an optical configuration for a common-path phase-shifting interferometric wavefront sensor.1 2 This sensor has a host of attractive features which make it well suited for space-based adaptive optics. First, it is strictly reflective and therefore operates broadband, second it is common mode and therefore does not suffer from systematic errors (like vibration) that are typical in other interferometers, third it is a phase-shifting interferometer and therefore benefits from both the sensitivity of interferometric sensors as well as the noise rejection afforded by synchronous detection. Unlike the Shack-Hartman wavefront sensor, it has nearly uniform sensitivity to all pupil modes. Optical configuration, theory and simulations for such a system will be discussed along with predicted performance.

  20. Scintillation and phase anisoplanatism in Shack-Hartmann wavefront sensing.

    PubMed

    Robert, Clélia; Conan, Jean-Marc; Michau, Vincent; Fusco, Thierry; Vedrenne, Nicolas

    2006-03-01

    Adaptive optics provides a real-time compensation for atmospheric turbulence that severely limits the resolution of ground-based observation systems. The correction quality relies on a key component, that is, the wavefront sensor (WFS). When observing extended sources, WFS precision is limited by anisoplanatism effects. Anisoplanatism induces a variation of the turbulent phase and of the collected flux in the field of view. We study the effect of this phase and scintillation anisoplanatism on wavefront analysis. An analytical expression of the error induced is given in the Rytov regime. The formalism is applied to a solar and an endoatmospheric observation. Scintillation effects are generally disregarded, especially in astronomical conditions. We shall prove that this approximation is not valid with extended objects.

  1. Fixed mount wavefront sensor

    DOEpatents

    Neal, Daniel R.

    2000-01-01

    A rigid mount and method of mounting for a wavefront sensor. A wavefront dissector, such as a lenslet array, is rigidly mounted at a fixed distance relative to an imager, such as a CCD camera, without need for a relay imaging lens therebetween.

  2. Modified plenoptic camera for phase and amplitude wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Davis, Christopher C.

    2013-09-01

    Shack-Hartmann sensors have been widely applied in wavefront sensing. However, they are limited to measuring slightly distorted wavefronts whose local tilt doesn't surpass the numerical aperture of its micro-lens array and cross talk of incident waves on the mrcro-lens array should be strictly avoided. In medium to strong turbulence cases of optic communication, where large jitter in angle of arrival and local interference caused by break-up of beam are common phenomena, Shack-Hartmann sensors no longer serve as effective tools in revealing distortions in a signal wave. Our design of a modified Plenoptic Camera shows great potential in observing and extracting useful information from severely disturbed wavefronts. Furthermore, by separating complex interference patterns into several minor interference cases, it may also be capable of telling regional phase difference of coherently illuminated objects.

  3. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors.

    PubMed

    Liu, Tao; Thibos, Larry; Marin, Gildas; Hernandez, Martha

    2014-01-01

    Conventional aberration analysis by a Shack-Hartmann aberrometer is based on the implicit assumption that an injected probe beam reflects from a single fundus layer. In fact, the biological fundus is a thick reflector and therefore conventional analysis may produce errors of unknown magnitude. We developed a novel computational method to investigate this potential failure of conventional analysis. The Shack-Hartmann wavefront sensor was simulated by computer software and used to recover by two methods the known wavefront aberrations expected from a population of normally-aberrated human eyes and bi-layer fundus reflection. The conventional method determines the centroid of each spot in the SH data image, from which wavefront slopes are computed for least-squares fitting with derivatives of Zernike polynomials. The novel 'global' method iteratively adjusted the aberration coefficients derived from conventional centroid analysis until the SH image, when treated as a unitary picture, optimally matched the original data image. Both methods recovered higher order aberrations accurately and precisely, but only the global algorithm correctly recovered the defocus coefficients associated with each layer of fundus reflection. The global algorithm accurately recovered Zernike coefficients for mean defocus and bi-layer separation with maximum error <0.1%. The global algorithm was robust for bi-layer separation up to 2 dioptres for a typical SH wavefront sensor design. For 100 randomly generated test wavefronts with 0.7 D axial separation, the retrieved mean axial separation was 0.70 D with standard deviations (S.D.) of 0.002 D. Sufficient information is contained in SH data images to measure the dioptric thickness of dual-layer fundus reflection. The global algorithm is superior since it successfully recovered the focus value associated with both fundus layers even when their separation was too small to produce clearly separated spots, while the conventional analysis misrepresents the defocus component of the wavefront aberration as the mean defocus for the two reflectors. Our novel global algorithm is a promising method for SH data image analysis in clinical and visual optics research for human and animal eyes. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  4. Evaluating noise performance of the IUCAA sidecar drive electronics controller (ISDEC) based system for TMT on-instrument wavefront sensing (OIWFS) application

    NASA Astrophysics Data System (ADS)

    Burse, Mahesh; Chattopadhyay, Sabyasachi; Ramaprakash, A. N.; Sinha, Sakya; Prabhudesai, Swapnil; Punnadi, Sujit; Chordia, Pravin; Kohok, Abhay

    2016-07-01

    As a part of a design study for the On-Instrument Low Order Wave-front Sensor (OIWFS) for the TMT Infra-Red Imaging Spectrograph (IRIS), we recently evaluated the noise performance of a detector control system consisting of IUCAA SIDECAR DRIVE ELECRONICS CONTROLLER (ISDEC), SIDECAR ASIC and HAWAII-2RG (H2RG) MUX. To understand and improve the performance of this system to serve as a near infrared wavefront sensor, we implemented new read out modes like multiple regions of interest with differential multi-accumulate readout schemes for the HAWAII-2RG (H2RG) detector. In this system, the firmware running in SIDECAR ASIC programs the detector for ROI readout, reads the detector, processes the detector output and writes the digitized data into its internal memory. ISDEC reads the digitized data from ASIC, performs the differential multi-accumulate operations and then sends the processed data to a PC over a USB interface. A special loopback board was designed and used to measure and reduce the noise from SIDECAR ASIC DC biases2. We were able to reduce the mean r.m.s read noise of this system down to 1-2 e. for any arbitrary window frame of 4x4 size at frame rates below about 200 Hz.

  5. Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm.

    PubMed

    Zou, Weiyao; Qi, Xiaofeng; Burns, Stephen A

    2011-07-01

    We implemented a Lagrange-multiplier (LM)-based damped least-squares (DLS) control algorithm in a woofer-tweeter dual deformable-mirror (DM) adaptive optics scanning laser ophthalmoscope (AOSLO). The algorithm uses data from a single Shack-Hartmann wavefront sensor to simultaneously correct large-amplitude low-order aberrations by a woofer DM and small-amplitude higher-order aberrations by a tweeter DM. We measured the in vivo performance of high resolution retinal imaging with the dual DM AOSLO. We compared the simultaneous LM-based DLS dual DM controller with both single DM controller, and a successive dual DM controller. We evaluated performance using both wavefront (RMS) and image quality metrics including brightness and power spectrum. The simultaneous LM-based dual DM AO can consistently provide near diffraction-limited in vivo routine imaging of human retina.

  6. Methods for coherent lensless imaging and X-ray wavefront measurements

    NASA Astrophysics Data System (ADS)

    Guizar Sicairos, Manuel

    X-ray diffractive imaging is set apart from other high-resolution imaging techniques (e.g. scanning electron or atomic force microscopy) for its high penetration depth, which enables tomographic 3D imaging of thick samples and buried structures. Furthermore, using short x-ray pulses, it enables the capability to take ultrafast snapshots, giving a unique opportunity to probe nanoscale dynamics at femtosecond time scales. In this thesis we present improvements to phase retrieval algorithms, assess their performance through numerical simulations, and develop new methods for both imaging and wavefront measurement. Building on the original work by Faulkner and Rodenburg, we developed an improved reconstruction algorithm for phase retrieval with transverse translations of the object relative to the illumination beam. Based on gradient-based nonlinear optimization, this algorithm is capable of estimating the object, and at the same time refining the initial knowledge of the incident illumination and the object translations. The advantages of this algorithm over the original iterative transform approach are shown through numerical simulations. Phase retrieval has already shown substantial success in wavefront sensing at optical wavelengths. Although in principle the algorithms can be used at any wavelength, in practice the focus-diversity mechanism that makes optical phase retrieval robust is not practical to implement for x-rays. In this thesis we also describe the novel application of phase retrieval with transverse translations to the problem of x-ray wavefront sensing. This approach allows the characterization of the complex-valued x-ray field in-situ and at-wavelength and has several practical and algorithmic advantages over conventional focused beam measurement techniques. A few of these advantages include improved robustness through diverse measurements, reconstruction from far-field intensity measurements only, and significant relaxation of experimental requirements over other beam characterization approaches. Furthermore, we show that a one-dimensional version of this technique can be used to characterize an x-ray line focus produced by a cylindrical focusing element. We provide experimental demonstrations of the latter at hard x-ray wavelengths, where we have characterized the beams focused by a kinoform lens and an elliptical mirror. In both experiments the reconstructions exhibited good agreement with independent measurements, and in the latter a small mirror misalignment was inferred from the phase retrieval reconstruction. These experiments pave the way for the application of robust phase retrieval algorithms for in-situ alignment and performance characterization of x-ray optics for nanofocusing. We also present a study on how transverse translations help with the well-known uniqueness problem of one-dimensional phase retrieval. We also present a novel method for x-ray holography that is capable of reconstructing an image using an off-axis extended reference in a non-iterative computation, greatly generalizing an earlier approach by Podorov et al. The approach, based on the numerical application of derivatives on the field autocorrelation, was developed from first mathematical principles. We conducted a thorough theoretical study to develop technical and intuitive understanding of this technique and derived sufficient separation conditions required for an artifact-free reconstruction. We studied the effects of missing information in the Fourier domain, and of an imperfect reference, and we provide a signal-to-noise ratio comparison with the more traditional approach of Fourier transform holography. We demonstrated this new holographic approach through proof-of-principle optical experiments and later experimentally at soft x-ray wavelengths, where we compared its performance to Fourier transform holography, iterative phase retrieval and state-of-the-art zone-plate x-ray imaging techniques (scanning and full-field). Finally, we present a demonstration of the technique using a single 20 fs pulse from a high-harmonic table-top source. Holography with an extended reference is shown to provide fast, good quality images that are robust to noise and artifacts that arise from missing information due to a beam stop. (Abstract shortened by UMI.)

  7. Predictor-corrector framework for the sequential assembly of optical systems based on wavefront sensing.

    PubMed

    Schindlbeck, Christopher; Pape, Christian; Reithmeier, Eduard

    2018-04-16

    Alignment of optical components is crucial for the assembly of optical systems to ensure their full functionality. In this paper we present a novel predictor-corrector framework for the sequential assembly of serial optical systems. Therein, we use a hybrid optical simulation model that comprises virtual and identified component positions. The hybrid model is constantly adapted throughout the assembly process with the help of nonlinear identification techniques and wavefront measurements. This enables prediction of the future wavefront at the detector plane and therefore allows for taking corrective measures accordingly during the assembly process if a user-defined tolerance on the wavefront error is violated. We present a novel notation for the so-called hybrid model and outline the work flow of the presented predictor-corrector framework. A beam expander is assembled as demonstrator for experimental verification of the framework. The optical setup consists of a laser, two bi-convex spherical lenses each mounted to a five degree-of-freedom stage to misalign and correct components, and a Shack-Hartmann sensor for wavefront measurements.

  8. Light-field and holographic three-dimensional displays [Invited].

    PubMed

    Yamaguchi, Masahiro

    2016-12-01

    A perfect three-dimensional (3D) display that satisfies all depth cues in human vision is possible if a light field can be reproduced exactly as it appeared when it emerged from a real object. The light field can be generated based on either light ray or wavefront reconstruction, with the latter known as holography. This paper first provides an overview of the advances of ray-based and wavefront-based 3D display technologies, including integral photography and holography, and the integration of those technologies with digital information systems. Hardcopy displays have already been used in some applications, whereas the electronic display of a light field is under active investigation. Next, a fundamental question in this technology field is addressed: what is the difference between ray-based and wavefront-based methods for light-field 3D displays? In considering this question, it is of particular interest to look at the technology of holographic stereograms. The phase information in holography contributes to the resolution of a reconstructed image, especially for deep 3D images. Moreover, issues facing the electronic display system of light fields are discussed, including the resolution of the spatial light modulator, the computational techniques of holography, and the speckle in holographic images.

  9. DeMi Payload Progress Update and Adaptive Optics (AO) Control Comparisons – Meeting Space AO Requirements on a CubeSat

    NASA Astrophysics Data System (ADS)

    Grunwald, Warren; Holden, Bobby; Barnes, Derek; Allan, Gregory; Mehrle, Nicholas; Douglas, Ewan S.; Cahoy, Kerri

    2018-01-01

    The Deformable Mirror (DeMi) CubeSat mission utilizes an Adaptive Optics (AO) control loop to correct incoming wavefronts as a technology demonstration for space-based imaging missions, such as high contrast observations (Earthlike exoplanets) and steering light into core single mode fibers for amplification. While AO has been used extensively on ground based systems to correct for atmospheric aberrations, operating an AO system on-board a small satellite presents different challenges. The DeMi payload 140 actuator MEMS deformable mirror (DM) corrects the incoming wavefront in four different control modes: 1) internal observation with a Shack-Hartmann Wavefront Sensor (SHWFS), 2) internal observation with an image plane sensor, 3) external observation with a SHWFS, and 4) external observation with an image plane sensor. All modes have wavefront aberration from two main sources, time-invariant launch disturbances that have changed the optical path from the expected path when calibrated in the lab and very low temporal frequency thermal variations as DeMi orbits the Earth. The external observation modes has additional error from: the pointing precision error from the attitude control system and reaction wheel jitter. Updates on DeMi’s mechanical, thermal, electrical, and mission design are also presented. The analysis from the DeMi payload simulations and testing provides information on the design options when developing space-based AO systems.

  10. Comparison of the plenoptic sensor and the Shack-Hartmann sensor.

    PubMed

    Ko, Jonathan; Davis, Christopher C

    2017-05-01

    Adaptive optics has been successfully used for decades in the field of astronomy to correct for atmospheric turbulence. A well-developed example involves sensing the slightly distorted wavefronts with a Shack-Hartmann sensor and then correcting them with a phase conjugate device. While the Shack-Hartmann sensor has proven effective for astronomical purposes, it has been less successful for use in deep turbulence conditions often found in ground-to-ground-based optical systems. We have studied an alternative way to sense and correct distorted wavefronts using a plenoptic sensor. We review the design of the plenoptic sensor and directly compare it with the well-known Shack-Hartmann sensor. An experimental comparison of the plenoptic sensor and the Shack-Hartmann sensor is performed to highlight their differences in real-world atmospheric turbulence conditions.

  11. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE PAGES

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    2014-12-01

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  12. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  13. Accuracy of Shack-Hartmann wavefront sensor using a coherent wound fibre image bundle

    NASA Astrophysics Data System (ADS)

    Zheng, Jessica R.; Goodwin, Michael; Lawrence, Jon

    2018-03-01

    Shack-Hartmannwavefront sensors using wound fibre image bundles are desired for multi-object adaptive optical systems to provide large multiplex positioned by Starbugs. The use of a large-sized wound fibre image bundle provides the flexibility to use more sub-apertures wavefront sensor for ELTs. These compact wavefront sensors take advantage of large focal surfaces such as the Giant Magellan Telescope. The focus of this paper is to study the wound fibre image bundle structure defects effect on the centroid measurement accuracy of a Shack-Hartmann wavefront sensor. We use the first moment centroid method to estimate the centroid of a focused Gaussian beam sampled by a simulated bundle. Spot estimation accuracy with wound fibre image bundle and its structure impact on wavefront measurement accuracy statistics are addressed. Our results show that when the measurement signal-to-noise ratio is high, the centroid measurement accuracy is dominated by the wound fibre image bundle structure, e.g. tile angle and gap spacing. For the measurement with low signal-to-noise ratio, its accuracy is influenced by the read noise of the detector instead of the wound fibre image bundle structure defects. We demonstrate this both with simulation and experimentally. We provide a statistical model of the centroid and wavefront error of a wound fibre image bundle found through experiment.

  14. Wavefront shaping to correct intraocular scattering

    NASA Astrophysics Data System (ADS)

    Artal, Pablo; Arias, Augusto; Fernández, Enrique

    2018-02-01

    Cataracts is a common ocular pathology that increases the amount of intraocular scattering. It degrades the quality of vision by both blur and contrast reduction of the retinal images. In this work, we propose a non-invasive method, based on wavefront shaping (WS), to minimize cataract effects. For the experimental demonstration of the method, a liquid crystal on silicon (LCoS) spatial light modulator was used for both reproduction and reduction of the realistic cataracts effects. The LCoS area was separated in two halves conjugated with the eye's pupil by a telescope with unitary magnification. Thus, while the phase maps that induced programmable amounts of intraocular scattering (related to cataract severity) were displayed in a one half of the LCoS, sequentially testing wavefronts were displayed in the second one. Results of the imaging improvements were visually evaluated by subjects with no known ocular pathology seeing through the instrument. The diffracted intensity of exit pupil is analyzed for the feedback of the implemented algorithms in search for the optimum wavefront. Numerical and experimental results of the imaging improvements are presented and discussed.

  15. Decomposition of the optical transfer function: wavefront coding imaging systems

    NASA Astrophysics Data System (ADS)

    Muyo, Gonzalo; Harvey, Andy R.

    2005-10-01

    We describe the mapping of the optical transfer function (OTF) of an incoherent imaging system into a geometrical representation. We show that for defocused traditional and wavefront-coded systems the OTF can be represented as a generalized Cornu spiral. This representation provides a physical insight into the way in which wavefront coding can increase the depth of field of an imaging system and permits analytical quantification of salient OTF parameters, such as the depth of focus, the location of nulls, and amplitude and phase modulation of the wavefront-coding OTF.

  16. 3D imaging and wavefront sensing with a plenoptic objective

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, J. M.; Lüke, J. P.; López, R.; Marichal-Hernández, J. G.; Montilla, I.; Trujillo-Sevilla, J.; Femenía, B.; Puga, M.; López, M.; Fernández-Valdivia, J. J.; Rosa, F.; Dominguez-Conde, C.; Sanluis, J. C.; Rodríguez-Ramos, L. F.

    2011-06-01

    Plenoptic cameras have been developed over the last years as a passive method for 3d scanning. Several superresolution algorithms have been proposed in order to increase the resolution decrease associated with lightfield acquisition with a microlenses array. A number of multiview stereo algorithms have also been applied in order to extract depth information from plenoptic frames. Real time systems have been implemented using specialized hardware as Graphical Processing Units (GPUs) and Field Programmable Gates Arrays (FPGAs). In this paper, we will present our own implementations related with the aforementioned aspects but also two new developments consisting of a portable plenoptic objective to transform every conventional 2d camera in a 3D CAFADIS plenoptic camera, and the novel use of a plenoptic camera as a wavefront phase sensor for adaptive optics (OA). The terrestrial atmosphere degrades the telescope images due to the diffraction index changes associated with the turbulence. These changes require a high speed processing that justify the use of GPUs and FPGAs. Na artificial Laser Guide Stars (Na-LGS, 90km high) must be used to obtain the reference wavefront phase and the Optical Transfer Function of the system, but they are affected by defocus because of the finite distance to the telescope. Using the telescope as a plenoptic camera allows us to correct the defocus and to recover the wavefront phase tomographically. These advances significantly increase the versatility of the plenoptic camera, and provides a new contribution to relate the wave optics and computer vision fields, as many authors claim.

  17. Dynamic testbed demonstration of WFIRST coronagraph low order wavefront sensing and control (LOWFS/C)

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Cady, Eric; Seo, Byoung-Joon; An, Xin; Balasubramanian, Kunjithapatham; Kern, Brian; Lam, Raymond; Marx, David; Moody, Dwight; Mejia Prada, Camilo; Patterson, Keith; Poberezhskiy, Ilya; Shields, Joel; Sidick, Erkin; Tang, Hong; Trauger, John; Truong, Tuan; White, Victor; Wilson, Daniel; Zhou, Hanying

    2017-09-01

    To maintain the required performance of WFIRST Coronagraph in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The LOWFS/C uses a Zernike wavefront sensor (ZWFS) with the phase shifting disk combined with the starlight rejecting occulting mask. For wavefront error corrections, WFIRST LOWFS/C uses a fast steering mirror (FSM) for line-of-sight (LoS) correction, a focusing mirror for focus drift correction, and one of the two deformable mirrors (DM) for other low order wavefront error (WFE) correction. As a part of technology development and demonstration for WFIRST Coronagraph, a dedicated Occulting Mask Coronagraph (OMC) testbed has been built and commissioned. With its configuration similar to the WFIRST flight coronagraph instrument the OMC testbed consists of two coronagraph modes, Shaped Pupil Coronagraph (SPC) and Hybrid Lyot Coronagraph (HLC), a low order wavefront sensor (LOWFS), and an optical telescope assembly (OTA) simulator which can generate realistic LoS drift and jitter as well as low order wavefront error that would be induced by the WFIRST telescope's vibration and thermal changes. In this paper, we will introduce the concept of WFIRST LOWFS/C, describe the OMC testbed, and present the testbed results of LOWFS sensor performance. We will also present our recent results from the dynamic coronagraph tests in which we have demonstrated of using LOWFS/C to maintain the coronagraph contrast with the presence of WFIRST-like line-of-sight and low order wavefront disturbances.

  18. Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode infrared detectors.

    PubMed

    Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia

    2015-12-01

    Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays.

  19. Adaptive optics retinal imaging in the living mouse eye

    PubMed Central

    Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H.; Sharma, Robin; Libby, Richard T.; Williams, David R.

    2012-01-01

    Correction of the eye’s monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo. PMID:22574260

  20. Optical Design of the Developmental Cryogenic Active Telescope Testbed (DCATT)

    NASA Technical Reports Server (NTRS)

    Davila, Pam; Wilson, Mark; Young, Eric W.; Lowman, Andrew E.; Redding, David C.

    1997-01-01

    In the summer of 1996, three Study teams developed conceptual designs and mission architectures for the Next Generation Space Telescope (NGST). Each group highlighted areas of technology development that need to be further advanced to meet the goals of the NGST mission. The most important areas for future study included: deployable structures, lightweight optics, cryogenic optics and mechanisms, passive cooling, and on-orbit closed loop wavefront sensing and control. NASA and industry are currently planning to develop a series of ground testbeds and validation flights to demonstrate many of these technologies. The Deployed Cryogenic Active Telescope Testbed (DCATT) is a system level testbed to be developed at Goddard Space Flight Center in three phases over an extended period of time. This testbed will combine an actively controlled telescope with the hardware and software elements of a closed loop wavefront sensing and control system to achieve diffraction limited imaging at 2 microns. We will present an overview of the system level requirements, a discussion of the optical design, and results of performance analyses for the Phase 1 ambient concept for DCATT,

  1. Study of an instrument for sensing errors in a telescope wavefront

    NASA Technical Reports Server (NTRS)

    Golden, L. J.; Shack, R. V.; Slater, D. N.

    1973-01-01

    Partial results are presented of theoretical and experimental investigations of different focal plane sensor configurations for determining the error in a telescope wavefront. The coarse range sensor and fine range sensors are used in the experimentation. The design of a wavefront error simulator is presented along with the Hartmann test, the shearing polarization interferometer, the Zernike test, and the Zernike polarization test.

  2. Implementation of a rapid correction algorithm for adaptive optics using a plenoptic sensor

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2016-09-01

    Adaptive optics relies on the accuracy and speed of a wavefront sensor in order to provide quick corrections to distortions in the optical system. In weaker cases of atmospheric turbulence often encountered in astronomical fields, a traditional Shack-Hartmann sensor has proved to be very effective. However, in cases of stronger atmospheric turbulence often encountered near the surface of the Earth, atmospheric turbulence no longer solely causes small tilts in the wavefront. Instead, lasers passing through strong or "deep" atmospheric turbulence encounter beam breakup, which results in interference effects and discontinuities in the incoming wavefront. In these situations, a Shack-Hartmann sensor can no longer effectively determine the shape of the incoming wavefront. We propose a wavefront reconstruction and correction algorithm based around the plenoptic sensor. The plenoptic sensor's design allows it to match and exceed the wavefront sensing capabilities of a Shack-Hartmann sensor for our application. Novel wavefront reconstruction algorithms can take advantage of the plenoptic sensor to provide a rapid wavefront reconstruction necessary for real time turbulence. To test the integrity of the plenoptic sensor and its reconstruction algorithms, we use artificially generated turbulence in a lab scale environment to simulate the structure and speed of outdoor atmospheric turbulence. By analyzing the performance of our system with and without the closed-loop plenoptic sensor adaptive optics system, we can show that the plenoptic sensor is effective in mitigating real time lab generated atmospheric turbulence.

  3. Effect of DM Actuator Errors on the WFIRST/AFTA Coronagraph Contrast Performance

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shi, Fang

    2015-01-01

    The WFIRST/AFTA 2.4 m space telescope currently under study includes a stellar coronagraph for the imaging and the spectral characterization of extrasolar planets. The coronagraph employs two sequential deformable mirrors (DMs) to compensate for phase and amplitude errors in creating dark holes. DMs are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Working with a low-order wavefront-sensor the DM that is conjugate to a pupil can also be used to correct low-order wavefront drift during a scientific observation. However, not all actuators in a DM have the same gain. When using such a DM in low-order wavefront sensing and control subsystem, the actuator gain errors introduce high-spatial frequency errors to the DM surface and thus worsen the contrast performance of the coronagraph. We have investigated the effects of actuator gain errors and the actuator command digitization errors on the contrast performance of the coronagraph through modeling and simulations, and will present our results in this paper.

  4. Comparison of Simulated Contrast Performance of Different Phase Induced Amplitude Apodization (PIAA) Coronagraph Configurations

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Kern, Brian; Kuhnert, Andreas; Shaklan, Stuart

    2013-01-01

    We compare the broadband contrast performances of several Phase Induced Amplitude Apodization (PIAA) coronagraph configurations through modeling and simulations. The basic optical design of the PIAA coronagraph is the same as NASA's High Contrast Imaging Testbed (HCIT) setup at the Jet Propulsion Laboratory (JPL). Using a deformable mirror and a broadband wavefront sensing and control algorithm, we create a "dark hole" in the broadband point-spread function (PSF) with an inner working angle (IWA) of 2(f lambda/D)(sub sky). We evaluate two systems in parallel. One is a perfect system having a design PIAA output amplitude and not having any wavefront error at its exit-pupil. The other is a realistic system having a design PIAA output amplitude and the measured residual wavefront error. We also investigate the effect of Lyot stops of various sizes when a postapodizer is and is not present. Our simulations show that the best 7.5%-broadband contrast value achievable with the current PIAA coronagraph is approximately 1.5x10(exp -8).

  5. Anomalous Surface Wave Launching by Handedness Phase Control.

    PubMed

    Zhang, Xueqian; Xu, Yuehong; Yue, Weisheng; Tian, Zhen; Gu, Jianqiang; Li, Yanfeng; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2015-11-25

    Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Image registration for daylight adaptive optics.

    PubMed

    Hart, Michael

    2018-03-15

    Daytime use of adaptive optics (AO) at large telescopes is hampered by shot noise from the bright sky background. Wave-front sensing may use a sodium laser guide star observed through a magneto-optical filter to suppress the background, but the laser beacon is not sensitive to overall image motion. To estimate that, laser-guided AO systems generally rely on light from the object itself, collected through the full aperture of the telescope. Daylight sets a lower limit to the brightness of an object that may be tracked at rates sufficient to overcome the image jitter. Below that limit, wave-front correction on the basis of the laser alone will yield an image that is approximately diffraction limited but that moves randomly. I describe an iterative registration algorithm that recovers high-resolution long-exposure images in this regime from a rapid series of short exposures with very low signal-to-noise ratio. The technique takes advantage of the fact that in the photon noise limit there is negligible penalty in taking short exposures, and also that once the images are recorded, it is not necessary, as in the case of an AO tracker loop, to estimate the image motion correctly and quickly on every cycle. The algorithm is likely to find application in space situational awareness, where high-resolution daytime imaging of artificial satellites is important.

  7. Spectrally resolved single-shot wavefront sensing of broadband high-harmonic sources

    NASA Astrophysics Data System (ADS)

    Freisem, L.; Jansen, G. S. M.; Rudolf, D.; Eikema, K. S. E.; Witte, S.

    2018-03-01

    Wavefront sensors are an important tool to characterize coherent beams of extreme ultraviolet radiation. However, conventional Hartmann-type sensors do not allow for independent wavefront characterization of different spectral components that may be present in a beam, which limits their applicability for intrinsically broadband high-harmonic generation (HHG) sources. Here we introduce a wavefront sensor that measures the wavefronts of all the harmonics in a HHG beam in a single camera exposure. By replacing the mask apertures with transmission gratings at different orientations, we simultaneously detect harmonic wavefronts and spectra, and obtain sensitivity to spatiotemporal structure such as pulse front tilt as well. We demonstrate the capabilities of the sensor through a parallel measurement of the wavefronts of 9 harmonics in a wavelength range between 25 and 49 nm, with up to lambda/32 precision.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOREN,NEALL E.

    Wavefront curvature defocus effects occur in spotlight-mode SAR imagery when reconstructed via the well-known polar-formatting algorithm (PFA) under certain imaging scenarios. These include imaging at close range, using a very low radar center frequency, utilizing high resolution, and/or imaging very large scenes. Wavefront curvature effects arise from the unrealistic assumption of strictly planar wavefronts illuminating the imaged scene. This dissertation presents a method for the correction of wavefront curvature defocus effects under these scenarios, concentrating on the generalized: squint-mode imaging scenario and its computational aspects. This correction is accomplished through an efficient one-dimensional, image domain filter applied as a post-processingmore » step to PF.4. This post-filter, referred to as SVPF, is precalculated from a theoretical derivation of the wavefront curvature effect and varies as a function of scene location. Prior to SVPF, severe restrictions were placed on the imaged scene size in order to avoid defocus effects under these scenarios when using PFA. The SVPF algorithm eliminates the need for scene size restrictions when wavefront curvature effects are present, correcting for wavefront curvature in broadside as well as squinted collection modes while imposing little additional computational penalty for squinted images. This dissertation covers the theoretical development, implementation and analysis of the generalized, squint-mode SVPF algorithm (of which broadside-mode is a special case) and provides examples of its capabilities and limitations as well as offering guidelines for maximizing its computational efficiency. Tradeoffs between the PFA/SVPF combination and other spotlight-mode SAR image formation techniques are discussed with regard to computational burden, image quality, and imaging geometry constraints. It is demonstrated that other methods fail to exhibit a clear computational advantage over polar-formatting in conjunction with SVPF. This research concludes that PFA in conjunction with SVPF provides a computationally efficient spotlight-mode image formation solution that solves the wavefront curvature problem for most standoff distances and patch sizes, regardless of squint, resolution or radar center frequency. Additional advantages are that SVPF is not iterative and has no dependence on the visual contents of the scene: resulting in a deterministic computational complexity which typically adds only thirty percent to the overall image formation time.« less

  9. Three-dimensional imaging of cultural heritage artifacts with holographic printers

    NASA Astrophysics Data System (ADS)

    Kang, Hoonjong; Stoykova, Elena; Berberova, Nataliya; Park, Jiyong; Nazarova, Dimana; Park, Joo Sup; Kim, Youngmin; Hong, Sunghee; Ivanov, Branimir; Malinowski, Nikola

    2016-01-01

    Holography is defined as a two-steps process of capture and reconstruction of the light wavefront scattered from three-dimensional (3D) objects. Capture of the wavefront is possible due to encoding of both amplitude and phase in the hologram as a result of interference of the light beam coming from the object and mutually coherent reference beam. Three-dimensional imaging provided by holography motivates development of digital holographic imaging methods based on computer generation of holograms as a holographic display or a holographic printer. The holographic printing technique relies on combining digital 3D object representation and encoding of the holographic data with recording of analog white light viewable reflection holograms. The paper considers 3D contents generation for a holographic stereogram printer and a wavefront printer as a means of analogue recording of specific artifacts which are complicated objects with regards to conventional analog holography restrictions.

  10. Phase and amplitude modification of a laser beam by two deformable mirrors using conventional 4f image encryption techniques

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Rzasa, John Robertson; Davis, Christopher C.

    2017-08-01

    The image encryption and decryption technique using lens components and random phase screens has attracted a great deal of research interest in the past few years. In general, the optical encryption technique can translate a positive image into an image with nearly a white speckle pattern that is impossible to decrypt. However, with the right keys as conjugated random phase screens, the white noise speckle pattern can be decoded into the original image. We find that the fundamental ideas in image encryption can be borrowed and applied to carry out beam corrections through turbulent channels. Based on our detailed analysis, we show that by using two deformable mirrors arranged in similar fashions as in the image encryption technique, a large number of controllable phase and amplitude distribution patterns can be generated from a collimated Gaussian beam. Such a result can be further coupled with wavefront sensing techniques to achieve laser beam correction against turbulence distortions. In application, our approach leads to a new type of phase conjugation mirror that could be beneficial for directed energy systems.

  11. Iterative-Transform Phase Retrieval Using Adaptive Diversity

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A phase-diverse iterative-transform phase-retrieval algorithm enables high spatial-frequency, high-dynamic-range, image-based wavefront sensing. [The terms phase-diverse, phase retrieval, image-based, and wavefront sensing are defined in the first of the two immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] As described below, no prior phase-retrieval algorithm has offered both high dynamic range and the capability to recover high spatial-frequency components. Each of the previously developed image-based phase-retrieval techniques can be classified into one of two categories: iterative transform or parametric. Among the modifications of the original iterative-transform approach has been the introduction of a defocus diversity function (also defined in the cited companion article). Modifications of the original parametric approach have included minimizing alternative objective functions as well as implementing a variety of nonlinear optimization methods. The iterative-transform approach offers the advantage of ability to recover low, middle, and high spatial frequencies, but has disadvantage of having a limited dynamic range to one wavelength or less. In contrast, parametric phase retrieval offers the advantage of high dynamic range, but is poorly suited for recovering higher spatial frequency aberrations. The present phase-diverse iterative transform phase-retrieval algorithm offers both the high-spatial-frequency capability of the iterative-transform approach and the high dynamic range of parametric phase-recovery techniques. In implementation, this is a focus-diverse iterative-transform phaseretrieval algorithm that incorporates an adaptive diversity function, which makes it possible to avoid phase unwrapping while preserving high-spatial-frequency recovery. The algorithm includes an inner and an outer loop (see figure). An initial estimate of phase is used to start the algorithm on the inner loop, wherein multiple intensity images are processed, each using a different defocus value. The processing is done by an iterative-transform method, yielding individual phase estimates corresponding to each image of the defocus-diversity data set. These individual phase estimates are combined in a weighted average to form a new phase estimate, which serves as the initial phase estimate for either the next iteration of the iterative-transform method or, if the maximum number of iterations has been reached, for the next several steps, which constitute the outerloop portion of the algorithm. The details of the next several steps must be omitted here for the sake of brevity. The overall effect of these steps is to adaptively update the diversity defocus values according to recovery of global defocus in the phase estimate. Aberration recovery varies with differing amounts as the amount of diversity defocus is updated in each image; thus, feedback is incorporated into the recovery process. This process is iterated until the global defocus error is driven to zero during the recovery process. The amplitude of aberration may far exceed one wavelength after completion of the inner-loop portion of the algorithm, and the classical iterative transform method does not, by itself, enable recovery of multi-wavelength aberrations. Hence, in the absence of a means of off-loading the multi-wavelength portion of the aberration, the algorithm would produce a wrapped phase map. However, a special aberration-fitting procedure can be applied to the wrapped phase data to transfer at least some portion of the multi-wavelength aberration to the diversity function, wherein the data are treated as known phase values. In this way, a multiwavelength aberration can be recovered incrementally by successively applying the aberration-fitting procedure to intermediate wrapped phase maps. During recovery, as more of the aberration is transferred to the diversity function following successive iterations around the ter loop, the estimated phase ceases to wrap in places where the aberration values become incorporated as part of the diversity function. As a result, as the aberration content is transferred to the diversity function, the phase estimate resembles that of a reference flat.

  12. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.

    2015-11-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: self­interference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  13. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Byoungho; Kim, Myung K.

    2015-03-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  14. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    PubMed

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  15. Applications of variable focus liquid lenses for curvature wave-front sensors in astronomy

    NASA Astrophysics Data System (ADS)

    Fuentes-Fernández, J.; Cuevas, S.; Alvarez-Nuñez, L. C.; Watson, A. M.

    2014-08-01

    Curvature wavefront sensors obtain the wave-front aberrations from two defocused intensity images at each side of the pupil plane. Typically, when high modulation speeds are required, as it is the case with Adaptive Optics, that defocusing is done with a fast vibrating membrane mirror. We propose an alternative defocusing mechanism based on an electrowetting variable focus liquid lens. The use of such lenses may perform the required focus modulation without the need of extra moving parts, reducing the overall size of the system.

  16. Correction of large amplitude wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Cornelissen, S. A.; Bierden, P. A.; Bifano, T. G.; Webb, R. H.; Burns, S.; Pappas, S.

    2005-12-01

    Recently, a number of research groups around the world have developed ophthalmic instruments capable of in vivo diffraction limited imaging of the human retina. Adaptive optics was used in these systems to compensate for the optical aberrations of the eye and provide high contrast, high resolution images. Such compensation uses a wavefront sensor and a wavefront corrector (usually a deformable mirror) coordinated in a closed- loop control system that continuously works to counteract aberrations. While those experiments produced promising results, the deformable mirrors have had insufficient range of motion to permit full correction of the large amplitude aberrations of the eye expected in a normal population of human subjects. Other retinal imaging systems developed to date with MEMS (micro-electromechanical systems) DMs suffer similar limitations. This paper describes the design, manufacture and testing of a 6um stroke polysilicon surface micromachined deformable mirror that, coupled with an new optical method to double the effective stroke of the MEMS-DM, will permit diffraction-limited retinal imaging through dilated pupils in at least 90% of the human population. A novel optical design using spherical mirrors provides a double pass of the wavefront over the deformable mirror such that a 6um mirror displacement results in 12um of wavefront compensation which could correct for 24um of wavefront error. Details of this design are discussed. Testing of the effective wavefront modification was performed using a commercial wavefront sensor. Results are presented demonstrating improvement in the amplitude of wavefront control using an existing high degree of freedom MEMS deformable mirror.

  17. Linear dependence between the wavefront gradient and the masked intensity for the point source with a CCD sensor

    NASA Astrophysics Data System (ADS)

    Yang, Huizhen; Ma, Liang; Wang, Bin

    2018-01-01

    In contrast to the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system doesn't need a WFS to measure the wavefront aberrations. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. The model-based WFSless system has a great potential in real-time correction applications because of its fast convergence. The control algorithm of the model-based WFSless system is based on an important theory result that is the linear relation between the Mean-Square Gradient (MSG) magnitude of the wavefront aberration and the second moment of the masked intensity distribution in the focal plane (also called as Masked Detector Signal-MDS). The linear dependence between MSG and MDS for the point source imaging with a CCD sensor will be discussed from theory and simulation in this paper. The theory relationship between MSG and MDS is given based on our previous work. To verify the linear relation for the point source, we set up an imaging model under atmospheric turbulence. Additionally, the value of MDS will be deviate from that of theory because of the noise of detector and further the deviation will affect the correction effect. The theory results under noise will be obtained through theoretical derivation and then the linear relation between MDS and MDS under noise will be discussed through the imaging model. Results show the linear relation between MDS and MDS under noise is also maintained well, which provides a theoretical support to applications of the model-based WFSless system.

  18. Fast correction approach for wavefront sensorless adaptive optics based on a linear phase diversity technique.

    PubMed

    Yue, Dan; Nie, Haitao; Li, Ye; Ying, Changsheng

    2018-03-01

    Wavefront sensorless (WFSless) adaptive optics (AO) systems have been widely studied in recent years. To reach optimum results, such systems require an efficient correction method. This paper presents a fast wavefront correction approach for a WFSless AO system mainly based on the linear phase diversity (PD) technique. The fast closed-loop control algorithm is set up based on the linear relationship between the drive voltage of the deformable mirror (DM) and the far-field images of the system, which is obtained through the linear PD algorithm combined with the influence function of the DM. A large number of phase screens under different turbulence strengths are simulated to test the performance of the proposed method. The numerical simulation results show that the method has fast convergence rate and strong correction ability, a few correction times can achieve good correction results, and can effectively improve the imaging quality of the system while needing fewer measurements of CCD data.

  19. Development of a scalable generic platform for adaptive optics real time control

    NASA Astrophysics Data System (ADS)

    Surendran, Avinash; Burse, Mahesh P.; Ramaprakash, A. N.; Parihar, Padmakar

    2015-06-01

    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well-defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.

  20. Bimorph deformable mirror: an appropriate wavefront corrector for retinal imaging?

    NASA Astrophysics Data System (ADS)

    Laut, Sophie; Jones, Steve; Park, Hyunkyu; Horsley, David A.; Olivier, Scot; Werner, John S.

    2005-11-01

    The purpose of this study was to evaluate the performance of a bimorph deformable mirror from AOptix, inserted into an adaptive optics system designed for in-vivo retinal imaging at high resolution. We wanted to determine its suitability as a wavefront corrector for vision science and ophthalmological instrumentation. We presented results obtained in a closed-loop system, and compared them with previous open-loop performance measurements. Our goal was to obtain precise wavefront reconstruction with rapid convergence of the control algorithm. The quality of the reconstruction was expressed in terms of root-mean-squared wavefront residual error (RMS), and number of frames required to perform compensation. Our instrument used a Hartmann-Shack sensor for the wavefront measurements. We also determined the precision and ability of the deformable mirror to compensate the most common types of aberrations present in the human eye (defocus, cylinder, astigmatism and coma), and the quality of its correction, in terms of maximum amplitude of the corrected wavefront. In addition to wavefront correction, we had also used the closed-loop system to generate an arbitrary aberration pattern by entering the desired Hartmann-Shack centroid locations as input to the AO controller. These centroid locations were computed in Matlab for a user-defined aberration pattern, allowing us to test the ability of the DM to generate and compensate for various aberrations. We conclude that this device, in combination with another DM based on Micro-Electro Mechanical Systems (MEMS) technology, may provide better compensation of the higher-order ocular wavefront aberrations of the human eye

  1. SAPHIRA detector for infrared wavefront sensing

    NASA Astrophysics Data System (ADS)

    Finger, Gert; Baker, Ian; Alvarez, Domingo; Ives, Derek; Mehrgan, Leander; Meyer, Manfred; Stegmeier, Jörg; Weller, Harald J.

    2014-08-01

    The only way to overcome the CMOS noise barrier of near infrared sensors used for wavefront sensing and fringe tracking is the amplification of the photoelectron signal inside the infrared pixel by means of the avalanche gain. In 2007 ESO started a program at Selex to develop near infrared electron avalanche photodiode arrays (eAPD) for wavefront sensing and fringe tracking. In a first step the cutoff wavelength was reduced from 4.5 micron to 2.5 micron in order to verify that the dark current scales with the bandgap and can be reduced to less than one electron/ms, the value required for wavefront sensing. The growth technology was liquid phase epitaxy (LPE) with annular diodes based on the loophole interconnect technology. The arrays required deep cooling to 40K to achieve acceptable cosmetic performance at high APD gain. The second step was to develop a multiplexer tailored to the specific application of the GRAVITY instrument wavefront sensors and the fringe tracker. The pixel format is 320x256 pixels. The array has 32 parallel video outputs which are arranged in such a way that the full multiplex advantage is available also for small subwindows. Nondestructive readout schemes with subpixel sampling are possible. This reduces the readout noise at high APD gain well below the subelectron level at frame rates of 1 KHz. The third step was the change of the growth technology from liquid phase epitaxy to metal organic vapour phase epitaxy (MOVPE). This growth technology allows the band structure and doping to be controlled on a 0.1μm scale and provides more flexibility for the design of diode structures. The bandgap can be varied for different layers of Hg(1-x)CdxTe. It is possible to make heterojunctions and apply solid state engineering techniques. The change to MOVPE resulted in a dramatic improvement in the cosmetic quality with 99.97 % operable pixels at an operating temperature of 85K. Currently this sensor is deployed in the 4 wavefront sensors and in the fringe tracker of the VLT instrument GRAVITY. Initial results will be presented. An outlook will be given on the potential of APD technology to be employed in large format near infrared science detectors. Several of the results presented here have also been shown to a different audience at the Scientific Detector Workshop in October 2013 in Florence but this paper has been updated with new results [1].

  2. Diffraction-limited imaging with very large telescopes; Proceedings of the NATO Advanced Study Institute, Cargese, France, Sept. 13-23, 1988

    NASA Astrophysics Data System (ADS)

    Alloin, D. M.; Mariotti, J.-M.

    Recent advances in optics and observation techniques for very large astronomical telescopes are discussed in reviews and reports. Topics addressed include Fourier optics and coherence, optical propagation and image formation through a turbulent atmosphere, radio telescopes, continuously deformable telescopes for optical interferometry (I), amplitude estimation from speckle I, noise calibration of speckle imagery, and amplitude estimation from diluted-array I. Consideration is given to first-order imaging methods, speckle imaging with the PAPA detector and the Knox-Thompson algorithm, phase-closure imaging, real-time wavefront sensing and adaptive optics, differential I, astrophysical programs for high-angular-resolution optical I, cophasing telescope arrays, aperture synthesis for space observatories, and lunar occultations for marcsec resolution.

  3. LQG control of a deformable mirror adaptive optics system with time-delayed measurements

    NASA Astrophysics Data System (ADS)

    Anderson, David J.

    1991-12-01

    This thesis proposes a linear quadratic Gaussian (LQG) control law for a ground-based deformable mirror adaptive optics system. The incoming image wavefront is distorted, primarily in phase, due to the turbulent effects of the earth's atmosphere. The adaptive optics system attempts to compensate for the distortion with a deformable mirror. A Hartman wavefront sensor measures the degree of distortion in the image wavefront. The measurements are input to a Kalman filter which estimates the system states. The state estimates are processed by a linear quadratic regulator which generates the appropriate control voltages to apply to the deformable mirror actuators. The dynamics model for the atmospheric phase distortion consists of 14 Zernike coefficient states; each modeled as a first-order linear time-invariant shaping filter driven by zero-mean white Gaussian noise. The dynamics of the deformable mirror are also model as 14 Zernike coefficients with first-order deterministic dynamics. A significant reduction in total wavefront phase distortion is achieved in the presence of time-delayed measurements. Wavefront sensor sampling rate is the major factor limiting system performance. The Multimode Simulation for Optimal Filter Evaluation (MSOFE) software is the performance evaluation tool of choice for this research.

  4. Simple method based on intensity measurements for characterization of aberrations from micro-optical components.

    PubMed

    Perrin, Stephane; Baranski, Maciej; Froehly, Luc; Albero, Jorge; Passilly, Nicolas; Gorecki, Christophe

    2015-11-01

    We report a simple method, based on intensity measurements, for the characterization of the wavefront and aberrations produced by micro-optical focusing elements. This method employs the setup presented earlier in [Opt. Express 22, 13202 (2014)] for measurements of the 3D point spread function, on which a basic phase-retrieval algorithm is applied. This combination allows for retrieval of the wavefront generated by the micro-optical element and, in addition, quantification of the optical aberrations through the wavefront decomposition with Zernike polynomials. The optical setup requires only an in-motion imaging system. The technique, adapted for the optimization of micro-optical component fabrication, is demonstrated by characterizing a planoconvex microlens.

  5. Wavefront sensing, control, and pointing

    NASA Technical Reports Server (NTRS)

    Pitts, Thomas; Sevaston, George; Agronin, Michael; Bely, Pierre; Colavita, Mark; Clampin, Mark; Harvey, James; Idell, Paul; Sandler, Dave; Ulmer, Melville

    1992-01-01

    A majority of future NASA astrophysics missions from orbiting interferometers to 16-m telescopes on the Moon have, as a common requirement, the need to bring light from a large entrance aperture to the focal plane in a way that preserves the spatial coherence properties of the starlight. Only by preserving the phase of the incoming wavefront, can many scientific observations be made, observations that range from measuring the red shift of quasi-stellar objects (QSO's) to detecting the IR emission of a planet in orbit around another star. New technologies for wavefront sensing, control, and pointing hold the key to advancing our observatories of the future from those already launched or currently under development. As the size of the optical system increases, either to increase the sensitivity or angular resolution of the instrument, traditional technologies for maintaining optical wavefront accuracy become prohibitively expensive or completely impractical. For space-based instruments, the low mass requirement and the large temperature excursions further challenge existing technologies. The Hubble Space Telescope (HST) is probably the last large space telescope to rely on passive means to keep its primary optics stable and the optical system aligned. One needs only look to the significant developments in wavefront sensing, control, and pointing that have occurred over the past several years to appreciate the potential of this technology for transforming the capability of future space observatories. Future developments in space-borne telescopes will be based in part on developments in ground-based systems. Telescopes with rigid primary mirrors much larger than 5 m in diameter are impractical because of gravity loading. New technologies are now being introduced, such as active optics, that address the scale problem and that allow very large telescopes to be built. One approach is a segmented design such as that being pioneered by the W.M. Keck telescope now under construction at the Mauna Kea Observatory. It consists of 36 hexagonal mirror segments, supported on a framework structure, which are positioned by actuators located between the structure and the mirrors. The figure of the telescope is initialized by making observations of a bright star using a Shack Hartmann sensor integrated with a white light interferometer. Then, using sensed data from the mirror edges to control these actuators, the figure of the mosaic of 36 segments is maintained as if it were a rigid primary mirror. Another active optics approach is the use of a thin meniscus mirror with actuators. This technique was demonstrated on the European Southern Observatory's New Technology Telescope (NTT) and is planned for use in the Very Large Telescope (consists of four 8-m apertures), which is now entering the design phase.

  6. Quantitative optical imaging and sensing by joint design of point spread functions and estimation algorithms

    NASA Astrophysics Data System (ADS)

    Quirin, Sean Albert

    The joint application of tailored optical Point Spread Functions (PSF) and estimation methods is an important tool for designing quantitative imaging and sensing solutions. By enhancing the information transfer encoded by the optical waves into an image, matched post-processing algorithms are able to complete tasks with improved performance relative to conventional designs. In this thesis, new engineered PSF solutions with image processing algorithms are introduced and demonstrated for quantitative imaging using information-efficient signal processing tools and/or optical-efficient experimental implementations. The use of a 3D engineered PSF, the Double-Helix (DH-PSF), is applied as one solution for three-dimensional, super-resolution fluorescence microscopy. The DH-PSF is a tailored PSF which was engineered to have enhanced information transfer for the task of localizing point sources in three dimensions. Both an information- and optical-efficient implementation of the DH-PSF microscope are demonstrated here for the first time. This microscope is applied to image single-molecules and micro-tubules located within a biological sample. A joint imaging/axial-ranging modality is demonstrated for application to quantifying sources of extended transverse and axial extent. The proposed implementation has improved optical-efficiency relative to prior designs due to the use of serialized cycling through select engineered PSFs. This system is demonstrated for passive-ranging, extended Depth-of-Field imaging and digital refocusing of random objects under broadband illumination. Although the serialized engineered PSF solution is an improvement over prior designs for the joint imaging/passive-ranging modality, it requires the use of multiple PSFs---a potentially significant constraint. Therefore an alternative design is proposed, the Single-Helix PSF, where only one engineered PSF is necessary and the chromatic behavior of objects under broadband illumination provides the necessary information transfer. The matched estimation algorithms are introduced along with an optically-efficient experimental system to image and passively estimate the distance to a test object. An engineered PSF solution is proposed for improving the sensitivity of optical wave-front sensing using a Shack-Hartmann Wave-front Sensor (SHWFS). The performance limits of the classical SHWFS design are evaluated and the engineered PSF system design is demonstrated to enhance performance. This system is fabricated and the mechanism for additional information transfer is identified.

  7. Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonseung; Lee, Peter; Jo, YoungJu; Lee, KyeoReh; Tuchin, Valery V.; Jeong, Yong; Park, YongKeun

    2016-12-01

    We demonstrate that simultaneous application of optical clearing agents (OCAs) and complex wavefront shaping in optical coherence tomography (OCT) can provide significant enhancement of penetration depth and imaging quality. OCA reduces optical inhomogeneity of a highly scattering sample, and the wavefront shaping of illumination light controls multiple scattering, resulting in an enhancement of the penetration depth and signal-to-noise ratio. A tissue phantom study shows that concurrent applications of OCA and wavefront shaping successfully operate in OCT imaging. The penetration depth enhancement is further demonstrated for ex vivo mouse ears, revealing hidden structures inaccessible with conventional OCT imaging.

  8. Space-Based Observation Technology

    DTIC Science & Technology

    2000-10-01

    Conan, V. Michau, and S. Salem . Regularized multiframe myopic deconvolution from wavefront sensing. In Propagation through the Atmosphere III...specified false alarm rate PFA . Proceeding with curving fitting, one obtains a best-fit curve “10.1y14.2 - 0.2” as the detector for the target

  9. Model-Based Wavefront Control for CCAT

    NASA Technical Reports Server (NTRS)

    Redding, David; Lou, John Z.; Kissil, Andy; Bradford, Matt; Padin, Steve; Woody, David

    2011-01-01

    The 25-m aperture CCAT submillimeter-wave telescope will have a primary mirror that is divided into 162 individual segments, each of which is provided with 3 positioning actuators. CCAT will be equipped with innovative Imaging Displacement Sensors (IDS) inexpensive optical edge sensors capable of accurately measuring all segment relative motions. These measurements are used in a Kalman-filter-based Optical State Estimator to estimate wavefront errors, permitting use of a minimum-wavefront controller without direct wavefront measurement. This controller corrects the optical impact of errors in 6 degrees of freedom per segment, including lateral translations of the segments, using only the 3 actuated degrees of freedom per segment. The global motions of the Primary and Secondary Mirrors are not measured by the edge sensors. These are controlled using a gravity-sag look-up table. Predicted performance is illustrated by simulated response to errors such as gravity sag.

  10. Implementation and on-sky results of an optimal wavefront controller for the MMT NGS adaptive optics system

    NASA Astrophysics Data System (ADS)

    Powell, Keith B.; Vaitheeswaran, Vidhya

    2010-07-01

    The MMT observatory has recently implemented and tested an optimal wavefront controller for the NGS adaptive optics system. Open loop atmospheric data collected at the telescope is used as the input to a MATLAB based analytical model. The model uses nonlinear constrained minimization to determine controller gains and optimize the system performance. The real-time controller performing the adaptive optics close loop operation is implemented on a dedicated high performance PC based quad core server. The controller algorithm is written in C and uses the GNU scientific library for linear algebra. Tests at the MMT confirmed the optimal controller significantly reduced the residual RMS wavefront compared with the previous controller. Significant reductions in image FWHM and increased peak intensities were obtained in J, H and K-bands. The optimal PID controller is now operating as the baseline wavefront controller for the MMT NGS-AO system.

  11. Status of the ARGOS project

    NASA Astrophysics Data System (ADS)

    Rabien, Sebastian; Barl, Lothar; Beckmann, Udo; Bonaglia, Marco; Borelli, José Luis; Brynnel, Joar; Buschkamp, Peter; Busoni, Lorenzo; Christou, Julian; Connot, Claus; Davies, Richard; Deysenroth, Matthias; Esposito, Simone; Gässler, Wolfgang; Gemperlein, Hans; Hart, Michael; Kulas, Martin; Lefebvre, Michael; Lehmitz, Michael; Mazzoni, Tommaso; Nussbaum, Edmund; Orban de Xivry, Gilles; Peter, Diethard; Quirrenbach, Andreas; Raab, Walfried; Rahmer, Gustavo; Storm, Jesper; Ziegleder, Julian

    2014-07-01

    ARGOS is the Laser Guide Star and Wavefront sensing facility for the Large Binocular Telescope. With first laser light on sky in 2013, the system is currently undergoing commissioning at the telescope. We present the overall status and design, as well as first results on sky. Aiming for a wide field ground layer correction, ARGOS is designed as a multi- Rayleigh beacon adaptive optics system. A total of six powerful pulsed lasers are creating the laser guide stars in constellations above each of the LBTs primary mirrors. With a range gated detection in the wavefront sensors, and the adaptive correction by the deformable secondary's, we expect ARGOS to enhance the image quality over a large range of seeing conditions. With the two wide field imaging and spectroscopic instruments LUCI1 and LUCI2 as receivers, a wide range of scientific programs will benefit from ARGOS. With an increased resolution, higher encircled energy, both imaging and MOS spectroscopy will be boosted in signal to noise by a large amount. Apart from the wide field correction ARGOS delivers in its ground layer mode, we already foresee the implementation of a hybrid Sodium with Rayleigh beacon combination for a diffraction limited AO performance.

  12. Adaptive optics for the ESO-VLT

    NASA Astrophysics Data System (ADS)

    Merkle, Fritz

    1989-04-01

    This paper discusses adaptive optics, its performance, and its requirements for applications in astronomy to overcome limitations due to atmospheric turbulence. Guidelines for the implementation of these devices in telescopes are given, in particular for the Very Large Telescope (VLT) at ESO. It is intended to equip each one of the four 8-m telescopes of the VLT, which are arranged in a linear array with an independent adaptive optical system. These systems will serve the individual and the combined coude foci. A small-scale prototype adaptive system is under development. It is equipped with a 19-piezoelectric-actuator deformable mirror, a Shack-Hartmann-type wavefront sensor, and a dedicated wavefront computer for closing the feedback loop. This system is based on a polychromatic approach; i.e., it senses the wavefront in the visible, but the adaptive correction loop works at 3-5 microns.

  13. Use of localized performance-based functions for the specification and correction of hybrid imaging systems

    NASA Astrophysics Data System (ADS)

    Lisson, Jerold B.; Mounts, Darryl I.; Fehniger, Michael J.

    1992-08-01

    Localized wavefront performance analysis (LWPA) is a system that allows the full utilization of the system optical transfer function (OTF) for the specification and acceptance of hybrid imaging systems. We show that LWPA dictates the correction of wavefront errors with the greatest impact on critical imaging spatial frequencies. This is accomplished by the generation of an imaging performance map-analogous to a map of the optic pupil error-using a local OTF. The resulting performance map a function of transfer function spatial frequency is directly relatable to the primary viewing condition of the end-user. In addition to optimizing quality for the viewer it will be seen that the system has the potential for an improved matching of the optical and electronic bandpass of the imager and for the development of more realistic acceptance specifications. 1. LOCAL WAVEFRONT PERFORMANCE ANALYSIS The LWPA system generates a local optical quality factor (LOQF) in the form of a map analogous to that used for the presentation and evaluation of wavefront errors. In conjunction with the local phase transfer function (LPTF) it can be used for maximally efficient specification and correction of imaging system pupil errors. The LOQF and LPTF are respectively equivalent to the global modulation transfer function (MTF) and phase transfer function (PTF) parts of the OTF. The LPTF is related to difference of the average of the errors in separated regions of the pupil. Figure

  14. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited

    PubMed Central

    Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Jian, Yifan; Verhaegen, Michel; Sarunic, Marinko V.

    2017-01-01

    In this report, which is an international collaboration of OCT, adaptive optics, and control research, we demonstrate the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm to guide the image based optimization for wavefront sensorless adaptive optics (WFSL-AO) OCT for in vivo human retinal imaging. The ocular aberrations were corrected using a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators. The DONE algorithm succeeded in drastically improving image quality and the OCT signal intensity, up to a factor seven, while achieving a computational time of 1 ms per iteration, making it applicable for many high speed applications. We demonstrate the correction of five aberrations using 70 iterations of the DONE algorithm performed over 2.8 s of continuous volumetric OCT acquisition. Data acquired from an imaging phantom and in vivo from human research volunteers are presented. PMID:28736670

  15. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited].

    PubMed

    Verstraete, Hans R G W; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Jian, Yifan; Verhaegen, Michel; Sarunic, Marinko V

    2017-04-01

    In this report, which is an international collaboration of OCT, adaptive optics, and control research, we demonstrate the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm to guide the image based optimization for wavefront sensorless adaptive optics (WFSL-AO) OCT for in vivo human retinal imaging. The ocular aberrations were corrected using a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators. The DONE algorithm succeeded in drastically improving image quality and the OCT signal intensity, up to a factor seven, while achieving a computational time of 1 ms per iteration, making it applicable for many high speed applications. We demonstrate the correction of five aberrations using 70 iterations of the DONE algorithm performed over 2.8 s of continuous volumetric OCT acquisition. Data acquired from an imaging phantom and in vivo from human research volunteers are presented.

  16. Design and implementation of a scene-dependent dynamically selfadaptable wavefront coding imaging system

    NASA Astrophysics Data System (ADS)

    Carles, Guillem; Ferran, Carme; Carnicer, Artur; Bosch, Salvador

    2012-01-01

    A computational imaging system based on wavefront coding is presented. Wavefront coding provides an extension of the depth-of-field at the expense of a slight reduction of image quality. This trade-off results from the amount of coding used. By using spatial light modulators, a flexible coding is achieved which permits it to be increased or decreased as needed. In this paper a computational method is proposed for evaluating the output of a wavefront coding imaging system equipped with a spatial light modulator, with the aim of thus making it possible to implement the most suitable coding strength for a given scene. This is achieved in an unsupervised manner, thus the whole system acts as a dynamically selfadaptable imaging system. The program presented here controls the spatial light modulator and the camera, and also processes the images in a synchronised way in order to implement the dynamic system in real time. A prototype of the system was implemented in the laboratory and illustrative examples of the performance are reported in this paper. Program summaryProgram title: DynWFC (Dynamic WaveFront Coding) Catalogue identifier: AEKC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 483 No. of bytes in distributed program, including test data, etc.: 2 437 713 Distribution format: tar.gz Programming language: Labview 8.5 and NI Vision and MinGW C Compiler Computer: Tested on PC Intel ® Pentium ® Operating system: Tested on Windows XP Classification: 18 Nature of problem: The program implements an enhanced wavefront coding imaging system able to adapt the degree of coding to the requirements of a specific scene. The program controls the acquisition by a camera, the display of a spatial light modulator and the image processing operations synchronously. The spatial light modulator is used to implement the phase mask with flexibility given the trade-off between depth-of-field extension and image quality achieved. The action of the program is to evaluate the depth-of-field requirements of the specific scene and subsequently control the coding established by the spatial light modulator, in real time.

  17. Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal.

    PubMed

    Mishra, Sanjay K; Bhatt, Rahul; Mohan, Devendra; Gupta, Arun Kumar; Sharma, Anurag

    2009-11-20

    The process of Zernike mode detection with a Shack-Hartmann wavefront sensor is computationally extensive. A holographic modal wavefront sensor has therefore evolved to process the data optically by use of the concept of equal and opposite phase bias. Recently, a multiplexed computer-generated hologram (CGH) technique was developed in which the output is in the form of bright dots that specify the presence and strength of a specific Zernike mode. We propose a wavefront sensor using the concept of phase biasing in the latter technique such that the output is a pair of bright dots for each mode to be sensed. A normalized difference signal between the intensities of the two dots is proportional to the amplitude of the sensed Zernike mode. In our method the number of holograms to be multiplexed is decreased, thereby reducing the modal cross talk significantly. We validated the proposed method through simulation studies for several cases. The simulation results demonstrate simultaneous wavefront detection of lower-order Zernike modes with a resolution better than lambda/50 for the wide measurement range of +/-3.5lambda with much reduced cross talk at high speed.

  18. Multiple Spatial Frequencies Pyramid WaveFront Sensing

    NASA Astrophysics Data System (ADS)

    Ragazzoni, Roberto; Vassallo, Daniele; Dima, Marco; Portaluri, Elisa; Bergomi, Maria; Greggio, Davide; Viotto, Valentina; Gullieuszik, Marco; Biondi, Federico; Carolo, Elena; Chinellato, Simonetta; Farinato, Jacopo; Magrin, Demetrio; Marafatto, Luca

    2017-11-01

    A modification of the pyramid wavefront sensor is described. In this conceptually new class of devices, the perturbations are split at the level of the focal plane depending upon their spatial frequencies, and then measured separately. The aim of this approach is to increase the accuracy in the determination of some range of spatial frequency perturbations, or a certain classes of modes, disentangling them from the noise associated to the Poissonian fluctuations of the light coming from the perturbations outside of the range of interest or from the background in the pupil planes; the latter case specifically when the pyramid wavefront sensor is used with a large modulation. While the limits and the effectiveness of this approach should be further investigated, a number of variations on the concept are shown, including a generalization of the spatial filtering in the point-diffraction wavefront sensor. The simplest application, a generalization to the pyramid of the well-known spatially filtering in wavefront sensing, is showing promise as a significant limiting magnitude advance. Applications are further speculated in the area of extreme adaptive optics and when serving spectroscopic instrumentation where “light in the bucket” rather than Strehl performance is required.

  19. Polychromatic wave-optics models for image-plane speckle. 2. Unresolved objects.

    PubMed

    Van Zandt, Noah R; Spencer, Mark F; Steinbock, Michael J; Anderson, Brian M; Hyde, Milo W; Fiorino, Steven T

    2018-05-20

    Polychromatic laser light can reduce speckle noise in many wavefront-sensing and imaging applications. To help quantify the achievable reduction in speckle noise, this study investigates the accuracy of three polychromatic wave-optics models under the specific conditions of an unresolved object. Because existing theory assumes a well-resolved object, laboratory experiments are used to evaluate model accuracy. The three models use Monte-Carlo averaging, depth slicing, and spectral slicing, respectively, to simulate the laser-object interaction. The experiments involve spoiling the temporal coherence of laser light via a fiber-based, electro-optic modulator. After the light scatters off of the rough object, speckle statistics are measured. The Monte-Carlo method is found to be highly inaccurate, while depth-slicing error peaks at 7.8% but is generally much lower in comparison. The spectral-slicing method is the most accurate, always producing results within the error bounds of the experiment.

  20. The extraction of spot signal in Shack-Hartmann wavefront sensor based on sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Xu, Wentao; Chen, Suting; Ge, Junxiang; Wan, Fayu

    2016-07-01

    Several techniques have been used with Shack-Hartmann wavefront sensors to determine the local wave-front gradient across each lenslet. While the centroid error of Shack-Hartmann wavefront sensor is relatively large since the skylight background and the detector noise. In this paper, we introduce a new method based on sparse representation to extract the target signal from the background and the noise. First, an over complete dictionary of the spot signal is constructed based on two-dimensional Gaussian model. Then the Shack-Hartmann image is divided into sub blocks. The corresponding coefficients of each block is computed in the over complete dictionary. Since the coefficients of the noise and the target are large different, then extract the target by setting a threshold to the coefficients. Experimental results show that the target can be well extracted and the deviation, RMS and PV of the centroid are all smaller than the method of subtracting threshold.

  1. OAJ 2.6m survey telescope: optical alignment and on-sky evaluation of IQ performances

    NASA Astrophysics Data System (ADS)

    Lousberg, Gregory P.; Bastin, Christian; Moreau, Vincent; Pirnay, Olivier; Flebus, Carlo; Chueca, Sergio; Iñiguez, César; Ederoclite, Alessandro; Ramió, Héctor V.; Cenarro, A. Javier

    2016-08-01

    AMOS has recently completed the alignment campaign of the 2.6m telescope for the Observatorio Astrofisico de Javalambre (OAJ). AMOS developed an innovative alignment technique for wide field-of-view telescopes that has been successfully implemented on the OAJ 2.6m telescope with the active support of the team of CEFCA (Centro de Estudios de Física del Cosmos de Aragón). The alignment relies on two fundamental techniques: (1) the wavefront-curvature sensing (WCS) for the evaluation of the telescope aberrations at arbitrary locations in the focal plane, and (2) the comafree point method for the adjustment of the position of the secondary mirror (M2) and of the focal plane (FP). The alignment campaign unfolds in three steps: (a) analysis of the repeatability of the WCS measurements, (b) assessment of the sensitivity of telescope wavefront error to M2 and FP position adjustments, and (c) optical alignment of the telescope. At the end of the campaign, seeing-limited performances are demonstrated in the complete focal plane. With the help of CEFCA team, the image quality of the telescope are investigated with a lucky-imaging method. Image sizes of less than 0.3 arcsec FWHM are obtained, and this excellent image quality is observed over the complete focal plane.

  2. Guide-star-based computational adaptive optics for broadband interferometric tomography

    PubMed Central

    Adie, Steven G.; Shemonski, Nathan D.; Graf, Benedikt W.; Ahmad, Adeel; Scott Carney, P.; Boppart, Stephen A.

    2012-01-01

    We present a method for the numerical correction of optical aberrations based on indirect sensing of the scattered wavefront from point-like scatterers (“guide stars”) within a three-dimensional broadband interferometric tomogram. This method enables the correction of high-order monochromatic and chromatic aberrations utilizing guide stars that are revealed after numerical compensation of defocus and low-order aberrations of the optical system. Guide-star-based aberration correction in a silicone phantom with sparse sub-resolution-sized scatterers demonstrates improvement of resolution and signal-to-noise ratio over a large isotome. Results in highly scattering muscle tissue showed improved resolution of fine structure over an extended volume. Guide-star-based computational adaptive optics expands upon the use of image metrics for numerically optimizing the aberration correction in broadband interferometric tomography, and is analogous to phase-conjugation and time-reversal methods for focusing in turbid media. PMID:23284179

  3. Control algorithms and applications of the wavefront sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen

    2017-10-01

    Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.

  4. High-contrast Imager for Complex Aperture Telescopes (HICAT): II. Design overview and first light results

    NASA Astrophysics Data System (ADS)

    N'Diaye, Mamadou; Choquet, Elodie; Egron, Sylvain; Pueyo, Laurent; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D.; Elliot, Erin; Wallace, J. Kent; Hugot, Emmanuel; Marcos, Michel; Ferrari, Marc; Long, Chris A.; Anderson, Rachel; DiFelice, Audrey; Soummer, Rémi

    2014-08-01

    We present a new high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The testbed was designed to enable a wide range of studies of the effects of such telescope geometries, with primary mirror segmentation, central obstruction, and spiders. The associated diffraction features in the point spread function make high-contrast imaging more challenging. In particular the testbed will be compatible with both AFTA-like and ATLAST-like aperture shapes, respectively on-axis monolithic, and on-axis segmented telescopes. The testbed optical design was developed using a novel approach to define the layout and surface error requirements to minimize amplitude­ induced errors at the target contrast level performance. In this communication we compare the as-built surface errors for each optic to their specifications based on end-to-end Fresnel modelling of the testbed. We also report on the testbed optical and optomechanical alignment performance, coronagraph design and manufacturing, and preliminary first light results.

  5. Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Bon, Pierre; Bourg, Nicolas; Lécart, Sandrine; Monneret, Serge; Fort, Emmanuel; Wenger, Jérôme; Lévêque-Fort, Sandrine

    2015-07-01

    Meeting the nanometre resolution promised by super-resolution microscopy techniques (pointillist: PALM, STORM, scanning: STED) requires stabilizing the sample drifts in real time during the whole acquisition process. Metal nanoparticles are excellent probes to track the lateral drifts as they provide crisp and photostable information. However, achieving nanometre axial super-localization is still a major challenge, as diffraction imposes large depths-of-fields. Here we demonstrate fast full three-dimensional nanometre super-localization of gold nanoparticles through simultaneous intensity and phase imaging with a wavefront-sensing camera based on quadriwave lateral shearing interferometry. We show how to combine the intensity and phase information to provide the key to the third axial dimension. Presently, we demonstrate even in the occurrence of large three-dimensional fluctuations of several microns, unprecedented sub-nanometre localization accuracies down to 0.7 nm in lateral and 2.7 nm in axial directions at 50 frames per second. We demonstrate that nanoscale stabilization greatly enhances the image quality and resolution in direct stochastic optical reconstruction microscopy imaging.

  6. Wavefront optimized nonlinear microscopy of ex vivo human retinas

    NASA Astrophysics Data System (ADS)

    Gualda, Emilio J.; Bueno, Juan M.; Artal, Pablo

    2010-03-01

    A multiphoton microscope incorporating a Hartmann-Shack (HS) wavefront sensor to control the ultrafast laser beam's wavefront aberrations has been developed. This instrument allowed us to investigate the impact of the laser beam aberrations on two-photon autofluorescence imaging of human retinal tissues. We demonstrated that nonlinear microscopy images are improved when laser beam aberrations are minimized by realigning the laser system cavity while wavefront controlling. Nonlinear signals from several human retinal anatomical features have been detected for the first time, without the need of fixation or staining procedures. Beyond the improved image quality, this approach reduces the required excitation power levels, minimizing the side effects of phototoxicity within the imaged sample. In particular, this may be important to study the physiology and function of the healthy and diseased retina.

  7. Shaped pupil coronagraphy for WFIRST: high-contrast broadband testbed demonstration

    NASA Astrophysics Data System (ADS)

    Cady, Eric; Balasubramanian, Kunjithapatham; Gersh-Range, Jessica; Kasdin, Jeremy; Kern, Brian; Lam, Raymond; Mejia Prada, Camilo; Moody, Dwight; Patterson, Keith; Poberezhskiy, Ilya; Riggs, A. J. Eldorado; Seo, Byoung-Joon; Shi, Fang; Tang, Hong; Trauger, John; Zhou, Hanying; Zimmerman, Neil

    2017-09-01

    The Shaped Pupil Coronagraph (SPC) is one of the two operating modes of the WFIRST coronagraph instrument. The SPC provides starlight suppression in a pair of wedge-shaped regions over an 18% bandpass, and is well suited for spectroscopy of known exoplanets. To demonstrate this starlight suppression in the presence of expected onorbit input wavefront disturbances, we have recently built a dynamic testbed at JPL analogous to the WFIRST flight instrument architecture, with both Hybrid Lyot Coronagraph (HLC) and SPC architectures and a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem to apply, sense, and correct dynamic wavefront disturbances. We present our best up-to-date results of the SPC mode demonstration from the testbed, in both static and dynamic conditions, along with model comparisons. HLC results will be reported separately.

  8. Deep search for companions to probable young brown dwarfs. VLT/NACO adaptive optics imaging using IR wavefront sensing

    NASA Astrophysics Data System (ADS)

    Chauvin, G.; Faherty, J.; Boccaletti, A.; Cruz, K.; Lagrange, A.-M.; Zuckerman, B.; Bessell, M. S.; Beuzit, J.-L.; Bonnefoy, M.; Dumas, C.; Lowrance, P.; Mouillet, D.; Song, I.

    2012-12-01

    Aims: We have obtained high contrast images of four nearby, faint, and very low mass objects 2MASS J04351455-1414468, SDSS J044337.61+000205.1, 2MASS J06085283-2753583 and 2MASS J06524851-5741376 (hereafter 2MASS0435-14, SDSS0443+00, 2MASS0608-27 and 2MASS0652-57), identified in the field as probable isolated young brown dwarfs. Our goal was to search for binary companions down to the planetary mass regime. Methods: We used the NAOS-CONICA adaptive optics instrument (NACO) and its unique capability to sense the wavefront in the near-infrared to acquire sharp images of the four systems in Ks, with a field of view of 28'' × 28''. Additional J and L' imaging and follow-up observations at a second epoch were obtained for 2MASS0652-57. Results: With a typical contrast ΔKs = 4.0-7.0 mag, our observations are sensitive down to the planetary mass regime considering a minimum age of 10 to 120 Myr for these systems. No additional point sources are detected in the environment of 2MASS0435-14, SDSS0443+00 and 2MASS0608-27 between 0.1-12'' (i.e. about 2 to 250 AU at 20 pc). 2MASS0652-57 is resolved as a ~230 mas binary. Follow-up observations reject a background contaminate, resolve the orbital motion of the pair, and confirm with high confidence that the system is physically bound. The J, Ks and L' photometry suggest a q ~ 0.7-0.8 mass ratio binary with a probable semi-major axis of 5-6 AU. Among the four systems, 2MASS0652-57 is probably the less constrained in terms of age determination. Further analysis would be necessary to confirm its youth. It would then be interesting to determine its orbital and physical properties to derive the system's dynamical mass and to test evolutionary model predictions. Based on observations collected at the European Southern Observatory, Chile (ESO programmes 076.C-0554(A), 076.C-0554(B) and 085.C-0257(A).

  9. Differences between wavefront and subjective refraction for infrared light.

    PubMed

    Teel, Danielle F W; Jacobs, Robert J; Copland, James; Neal, Daniel R; Thibos, Larry N

    2014-10-01

    To determine the accuracy of objective wavefront refractions for predicting subjective refractions for monochromatic infrared light. Objective refractions were obtained with a commercial wavefront aberrometer (COAS, Wavefront Sciences). Subjective refractions were obtained for 30 subjects with a speckle optometer validated against objective Zernike wavefront refractions on a physical model eye (Teel et al., Design and validation of an infrared Badal optometer for laser speckle, Optom Vis Sci 2008;85:834-42). Both instruments used near-infrared (NIR) radiation (835 nm for COAS, 820 nm for the speckle optometer) to avoid correction for ocular chromatic aberration. A 3-mm artificial pupil was used to reduce complications attributed to higher-order ocular aberrations. For comparison with paraxial (Seidel) and minimum root-mean-square (Zernike) wavefront refractions, objective refractions were also determined for a battery of 29 image quality metrics by computing the correcting lens that optimizes retinal image quality. Objective Zernike refractions were more myopic than subjective refractions for 29 of 30 subjects. The population mean discrepancy was -0.26 diopters (D) (SEM = 0.03 D). Paraxial (Seidel) objective refractions tended to be hyperopically biased (mean discrepancy = +0.20 D, SEM = 0.06 D). Refractions based on retinal image quality were myopically biased for 28 of 29 metrics. The mean bias across all 31 measures was -0.24 D (SEM = 0.03). Myopic bias of objective refractions was greater for eyes with brown irises compared with eyes with blue irises. Our experimental results are consistent with the hypothesis that reflected NIR light captured by the aberrometer originates from scattering sources located posterior to the entrance apertures of cone photoreceptors, near the retinal pigment epithelium. The larger myopic bias for brown eyes suggests that a greater fraction of NIR light is reflected from choroidal melanin in brown eyes compared with blue eyes.

  10. Transmission-grating-based wavefront tilt sensor.

    PubMed

    Iwata, Koichi; Fukuda, Hiroki; Moriwaki, Kousuke

    2009-07-10

    We propose a new type of tilt sensor. It consists of a grating and an image sensor. It detects the tilt of the collimated wavefront reflected from a plane mirror. Its principle is described and analyzed based on wave optics. Experimental results show its validity. Simulations of the ordinary autocollimator and the proposed tilt sensor show that the effect of noise on the measured angle is smaller for the latter. These results show a possibility of making a smaller and simpler tilt sensor.

  11. In-vivo digital wavefront sensing using swept source OCT

    PubMed Central

    Kumar, Abhishek; Wurster, Lara M.; Salas, Matthias; Ginner, Laurin; Drexler, Wolfgang; Leitgeb, Rainer A.

    2017-01-01

    Sub-aperture based digital adaptive optics is demonstrated in a fiber based point scanning optical coherence tomography system using a 1060 nm swept source laser. To detect optical aberrations in-vivo, a small lateral field of view of ~150×150 μm2 is scanned on the sample at a high volume rate of 17 Hz (~1.3 kHz B-scan rate) to avoid any significant lateral and axial motion of the sample, and is used as a “guide star” for the sub-aperture based DAO. The proof of principle is demonstrated using a micro-beads phantom sample, wherein a significant root mean square wavefront error (RMS WFE) of 1.48 waves (> 1μm) is detected. In-vivo aberration measurement with a RMS WFE of 0.33 waves, which is ~5 times higher than the Marechal’s criterion of 1/14 waves for the diffraction limited performance, is shown for a human retinal OCT. Attempt has been made to validate the experimental results with the conventional Shack-Hartmann wavefront sensor within reasonable limitations. PMID:28717573

  12. Design of a versatile clinical aberrometer

    NASA Astrophysics Data System (ADS)

    Sheehan, Matthew; Goncharov, Alexander; Dainty, Chris

    2005-09-01

    We have designed an ocular aberrometer based on the Hartmann-Shack (HS) type wavefront sensor for use in optometry clinics. The optical system has enhanced versatility compared with commercial aberrometers, yet it is compact and user-friendly. The system has the capability to sense both on-axis and off-axis aberrations in the eye within an unobstructed 20 degree field. This capability is essential to collect population data for off-axis aberrations. This data will be useful in designing future adaptive optics (AO) systems to improve image quality of eccentric retinal areas, in particular, for multi-conjugate AO systems. The ability of the examiner to control the accommodation demand is a unique feature of the design that commercial instruments are capable of only after modification. The pupil alignment channel is re-combined with the sensing channel in a parallel path and imaged on a single CCD. This makes the instrument more compact, less expensive, and it helps to synchronize the pupil center with the HS spot coordinate system. Another advantage of the optical design is telecentric re-imaging of the HS spots, increasing the robustness to small longitudinal alignment errors. The optical system has been optimized with a ray-tracing program and its prototype is being constructed. Design considerations together with a description of the optical components are presented. Difficulties and future work are outlined.

  13. Fast autonomous holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    2010-07-01

    We have created a new adaptive optics system using a holographic modal wavefront sensing method capable of autonomous (computer-free) closed-loop control of a MEMS deformable mirror. A multiplexed hologram is recorded using the maximum and minimum actuator positions on the deformable mirror as the "modes". On reconstruction, an input beam will be diffracted into pairs of focal spots - the ratio of particular pairs determines the absolute wavefront phase at a particular actuator location. The wavefront measurement is made using a fast, sensitive photo-detector array such as a multi-pixel photon counters. This information is then used to directly control each actuator in the MEMS DM without the need for any computer in the loop. We present initial results of a 32-actuator prototype device. We further demonstrate that being an all-optical, parallel processing scheme, the speed is independent of the number of actuators. In fact, the limitations on speed are ultimately determined by the maximum driving speed of the DM actuators themselves. Finally, being modal in nature, the system is largely insensitive to both obscuration and scintillation. This should make it ideal for laser beam transmission or imaging under highly turbulent conditions.

  14. Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system.

    PubMed

    Song, H; Fraanje, R; Schitter, G; Kroese, H; Vdovin, G; Verhaegen, M

    2010-11-08

    In many scientific and medical applications, such as laser systems and microscopes, wavefront-sensor-less (WFSless) adaptive optics (AO) systems are used to improve the laser beam quality or the image resolution by correcting the wavefront aberration in the optical path. The lack of direct wavefront measurement in WFSless AO systems imposes a challenge to achieve efficient aberration correction. This paper presents an aberration correction approach for WFSlss AO systems based on the model of the WFSless AO system and a small number of intensity measurements, where the model is identified from the input-output data of the WFSless AO system by black-box identification. This approach is validated in an experimental setup with 20 static aberrations having Kolmogorov spatial distributions. By correcting N=9 Zernike modes (N is the number of aberration modes), an intensity improvement from 49% of the maximum value to 89% has been achieved in average based on N+5=14 intensity measurements. With the worst initial intensity, an improvement from 17% of the maximum value to 86% has been achieved based on N+4=13 intensity measurements.

  15. Efficient Irregular Wavefront Propagation Algorithms on Hybrid CPU-GPU Machines

    PubMed Central

    Teodoro, George; Pan, Tony; Kurc, Tahsin; Kong, Jun; Cooper, Lee; Saltz, Joel

    2013-01-01

    We address the problem of efficient execution of a computation pattern, referred to here as the irregular wavefront propagation pattern (IWPP), on hybrid systems with multiple CPUs and GPUs. The IWPP is common in several image processing operations. In the IWPP, data elements in the wavefront propagate waves to their neighboring elements on a grid if a propagation condition is satisfied. Elements receiving the propagated waves become part of the wavefront. This pattern results in irregular data accesses and computations. We develop and evaluate strategies for efficient computation and propagation of wavefronts using a multi-level queue structure. This queue structure improves the utilization of fast memories in a GPU and reduces synchronization overheads. We also develop a tile-based parallelization strategy to support execution on multiple CPUs and GPUs. We evaluate our approaches on a state-of-the-art GPU accelerated machine (equipped with 3 GPUs and 2 multicore CPUs) using the IWPP implementations of two widely used image processing operations: morphological reconstruction and euclidean distance transform. Our results show significant performance improvements on GPUs. The use of multiple CPUs and GPUs cooperatively attains speedups of 50× and 85× with respect to single core CPU executions for morphological reconstruction and euclidean distance transform, respectively. PMID:23908562

  16. NASA Tech Briefs, February 2011

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Topics covered include: Multi-Segment Radius Measurement Using an Absolute Distance Meter Through a Null Assembly; Fiber-Optic Magnetic-Field-Strength Measurement System for Lightning Detection; Photocatalytic Active Radiation Measurements and Use; Computer Generated Hologram System for Wavefront Measurement System Calibration; Non-Contact Thermal Properties Measurement with Low-Power Laser and IR Camera System; SpaceCube 2.0: An Advanced Hybrid Onboard Data Processor; CMOS Imager Has Better Cross-Talk and Full-Well Performance; High-Performance Wireless Telemetry; Telemetry-Based Ranging; JWST Wavefront Control Toolbox; Java Image I/O for VICAR, PDS, and ISIS; X-Band Acquisition Aid Software; Antimicrobial-Coated Granules for Disinfecting Water; Range 7 Scanner Integration with PaR Robot Scanning System; Methods of Antimicrobial Coating of Diverse Materials; High-Operating-Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength; A Model of Reduced Kinetics for Alkane Oxidation Using Constituents and Species for N-Heptane; Thermally Conductive Tape Based on Carbon Nanotube Arrays; Two Catalysts for Selective Oxidation of Contaminant Gases; Nanoscale Metal Oxide Semiconductors for Gas Sensing; Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures; Sample Acquisition and Handling System from a Remote Platform; Improved Rare-Earth Emitter Hollow Cathode; High-Temperature Smart Structures for Engine Noise Reduction and Performance Enhancement; Cryogenic Scan Mechanism for Fourier Transform Spectrometer; Piezoelectric Rotary Tube Motor; Thermoelectric Energy Conversion Technology for High-Altitude Airships; Combustor Computations for CO2-Neutral Aviation; Use of Dynamic Distortion to Predict and Alleviate Loss of Control; Cycle Time Reduction in Trapped Mercury Ion Atomic Frequency Standards; and A (201)Hg+ Comagnetometer for (199)Hg+ Trapped Ion Space Atomic Clocks.

  17. Comparison of sorting algorithms to increase the range of Hartmann-Shack aberrometry.

    PubMed

    Bedggood, Phillip; Metha, Andrew

    2010-01-01

    Recently many software-based approaches have been suggested for improving the range and accuracy of Hartmann-Shack aberrometry. We compare the performance of four representative algorithms, with a focus on aberrometry for the human eye. Algorithms vary in complexity from the simplistic traditional approach to iterative spline extrapolation based on prior spot measurements. Range is assessed for a variety of aberration types in isolation using computer modeling, and also for complex wavefront shapes using a real adaptive optics system. The effects of common sources of error for ocular wavefront sensing are explored. The results show that the simplest possible iterative algorithm produces comparable range and robustness compared to the more complicated algorithms, while keeping processing time minimal to afford real-time analysis.

  18. Comparison of sorting algorithms to increase the range of Hartmann-Shack aberrometry

    NASA Astrophysics Data System (ADS)

    Bedggood, Phillip; Metha, Andrew

    2010-11-01

    Recently many software-based approaches have been suggested for improving the range and accuracy of Hartmann-Shack aberrometry. We compare the performance of four representative algorithms, with a focus on aberrometry for the human eye. Algorithms vary in complexity from the simplistic traditional approach to iterative spline extrapolation based on prior spot measurements. Range is assessed for a variety of aberration types in isolation using computer modeling, and also for complex wavefront shapes using a real adaptive optics system. The effects of common sources of error for ocular wavefront sensing are explored. The results show that the simplest possible iterative algorithm produces comparable range and robustness compared to the more complicated algorithms, while keeping processing time minimal to afford real-time analysis.

  19. The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye.

    PubMed

    Zhu, Mingxia; Collins, Michael J; Iskander, D Robert

    2006-09-01

    We have used videokeratoscopy and wavefront sensing to investigate the contribution of the ocular surface and the effect of stimulus vergence on the microfluctuations of the wavefront aberrations of the eye. The fluctuations of the wavefront aberrations were quantified by their variations around the mean and by using power spectrum analysis. Integrated power was determined in two regions: 0.1-0.7 Hz (low frequencies) and 0.8-1.8 Hz (high frequencies). Changes in the ocular surface topography were measured using high-speed videokeratoscopy and variations in the ocular wavefront aberrations were measured with a wavefront sensor. The microfluctuations of wavefront aberrations of the ocular surface were found to be considerably smaller than the microfluctuations of the wavefront aberrations of the total eye. The fluctuations in defocus while viewing a closer target at 2 or 4 D were found to be significantly greater than fluctuations in defocus when viewing a far target. This increase in defocus fluctuations (p < or = 0.001) occurred in both the low- and high-frequency regions of the power spectra.

  20. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-01-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved. PMID:24940539

  1. Calibration of the island effect: Experimental validation of closed-loop focal plane wavefront control on Subaru/SCExAO

    NASA Astrophysics Data System (ADS)

    N'Diaye, M.; Martinache, F.; Jovanovic, N.; Lozi, J.; Guyon, O.; Norris, B.; Ceau, A.; Mary, D.

    2018-02-01

    Context. Island effect (IE) aberrations are induced by differential pistons, tips, and tilts between neighboring pupil segments on ground-based telescopes, which severely limit the observations of circumstellar environments on the recently deployed exoplanet imagers (e.g., VLT/SPHERE, Gemini/GPI, Subaru/SCExAO) during the best observing conditions. Caused by air temperature gradients at the level of the telescope spiders, these aberrations were recently diagnosed with success on VLT/SPHERE, but so far no complete calibration has been performed to overcome this issue. Aims: We propose closed-loop focal plane wavefront control based on the asymmetric Fourier pupil wavefront sensor (APF-WFS) to calibrate these aberrations and improve the image quality of exoplanet high-contrast instruments in the presence of the IE. Methods: Assuming the archetypal four-quadrant aperture geometry in 8 m class telescopes, we describe these aberrations as a sum of the independent modes of piston, tip, and tilt that are distributed in each quadrant of the telescope pupil. We calibrate these modes with the APF-WFS before introducing our wavefront control for closed-loop operation. We perform numerical simulations and then experimental tests on a real system using Subaru/SCExAO to validate our control loop in the laboratory and on-sky. Results: Closed-loop operation with the APF-WFS enables the compensation for the IE in simulations and in the laboratory for the small aberration regime. Based on a calibration in the near infrared, we observe an improvement of the image quality in the visible range on the SCExAO/VAMPIRES module with a relative increase in the image Strehl ratio of 37%. Conclusions: Our first IE calibration paves the way for maximizing the science operations of the current exoplanet imagers. Such an approach and its results prove also very promising in light of the Extremely Large Telescopes (ELTs) and the presence of similar artifacts with their complex aperture geometry.

  2. Optimal wavefront estimation of incoherent sources

    NASA Astrophysics Data System (ADS)

    Riggs, A. J. Eldorado; Kasdin, N. Jeremy; Groff, Tyler

    2014-08-01

    Direct imaging is in general necessary to characterize exoplanets and disks. A coronagraph is an instrument used to create a dim (high-contrast) region in a star's PSF where faint companions can be detected. All coronagraphic high-contrast imaging systems use one or more deformable mirrors (DMs) to correct quasi-static aberrations and recover contrast in the focal plane. Simulations show that existing wavefront control algorithms can correct for diffracted starlight in just a few iterations, but in practice tens or hundreds of control iterations are needed to achieve high contrast. The discrepancy largely arises from the fact that simulations have perfect knowledge of the wavefront and DM actuation. Thus, wavefront correction algorithms are currently limited by the quality and speed of wavefront estimates. Exposures in space will take orders of magnitude more time than any calculations, so a nonlinear estimation method that needs fewer images but more computational time would be advantageous. In addition, current wavefront correction routines seek only to reduce diffracted starlight. Here we present nonlinear estimation algorithms that include optimal estimation of sources incoherent with a star such as exoplanets and debris disks.

  3. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  4. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing.

    PubMed

    Vorontsov, Mikhail A; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  5. Solar adaptive optics with the DKIST: status report

    NASA Astrophysics Data System (ADS)

    Johnson, Luke C.; Cummings, Keith; Drobilek, Mark; Gregory, Scott; Hegwer, Steve; Johansson, Erik; Marino, Jose; Richards, Kit; Rimmele, Thomas; Sekulic, Predrag; Wöger, Friedrich

    2014-08-01

    The DKIST wavefront correction system will be an integral part of the telescope, providing active alignment control, wavefront correction, and jitter compensation to all DKIST instruments. The wavefront correction system will operate in four observing modes, diffraction-limited, seeing-limited on-disk, seeing-limited coronal, and limb occulting with image stabilization. Wavefront correction for DKIST includes two major components: active optics to correct low-order wavefront and alignment errors, and adaptive optics to correct wavefront errors and high-frequency jitter caused by atmospheric turbulence. The adaptive optics system is built around a fast tip-tilt mirror and a 1600 actuator deformable mirror, both of which are controlled by an FPGA-based real-time system running at 2 kHz. It is designed to achieve on-axis Strehl of 0.3 at 500 nm in median seeing (r0 = 7 cm) and Strehl of 0.6 at 630 nm in excellent seeing (r0 = 20 cm). We present the current status of the DKIST high-order adaptive optics, focusing on system design, hardware procurements, and error budget management.

  6. FPGA-based real time processing of the Plenoptic Wavefront Sensor

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, L. F.; Marín, Y.; Díaz, J. J.; Piqueras, J.; García-Jiménez, J.; Rodríguez-Ramos, J. M.

    The plenoptic wavefront sensor combines measurements at pupil and image planes in order to obtain simultaneously wavefront information from different points of view, being capable to sample the volume above the telescope to extract the tomographic information of the atmospheric turbulence. The advantages of this sensor are presented elsewhere at this conference (José M. Rodríguez-Ramos et al). This paper will concentrate in the processing required for pupil plane phase recovery, and its computation in real time using FPGAs (Field Programmable Gate Arrays). This technology eases the implementation of massive parallel processing and allows tailoring the system to the requirements, maintaining flexibility, speed and cost figures.

  7. Development of a wavefront sensor for terahertz pulses.

    PubMed

    Abraham, Emmanuel; Cahyadi, Harsono; Brossard, Mathilde; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi

    2016-03-07

    Wavefront characterization of terahertz pulses is essential to optimize far-field intensity distribution of time-domain (imaging) spectrometers or increase the peak power of intense terahertz sources. In this paper, we report on the wavefront measurement of terahertz pulses using a Hartmann sensor associated with a 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. We quantitatively determined the deformations of planar and converging spherical wavefronts using the modal Zernike reconstruction least-squares method. Associated with deformable mirrors, the sensor will also open the route to terahertz adaptive optics.

  8. Implementation of the pyramid wavefront sensor as a direct phase detector for large amplitude aberrations

    NASA Astrophysics Data System (ADS)

    Kupke, Renate; Gavel, Don; Johnson, Jess; Reinig, Marc

    2008-07-01

    We investigate the non-modulating pyramid wave-front sensor's (P-WFS) implementation in the context of Lick Observatory's Villages visible light AO system on the Nickel 1-meter telescope. A complete adaptive optics correction, using a non-modulated P-WFS in slope sensing mode as a boot-strap to a regime in which the P-WFS can act as a direct phase sensor is explored. An iterative approach to reconstructing the wave-front phase, given the pyramid wave-front sensor's non-linear signal, is developed. Using Monte Carlo simulations, the iterative reconstruction method's photon noise propagation behavior is compared to both the pyramid sensor used in slope-sensing mode, and the traditional Shack Hartmann sensor's theoretical performance limits. We determine that bootstrapping using the P-WFS as a slope sensor does not offer enough correction to bring the phase residuals into a regime in which the iterative algorithm can provide much improvement in phase measurement. It is found that both the iterative phase reconstructor and the slope reconstruction methods offer an advantage in noise propagation over Shack Hartmann sensors.

  9. Method and apparatus for acoustic imaging of objects in water

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2005-01-25

    A method, system and underwater camera for acoustic imaging of objects in water or other liquids includes an acoustic source for generating an acoustic wavefront for reflecting from a target object as a reflected wavefront. The reflected acoustic wavefront deforms a screen on an acoustic side and correspondingly deforms the opposing optical side of the screen. An optical processing system is optically coupled to the optical side of the screen and converts the deformations on the optical side of the screen into an optical intensity image of the target object.

  10. Preliminary result of the solar multi-conjugate adaptive optics for 1m new vacuum solar telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Lanqiang; Kong, Lin; Bao, Hua; Zhu, Lei; Rao, Xuejun; Rao, Changhui

    2016-07-01

    Solar observation with high resolution in large field of view (FoV) is required for some solar active regions with the typical sizes of 1' to 3'. Conventional adaptive optics (AO) could not satisfy this demand because of the atmospheric anisoplanatism. Through compensating the turbulence in different heights, multi-conjugate adaptive optics (MCAO) has been proved to obtain a larger corrected FoV. A MCAO experimental system including a conventional 151-element AO system and a 37-element MCAO part is being developed. The MCAO part contains a 37-element deformable mirror conjugated into the 2km to 5km height and a multi-direction Shack-Hartmann wavefront sensor (MD-SHWFS) with 7×7 subaperture array and 60 arcsec FoV, the frame rate of the MD-SHWFS is up to 840Hz. Three-dimensional (3-D) wavefront sensing utilizing atmospheric tomography had been validated by solar observation. Based on these results, a ground layer adaptive optics (GLAO) experimental system including a 151-element deformable mirror and the MD-SHWFS has been built at the 1m New Vacuum Solar Telescope (NVST). In this paper, the MCAO experimental system will be introduced. The preliminary experimental results of three-dimensional wavefront sensing and GLAO on the NVST of Full-shine Lake Solar Observatory are presented.

  11. Atmospheric turbulence compensation with laser phase shifting interferometry

    NASA Astrophysics Data System (ADS)

    Rabien, S.; Eisenhauer, F.; Genzel, R.; Davies, R. I.; Ott, T.

    2006-04-01

    Laser guide stars with adaptive optics allow astronomical image correction in the absence of a natural guide star. Single guide star systems with a star created in the earth's sodium layer can be used to correct the wavefront in the near infrared spectral regime for 8-m class telescopes. For possible future telescopes of larger sizes, or for correction at shorter wavelengths, the use of a single guide star is ultimately limited by focal anisoplanatism that arises from the finite height of the guide star. To overcome this limitation we propose to overlap coherently pulsed laser beams that are expanded over the full aperture of the telescope, traveling upwards along the same path which light from the astronomical object travels downwards. Imaging the scattered light from the resultant interference pattern with a camera gated to a certain height above the telescope, and using phase shifting interferometry we have found a method to retrieve the local wavefront gradients. By sensing the backscattered light from two different heights, one can fully remove the cone effect, which can otherwise be a serious handicap to the use of laser guide stars at shorter wavelengths or on larger telescopes. Using two laser beams multiconjugate correction is possible, resulting in larger corrected fields. With a proper choice of laser, wavefront correction could be expanded to the visible regime and, due to the lack of a cone effect, the method is applicable to any size of telescope. Finally the position of the laser spot could be imaged from the side of the main telescope against a bright background star to retrieve tip-tilt information, which would greatly improve the sky coverage of the system.

  12. Shaping Microwave Fields Using Nonlinear Unsolicited Feedback: Application to Enhance Energy Harvesting

    NASA Astrophysics Data System (ADS)

    del Hougne, Philipp; Fink, Mathias; Lerosey, Geoffroy

    2017-12-01

    Wave-front shaping has emerged over the past decade as a powerful tool to control wave propagation through complex media, initially in optics and more recently also in the microwave domain with important applications in telecommunication, imaging, and energy transfer. The crux of implementing wave-front shaping concepts in real life is often its need for (direct) feedback, requiring access to the target to focus on. Here, we present the shaping of a microwave field based on indirect, unsolicited, and blind feedback which may be the pivotal step towards practical implementations. With the example of a radio-frequency harvester in a metallic cavity, we demonstrate tenfold enhancement of the harvested power by wave-front shaping based on nonlinear signals detected at an arbitrary position away from the harvesting device.

  13. Optimizing wavefront-guided corrections for highly aberrated eyes in the presence of registration uncertainty

    PubMed Central

    Shi, Yue; Queener, Hope M.; Marsack, Jason D.; Ravikumar, Ayeswarya; Bedell, Harold E.; Applegate, Raymond A.

    2013-01-01

    Dynamic registration uncertainty of a wavefront-guided correction with respect to underlying wavefront error (WFE) inevitably decreases retinal image quality. A partial correction may improve average retinal image quality and visual acuity in the presence of registration uncertainties. The purpose of this paper is to (a) develop an algorithm to optimize wavefront-guided correction that improves visual acuity given registration uncertainty and (b) test the hypothesis that these corrections provide improved visual performance in the presence of these uncertainties as compared to a full-magnitude correction or a correction by Guirao, Cox, and Williams (2002). A stochastic parallel gradient descent (SPGD) algorithm was used to optimize the partial-magnitude correction for three keratoconic eyes based on measured scleral contact lens movement. Given its high correlation with logMAR acuity, the retinal image quality metric log visual Strehl was used as a predictor of visual acuity. Predicted values of visual acuity with the optimized corrections were validated by regressing measured acuity loss against predicted loss. Measured loss was obtained from normal subjects viewing acuity charts that were degraded by the residual aberrations generated by the movement of the full-magnitude correction, the correction by Guirao, and optimized SPGD correction. Partial-magnitude corrections optimized with an SPGD algorithm provide at least one line improvement of average visual acuity over the full magnitude and the correction by Guirao given the registration uncertainty. This study demonstrates that it is possible to improve the average visual acuity by optimizing wavefront-guided correction in the presence of registration uncertainty. PMID:23757512

  14. A First Order Wavefront Estimation Algorithm for P1640 Calibrator

    NASA Technical Reports Server (NTRS)

    Zhaia, C.; Vasisht, G.; Shao, M.; Lockhart, T.; Cady, E.; Oppenheimer, B.; Burruss, R.; Roberts, J.; Beichman, C.; Brenner, D.; hide

    2012-01-01

    P1640 calibrator is a wavefront sensor working with the P1640 coronagraph and the Palomar 3000 actuator adaptive optics system (P3K) at the Palomar 200 inch Hale telescope. It measures the wavefront by interfering post-coronagraph light with a reference beam formed by low-pass filtering the blocked light from the coronagraph focal plane mask. The P1640 instrument has a similar architecture to the Gemini Planet Imager (GPI) and its performance is currently limited by the quasi-static speckles due to non-common path wavefront errors, which comes from the non-common path for the light to arrive at the AO wavefront sensor and the coronagraph mask. By measuring the wavefront after the coronagraph mask, the non-common path wavefront error can be estimated and corrected by feeding back the error signal to the deformable mirror (DM) of the P3K AO system. Here, we present a first order wavefront estimation algorithm and an instrument calibration scheme used in experiments done recently at Palomar observatory. We calibrate the P1640 calibrator by measuring its responses to poking DM actuators with a sparse checkerboard pattern at different amplitudes. The calibration yields a complex normalization factor for wavefront estimation and establishes the registration of the DM actuators at the pupil camera of the P1640 calibrator, necessary for wavefront correction. Improvement of imaging quality after feeding back the wavefront correction to the AO system demonstrated the efficacy of the algorithm.

  15. Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging.

    PubMed

    Thaung, Jörgen; Knutsson, Per; Popovic, Zoran; Owner-Petersen, Mette

    2009-03-16

    We present analysis and preliminary laboratory testing of a real-time dual-conjugate adaptive optics (DCAO) instrument for ophthalmology that will enable wide-field high resolution imaging of the retina in vivo. The setup comprises five retinal guide stars (GS) and two deformable mirrors (DM), one conjugate to the pupil and one conjugate to a plane close to the retina. The DCAO instrument has a closed-loop wavefront sensing wavelength of 834 nm and an imaging wavelength of 575 nm. It incorporates an array of collimator lenses to spatially filter the light from all guide stars using one adjustable iris, and images the Hartmann patterns of multiple reference sources on a single detector. Zemax simulations were performed at 834 nm and 575 nm with the Navarro 99 and the Liou- Brennan eye models. Two correction alternatives were evaluated; conventional single conjugate AO (SCAO, using one GS and a pupil DM) and DCAO (using multiple GS and two DM). Zemax simulations at 575 nm based on the Navarro 99 eye model show that the diameter of the corrected field of view for diffraction-limited imaging (Strehl >or= 0.8) increases from 1.5 deg with SCAO to 6.5 deg using DCAO. The increase for the less stringent condition of a wavefront error of 1 rad or less (Strehl >or= 0.37) is from 3 deg with SCAO to approximately 7.4 deg using DCAO. Corresponding results for the Liou-Brennan eye model are 3.1 deg (SCAO) and 8.2 deg (DCAO) for Strehl >or= 0.8, and 4.8 deg (SCAO) and 9.6 deg (DCAO) for Strehl >or= 0.37. Potential gain in corrected field of view with DCAO is confirmed both by laboratory experiments on a model eye and by preliminary in vivo imaging of a human eye. (c) 2009 Optical Society of America

  16. Wavefront measurement using computational adaptive optics.

    PubMed

    South, Fredrick A; Liu, Yuan-Zhi; Bower, Andrew J; Xu, Yang; Carney, P Scott; Boppart, Stephen A

    2018-03-01

    In many optical imaging applications, it is necessary to correct for aberrations to obtain high quality images. Optical coherence tomography (OCT) provides access to the amplitude and phase of the backscattered optical field for three-dimensional (3D) imaging samples. Computational adaptive optics (CAO) modifies the phase of the OCT data in the spatial frequency domain to correct optical aberrations without using a deformable mirror, as is commonly done in hardware-based adaptive optics (AO). This provides improvement of image quality throughout the 3D volume, enabling imaging across greater depth ranges and in highly aberrated samples. However, the CAO aberration correction has a complicated relation to the imaging pupil and is not a direct measurement of the pupil aberrations. Here we present new methods for recovering the wavefront aberrations directly from the OCT data without the use of hardware adaptive optics. This enables both computational measurement and correction of optical aberrations.

  17. Leonardo (formerly Selex ES) infrared sensors for astronomy: present and future

    NASA Astrophysics Data System (ADS)

    Baker, Ian; Maxey, Chris; Hipwood, Les; Barnes, Keith

    2016-07-01

    Many branches of science require infrared detectors sensitive to individual photons. Applications range from low background astronomy to high speed imaging. Leonardo in Southampton, UK, has been developing HgCdTe avalanche photodiode (APD) sensors for astronomy in collaboration with European Southern Observatory (ESO) since 2008 and more recently the University of Hawaii. The devices utilise Metal Organic Vapour Phase Epitaxy, MOVPE, grown on low-cost GaAs substrates and in combination with a mesa device structure achieve very low dark current and near-ideal MTF. MOVPE provides the ability to grow complex HgCdTe heterostructures and these have proved crucial to suppress breakdown currents and allow high avalanche gain in low background situations. A custom device called Saphira (320x256/24μm) has been developed for wavefront sensors, interferometry and transient event imaging. This device has achieved read noise as low as 0.26 electrons rms and single photon imaging with avalanche gain up to x450. It is used in the ESO Gravity program for adaptive optics and fringe tracking and has been successfully trialled on the 3m NASA IRTF, 8.2m Subaru and 60 inch Mt Palomar for lucky imaging and wavefront sensing. In future the technology offers much shorter observation times for read-noise limited instruments, particularly spectroscopy. The paper will describe the MOVPE APD technology and current performance status.

  18. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1990-01-01

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  19. UTILIZATION OF THE WAVEFRONT SENSOR AND SHORT-EXPOSURE IMAGES FOR SIMULTANEOUS ESTIMATION OF QUASI-STATIC ABERRATION AND EXOPLANET INTENSITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazin, Richard A., E-mail: rfrazin@umich.edu

    2013-04-10

    Heretofore, the literature on exoplanet detection with coronagraphic telescope systems has paid little attention to the information content of short exposures and methods of utilizing the measurements of adaptive optics wavefront sensors. This paper provides a framework for the incorporation of the wavefront sensor measurements in the context of observing modes in which the science camera takes millisecond exposures. In this formulation, the wavefront sensor measurements provide a means to jointly estimate the static speckle and the planetary signal. The ability to estimate planetary intensities in as little as a few seconds has the potential to greatly improve the efficiencymore » of exoplanet search surveys. For simplicity, the mathematical development assumes a simple optical system with an idealized Lyot coronagraph. Unlike currently used methods, in which increasing the observation time beyond a certain threshold is useless, this method produces estimates whose error covariances decrease more quickly than inversely proportional to the observation time. This is due to the fact that the estimates of the quasi-static aberrations are informed by a new random (but approximately known) wavefront every millisecond. The method can be extended to include angular (due to diurnal field rotation) and spectral diversity. Numerical experiments are performed with wavefront data from the AEOS Adaptive Optics System sensing at 850 nm. These experiments assume a science camera wavelength {lambda} of 1.1 {mu}, that the measured wavefronts are exact, and a Gaussian approximation of shot-noise. The effects of detector read-out noise and other issues are left to future investigations. A number of static aberrations are introduced, including one with a spatial frequency exactly corresponding the planet location, which was at a distance of Almost-Equal-To 3{lambda}/D from the star. Using only 4 s of simulated observation time, a planetary intensity, of Almost-Equal-To 1 photon ms{sup -1}, and a stellar intensity of Almost-Equal-To 10{sup 5} photons ms{sup -1} (contrast ratio 10{sup 5}), the short-exposure estimation method recovers the amplitudes' static aberrations with 1% accuracy, and the planet brightness with 20% accuracy.« less

  20. The plenoptic camera as a wavefront sensor for the European Solar Telescope (EST)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, Luis F.; Martín, Yolanda; Díaz, José J.; Piqueras, J.; Rodríguez-Ramos, J. M.

    2009-08-01

    The plenoptic wavefront sensor combines measurements at pupil and image planes in order to obtain wavefront information from different points of view simultaneously, being capable to sample the volume above the telescope to extract the tomographic information of the atmospheric turbulence. After describing the working principle, a laboratory setup has been used for the verification of the capability of measuring the pupil plane wavefront. A comparative discussion with respect to other wavefront sensors is also included.

  1. Simulation results for a finite element-based cumulative reconstructor

    NASA Astrophysics Data System (ADS)

    Wagner, Roland; Neubauer, Andreas; Ramlau, Ronny

    2017-10-01

    Modern ground-based telescopes rely on adaptive optics (AO) systems for the compensation of image degradation caused by atmospheric turbulences. Within an AO system, measurements of incoming light from guide stars are used to adjust deformable mirror(s) in real time that correct for atmospheric distortions. The incoming wavefront has to be derived from sensor measurements, and this intermediate result is then translated into the shape(s) of the deformable mirror(s). Rapid changes of the atmosphere lead to the need for fast wavefront reconstruction algorithms. We review a fast matrix-free algorithm that was developed by Neubauer to reconstruct the incoming wavefront from Shack-Hartmann measurements based on a finite element discretization of the telescope aperture. The method is enhanced by a domain decomposition ansatz. We show that this algorithm reaches the quality of standard approaches in end-to-end simulation while at the same time maintaining the speed of recently introduced solvers with linear order speed.

  2. An ANN-Based Smart Tomographic Reconstructor in a Dynamic Environment

    PubMed Central

    de Cos Juez, Francisco J.; Lasheras, Fernando Sánchez; Roqueñí, Nieves; Osborn, James

    2012-01-01

    In astronomy, the light emitted by an object travels through the vacuum of space and then the turbulent atmosphere before arriving at a ground based telescope. By passing through the atmosphere a series of turbulent layers modify the light's wave-front in such a way that Adaptive Optics reconstruction techniques are needed to improve the image quality. A novel reconstruction technique based in Artificial Neural Networks (ANN) is proposed. The network is designed to use the local tilts of the wave-front measured by a Shack Hartmann Wave-front Sensor (SHWFS) as inputs and estimate the turbulence in terms of Zernike coefficients. The ANN used is a Multi-Layer Perceptron (MLP) trained with simulated data with one turbulent layer changing in altitude. The reconstructor was tested using three different atmospheric profiles and compared with two existing reconstruction techniques: Least Squares type Matrix Vector Multiplication (LS) and Learn and Apply (L + A). PMID:23012524

  3. Method and apparatus for holographic wavefront diagnostics

    DOEpatents

    Toeppen, J.S.

    1995-04-25

    A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image. 3 figs.

  4. Method and apparatus for holographic wavefront diagnostics

    DOEpatents

    Toeppen, John S.

    1995-01-01

    A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image.

  5. A coronagraph based on two spatial light modulators for active amplitude apodizing and phase corrections

    NASA Astrophysics Data System (ADS)

    Dou, Jiangpei; Ren, Deqing; Zhang, Xi; Zhu, Yongtian; Zhao, Gang; Wu, Zhen; Chen, Rui; Liu, Chengchao; Yang, Feng; Yang, Chao

    2014-08-01

    Almost all high-contrast imaging coronagraphs proposed until now are based on passive coronagraph optical components. Recently, Ren and Zhu proposed for the first time a coronagraph that integrates a liquid crystal array (LCA) for the active pupil apodizing and a deformable mirror (DM) for the phase corrections. Here, for demonstration purpose, we present the initial test result of a coronagraphic system that is based on two liquid crystal spatial light modulators (SLM). In the system, one SLM is served as active pupil apodizing and amplitude correction to suppress the diffraction light; another SLM is used to correct the speckle noise that is caused by the wave-front distortions. In this way, both amplitude and phase error can be actively and efficiently compensated. In the test, we use the stochastic parallel gradient descent (SPGD) algorithm to control two SLMs, which is based on the point spread function (PSF) sensing and evaluation and optimized for a maximum contrast in the discovery area. Finally, it has demonstrated a contrast of 10-6 at an inner working angular distance of ~6.2 λ/D, which is a promising technique to be used for the direct imaging of young exoplanets on ground-based telescopes.

  6. Phase unwrapping with a virtual Hartmann-Shack wavefront sensor.

    PubMed

    Akondi, Vyas; Falldorf, Claas; Marcos, Susana; Vohnsen, Brian

    2015-10-05

    The use of a spatial light modulator for implementing a digital phase-shifting (PS) point diffraction interferometer (PDI) allows tunability in fringe spacing and in achieving PS without the need for mechanically moving parts. However, a small amount of detector or scatter noise could affect the accuracy of wavefront sensing. Here, a novel method of wavefront reconstruction incorporating a virtual Hartmann-Shack (HS) wavefront sensor is proposed that allows easy tuning of several wavefront sensor parameters. The proposed method was tested and compared with a Fourier unwrapping method implemented on a digital PS PDI. The rewrapping of the Fourier reconstructed wavefronts resulted in phase maps that matched well the original wrapped phase and the performance was found to be more stable and accurate than conventional methods. Through simulation studies, the superiority of the proposed virtual HS phase unwrapping method is shown in comparison with the Fourier unwrapping method in the presence of noise. Further, combining the two methods could improve accuracy when the signal-to-noise ratio is sufficiently high.

  7. Optical spatial heterodyne interferometric Fourier transform technique (OSHIFT) and a resulting interferometer

    NASA Astrophysics Data System (ADS)

    Georges, James A., III

    2007-09-01

    This article reports on the novel patent pending Optical Spatial Heterodyne Interferometric Fourier Transform Technique (the OSHIFT technique), the resulting interferometer also referred to as OSHIFT, and its preliminary results. OSHIFT was borne out of the following requirements: wavefront sensitivity on the order of 1/100 waves, high-frequency wavefront spatial sampling, snapshot 100Hz operation, and the ability to deal with discontinuous wavefronts. The first two capabilities lend themselves to the use of traditional interferometric techniques; however, the last two prove difficult for standard techniques, e.g., phase shifting interferometry tends to take a time sequence of images and most interferometers require estimation of a center fringe across wavefront discontinuities. OSHIFT overcomes these challenges by employing a spatial heterodyning concept in the Fourier (image) plane of the optic-under-test. This concept, the mathematical theory, an autocorrelation view of operation, and the design with results of OSHIFT will be discussed. Also discussed will be future concepts such as a sensor that could interrogate an entire imaging system as well as a methodology to create innovative imaging systems that encode wavefront information onto the image. Certain techniques and systems described in this paper are the subject of a patent application currently pending in the United States Patent Office.

  8. A low cost, high performance, 1.2m off-axis telescope built with NG-Xinetics silicon carbide

    NASA Astrophysics Data System (ADS)

    Rey, Justin J.; Wellman, John A.; Egan, Richard G.; Wollensak, Richard J.

    2011-09-01

    The search for extrasolar habitable planets is one of three major astrophysics priorities identified for the next decade. These missions demand very high performance visible-wavelength optical imaging systems. Such high performance space telescopes are typically extremely expensive and can be difficult for government agencies to afford in today's economic climate, and most lower cost systems offer little benefit because they fall short on at least one of the following three key performance parameters: imaging wavelength, total system-level wavefront error and aperture diameter. Northrop Grumman Xinetics has developed a simple, lightweight, low-cost telescope design that will address the near-term science objectives of this astrophysics theme with the required optical performance, while reducing the telescope cost by an order of magnitude. Breakthroughs in SiC mirror manufacturing, integrated wavefront sensing, and high TRL deformable mirror technology have finally been combined within the same organization to offer a complete end-to-end telescope system in the lower end of the Class D cost range. This paper presents the latest results of real OAP polishing and metrology data, an optimized optical design, and finite element derived WFE

  9. Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry.

    PubMed

    Scrimgeour, Jan; Curtis, Jennifer E

    2012-06-18

    We present a new technique for the correction of optical aberrations in wide-field fluorescence microscopy. Segmented-Pupil Image Interferometry (SPII) uses a liquid crystal spatial light modulator placed in the microscope's pupil plane to split the wavefront originating from a fluorescent object into an array of individual beams. Distortion of the wavefront arising from either system or sample aberrations results in displacement of the images formed from the individual pupil segments. Analysis of image registration allows for the local tilt in the wavefront at each segment to be corrected with respect to a central reference. A second correction step optimizes the image intensity by adjusting the relative phase of each pupil segment through image interferometry. This ensures that constructive interference between all segments is achieved at the image plane. Improvements in image quality are observed when Segmented-Pupil Image Interferometry is applied to correct aberrations arising from the microscope's optical path.

  10. Optical correlators for automated rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1991-01-01

    The paper begins with a description of optical correlation. In this process, the propagation physics of coherent light is used to process images and extract information. The processed image is operated on as an area, rather than as a collection of points. An essentially instantaneous convolution is performed on that image to provide the sensory data. In this process, an image is sensed and encoded onto a coherent wavefront, and the propagation is arranged to create a bright spot of the image to match a model of the desired object. The brightness of the spot provides an indication of the degree of resemblance of the viewed image to the mode, and the location of the bright spot provides pointing information. The process can be utilized for AR&C to achieve the capability to identify objects among known reference types, estimate the object's location and orientation, and interact with the control system. System characteristics (speed, robustness, accuracy, small form factors) are adequate to meet most requirements. The correlator exploits the fact that Bosons and Fermions pass through each other. Since the image source is input as an electronic data set, conventional imagers can be used. In systems where the image is input directly, the correlating element must be at the sensing location.

  11. Real-time simulation of ultrasound refraction phenomena using ray-trace based wavefront construction method.

    PubMed

    Szostek, Kamil; Piórkowski, Adam

    2016-10-01

    Ultrasound (US) imaging is one of the most popular techniques used in clinical diagnosis, mainly due to lack of adverse effects on patients and the simplicity of US equipment. However, the characteristics of the medium cause US imaging to imprecisely reconstruct examined tissues. The artifacts are the results of wave phenomena, i.e. diffraction or refraction, and should be recognized during examination to avoid misinterpretation of an US image. Currently, US training is based on teaching materials and simulators and ultrasound simulation has become an active research area in medical computer science. Many US simulators are limited by the complexity of the wave phenomena, leading to intensive sophisticated computation that makes it difficult for systems to operate in real time. To achieve the required frame rate, the vast majority of simulators reduce the problem of wave diffraction and refraction. The following paper proposes a solution for an ultrasound simulator based on methods known in geophysics. To improve simulation quality, a wavefront construction method was adapted which takes into account the refraction phenomena. This technique uses ray tracing and velocity averaging to construct wavefronts in the simulation. Instead of a geological medium, real CT scans are applied. This approach can produce more realistic projections of pathological findings and is also capable of providing real-time simulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Efficient Solar Scene Wavefront Estimation with Reduced Systematic and RMS Errors: Summary

    NASA Astrophysics Data System (ADS)

    Anugu, N.; Garcia, P.

    2016-04-01

    Wave front sensing for solar telescopes is commonly implemented with the Shack-Hartmann sensors. Correlation algorithms are usually used to estimate the extended scene Shack-Hartmann sub-aperture image shifts or slopes. The image shift is computed by correlating a reference sub-aperture image with the target distorted sub-aperture image. The pixel position where the maximum correlation is located gives the image shift in integer pixel coordinates. Sub-pixel precision image shifts are computed by applying a peak-finding algorithm to the correlation peak Poyneer (2003); Löfdahl (2010). However, the peak-finding algorithm results are usually biased towards the integer pixels, these errors are called as systematic bias errors Sjödahl (1994). These errors are caused due to the low pixel sampling of the images. The amplitude of these errors depends on the type of correlation algorithm and the type of peak-finding algorithm being used. To study the systematic errors in detail, solar sub-aperture synthetic images are constructed by using a Swedish Solar Telescope solar granulation image1. The performance of cross-correlation algorithm in combination with different peak-finding algorithms is investigated. The studied peak-finding algorithms are: parabola Poyneer (2003); quadratic polynomial Löfdahl (2010); threshold center of gravity Bailey (2003); Gaussian Nobach & Honkanen (2005) and Pyramid Bailey (2003). The systematic error study reveals that that the pyramid fit is the most robust to pixel locking effects. The RMS error analysis study reveals that the threshold centre of gravity behaves better in low SNR, although the systematic errors in the measurement are large. It is found that no algorithm is best for both the systematic and the RMS error reduction. To overcome the above problem, a new solution is proposed. In this solution, the image sampling is increased prior to the actual correlation matching. The method is realized in two steps to improve its computational efficiency. In the first step, the cross-correlation is implemented at the original image spatial resolution grid (1 pixel). In the second step, the cross-correlation is performed using a sub-pixel level grid by limiting the field of search to 4 × 4 pixels centered at the first step delivered initial position. The generation of these sub-pixel grid based region of interest images is achieved with the bi-cubic interpolation. The correlation matching with sub-pixel grid technique was previously reported in electronic speckle photography Sjö'dahl (1994). This technique is applied here for the solar wavefront sensing. A large dynamic range and a better accuracy in the measurements are achieved with the combination of the original pixel grid based correlation matching in a large field of view and a sub-pixel interpolated image grid based correlation matching within a small field of view. The results revealed that the proposed method outperforms all the different peak-finding algorithms studied in the first approach. It reduces both the systematic error and the RMS error by a factor of 5 (i.e., 75% systematic error reduction), when 5 times improved image sampling was used. This measurement is achieved at the expense of twice the computational cost. With the 5 times improved image sampling, the wave front accuracy is increased by a factor of 5. The proposed solution is strongly recommended for wave front sensing in the solar telescopes, particularly, for measuring large dynamic image shifts involved open loop adaptive optics. Also, by choosing an appropriate increment of image sampling in trade-off between the computational speed limitation and the aimed sub-pixel image shift accuracy, it can be employed in closed loop adaptive optics. The study is extended to three other class of sub-aperture images (a point source; a laser guide star; a Galactic Center extended scene). The results are planned to submit for the Optical Express journal.

  13. An imaging method of wavefront coding system based on phase plate rotation

    NASA Astrophysics Data System (ADS)

    Yi, Rigui; Chen, Xi; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua

    2018-01-01

    Wave-front coding has a great prospect in extending the depth of the optical imaging system and reducing optical aberrations, but the image quality and noise performance are inevitably reduced. According to the theoretical analysis of the wave-front coding system and the phase function expression of the cubic phase plate, this paper analyzed and utilized the feature that the phase function expression would be invariant in the new coordinate system when the phase plate rotates at different angles around the z-axis, and we proposed a method based on the rotation of the phase plate and image fusion. First, let the phase plate rotated at a certain angle around the z-axis, the shape and distribution of the PSF obtained on the image surface remain unchanged, the rotation angle and direction are consistent with the rotation angle of the phase plate. Then, the middle blurred image is filtered by the point spread function of the rotation adjustment. Finally, the reconstruction images were fused by the method of the Laplacian pyramid image fusion and the Fourier transform spectrum fusion method, and the results were evaluated subjectively and objectively. In this paper, we used Matlab to simulate the images. By using the Laplacian pyramid image fusion method, the signal-to-noise ratio of the image is increased by 19% 27%, the clarity is increased by 11% 15% , and the average gradient is increased by 4% 9% . By using the Fourier transform spectrum fusion method, the signal-to-noise ratio of the image is increased by 14% 23%, the clarity is increased by 6% 11% , and the average gradient is improved by 2% 6%. The experimental results show that the image processing by the above method can improve the quality of the restored image, improving the image clarity, and can effectively preserve the image information.

  14. Effective wavefront aberration measurement of spectacle lenses in as-worn status

    NASA Astrophysics Data System (ADS)

    Jia, Zhigang; Xu, Kai; Fang, Fengzhou

    2018-04-01

    An effective wavefront aberration analysis method for measuring spectacle lenses in as-worn status was proposed and verified using an experimental apparatus based on an eye rotation model. Two strategies were employed to improve the accuracy of measurement of the effective wavefront aberrations on the corneal sphere. The influences of three as-worn parameters, the vertex distance, pantoscopic angle, and face form angle, together with the eye rotation and corresponding incident beams, were objectively and quantitatively obtained. The experimental measurements of spherical single vision and freeform progressive addition lenses demonstrate the accuracy and validity of the proposed method and experimental apparatus, which provide a potential means of achieving supernormal vision correction with customization and personalization in optimizing the as-worn status-based design of spectacle lenses and evaluating their manufacturing and imaging qualities.

  15. Preliminary Investigation of an Active PLZT Lens

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Peters, B. R.; Reardon, P. J.; Wong, J. K.

    2001-01-01

    The design, analysis and preliminary testing of a prototype Adjustable Focus Optical Correction Lens (AFOCL) is described. The AFOCL is an active optical component composed of solid state lead lanthanum-modified zirconate titanate (PLZT) ferroelectric ceramic with patterned indium tin oxide (ITO) transparent surface electrodes that modulate the refractive index of the PLZT to function as an electro-optic lens. The AFOCL was developed to perform optical re-alignment and wavefront correction to enhance the performance of Ultra-Lightweight Structures and Space Observatories (ULSSO). The AFOCL has potential application as an active optical component within a larger optical system. As such, information from a wavefront sensor would be processed to provide input to the AFOCL to drive the sensed wavefront to the desired shape and location. While offering variable and rapid focussing capability (controlled wavefront manipulation) similar to liquid crystal based spatial light modulators (SLM), the AFOCL offers some potential advantages because it is a solid-state, stationary, low-mass, rugged, and thin optical element that can produce wavefront quality comparable to the solid refractive lens it replaces. The AFOCL acts as a positive or negative lens by producing a parabolic phase-shift in the PLZT material through the application of a controlled voltage potential across the ITO electrodes. To demonstrate the technology, a 4 mm diameter lens was fabricated to produce 5-waves of optical power operating at 2.051 micrometer wavelength. Optical metrology was performed on the device to measure focal length, optical quality, and efficiency for a variety of test configurations. The data was analyzed and compared to theoretical data available from computer-based models of the AFOCL.

  16. Feasibility study of a layer-oriented wavefront sensor for solar telescopes.

    PubMed

    Marino, Jose; Wöger, Friedrich

    2014-02-01

    Solar multiconjugate adaptive optics systems rely on several wavefront sensors, which measure the incoming turbulent phase along several field directions to produce a tomographic reconstruction of the turbulent phase. In this paper, we explore an alternative wavefront sensing approach that attempts to directly measure the turbulent phase present at a particular height in the atmosphere: a layer-oriented cross-correlating Shack-Hartmann wavefront sensor (SHWFS). In an experiment at the Dunn Solar Telescope, we built a prototype layer-oriented cross-correlating SHWFS system conjugated to two separate atmospheric heights. We present the data obtained in the observations and complement these with ray-tracing computations to achieve a better understanding of the instrument's performance and limitations. The results obtained in this study strongly indicate that a layer-oriented cross-correlating SHWFS is not a practical design to measure the wavefront at a high layer in the atmosphere.

  17. An experimental apparatus for diffraction-limited soft x-ray nano-focusing

    NASA Astrophysics Data System (ADS)

    Merthe, Daniel J.; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Yuan, Sheng; McKinney, Wayne R.; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory Y.; Rakawa, Senajith B.; Anderson, Erik; Smith, Brian V.; Domning, Edward E.; Warwick, Tony; Padmore, Howard

    2011-09-01

    Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing. The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. Visible-light long-trace profilometry was used to pre-align the mirror before installation at the beamline. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.

  18. Holographic Adaptive Laser Optics System

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Ghebremichael, F.

    2011-09-01

    We have created a new adaptive optics system using a holographic modal wavefront sensing method with the autonomous (computer-free) closed-loop control of a MEMS deformable mirror (DM). A multiplexed hologram is recorded using the maximum and minimum actuator positions on the deformable mirror as the “modes”. On reconstruction, an input beam is diffracted into pairs of focal spots and the ratio of the intensities of certain pairs determines the absolute wavefront phase at a particular actuator location. The wavefront measurement is made using fast, sensitive silicon photomultiplier arrays with the parallel outputs directly controlling individual actuators in the MEMS DM. In this talk, we will present the results from an all-optical, ultra-compact system that runs in closed-loop without the need for a computer. The speed is limited only by the response time of any given DM actuator and not the number of actuators. In our case, our 32-actuator prototype device already operates at 10 kHz and our next generation system is being designed for > 100 kHz. As a modal system, it is largely insensitive to scintillation and obscuration and is thus ideal for extreme adaptive optics applications. We will present information on how HALOS can be used for image correction and beam propagation as well as several other novel applications.

  19. Estimation of chromatic errors from broadband images for high contrast imaging

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Belikov, Ruslan

    2015-09-01

    Usage of an internal coronagraph with an adaptive optical system for wavefront correction for direct imaging of exoplanets is currently being considered for many mission concepts, including as an instrument addition to the WFIRST-AFTA mission to follow the James Web Space Telescope. The main technical challenge associated with direct imaging of exoplanets with an internal coronagraph is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, wavefront errors are usually estimated using probes on the DM. To date, most broadband lab demonstrations use narrowband filters to estimate the chromaticity of the wavefront error, but this reduces the photon flux per filter and requires a filter system. Here, we propose a method to estimate the chromaticity of wavefront errors using only a broadband image. This is achieved by using special DM probes that have sufficient chromatic diversity. As a case example, we simulate the retrieval of the spectrum of the central wavelength from broadband images for a simple shaped- pupil coronagraph with a conjugate DM and compute the resulting estimation error.

  20. The Subaru Coronagraphic Extreme AO Project

    NASA Astrophysics Data System (ADS)

    Martinache, Frantz; Guyon, O.; Lozi, J.; Tamura, M.; Hodapp, K.; Suzuki, R.; Hayano, Y.; McElwain, M. W.

    2009-01-01

    While the existence of large numbers of extrasolar planets around solar type stars has been unambiguously demonstrated by radial velocity, transit and microlensing surveys, attempts at direct imaging with AO-equipped large telescopes remain unsuccessful. Because they supposedly offer more favorable contrast ratios, young systems consitute prime targets for imaging. Such observations will provide key insights on the formation and early evolution of planets and disks. Current surveys are limited by modest AO performance which limits inner working angle to 0.2", and only reach maximum sensitivity outside 1". This translates into orbital distances greater than 10 AU even on most nearby systems, while only 5 % of the known exoplanets have a semimajor axis greater than 10 AU. This calls for a major change of approach in the techniques used for direct imaging of the direct vicinity of stars. A sensible way to do the job is to combine coronagraphy and Extreme AO. Only accurate and fast control of the wavefront will permit the detection of high contrast planetary companions within 10 AU. The SCExAO system, currently under assembly, is an upgrade of the HiCIAO coronagraphic differential imaging camera, mounted behind the 188-actuator curvature AO system on Subaru Telescope. This platform includes a 1000-actuator MEMS deformable mirror for high accuracy wavefront correction and a PIAA coronagraph which delivers high contrast at 0.05" from the star (5 AU at 100 pc). Key technologies have been validated in the laboratory: high performance wavefront sensing schemes, spider vanes and central obstruction removal, and lossless beam apodization. The project is designed to be highly flexible to continuously integrate new technologies with high scientific payoff. Planned upgrades include an integral field unit for spectral characterization of planets/disks and a non-redundant aperture mask to push the performance of the system toward separations less than lambda/D.

  1. SU-G-IeP4-09: Method of Human Eye Aberration Measurement Using Plenoptic Camera Over Large Field of View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Yang; Wang, Ruixing; Ma, Haotong

    Purpose: The measurement based on Shack-Hartmann wave-front sensor(WFS), obtaining both the high and low order wave-front aberrations simultaneously and accurately, has been applied in the detection of human eyes aberration in recent years. However, Its application is limited by the small field of view (FOV), slight eye movement leads the optical bacon image exceeds the lenslet array which result in uncertain detection error. To overcome difficulties of precise eye location, the capacity of detecting eye wave-front aberration over FOV much larger than simply a single conjugate Hartmann WFS accurately and simultaneously is demanded. Methods: Plenoptic camera’s lenslet array subdivides themore » aperture light-field in spatial frequency domain, capture the 4-D light-field information. Data recorded by plenoptic cameras can be used to extract the wave-front phases associated to the eyes aberration. The corresponding theoretical model and simulation system is built up in this article to discuss wave-front measurement performance when utilizing plenoptic camera as wave-front sensor. Results: The simulation results indicate that the plenoptic wave-front method can obtain both the high and low order eyes wave-front aberration with the same accuracy as conventional system in single visual angle detectionand over FOV much larger than simply a single conjugate Hartmann systems. Meanwhile, simulation results show that detection of eye aberrations wave-front in different visual angle can be achieved effectively and simultaneously by plenoptic method, by both point and extended optical beacon from the eye. Conclusion: Plenoptic wave-front method possesses the feasibility in eye aberrations wave-front detection. With larger FOV, the method can effectively reduce the detection error brought by imprecise eye location and simplify the eye aberrations wave-front detection system comparing with which based on Shack-Hartmann WFS. Unique advantage of the plenoptic method lies in obtaining wave-front in different visual angle simultaneously, which provides an approach in building up 3-D model of eye refractor tomographically. Funded by the key Laboratory of High Power Laser and Physics, CAS Research Project of National University of Defense Technology No. JC13-07-01; National Natural Science Foundation of China No. 61205144.« less

  2. An image focusing means by using an opaque object to diffract x-rays

    DOEpatents

    Sommargren, Gary E.; Weaver, H. Joseph

    1991-01-01

    The invention provides a method and apparatus for focusing and imaging x-rays. An opaque sphere is used as a diffractive imaging element to diffract x-rays from an object so that the divergent x-ray wavefronts are transformed into convergent wavefronts and are brought to focus to form an image of the object with a large depth of field.

  3. Deconvolution from Wavefront Sensing Using Optimal Wavefront Estimators

    DTIC Science & Technology

    1996-12-01

    Error Results ....... ............................ 86 B.1 Introduction ................................ 86 B.1.1 Effect of Light Level, my...86 B.1.2 Effect of Atmospheric Coherence Diameter, r0 . . 86 B.1.3 Effect of Tilt Removal ................... 86 B.2 Summary... Effect of Light Level, my .................... 89 C.1.2 Effect of Atmospheric Coherence Diameter, r0 . . 89 C.1.3 Effect of Tilt Removal

  4. Novel algorithm implementations in DARC: the Durham AO real-time controller

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Bitenc, Urban; Jenkins, David

    2016-07-01

    The Durham AO Real-time Controller has been used on-sky with the CANARY AO demonstrator instrument since 2010, and is also used to provide control for several AO test-benches, including DRAGON. Over this period, many new real-time algorithms have been developed, implemented and demonstrated, leading to performance improvements for CANARY. Additionally, the computational performance of this real-time system has continued to improve. Here, we provide details about recent updates and changes made to DARC, and the relevance of these updates, including new algorithms, to forthcoming AO systems. We present the computational performance of DARC when used on different hardware platforms, including hardware accelerators, and determine the relevance and potential for ELT scale systems. Recent updates to DARC have included algorithms to handle elongated laser guide star images, including correlation wavefront sensing, with options to automatically update references during AO loop operation. Additionally, sub-aperture masking options have been developed to increase signal to noise ratio when operating with non-symmetrical wavefront sensor images. The development of end-user tools has progressed with new options for configuration and control of the system. New wavefront sensor camera models and DM models have been integrated with the system, increasing the number of possible hardware configurations available, and a fully open-source AO system is now a reality, including drivers necessary for commercial cameras and DMs. The computational performance of DARC makes it suitable for ELT scale systems when implemented on suitable hardware. We present tests made on different hardware platforms, along with the strategies taken to optimise DARC for these systems.

  5. Holographic imaging with a Shack-Hartmann wavefront sensor.

    PubMed

    Gong, Hai; Soloviev, Oleg; Wilding, Dean; Pozzi, Paolo; Verhaegen, Michel; Vdovin, Gleb

    2016-06-27

    A high-resolution Shack-Hartmann wavefront sensor has been used for coherent holographic imaging, by computer reconstruction and propagation of the complex field in a lensless imaging setup. The resolution of the images obtained with the experimental data is in a good agreement with the diffraction theory. Although a proper calibration with a reference beam improves the image quality, the method has a potential for reference-less holographic imaging with spatially coherent monochromatic and narrowband polychromatic sources in microscopy and imaging through turbulence.

  6. Optical Modeling Activities for NASA's James Webb Space Telescope (JWST): V. Operational Alignment Updates

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Ha, Kong Q.; Shiri, Ron; Smith, J. Scott; Mosier, Gary; Muheim, Danniella

    2008-01-01

    This paper is part five of a series on the ongoing optical modeling activities for the James Webb Space Telescope (JWST). The first two papers discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third paper investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory, and the fourth introduced the software toolkits used to perform much of the optical analysis for JWST. The work here models observatory operations by simulating line-of-sight image motion and alignment drifts over a two-week period. Alignment updates are then simulated using wavefront sensing and control processes to calculate and perform the corrections. A single model environment in Matlab is used for evaluating the predicted performance of the observatory during these operations.

  7. Avalanche photo diodes in the observatory environment: lucky imaging at 1-2.5 microns

    NASA Astrophysics Data System (ADS)

    Vaccarella, A.; Sharp, R.; Ellis, M.; Singh, S.; Bloxham, G.; Bouchez, A.; Conan, R.; Boz, R.; Bundy, D.; Davies, J.; Espeland, B.; Hart, J.; Herrald, N.; Ireland, M.; Jacoby, G.; Nielsen, J.; Vest, C.; Young, P.; Fordham, B.; Zovaro, A.

    2016-08-01

    The recent availability of large format near-infrared detectors with sub-election readout noise is revolutionizing our approach to wavefront sensing for adaptive optics. However, as with all near-infrared detector technologies, challenges exist in moving from the comfort of the laboratory test-bench into the harsh reality of the observatory environment. As part of the broader adaptive optics program for the GMT, we are developing a near-infrared Lucky Imaging camera for operational deployment at the ANU 2.3 m telescope at Siding Spring Observatory. The system provides an ideal test-bed for the rapidly evolving Selex/SAPHIRA eAPD technology while providing scientific imaging at angular resolution rivalling the Hubble Space Telescope at wavelengths λ = 1.3-2.5 μm.

  8. Eye-pupil displacement and prediction: effects on residual wavefront in adaptive optics retinal imaging

    PubMed Central

    Kulcsár, Caroline; Raynaud, Henri-François; Garcia-Rissmann, Aurea

    2016-01-01

    This paper studies the effect of pupil displacements on the best achievable performance of retinal imaging adaptive optics (AO) systems, using 52 trajectories of horizontal and vertical displacements sampled at 80 Hz by a pupil tracker (PT) device on 13 different subjects. This effect is quantified in the form of minimal root mean square (rms) of the residual phase affecting image formation, as a function of the delay between PT measurement and wavefront correction. It is shown that simple dynamic models identified from data can be used to predict horizontal and vertical pupil displacements with greater accuracy (in terms of average rms) over short-term time horizons. The potential impact of these improvements on residual wavefront rms is investigated. These results allow to quantify the part of disturbances corrected by retinal imaging systems that are caused by relative displacements of an otherwise fixed or slowy-varying subject-dependent aberration. They also suggest that prediction has a limited impact on wavefront rms and that taking into account PT measurements in real time improves the performance of AO retinal imaging systems. PMID:27231607

  9. Time-resolved quantitative-phase microscopy of laser-material interactions using a wavefront sensor.

    PubMed

    Gallais, Laurent; Monneret, Serge

    2016-07-15

    We report on a simple and efficient technique based on a wavefront sensor to obtain time-resolved amplitude and phase images of laser-material interactions. The main interest of the technique is to obtain quantitative self-calibrated phase measurements in one shot at the femtosecond time-scale, with high spatial resolution. The technique is used for direct observation and quantitative measurement of the Kerr effect in a fused silica substrate and free electron generation by photo-ionization processes in an optical coating.

  10. Optimum parameters of image preprocessing method for Shack-Hartmann wavefront sensor in different SNR condition

    NASA Astrophysics Data System (ADS)

    Wei, Ping; Li, Xinyang; Luo, Xi; Li, Jianfeng

    2018-02-01

    The centroid method is commonly adopted to locate the spot in the sub-apertures in the Shack-Hartmann wavefront sensor (SH-WFS), in which preprocessing image is required before calculating the spot location due to that the centroid method is extremely sensitive to noises. In this paper, the SH-WFS image was simulated according to the characteristics of the noises, background and intensity distribution. The Optimal parameters of SH-WFS image preprocessing method were put forward, in different signal-to-noise ratio (SNR) conditions, where the wavefront reconstruction error was considered as the evaluation index. Two methods of image preprocessing, thresholding method and windowing combing with thresholding method, were compared by studying the applicable range of SNR and analyzing the stability of the two methods, respectively.

  11. Athermalization of infrared dual field optical system based on wavefront coding

    NASA Astrophysics Data System (ADS)

    Jiang, Kai; Jiang, Bo; Liu, Kai; Yan, Peipei; Duan, Jing; Shan, Qiu-sha

    2017-02-01

    Wavefront coding is a technology which combination of the optical design and digital image processing. By inserting a phase mask closed to the pupil plane of the optical system the wavefront of the system is re-modulated. And the depth of focus is extended consequently. In reality the idea is same as the athermalization theory of infrared optical system. In this paper, an uncooled infrared dual field optical system with effective focal as 38mm/19mm, F number as 1.2 of both focal length, operating wavelength varying from 8μm to 12μm was designed. A cubic phase mask was used at the pupil plane to re-modulate the wavefront. Then the performance of the infrared system was simulated with CODEV as the environment temperature varying from -40° to 60°. MTF curve of the optical system with phase mask are compared with the outcome before using phase mask. The result show that wavefront coding technology can make the system not sensitive to thermal defocus, and then realize the athermal design of the infrared optical system.

  12. Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack-Hartmann wavefront sensor.

    PubMed

    Yin, Xiaoming; Li, Xiang; Zhao, Liping; Fang, Zhongping

    2009-11-10

    A Shack-Hartmann wavefront sensor (SWHS) splits the incident wavefront into many subsections and transfers the distorted wavefront detection into the centroid measurement. The accuracy of the centroid measurement determines the accuracy of the SWHS. Many methods have been presented to improve the accuracy of the wavefront centroid measurement. However, most of these methods are discussed from the point of view of optics, based on the assumption that the spot intensity of the SHWS has a Gaussian distribution, which is not applicable to the digital SHWS. In this paper, we present a centroid measurement algorithm based on the adaptive thresholding and dynamic windowing method by utilizing image processing techniques for practical application of the digital SHWS in surface profile measurement. The method can detect the centroid of each focal spot precisely and robustly by eliminating the influence of various noises, such as diffraction of the digital SHWS, unevenness and instability of the light source, as well as deviation between the centroid of the focal spot and the center of the detection area. The experimental results demonstrate that the algorithm has better precision, repeatability, and stability compared with other commonly used centroid methods, such as the statistical averaging, thresholding, and windowing algorithms.

  13. Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue

    PubMed Central

    Chaigneau, Emmanuelle; Wright, Amanda J.; Poland, Simon P.; Girkin, John M.; Silver, R. Angus

    2011-01-01

    Two-photon (2P) microscopy is widely used in neuroscience, but the optical properties of brain tissue are poorly understood. We have investigated the effect of brain tissue on the 2P point spread function (PSF2P) by imaging fluorescent beads through living cortical slices. By combining this with measurements of the mean free path of the excitation light, adaptive optics and vector-based modeling that includes phase modulation and scattering, we show that tissue-induced wavefront distortions are the main determinant of enlargement and distortion of the PSF2P at intermediate imaging depths. Furthermore, they generate surrounding lobes that contain more than half of the 2P excitation. These effects reduce the resolution of fine structures and contrast and they, together with scattering, limit 2P excitation. Our results disentangle the contributions of scattering and wavefront distortion in shaping the cortical PSF2P, thereby providing a basis for improved 2P microscopy. PMID:22109156

  14. Extending the Capture Volume of an Iris Recognition System Using Wavefront Coding and Super-Resolution.

    PubMed

    Hsieh, Sheng-Hsun; Li, Yung-Hui; Tien, Chung-Hao; Chang, Chin-Chen

    2016-12-01

    Iris recognition has gained increasing popularity over the last few decades; however, the stand-off distance in a conventional iris recognition system is too short, which limits its application. In this paper, we propose a novel hardware-software hybrid method to increase the stand-off distance in an iris recognition system. When designing the system hardware, we use an optimized wavefront coding technique to extend the depth of field. To compensate for the blurring of the image caused by wavefront coding, on the software side, the proposed system uses a local patch-based super-resolution method to restore the blurred image to its clear version. The collaborative effect of the new hardware design and software post-processing showed great potential in our experiment. The experimental results showed that such improvement cannot be achieved by using a hardware-or software-only design. The proposed system can increase the capture volume of a conventional iris recognition system by three times and maintain the system's high recognition rate.

  15. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  16. Zonal wavefront sensor with reduced number of rows in the detector array.

    PubMed

    Boruah, Bosanta R; Das, Abhijit

    2011-07-10

    In this paper, we describe a zonal wavefront sensor in which the photodetector array can have a smaller number of rows. The test wavefront is incident on a two-dimensional array of diffraction gratings followed by a single focusing lens. The periodicity and the orientation of the grating rulings of each grating can be chosen such that the +1 order beam from the gratings forms an array of focal spots in the detector plane. We show that by using a square array of zones, it is possible to generate an array of +1 order focal spots having a smaller number of rows, thus reducing the height of the required detector array. The phase profile of the test wavefront can be estimated by measuring the displacements of the +1 order focal spots for the test wavefront relative to the +1 order focal spots for a plane reference wavefront. The narrower width of the photodetector array can offer several advantages, such as a faster frame rate of the wavefront sensor, a reduced amount of cross talk between the nearby detector zones, and a decrease in the maximum thermal noise. We also present experimental results of a proof-of-concept experimental arrangement using the proposed wavefront sensing scheme. © 2011 Optical Society of America

  17. Effect of wavefront aberrations on a focused plenoptic imaging system: a wave optics simulation approach

    NASA Astrophysics Data System (ADS)

    Turola, Massimo; Meah, Chris J.; Marshall, Richard J.; Styles, Iain B.; Gruppetta, Stephen

    2015-06-01

    A plenoptic imaging system records simultaneously the intensity and the direction of the rays of light. This additional information allows many post processing features such as 3D imaging, synthetic refocusing and potentially evaluation of wavefront aberrations. In this paper the effects of low order aberrations on a simple plenoptic imaging system have been investigated using a wave optics simulations approach.

  18. Geometric Theory of Moving Grid Wavefront Sensor

    DTIC Science & Technology

    1977-06-30

    Identify by block numbot) Adaptive Optics WaVefront Sensor Geometric Optics Analysis Moving Ronchi Grid "ABSTRACT (Continue an revere sdde If nooessaY...ad Identify by block nucber)A geometric optics analysis is made for a wavefront sensor that uses a moving Ronchi grid. It is shown that by simple data... optical systems being considered or being developed -3 for imaging an object through a turbulent atmosphere. Some of these use a wavefront sensor to

  19. Simple wavefront correction framework for two-photon microscopy of in-vivo brain

    PubMed Central

    Galwaduge, P. T.; Kim, S. H.; Grosberg, L. E.; Hillman, E. M. C.

    2015-01-01

    We present an easily implemented wavefront correction scheme that has been specifically designed for in-vivo brain imaging. The system can be implemented with a single liquid crystal spatial light modulator (LCSLM), which makes it compatible with existing patterned illumination setups, and provides measurable signal improvements even after a few seconds of optimization. The optimization scheme is signal-based and does not require exogenous guide-stars, repeated image acquisition or beam constraint. The unconstrained beam approach allows the use of Zernike functions for aberration correction and Hadamard functions for scattering correction. Low order corrections performed in mouse brain were found to be valid up to hundreds of microns away from the correction location. PMID:26309763

  20. Correction methods for underwater turbulence degraded imaging

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.; Hou, W.; Restaino, S. R.; Matt, S.; Gładysz, S.

    2014-10-01

    The use of remote sensing techniques such as adaptive optics and image restoration post processing to correct for aberrations in a wavefront of light propagating through turbulent environment has become customary for many areas including astronomy, medical imaging, and industrial applications. EO imaging underwater has been mainly concentrated on overcoming scattering effects rather than dealing with underwater turbulence. However, the effects of turbulence have crucial impact over long image-transmission ranges and under extreme turbulence conditions become important over path length of a few feet. Our group has developed a program that attempts to define under which circumstances application of atmospheric remote sensing techniques could be envisioned. In our experiments we employ the NRL Rayleigh-Bénard convection tank for simulated turbulence environment at Stennis Space Center, MS. A 5m long water tank is equipped with heating and cooling plates that generate a well measured thermal gradient that in turn produces various degrees of turbulence. The image or laser beam spot can be propagated along the tank's length where it is distorted by induced turbulence. In this work we report on the experimental and theoretical findings of the ongoing program. The paper will introduce the experimental setup, the techniques used, and the measurements made as well as describe novel methods for postprocessing and correction of images degraded by underwater turbulence.

  1. Wavefront aberrations and retinal image quality in different lenticular opacity types and densities.

    PubMed

    Wu, Cheng-Zhe; Jin, Hua; Shen, Zhen-Nv; Li, Ying-Jun; Cui, Xun

    2017-11-10

    To investigate wavefront aberrations in the entire eye and in the internal optics (lens) and retinal image qualities according to different lenticular opacity types and densities. Forty-one eyes with nuclear cataract, 33 eyes with cortical cataract, and 29 eyes with posterior subcapsular cataract were examined. In each group, wavefront aberrations in the entire eye and in the internal optics and retinal image quality were measured using a raytracing aberrometer. Eyes with cortical cataracts showed significantly higher coma-like aberrations compared to the other two groups in both entire eye and internal optic aberrations (P = 0.012 and P = 0.007, respectively). Eyes with nuclear cataract had lower spherical-like aberrations than the other two groups in both entire eye and internal optics aberrations (P < 0.001 and P < 0.001, respectively). In the nuclear cataract group, nuclear lens density was negatively correlated with internal spherical aberrations (r = -0.527, P = 0.005). Wavefront technology is useful for objective and quantitative analysis of retinal image quality deterioration in eyes with different early lenticular opacity types and densities. Understanding the wavefront optical properties of different crystalline lens opacities may help ophthalmic surgeons determine the optimal time to perform cataract surgery.

  2. SCExAO: First Results and On-Sky Performance

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Guyon, Olivier; Martinache, Frantz; Clergeon, Christophe; McElwain, Michael; Thalmann, Christian; Jovanovic, Nemanja; Singh, Garima; Kudo, Tomoyuki

    2014-01-01

    We present new on-sky results for the Subaru Coronagraphic Extreme Adaptive Optics imager (SCExAO) verifying and quantifying the contrast gain enabled by key components: the closed-loop coronagraphic low-order wavefront sensor (CLOWFS) and focal plane wavefront control (``speckle nulling''). SCExAO will soon be coupled with a high-order, Pyramid wavefront sensor which will yield > 90% Strehl ratio and enable 106-107 contrast at small angular separations allowing us to image gas giant planets at solar system scales. Upcoming instruments like VAMPIRES, FIRST, and CHARIS will expand SCExAO's science capabilities.

  3. SPECKLE NOISE SUBTRACTION AND SUPPRESSION WITH ADAPTIVE OPTICS CORONAGRAPHIC IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren Deqing; Dou Jiangpei; Zhang Xi

    2012-07-10

    Future ground-based direct imaging of exoplanets depends critically on high-contrast coronagraph and wave-front manipulation. A coronagraph is designed to remove most of the unaberrated starlight. Because of the wave-front error, which is inherit from the atmospheric turbulence from ground observations, a coronagraph cannot deliver its theoretical performance, and speckle noise will limit the high-contrast imaging performance. Recently, extreme adaptive optics, which can deliver an extremely high Strehl ratio, is being developed for such a challenging mission. In this publication, we show that barely taking a long-exposure image does not provide much gain for coronagraphic imaging with adaptive optics. We furthermore » discuss a speckle subtraction and suppression technique that fully takes advantage of the high contrast provided by the coronagraph, as well as the wave front corrected by the adaptive optics. This technique works well for coronagraphic imaging with conventional adaptive optics with a moderate Strehl ratio, as well as for extreme adaptive optics with a high Strehl ratio. We show how to substrate and suppress speckle noise efficiently up to the third order, which is critical for future ground-based high-contrast imaging. Numerical simulations are conducted to fully demonstrate this technique.« less

  4. Post-coronagraphic tip-tilt sensing for vortex phase masks: The QACITS technique

    NASA Astrophysics Data System (ADS)

    Huby, E.; Baudoz, P.; Mawet, D.; Absil, O.

    2015-12-01

    Context. Small inner working angle coronagraphs, such as the vortex phase mask, are essential to exploit the full potential of ground-based telescopes in the context of exoplanet detection and characterization. However, the drawback of this attractive feature is a high sensitivity to pointing errors, which degrades the performance of the coronagraph. Aims: We propose a tip-tilt retrieval technique based on the analysis of the final coronagraphic image, hereafter called Quadrant Analysis of Coronagraphic Images for Tip-tilt Sensing (QACITS). Methods: Under the assumption of small phase aberrations, we show that the behavior of the vortex phase mask can be simply described from the entrance pupil to the Lyot stop plane with Zernike polynomials. This convenient formalism is used to establish the theoretical basis of the QACITS technique. We performed simulations to demonstrate the validity and limits of the technique, including the case of a centrally obstructed pupil. Results: The QACITS technique principle is validated with experimental results in the case of an unobstructed circular aperture, as well as simulations in presence of a central obstruction. The typical configuration of the Keck telescope (24% central obstruction) has been simulated with additional high order aberrations. In these conditions, our simulations show that the QACITS technique is still adapted to centrally obstructed pupils and performs tip-tilt retrieval with a precision of 5 × 10-2λ/D when wavefront errors amount to λ/ 14 rms and 10-2λ/D for λ/ 70 rms errors (with λ the wavelength and D the pupil diameter). Conclusions: We have developed and demonstrated a tip-tilt sensing technique for vortex coronagraphs. The implementation of the QACITS technique is based on the analysis of the scientific image and does not require any modification of the original setup. Current facilities equipped with a vortex phase mask can thus directly benefit from this technique to improve the contrast performance close to the axis.

  5. Shear wave mapping of skeletal muscle using shear wave wavefront reconstruction based on ultrasound color flow imaging

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamamoto, Atsushi; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi

    2015-07-01

    We have proposed a quantitative shear wave imaging technique for continuous shear wave excitation. Shear wave wavefront is observed directly by color flow imaging using a general-purpose ultrasonic imaging system. In this study, the proposed method is applied to experiments in vivo, and shear wave maps, namely, the shear wave phase map, which shows the shear wave propagation inside the medium, and the shear wave velocity map, are observed for the skeletal muscle in the shoulder. To excite the shear wave inside the skeletal muscle of the shoulder, a hybrid ultrasonic wave transducer, which combines a small vibrator with an ultrasonic wave probe, is adopted. The shear wave velocity of supraspinatus muscle, which is measured by the proposed method, is 4.11 ± 0.06 m/s (N = 4). This value is consistent with those obtained by the acoustic radiation force impulse method.

  6. Hybrid Lyot coronagraph for WFIRST: high-contrast broadband testbed demonstration

    NASA Astrophysics Data System (ADS)

    Seo, Byoung-Joon; Cady, Eric; Gordon, Brian; Kern, Brian; Lam, Raymond; Marx, David; Moody, Dwight; Muller, Richard; Patterson, Keith; Poberezhskiy, Ilya; Mejia Prada, Camilo; Sidick, Erkin; Shi, Fang; Trauger, John; Wilson, Daniel

    2017-09-01

    Hybrid Lyot Coronagraph (HLC) is one of the two operating modes of the Wide-Field InfraRed Survey Telescope (WFIRST) coronagraph instrument. Since being selected by National Aeronautics and Space Administration (NASA) in December 2013, the coronagraph technology is being matured to Technology Readiness Level (TRL) 6 by 2018. To demonstrate starlight suppression in presence of expecting on-orbit input wavefront disturbances, we have built a dynamic testbed in Jet Propulsion Laboratory (JPL) in 2016. This testbed, named as Occulting Mask Coronagraph (OMC) testbed, is designed analogous to the WFIRST flight instrument architecture: It has both HLC and Shape Pupil Coronagraph (SPC) architectures, and also has the Low Order Wavefront Sensing and Control (LOWFS/C) subsystem to sense and correct the dynamic wavefront disturbances. We present upto-date progress of HLC mode demonstration in the OMC testbed. SPC results will be reported separately. We inject the flight-like Line of Sight (LoS) and Wavefront Error (WFE) perturbation to the OMC testbed and demonstrate wavefront control using two deformable mirrors while the LOWFS/C is correcting those perturbation in our vacuum testbed. As a result, we obtain repeatable convergence below 5 × 10-9 mean contrast with 10% broadband light centered at 550 nm in the 360 degrees dark hole with working angle between 3 λ/D and 9 λ/D. We present the key hardware and software used in the testbed, the performance results and their comparison to model expectations.

  7. Virtual pyramid wavefront sensor for phase unwrapping.

    PubMed

    Akondi, Vyas; Vohnsen, Brian; Marcos, Susana

    2016-10-10

    Noise affects wavefront reconstruction from wrapped phase data. A novel method of phase unwrapping is proposed with the help of a virtual pyramid wavefront sensor. The method was tested on noisy wrapped phase images obtained experimentally with a digital phase-shifting point diffraction interferometer. The virtuality of the pyramid wavefront sensor allows easy tuning of the pyramid apex angle and modulation amplitude. It is shown that an optimal modulation amplitude obtained by monitoring the Strehl ratio helps in achieving better accuracy. Through simulation studies and iterative estimation, it is shown that the virtual pyramid wavefront sensor is robust to random noise.

  8. Estimation of chromatic errors from broadband images for high contrast imaging: sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Belikov, Ruslan

    2016-01-01

    Many concepts have been proposed to enable direct imaging of planets around nearby stars, and which would enable spectroscopic observations of their atmospheric observations and the potential discovery of biomarkers. The main technical challenge associated with direct imaging of exoplanets is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. Usage of an internal coronagraph with an adaptive optical system for wavefront correction is one of the most mature methods and is being developed as an instrument addition to the WFIRST-AFTA space mission. In addition, such instruments as GPI and SPHERE are already being used on the ground and are yielding spectra of giant planets. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, mid-spatial frequency wavefront errors must be estimated. To date, most broadband lab demonstrations use narrowband filters to obtain an estimate of the the chromaticity of the wavefront error and this can result in usage of a large percentage of the total integration time. Previously, we have proposed a method to estimate the chromaticity of wavefront errors using only broadband images; we have demonstrated that under idealized conditions wavefront errors can be estimated from images composed of discrete wavelengths. This is achieved by using DM probes with sufficient spatially-localized chromatic diversity. Here we report on the results of a study of the performance of this method with respect to realistic broadband images including noise. Additionally, we study optimal probe patterns that enable reduction of the number of probes used and compare the integration time with narrowband and IFS estimation methods.

  9. Study on the properties of infrared wavefront coding athermal system under several typical temperature gradient distributions

    NASA Astrophysics Data System (ADS)

    Cai, Huai-yu; Dong, Xiao-tong; Zhu, Meng; Huang, Zhan-hua

    2018-01-01

    Wavefront coding for athermal technique can effectively ensure the stability of the optical system imaging in large temperature range, as well as the advantages of compact structure and low cost. Using simulation method to analyze the properties such as PSF and MTF of wavefront coding athermal system under several typical temperature gradient distributions has directive function to characterize the working state of non-ideal temperature environment, and can effectively realize the system design indicators as well. In this paper, we utilize the interoperability of data between Solidworks and ZEMAX to simplify the traditional process of structure/thermal/optical integrated analysis. Besides, we design and build the optical model and corresponding mechanical model of the infrared imaging wavefront coding athermal system. The axial and radial temperature gradients of different degrees are applied to the whole system by using SolidWorks software, thus the changes of curvature, refractive index and the distance between the lenses are obtained. Then, we import the deformation model to ZEMAX for ray tracing, and obtain the changes of PSF and MTF in optical system. Finally, we discuss and evaluate the consistency of the PSF (MTF) of the wavefront coding athermal system and the image restorability, which provides the basis and reference for the optimal design of the wavefront coding athermal system. The results show that the adaptability of single material infrared wavefront coding athermal system to axial temperature gradient can reach the upper limit of temperature fluctuation of 60°C, which is much higher than that of radial temperature gradient.

  10. Feasibility study of a layer-oriented wavefront sensor for solar telescopes: reply.

    PubMed

    Marino, Jose; Wöger, Friedrich

    2014-11-10

    We appreciate the thoughtful comments by Kellerer [Appl. Opt.53, 7643 (2014)10.1364/AO.53.007643] to our recent study [Appl. Opt.53, 685 (2014)10.1364/AO.53.000685] in which we evaluate the practicability of a layer-oriented wavefront sensing approach suggested for use in solar multiconjugate adaptive optics. After careful review of Kellerer's comment, we remain cautious about the feasibility of a solar-layer-oriented Shack-Hartmann wavefront sensor. However, we strongly encourage further analysis and proof-of-concept work that addresses the difficulties outlined in our original paper and that demonstrates the operating principles behind such an instrument.

  11. Method and apparatus for wavefront sensing

    DOEpatents

    Bahk, Seung-Whan

    2016-08-23

    A method of measuring characteristics of a wavefront of an incident beam includes obtaining an interferogram associated with the incident beam passing through a transmission mask and Fourier transforming the interferogram to provide a frequency domain interferogram. The method also includes selecting a subset of harmonics from the frequency domain interferogram, individually inverse Fourier transforming each of the subset of harmonics to provide a set of spatial domain harmonics, and extracting a phase profile from each of the set of spatial domain harmonics. The method further includes removing phase discontinuities in the phase profile, rotating the phase profile, and reconstructing a phase front of the wavefront of the incident beam.

  12. Precision Targeting With a Tracking Adaptive Optics Scanning Laser Ophthalmoscope

    DTIC Science & Technology

    2006-01-01

    automatic high- resolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an...structures can lead to earlier detection of retinal diseases such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Combined...optics systems sense perturbations in the detected wave-front and apply corrections to an optical element that flatten the wave-front and allow near

  13. Adaptive focusing of laser radiation onto a rough reflecting surface through the turbulent and nonlinear atmosphere

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeriy V.

    2004-12-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual coherence function (MCF) for the backscattered (returned) wave. The resulting evolution equation for the MCF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.

  14. Experimental study of an off-axis three mirror anastigmatic system with wavefront coding technology.

    PubMed

    Yan, Feng; Tao, Xiaoping

    2012-04-10

    Wavefront coding (WFC) is a kind of computational imaging technique that controls defocus and defocus related aberrations of optical systems by introducing a specially designed phase distribution to the pupil function. This technology has been applied in many imaging systems to improve performance and/or reduce cost. The application of WFC technology in an off-axis three mirror anastigmatic (TMA) system has been proposed, and the design and optimization of optics, the restoration of degraded images, and the manufacturing of wavefront coded elements have been researched in our previous work. In this paper, we describe the alignment, the imaging experiment, and the image restoration of the off-axis TMA system with WFC technology. The ideal wavefront map is set to be the system error of the interferometer to simplify the assembly, and the coefficients of certain Zernike polynomials are monitored to verify the result in the alignment process. A pinhole of 20 μm diameter and the third plate of WT1005-62 resolution patterns are selected as the targets in the imaging experiment. The comparison of the tail lengths of point spread functions is represented to show the invariance of the image quality in the extended depth of focus. The structure similarity is applied to estimate the relationship among the captured images with varying defocus. We conclude that the experiment results agree with the earlier theoretical analysis.

  15. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  16. Adaptive optics with pupil tracking for high resolution retinal imaging

    PubMed Central

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-01-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics. PMID:22312577

  17. Adaptive optics with pupil tracking for high resolution retinal imaging.

    PubMed

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  18. Dual-view-zone tabletop 3D display system based on integral imaging.

    PubMed

    He, Min-Yang; Zhang, Han-Le; Deng, Huan; Li, Xiao-Wei; Li, Da-Hai; Wang, Qiong-Hua

    2018-02-01

    In this paper, we propose a dual-view-zone tabletop 3D display system based on integral imaging by using a multiplexed holographic optical element (MHOE) that has the optical properties of two sets of microlens arrays. The MHOE is recorded by a reference beam using the single-exposure method. The reference beam records the wavefronts of a microlens array from two different directions. Thus, when the display beam is projected on the MHOE, two wavefronts with the different directions will be rebuilt and the 3D virtual images can be reconstructed in two viewing zones. The MHOE has angle and wavelength selectivity. Under the conditions of the matched wavelength and the angle of the display beam, the diffraction efficiency of the MHOE is greatest. Because the unmatched light just passes through the MHOE, the MHOE has the advantage of a see-through display. The experimental results confirm the feasibility of the dual-view-zone tabletop 3D display system.

  19. Fast gradient-based algorithm on extended landscapes for wave-front reconstruction of Earth observation satellite

    NASA Astrophysics Data System (ADS)

    Thiebaut, C.; Perraud, L.; Delvit, J. M.; Latry, C.

    2016-07-01

    We present an on-board satellite implementation of a gradient-based (optical flows) algorithm for the shifts estimation between images of a Shack-Hartmann wave-front sensor on extended landscapes. The proposed algorithm has low complexity in comparison with classical correlation methods which is a big advantage for being used on-board a satellite at high instrument data rate and in real-time. The electronic board used for this implementation is designed for space applications and is composed of radiation-hardened software and hardware. Processing times of both shift estimations and pre-processing steps are compatible of on-board real-time computation.

  20. Terahertz wavefront assessment based on 2D electro-optic imaging

    NASA Astrophysics Data System (ADS)

    Cahyadi, Harsono; Ichikawa, Ryuji; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi; Abraham, Emmanuel

    2015-03-01

    Complete characterization of terahertz (THz) radiation becomes an interesting yet challenging study for many years. In visible optical region, the wavefront assessment has been proved as a powerful tool for the beam profiling and characterization, which consequently requires 2-dimension (2D) single-shot acquisition of the beam cross-section to provide the spatial profile in time- and frequency-domain. In THz region, the main problem is the lack of effective THz cameras to satisfy this need. In this communication, we propose a simple setup based on free-space collinear 2D electrooptic sampling in a ZnTe crystal for the characterization of THz wavefronts. In principle, we map the optically converted, time-resolved data of the THz pulse by changing the time delay between the probe pulse and the generated THz pulse. The temporal waveforms from different lens-ZnTe distances can clearly indicate the evolution of THz beam as it is converged, focused, or diverged. From the Fourier transform of the temporal waveforms, we can obtain the spectral profile of a broadband THz wave, which in this case within the 0.1-2 THz range. The spectral profile also provides the frequency dependency of the THz pulse amplitude. The comparison between experimental and theoretical results at certain frequencies (here we choose 0.285 and 1.035 THz) is in a good agreement suggesting that our system is capable of THz wavefront characterization. Furthermore, the implementation of Hartmann/Shack-Hartmann sensor principle enables the reconstruction of THz wavefront. We demonstrate the reconstruction of THz wavefronts which are changed from planar wave to spherical one due to the insertion of convex THz lens in the THz beam path. We apply and compare two different reconstruction methods: linear integration and Zernike polynomial. Roughly we conclude that the Zernike method provide smoother wavefront shape that can be elaborated later into quantitative-qualitative analysis about the wavefront distortion.

  1. Testing the pyramid truth wavefront sensor for NFIRAOS in the lab

    NASA Astrophysics Data System (ADS)

    Mieda, Etsuko; Rosensteiner, Matthias; van Kooten, Maaike; Veran, Jean-Pierre; Lardiere, Olivier; Herriot, Glen

    2016-07-01

    For today and future adaptive optics observations, sodium laser guide stars (LGSs) are crucial; however, the LGS elongation problem due to the sodium layer has to be compensated, in particular for extremely large telescopes. In this paper, we describe the concept of truth wavefront sensing as a solution and present its design using a pyramid wavefront sensor (PWFS) to improve NFIRAOS (Narrow Field InfraRed Adaptive Optics System), the first light adaptive optics system for Thirty Meter Telescope. We simulate and test the truth wavefront sensor function under a controlled environment using the HeNOS (Herzberg NFIRAOS Optical Simulator) bench, a scaled-down NFIRAOS bench at NRC-Herzberg. We also touch on alternative pyramid component options because despite recent high demands for PWFSs, we suffer from the lack of pyramid supplies due to engineering difficulties.

  2. Optical design of infrared pyramid wavefront sensor for the MMT

    NASA Astrophysics Data System (ADS)

    Chen, Shaojie; Sivanandam, Suresh; Liu, Siqi; Veran, Jean-Pierre; Hinz, Phil; Mieda, Etsuko; Hardy, Tim; Lardiere, Olivier

    2017-09-01

    We report the optical design of an infrared (0.85-1.8 μm) pyramid wavefront sensor (IRPWFS) that is designed for the 6.5m MMT on telescope adaptive optics system using the latest developments in low-noise infrared avalanche photodiode arrays. The comparison between the pyramid and the double-roof prism based wavefront sensors and the evaluation of their micro pupils' quality are presented. According to our analysis, the use of two double-roof prisms with achromatic materials produces the competitive performance when compared to the traditional pyramid prism, which is difficult to manufacture. The final micro pupils on the image plane have the residual errors of pupil position, chromatism, and distortion within 1/10 pixel over the 2×2 arcsecond field of view, which meet the original design goals.

  3. Method to Enhance the Operation of an Optical Inspection Instrument Using Spatial Light Modulators

    NASA Technical Reports Server (NTRS)

    Trolinger, James; Lal, Amit; Jo, Joshua; Kupiec, Stephen

    2012-01-01

    For many aspheric and freeform optical components, existing interferometric solutions require a custom computer-generated hologram (CGH) to characterize the part. The overall objective of this research is to develop hardware and a procedure to produce a combined, dynamic, Hartmann/ Digital Holographic interferometry inspection system for a wide range of advanced optical components, including aspheric and freeform optics. This new instrument would have greater versatility and dynamic range than currently available measurement systems. The method uses a spatial light modulator to pre-condition wavefronts for imaging, interferometry, and data processing to improve the resolution and versatility of an optical inspection instrument. Existing interferometers and Hartmann inspection systems have either too small a dynamic range or insufficient resolution to characterize conveniently unusual optical surfaces like aspherical and freeform optics. For interferometers, a specially produced, computer-generated holographic optical element is needed to transform the wavefront to within the range of the interferometer. A new hybrid wavefront sensor employs newly available spatial light modulators (SLMs) as programmable holographic optical elements (HOEs). The HOE is programmed to enable the same instrument to inspect an optical element in stages, first by a Hartmann measurement, which has a very large dynamic range but less resolution. The first measurement provides the information required to precondition a reference wave that avails the measurement process to the more precise phase shifting interferometry. The SLM preconditions a wavefront before it is used to inspect an optical component. This adds important features to an optical inspection system, enabling not just wavefront conditioning for null testing and dynamic range extension, but also the creation of hybrid measurement procedures. This, for example, allows the combination of dynamic digital holography and Hartmann sensing procedures to cover a virtually unlimited dynamic range with high resolution. Digital holography technology brings all of the power and benefits of digital holographic interferometry to the requirement, while Hartmann-type wavefront sensors bring deflectometry technologies to the solution. The SLM can be used to generate arbitrary wavefronts in one leg of the interferometer, thereby greatly simplifying its use and extending its range. The SLM can also be used to modify the system into a dynamic Shack-Hartmann system, which is useful for optical components with large amounts of slope. By integrating these capabilities into a single instrument, the system will have tremendous flexibility to measure a variety of optical shapes accurately.

  4. Solar adaptive optics: specificities, lessons learned, and open alternatives

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Marino, J.; Asensio Ramos, A.; Collados, M.; Montoya, L.; Tallon, M.

    2016-07-01

    First on sky adaptive optics experiments were performed on the Dunn Solar Telescope on 1979, with a shearing interferometer and limited success. Those early solar adaptive optics efforts forced to custom-develop many components, such as Deformable Mirrors and WaveFront Sensors, which were not available at that time. Later on, the development of the correlation Shack-Hartmann marked a breakthrough in solar adaptive optics. Since then, successful Single Conjugate Adaptive Optics instruments have been developed for many solar telescopes, i.e. the National Solar Observatory, the Vacuum Tower Telescope and the Swedish Solar Telescope. Success with the Multi Conjugate Adaptive Optics systems for GREGOR and the New Solar Telescope has proved to be more difficult to attain. Such systems have a complexity not only related to the number of degrees of freedom, but also related to the specificities of the Sun, used as reference, and the sensing method. The wavefront sensing is performed using correlations on images with a field of view of 10", averaging wavefront information from different sky directions, affecting the sensing and sampling of high altitude turbulence. Also due to the low elevation at which solar observations are performed we have to include generalized fitting error and anisoplanatism, as described by Ragazzoni and Rigaut, as non-negligible error sources in the Multi Conjugate Adaptive Optics error budget. For the development of the next generation Multi Conjugate Adaptive Optics systems for the Daniel K. Inouye Solar Telescope and the European Solar Telescope we still need to study and understand these issues, to predict realistically the quality of the achievable reconstruction. To improve their designs other open issues have to be assessed, i.e. possible alternative sensing methods to avoid the intrinsic anisoplanatism of the wide field correlation Shack-Hartmann, new parameters to estimate the performance of an adaptive optics solar system, alternatives to the Strehl and the Point Spread Function used in night time adaptive optics but not really suitable to the solar systems, and new control strategies more complex than the ones used in nowadays solar Multi Conjugate Adaptive Optics systems. In this paper we summarize the lessons learned with past and current solar adaptive optics systems and focus on the discussion on the new alternatives to solve present open issues limiting their performance.

  5. Efficacy of predictive wavefront control for compensating aero-optical aberrations

    NASA Astrophysics Data System (ADS)

    Goorskey, David J.; Schmidt, Jason; Whiteley, Matthew R.

    2013-07-01

    Imaging and laser beam propagation from airborne platforms are degraded by dynamic aberrations due to air flow around the aircraft, aero-mechanical distortions and jitter, and free atmospheric turbulence. For certain applications, like dim-object imaging, free-space optical communications, and laser weapons, adaptive optics (AO) is necessary to compensate for the aberrations in real time. Aero-optical flow is a particularly interesting source of aberrations whose flowing structures can be exploited by adaptive and predictive AO controllers, thereby realizing significant performance gains. We analyze dynamic aero-optical wavefronts to determine the pointing angles at which predictive wavefront control is more effective than conventional, fixed-gain, linear-filter control. It was found that properties of the spatial decompositions and temporal statistics of the wavefronts are directly traceable to specific features in the air flow. Furthermore, the aero-optical wavefront aberrations at the side- and aft-looking angles were the most severe, but they also benefited the most from predictive AO.

  6. Extending the imaging volume for biometric iris recognition.

    PubMed

    Narayanswamy, Ramkumar; Johnson, Gregory E; Silveira, Paulo E X; Wach, Hans B

    2005-02-10

    The use of the human iris as a biometric has recently attracted significant interest in the area of security applications. The need to capture an iris without active user cooperation places demands on the optical system. Unlike a traditional optical design, in which a large imaging volume is traded off for diminished imaging resolution and capacity for collecting light, Wavefront Coded imaging is a computational imaging technology capable of expanding the imaging volume while maintaining an accurate and robust iris identification capability. We apply Wavefront Coded imaging to extend the imaging volume of the iris recognition application.

  7. Polarimetric image reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Valenzuela, John R.

    In the field of imaging polarimetry Stokes parameters are sought and must be inferred from noisy and blurred intensity measurements. Using a penalized-likelihood estimation framework we investigate reconstruction quality when estimating intensity images and then transforming to Stokes parameters (traditional estimator), and when estimating Stokes parameters directly (Stokes estimator). We define our cost function for reconstruction by a weighted least squares data fit term and a regularization penalty. It is shown that under quadratic regularization, the traditional and Stokes estimators can be made equal by appropriate choice of regularization parameters. It is empirically shown that, when using edge preserving regularization, estimating the Stokes parameters directly leads to lower RMS error in reconstruction. Also, the addition of a cross channel regularization term further lowers the RMS error for both methods especially in the case of low SNR. The technique of phase diversity has been used in traditional incoherent imaging systems to jointly estimate an object and optical system aberrations. We extend the technique of phase diversity to polarimetric imaging systems. Specifically, we describe penalized-likelihood methods for jointly estimating Stokes images and optical system aberrations from measurements that contain phase diversity. Jointly estimating Stokes images and optical system aberrations involves a large parameter space. A closed-form expression for the estimate of the Stokes images in terms of the aberration parameters is derived and used in a formulation that reduces the dimensionality of the search space to the number of aberration parameters only. We compare the performance of the joint estimator under both quadratic and edge-preserving regularization. The joint estimator with edge-preserving regularization yields higher fidelity polarization estimates than with quadratic regularization. Under quadratic regularization, using the reduced-parameter search strategy, accurate aberration estimates can be obtained without recourse to regularization "tuning". Phase-diverse wavefront sensing is emerging as a viable candidate wavefront sensor for adaptive-optics systems. In a quadratically penalized weighted least squares estimation framework a closed form expression for the object being imaged in terms of the aberrations in the system is available. This expression offers a dramatic reduction of the dimensionality of the estimation problem and thus is of great interest for practical applications. We have derived an expression for an approximate joint covariance matrix for object and aberrations in the phase diversity context. Our expression for the approximate joint covariance is compared with the "known-object" Cramer-Rao lower bound that is typically used for system parameter optimization. Estimates of the optimal amount of defocus in a phase-diverse wavefront sensor derived from the joint-covariance matrix, the known-object Cramer-Rao bound, and Monte Carlo simulations are compared for an extended scene and a point object. It is found that our variance approximation, that incorporates the uncertainty of the object, leads to an improvement in predicting the optimal amount of defocus to use in a phase-diverse wavefront sensor.

  8. TRL-6 for JWST wavefront sensing and control

    NASA Astrophysics Data System (ADS)

    Feinberg, Lee D.; Dean, Bruce H.; Aronstein, David L.; Bowers, Charles W.; Hayden, William; Lyon, Richard G.; Shiri, Ron; Smith, J. Scott; Acton, D. Scott; Carey, Larkin; Contos, Adam; Sabatke, Erin; Schwenker, John; Shields, Duncan; Towell, Tim; Shi, Fang; Meza, Luis

    2007-09-01

    NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed.

  9. TRL-6 for JWST Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Smith, Scott; Aronstein, David; Shiri, Ron; Lyon, Rick; Hayden, Bill; Bowers, Chuck; Acton, D. Scott; Shields, Duncan; hide

    2007-01-01

    NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed

  10. Recent developments for the Large Binocular Telescope Guiding Control Subsystem

    NASA Astrophysics Data System (ADS)

    Golota, T.; De La Peña, M. D.; Biddick, C.; Lesser, M.; Leibold, T.; Miller, D.; Meeks, R.; Hahn, T.; Storm, J.; Sargent, T.; Summers, D.; Hill, J.; Kraus, J.; Hooper, S.; Fisher, D.

    2014-07-01

    The Large Binocular Telescope (LBT) has eight Acquisition, Guiding, and wavefront Sensing Units (AGw units). They provide guiding and wavefront sensing capability at eight different locations at both direct and bent Gregorian focal stations. Recent additions of focal stations for PEPSI and MODS instruments doubled the number of focal stations in use including respective motion, camera controller server computers, and software infrastructure communicating with Guiding Control Subsystem (GCS). This paper describes the improvements made to the LBT GCS and explains how these changes have led to better maintainability and contributed to increased reliability. This paper also discusses the current GCS status and reviews potential upgrades to further improve its performance.

  11. Imaging the Gouy phase shift in photonic jets with a wavefront sensor.

    PubMed

    Bon, Pierre; Rolly, Brice; Bonod, Nicolas; Wenger, Jérôme; Stout, Brian; Monneret, Serge; Rigneault, Hervé

    2012-09-01

    A wavefront sensor is used as a direct observation tool to image the Gouy phase shift in photonic nanojets created by micrometer-sized dielectric spheres. The amplitude and phase distributions of light are found in good agreement with a rigorous electromagnetic computation. Interestingly the observed phase shift when travelling through the photonic jet is a combination of the awaited π Gouy shift and a phase shift induced by the bead refraction. Such direct spatial phase shift observation using wavefront sensors would find applications in microscopy, diffractive optics, optical trapping, and point spread function engineering.

  12. SCExAO: First Results and On-Sky Performance

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Guyon, Olivier; Martinache, Frantz; Clergeon, Christophe; McElwain, Michael; Thalmann, Christian; Jovanovic, Nemanja; Singh, Garima; Kudo, Tomoyuki

    2013-01-01

    We present new on-sky results for the Subaru Coronagraphic Extreme Adaptive Optics imager (SCExAO) verifying and quantifying the contrast gain enabled by key components: the closed-loop coronagraphic low-order wavefront sensor (CLOWFS) and focal plane wavefront control ("speckle nulling"). SCExAO will soon be coupled with a high-order, Pyramid wavefront sensor which will yield greater than 90% Strehl ratio and enable 10(exp 6) -10(exp 7) contrast at small angular separations allowing us to image gas giant planets at solar system scales. Upcoming instruments like VAMPIRES, FIRST, and CHARIS will expand SCExAO's science capabilities.

  13. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.

    PubMed

    Zawadzki, Robert J; Zhang, Pengfei; Zam, Azhar; Miller, Eric B; Goswami, Mayank; Wang, Xinlei; Jonnal, Ravi S; Lee, Sang-Hyuck; Kim, Dae Yu; Flannery, John G; Werner, John S; Burns, Marie E; Pugh, Edward N

    2015-06-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has recently been used to achieve exquisite subcellular resolution imaging of the mouse retina. Wavefront sensing-based AO typically restricts the field of view to a few degrees of visual angle. As a consequence the relationship between AO-SLO data and larger scale retinal structures and cellular patterns can be difficult to assess. The retinal vasculature affords a large-scale 3D map on which cells and structures can be located during in vivo imaging. Phase-variance OCT (pv-OCT) can efficiently image the vasculature with near-infrared light in a label-free manner, allowing 3D vascular reconstruction with high precision. We combined widefield pv-OCT and SLO imaging with AO-SLO reflection and fluorescence imaging to localize two types of fluorescent cells within the retinal layers: GFP-expressing microglia, the resident macrophages of the retina, and GFP-expressing cone photoreceptor cells. We describe in detail a reflective afocal AO-SLO retinal imaging system designed for high resolution retinal imaging in mice. The optical performance of this instrument is compared to other state-of-the-art AO-based mouse retinal imaging systems. The spatial and temporal resolution of the new AO instrumentation was characterized with angiography of retinal capillaries, including blood-flow velocity analysis. Depth-resolved AO-SLO fluorescent images of microglia and cone photoreceptors are visualized in parallel with 469 nm and 663 nm reflectance images of the microvasculature and other structures. Additional applications of the new instrumentation are discussed.

  14. Simpler Adaptive Optics using a Single Device for Processing and Control

    NASA Astrophysics Data System (ADS)

    Zovaro, A.; Bennet, F.; Rye, D.; D'Orgeville, C.; Rigaut, F.; Price, I.; Ritchie, I.; Smith, C.

    The management of low Earth orbit is becoming more urgent as satellite and debris densities climb, in order to avoid a Kessler syndrome. A key part of this management is to precisely measure the orbit of both active satellites and debris. The Research School of Astronomy and Astrophysics at the Australian National University have been developing an adaptive optics (AO) system to image and range orbiting objects. The AO system provides atmospheric correction for imaging and laser ranging, allowing for the detection of smaller angular targets and drastically increasing the number of detectable objects. AO systems are by nature very complex and high cost systems, often costing millions of dollars and taking years to design. It is not unusual for AO systems to comprise multiple servers, digital signal processors (DSP) and field programmable gate arrays (FPGA), with dedicated tasks such as wavefront sensor data processing or wavefront reconstruction. While this multi-platform approach has been necessary in AO systems to date due to computation and latency requirements, this may no longer be the case for those with less demanding processing needs. In recent years, large strides have been made in FPGA and microcontroller technology, with todays devices having clock speeds in excess of 200 MHz whilst using a < 5 V power supply. AO systems using a single such device for all data processing and control may present a far simpler, cheaper, smaller and more efficient solution than existing systems. A novel AO system design based around a single, low-cost controller is presented. The objective is to determine the performance which can be achieved in terms of bandwidth and correction order, with a focus on optimisation and parallelisation of AO algorithms such as wavefront measurement and reconstruction. The AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror to correct light from a 1.8 m telescope for the purpose of imaging orbiting satellites. The microcontroller or FPGA interfaces directly with the wavefront sensor detector and deformable mirror. Wavefront slopes are calculated from each detector frame and converted into actuator commands to complete the closed loop AO control system. A particular challenge of this system is to optimise the AO algorithms to achieve a high rate (> 1kHz) with low latency (< 1ms) to achieve a good AO correction. As part of the Space Environment Cooperative Research Centre (SERC) this AO system design will be used as a demonstrator for what is possible with ground based AO corrected satellite imaging and ranging systems. The ability to directly and efficiently interface the wavefront sensor and deformable mirror is an important step in reducing the cost and complexity of an AO system. It is hoped that in the future this design can be modified for use in general AO applications, such as in 1-3 m telescopes for space surveillance, or even for amateur astronomy.

  15. Improved quantitative visualization of hypervelocity flow through wavefront estimation based on shadow casting of sinusoidal gratings.

    PubMed

    Medhi, Biswajit; Hegde, Gopalakrishna M; Gorthi, Sai Siva; Reddy, Kalidevapura Jagannath; Roy, Debasish; Vasu, Ram Mohan

    2016-08-01

    A simple noninterferometric optical probe is developed to estimate wavefront distortion suffered by a plane wave in its passage through density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a continuous-tone sinusoidal grating. Through a geometrical optics, eikonal approximation to the distorted wavefront, a bilinear approximation to it is related to the location-dependent shift (distortion) suffered by the grating, which can be read out space-continuously from the projected grating image. The processing of the grating shadow is done through an efficient Fourier fringe analysis scheme, either with a windowed or global Fourier transform (WFT and FT). For comparison, wavefront slopes are also estimated from shadows of random-dot patterns, processed through cross correlation. The measured slopes are suitably unwrapped by using a discrete cosine transform (DCT)-based phase unwrapping procedure, and also through iterative procedures. The unwrapped phase information is used in an iterative scheme, for a full quantitative recovery of density distribution in the shock around the model, through refraction tomographic inversion. Hypersonic flow field parameters around a missile-shaped body at a free-stream Mach number of ∼8 measured using this technique are compared with the numerically estimated values. It is shown that, while processing a wavefront with small space-bandwidth product (SBP) the FT inversion gave accurate results with computational efficiency; computation-intensive WFT was needed for similar results when dealing with larger SBP wavefronts.

  16. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation

    PubMed Central

    Liu, Yan; Ma, Cheng; Shen, Yuecheng; Shi, Junhui; Wang, Lihong V.

    2017-01-01

    Wavefront shaping based on digital optical phase conjugation (DOPC) focuses light through or inside scattering media, but the low speed of DOPC prevents it from being applied to thick, living biological tissue. Although a fast DOPC approach was recently developed, the reported single-shot wavefront measurement method does not work when the goal is to focus light inside, instead of through, highly scattering media. Here, using a ferroelectric liquid crystal based spatial light modulator, we develop a simpler but faster DOPC system that focuses light not only through, but also inside scattering media. By controlling 2.6 × 105 optical degrees of freedom, our system focused light through 3 mm thick moving chicken tissue, with a system latency of 3.0 ms. Using ultrasound-guided DOPC, along with a binary wavefront measurement method, our system focused light inside a scattering medium comprising moving tissue with a latency of 6.0 ms, which is one to two orders of magnitude shorter than those of previous digital wavefront shaping systems. Since the demonstrated speed approaches tissue decorrelation rates, this work is an important step toward in vivo deep-tissue non-invasive optical imaging, manipulation, and therapy. PMID:28815194

  17. Performance assessment of MEMS adaptive optics in tactical airborne systems

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1999-09-01

    Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.

  18. An analysis of printing conditions for wavefront overlapping printing

    NASA Astrophysics Data System (ADS)

    Ichihashi, Y.; Yamamoto, K.; Wakunami, K.; Oi, R.; Okui, M.; Senoh, T.

    2017-03-01

    Wavefront printing for a digitally-designed hologram has got attentions recently. In this printing, a spatial light modulator (SLM) is used for displaying a hologram data and the wavefront is reproduced by irradiating the hologram with a reference light the same way as electronic holography. However, a pixel count of current SLM devices is not enough to display an entire hologram data. To generate a practical digitally-designed hologram, the entire hologram data is divided into a set of sub-hologram data and wavefront reproduced by each sub-hologram is sequentially recorded in tiling manner by using X-Y motorized stage. Due to a lack of positioning an accuracy of X-Y motorized stage and the temporal incoherent recording, phase continuity of recorded/reproduced wavefront is lost between neighboring subholograms. In this paper, we generate the holograms that have different size of sub-holograms with an overlap or nonoverlap, and verify the size of sub-holograms effect on the reconstructed images. In the result, the reconstructed images degrade with decreasing the size of sub-holograms and there is little or no degradation of quality by the wavefront printing with the overlap.

  19. High-contrast imager for Complex Aperture Telescopes (HiCAT). 4. Status and wavefront control development

    NASA Astrophysics Data System (ADS)

    Leboulleux, Lucie; N'Diaye, Mamadou; Riggs, A. J. E.; Egron, Sylvain; Mazoyer, Johan; Pueyo, Laurent; Choquet, Elodie; Perrin, Marshall D.; Kasdin, Jeremy; Sauvage, Jean-François; Fusco, Thierry; Soummer, Rémi

    2016-07-01

    Segmented telescopes are a possible approach to enable large-aperture space telescopes for the direct imaging and spectroscopy of habitable worlds. However, the increased complexity of their aperture geometry, due to their central obstruction, support structures and segment gaps, makes high-contrast imaging very challenging. The High-contrast imager for Complex Aperture Telescopes (HiCAT) was designed to study and develop solutions for such telescope pupils using wavefront control and starlight suppression. The testbed design has the flexibility to enable studies with increasing complexity for telescope aperture geometries starting with off-axis telescopes, then on-axis telescopes with central obstruction and support structures (e.g. the Wide Field Infrared Survey Telescope [WFIRST]), up to on-axis segmented telescopes e.g. including various concepts for a Large UV, Optical, IR telescope (LUVOIR), such as the High Definition Space Telescope (HDST). We completed optical alignment in the summer of 2014 and a first deformable mirror was successfully integrated in the testbed, with a total wavefront error of 13nm RMS over a 18mm diameter circular pupil in open loop. HiCAT will also be provided with a segmented mirror conjugated with a shaped pupil representing the HDST configuration, to directly study wavefront control in the presence of segment gaps, central obstruction and spider. We recently applied a focal plane wavefront control method combined with a classical Lyot coronagraph on HiCAT, and we found limitations on contrast performance due to vibration effect. In this communication, we analyze this instability and study its impact on the performance of wavefront control algorithms. We present our Speckle Nulling code to control and correct for wavefront errors both in simulation mode and on testbed mode. This routine is first tested in simulation mode without instability to validate our code. We then add simulated vibrations to study the degradation of contrast performance in the presence of these effects.

  20. Optimization of wavefront coding imaging system using heuristic algorithms

    NASA Astrophysics Data System (ADS)

    González-Amador, E.; Padilla-Vivanco, A.; Toxqui-Quitl, C.; Zermeño-Loreto, O.

    2017-08-01

    Wavefront Coding (WFC) systems make use of an aspheric Phase-Mask (PM) and digital image processing to extend the Depth of Field (EDoF) of computational imaging systems. For years, several kinds of PM have been designed to produce a point spread function (PSF) near defocus-invariant. In this paper, the optimization of the phase deviation parameter is done by means of genetic algorithms (GAs). In this, the merit function minimizes the mean square error (MSE) between the diffraction limited Modulated Transfer Function (MTF) and the MTF of the system that is wavefront coded with different misfocus. WFC systems were simulated using the cubic, trefoil, and 4 Zernike polynomials phase-masks. Numerical results show defocus invariance aberration in all cases. Nevertheless, the best results are obtained by using the trefoil phase-mask, because the decoded image is almost free of artifacts.

  1. Advanced Wavefront Control Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S S; Brase, J M; Avicola, K

    2001-02-21

    Programs at LLNL that involve large laser systems--ranging from the National Ignition Facility to new tactical laser weapons--depend on the maintenance of laser beam quality through precise control of the optical wavefront. This can be accomplished using adaptive optics, which compensate for time-varying aberrations that are often caused by heating in a high-power laser system. Over the past two decades, LLNL has developed a broad capability in adaptive optics technology for both laser beam control and high-resolution imaging. This adaptive optics capability has been based on thin deformable glass mirrors with individual ceramic actuators bonded to the back. In themore » case of high-power lasers, these adaptive optics systems have successfully improved beam quality. However, as we continue to extend our applications requirements, the existing technology base for wavefront control cannot satisfy them. To address this issue, this project studied improved modeling tools to increase our detailed understanding of the performance of these systems, and evaluated novel approaches to low-order wavefront control that offer the possibility of reduced cost and complexity. We also investigated improved beam control technology for high-resolution wavefront control. Many high-power laser systems suffer from high-spatial-frequency aberrations that require control of hundreds or thousands of phase points to provide adequate correction. However, the cost and size of current deformable mirrors can become prohibitive for applications requiring more than a few tens of phase control points. New phase control technologies are becoming available which offer control of many phase points with small low-cost devices. The goal of this project was to expand our wavefront control capabilities with improved modeling tools, new devices that reduce system cost and complexity, and extensions to high spatial and temporal frequencies using new adaptive optics technologies. In FY 99, the second year of this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.« less

  2. Speckle temporal stability in XAO coronagraphic images. II. Refine model for quasi-static speckle temporal evolution for VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Martinez, P.; Kasper, M.; Costille, A.; Sauvage, J. F.; Dohlen, K.; Puget, P.; Beuzit, J. L.

    2013-06-01

    Context. Observing sequences have shown that the major noise source limitation in high-contrast imaging is the presence of quasi-static speckles. The timescale on which quasi-static speckles evolve is determined by various factors, mechanical or thermal deformations, among others. Aims: Understanding these time-variable instrumental speckles and, especially, their interaction with other aberrations, referred to as the pinning effect, is paramount for the search for faint stellar companions. The temporal evolution of quasi-static speckles is, for instance, required for quantifying the gain expected when using angular differential imaging (ADI) and to determining the interval on which speckle nulling techniques must be carried out. Methods: Following an early analysis of a time series of adaptively corrected, coronagraphic images obtained in a laboratory condition with the high-order test bench (HOT) at ESO Headquarters, we confirm our results with new measurements carried out with the SPHERE instrument during its final test phase in Europe. The analysis of the residual speckle pattern in both direct and differential coronagraphic images enables the characterization of the temporal stability of quasi-static speckles. Data were obtained in a thermally actively controlled environment reproducing realistic conditions encountered at the telescope. Results: The temporal evolution of the quasi-static wavefront error exhibits a linear power law, which can be used to model quasi-static speckle evolution in the context of forthcoming high-contrast imaging instruments, with implications for instrumentation (design, observing strategies, data reduction). Such a model can be used for instance to derive the timescale on which non-common path aberrations must be sensed and corrected. We found in our data that quasi-static wavefront error increases with ~0.7 Å per minute.

  3. Experimental Validation of Advanced Dispersed Fringe Sensing (ADFS) Algorithm Using Advanced Wavefront Sensing and Correction Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Shi, Fang; Sigrist, Norbert; Seo, Byoung-Joon; Tang, Hong; Bikkannavar, Siddarayappa; Basinger, Scott; Lay, Oliver

    2012-01-01

    Large aperture telescope commonly features segment mirrors and a coarse phasing step is needed to bring these individual segments into the fine phasing capture range. Dispersed Fringe Sensing (DFS) is a powerful coarse phasing technique and its alteration is currently being used for JWST.An Advanced Dispersed Fringe Sensing (ADFS) algorithm is recently developed to improve the performance and robustness of previous DFS algorithms with better accuracy and unique solution. The first part of the paper introduces the basic ideas and the essential features of the ADFS algorithm and presents the some algorithm sensitivity study results. The second part of the paper describes the full details of algorithm validation process through the advanced wavefront sensing and correction testbed (AWCT): first, the optimization of the DFS hardware of AWCT to ensure the data accuracy and reliability is illustrated. Then, a few carefully designed algorithm validation experiments are implemented, and the corresponding data analysis results are shown. Finally the fiducial calibration using Range-Gate-Metrology technique is carried out and a <10nm or <1% algorithm accuracy is demonstrated.

  4. Large-field-of-view imaging by multi-pupil adaptive optics.

    PubMed

    Park, Jung-Hoon; Kong, Lingjie; Zhou, Yifeng; Cui, Meng

    2017-06-01

    Adaptive optics can correct for optical aberrations. We developed multi-pupil adaptive optics (MPAO), which enables simultaneous wavefront correction over a field of view of 450 × 450 μm 2 and expands the correction area to nine times that of conventional methods. MPAO's ability to perform spatially independent wavefront control further enables 3D nonplanar imaging. We applied MPAO to in vivo structural and functional imaging in the mouse brain.

  5. Linear Space-Variant Image Restoration of Photon-Limited Images

    DTIC Science & Technology

    1978-03-01

    levels of performance of the wavefront seisor. The parameter ^ represents the residual rms wavefront error ^measurement noise plus ♦ttting error...known to be optimum only when the signal and noise are uncorrelated stationary random processes «nd when the noise statistics are gaussian. In the...regime of photon-Iimited imaging, the noise is non-gaussian and signaI-dependent, and it is therefore reasonable to assume that tome form of linear

  6. In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses.

    PubMed

    Vinas, Maria; Dorronsoro, Carlos; Garzón, Nuria; Poyales, Francisco; Marcos, Susana

    2015-10-01

    To measure the longitudinal chromatic aberration in vivo using psychophysical and wavefront-sensing methods in patients with bilateral implantation of monofocal intraocular lenses (IOLs) of similar aspheric design but different materials (hydrophobic Podeye and hydrophilic Poday). Instituto de Optica, Consejo Superior de Investigaciones Cientificas, Madrid, Spain. Prospective observational study. Measurements were performed with the use of psychophysical (480 to 700 nm) and wavefront-sensing (480 to 950 nm) methods using a custom-developed adaptive optics system. Chromatic difference-of-focus curves were obtained from best-focus data at each wavelength, and the longitudinal chromatic aberration was obtained from the slope of linear regressions to those curves. The longitudinal chromatic aberration from psychophysical measurements was 1.37 diopters (D) ± 0.08 (SD) (hydrophobic) and 1.21 ± 0.08 D (hydrophilic). From wavefront-sensing, the longitudinal chromatic aberration was 0.88 ± 0.07 D and 0.73 ± 0.09 D, respectively. At 480 to 950 nm, the longitudinal chromatic aberration was 1.27 ± 0.09 D (hydrophobic) and 1.02 ± 0.13 D (hydrophilic). The longitudinal chromatic aberration was consistently higher in eyes with the hydrophobic IOL than in eyes with the hydrophilic IOL (a difference of 0.16 D and 0.15 D, respectively). Similar to findings in young phakic eyes, the longitudinal chromatic aberration from the psychophysical method was consistently higher than from wavefront-sensing, by 0.48 D (35.41%) for the hydrophobic IOL and 0.48 D (39.43%) for the hydrophilic IOL. Longitudinal chromatic aberrations were smaller with hydrophilic IOLs than with hydrophobic IOLs of the same design. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. TECHNIQUES FOR HIGH-CONTRAST IMAGING IN MULTI-STAR SYSTEMS. I. SUPER-NYQUIST WAVEFRONT CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, S.; Belikov, R.; Bendek, E.

    2015-09-01

    Direct imaging of extra-solar planets is now a reality with the deployment and commissioning of the first generation of specialized ground-based instruments (GPI, SPHERE, P1640, and SCExAO). These systems allow of planets 10{sup 7} times fainter than their host star. For space-based missions (EXCEDE, EXO-C, EXO-S, WFIRST), various teams have demonstrated laboratory contrasts reaching 10{sup −10} within a few diffraction limits from the star. However, all of these current and future systems are designed to detect faint planets around a single host star, while most non-M-dwarf stars such as Alpha Centauri belong to multi-star systems. Direct imaging around binaries/multiple systemsmore » at a level of contrast allowing detection of Earth-like planets is challenging because the region of interest is contaminated by the host star's companion in addition to the host itself. Generally, the light leakage is caused by both diffraction and aberrations in the system. Moreover, the region of interest usually falls outside the correcting zone of the deformable mirror (DM) with respect to the companion. Until now, it has been thought that removing the light of a companion star is too challenging, leading to the exclusion of many binary systems from target lists of direct imaging coronographic missions. In this paper, we will show new techniques for high-contrast imaging of planets around multi-star systems and detail the Super-Nyquist Wavefront Control (SNWC) method, which allows wavefront errors to be controlled beyond the nominal control region of the DM. Our simulations have demonstrated that, with SNWC, raw contrasts of at least 5 × 10{sup −9} in a 10% bandwidth are possible.« less

  8. Curvature-Based Wavefront Sensor for Use on Extended, Arbitrary, Low-Contract Scenes Final Technical Report August 2004

    NASA Technical Reports Server (NTRS)

    LaBonte, Barry J.

    2004-01-01

    A small amount of work has been done on this project; the strategy to be adopted has been better defined, though no experimental work has been started. 1) Wavefront error signals: The best choice appears use a lenslet array at a pupil image to produce defocused image pairs for each subaperture. Then use the method proposed by Molodij et al. to produce subaperture curvature signals. Basically, this method samples a moderate number of locations in the image where the value of the image Laplacian is high, then taking the curvature signal from the difference of the Laplacians of the extrafocal images at those locations. The tip-tilt error is obtained from the temporal dependence of the first spatial derivatives of an in-focus image, at selected locations where these derivatives are significant. The wavefront tilt can be obtained from the full-aperture image. 2) Extrafocal image generation: The important aspect here is to generate symmetrically defocused images, with dynamically adjustable defocus. The adjustment is needed because larger defocus is required before the feedback loop is closed, and at times when the seeing is worse. It may be that the usual membrane mirror is the best choice, though other options should be explored. 3) Detector: Since the proposed sensor is to work on solar granulation, rather than a point source, an array detector for each subaperture is required. A fast CMOS camera such as that developed by the National Solar Observatory would be a satisfactory choice. 4) Processing: Processing requirements have not been defined in detail, though significantly fewer operations per cycle are required than for a correlation tracker.

  9. Model wavefront sensor for adaptive confocal microscopy

    NASA Astrophysics Data System (ADS)

    Booth, Martin J.; Neil, Mark A. A.; Wilson, Tony

    2000-05-01

    A confocal microscope permits 3D imaging of volume objects by the inclusion of a pinhole in the detector path which eliminates out of focus light. This configuration is however very sensitive to aberrations induced by the specimen or the optical system and would therefore benefit from an adaptive optics approach. We present a wavefront sensor capable of measuring directly the Zernike components of an aberrated wavefront and show that it is particularly applicable to the confocal microscope since only those wavefronts originating in the focal region contribute to the measured aberration.

  10. Research on the liquid crystal adaptive optics system for human retinal imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tong, Shoufeng; Song, Yansong; Zhao, Xin

    2013-12-01

    The blood vessels only in Human eye retinal can be observed directly. Many diseases that are not obvious in their early symptom can be diagnosed through observing the changes of distal micro blood vessel. In order to obtain the high resolution human retinal images,an adaptive optical system for correcting the aberration of the human eye was designed by using the Shack-Hartmann wavefront sensor and the Liquid Crystal Spatial Light Modulator(LCLSM) .For a subject eye with 8m-1 (8D)myopia, the wavefront error is reduced to 0.084 λ PV and 0.12 λRMS after adaptive optics(AO) correction ,which has reached diffraction limit.The results show that the LCLSM based AO system has the ability of correcting the aberration of the human eye efficiently,and making the blurred photoreceptor cell to clearly image on a CCD camera.

  11. End-to-end learning for digital hologram reconstruction

    NASA Astrophysics Data System (ADS)

    Xu, Zhimin; Zuo, Si; Lam, Edmund Y.

    2018-02-01

    Digital holography is a well-known method to perform three-dimensional imaging by recording the light wavefront information originating from the object. Not only the intensity, but also the phase distribution of the wavefront can then be computed from the recorded hologram in the numerical reconstruction process. However, the reconstructions via the traditional methods suffer from various artifacts caused by twin-image, zero-order term, and noise from image sensors. Here we demonstrate that an end-to-end deep neural network (DNN) can learn to perform both intensity and phase recovery directly from an intensity-only hologram. We experimentally show that the artifacts can be effectively suppressed. Meanwhile, our network doesn't need any preprocessing for initialization, and is comparably fast to train and test, in comparison with the recently published learning-based method. In addition, we validate that the performance improvement can be achieved by introducing a prior on sparsity.

  12. Laboratory and telescope demonstration of the TP3-WFS for the adaptive optics segment of AOLI

    NASA Astrophysics Data System (ADS)

    Colodro-Conde, C.; Velasco, S.; Fernández-Valdivia, J. J.; López, R.; Oscoz, A.; Rebolo, R.; Femenía, B.; King, D. L.; Labadie, L.; Mackay, C.; Muthusubramanian, B.; Pérez Garrido, A.; Puga, M.; Rodríguez-Coira, G.; Rodríguez-Ramos, L. F.; Rodríguez-Ramos, J. M.; Toledo-Moreo, R.; Villó-Pérez, I.

    2017-05-01

    Adaptive Optics Lucky Imager (AOLI) is a state-of-the-art instrument that combines adaptive optics (AO) and lucky imaging (LI) with the objective of obtaining diffraction-limited images in visible wavelength at mid- and big-size ground-based telescopes. The key innovation of AOLI is the development and use of the new Two Pupil Plane Positions Wavefront Sensor (TP3-WFS). The TP3-WFS, working in visible band, represents an advance over classical wavefront sensors such as the Shack-Hartmann WFS because it can theoretically use fainter natural reference stars, which would ultimately provide better sky coverages to AO instruments using this newer sensor. This paper describes the software, algorithms and procedures that enabled AOLI to become the first astronomical instrument performing real-time AO corrections in a telescope with this new type of WFS, including the first control-related results at the William Herschel Telescope.

  13. Wavefront control system for the Keck telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J. M., LLNL

    1998-03-01

    The laser guide star adaptive optics system currently being developed for the Keck 2 telescope consists of several major subsystems: the optical bench, wavefront control, user interface and supervisory control, and the laser system. The paper describes the design and implementation of the wavefront control subsystem that controls a 349 actuator deformable mirror for high order correction and tip-tilt mirrors for stabilizing the image and laser positions.

  14. Real-time blind deconvolution of retinal images in adaptive optics scanning laser ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong

    2011-06-01

    With the use of adaptive optics (AO), the ocular aberrations can be compensated to get high-resolution image of living human retina. However, the wavefront correction is not perfect due to the wavefront measure error and hardware restrictions. Thus, it is necessary to use a deconvolution algorithm to recover the retinal images. In this paper, a blind deconvolution technique called Incremental Wiener filter is used to restore the adaptive optics confocal scanning laser ophthalmoscope (AOSLO) images. The point-spread function (PSF) measured by wavefront sensor is only used as an initial value of our algorithm. We also realize the Incremental Wiener filter on graphics processing unit (GPU) in real-time. When the image size is 512 × 480 pixels, six iterations of our algorithm only spend about 10 ms. Retinal blood vessels as well as cells in retinal images are restored by our algorithm, and the PSFs are also revised. Retinal images with and without adaptive optics are both restored. The results show that Incremental Wiener filter reduces the noises and improve the image quality.

  15. Techniques for High Contrast Imaging in Multi-Star Systems II: Multi-Star Wavefront Control

    NASA Technical Reports Server (NTRS)

    Sirbu, D.; Thomas, S.; Belikov, R.

    2017-01-01

    Direct imaging of exoplanets represents a challenge for astronomical instrumentation due to the high-contrast ratio and small angular separation between the host star and the faint planet. Multi-star systems pose additional challenges for coronagraphic instruments because of the diffraction and aberration leakage introduced by the additional stars, and as a result are not planned to be on direct imaging target lists. Multi-star wavefront control (MSWC) is a technique that uses a coronagraphic instrument's deformable mirror (DM) to create high-contrast regions in the focal plane in the presence of multiple stars. Our previous paper introduced the Super-Nyquist Wavefront Control (SNWC) technique that uses a diffraction grating to enable the DM to generate high-contrast regions beyond the nominal controllable region. These two techniques can be combined to generate high-contrast regions for multi-star systems at any angular separations. As a case study, a high-contrast wavefront control (WC) simulation that applies these techniques shows that the habitable region of the Alpha Centauri system can be imaged reaching 8 times 10(exp -9) mean contrast in 10 percent broadband light in one-sided dark holes from 1.6-5.5 lambda (wavelength) divided by D (distance).

  16. Three-dimensional displacement measurement of image point by point-diffraction interferometry

    NASA Astrophysics Data System (ADS)

    He, Xiao; Chen, Lingfeng; Meng, Xiaojie; Yu, Lei

    2018-01-01

    This paper presents a method for measuring the three-dimensional (3-D) displacement of an image point based on point-diffraction interferometry. An object Point-light-source (PLS) interferes with a fixed PLS and its interferograms are captured by an exit pupil. When the image point of the object PLS is slightly shifted to a new position, the wavefront of the image PLS changes. And its interferograms also change. Processing these figures (captured before and after the movement), the wavefront difference of the image PLS can be obtained and it contains the information of three-dimensional (3-D) displacement of the image PLS. However, the information of its three-dimensional (3-D) displacement cannot be calculated until the distance between the image PLS and the exit pupil is calibrated. Therefore, we use a plane-parallel-plate with a known refractive index and thickness to determine this distance, which is based on the Snell's law for small angle of incidence. Thus, since the distance between the exit pupil and the image PLS is a known quantity, the 3-D displacement of the image PLS can be simultaneously calculated through two interference measurements. Preliminary experimental results indicate that its relative error is below 0.3%. With the ability to accurately locate an image point (whatever it is real or virtual), a fiber point-light-source can act as the reticle by itself in optical measurement.

  17. Statistical framework for the utilization of simultaneous pupil plane and focal plane telemetry for exoplanet imaging. I. Accounting for aberrations in multiple planes.

    PubMed

    Frazin, Richard A

    2016-04-01

    A new generation of telescopes with mirror diameters of 20 m or more, called extremely large telescopes (ELTs), has the potential to provide unprecedented imaging and spectroscopy of exoplanetary systems, if the difficulties in achieving the extremely high dynamic range required to differentiate the planetary signal from the star can be overcome to a sufficient degree. Fully utilizing the potential of ELTs for exoplanet imaging will likely require simultaneous and self-consistent determination of both the planetary image and the unknown aberrations in multiple planes of the optical system, using statistical inference based on the wavefront sensor and science camera data streams. This approach promises to overcome the most important systematic errors inherent in the various schemes based on differential imaging, such as angular differential imaging and spectral differential imaging. This paper is the first in a series on this subject, in which a formalism is established for the exoplanet imaging problem, setting the stage for the statistical inference methods to follow in the future. Every effort has been made to be rigorous and complete, so that validity of approximations to be made later can be assessed. Here, the polarimetric image is expressed in terms of aberrations in the various planes of a polarizing telescope with an adaptive optics system. Further, it is shown that current methods that utilize focal plane sensing to correct the speckle field, e.g., electric field conjugation, rely on the tacit assumption that aberrations on multiple optical surfaces can be represented as aberration on a single optical surface, ultimately limiting their potential effectiveness for ground-based astronomy.

  18. Manipulation of acoustic wavefront by gradient metasurface based on Helmholtz Resonators.

    PubMed

    Lan, Jun; Li, Yifeng; Xu, Yue; Liu, Xiaozhou

    2017-09-06

    We designed a gradient acoustic metasurface to manipulate acoustic wavefront freely. The broad bandwidth and high efficiency transmission are achieved by the acoustic metasurface which is constructed with a series of unit cells to provide desired discrete acoustic velocity distribution. Each unit cell is composed of a decorated metal plate with four periodically arrayed Helmholtz resonators (HRs) and a single slit. The design employs a gradient velocity to redirect refracted wave and the impedance matching between the metasurface and the background medium can be realized by adjusting the slit width of unit cell. The theoretical and numerical results show that some excellent wavefront manipulations are demonstrated by anomalous refraction, non-diffracting Bessel beam, sub-wavelength flat focusing, and effective tunable acoustic negative refraction. Our designed structure may offer potential applications for the imaging system, beam steering and acoustic lens.

  19. Phase aberration compensation of digital holographic microscopy based on least squares surface fitting

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Zhao, Jianlin; Sun, Weiwei; Jiang, Hongzhen; Yan, Xiaobo

    2009-10-01

    Digital holographic microscopy allows the numerical reconstruction of the complex wavefront of samples, especially biological samples such as living cells. In digital holographic microscopy, a microscope objective is introduced to improve the transverse resolution of the sample; however a phase aberration in the object wavefront is also brought along, which will affect the phase distribution of the reconstructed image. We propose here a numerical method to compensate for the phase aberration of thin transparent objects with a single hologram. The least squares surface fitting with points number less than the matrix of the original hologram is performed on the unwrapped phase distribution to remove the unwanted wavefront curvature. The proposed method is demonstrated with the samples of the cicada wings and epidermal cells of garlic, and the experimental results are consistent with that of the double exposure method.

  20. Science Opportunities with the Near-IR Camera (NIRCam) on the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Rieke, Marcia; Eisenstein, Daniel; Greene, Thomas P.; Krist, John; McCarthy, Don; Meyer, Michael; Stansberry, John

    2012-01-01

    The Near-Infrared Camera (NIRCam) on the James Webb Space Telescope (JWST) offers revolutionary gains in sensitivity throughout the 1-5 micrometer region. NIRCam will enable great advances in all areas of astrophysics, from the composition of objects in our own Kuiper Belt and the physical properties of planets orbiting nearby stars to the formation of stars and the detection of the youngest galaxies in the Universe. NIRCam also plays an important role in initial alignment of JWST and the long term maintenance of its image quality. NIRCam is presently undergoing instrument Integration and Test in preparation for delivery to the JWST project. Key near-term milestones include the completion of cryogenic testing of the entire instrument; demonstration of scientific and wavefront sensing performance requirements; testing of replacement H2RG detectors arrays; and an analysis of coronagraphic performance in light of measured telescope wavefront characteristics. This paper summarizes the performance of NIRCam, the scientific and education/outreach goals of the science team, and some results of the on-going testing program.

  1. KAPAO-Alpha: An On-The-Sky Testbed for Adaptive Optics on Small Aperture Telescopes

    NASA Astrophysics Data System (ADS)

    Morrison, Will; Choi, P. I.; Severson, S. A.; Spjut, E.; Contreras, D. S.; Gilbreth, B. N.; McGonigle, L. P.; Rudy, A. R.; Xue, A.; Baranec, C.; Riddle, R.

    2012-05-01

    We present initial in-lab and on-sky results of a natural guide star adaptive optics instrument, KAPAO-Alpha, being deployed on Pomona College’s 1-meter telescope at Table Mountain Observatory. The instrument is an engineering prototype designed to help us identify and solve design and integration issues before building KAPAO, a low-cost, dual-band, natural guide star AO system currently in active development and scheduled for first light in 2013. The Alpha system operates at visible wavelengths, employs Shack-Hartmann wavefront sensing, and is assembled entirely from commercially available components that include: off-the-shelf optics, a 140-actuator BMC deformable mirror, a high speed SciMeasure Lil’ Joe camera, and an EMCCD for science image acquisition. Wavefront reconstruction operating at 1-kHz speeds is handled with a consumer-grade computer running custom software adopted from the Robo-AO project. The assembly and integration of the Alpha instrument has been undertaken as a Pomona College undergraduate thesis. As part of the larger KAPAO project, it is supported by the National Science Foundation under Grant No. 0960343.

  2. Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry.

    PubMed

    Schwertner, M; Booth, M J; Neil, M A A; Wilson, T

    2004-01-01

    Confocal or multiphoton microscopes, which deliver optical sections and three-dimensional (3D) images of thick specimens, are widely used in biology. These techniques, however, are sensitive to aberrations that may originate from the refractive index structure of the specimen itself. The aberrations cause reduced signal intensity and the 3D resolution of the instrument is compromised. It has been suggested to correct for aberrations in confocal microscopes using adaptive optics. In order to define the design specifications for such adaptive optics systems, one has to know the amount of aberrations present for typical applications such as with biological samples. We have built a phase stepping interferometer microscope that directly measures the aberration of the wavefront. The modal content of the wavefront is extracted by employing Zernike mode decomposition. Results for typical biological specimens are presented. It was found for all samples investigated that higher order Zernike modes give only a small contribution to the overall aberration. Therefore, these higher order modes can be neglected in future adaptive optics sensing and correction schemes implemented into confocal or multiphoton microscopes, leading to more efficient designs.

  3. A novel imaging technique based on the spatial coherence of backscattered waves: demonstration in the presence of acoustical clutter

    NASA Astrophysics Data System (ADS)

    Dahl, Jeremy J.; Pinton, Gianmarco F.; Lediju, Muyinatu; Trahey, Gregg E.

    2011-03-01

    In the last 20 years, the number of suboptimal and inadequate ultrasound exams has increased. This trend has been linked to the increasing population of overweight and obese individuals. The primary causes of image degradation in these individuals are often attributed to phase aberration and clutter. Phase aberration degrades image quality by distorting the transmitted and received pressure waves, while clutter degrades image quality by introducing incoherent acoustical interference into the received pressure wavefront. Although significant research efforts have pursued the correction of image degradation due to phase aberration, few efforts have characterized or corrected image degradation due to clutter. We have developed a novel imaging technique that is capable of differentiating ultrasonic signals corrupted by acoustical interference. The technique, named short-lag spatial coherence (SLSC) imaging, is based on the spatial coherence of the received ultrasonic wavefront at small spatial distances across the transducer aperture. We demonstrate comparative B-mode and SLSC images using full-wave simulations that include the effects of clutter and show that SLSC imaging generates contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) that are significantly better than B-mode imaging under noise-free conditions. In the presence of noise, SLSC imaging significantly outperforms conventional B-mode imaging in all image quality metrics. We demonstrate the use of SLSC imaging in vivo and compare B-mode and SLSC images of human thyroid and liver.

  4. Advanced Topics in Space Situational Awareness

    DTIC Science & Technology

    2007-11-07

    34super-resolution." Such optical superresolution is characteristic of many model-based image processing algorithms, and reflects the incorporation of...Sampling Theorem," J. Opt. Soc. Am. A, vol. 24, 311-325 (2007). [39] S. Prasad, "Digital and Optical Superresolution of Low-Resolution Image Sequences," Un...wavefront coding for the specific application of extension of image depth well beyond what is possible in a standard imaging system. The problem of optical

  5. Defining ray sets for the analysis of lenslet-based optical systems including plenoptic cameras and Shack-Hartmann wavefront sensors

    NASA Astrophysics Data System (ADS)

    Moore, Lori

    Plenoptic cameras and Shack-Hartmann wavefront sensors are lenslet-based optical systems that do not form a conventional image. The addition of a lens array into these systems allows for the aberrations generated by the combination of the object and the optical components located prior to the lens array to be measured or corrected with post-processing. This dissertation provides a ray selection method to determine the rays that pass through each lenslet in a lenslet-based system. This first-order, ray trace method is developed for any lenslet-based system with a well-defined fore optic, where in this dissertation the fore optic is all of the optical components located prior to the lens array. For example, in a plenoptic camera the fore optic is a standard camera lens. Because a lens array at any location after the exit pupil of the fore optic is considered in this analysis, it is applicable to both plenoptic cameras and Shack-Hartmann wavefront sensors. Only a generic, unaberrated fore optic is considered, but this dissertation establishes a framework for considering the effect of an aberrated fore optic in lenslet-based systems. The rays from the fore optic that pass through a lenslet placed at any location after the fore optic are determined. This collection of rays is reduced to three rays that describe the entire lenslet ray set. The lenslet ray set is determined at the object, image, and pupil planes of the fore optic. The consideration of the apertures that define the lenslet ray set for an on-axis lenslet leads to three classes of lenslet-based systems. Vignetting of the lenslet rays is considered for off-axis lenslets. Finally, the lenslet ray set is normalized into terms similar to the field and aperture vector used to describe the aberrated wavefront of the fore optic. The analysis in this dissertation is complementary to other first-order models that have been developed for a specific plenoptic camera layout or Shack-Hartmann wavefront sensor application. This general analysis determines the location where the rays of each lenslet pass through the fore optic establishing a framework to consider the effect of an aberrated fore optic in a future analysis.

  6. Tests and evaluation of a variable focus liquid lens for curvature wavefront sensors in astronomy.

    PubMed

    Fuentes-Fernández, Jorge; Cuevas, Salvador; Álvarez-Nuñez, Luis C; Watson, Alan

    2013-10-20

    Curvature wavefront sensors (WFSs), which obtain the wavefront aberrations from two defocused intensity images at each side of the pupil plane, have shown to be highly efficient for astronomical applications. We propose here an alternative defocusing mechanism for curvature sensors, based on an electrowetting-based variable focus liquid lens. Typically, the sampling rates of a WFS for active optics are of the order of 0.01 Hz, and the focus modulation can be done by simply moving the detector back and forth. On the other hand, adaptive optics may require speeds of up to several hundred hertz, and the modulation is then done by using a fast vibrating membrane mirror. We believe variable focus liquid lenses may be able to perform this focus modulation, reducing the overall size of the system and without the need of extra moving parts. We have done a full characterization of the Varioptic Arctic 416 liquid lens, and we have evaluated its potential performance in different curvature configurations.

  7. Effects of atmospheric turbulence on the imaging performance of optical system

    NASA Astrophysics Data System (ADS)

    Al-Hamadani, Ali H.; Zainulabdeen, Faten Sh.; Karam, Ghada Sabah; Nasir, Eman Yousif; Al-Saedi, Abaas

    2018-05-01

    Turbulent effects are very complicated and still not entirely understood. Light waves from an astronomical object are distorted as they pass through the atmosphere. The refractive index fluctuations in the turbulent atmosphere induce an optical path difference (OPD) between different parts of the wavefront, distorted wavefronts produce low-quality images and degrade the image beyond the diffraction limit. In this paper the image degradation due to 2-D Gaussian atmospheric turbulence is considered in terms of the point spread function (PSF), and Strehl ratio as an image quality criteria for imaging systems with different apertures using the pupil function teqneque. A general expression for the degraded PSF in the case of circular and square apertures (with half diagonal = √{π/2 } , and 1) diffraction limited and defocused optical system is considered. Based on the derived formula, the effect of the Gaussian atmospheric turbulence on circular and square pupils has been studied with details. Numerical results show that the performance of optical systems with square aperture is more efficient at high levels of atmospheric turbulence than the other apertures.

  8. Adaptive Optical System for Retina Imaging Approaches Clinic Applications

    NASA Astrophysics Data System (ADS)

    Ling, N.; Zhang, Y.; Rao, X.; Wang, C.; Hu, Y.; Jiang, W.; Jiang, C.

    We presented "A small adaptive optical system on table for human retinal imaging" at the 3rd Workshop on Adaptive Optics for Industry and Medicine. In this system, a 19 element small deformable mirror was used as wavefront correction element. High resolution images of photo receptors and capillaries of human retina were obtained. In recent two years, at the base of this system a new adaptive optical system for human retina imaging has been developed. The wavefront correction element is a newly developed 37 element deformable mirror. Some modifications have been adopted for easy operation. Experiments for different imaging wavelengths and axial positions were conducted. Mosaic pictures of photoreceptors and capillaries were obtained. 100 normal and abnormal eyes of different ages have been inspected.The first report in the world concerning the most detailed capillary distribution images cover ±3° by ± 3° field around the fovea has been demonstrated. Some preliminary very early diagnosis experiment has been tried in laboratory. This system is being planned to move to the hospital for clinic experiments.

  9. Low-signal, coronagraphic wavefront estimation with Kalman filtering in the high contrast imaging testbed

    NASA Astrophysics Data System (ADS)

    Riggs, A. J. Eldorado; Cady, Eric J.; Prada, Camilo M.; Kern, Brian D.; Zhou, Hanying; Kasdin, N. Jeremy; Groff, Tyler D.

    2016-07-01

    For direct imaging and spectral characterization of cold exoplanets in reflected light, the proposed Wide-Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) will carry two types of coronagraphs. The High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory has been testing both coronagraph types and demonstrated their abilities to achieve high contrast. Focal plane wavefront correction is used to estimate and mitigate aberrations. As the most time-consuming part of correction during a space mission, the acquisition of probed images for electric field estimation needs to be as short as possible. We present results from the HCIT of narrowband, low-signal wavefront estimation tests using a shaped pupil Lyot coronagraph (SPLC) designed for the WFIRST CGI. In the low-flux regime, the Kalman filter and iterated extended Kalman filter provide faster correction, better achievable contrast, and more accurate estimates than batch process estimation.

  10. Fast Coherent Differential Imaging for Exoplanet Imaging

    NASA Astrophysics Data System (ADS)

    Gerard, Benjamin; Marois, Christian; Galicher, Raphael; Veran, Jean-Pierre; Macintosh, B.; Guyon, O.; Lozi, J.; Pathak, P.; Sahoo, A.

    2018-06-01

    Direct detection and detailed characterization of exoplanets using extreme adaptive optics (ExAO) is a key science goal of future extremely large telescopes and space observatories. However, quasi-static wavefront errors will limit the sensitivity of this endeavor. Additional limitations for ground-based telescopes arise from residual AO-corrected atmospheric wavefront errors, generating short-lived aberrations that will average into a halo over a long exposure, also limiting the sensitivity of exoplanet detection. We develop the framework for a solution to both of these problems using the self-coherent camera (SCC), to be applied to ground-based telescopes, called Fast Atmospheric SCC Technique (FAST). Simulations show that for typical ExAO targets the FAST approach can reach ~100 times better in raw contrast than what is currently achieved with ExAO instruments if we extrapolate for an hour of observing time, illustrating that the sensitivity improvement from this method could play an essential role in the future ground-based detection and characterization of lower mass/colder exoplanets.

  11. Realtime speckle sensing and suppression with project 1640 at Palomar

    NASA Astrophysics Data System (ADS)

    Vasisht, Gautam; Cady, Eric; Zhai, Chengxing; Lockhart, Thomas; Oppenheimer, Ben

    2014-08-01

    Palomar's Project 1640 (P1640) is the first stellar coronagraph to regularly use active coronagraphic wavefront control (CWFC). For this it has a hierarchy of offset wavefront sensors (WFS), the most important of which is the higher-order WFS (called CAL), which tracks quasi-static modes between 2-35 cycles-per-aperture. The wavefront is measured in the coronagraph at 0.01 Hz rates, providing slope targets to the upstream Palm 3000 adaptive optics (AO) system. The CWFC handles all non-common path distortions up to the coronagraphic focal plane mask, but does not sense second order modes between the WFSs and the science integral field unit (IFU); these modes determine the system's current limit. We have two CWFC operating modes: (1) P-mode, where we only control phases, generating double-sided darkholes by correcting to the largest controllable spatial frequencies, and (2) E-mode, where we can control amplitudes and phases, generating single-sided dark-holes in specified regions-of-interest. We describe the performance and limitations of both these modes, and discuss the improvements we are considering going forward.

  12. Application of phase-diverse phase retrieval to wavefront sensing in non-connected complicated pupil optics

    NASA Astrophysics Data System (ADS)

    Mao, Heng; Wang, Xiao; Zhao, Dazun

    2007-07-01

    Baseline algorithm, as a tool in wavefront sensing (WFS), incorporates the phase-diverse phase retrieval (PDPR) method with hybrid-unwrapping approach to ensure a unique pupil phase estimate with high WFS accuracy even in the case of high dynamic range aberration, as long as the pupil shape is of a convex set. However, for a complicated pupil, such as that in obstructed pupil optics, the said unwrapping approach would fail owing to the fake values at points located in obstructed areas of the pupil. Thus a modified unwrapping approach that can minimize the negative effects of the obstructed areas is proposed. Simulations have shown the validity of this unwrapping approach when it is embedded in Baseline algorithm.

  13. Performance analysis of a Hartmann wavefront sensor used for sensing atmospheric turbulence statistics

    NASA Astrophysics Data System (ADS)

    Welsh, Byron M.; Reeves, Toby D.; Roggemann, Michael C.

    1997-09-01

    The ability to measure atmospheric turbulence characteristics such as Fried's coherence diameter, the outer scale of turbulence, and the turbulence power law are critical for the optimized operation of adaptive optical telescopes. One approach for sensing these turbulence parameters is to use a Hartmann wavefront sensor (H-WFS) array to measure the wavefront slope structure function (SSF) . The SSF is defined as the second moment of the wavefront slope difference between any two subapertures separated in time and/or space. Accurate knowledge of the SSF allows turbulence parameters to be estimated. The H-WFS slope measurements, composed of a true slope signal corrupted by noise, are used to estimate the SSF by computing a mean square difference of slope signals from different subapertures. This computation is typically performed over a large number of H-WFS measurement frames. The quality of the SSF estimate is quantified by the signal-to-noise ratio (SNR) of the estimator. The quality of the SSF estimate then can in turn be related to the quality of the atmospheric turbulence parameter estimates. This research develops a theoretical SNR expression for the SSF estimator. This SNR is a function of H-WFS geometry, the number of temporal measurement frames, the outer scale of turbulence, the turbulence spectrum power law, and the temporal properties of the turbulence. Results are presented for various H-WFS configurations and atmospheric turbulence properties.

  14. James Webb Space telescope optical simulation testbed: experimental results with linear control alignment

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Lajoie, Charles-Philippe; Michau, Vincent; Bonnefois, Aurélie; Escolle, Clément; Leboulleux, Lucie; N'Diaye, Mamadou; Pueyo, Laurent; Choquet, Elodie; Perrin, Marshall D.; Ygouf, Marie; Fusco, Thierry; Ferrari, Marc; Hugot, Emmanuel; Soummer, Rémi

    2017-09-01

    The current generation of terrestrial telescopes has large enough primary mirror diameters that active optical control based on wavefront sensing is necessary. Similarly, in space, while the Hubble Space Telescope (HST) has a mostly passive optical design, apart from focus control, its successor the James Webb Space Telescope (JWST) has active control of many degrees of freedom in its primary and secondary mirrors.

  15. Focal Spot and Wavefront Sensing of an X-Ray Free Electron laser using Ronchi shearing interferometry

    DOE PAGES

    Nagler, Bob; Aquila, Andrew; Boutet, Sebastien; ...

    2017-10-20

    The Linac Coherent Light Source (LCLS) is an X-ray source of unmatched brilliance, that is advancing many scientific fields at a rapid pace. The highest peak intensities that are routinely produced at LCLS take place at the Coherent X-ray Imaging (CXI) instrument, which can produce spotsize at the order of 100 nm, and such spotsizes and intensities are crucial for experiments ranging from coherent diffractive imaging, non-linear x-ray optics and high field physics, and single molecule imaging. Nevertheless, a full characterisation of this beam has up to now not been performed. In this paper we for the first time characterisemore » this nanofocused beam in both phase and intensity using a Ronchi Shearing Interferometric technique. The method is fast, in-situ, uses a straightforward optimization algoritm, and is insensitive to spatial jitter.« less

  16. Palm-3000 on-sky results

    NASA Astrophysics Data System (ADS)

    Dekany, R.; Roberts, J.; Burruss, R.; Truong, T.; Palmer, D., Guiwits, S., Hale, D., Angione, J., Baranec, C., Croner, E., Davis, J. T. C., Zolkower, J., Henning, J., McKenna, D., Bouchez, A. H.

    2011-09-01

    PALM-3000, the second-generation facility adaptive optics system for the 5-meter telescope at Palomar Observatory, successfully obtained first high-order correction on sky on UT June 21, 2011. Within PALM-3000, low-order wavefront correction is applied with a Xinetics, Inc. 349 (241 active) actuator deformable mirror reused from the 1999 PALAO system. High-order correction is applied with a new Xinetics, Inc. 4,356 (3,388 active) actuator deformable mirror based upon a 6 x 6 array of 11 x 11 actuator Photonex modules. The system also uses a new CCD50-based Shack-Hartmann wavefront sensor camera and a novel real-time computer based upon a bank of commercial GPU's. Currently, the first of four planned wavefront sensor pupil sampling modes (N = 64 subapertures per pupil) has been tested, emphasizing early high-contrast exoplanet science with the PHARO coronagraphic imager and P1640 coronagraphic integral field spectrograph. We report on AO correction performance to date and our experience with the unique 66 x 66 actuator Xinetics, Inc. DM, as well as describe the PALM-3000 commissioning program and future plans.

  17. Bringing it all together: a unique approach to requirements for wavefront sensing and control on the James Webb Space Telescope (JWST)

    NASA Astrophysics Data System (ADS)

    Contos, Adam R.; Acton, D. Scott; Atcheson, Paul D.; Barto, Allison A.; Lightsey, Paul A.; Shields, Duncan M.

    2006-06-01

    The opto-mechanical design of the 6.6 meter James Webb Space Telescope (JWST), with its actively-controlled secondary and 18-segment primary mirror, presents unique challenges from a system engineering perspective. To maintain the optical alignment of the telescope on-orbit, a process called wavefront sensing and control (WFS&C) is employed to determine the current state of the mirrors and calculate the optimal mirror move updates. The needed imagery is downloaded to the ground, where the WFS&C algorithms to process the images reside, and the appropriate commands are uploaded to the observatory. Rather than use a dedicated wavefront sensor for the imagery as is done in most other applications, a science camera is used instead. For the success of the mission, WFS&C needs to perform flawlessly using the assets available among the combination of separate elements (ground operations, spacecraft, science instruments, optical telescope, etc.) that cross institutional as well as geographic borders. Rather than be yet another distinct element with its own set of requirements to flow to the other elements as was originally planned, a novel approach was selected. This approach entails reviewing and auditing other documents for the requirements needed to satisfy the needs of WFS&C. Three actions are taken: (1) when appropriate requirements exist, they are tracked by WFS&C ; (2) when an existing requirement is insufficient to meet the need, a requirement change is initiated; and finally (3) when a needed requirement is missing, a new requirement is established in the corresponding document. This approach, deemed a "best practice" at the customer's independent audit, allows for program confidence that the necessary requirements are complete, while still maintaining the responsibility for the requirement with the most appropriate entity. This paper describes the details and execution of the approach; the associated WFS&C requirements and verification documentation; and the implementation of the primary database tool for the project, DOORS (Dynamic Object-Oriented Requirements System).

  18. Infrared/microwave (IR/MW) micromirror array beam combiner design and analysis.

    PubMed

    Tian, Yi; Lv, Lijun; Jiang, Liwei; Wang, Xin; Li, Yanhong; Yu, Haiming; Feng, Xiaochen; Li, Qi; Zhang, Li; Li, Zhuo

    2013-08-01

    We investigated the design method of an infrared (IR)/microwave (MW) micromirror array type of beam combiner. The size of micromirror is in microscopic levels and comparable to MW wavelengths, so that the MW will not react in these dimensions, whereas the much shorter optical wavelengths will be reflected by them. Hence, the MW multilayered substrate was simplified and designed using transmission line theory. The beam combiner used an IR wavefront-division imaging technique to reflect the IR radiation image to the unit under test (UUT)'s pupil in a parallel light path. In addition, the boresight error detected by phase monopulse radar was analyzed using a moment-of method (MoM) and multilevel fast multipole method (MLFMM) acceleration technique. The boresight error introduced by the finite size of the beam combiner was less than 1°. Finally, in order to verify the wavefront-division imaging technique, a prototype of a micromirror array was fabricated, and IR images were tested. The IR images obtained by the thermal imager verified the correctness of the wavefront-division imaging technique.

  19. pyZELDA: Python code for Zernike wavefront sensors

    NASA Astrophysics Data System (ADS)

    Vigan, A.; N'Diaye, M.

    2018-06-01

    pyZELDA analyzes data from Zernike wavefront sensors dedicated to high-contrast imaging applications. This modular software was originally designed to analyze data from the ZELDA wavefront sensor prototype installed in VLT/SPHERE; simple configuration files allow it to be extended to support several other instruments and testbeds. pyZELDA also includes simple simulation tools to measure the theoretical sensitivity of a sensor and to compare it to other sensors.

  20. Preliminary investigation of an active PLZT lens

    NASA Astrophysics Data System (ADS)

    Peters, Bruce R.; Reardon, Patrick J.; Wong, K. J.

    2001-05-01

    The design analysis and preliminary testing of a prototype AFOCL is described. The AFOCL is an active optical component composed of solid state lead lanthanum-modified zirconate titanate (PLZT) ferroelectric ceramic with patterned indium tin oxide (ITO) transparent surface electrodes that modulate the refractive index of the PLZT to function as an electro- optic lens. The AFOCL was developed to perform optical re- alignment and wavefront correction to enhance the performance of Ultra-Lightweight Structures and Space Observatories. The AFOCL would be an active optical component within a larger optical system. Information from a wavefront sensor would be processed to provide input to the AFOCL to drive the sense4d wavefront tot he desired shape and location. While offering variable and rapid focusing capability similar to liquid crystal based spatial light modulators, the AFOCL offers some potential advantages because it is a solid-stat, stationary, low-mass, rugged, and thin optical element that can produce wavefront quality comparable to the solid refractive lens it replaces. The AFOCL acts as a positive or negative lens by producing a parabolic phase-shift in the PLZT material through the application of a controlled voltage potential across the ITO electrodes. To demonstrate the technology, a 4 mm diameter lens was fabricated to produce 5-waves of optical power operating at 2.051 micrometers wavelength. Optical metrology was performed on the device to measure focal length, optical quality, and efficiency for a variety of test configurations. Preliminary data was analyzed and compared to idealized performance available from computer-based models of the AFOCL.

  1. The TMT Adaptive Optics Program

    NASA Astrophysics Data System (ADS)

    Ellerbroek, Brent

    2011-09-01

    We provide an overview of the Thirty Meter Telescope (TMT) AO program, with an emphasis upon the progress made since the first AO4ELT conference held in 2009. The first light facility AO system for TMT is the Narrow Field Infra-Red AO System (NFIRAOS), which will provide diffraction-limited performance in the J, H, and K bands over 18-30 arc sec diameter fields with 50% sky coverage at the galactic pole. This is accomplished with order 60x60 wavefront sensing and correction, two deformable mirrors conjugate to ranges of 0 and 11.2 km, 6 sodium laser guide stars in an asterism with a diameter of 70 arc sec, and three low order (tip/tilt or tip/tilt focus), infra-red natural guide star (NGS) wavefront sensors deployable within a 2 arc minute diameter patrol field. The first light LGS asterism is generated by the Laser Guide Star Facility (LGSF), which initially incorporates 6 20-25W class laser systems mounted to the telescope elevation journal, a mirror-based beam transfer optics system, and a 0.4m diameter laser launch telescope located behind the TMT secondary mirror. Future plans for additional AO capabilities include a mid infra-red AO (MIRAO) system to support science instruments in the 4-20 micron range, a ground-layer AO (GLAO) system for wide-field spectroscopy, a multi-object AO (MOAO) system for multi-object integral field unit spectroscopy, and extreme AO (ExAO) for high contrast imaging. Significant progress has been made in developing the first-light AO architecture since 2009. This includes the adoption of a new NFIRAOS opto-mechanical design consisting of two off-axis parabola (OAP) relays in series, which eliminates field distortion and also significantly simplifies the designs of the LGS wavefront sensors, optical source simulators, and turbulence generator subsystem. The design of the LGSF has also been interated, and has been simplfied by the relocation of the (smaller, gravity invarient) laser systems to the telescope elevation journal. Protoyping activities continue for laser systems, wavefront sensing detectors, and deformable mirrors; work on the associated detector and deformable mirror electronics has also been initiated. AO Performance estimates and error budgets have been further detailed. Some of the modeling topics which have received particular attention include turbulence (Cn2) profile estimation from LGS WFS measurements, sodium layer range tracking, PSF reconstruction for multi-conjugate AO, LGS fratricide, astrometry at the galactic center, and further optimizing sky coverage and the peformance of the tip/tilt and low-order NGS mode control loops. Finally, experiments and field tests continue at the University of British Columbia LIDAR facility to measure the spatial and temporal variability of the sodium layer, and to characterize the sodium coupling efficiency of candidate laser systems for TMT.

  2. Shack-Hartmann wavefront sensor with large dynamic range.

    PubMed

    Xia, Mingliang; Li, Chao; Hu, Lifa; Cao, Zhaoliang; Mu, Quanquan; Xuan, Li

    2010-01-01

    A new spot centroid detection algorithm for a Shack-Hartmann wavefront sensor (SHWFS) is experimentally investigated. The algorithm is a kind of dynamic tracking algorithm that tracks and calculates the corresponding spot centroid of the current spot map based on the spot centroid of the previous spot map, according to the strong correlation of the wavefront slope and the centroid of the corresponding spot between temporally adjacent SHWFS measurements. That is, for adjacent measurements, the spot centroid movement will usually fall within some range. Using the algorithm, the dynamic range of an SHWFS can be expanded by a factor of three in the measurement of tilt aberration compared with the conventional algorithm, more than 1.3 times in the measurement of defocus aberration, and more than 2 times in the measurement of the mixture of spherical aberration plus coma aberration. The algorithm is applied in our SHWFS to measure the distorted wavefront of the human eye. The experimental results of the adaptive optics (AO) system for retina imaging are presented to prove its feasibility for highly aberrated eyes.

  3. Wavefront Derived Refraction and Full Eye Biometry in Pseudophakic Eyes

    PubMed Central

    Mao, Xinjie; Banta, James T.; Ke, Bilian; Jiang, Hong; He, Jichang; Liu, Che; Wang, Jianhua

    2016-01-01

    Purpose To assess wavefront derived refraction and full eye biometry including ciliary muscle dimension and full eye axial geometry in pseudophakic eyes using spectral domain OCT equipped with a Shack-Hartmann wavefront sensor. Methods Twenty-eight adult subjects (32 pseudophakic eyes) having recently undergone cataract surgery were enrolled in this study. A custom system combining two optical coherence tomography systems with a Shack-Hartmann wavefront sensor was constructed to image and monitor changes in whole eye biometry, the ciliary muscle and ocular aberration in the pseudophakic eye. A Badal optical channel and a visual target aligning with the wavefront sensor were incorporated into the system for measuring the wavefront-derived refraction. The imaging acquisition was performed twice. The coefficients of repeatability (CoR) and intraclass correlation coefficient (ICC) were calculated. Results Images were acquired and processed successfully in all patients. No significant difference was detected between repeated measurements of ciliary muscle dimension, full-eye biometry or defocus aberration. The CoR of full-eye biometry ranged from 0.36% to 3.04% and the ICC ranged from 0.981 to 0.999. The CoR for ciliary muscle dimensions ranged from 12.2% to 41.6% and the ICC ranged from 0.767 to 0.919. The defocus aberrations of the two measurements were 0.443 ± 0.534 D and 0.447 ± 0.586 D and the ICC was 0.951. Conclusions The combined system is capable of measuring full eye biometry and refraction with good repeatability. The system is suitable for future investigation of pseudoaccommodation in the pseudophakic eye. PMID:27010674

  4. Wavefront Derived Refraction and Full Eye Biometry in Pseudophakic Eyes.

    PubMed

    Mao, Xinjie; Banta, James T; Ke, Bilian; Jiang, Hong; He, Jichang; Liu, Che; Wang, Jianhua

    2016-01-01

    To assess wavefront derived refraction and full eye biometry including ciliary muscle dimension and full eye axial geometry in pseudophakic eyes using spectral domain OCT equipped with a Shack-Hartmann wavefront sensor. Twenty-eight adult subjects (32 pseudophakic eyes) having recently undergone cataract surgery were enrolled in this study. A custom system combining two optical coherence tomography systems with a Shack-Hartmann wavefront sensor was constructed to image and monitor changes in whole eye biometry, the ciliary muscle and ocular aberration in the pseudophakic eye. A Badal optical channel and a visual target aligning with the wavefront sensor were incorporated into the system for measuring the wavefront-derived refraction. The imaging acquisition was performed twice. The coefficients of repeatability (CoR) and intraclass correlation coefficient (ICC) were calculated. Images were acquired and processed successfully in all patients. No significant difference was detected between repeated measurements of ciliary muscle dimension, full-eye biometry or defocus aberration. The CoR of full-eye biometry ranged from 0.36% to 3.04% and the ICC ranged from 0.981 to 0.999. The CoR for ciliary muscle dimensions ranged from 12.2% to 41.6% and the ICC ranged from 0.767 to 0.919. The defocus aberrations of the two measurements were 0.443 ± 0.534 D and 0.447 ± 0.586 D and the ICC was 0.951. The combined system is capable of measuring full eye biometry and refraction with good repeatability. The system is suitable for future investigation of pseudoaccommodation in the pseudophakic eye.

  5. RBCs as microlenses: wavefront analysis and applications

    NASA Astrophysics Data System (ADS)

    Merola, Francesco; Barroso, Álvaro; Miccio, Lisa; Memmolo, Pasquale; Mugnano, Martina; Ferraro, Pietro; Denz, Cornelia

    2017-06-01

    Developing the recently discovered concept of RBCs as microlenses, we demonstrate further applications in wavefront analysis and diagnostics. Correlation between RBC's morphology and its behavior as a refractive optical element has been established. In fact, any deviation from the healthy RBC morphology can be seen as additional aberration in the optical wavefront passing through the cell. By this concept, accurate localization of focal spots of RBCs can become very useful in blood disorders identification. Moreover, By modelling RBC as bio-lenses through Zernike polynomials it is possible to identify a series of orthogonal parameters able to recognise RBC shapes. The main improvement concerns the possibility to combine such parameters because of their independence conversely to standard image-based analysis where morphological factors are dependent each-others. We investigate the three-dimensional positioning of such focal spots over time for samples with two different osmolarity conditions, i.e. discocytes and spherocytes. Finally, Zernike polynomials wavefront analysis allows us to study the optical behavior of RBCs under an optically-induced mechanical stress. Detailed wavefront analysis provides comprehensive information about the aberrations induced by the deformation obtained using optical tweezers. This could open new routes for analyzing cell elasticity by examining optical parameters instead of direct but with low resolution strain analysis, thanks to the high sensitivity of the interferometric tool.

  6. Visible near-diffraction-limited lucky imaging with full-sky laser-assisted adaptive optics

    NASA Astrophysics Data System (ADS)

    Basden, A. G.

    2014-08-01

    Both lucky imaging techniques and adaptive optics require natural guide stars, limiting sky-coverage, even when laser guide stars are used. Lucky imaging techniques become less successful on larger telescopes unless adaptive optics is used, as the fraction of images obtained with well-behaved turbulence across the whole telescope pupil becomes vanishingly small. Here, we introduce a technique combining lucky imaging techniques with tomographic laser guide star adaptive optics systems on large telescopes. This technique does not require any natural guide star for the adaptive optics, and hence offers full sky-coverage adaptive optics correction. In addition, we introduce a new method for lucky image selection based on residual wavefront phase measurements from the adaptive optics wavefront sensors. We perform Monte Carlo modelling of this technique, and demonstrate I-band Strehl ratios of up to 35 per cent in 0.7 arcsec mean seeing conditions with 0.5 m deformable mirror pitch and full adaptive optics sky-coverage. We show that this technique is suitable for use with lucky imaging reference stars as faint as magnitude 18, and fainter if more advanced image selection and centring techniques are used.

  7. WFIRST: Managing Telescope Wavefront Stability to Meet Coronagraph Performance

    NASA Astrophysics Data System (ADS)

    Noecker, Martin; Poberezhskiy, Ilya; Kern, Brian; Krist, John; WFIRST System Engineering Team

    2018-01-01

    The WFIRST coronagraph instrument (CGI) needs a stable telescope and active wavefront control to perform coronagraph science with an expected sensitivity of 8x10-9 in the exoplanet-star flux ratio (SNR=10) at 200 milliarcseconds angular separation. With its subnanometer requirements on the stability of its input wavefront error (WFE), the CGI employs a combination of pointing and wavefront control loops and thermo-mechanical stability to meet budget allocations for beam-walk and low-order WFE, which enable stable starlight speckles on the science detector that can be removed by image subtraction. We describe the control strategy and the budget framework for estimating and budgeting the elements of wavefront stability, and the modeling strategy to evaluate it.

  8. Effect of a contact lens on mouse retinal in vivo imaging: Effective focal length changes and monochromatic aberrations.

    PubMed

    Zhang, Pengfei; Mocci, Jacopo; Wahl, Daniel J; Meleppat, Ratheesh Kumar; Manna, Suman K; Quintavalla, Martino; Muradore, Riccardo; Sarunic, Marinko V; Bonora, Stefano; Pugh, Edward N; Zawadzki, Robert J

    2018-03-28

    For in vivo mouse retinal imaging, especially with Adaptive Optics instruments, application of a contact lens is desirable, as it allows maintenance of cornea hydration and helps to prevent cataract formation during lengthy imaging sessions. However, since the refractive elements of the eye (cornea and lens) serve as the objective for most in vivo retinal imaging systems, the use of a contact lens, even with 0 Dpt. refractive power, can alter the system's optical properties. In this investigation we examined the effective focal length change and the aberrations that arise from use of a contact lens. First, focal length changes were simulated with a Zemax mouse eye model. Then ocular aberrations with and without a 0 Dpt. contact lens were measured with a Shack-Hartmann wavefront sensor (SHWS) in a customized AO-SLO system. Total RMS wavefront errors were measured for two groups of mice (14-month, and 2.5-month-old), decomposed into 66 Zernike aberration terms, and compared. These data revealed that vertical coma and spherical aberrations were increased with use of a contact lens in our system. Based on the ocular wavefront data we evaluated the effect of the contact lens on the imaging system performance as a function of the pupil size. Both RMS error and Strehl ratios were quantified for the two groups of mice, with and without contact lenses, and for different input beam sizes. These results provide information for determining optimum pupil size for retinal imaging without adaptive optics, and raise critical issues for design of mouse optical imaging systems that incorporate contact lenses. Copyright © 2018. Published by Elsevier Ltd.

  9. Space Telescope Sensitivity and Controls for Exoplanet Imaging

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark

    2012-01-01

    Herein we address design considerations and outline requirements for space telescopes with capabilities for high contrast imaging of exoplanets. The approach taken is to identify the span of potentially detectable Earth-sized terrestrial planets in the habitable zone of the nearest stars within 30 parsecs and estimate their inner working angles, flux ratios, SNR, sensitivities, wavefront error requirements and sensing and control times parametrically versus aperture size. We consider 1, 2, 4, 8 and 16-meter diameter telescope apertures. The achievable science, range of telescope architectures, and the coronagraphic approach are all active areas of research and are all subject to change in a rapidly evolving field. Thus, presented is a snapshot of our current understanding with the goal of limiting the choices to those that appear currently technically feasible. We describe the top-level metrics of inner working angle, contrast and photometric throughput and explore how they are related to the range of target stars. A critical point is that for each telescope architecture and coronagraphic choice the telescope stability requirements have differing impacts on the design for open versus closed-loop sensing and control.

  10. High Resolution Imaging from the Stratosphere: Atmospheric Seeing and Tether Dynamics

    NASA Technical Reports Server (NTRS)

    Ford, Holland

    2003-01-01

    A balloon-borne telescope that is capable of imaging planets orbiting nearby stars requires that the flatness and tilt of the wavefront of the light entering that telescope meet certain stringent conditions. The atmosphere through which the light propagates distorts the wavefront due to turbulence in the atmosphere and due to the disturbances caused by the balloon itself The magnitude of these effects may be estimated, but no direct measurements have been made at the level of precision necessary for designing a telescope as demanding as we envision. Therefore, under this grant we carried out a study of techniques that could be used to make an in situ measurement of the distortion of the optical wavefront.

  11. A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew Ryan; Stahle, Carl M.; Balasubramaniam, Kunjithapatham; Clampin, Mark; Feinberg, Lee D.; Mosier, Gary E.; Quijada, Manuel A.; Rauscher, Bernard J.; Redding, David C.; Rioux, Norman M.; hide

    2015-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  12. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; hide

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  13. THz wavefront manipulation based on metal waveguides

    NASA Astrophysics Data System (ADS)

    Wu, Mengru; Lang, Tingting; Shen, Changyu; Shi, Guohua; Han, Zhanghua

    2018-07-01

    In this paper, two waveguiding structures for arbitrary wavefront manipulation in the terahertz spectral region were proposed, designed and characterized. The first structure consists of parallel stack copper plates forming an array of parallel-plate waveguides (PPWGs). The second structure is three-dimensional metal rectangular waveguides array. The phase delay of the input wave after passing through the waveguide array is mainly determined by the effective index of the waveguides. Therefore, the waveguide array can be engineered using different core width distribution to generate any desired light beam. Examples, working at the frequency of 0.3 THz show that good focusing phenomenon with different focus lengths and spot sizes were observed, as well as arbitrarily tilted propagation of incident plane waves. The structure introduces a new method to perform wavefront manipulation, and can be utilized in many important applications in terahertz imaging and communication systems.

  14. An Efficient Correction Algorithm for Eliminating Image Misalignment Effects on Co-Phasing Measurement Accuracy for Segmented Active Optics Systems

    PubMed Central

    Yue, Dan; Xu, Shuyan; Nie, Haitao; Wang, Zongyang

    2016-01-01

    The misalignment between recorded in-focus and out-of-focus images using the Phase Diversity (PD) algorithm leads to a dramatic decline in wavefront detection accuracy and image recovery quality for segmented active optics systems. This paper demonstrates the theoretical relationship between the image misalignment and tip-tilt terms in Zernike polynomials of the wavefront phase for the first time, and an efficient two-step alignment correction algorithm is proposed to eliminate these misalignment effects. This algorithm processes a spatial 2-D cross-correlation of the misaligned images, revising the offset to 1 or 2 pixels and narrowing the search range for alignment. Then, it eliminates the need for subpixel fine alignment to achieve adaptive correction by adding additional tip-tilt terms to the Optical Transfer Function (OTF) of the out-of-focus channel. The experimental results demonstrate the feasibility and validity of the proposed correction algorithm to improve the measurement accuracy during the co-phasing of segmented mirrors. With this alignment correction, the reconstructed wavefront is more accurate, and the recovered image is of higher quality. PMID:26934045

  15. Fast and robust estimation of ophthalmic wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Dillon, Keith

    2016-12-01

    Rapidly rising levels of myopia, particularly in the developing world, have led to an increased need for inexpensive and automated approaches to optometry. A simple and robust technique is provided for estimating major ophthalmic aberrations using a gradient-based wavefront sensor. The approach is based on the use of numerical calculations to produce diverse combinations of phase components, followed by Fourier transforms to calculate the coefficients. The approach does not utilize phase unwrapping nor iterative solution of inverse problems. This makes the method very fast and tolerant to image artifacts, which do not need to be detected and masked or interpolated as is needed in other techniques. These features make it a promising algorithm on which to base low-cost devices for applications that may have limited access to expert maintenance and operation.

  16. AO wavefront sensing detector developments at ESO

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Kolb, Johann; Baade, Dietrich; Iwert, Olaf; Hubin, Norbert; Reyes, Javier; Feautrier, Philippe; Gach, Jean-Luc; Balard, Philippe; Guillaume, Christian; Stadler, Eric; Magnard, Yves

    2010-07-01

    The detector is a critical component of any Adaptive Optics WaveFront Sensing (AO WFS) system. The required combination of fast frame rate, high quantum efficiency, low noise, large number and size of pixels, and low image lag can often only be met by specialized custom developments. ESO's very active WFS detector development program is described. Key test results are presented for newly developed detectors: a) the e2v L3Vision CCD220 (the fastest/lowest noise AO detector to date) to be deployed soon on 2nd Generation VLT instruments, and b) the MPI-HLL pnCCD with its superb high "red" response. The development of still more advanced laser/natural guide-star WFS detectors is critical for the feasibility of ESO's EELT. The paper outlines: a) the multi-phased development plan that will ensure detectors are available on-time for EELT first-light AO systems, b) results of design studies performed by industry during 2007 including a comparison of the most promising technologies, c) results from CMOS technology demonstrators that were built and tested over the past two years to assess and validate various technologies at the pixel level, their fulfillment of critical requirements (especially read noise and speed), and scalability to full-size. The next step will be towards Scaled-Down Demonstrators (SDD) to retire architecture and process risks. The SDD will be large enough to be used for E-ELT first-light AO WFS systems. For full operability, 30-50 full-scale devices will be needed.

  17. Enhancing the performance of the light field microscope using wavefront coding

    PubMed Central

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-01-01

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective’s back focal plane and at the microscope’s native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain. PMID:25322056

  18. Enhancing the performance of the light field microscope using wavefront coding.

    PubMed

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-10-06

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.

  19. Method and apparatus for wavefront sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahk, Seung-Whan

    A method for performing optical wavefront sensing includes providing an amplitude transmission mask having a light input side, a light output side, and an optical transmission axis passing from the light input side to the light output side. The amplitude transmission mask is characterized by a checkerboard pattern having a square unit cell of size .LAMBDA.. The method also includes directing an incident light field having a wavelengthmore » $$ \\lamda $$ to be incident on the light input side and propagating the incident light field through the amplitude transmission mask. The method further includes producing a plurality of diffracted light fields on the light output side and detecting, at a detector disposed a distance L from the amplitude transmission mask, an interferogram associated with the plurality of diffracted light fields.« less

  20. Spatial-heterodyne sampling requirements in the off-axis pupil plane recording geometry for deep-turbulence wavefront sensing

    NASA Astrophysics Data System (ADS)

    Banet, Matthias T.; Spencer, Mark F.

    2017-09-01

    Spatial-heterodyne interferometry is a robust solution for deep-turbulence wavefront sensing. With that said, this paper analyzes the focal-plane array sampling requirements for spatial-heterodyne systems operating in the off-axis pupil plane recording geometry. To assess spatial-heterodyne performance, we use a metric referred to as the field-estimated Strehl ratio. We first develop an analytical description of performance with respect to the number of focal-plane array pixels across the Fried coherence diameter and then verify our results with wave-optics simulations. The analysis indicates that at approximately 5 focal-plane array pixels across the Fried coherence diameter, the field-estimated Strehl ratios begin to exceed 0:9 which is indicative of largely diffraction-limited results.

Top