Science.gov

Sample records for imaged luminous infrared

  1. Adaptive Optics Imaging Survey of Luminous Infrared Galaxies

    SciTech Connect

    Laag, E A; Canalizo, G; van Breugel, W; Gates, E L; de Vries, W; Stanford, S A

    2006-03-13

    We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L{sub FIR} {ge} 10{sup 12} L{sub {circle_dot}}) and 19 new LIGs (with L{sub FIR} {ge} 10{sup 11} L{sub {circle_dot}}). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K{prime}. Galaxy morphologies were determined using the two dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines--four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.

  2. Submillimeter Imaging of the Luminous Infrared Galaxy Pair VV114

    NASA Technical Reports Server (NTRS)

    Frayer, D.; Ivison, R. J.; Smail, I.; Yun, M. S.; Armus, L.

    1999-01-01

    We report on 450 and 850 mue observations of the interacting galaxy pair, VV114E+W (IC 1623), taken with the SCUBA camera on the James Clerk Maxwell Telescope, and near-infrared observations taken with UFTI on the UK Infrared Telescope.

  3. NEAR-INFRARED ADAPTIVE OPTICS IMAGING OF INFRARED LUMINOUS GALAXIES: THE BRIGHTEST CLUSTER MAGNITUDE-STAR FORMATION RATE RELATION

    SciTech Connect

    Randriamanakoto, Z.; Väisänen, P.; Escala, A.; Kankare, E.; Kotilainen, J.; Mattila, S.; Ryder, S.

    2013-10-01

    We have established a relation between the brightest super star cluster (SSC) magnitude in a galaxy and the host star formation rate (SFR) for the first time in the near-infrared (NIR). The data come from a statistical sample of ∼40 luminous IR galaxies (LIRGs) and starbursts utilizing K-band adaptive optics imaging. While expanding the observed relation to longer wavelengths, less affected by extinction effects, it also pushes to higher SFRs. The relation we find, M{sub K} ∼ –2.6log SFR, is similar to that derived previously in the optical and at lower SFRs. It does not, however, fit the optical relation with a single optical to NIR color conversion, suggesting systematic extinction and/or age effects. While the relation is broadly consistent with a size-of-sample explanation, we argue physical reasons for the relation are likely as well. In particular, the scatter in the relation is smaller than expected from pure random sampling strongly suggesting physical constraints. We also derive a quantifiable relation tying together cluster-internal effects and host SFR properties to possibly explain the observed brightest SSC magnitude versus SFR dependency.

  4. SPECTROSCOPIC CONFIRMATION OF A z = 2.79 MULTIPLY IMAGED LUMINOUS INFRARED GALAXY BEHIND THE BULLET CLUSTER

    SciTech Connect

    Gonzalez, Anthony H.; Papovich, Casey; Bradac, Marusa; Jones, Christine

    2010-09-01

    We report spectroscopic confirmation and high-resolution infrared imaging of a z = 2.79 triply imaged galaxy behind the Bullet Cluster. This source, a Spitzer-selected luminous infrared galaxy, is confirmed via polycyclic aromatic hydrocarbon (PAH) features using the Spitzer Infrared Spectrograph (IRS) and resolved with Hubble Space Telescope Wide Field Camera 3 imaging. In this galaxy, which with a stellar mass M{sub *} {approx} 4 x 10{sup 9} M{sub sun} is one of the two least massive ones studied with IRS at z>2, we also detect H{sub 2} S(4) and H{sub 2} S(5) pure rotational lines (at 3.1{sigma} and 2.1{sigma})-the first detection of these molecular hydrogen lines in a high-redshift galaxy. From the molecular hydrogen lines we infer an excitation temperature T = 377{sup +68}{sub -84} K. The detection of these lines indicates that the warm molecular gas mass is 6{sup +36}{sub -4}% of the stellar mass and implies the likely existence of a substantial reservoir of cold molecular gas in the galaxy. Future spectral observations at longer wavelengths with facilities such as the Herschel Space Observatory, the Large Millimeter Telescope, and the Atacama Pathfinder Experiment thus hold the promise of precisely determining the total molecular gas mass. Given the redshift, and using refined astrometric positions from the high-resolution imaging, we also update the magnification estimate and derived fundamental physical properties of this system. The previously published values for L{sub IR}, star formation rate, and dust temperature are confirmed modulo the revised magnification; however, we find that PAH emission is roughly a factor of 5 stronger than would be predicted by the relations between L{sub IR} and L{sub PAH} reported for SMGs and starbursts in Pope et al.

  5. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    SciTech Connect

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro; Takahashi, Hidenori; Kato, Natsuko Mitani; Kitagawa, Yutaro; Todo, Soya; Toshikawa, Koji; Sako, Shigeyuki; Uchimoto, Yuka K.; Ohsawa, Ryou; Asano, Kentaro; Kamizuka, Takafumi; Nakamura, Tomohiko; Okada, Kazushi; Ita, Yoshifusa; Komugi, Shinya; Koshida, Shintaro; Manabe, Sho; Nakashima, Asami; and others

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with those from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.

  6. Extremely Luminous Far-infrared Sources (ELFS)

    NASA Technical Reports Server (NTRS)

    Harwit, Martin; Houck, James R.; Soifer, B. Thomas; Palumbo, Giorgio G. C.

    1987-01-01

    The Infrared Astronomical Satellite (IRAS) survey uncovered a class of Extremely Luminous Far Infrared Sources (ELFS), exhibiting luminosities up to and occasionally exceeding 10 to the 12th power L sub 0. Arguments are presented to show that sources with luminosities L equal to or greater than 3 x 10 to the 10th power L sub 0 may represent gas rich galaxies in collision. The more conventional explanation of these sources as sites of extremely active star formation fails to explain the observed low optical luminosities of ELFS as well as their high infrared excess. In contrast, a collisional model heats gas to a temperature of approx. 10 to the 6th power K where cooling takes place in the extreme ultraviolet. The UV is absorbed by dust and converted into far infrared radiation (FIR) without generation of appreciable optical luminosity. Gas recombination as it cools generates a Lyman alpha photon only once for every two extreme ultraviolet approx. 50eV photons emitted by the 10 to the 6th power gas. That accounts for the high infrared excess. Finally, the model also is able to explain the observed luminosity distribution of ELFS as well as many other traits.

  7. ISM Properties of Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Diaz-Santos, Tanio; Armus, Lee; Stierwalt, Sabrina; Elbaz, David; Malhotra, Sangeeta

    2015-08-01

    Luminous and Ultra-luminous Infrared Galaxies ((U)LIRGs) represent the most important galaxy population at redshifts z > 1 as they account for more than 50% of all star formation produced in the Universe at those epochs; and encompass what it is called the main-sequence (MS) of star-forming galaxies. Investigating their local counterparts -low luminosity LIRGs- is therefore key to understand the physical properties and phases of their inter-stellar medium (ISM) - a task that is rather challenging in the distant Universe. On the other hand, high-z star-bursting (out of the MS) systems, although small in number, account for a modest yet still significant fraction of the total energy production. Here I present far-IR line emission observations ([CII]158μm, [OI]63μm, [OIII]88μm and [NII]122μm) obtained with Herschel for two large samples of nearby LIRGs: The Great Observatories All-sky LIRG Survey (GOALS), a sample of more than 240 relatively cold LIRGs, and a survey of 30 LIRGs selected to have very warm mid- to far-IR colors, suggestive of an ongoing intense nuclear starburst and/or an AGN. Using photo-dissociation region (PDR) models we derive the basic characteristics of the ISM (ionization intensity and density) for both samples and study differences among systems as a function of AGN activity, merger stage, dust temperature, and compactness of the starburst - parameters that are thought to control the life cycle of galaxies moving in and out of the MS, locally and at high-z.

  8. Measurement of breast lesion display luminance and overall image display luminance relative to optimum luminance for contrast perception

    NASA Astrophysics Data System (ADS)

    Rawashdeh, Mohammad; Lee, Warwick; Brennan, Patrick; Reed, Warren; McEntee, Mark; Bourne, Roger

    2011-03-01

    Introduction: To minimize fatigue due to eye adaptation and maximize contrast perception, it has been suggested that lesion luminance be matched to overall image luminance to perceive the greatest number of grey level differences. This work examines whether lesion display luminance matches the overall image and breast tissue display luminance and whether these factors are positioned within the optimum luminance for maximal contrast sensitivity. Methods: A set of 42 mammograms, collected from 21 patients and containing 15 malignant and 6 benign lesions, was used to assess overall image luminance. Each image displayed on the monitor was divided into 16 equal regions. The luminance at the midpoint of each region was measured using a calibrated photometer and the overall image luminance was calculated. Average breast tissue display luminance was calculated from the subset of regions containing of only breast tissue. Lesion display luminance was compared with both overall image display luminance and average breast tissue display luminance. Results: Statistically significant differences (p<0.0001) were noted between overall image display luminance (4.3+/-0.7 cd/m2) and lesion display luminance (15.0+/-6.8 cd/m2); and between average breast tissue display luminance (6.8+/-1.3 cd/m2) and lesion display luminance (p<0.002). Conclusions: Lesion luminance was significantly higher than the overall image and breast tissue luminance. Luminance of lesions and general breast tissue fell below the optimum luminance range for contrast perception. Breast lesion detection sensitivity and specificity may be enhanced by use of brighter monitor displays.

  9. Infrared atomic hydrogen line formation in luminous stars

    NASA Technical Reports Server (NTRS)

    Krolik, J. H.; Smith, H. A.

    1981-01-01

    Infrared atomic hydrogen lines observed in luminous stars, generally attributed to compact circumstellar H II regions, can also be formed in the winds likely to emanate from these stars. Implications are discussed for the class of obscured infrared point sources showing these lines, and an illustrative model is derived for the BN object in Orion. Such stellar winds should also produce weak, but detectable, radio emission.

  10. The First Hyper-Luminous Infrared Galaxy Discovered by WISE

    NASA Technical Reports Server (NTRS)

    Eisenhardt, Peter R.; Wu, Jingwen; Tsai, Chao-Wei; Assef, Roberto; Benford, Dominic; Blain, Andrew; Bridge, Carrie; Condon, J. J.; Cushing, Michael C.; Cutri, Roc; Evans, Neal J., III; Gelino, Chris; Griffith, Roger L.; Grillmair, Carl J.; Jarrett, Tom; Lonsdale, Carol J.; Masci, Frank J.; Mason, Brian S.; Petty, Sara; Sayers, Jack; Stanford, S. Adam; Stern, Daniel; Wright, Edward L.; Yan, Lin

    2012-01-01

    We report the discovery by the Wide-field Infrared Survey Explorer of the z = 2.452 source WISEJ181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of approximately 1000 extremely luminous "W1W2-dropouts" (sources faint or undetected by WISE at 3.4 and 4.6 micrometers and well detected at 12 or 22 micrometers). The WISE data and a 350 micrometers detection give a minimum bolometric luminosity of 3.7 x 10(exp 13) solar luminosity, with approximately 10(exp 14) solar luminosity plausible. Followup images reveal four nearby sources: a QSO and two Lyman Break Galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate approximately 300 solar mass yr(exp -1), accounting for less than or equal to 10 percent of the bolometric luminosity. Strong 22 micrometer emission relative to 350 micrometer implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is approximately 10? above the far-infrared/radio correlation, indicating an active galactic nucleus is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local MBH-bulge mass relation, the implied Eddington ratio is approximately greater than 4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation.

  11. Infrared Images

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Earth objects emit natural radiation invisible to the unaided human eye, but visible to infrared scanning devices such as the device developed by Inframetrics, Inc. Such devices serve a number of purposes ranging from detection of heat loss in buildings for energy conservation measures, to examining heat output of industrial machinery for trouble shooting and preventive maintenance. Representative of system is Model 525, a small, lightweight field instrument that scans infrared radiation and translates its findings to a TV picture of the temperature pattern in the scene being viewed. An accessory device permits viewing the thermal radiation in color.

  12. Infrared images of merging galaxies

    NASA Technical Reports Server (NTRS)

    Wright, G. S.; James, P. A.; Joseph, R. D.; Mclean, I. S.; Doyon, R.

    1990-01-01

    Infrared imaging of interacting galaxies is especially interesting because their optical appearance is often so chaotic due to extinction by dust and emission from star formation regions, that it is impossible to locate the nuclei or determine the true stellar distribution. However, at near-infrared wavelengths extinction is considerably reduced, and most of the flux from galaxies originates from red giant stars that comprise the dominant stellar component by mass. Thus near infrared images offer the opportunity to study directly components of galactic structure which are otherwise inaccessible. Such images may ultimately provide the framework in which to understand the activity taking place in many of the mergers with high Infrared Astronomy Satellite (IRAS) luminosities. Infrared images have been useful in identifying double structures in the nuclei of interacting galaxies which have not even been hinted at by optical observations. A striking example of this is given by the K images of Arp 220. Graham et al. (1990) have used high resolution imaging to show that it has a double nucleus coincident with the radio sources in the middle of the dust lane. The results suggest that caution should be applied in the identification of optical bright spots as multiple nuclei in the absence of other evidence. They also illustrate the advantages of using infrared imaging to study the underlying structure in merging galaxies. The authors have begun a program to take near infrared images of galaxies which are believed to be mergers of disk galaxies because they have tidal tails and filaments. In many of these the merger is thought to have induced exceptionally luminous infrared emission (cf. Joseph and Wright 1985, Sanders et al. 1988). Although the optical images of the galaxies show spectacular dust lanes and filaments, the K images all have a very smooth distribution of light with an apparently single nucleus.

  13. VIBRATIONALLY EXCITED HCN IN THE LUMINOUS INFRARED GALAXY NGC 4418

    SciTech Connect

    Sakamoto, Kazushi; Aalto, Susanne; Evans, Aaron S.; Wiedner, Martina C.; Wilner, David J.

    2010-12-20

    Infrared pumping and its effect on the excitation of HCN molecules can be important when using rotational lines of HCN to probe dense molecular gas in galaxy nuclei. We report the first extragalactic detection of (sub)millimeter rotational lines of vibrationally excited HCN, in the dust-enshrouded nucleus of the luminous infrared galaxy NGC 4418. We estimate the excitation temperature of T{sub vib} {approx} 230 K between the vibrational ground and excited (v{sub 2} = 1) states. This excitation is most likely due to infrared radiation. At this high vibrational temperature the path through the v{sub 2} = 1 state must have a strong impact on the rotational excitation in the vibrational ground level, although it may not be dominant for all rotational levels. Our observations also revealed nearly confusion-limited lines of CO, HCN, HCO{sup +}, H{sup 13}CN, HC{sup 15}N, CS, N{sub 2}H{sup +}, and HC{sub 3}N at {lambda} {approx} 1 mm. Their relative intensities may also be affected by the infrared pumping.

  14. Extended [C II] Emission in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Díaz-Santos, T.; Armus, L.; Charmandaris, V.; Stacey, G.; Murphy, E. J.; Haan, S.; Stierwalt, S.; Malhotra, S.; Appleton, P.; Inami, H.; Magdis, G. E.; Elbaz, D.; Evans, A. S.; Mazzarella, J. M.; Surace, J. A.; van der Werf, P. P.; Xu, C. K.; Lu, N.; Meijerink, R.; Howell, J. H.; Petric, A. O.; Veilleux, S.; Sanders, D. B.

    2014-06-01

    We present Herschel/PACS observations of extended [C II] 157.7 μm line emission detected on ~1-10 kpc scales in 60 local luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey. We find that most of the extra-nuclear emission show [C II]/FIR ratios >=4 × 10-3, larger than the mean ratio seen in the nuclei, and similar to those found in the extended disks of normal star-forming galaxies and the diffuse interstellar medium of our Galaxy. The [C II] "deficits" found in the most luminous local LIRGs are therefore restricted to their nuclei. There is a trend for LIRGs with warmer nuclei to show larger differences between their nuclear and extra-nuclear [C II]/FIR ratios. We find an anti-correlation between [C II]/FIR and the luminosity surface density, ΣIR, for the extended emission in the spatially resolved galaxies. However, there is an offset between this trend and that found for the LIRG nuclei. We use this offset to derive a beam filling-factor for the star-forming regions within the LIRG disks of ~6% relative to their nuclei. We confront the observed trend to photo-dissociation region models and find that the slope of the correlation is much shallower than the model predictions. Finally, we compare the correlation found between [C II]/FIR and ΣIR with measurements of high-redshift starbursting IR-luminous galaxies.

  15. Clustering of very luminous infrared galaxies and their environment

    NASA Technical Reports Server (NTRS)

    Gao, YU

    1993-01-01

    The IRAS survey reveals a class of ultraluminous infrared (IR) galaxies (ULIRG's) with IR luminosities comparable to the bolometric luminosities of quasars. The nature, origin, and evolution of ULIRG's are attracting more and more attention recently. Since galaxy morphology is certainly a function of environment, morphological observations show that ULIRG's are interacting/merging galaxies, and some ULIRG's might be the dust-enshrouded quasars (S88) or giant ellipticals, the study of ULIRG's environment and large scale clustering effects should be worthwhile. ULIRG's and very luminous IR galaxies have been selected from the 2Jy IRAS redshift survey. Meanwhile, a catalog of IRAS groups of galaxies has been constructed using a percolation-like algorithm. Therefore, whether ULIRG's and/or VLIRG's have a group environment can be checked immediately. Other aspects of the survey are discussed.

  16. Rest-Frame Mid-Infrared Detection of an Extremely Luminous Lyman Break Galaxy with the Spitzer Infrared Spectrograph (IRS)

    NASA Technical Reports Server (NTRS)

    Teplitz, H. I.; Charmandaris, V.; Armus, L.; Appleton, P. N.; Houck, J. R.; Soifer, B. T.; Weedman, D.; Brandl, B. R.; vanCleve, J.; Grillmair, C.; Uchid, K. I.

    2004-01-01

    We present the first rest-frame of approximately 4 microns detection of a Lyman break galaxy. The data were obtained using the 16 microns imaging capability of the Spitzer Infrared Spectrograph. The target object, J134026.44+634433.2, is an extremely luminous Lyman break galaxy at z=2.79, first identified in Sloan Digital Sky Survey (SDSS) spectra (as reported by Bentz et al.). The source is strongly detected with a flux of 0.94 +/- 0.02 mJy. Combining Spitzer and SDSS photometry with supporting ground-based J- and K-band data, we show that the spectral energy distribution is consistent with an actively star-forming galaxy. We also detect other objects in the Spitzer field of view, including a very red mid-infrared source. We find no evidence of a strong lens among the mid-infrared sources.

  17. XMM-Newton observations of three interacting luminous infrared galaxies

    SciTech Connect

    Mudd, Dale; Mathur, Smita; Guainazzi, Matteo; Piconcelli, Enrico; Nicastro, Fabrizio; Bianchi, Stefano; Komossa, S.; Vignali, Cristian; Lanzuisi, Giorgio; Fiore, Fabrizio; Maiolino, Roberto

    2014-05-20

    We investigate the X-ray properties of three interacting luminous infrared galaxy systems. In one of these systems, IRAS 18329+5950, we resolve two separate sources. A second and third source, IRAS 19354+4559 and IRAS 20550+1656, have only a single X-ray source detected. We compare the observed emission to point-spread function (PSF) profiles and determine that they are all consistent with the PSF, albeit with large uncertainties for some of our sources. We then model the spectra to determine soft (0.5-2 keV) and hard (2-10 keV) luminosities for the resolved sources and compare these to relationships found in the literature between infrared and X-ray luminosities for starburst galaxies. We obtain luminosities (0.5-10 keV) ranging from 1.7 to 7.3 × 10{sup 41} erg s{sup –1} for our systems. These X-ray luminosities are consistent with predictions for star-formation-dominated sources and thus are most likely due to starbursts, but we cannot conclusively rule out active galactic nuclei.

  18. Super Star Clusters in Luminous Infrared Galaxies: the SUNBIRD Survey

    NASA Astrophysics Data System (ADS)

    Väisänen, P.; Randriamanakoto, Z.; Escala, A.; Kankare, E.; Kniazev, A.; Kotilainen, J. K.; Mattila, S.; Ramphul, R.; Ryder, S.; Tekola, A.

    2014-09-01

    We summarize recent results from an Adaptive Optics (AO) imaging survey of 40 Luminous IR Galaxies (LIRGs). We have constructed the first statistically significant sample of Luminosity Functions (LFs) of Super Star Clusters (SSCs) in the near-IR, and find evidence that the LF slopes in LIRGs are shallower than in more quiescent spiral galaxies. Distance and blending effects were investigated in detail paving the way for SSC studies further out than done previously. We have also correlated the luminosities of the brightest clusters with the star formation rates of the hosts and find that the characteristics of the relation suggest an underlying physical driver rather than solely a size-of-sample effect. Finally we present early results of using SSC age and mass properties to trace the histories of the target LIRG systems.

  19. Identification of Luminous Infrared Galaxies at 1 <~ z <~ 2.51,2,3,4,

    NASA Astrophysics Data System (ADS)

    Le Floc'h, E.; Pérez-González, P. G.; Rieke, G. H.; Papovich, C.; Huang, J.-S.; Barmby, P.; Dole, H.; Egami, E.; Alonso-Herrero, A.; Wilson, G.; Miyazaki, S.; Rigby, J. R.; Bei, L.; Blaylock, M.; Engelbracht, C. W.; Fazio, G. G.; Frayer, D. T.; Gordon, K. D.; Hines, D. C.; Misselt, K. A.; Morrison, J. E.; Muzerolle, J.; Rieke, M. J.; Rigopoulou, D.; Su, K. Y. L.; Willner, S. P.; Young, E. T.

    2004-09-01

    We present preliminary results on 24 μm detections of luminous infrared galaxies at z>~1 with the Multiband Imaging Photometer for Spitzer (MIPS). Observations were performed in the Lockman Hole and the Extended Groth Strip (EGS) and were supplemented by data obtained with the Infrared Array Camera (IRAC) between 3 and 9 μm. The positional accuracy of <~2" for most MIPS/IRAC detections provides unambiguous identifications of their optical counterparts. Using spectroscopic redshifts from the Deep Extragalactic Evolutionary Probe survey, we identify 24 μm sources at z>~1 in the EGS, while the combination of the MIPS/IRAC observations with BVRIJHK ancillary data in the Lockman Hole also shows very clear cases of galaxies with photometric redshifts at 1<~z<~2.5. The observed 24 μm fluxes indicate infrared luminosities greater than 1011 Lsolar, while the data at shorter wavelengths reveal rather red and probably massive (M>~M*) galaxy counterparts. It is the first time that this population of luminous objects is detected up to z~2.5 in the infrared. Our work demonstrates the ability of the MIPS instrument to probe the dusty universe at very high redshift and illustrates how the forthcoming Spitzer deep surveys will offer a unique opportunity to illuminate a dark side of cosmic history not explored by previous infrared experiments. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, operated jointly by Max-Planck-Institut für Astronomie and Instituto de Astrofísica de Andalucia (CSIC). Based on observations made with the Isaac Newton Telescope, operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  20. Keck Long Wavelength Spectrometer Images of Luminous IR Galaxies

    NASA Astrophysics Data System (ADS)

    Jones, Barbara; Puetter, Richard C.; Smith, Harding E.; Stein, Wayne A.; Wang, Michael C.; Campbell, Randy

    1998-05-01

    We have used the UCSD/Keck Long Wavelength Spectrometer (LWS; Jones & Puetter 1993, Proc. S.P.I.E., 1946, 610) in its initial (72 x 64) imaging mode to observe the luminous IR Galaxies Mrk 231, Arp 220, and NGC 7469, as well as NGC 1068 at mid-infrared wavelengths from 8--18\\micron. Pixon-based image reconstruction techniques (Puetter 1995, Int. J. Image Sys. & Tech., 6, 314) have been employed to achieve resolution as high as 50 mas. The mid-infrared emission in Arp 220 is resolved into the two nuclei plus a faint knot of emission 0.5 arcsec SE of the western nucleus. The SEDs show that the the W nucleus dominates at the longest wavelengths and probably in the far-infrared. Silicate absorption at 10\\micron\\ is present in all three components, but is strongest in the E nucleus, suggesting that the emission comes from an optically thick shell around a very compact mid-IR source. The E nucleus is unresolved at 0.2 arcsec resolution. The nucleus of NGC 7469 is marginally resolved at 50mas resolution. On the average the nuclear emission is redder than the surrounding starburst ring; the active nucleus dominates at all mid-infrared wavelengths and the ratio of Nucleus/Starburst increases toward the FIR. Mrk 231 shows a compact, unresolved nucleus with a faint, resolved star-formation ring. These observations will be discussed in terms of the Sanders et al. (1988, ApJ, 325 74) model in which LIGs evolve from Starbursts to AGN. The LWS is being upgraded with a Boeing 128 x 128 BIB array which is expected to be delivered in early summer. A 128 x 128 element multiplexer has been installed and optical performance reverified; further temperature stability tests and signal-to-noise optimization are being performed with an engineering array. The upgraded spectrometer with 11" FOV for imaging and spectroscopic resolutions, R=100 and 1000, is expected to be recommissioned this summer and to be available for scheduling in second semester 1998.

  1. Morphology and Molecular Gas Fractions of Local Luminous Infrared Galaxies as a Function of Infrared Luminosity and Merger Stage

    NASA Astrophysics Data System (ADS)

    Larson, K. L.; Sanders, D. B.; Barnes, J. E.; Ishida, C. M.; Evans, A. S.; U, V.; Mazzarella, J. M.; Kim, D.-C.; Privon, G. C.; Mirabel, I. F.; Flewelling, H. A.

    2016-07-01

    We present a new, detailed analysis of the morphologies and molecular gas fractions (MGFs) for a complete sample of 65 local luminous infrared galaxies from Great Observatories All-Sky Luminous Infrared Galaxies (LIRG) Survey using high resolution I-band images from The Hubble Space Telescope, the University of Hawaii 2.2 m Telescope and the Pan-STARRS1 Survey. Our classification scheme includes single undisturbed galaxies, minor mergers, and major mergers, with the latter divided into five distinct stages from pre-first pericenter passage to final nuclear coalescence. We find that major mergers of molecular gas-rich spirals clearly play a major role for all sources with {L}{IR}\\gt {10}11.5{L}ȯ ; however, below this luminosity threshold, minor mergers and secular processes dominate. Additionally, galaxies do not reach {L}{IR}\\gt {10}12.0{L}ȯ until late in the merger process when both disks are near final coalescence. The mean MGF ({MGF} = {M}{{{H}}2}/({M}* +{M}{{{H}}2})) for non-interacting and early-stage major merger LIRGs is 18 ± 2%, which increases to 33 ± 3%, for intermediate stage major merger LIRGs, consistent with the hypothesis that, during the early-mid stages of major mergers, most of the initial large reservoir of atomic gas (HI) at large galactocentric radii is swept inward where it is converted into molecular gas (H2).

  2. Infrared spectroscopy of radio-luminous OH/IR stars

    NASA Technical Reports Server (NTRS)

    Jones, Terry Jay; Hyland, A. R.; Fix, John D.; Cobb, Michael L.

    1988-01-01

    Low-resolution 1.5-2.5-micron spectra for 21 radio-luminous OH/IR stars are presented. These spectra divide into two broad classes. Those with very strong water-vapor absorption closely resemble the spectra of classical Mira variables and are classified Type VM. Those with weaker water-vapor absorption, but still showing strong CO absorption, resemble the spectra of true core-burning supergiants and are classified Type SG. Comparison of the classification of 30 radio-luminous OH/IR stars with their Delta(V)s and luminosities suggests this classification is a good indicator of the intrinsic nature of the underlying star. There is some evidence, however, that some true supergiants (massive main-sequence progenitors) develop the pulsation properties and photospheric characteristics of the Mira-like OH/IR stars when they become optically obscured OH/IR stars.

  3. Variable waveband infrared imager

    SciTech Connect

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  4. HALESIS projet: Hight Altitude Luminous Events Studied by Infrared Spectro-imagery

    NASA Astrophysics Data System (ADS)

    Croizé, Laurence; Payan, Sébastien; Bureau, Jérome; Duruisseau, Fabrice; Huret, Nathalie

    2014-05-01

    During the last two decades, the discovery of transient luminous events (TLEs) in the high atmosphere [1], as well as the observation of gamma ray flashes of terrestrial origin (Terrestrial Gamma Flashes or TGF) [2] demonstrated the existence of another interaction processes between the different atmospheric layers (troposphere, stratosphere, mesosphere and ionosphere). Indeed, the frequency of occurrence of these phenomena over thunderstorm cells, and the energies involved provide evidence for an impulsive energy transfer between the troposphere and the highest atmospheric layers, which was not considered before. HALESIS (High Altitude Luminous Events Studied by Infrared Spectro-imagery) is an innovative project based on hyperspectral imagery. The purpose of this experience is to measure the atmospheric perturbation in the minutes following the occurrence of Transient Luminous Events (TLEs) from a stratospheric balloon in the altitude range of 20 to 40 km. The first part of the study has been dedicated to establish the project feasibility. To do that, we have simulated spectral perturbation induced by an isolated blue jet. Theoretical predictions [3] have been used to simulate the radiative perturbation due to O3, NO, NO2, NO+ concentration induced by the blue jet. Simulations have been performed using the line by line radiative transfer model LBLRM [4] taking into account of the Non Local Thermodynamic Equilibrium hypotheses. Then, the expected signatures have been compared to the available instrumentation. During this talk, HALESIS project and the results of the feasibility study will be presented. Then, the estimated spectral signatures will be confronted with the technical capabilities of different kind of hyperspectral imagers. We will conclude on the project feasibility, but also on the challenges that lie ahead for an imager perfectly suited for experiences like HALESIS. 1. Franz R, Nemzek R, Winckler J. Television image of a large upward electrical

  5. A luminous 3 kiloparsec infrared disk in NGC 1068

    NASA Technical Reports Server (NTRS)

    Telesco, C. M.; Becklin, E. E.; Wynn-Williams, C. G.; Harper, D. A.

    1984-01-01

    A 10 micron map of the Seyfert galaxy NGC 1068 and airborne measurements of its angular extent in the far-infrared are presented. It is shown that the infrared emission originates primarily from two physically distinct regions; approximately half of the total infrared luminosity of 3 x 10 to the 11th solar luminosities is associated with the Seyfert nucleus and half with a 3 kpc (35 arc sec) diameter disk surrounding it. It is argued that the disk component of infrared emission originates from an extended but heavily obscured burst of star formation which resembles those seen in some non-Seyfert galaxies. This high-luminosity disk is distinguished more by its large size than by its high surface brightness. On the basis of current evidence it cannot be concluded that the high disk luminosity in NGC 1068 is causally related to its Seyfert activity.

  6. Local Luminous Infrared Galaxies. II. Active Galactic Nucleus Activity from Spitzer/Infrared Spectrograph Spectra

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Rieke, George H.; Rigopoulou, Dimitra

    2012-01-01

    We quantify the active galactic nucleus (AGN) contribution to the mid-infrared (mid-IR) and the total infrared (IR, 8-1000 μm) emission in a complete volume-limited sample of 53 local luminous infrared galaxies (LIRGs, L IR = 1011-1012 L ⊙). We decompose the Spitzer Infrared Spectrograph low-resolution 5-38 μm spectra of the LIRGs into AGN and starburst components using clumpy torus models and star-forming galaxy templates, respectively. We find that 50% (25/50) of local LIRGs have an AGN component detected with this method. There is good agreement between these AGN detections through mid-IR spectral decomposition and other AGN indicators, such as the optical spectral class, mid-IR spectral features, and X-ray properties. Taking all the AGN indicators together, the AGN detection rate in the individual nuclei of LIRGs is ~62%. The derived AGN bolometric luminosities are in the range L bol(AGN) = (0.4-50) × 1043 erg s-1. The AGN bolometric contribution to the IR luminosities of the galaxies is generally small, with 70% of LIRGs having L bol[AGN]/L IR <= 0.05. Only ~= 8% of local LIRGs have a significant AGN bolometric contribution L bol[AGN]/L IR > 0.25. From the comparison of our results with literature results of ultraluminous infrared galaxies (L IR = 1012-1013 L ⊙), we confirm that in the local universe the AGN bolometric contribution to the IR luminosity increases with the IR luminosity of the galaxy/system. If we add up the AGN bolometric luminosities we find that AGNs only account for 5%^{+8%}_{-3%} of the total IR luminosity produced by local LIRGs (with and without AGN detections). This proves that the bulk of the IR luminosity of local LIRGs is due to star formation activity. Taking the newly determined IR luminosity density of LIRGs in the local universe, we then estimate an AGN IR luminosity density of ΩAGN IR = 3 × 105 L ⊙ Mpc-3 in LIRGs. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet

  7. Luminous Infrared Galaxies as Plausible y-ray Sources for GLAST and IACTs

    SciTech Connect

    Torres, D F; Reimer, O; Domingo-Santamaria, E; Digel, S W

    2004-07-08

    We argue that luminous infrared galaxies (LIGs) may constitute a newly detectable population of {gamma}-ray sources for the next generation of ground and space-based high energy telescopes. Additionally, we report for the first time upper limits on their fluxes using data obtained with the EGRET telescope.

  8. A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    SciTech Connect

    Magdis, Georgios E.; Rigopoulou, D.; Hopwood, R.; Clements, D.; Huang, J.-S.; Farrah, D.; Pearson, C.; Alonso-Herrero, Almudena; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Perez Fournon, I.; Riechers, D.; Swinyard, B. M.; Thatte, N.; Scott, D.; Valtchanov, I.; Vaccari, M.

    2014-11-20

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ≤ z ≤ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L {sub IR} > 10{sup 11.5} L {sub ☉}). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L {sub C} {sub II}/L {sub FIR} ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L {sub C} {sub II}–L {sub FIR} relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L {sub C} {sub II}/L {sub FIR} ratio and the far-IR color L {sub 60}/L {sub 100} observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L {sub C} {sub II}/L {sub FIR} at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L {sub C} {sub II}/L {sub FIR} ratios, the moderate star formation efficiencies (L {sub IR}/L{sub CO}{sup ′} or L {sub IR}/M{sub H{sub 2}}), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the

  9. Adaptive enhancement method of infrared image based on scene feature

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Bai, Tingzhu; Shang, Fei

    2008-12-01

    All objects emit radiation in amounts related to their temperature and their ability to emit radiation. The infrared image shows the invisible infrared radiation emitted directly. Because of the advantages, the technology of infrared imaging is applied to many kinds of fields. But compared with visible image, the disadvantages of infrared image are obvious. The characteristics of low luminance, low contrast and the inconspicuous difference target and background are the main disadvantages of infrared image. The aim of infrared image enhancement is to improve the interpretability or perception of information in infrared image for human viewers, or to provide 'better' input for other automated image processing techniques. Most of the adaptive algorithm for image enhancement is mainly based on the gray-scale distribution of infrared image, and is not associated with the actual image scene of the features. So the pertinence of infrared image enhancement is not strong, and the infrared image is not conducive to the application of infrared surveillance. In this paper we have developed a scene feature-based algorithm to enhance the contrast of infrared image adaptively. At first, after analyzing the scene feature of different infrared image, we have chosen the feasible parameters to describe the infrared image. In the second place, we have constructed the new histogram distributing base on the chosen parameters by using Gaussian function. In the last place, the infrared image is enhanced by constructing a new form of histogram. Experimental results show that the algorithm has better performance than other methods mentioned in this paper for infrared scene images.

  10. Hybrid Infrared Imager

    NASA Technical Reports Server (NTRS)

    Bailey, Gary C.

    1989-01-01

    Experimental device has low noise and high uniformity. Infrared imaging device combines array of InSb photodetectors with array of silicon field-effect-transistor switches. InSb chip forms roof over Si chip, each InSb detector cell engaging indium bump on corresponding Si switch cell below it. FET switches in 128-by-128 array turn on in sequence, read out charges on 128-by-128 array of photodetectors and multiplex them in serial output that represents pattern of light on array of photodetectors. Useful in sensitive infrared cameras for astronomy, medicine, inspection, and military surveillance. Reads out image data at rates up to 10 MHz and expands to 256-by-256 array.

  11. FAINT CO LINE WINGS IN FOUR STAR-FORMING (ULTRA)LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Leroy, Adam K.; Walter, Fabian; Decarli, Roberto; Zschaechner, Laura; Bolatto, Alberto; Weiss, Axel

    2015-09-20

    We report the results of a search for large velocity width, low-intensity line wings—a commonly used signature of molecular outflows—in four low redshift (ultra)luminous infrared galaxies that appear to be dominated by star formation. The targets were drawn from a sample of fourteen targets presented in Chung et al., who showed the stacked CO spectrum of the sample to exhibit 1000 km s{sup −1}-wide line wings. We obtained sensitive, wide bandwidth imaging of our targets using the IRAM Plateau de Bure Interferometer. We detect each target at very high significance but do not find the claimed line wings in these four targets. Instead, we constrain the flux in the line wings to be only a few percent. Casting our results as mass outflow rates following Cicone et al. we show them to be consistent with a picture in which very high mass loading factors preferentially occur in systems with high active galactic nucleus contributions to their bolometric luminosity. We identify one of our targets, IRAS 05083 (VII Zw 31), as a candidate molecular outflow.

  12. Local Luminous Infrared Galaxies. I. Spatially Resolved Observations with the Spitzer Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, Miguel; Alonso-Herrero, Almudena; Rieke, George H.; Colina, Luis; Díaz-Santos, Tanio; Smith, J.-D. T.; Pérez-González, Pablo G.; Engelbracht, Charles W.

    2010-06-01

    We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K

  13. Infrared imaging of comets

    NASA Technical Reports Server (NTRS)

    Telesco, Charles M.

    1988-01-01

    Thermal infrared imaging of comets provides fundamental information about the distribution of dust in their comae and tails. The imaging program at NASA Marshall Space Flight Center (MSFC) uses a unique 20-pixel bolometer array that was developed to image comets at 8 to 30 micrometer. These images provide the basis for: (1) characterizing the composition and size distribution of particles, (2) determining the mass-loss rates from cometary nuclei, and (3) describing the dynamics of the interaction between the dust and the solar radiation. Since the array became operational in 1985, researchers have produced a unique series of IR images of comets Giacobini-Zinner (GZ), Halley, and Wilson. That of GZ was the first groundbased thermal image ever made of a comet and was used to construct, with visible observations, an albedo map. Those data and dynamical analyses showed that GZ contained a population of large (approximately 300 micrometer), fluffy dust grains that formed a distinict inner tail. The accumulating body of images of various comets has also provided a basis for fruitfully intercomparing comet properties. Researchers also took advantage of the unique capabilities of the camera to resolve the inner, possible protoplanetary, disk of the star Beta Pictoris, while not a comet research program, that study is a fruitful additional application of the array to solar system astronomy.

  14. Buried Quasars in Ultra-luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    We were awarded l00kS of INTEGRAL spacecraft time (Priority A) to observe the ultraluminous infrared galaxy (ULIG) Mrk 2273 in order to measure the integrated flux of the 20-1003 KeV gamma-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN). With this observation we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the hard X-ray and soft gamma-ray backgrounds. Our Priority A 100 kS observation of Mrk 273 was successfully carried out during revolution #73 using 4 separate exposures with the IBIS camera during May, 2003. Our IBIS observations of Mrk 273 were successfully executed, and the source was properly centered in the Field-of-view of the detectors. We are still in the process of interpreting the IBIS gamma-ray data.

  15. Ultrabroadband infrared nanospectroscopic imaging

    PubMed Central

    Bechtel, Hans A.; Muller, Eric A.; Olmon, Robert L.; Martin, Michael C.; Raschke, Markus B.

    2014-01-01

    Characterizing and ultimately controlling the heterogeneity underlying biomolecular functions, quantum behavior of complex matter, photonic materials, or catalysis requires large-scale spectroscopic imaging with simultaneous specificity to structure, phase, and chemical composition at nanometer spatial resolution. However, as with any ultrahigh spatial resolution microscopy technique, the associated demand for an increase in both spatial and spectral bandwidth often leads to a decrease in desired sensitivity. We overcome this limitation in infrared vibrational scattering-scanning probe near-field optical microscopy using synchrotron midinfrared radiation. Tip-enhanced localized light–matter interaction is induced by low-noise, broadband, and spatially coherent synchrotron light of high spectral irradiance, and the near-field signal is sensitively detected using heterodyne interferometric amplification. We achieve sub-40-nm spatially resolved, molecular, and phonon vibrational spectroscopic imaging, with rapid spectral acquisition, spanning the full midinfrared (700–5,000 cm−1) with few cm−1 spectral resolution. We demonstrate the performance of synchrotron infrared nanospectroscopy on semiconductor, biomineral, and protein nanostructures, providing vibrational chemical imaging with subzeptomole sensitivity. PMID:24803431

  16. FAR-INFRARED LUMINOUS SUPERNOVA REMNANT Kes 17

    SciTech Connect

    Lee, Ho-Gyu; Moon, Dae-Sik; Koo, Bon-Chul; Onaka, Takashi; Sakon, Itsuki; Jeong, Woong-Seob; Shinn, Jong-Ho E-mail: moon@astro.utoronto.ca E-mail: onaka@astron.s.u-tokyo.ac.jp E-mail: jeongws@kasi.re.kr

    2011-10-10

    We present the results of infrared (IR; 2.5-160 {mu}m) observations of the supernova remnant (SNR) Kes 17 based on the data obtained with the AKARI and Spitzer satellites. We first detect bright continuum emission of its western shell in the mid- and far-IR wavebands together with its near-IR molecular line emission. We also detect hidden mid-IR emission of its southern shell after subtraction of the background emission in this region. The far-IR luminosity of the western shell is {approx}8100 L{sub sun}, which makes Kes 17 one of the few SNRs of significant far-IR emission. The fittings of the spectral energy distribution indicate the existence of two dust components: {approx}79 K (hot) and {approx}27 K (cold) corresponding to the dust masses of {approx}6.2 x 10{sup -4} M{sub sun} and {approx}6.7 M{sub sun}, respectively. We suggest that the hot component represents the dust emission of the material swept up by the SNR to its western and southern boundaries, compatible with the distribution of radio continuum emission overlapping the mid-IR emission in the western and southern shells. The existence of hot ({approx}2000 K), shocked dense molecular gas revealed by the near-IR molecular line emission in the western shell, on the other hand, suggests that the cold dust component represents the dust emission related to the interaction between the SNR and nearby molecular gas. The excitation conditions of the molecular gas appear to be consistent with those from shocked, clumpy admixture gas of different temperatures. We discuss three possibilities for the origin of the bright far-IR emission of the cold dust in the western shell: the emission of dust in the inter-clump medium of shocked molecular clouds, the emission of dust in evaporating flows of molecular clouds engulfed by hot gas, and the emission of dust of nearby molecular clouds illuminated by radiative shocks.

  17. Are extremely luminous far-infrared galaxies the result of merging quasar cores

    NASA Astrophysics Data System (ADS)

    Norris, R. P.

    1990-11-01

    Extremely Luminous far-infrared galaxies (ELFs) are a class of galaxy discovered independently by several groups. The class is characterized by a quasar-like total luminosity (1011 to 1013 solar luminosity) which is radiated almost entirely in the far-infrared. It has been suggested that obscured quasar cores may be responsible for generating this luminosity. Here the author demonstrates that ELFs appear in several guises which can be characterized by the number of quasar cores they contain (zero, one or two). The author develops a unified model to account for these differences.

  18. Discovery of Two Supernovae in the Nuclear Regions of the Luminous Infrared Galaxy IC 883

    NASA Astrophysics Data System (ADS)

    Kankare, E.; Mattila, S.; Ryder, S.; Väisänen, P.; Alberdi, A.; Alonso-Herrero, A.; Colina, L.; Efstathiou, A.; Kotilainen, J.; Melinder, J.; Pérez-Torres, M.-A.; Romero-Cañizales, C.; Takalo, A.

    2012-01-01

    We report the discovery of two consecutive supernovae (SNe), 2010cu and 2011hi, located at 0farcs37 (180 pc) and 0farcs79 (380 pc) projected distance, respectively, from the center of the K-band nucleus of the luminous infrared galaxy (LIRG) IC 883. The SNe were discovered in an ongoing near-infrared K-band search for core-collapse SNe in such galaxies using the ALTAIR/NIRI adaptive optics system with laser guide star at the Gemini-North Telescope. These are thus the closest SNe yet discovered to an LIRG nucleus in optical or near-infrared wavelengths. The near-infrared light curves and colors of both SNe are consistent with core-collapse events. Both SNe seem to suffer from relatively low host galaxy extinction suggesting that regardless of their low projected galactocentric distances, they are not deeply buried in the nuclear regions of the host galaxy.

  19. Gas Chemistry in the Inner Disk of the Nearby Luminous Infrared Galaxy IRAS 04296+2923

    NASA Astrophysics Data System (ADS)

    Meier, David S.; Turner, J.

    2013-01-01

    Luminous infrared galaxies (LIRGs) represent the most active members of the starburst population in the nearby universe. In the closest LIRGs, for example IRAS 04296+2923 (D = 29 Mpc) located behind the Taurus Molecular Cloud, it is possible to image the intimate connection between dense gas and star formation directly. We present high resolution 3'') imaging of selected dense gas tracers, including 13CO, C18O, HCN, HCO+, HNC, CN, HNCO, and CH3OH, towards the nuclear starburst and inner disk of IRAS 04296+2923 compiled with the OVRO and CARMA millimeter interferometers. HCN, HCO+ and HNC are used to constrain the properties of the dense gas component. On nuclear scales we observe the same correlation between dense gas column and the star formation rate seen in earlier global surveys of LIRGs. HCN/CO, HCN/HCO+ and HCN/HNC line ratios suggest that both the dense gas fraction and density are high toward the starburst and fall non-monotonically with radius. CO isotopic line ratios in the inner disk are anomalous, having extremely low 13CO/C18O values. To explain these ratios very high gas opacities, anomalously low 13CO abundances or pronounced non-LTE effects must be invoked. The HCN/CN ratio is used to characterize the extent of photon-dominated regions (PDRs) across the inner disk. This ratio is large compared to starbursts like M 82 and NGC 253 suggesting the burst is still in a young, embedded phase. HNCO and CH3OH are use to trace large scale shocks in this barred galaxy. The chemical morphology of the large-scale bar is compared with nuclear bars in Maffei 2, NGC 6946 and IC 342. This work is supported by the National Science Foundation grant AST-1009620.

  20. Far-Infrared Imaging of NGC 55

    NASA Astrophysics Data System (ADS)

    Engelbracht, C. W.; Gordon, K. D.; Bendo, G. J.; Pérez-González, P. G.; Misselt, K. A.; Rieke, G. H.; Young, E. T.; Hines, D. C.; Kelly, D. M.; Stansberry, J. A.; Papovich, C.; Morrison, J. E.; Egami, E.; Su, K. Y. L.; Muzerolle, J.; Dole, H.; Alonso-Herrero, A.; Hinz, J. L.; Smith, P. S.; Latter, W. B.; Noriega-Crespo, A.; Padgett, D. L.; Rho, J.; Frayer, D. T.; Wachter, S.

    2004-09-01

    We present images of the galaxy NGC 55 at 24, 70, and 160 μm obtained with the Multiband Imaging Photometer for Spitzer (MIPS) instrument on board the Spitzer Space Telescope. The new images display the far infrared emission in unprecedented detail and demonstrate that the infrared morphology differs dramatically from that at shorter wavelengths. The most luminous emission region in the galaxy is marginally resolved at 24 μm and has a projected separation of nearly 520 pc from the peak emission in the optical and near-infrared. This region is responsible for ~9% of the total emission at 24 μm and is likely a young star formation region. We show that this and other compact sources account for more than one-third of the total 24 μm emission. We compute a total infrared luminosity for NGC 55 of 1.2×109Lsolar. The star formation rate implied by our measurements is 0.22Msolaryr-1. We demonstrate that the cold dust is more extended than the warm dust in NGC 55-the minor-axis scale heights are 0.32, 0.43, and 0.49 kpc at 24, 70, and 160 μm, respectively. The dust temperature map shows a range of temperatures that are well correlated with the 24 μm surface brightness, from 20 K in low surface brightness regions to 26 K in high surface brightness regions.

  1. The FUR to near-IR morphologies of luminous infrared galaxies in the goals sample

    SciTech Connect

    Petty, S. M.; Armus, L.; Díaz-Santos, T.; Howell, J. H.; Surace, J. A.; Charmandaris, V.; Psychogyios, A.; Evans, A. S.; Stierwalt, S.; Floc’h, E. Le; Bridge, C.; Inami, H.

    2014-12-01

    We compare the morphologies of a sample of 20 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS) in the FUV, B, I, and H bands, using the Gini (G) and M{sub 20} parameters to quantitatively estimate the distribution and concentration of flux as a function of wavelength. Hubble Space Telescope (HST) images provide an average spatial resolution of ∼80 pc. While our LIRGs can be reliably classified as mergers across the entire range of wavelengths studied here, there is a clear shift toward more negative M{sub 20} (more bulge-dominated) and a less significant decrease in G values at longer wavelengths. We find no correlation between the derived FUV G-M{sub 20} parameters and the global measures of the IR to FUV flux ratio (IRX). Given the fine resolution in our HST data, this suggests either that the UV morphology and IRX are correlated on very small scales, or that the regions emitting the bulk of the IR emission emit almost no FUV light. We use our multi-wavelength data to simulate how merging LIRGs would appear from z∼0.5–3 in deep optical and near-infrared images such as the Hubble Ultra-Deep Field, and use these simulations to measure the G-M{sub 20} at these redshifts. Our simulations indicate a noticeable decrease in G, which flattens at z⩾2 by as much as 40%, resulting in mis-classifying our LIRGs as disk-like, even in the rest-frame FUV. The higher redshift values of M{sub 20} for the GOALS sources do not appear to change more than about 10% from the values at z∼0. The change in G-M{sub 20} is caused by the surface brightness dimming of extended tidal features and asymmetries, and also the decreased spatial resolution which reduced the number of individual clumps identified. This effect, seen as early as z∼0.5, could easily lead to an underestimate of the number of merging galaxies at high-redshift in the rest-frame FUV.

  2. MID-INFRARED PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES. I. SPITZER INFRARED SPECTROGRAPH SPECTRA FOR THE GOALS SAMPLE

    SciTech Connect

    Stierwalt, S.; Armus, L.; Surace, J. A.; Inami, H.; Petric, A. O.; Diaz-Santos, T.; Haan, S.; Howell, J.; Marshall, J.; Charmandaris, V.; Kim, D. C.; Mazzarella, J. M.; Chan, B.; Spoon, H. W. W.; Veilleux, S.; Evans, A.; Sanders, D. B.; Appleton, P.; Bothun, G.; Bridge, C. R.; and others

    2013-05-01

    The Great Observatories All-Sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present low resolution Spitzer Infrared Spectrograph spectra covering 5-38 {mu}m and provide a basic analysis of the mid-IR spectral properties observed for nearby LIRGs. In a companion paper, we discuss detailed fits to the spectra and compare the LIRGs to other classes of galaxies. The GOALS sample of 244 nuclei in 180 luminous (10{sup 11} {<=} L {sub IR}/L {sub Sun} < 10{sup 12}) and 22 ultraluminous (L {sub IR}/L {sub Sun} {>=} 10{sup 12}) IR galaxies represents a complete subset of the IRAS Revised Bright Galaxy Sample and covers a range of merger stages, morphologies, and spectral types. The majority (>60%) of the GOALS LIRGs have high 6.2 {mu}m polycyclic aromatic hydrocarbon (PAH) equivalent widths (EQW{sub 6.2{mu}m} > 0.4 {mu}m) and low levels of silicate absorption (s {sub 9.7{mu}m} > -1.0). There is a general trend among the U/LIRGs for both silicate depth and mid-infrared (MIR) slope to increase with increasing L {sub IR}. U/LIRGs in the late to final stages of a merger also have, on average, steeper MIR slopes and higher levels of dust obscuration. Together, these trends suggest that as gas and dust is funneled toward the center of a coalescing merger, the nuclei become more compact and more obscured. As a result, the dust temperature increases also leading to a steeper MIR slope. The sources that depart from these correlations have very low PAH equivalent width (EQW{sub 6.2{mu}m} < 0.1 {mu}m) consistent with their emission being dominated by an active galactic nucleus (AGN) in the MIR. These extremely low PAH EQW sources separate into two distinct types: relatively unobscured sources with a very hot dust component (and thus very shallow MIR slopes) and heavily dust obscured nuclei with a steep temperature gradient. The most heavily dust obscured sources are also the most compact in their MIR

  3. Hubble Space Telescope Observations of the Luminous IRAS Source FSC 10214+4724: A Gravitationally Lensed Infrared Quasar

    NASA Technical Reports Server (NTRS)

    Eisenhardt, Peter R.; Armus, Lee; Hogg, David W.; Soifer, B. T.; Neugebauer, G.; Werner, Michael W.

    1996-01-01

    With a redshift of 2.3, the IRAS source FSC 10214+4724 is apparently one of the most luminous objects known in the universe. We present an image of FSC 10214+4724 at 0.8 pm obtained with the Hubble Space Telescope (HST) WFPC2 Planetary Camera. The source appears as an unresolved (less then 0.06) arc 0.7 long, with significant substructure along its length. The center of curvature of the arc is located near an elliptical galaxy 1.18 to the north. An unresolved component 100 times fainter than the arc is clearly detected on the opposite side of this galaxy. The most straightforward interpretation is that FSC 10214+4724 is gravitationally lensed by the foreground elliptical galaxy, with the faint component a counter-image of the IRAS source. The brightness of the arc in the HST image is then magnified by approx. 100, and the intrinsic source diameter is approx. 0.0l (80 pc) at 0.25 microns rest wavelength. The bolometric luminosity is probably amplified by a smaller factor (approx. 30) as a result of the larger extent expected for the source in the far-infrared. A detailed lensing model is presented that reproduces the observed morphology and relative flux of the arc and counterimage and correctly predicts the position angle of the lensing galaxy. The model also predicts reasonable values for the velocity dispersion, mass, and mass-to-light ratio of the lensing galaxy for a wide range of galaxy redshifts. A redshift for the lensing galaxy of -0.9 is consistent with the measured surface brightness profile from the image, as well as with the galaxy's spectral energy distribution. The background lensed source has an intrinsic luminosity approx. 2 x 10(exp 13) L(solar mass) and remains a highly luminous quasar with an extremely large ratio of infrared to optical/ultraviolet luminosity.

  4. INFRARED CLASSIFICATION AND LUMINOSITIES FOR DUSTY ACTIVE GALACTIC NUCLEI AND THE MOST LUMINOUS QUASARS

    SciTech Connect

    Weedman, Daniel; Sargsyan, Lusine; Houck, James; Barry, Donald; Lebouteiller, Vianney

    2012-12-20

    Mid-infrared spectroscopic measurements from the Infrared Spectrometer (IRS) on Spitzer are given for 125 hard X-ray active galactic nuclei (AGNs; 14-195 keV) from the Swift Burst Alert Telescope (BAT) sample and for 32 AGNs with black hole masses (BHMs) from reverberation mapping. The 9.7 {mu}m silicate feature in emission or absorption defines an infrared AGN classification describing whether AGNs are observed through dust clouds, indicating that 55% of the BAT AGNs are observed through dust. The mid-infrared dust continuum luminosity is shown to be an excellent indicator of intrinsic AGN luminosity, scaling closely with the hard X-ray luminosity, log {nu}L{sub {nu}}(7.8 {mu}m)/L(X) = -0.31 {+-} 0.35, and independent of classification determined from silicate emission or absorption. Dust luminosity scales closely with BHM, log {nu}L{sub {nu}}(7.8 {mu}m) = (37.2 {+-} 0.5) + 0.87 log BHM for luminosity in erg s{sup -1} and BHM in M{sub Sun }. The 100 most luminous type 1 quasars as measured in {nu}L{sub {nu}}(7.8 {mu}m) are found by comparing Sloan Digital Sky Survey (SDSS) optically discovered quasars with photometry at 22 {mu}m from the Wide-Field Infrared Survey Explorer (WISE), scaled to rest frame 7.8 {mu}m using an empirical template determined from IRS spectra. The most luminous SDSS/WISE quasars have the same maximum infrared luminosities for all 1.5 < z < 5, reaching total infrared luminosity L{sub IR} = 10{sup 14.4} L{sub Sun }. Comparing with dust-obscured galaxies from Spitzer and WISE surveys, we find no evidence of hyperluminous obscured quasars whose maximum infrared luminosities exceed the maximum infrared luminosities of optically discovered quasars. Bolometric luminosities L{sub bol} estimated from rest-frame optical or ultraviolet luminosities are compared to L{sub IR}. For the local AGN, the median log L{sub IR}/L{sub bol} = -0.35, consistent with a covering factor of 45% for the absorbing dust clouds. For the SDSS/WISE quasars, the median log L

  5. ULTRA-DEEP MID-INFRARED SPECTROSCOPY OF LUMINOUS INFRARED GALAXIES AT z{approx} 1 AND z {approx} 2

    SciTech Connect

    Fadda, Dario; Yan Lin; Frayer, David T.; Helou, George; Lagache, Guilaine; Marcillac, Delphine; Sajina, Anna; Lutz, Dieter; Wuyts, Stijn; Le Floc'h, Emeric; Caputi, Karina; Spoon, Henrik W. W.; Veilleux, Sylvain; Blain, Andrew E-mail: lyan@ipac.caltech.ed

    2010-08-10

    We present ultra-deep mid-infrared spectra of 48 infrared-luminous galaxies in the GOODS-south field obtained with the Infrared Spectrograph on the Spitzer Space Telescope. These galaxies are selected among faint infrared sources (0.14-0.5 mJy at 24 {mu}m) in two redshift bins (0.76-1.05 and 1.75-2.4) to sample the major contributors to the cosmic infrared background at the most active epochs. We estimate redshifts for 92% of the sample using polycyclic aromatic (PAH) and Si absorption features obtaining, in particular, eight new redshifts difficult to measure from ground-based observations. Only a few of these galaxies (5% at z {approx} 1 and 12% at z {approx} 2) have their total infrared luminosity dominated by emission from active galactic nuclei (AGNs). The averaged mid-IR spectrum of the z {approx} 1 luminous infrared galaxies (LIRGs) is a very good match to the averaged spectrum of local starbursts. The averaged spectrum of the z {approx} 2 ultra-luminous infrared galaxies (ULIRGs), because of a deeper Si absorption, is better fitted by the averaged spectrum of H II-like local ULIRGs. Combining this sample with other published data, we find that 6.2 {mu}m PAH equivalent widths (EW) reach a plateau of {approx} 1 {mu}m for L {sub 24{mu}m} {approx}< 10{sup 11} L{sub sun}. At higher luminosities, EW{sub 6.2{mu}m} anti-correlates with L{sub 24{mu}m}. Intriguingly, high-z ULIRGs and sub-millimeter galaxies (SMGs) lie above the local EW{sub 6.2{mu}m}-L{sub 24{mu}m} relationship suggesting that, at a given luminosity, high-z ULIRGs have AGN contributions to their dust emission lower than those of local counterparts. A quantitative analysis of their morphology shows that most of the luminous IR galaxies have morphologies similar to those of IR-quiet galaxies at the same redshift. All z {approx} 2 ULIRGs of our sample are IR-excess BzK galaxies and most of them have L{sub FIR}/L{sub 1600A} ratios higher than those of starburst galaxies at a given UV slope. The 'IR

  6. Ultra-deep Mid-infrared Spectroscopy of Luminous Infrared Galaxies at z ~ 1 and z ~ 2

    NASA Astrophysics Data System (ADS)

    Fadda, Dario; Yan, Lin; Lagache, Guilaine; Sajina, Anna; Lutz, Dieter; Wuyts, Stijn; Frayer, David T.; Marcillac, Delphine; Le Floc'h, Emeric; Caputi, Karina; Spoon, Henrik W. W.; Veilleux, Sylvain; Blain, Andrew; Helou, George

    2010-08-01

    We present ultra-deep mid-infrared spectra of 48 infrared-luminous galaxies in the GOODS-south field obtained with the Infrared Spectrograph on the Spitzer Space Telescope. These galaxies are selected among faint infrared sources (0.14-0.5 mJy at 24 μm) in two redshift bins (0.76-1.05 and 1.75-2.4) to sample the major contributors to the cosmic infrared background at the most active epochs. We estimate redshifts for 92% of the sample using polycyclic aromatic (PAH) and Si absorption features obtaining, in particular, eight new redshifts difficult to measure from ground-based observations. Only a few of these galaxies (5% at z ~ 1 and 12% at z ~ 2) have their total infrared luminosity dominated by emission from active galactic nuclei (AGNs). The averaged mid-IR spectrum of the z ~ 1 luminous infrared galaxies (LIRGs) is a very good match to the averaged spectrum of local starbursts. The averaged spectrum of the z ~ 2 ultra-luminous infrared galaxies (ULIRGs), because of a deeper Si absorption, is better fitted by the averaged spectrum of H II-like local ULIRGs. Combining this sample with other published data, we find that 6.2 μm PAH equivalent widths (EW) reach a plateau of ~ 1 μm for L 24 μm <~ 1011 L sun. At higher luminosities, EW6.2 μm anti-correlates with L 24 μm. Intriguingly, high-z ULIRGs and sub-millimeter galaxies (SMGs) lie above the local EW6.2 μm-L 24 μm relationship suggesting that, at a given luminosity, high-z ULIRGs have AGN contributions to their dust emission lower than those of local counterparts. A quantitative analysis of their morphology shows that most of the luminous IR galaxies have morphologies similar to those of IR-quiet galaxies at the same redshift. All z ~ 2 ULIRGs of our sample are IR-excess BzK galaxies and most of them have L FIR/L 1600 Å ratios higher than those of starburst galaxies at a given UV slope. The "IR excess" is mostly due to strong 7.7 μm PAH emission and underestimation of UV dust extinction. On the basis of

  7. Atmosphere-based image classification through luminance and hue

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Zhang, Yujin

    2005-07-01

    In this paper a novel image classification system is proposed. Atmosphere serves an important role in generating the scene"s topic or in conveying the message behind the scene"s story, which belongs to abstract attribute level in semantic levels. At first, five atmosphere semantic categories are defined according to rules of photo and film grammar, followed by global luminance and hue features. Then the hierarchical SVM classifiers are applied. In each classification stage, corresponding features are extracted and the trained linear SVM is implemented, resulting in two classes. After three stages of classification, five atmosphere categories are obtained. At last, the text annotation of the atmosphere semantics and the corresponding features by Extensible Markup Language (XML) in MPEG-7 is defined, which can be integrated into more multimedia applications (such as searching, indexing and accessing of multimedia content). The experiment is performed on Corel images and film frames. The classification results prove the effectiveness of the definition of atmosphere semantic classes and the corresponding features.

  8. MORPHOLOGY AND SIZE DIFFERENCES BETWEEN LOCAL AND HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rujopakarn, Wiphu; Rieke, George H.; Eisenstein, Daniel J.; Juneau, Stephanie

    2011-01-10

    We show that the star-forming regions in high-redshift luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and submillimeter galaxies (SMGs) have similar physical scales to those in local normal star-forming galaxies. To first order, their higher infrared (IR) luminosities result from higher luminosity surface density. We also find a good correlation between the IR luminosity and IR luminosity surface density in starburst galaxies across over five orders of magnitude of IR luminosity from local normal galaxies to z {approx} 2 SMGs. The intensely star-forming regions of local ULIRGs are significantly smaller than those in their high-redshift counterparts and hence diverge significantly from this correlation, indicating that the ULIRGs found locally are a different population from the high-redshift ULIRGs and SMGs. Based on this relationship, we suggest that luminosity surface density should serve as a more accurate indicator for the IR emitting environment, and hence the observable properties, of star-forming galaxies than their IR luminosity. We demonstrate this approach by showing that ULIRGs at z {approx} 1 and a lensed galaxy at z {approx} 2.5 exhibit aromatic features agreeing with local LIRGs that are an order of magnitude less luminous, but have similar IR luminosity surface density. A consequence of this relationship is that the aromatic emission strength in star-forming galaxies will appear to increase at z>1 for a given IR luminosity compared to their local counterparts.

  9. Infrared imaging of varicose veins

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke Jan; de Zeeuw, Raymond; Verdaasdonk, Ruud M.; Wittens, Cees H. A.

    2004-06-01

    It has been established that varicose veins are better visualized with infrared photography. As near-infrared films are nowadays hard to get and to develop in the digital world, we investigated the use of digital photography of varicose veins. Topics that are discussed are illumination setup, photography and digital image enhancement and analysis.

  10. Optical-faint, Far-infrared-bright Herschel Sources in the CANDELS Fields: Ultra-luminous Infrared Galaxies at z > 1 and the Effect of Source Blending

    NASA Astrophysics Data System (ADS)

    Yan, Haojing; Stefanon, Mauro; Ma, Zhiyuan; Willner, S. P.; Somerville, Rachel; Ashby, Matthew L. N.; Davé, Romeel; Pérez-González, Pablo G.; Cava, Antonio; Wiklind, Tommy; Kocevski, Dale; Rafelski, Marc; Kartaltepe, Jeyhan; Cooray, Asantha; Koekemoer, Anton M.; Grogin, Norman A.

    2014-07-01

    The Herschel very wide field surveys have charted hundreds of square degrees in multiple far-IR (FIR) bands. While the Sloan Digital Sky Survey (SDSS) is currently the best resource for optical counterpart identifications over such wide areas, it does not detect a large number of Herschel FIR sources and leaves their nature undetermined. As a test case, we studied seven "SDSS-invisible," very bright 250 μm sources (S 250 > 55 mJy) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields where we have a rich multi-wavelength data set. We took a new approach to decompose the FIR sources, using the near-IR or the optical images directly for position priors. This is an improvement over the previous decomposition efforts where the priors are from mid-IR data that still suffer from the problem of source blending. We found that in most cases the single Herschel sources are made of multiple components that are not necessarily at the same redshifts. Our decomposition succeeded in identifying and extracting their major contributors. We show that these are all ultra-luminous infrared galaxies at z ~ 1-2 whose high L IR is mainly due to dust-obscured star formation. Most of them would not be selected as submillimeter galaxies. They all have complicated morphologies indicative of mergers or violent instability, and their stellar populations are heterogeneous in terms of stellar masses, ages, and formation histories. Their current ultra-luminous infrared galaxy phases are of various degrees of importance in their stellar mass assembly. Our practice provides a promising starting point for developing an automatic routine to reliably study bright Herschel sources.

  11. OPTICAL-FAINT, FAR-INFRARED-BRIGHT HERSCHEL SOURCES IN THE CANDELS FIELDS: ULTRA-LUMINOUS INFRARED GALAXIES AT z > 1 AND THE EFFECT OF SOURCE BLENDING

    SciTech Connect

    Yan, Haojing; Stefanon, Mauro; Ma, Zhiyuan; Willner, S. P.; Ashby, Matthew L. N.; Somerville, Rachel; Davé, Romeel; Pérez-González, Pablo G.; Cava, Antonio; Wiklind, Tommy; Kocevski, Dale; Rafelski, Marc; Kartaltepe, Jeyhan; Cooray, Asantha; Koekemoer, Anton M.; Grogin, Norman A.

    2014-07-01

    The Herschel very wide field surveys have charted hundreds of square degrees in multiple far-IR (FIR) bands. While the Sloan Digital Sky Survey (SDSS) is currently the best resource for optical counterpart identifications over such wide areas, it does not detect a large number of Herschel FIR sources and leaves their nature undetermined. As a test case, we studied seven ''SDSS-invisible'', very bright 250 μm sources (S {sub 250} > 55 mJy) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields where we have a rich multi-wavelength data set. We took a new approach to decompose the FIR sources, using the near-IR or the optical images directly for position priors. This is an improvement over the previous decomposition efforts where the priors are from mid-IR data that still suffer from the problem of source blending. We found that in most cases the single Herschel sources are made of multiple components that are not necessarily at the same redshifts. Our decomposition succeeded in identifying and extracting their major contributors. We show that these are all ultra-luminous infrared galaxies at z ∼ 1-2 whose high L {sub IR} is mainly due to dust-obscured star formation. Most of them would not be selected as submillimeter galaxies. They all have complicated morphologies indicative of mergers or violent instability, and their stellar populations are heterogeneous in terms of stellar masses, ages, and formation histories. Their current ultra-luminous infrared galaxy phases are of various degrees of importance in their stellar mass assembly. Our practice provides a promising starting point for developing an automatic routine to reliably study bright Herschel sources.

  12. Intravascular photoacoustic imaging of exogenously labeled atherosclerotic plaque through luminal blood

    PubMed Central

    Yeager, Doug; Karpiouk, Andrei; Wang, Bo; Amirian, James; Sokolov, Konstantin; Smalling, Richard

    2012-01-01

    Abstract. Combined intravascular ultrasound and intravascular photoacoustic (IVUS/IVPA) imaging has been previously established as a viable means for assessing atherosclerotic plaque morphological and compositional characteristics using both endogenous and exogenous contrast. In this study, IVUS/IVPA imaging of atherosclerotic rabbit aortas following systemic injection of gold nanorods (AUNRs) with peak absorbance within the tissue optical window is performed. Ex vivo imaging results reveal a high photoacoustic signal from localized AUNRs in regions with atherosclerotic plaques. Corresponding histological staining further confirms the preferential extravasation of AUNRs in atherosclerotic regions with compromised luminal endothelium and acute inflammation. The ability to detect AUNRs using combined IVUS and photoacoustic imaging in the presence of luminal saline and luminal blood is evaluated using both spectroscopic and single wavelength IVPA imaging techniques. Results demonstrate that AUNR detection within the arterial wall can be achieved using both methods, even in the case of imaging through luminal blood. PMID:23224013

  13. IR Fine-Structure Line Signatures of Central Dust-Bounded Nebulae in Luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Allen, R.; Dudley, C. C.; Satyapal, S.; Luhman, M.; Wolfire, M.; Smith, H. A.

    2004-01-01

    To date, the only far-infrared spectroscopic observations of ultraluminous infrared galaxies have been obtained with the European Space Agency s Infrared Space Observatory Long Wavelength Spectrometer. The spectra of these galaxies are characterized by molecular absorption lines and weak emission lines from photodissociation regions (PDRs), but no far-infrared (greater than 40 microns) lines from ionized regions have been detected. ESA s Herschel Space Observatory, slated for launch in 2007, will likely be able to detect these lines in samples of local and moderate redshift ultra luminous galaxies and to enable measurement of the ionization parameters, the slope of the ionizing continuum, and densities present in the ionized regions of these galaxies. The higher spatial resolution of proposed observatories discussed in this workshop will enable isolation of the central regions of local galaxies and detection of these lines in high-redshift galaxies for study of the evolution of galaxies. Here we discuss evidence for the e.ects of absorption by dust within ionized regions and present the spectroscopic signatures predicted by photoionization modeling of dust-bounded regions.

  14. Visualizing Chemistry with Infrared Imaging

    ERIC Educational Resources Information Center

    Xie, Charles

    2011-01-01

    Almost all chemical processes release or absorb heat. The heat flow in a chemical system reflects the process it is undergoing. By showing the temperature distribution dynamically, infrared (IR) imaging provides a salient visualization of the process. This paper presents a set of simple experiments based on IR imaging to demonstrate its enormous…

  15. A New 350 GHz Heterodyne Array Receiver (HARP) and Observations of Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Leech, Jamie

    2002-08-01

    injection system is assessed experimentally, and is shown to be capable of delivering LO power to two prototype mixers. When the HARP receiver is commissioned on the JCMT, one potential astronomical application will be the spectroscopic observations of J=3 → 2 rotational transitions of CO in external galaxies, which occur in regions of dense molecular hydrogen gas. Observations of a sample of luminous infrared galaxies (LIGs), made with the current single element 350 GHz receiver on the JCMT, are presented. High infrared luminosity in galaxies is often triggered by galactic interactions, and the sample studied here is chosen to include LIGs with a variety of component nuclear separations. The CO(3-2) measurements allow important constraints to be placed on the excitation conditions of the molecular gas in LIGs, hence facilitating a greater understanding of the evolution of the molecular gas component, and star formation activity, as galactic merging progresses.

  16. Alma observations of nearby luminous infrared galaxies with various agn energetic contributions using dense gas tracers

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2014-07-01

    We present the results of our ALMA Cycle 0 observations, using HCN/HCO{sup +}/HNC J = 4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO{sup +} J = 4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J = 1-0 transition, while there is no clear difference in the HCN-to-HNC J = 4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO{sup +} J = 4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J = 4-3 emission relative to HCO{sup +} J = 4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.

  17. Optical Morphology Evolution of Infrared Luminous Galaxies in GOODS-N

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Koo, D. C.; Le Floc'h, E.

    2005-10-01

    We combine optical morphologies and photometry from HST, redshifts from Keck, and mid-infrared luminosities from Spitzer for an optically selected sample of ~800 galaxies in GOODS-N to track the morphology evolution of luminous infrared galaxies (LIRGs) since redshift z=1. We find a 50% decline in the number of LIRGs from z~1 to lower redshift, in agreement with previous studies. In addition, there is evidence for a morphological evolution of the populations of LIRGs. Above z=0.5, roughly half of all LIRGs are spiral, the peculiar/irregular-to-spiral ratio is ~0.7, and both classes span a similar range of LIR and MB. At low z, spirals account for one-third of LIRGs, the peculiar-to-spiral fraction rises to 1.3, and for a given MB spirals tend to have lower IR luminosity than peculiars. Only a few percent of LIRGs at any redshift are red early-type galaxies. For blue galaxies (U-B<0.2), MB is well correlated with logLIR with an rms scatter (about a bivariate linear fit) of ~0.25 dex in IR luminosity. Among blue galaxies that are brighter than MB=-21, 75% are LIRGs, regardless of redshift. These results can be explained by a scenario in which at high z, most large spirals experience an elevated star formation rate as LIRGs. Gas consumption results in a decline of LIRGs, especially in spirals, to lower redshifts.

  18. Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146

    SciTech Connect

    Tang, Qing-Wen; Wang, Xiang-Yu; Thomas Tam, Pak-Hin E-mail: phtam@phys.nthu.edu.tw

    2014-10-10

    Recent detections of high-energy gamma-ray emission from starburst galaxies M82 and NGC 253 suggest that starburst galaxies are huge reservoirs of cosmic rays and these cosmic rays convert a significant fraction of their energy into gamma-rays by colliding with the dense interstellar medium. In this paper, we report the search for high-energy gamma-ray emission from several nearby star-forming and starburst galaxies using the 68 month data obtained with the Fermi Large Area Telescope. We found a ∼5.5σ detection of gamma-ray emission above 200 MeV from a source spatially coincident with the location of the luminous infrared galaxy NGC 2146. Also taking into account the temporal and spectral properties of the gamma-ray emission, we suggest that the gamma-ray source is likely to be the counterpart of NGC 2146. The gamma-ray luminosity suggests that cosmic rays in NGC 2146 convert most of their energy into secondary pions, so NGC 2146 is a 'proton calorimeter'. It is also found that NGC 2146 obeys the quasi-linear scaling relation between gamma-ray luminosity and total infrared luminosity for star-forming galaxies, strengthening the connection between massive star formation and gamma-ray emission of star-forming galaxies. Possible TeV emission from NGC 2146 is predicted and the implications for high-energy neutrino emission from starburst galaxies are discussed.

  19. Binarization of color document images via luminance and saturation color features.

    PubMed

    Tsai, Chun-Ming; Lee, Hsi-Jian

    2002-01-01

    This paper presents a novel binarization algorithm for color document images. Conventional thresholding methods do not produce satisfactory binarization results for documents with close or mixed foreground colors and background colors. Initially, statistical image features are extracted from the luminance distribution. Then, a decision-tree based binarization method is proposed, which selects various color features to binarize color document images. First, if the document image colors are concentrated within a limited range, saturation is employed. Second, if the image foreground colors are significant, luminance is adopted. Third, if the image background colors are concentrated within a limited range, luminance is also applied. Fourth, if the total number of pixels with low luminance (less than 60) is limited, saturation is applied; else both luminance and saturation are employed. Our experiments include 519 color images, most of which are uniform invoice and name-card document images. The proposed binarization method generates better results than other available methods in shape and connected-component measurements. Also, the binarization method obtains higher recognition accuracy in a commercial OCR system than other comparable methods. PMID:18244645

  20. OT1_nlu_1: Herschel Spectroscopic Survey of Warm Molecular Gas in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Lu, N.

    2010-07-01

    We propose to survey CO spectral line energy distribution (SLED), from J=4-3 up to J=13-12, on 93 local luminous infrared galaxies (LIRGs; L_{IR} > 1.0E11 L_{sun}) with Herschel SPIRE FTS spectrometer. These galaxies, plus 32 additional LIRGs that will have similar data from existing Herschel programs (mainly the HerCULES project), form a flux-limited subset of the Great Observatories All-Sky LIRGs Survey (GOALS) sample. Our proposal is built on the legacy of GOALS and extends beyond the existing Herschel HerCULES program, which emphasizes more on ULIRGs, to a much needed sample coverage of the more numerous and diverse population of less luminous LIRGs. The data from the proposed observations will not only provide much needed local LIRG templates for future ALMA studies of high-redshift counterparts, but also lend us a powerful diagnostic tool to probe the warm and dense molecular gas that are more closely related to the starburst or AGN activity in the nuclei of LIRGs. The data from this proposal will provide important statistical clues to the interplay between the cold and warm molecular gas, IR luminosity, star formation rate and efficiency, and the diverse properties of LIRGs. Specifically, using the homogeneous CO SLED data from this proposal, together with ground-base, low-order CO line data (mainly J=1-0) and other data that have been compiled for the GOALS sample, we will address the following questions: (1) What is the dominant nuclear power source in individual sample galaxy: starburst or AGN? (2) What are the typical physical properties of warm molecular gas in the nuclei of LIRGs? (3) How do the nuclear warm gas components correlate to the cold gas component, star formation rate and efficiency, dust temperature, etc? and (4) How does molecular gas excitation change along a merger sequence?

  1. FAR-ULTRAVIOLET OBSERVATIONS OF OUTFLOWS FROM INFRARED-LUMINOUS GALAXIES

    SciTech Connect

    Leitherer, Claus; Wofford, Aida; Chandar, Rupali; Tremonti, Christy A.; Schaerer, Daniel E-mail: wofford@stsci.edu E-mail: tremonti@astro.wisc.edu

    2013-08-01

    We obtained medium-resolution ultraviolet (UV) spectra between 1150 and 1450 A of the four UV-bright, infrared-luminous starburst galaxies IRAS F08339+6517, NGC 3256, NGC 6090, and NGC 7552 using the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The selected sightlines toward the starburst nuclei probe the properties of the recently formed massive stars and the physical conditions in the starburst-driven galactic superwinds. Despite being metal-rich and dusty, all four galaxies are strong Ly{alpha} emitters with equivalent widths ranging between 2 and 13 A. The UV spectra show strong P Cygni-type high-ionization features indicative of stellar winds and blueshifted low-ionization lines formed in the interstellar and circumgalactic medium. We detect outflowing gas with bulk velocities of {approx}400 km s{sup -1} and maximum velocities of almost 900 km s{sup -1}. These are among the highest values found in the local universe and comparable to outflow velocities found in luminous Lyman-break galaxies at intermediate and high redshift. The outflow velocities are unlikely to be high enough to cause escape of material from the galactic gravitational potential. However, the winds are significant for the evolution of the galaxies by transporting heavy elements from the starburst nuclei and enriching the galaxy halos. The derived mass outflow rates of {approx}100 M{sub Sun} yr{sup -1} are comparable to or even higher than the star formation rates. The outflows can quench star formation and ultimately regulate the starburst as has been suggested for high-redshift galaxies.

  2. Landsat and Thermal Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Arvidson, Terry; Barsi, Julia; Jhabvala, Murzy; Reuter, Dennis

    2012-01-01

    The purpose of this chapter is to describe the collection of thermal images by Landsat sensors already on orbit and to introduce the new thermal sensor to be launched in 2013. The chapter describes the thematic mapper (TM) and enhanced thematic mapper plus (ETM+) sensors, the calibration of their thermal bands, and the design and prelaunch calibration of the new thermal infrared sensor (TIRS).

  3. Evolutionary paths along the BPT diagram for luminous and ultraluminous infrared galaxies

    SciTech Connect

    Fiorenza, Stephanie L.; Takeuchi, Tsutomu T.; Małek, Katarzyna E.; Liu, Charles T.

    2014-04-01

    The evolutionary connection between nuclear starbursts and active galactic nuclei (AGNs) in luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies (ULIRGs), which result from galaxy interactions and mergers and produce the bulk of their radiation as infrared (IR) emission, is not well understood. To this effort, we present and examine new spectrophotometric data for five U/LIRGs (10{sup 11} < L {sub IR} < 10{sup 13} L {sub ☉}) within the IRAS 2 Jy Redshift Survey with 0.05 ≲ z ≲ 0.07. We show that our sample consists almost entirely of composite objects—thus hosting both a nuclear starburst and an AGN—using the BPT diagrams. We then show that for our sample of U/LIRGs the properties that describe their nuclear starbursts and AGNs (e.g., star formation rate, L[O III], optical D parameter, D4000, and EW(Hδ)) are independent of one another, ensuring that no biases affect correlations between these parameters and the object locations on the BPT diagrams. Finally, we derive evolutionary paths on the BPT diagram involving [N II]/Hα that are based on how these parameters vary between two U/LIRGs positioned at the end-points of these paths. The U/LIRGs at the end-points of a given path represent the beginning and end states of a U/LIRG evolving along that path. These paths may be able to specifically explain how all local U/LIRGs evolve along the BPT diagram, and serve as a starting point for future quantitative analysis on the evolution of U/LIRGs.

  4. CO SPECTRAL LINE ENERGY DISTRIBUTIONS OF INFRARED-LUMINOUS GALAXIES AND ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Papadopoulos, Padeli P.; Van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M. E-mail: pvdwerf@strw.leidenuniv.n E-mail: xilouris@astro.noa.g

    2010-06-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L {sub IR}(8-1000 {mu}m) {approx}> 10{sup 11} L {sub sun}), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L {sub IR}>10{sup 12} L {sub sun}), and two powerful local active galactic nuclei (AGNs)-the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293-using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C{sup +} line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these

  5. Integrated infrared and visible image sensors

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    2000-01-01

    Semiconductor imaging devices integrating an array of visible detectors and another array of infrared detectors into a single module to simultaneously detect both the visible and infrared radiation of an input image. The visible detectors and the infrared detectors may be formed either on two separate substrates or on the same substrate by interleaving visible and infrared detectors.

  6. NUSTAR Unveils a Heavily Obscured Low-luminosity Active Galactic Nucleus in the Luminous Infrared Galaxy NGC 6286

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Bauer, F. E.; Treister, E.; Romero-Cañizales, C.; Arevalo, P.; Iwasawa, K.; Privon, G. C.; Sanders, D. B.; Schawinski, K.; Stern, D.; Imanishi, M.

    2016-03-01

    We report the detection of a heavily obscured active galactic nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286 identified in a 17.5 ks Nuclear Spectroscopic Telescope Array observation. The source is in an early merging stage and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra-luminous infrared galaxies in different merger stages. NGC 6286 is clearly detected above 10 keV and by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured (NH ≃(0.95-1.32) × 1024 cm-2) with a column density consistent with being Compton-thick (CT, {log}({N}{{H}}/{{cm}}-2)≥slant 24). The AGN in NGC 6286 has a low absorption-corrected luminosity (L2-10 keV ˜ 3-20 × 1041 erg s-1) and contributes ≲1% to the energetics of the system. Because of its low luminosity, previous observations carried out in the soft X-ray band (<10 keV) and in the infrared did not notice the presence of a buried AGN. NGC 6286 has multiwavelength characteristics typical of objects with the same infrared luminosity and in the same merger stage, which might imply that there is a significant population of obscured low-luminosity AGNs in LIRGs that can only be detected by sensitive hard X-ray observations.

  7. Undetectable Changes in Image Resolution of Luminance-Contrast Gradients Affect Depth Perception

    PubMed Central

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Morita, Toshiya

    2016-01-01

    A great number of studies have suggested a variety of ways to get depth information from two dimensional images such as binocular disparity, shape-from-shading, size gradient/foreshortening, aerial perspective, and so on. Are there any other new factors affecting depth perception? A recent psychophysical study has investigated the correlation between image resolution and depth sensation of Cylinder images (A rectangle contains gradual luminance-contrast changes.). It was reported that higher resolution images facilitate depth perception. However, it is still not clear whether or not the finding generalizes to other kinds of visual stimuli, because there are more appropriate visual stimuli for exploration of depth perception of luminance-contrast changes, such as Gabor patch. Here, we further examined the relationship between image resolution and depth perception by conducting a series of psychophysical experiments with not only Cylinders but also Gabor patches having smoother luminance-contrast gradients. As a result, higher resolution images produced stronger depth sensation with both images. This finding suggests that image resolution affects depth perception of simple luminance-contrast differences (Gabor patch) as well as shape-from-shading (Cylinder). In addition, this phenomenon was found even when the resolution difference was undetectable. This indicates the existence of consciously available and unavailable information in our visual system. These findings further support the view that image resolution is a cue for depth perception that was previously ignored. It partially explains the unparalleled viewing experience of novel high resolution displays. PMID:26941693

  8. Undetectable Changes in Image Resolution of Luminance-Contrast Gradients Affect Depth Perception.

    PubMed

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Morita, Toshiya

    2016-01-01

    A great number of studies have suggested a variety of ways to get depth information from two dimensional images such as binocular disparity, shape-from-shading, size gradient/foreshortening, aerial perspective, and so on. Are there any other new factors affecting depth perception? A recent psychophysical study has investigated the correlation between image resolution and depth sensation of Cylinder images (A rectangle contains gradual luminance-contrast changes.). It was reported that higher resolution images facilitate depth perception. However, it is still not clear whether or not the finding generalizes to other kinds of visual stimuli, because there are more appropriate visual stimuli for exploration of depth perception of luminance-contrast changes, such as Gabor patch. Here, we further examined the relationship between image resolution and depth perception by conducting a series of psychophysical experiments with not only Cylinders but also Gabor patches having smoother luminance-contrast gradients. As a result, higher resolution images produced stronger depth sensation with both images. This finding suggests that image resolution affects depth perception of simple luminance-contrast differences (Gabor patch) as well as shape-from-shading (Cylinder). In addition, this phenomenon was found even when the resolution difference was undetectable. This indicates the existence of consciously available and unavailable information in our visual system. These findings further support the view that image resolution is a cue for depth perception that was previously ignored. It partially explains the unparalleled viewing experience of novel high resolution displays.

  9. Disentangling star formation and AGN activity in powerful infrared luminous radio galaxies at 1 < z < 4

    NASA Astrophysics Data System (ADS)

    Drouart, G.; Rocca-Volmerange, B.; De Breuck, C.; Fioc, M.; Lehnert, M.; Seymour, N.; Stern, D.; Vernet, J.

    2016-09-01

    High-redshift radio galaxies present signs of both star formation and AGN activity, making them ideal candidates to investigate the connection and coevolution of AGN and star formation in the progenitors of present-day massive galaxies. We make use of a sample of 11 powerful radio galaxies spanning 1 infrared luminous high-redshift radio galaxies and no correlation with the AGN bolometric luminosity. Moreover, we find that AGN scattered light have a very limited impact on broad-band SED fitting on our sample. Finally, our analysis also suggests a wide range in origins for the observed star formation,which we partially constrain for some sources.

  10. Optical and infrared signatures of ultra-luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Copperwheat, Christopher; Cropper, Mark; Soria, Roberto; Wu, Kinwah

    2005-09-01

    We have constructed a model to describe the optical emission from ultra-luminous X-ray sources (ULXs). We assume a binary model with a black hole accreting matter from a Roche lobe filling companion star. We consider the effects of radiative transport and radiative equilibrium in the irradiated surfaces of both the star and a thin accretion disc. We have developed this model as a tool with which to positively identify the optical counterparts of ULXs, and subsequently derive parameters such as the black hole mass and the luminosity class and spectral type of the counterpart. We examine the dependence of the optical emission on these and other variables. We extend our model to examine the magnitude variation at infrared wavelengths, and we find that observations at these wavelengths may have more diagnostic power than in the optical. We apply our model to existing HST observations of the candidates for the optical counterpart of ULX X-7 in NGC 4559. All candidates could be consistent with an irradiated star alone, but we find that a number of them are too faint to fit with an irradiated star and disc together. Were one of these the optical counterpart to X-7, it would display a significant temporal variation.

  11. Mid-infrared properties of luminous infrared galaxies. II. Probing the dust and gas physics of the goals sample

    SciTech Connect

    Stierwalt, S.; Armus, L.; Diaz-Santos, T.; Marshall, J.; Haan, S.; Howell, J.; Murphy, E. J.; Inami, H.; Petric, A. O.; Charmandaris, V.; Evans, A. S.; Iwasawa, K.; Kim, D. C.; Rich, J. A.; Spoon, H. W. W.; U, V.

    2014-08-01

    The Great Observatories All-sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here, we present the results of a multi-component, spectral decomposition analysis of the low-resolution mid-infrared (MIR) Spitzer Infrared Spectrograph spectra from 5-38 μm of 244 LIRG nuclei. The detailed fits and high-quality spectra allow for characterization of the individual polycyclic aromatic hydrocarbon (PAH) features, warm molecular hydrogen emission, and optical depths for both silicate dust grains and water ices. We find that starbursting LIRGs, which make up the majority of the GOALS sample, are very consistent in their MIR properties (i.e., τ{sub 9.7μm}, τ{sub ice}, neon line ratios, and PAH feature ratios). However, as their EQW{sub 6.2{sub μm}} decreases, usually an indicator of an increasingly dominant active galactic nucleus (AGN), LIRGs cover a larger spread in these MIR parameters. The contribution from PAH emission to the total IR luminosity (L(PAH)/L(IR)) in LIRGs varies from 2%-29% and LIRGs prior to their first encounter show significantly higher L(PAH)/L(IR) ratios on average. We observe a correlation between the strength of the starburst (represented by IR8 = L{sub IR}/L{sub 8{sub μm}}) and the PAH fraction at 8 μm but no obvious link between IR8 and the 7.7 to 11.3 PAH ratio, suggesting that the fractional photodissociation region (PDR) emission, and not the overall grain properties, is associated with the rise in IR8 for galaxies off the starburst main sequence. We detect crystalline silicate features in ∼6% of the sample but only in the most obscure sources (s{sub 9.7{sub μm}} < –1.24). Ice absorption features are observed in ∼11% (56%) of GOALS LIRGs (ULIRGs) in sources with a range of silicate depths. Most GOALS LIRGs have L(H{sub 2})/L(PAH) ratios elevated above those observed for normal star-forming galaxies and exhibit a trend for increasing L(H{sub 2})/L

  12. Mid-infrared Properties of Luminous Infrared Galaxies. II. Probing the Dust and Gas Physics of the GOALS Sample

    NASA Astrophysics Data System (ADS)

    Stierwalt, S.; Armus, L.; Charmandaris, V.; Diaz-Santos, T.; Marshall, J.; Evans, A. S.; Haan, S.; Howell, J.; Iwasawa, K.; Kim, D. C.; Murphy, E. J.; Rich, J. A.; Spoon, H. W. W.; Inami, H.; Petric, A. O.; U, V.

    2014-08-01

    The Great Observatories All-sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here, we present the results of a multi-component, spectral decomposition analysis of the low-resolution mid-infrared (MIR) Spitzer Infrared Spectrograph spectra from 5-38 μm of 244 LIRG nuclei. The detailed fits and high-quality spectra allow for characterization of the individual polycyclic aromatic hydrocarbon (PAH) features, warm molecular hydrogen emission, and optical depths for both silicate dust grains and water ices. We find that starbursting LIRGs, which make up the majority of the GOALS sample, are very consistent in their MIR properties (i.e., τ9.7 μm, τice, neon line ratios, and PAH feature ratios). However, as their EQW6.2 μm decreases, usually an indicator of an increasingly dominant active galactic nucleus (AGN), LIRGs cover a larger spread in these MIR parameters. The contribution from PAH emission to the total IR luminosity (L(PAH)/L(IR)) in LIRGs varies from 2%-29% and LIRGs prior to their first encounter show significantly higher L(PAH)/L(IR) ratios on average. We observe a correlation between the strength of the starburst (represented by IR8 = L IR/L 8 μm) and the PAH fraction at 8 μm but no obvious link between IR8 and the 7.7 to 11.3 PAH ratio, suggesting that the fractional photodissociation region (PDR) emission, and not the overall grain properties, is associated with the rise in IR8 for galaxies off the starburst main sequence. We detect crystalline silicate features in ~6% of the sample but only in the most obscure sources (s 9.7 μm < -1.24). Ice absorption features are observed in ~11% (56%) of GOALS LIRGs (ULIRGs) in sources with a range of silicate depths. Most GOALS LIRGs have L(H2)/L(PAH) ratios elevated above those observed for normal star-forming galaxies and exhibit a trend for increasing L(H2)/L(PAH) ratio with increasing L(H2). While star formation appears to be the

  13. A deficit of ultraluminous X-ray sources in luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Luangtip, W.; Roberts, T. P.; Mineo, S.; Lehmer, B. D.; Alexander, D. M.; Jackson, F. E.; Goulding, A. D.; Fischer, J. L.

    2015-01-01

    We present results from a Chandra study of ultraluminous X-ray sources (ULXs) in a sample of 17 nearby (DL < 60 Mpc) luminous infrared galaxies (LIRGs), selected to have star formation rates (SFRs) in excess of 7 M⊙ yr-1 and low foreground Galactic column densities (NH ≲ 5 × 1020 cm-2). A total of 53 ULXs were detected and we confirm that this is a complete catalogue of ULXs for the LIRG sample. We examine the evolution of ULX spectra with luminosity in these galaxies by stacking the spectra of individual objects in three luminosity bins, finding a distinct change in spectral index at luminosity ˜2 × 1039 erg s-1. This may be a change in spectrum as 10 M⊙ black holes transit from an ˜ Eddington to a super-Eddington accretion regime, and is supported by a plausible detection of partially ionized absorption imprinted on the spectrum of the luminous ULX (LX ≈ 5 × 1039 erg s-1) CXOU J024238.9-000055 in NGC 1068, consistent with the highly ionized massive wind that we would expect to see driven by a super-Eddington accretion flow. This sample shows a large deficit in the number of ULXs detected per unit SFR (0.2 versus 2 ULXs, per M⊙ yr-1) compared to the detection rate in nearby (DL < 14.5 Mpc) normal star-forming galaxies. This deficit also manifests itself as a lower differential X-ray luminosity function normalization for the LIRG sample than for samples of other star-forming galaxies. We show that it is unlikely that this deficit is a purely observational effect. Part of this deficit might be attributable to the high metallicity of the LIRGs impeding the production efficiency of ULXs and/or a lag between the star formation starting and the production of ULXs; however, we argue that the evidence - including very low NULX/LFIR, and an even lower ULX incidence in the central regions of the LIRGs - shows that the main culprit for this deficit is likely to be the high column of gas and dust in these galaxies, that fuels the high SFR but also acts to

  14. The molecular gas in Luminous Infrared Galaxies: a new emergent picture

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; Zhang, Zhi-Yu; Weiss, Axel; van der Werf, Paul; Isaak, Kate; Gao, Yu; Xilouris, Manolis; Greve, Thomas R.

    2013-03-01

    Results from a large, multi-J CO, 13CO, and HCN line survey of Luminous Infrared Galaxies (LIRGs: LIR≥ 1010 L⊙) in the local Universe (z≤0.1), complemented by CO J=4-3 up to J=13-12 observations from the Herschel Space Observatory (HSO), paints a new picture for the average conditions of the molecular gas of the most luminous of these galaxies with turbulence and/or large cosmic ray (CR) energy densities UCR rather than far-UV/optical photons from star-forming sites as the dominant heating sources. Especially in ULIRGs (LIR>1012 L⊙) the Photon Dominated Regions (PDRs) can encompass at most a few % of their molecular gas mass while the large UCR˜ 103 UCR, Galaxy, and the strong turbulence in these merger/starbursts, can volumetrically heat much of their molecular gas to Tkin˜ (100-200) K, unhindered by the high dust extinctions. Moreover the strong supersonic turbulence in ULIRGs relocates much of their molecular gas at much higher average densities (≥104 cm-3) than in isolated spirals (˜ 102-103 cm-3). This renders low-J CO lines incapable of constraining the properties of the bulk of the molecular gas in ULIRGs, with substantial and systematic underestimates of its mass possible when only such lines are used. Finally a comparative study of multi-J HCN lines and CO SLEDs from J=1-0 up to J=13-12 of NGC 6240 and Arp 193 offers a clear example of two merger/starbursts whose similar low-J CO SLEDs, and LIR/LCO,1-0 and LHCN, 1-0/LCO,1-0 ratios (proxies of the so-called SF efficiency and dense gas mass fraction), yield no indications about their strongly diverging CO SLEDs beyond J=4-3, and ultimately the different physical conditions in their molecular ISM. The much larger sensitivity of ALMA and its excellent site in the Atacama desert now allows the observations necessary to assess the dominant energy sources of the molecular gas and its mass in LIRGs without depending on the low-J CO lines.

  15. A LUMINOUS BLUE VARIABLE STAR INTERACTING WITH A NEARBY INFRARED DARK CLOUD

    SciTech Connect

    Palau, Aina; Girart, Josep M.; Rizzo, J. Ricardo; Henkel, Christian

    2014-04-01

    G79.29+0.46 is a nebula created by a luminous blue variable (LBV) star candidate characterized by two almost circular concentric shells. In order to investigate whether the shells are interacting with the infrared dark cloud (IRDC) G79.3+0.3 located at the southwestern border of the inner shell, we conducted Jansky Very Large Array observations of NH{sub 3}(1, 1), (2, 2) and c-C{sub 3}H{sub 2}, and combined them with previous Effelsberg data. The overall NH{sub 3} emission consists of one main clump, named G79A, elongated following the shape of the IRDC, plus two fainter and smaller cores to the north, which spatially match the inner infrared shell. We analyzed the NH{sub 3} spectra at each position with detected emission and inferred linewidth, rotational temperature, column density, and abundance maps, and find that: (1) the linewidth of NH{sub 3}(1, 1) in the northern cores is 0.5 km s{sup –1}, slightly larger than in their surroundings; (2) the NH{sub 3} abundance is enhanced by almost one order of magnitude toward the northwestern side of G79A; (3) there is one ''hot slab'' at the interface between the inner infrared shell and the NH{sub 3} peak of G79A; and (4) the western and southern edges of G79A present chemical differentiation, with c-C{sub 3}H{sub 2} tracing more external layers than NH{sub 3}, similar to what is found in photon-dominated regions. Overall, the kinematics and physical conditions of G79A are consistent with both shock-induced and UV radiation-induced chemistry driven by the LBV star. Therefore, the IRDC is not likely associated with the star-forming region DR15, but located farther away, near G79.29+0.46 at 1.4 kpc.

  16. Spatial adaptive upsampling filter for HDR image based on multiple luminance range

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Su, Guan-ming; Peng, Yin

    2014-03-01

    In this paper, we propose an adaptive upsampling filter to spatially upscale HDR image based on luminance range of the HDR picture in each color channel. It first searches for the optimal luminance range values to partition an HDR image to three different parts: dark, mid-tone and highlight. Then we derive the optimal set of filter coefficients both vertically and horizontally for each part. When the HDR pixel is within the dark area, we apply one set of filter coefficients to vertically upsample the pixel. If the HDR pixel falls in mid-tone area, we apply another set of filter for vertical upsampling. Otherwise the HDR pixel is in highlight area, another set of filter will be applied for vertical upsampling. Horizontal upsampling will be carried out likewise based on its luminance. The inherent idea to partition HDR image to different luminance areas is based on the fact that most HDR images are created from multiple exposures. Different exposures usually demonstrate slight variation in captured signal statistics, such as noise level, subtle misalignment etc. Hence, to group different regions to three luminance partitions actually helps to eliminate the variation between signals, and to derive optimal filter for each group with signals of lesser variation is certainly more efficient than for the entire HDR image. Experimental results show that the proposed adaptive upsampling filter based on luminance ranges outperforms the optimal upsampling filter around 0.57dB for R channel, 0.44dB for G channel and 0.31dB for B channel.

  17. Acoustic wavefield and Mach wave radiation of flashing arcs in strombolian explosion measured by image luminance

    NASA Astrophysics Data System (ADS)

    Genco, Riccardo; Ripepe, Maurizio; Marchetti, Emanuele; Bonadonna, Costanza; Biass, Sebastien

    2014-10-01

    Explosive activity often generates visible flashing arcs in the volcanic plume considered as the evidence of the shock-front propagation induced by supersonic dynamics. High-speed image processing is used to visualize the pressure wavefield associated with flashing arcs observed in strombolian explosions. Image luminance is converted in virtual acoustic signal compatible with the signal recorded by pressure transducer. Luminance variations are moving with a spherical front at a 344.7 m/s velocity. Flashing arcs travel at the sound speed already 14 m above the vent and are not necessarily the evidence of a supersonic explosive dynamics. However, seconds later, the velocity of small fragments increases, and the spherical acousto-luminance wavefront becomes planar recalling the Mach wave radiation generated by large scale turbulence in high-speed jet. This planar wavefront forms a Mach angle of 55° with the explosive jet axis, suggesting an explosive dynamics moving at Mo = 1.22 Mach number.

  18. Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang, Yiping; Hernán-Caballero, Antonio; Rigopoulou, Dimitra

    2013-03-01

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 × 107 M ⊙ using [Ne III] 15.56 μm and optical [O III] λ5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear ~1.5 kpc region, as estimated from the nuclear 11.3 μm PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  19. LOCAL LUMINOUS INFRARED GALAXIES. III. CO-EVOLUTION OF BLACK HOLE GROWTH AND STAR FORMATION ACTIVITY?

    SciTech Connect

    Alonso-Herrero, Almudena; Hernan-Caballero, Antonio; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang Yiping; Rigopoulou, Dimitra

    2013-03-10

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 Multiplication-Sign 10{sup 7} M{sub Sun} using [Ne III] 15.56 {mu}m and optical [O III] {lambda}5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear {approx}1.5 kpc region, as estimated from the nuclear 11.3 {mu}m PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.

  20. Foot evaluation by infrared imaging.

    PubMed

    DiBenedetto, Margarete; Yoshida, Michael; Sharp, Mark; Jones, Bruce

    2002-05-01

    For better assessment of foot injury severity during basic military training, we evaluated a simple noninvasive technique: thermography. With this infrared imaging method, we determined normal foot parameters (from 30 soldiers before training), thermographic findings in different foot stress fractures (from 30 soldiers so diagnosed), and normal responses to abnormal stresses in 30 trainees who underwent the same training as the previous group but did not have musculoskeletal complaints. We found that normal foot thermograms show onion peel-like progressive cooling on the plantar surface, with a medially located warm center at the instep. Thermograms of injured feet show areas of increased heat, but excessive weight-bearing pressures on feet, new shoes, or boots also cause increased infrared emission even without discomfort. Differentiation remains difficult; however, thermography can detect injury early. It does not reveal exact diagnoses, but its greatest benefit is easy follow-up to monitor severity and healing. PMID:12053846

  1. A multiwavelength and multiscale study of Luminous and Ultraluminous Infrared Galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, Rubén

    2014-10-01

    This dissertation deals with the multiwavelength study of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs, respectively) in the local Universe under different spatial scales. The work is focused on the properties of massive starbursts, the contribution of active galactic nuclei (AGN) and the interplay between both phenomena. The study of local (U)LIRGs is the best scenario where to understand the properties of these objects at cosmological distances, where their luminosity contribution dominates the cosmic infrared background. Our first approach to the study of (U)LIRGs consisted of a spectral line study in the millimeter range, obtained with the IRAM 30m radio-telescope in Pico Veleta, Granada of a subsample of 56 (U)LIRGs from the GOALS project sample. We observed and analyzed spectra of several molecular features, focusing in the study of carbon monoxide (CO), a well-known tracer of cold molecular gas. We explored the relation between them as well as the properties of molecular gas. Besides of the sample characterization, we confirmed the increase of the isotopic ratio 12CO/13CO with the dust temperature, explained by the 12CO optical depth decreasing with temperature. We have also studied the kinematics and gas distribution using the spectral profiles of several molecular transitions. In a second part of this thesis, we analyzed the central kiloparsec region of a sample of 12 LIRGs, stressing the importance of the multiwavelength approach, aimed at deriving the star formation processes of these galaxies, as well as to study the contribution of the putative AGN to the bolometric luminosity in our sample. For one of these LIRGs, NGC1614, we performed a deep multiwavelength study, including data from radio, infrared, optical and X-rays. These data allowed us to establish that the the IR emission in the circumnuclear region is completely dominated by a powerful starburst and, in case it hosts an AGN, its contribution is irrelevant. We also performed

  2. A multiwavelength and multiscale study of Luminous and Ultraluminous Infrared Galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, Rubén

    2014-10-01

    This dissertation deals with the multiwavelength study of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs, respectively) in the local Universe under different spatial scales. The work is focused on the properties of massive starbursts, the contribution of active galactic nuclei (AGN) and the interplay between both phenomena. The study of local (U)LIRGs is the best scenario where to understand the properties of these objects at cosmological distances, where their luminosity contribution dominates the cosmic infrared background. Our first approach to the study of (U)LIRGs consisted of a spectral line study in the millimeter range, obtained with the IRAM 30m radio-telescope in Pico Veleta, Granada of a subsample of 56 (U)LIRGs from the GOALS project sample. We observed and analyzed spectra of several molecular features, focusing in the study of carbon monoxide (CO), a well-known tracer of cold molecular gas. We explored the relation between them as well as the properties of molecular gas. Besides of the sample characterization, we confirmed the increase of the isotopic ratio 12CO/13CO with the dust temperature, explained by the 12CO optical depth decreasing with temperature. We have also studied the kinematics and gas distribution using the spectral profiles of several molecular transitions. In a second part of this thesis, we analyzed the central kiloparsec region of a sample of 12 LIRGs, stressing the importance of the multiwavelength approach, aimed at deriving the star formation processes of these galaxies, as well as to study the contribution of the putative AGN to the bolometric luminosity in our sample. For one of these LIRGs, NGC1614, we performed a deep multiwavelength study, including data from radio, infrared, optical and X-rays. These data allowed us to establish that the the IR emission in the circumnuclear region is completely dominated by a powerful starburst and, in case it hosts an AGN, its contribution is irrelevant. We also performed

  3. Infrared imaging of extrasolar planets

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Tubbs, Eldred F.; Gaiser, Steven L.; Korechoff, Robert P.

    1991-01-01

    An optical system for direct detection, in the infrared, of planets orbiting other stars is described. The proposed system consists of a large aperture (about 16 m) space-based telescope to which is attached a specialized imaging instrument containing a set of optical signal processing elements to suppress diffracted light from the central star. Starlight suppression is accomplished using coronagraphic apodization combined with rotational shearing interferometry. The possibility of designing the large telescope aperture to be of a deployable, multiarm configuration is examined, and it is shown that there is some sacrifice in performance relative to a filled, circular aperture.

  4. Method for improving visualization of infrared images

    NASA Astrophysics Data System (ADS)

    Cimbalista, Mario

    2014-05-01

    Thermography has an extremely important difference from the other visual image converting electronic systems, like XRays or ultrasound: the infrared camera operator usually spend hour after hour with his/her eyes looking only at infrared images, sometimes several intermittent hours a day if not six or more continuous hours. This operational characteristic has a very important impact on yield, precision, errors and misinterpretation of the infrared images contents. Despite a great hardware development over the last fifty years, quality infrared thermography still lacks for a solution for these problems. The human eye physiology has not evolved to see infrared radiation neither the mind-brain has the capability to understand and decode infrared information. Chemical processes inside the human eye and functional cells distributions as well as cognitive-perceptual impact of images plays a crucial role in the perception, detection, and other steps of dealing with infrared images. The system presented here, called ThermoScala and patented in USA solves this problem using a coding process applicable to an original infrared image, generated from any value matrix, from any kind of infrared camera to make it much more suitable for human usage, causing a substantial difference in the way the retina and the brain processes the resultant images. The result obtained is a much less exhaustive way to see, identify and interpret infrared images generated by any infrared camera that uses this conversion process.

  5. High-velocity extended molecular outflow in the star-formation dominated luminous infrared galaxy ESO 320-G030

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, M.; Colina, L.; García-Burillo, S.; Alonso-Herrero, A.; Arribas, S.; Cazzoli, S.; Emonts, B.; Piqueras López, J.; Planesas, P.; Storchi Bergmann, T.; Usero, A.; Villar-Martín, M.

    2016-10-01

    We analyze new high spatial resolution (~60 pc) ALMA CO(2-1) observations of the isolated luminous infrared galaxy ESO 320-G030 (d = 48 Mpc) in combination with ancillary Hubble Space Telescope optical and near infrared (IR) imaging, as well as VLT/SINFONI near-IR integral field spectroscopy. We detect a high-velocity (~450 km s-1) spatially resolved (size~2.5 kpc; dynamical time ~3 Myr) massive (~107 M⊙; Ṁ ~ 2-8 M⊙ yr-1) molecular outflow that has originated in the central ~250 pc. We observe a clumpy structure in the outflowing cold molecular gas with clump sizes between 60 and 150 pc and masses between 105.5 and 106.4 M⊙. The mass of the clumps decreases with increasing distance, while the velocity is approximately constant. Therefore, both the momentum and kinetic energy of the clumps decrease outwards. In the innermost (~100 pc) part of the outflow, we measure a hot-to-cold molecular gas ratio of 7 × 10-5, which is similar to that measured in other resolved molecular outflows. We do not find evidence of an ionized phase in this outflow. The nuclear IR and radio properties are compatible with strong and highly obscured star-formation (Ak ~ 4.6 mag; star formation rate ~ 15 M⊙ yr-1). We do not find any evidence for the presence of an active galactic nucleus. We estimate that supernova explosions in the nuclear starburst (νSN ~ 0.2 yr-1) can power the observed molecular outflow. The kinetic energy and radial momentum of the cold molecular phase of the outflow correspond to about 2% and 20%, respectively, of the supernovae output. The cold molecular outflow velocity is lower than the escape velocity, so the gas will likely return to the galaxy disk. The mass loading factor is ~0.1-0.5, so the negative feedback owing to this star-formation-powered molecular outflow is probably limited. The reduced images and datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  6. The molecular gas in luminous infrared galaxies - I. CO lines, extreme physical conditions and their drivers

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; van der Werf, Paul P.; Xilouris, E. M.; Isaak, K. G.; Gao, Yu; Mühle, S.

    2012-11-01

    We report results from a large molecular line survey of luminous infrared galaxies (LIRGs; L IR ≳1011 L) in the local Universe (z ≤ 0.1), conducted during the last decade with the James Clerk Maxwell Telescope and the IRAM 30-m telescope. This work presents the CO and 13CO line data for 36 galaxies, further augmented by multi-J total CO line luminosities available for other infrared (IR) bright galaxies from the literature. This yields a combined sample of N = 70 galaxies with the star formation (SF) powered fraction of their IR luminosities spanning L IR (*)˜(1010-2×1012) L and a wide range of morphologies. Simple comparisons of their available CO spectral line energy distributions (SLEDs) with local ones, as well as radiative transfer models, discern a surprisingly wide range of average interstellar medium (ISM) conditions, with most of the surprises found in the high-excitation regime. These take the form of global CO SLEDs dominated by a very warm (Tkin ≳100 K) and dense (n ≥ 104 cm-3) gas phase, involving galaxy-sized (˜(few) × 109 M⊙) gas mass reservoirs under conditions that are typically found only for ˜(1-3) per cent of mass per typical SF molecular cloud in the Galaxy. Furthermore, some of the highest excitation CO SLEDs are found in ultraluminous infrared galaxies (ULIRGs; LIR ≥ 1012 L⊙) and surpass even those found solely in compact SF-powered hot spots in Galactic molecular clouds. Strong supersonic turbulence and high cosmic ray energy densities rather than far-ultraviolet/optical photons or supernova remnant induced shocks from individual SF sites can globally warm the large amounts of dense gas found in these merger-driven starbursts and easily power their extraordinary CO line excitation. This exciting possibility can now be systematically investigated with Herschel and the Atacama Large Milimeter Array (ALMA). As expected for an IR-selected (and thus SF rate selected) galaxy sample, only few 'cold' CO SLEDs are found, and for

  7. Sub-kpc star formation law in the local luminous infrared galaxy IC 4687 as seen by ALMA

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, M.; Colina, L.; García-Burillo, S.; Planesas, P.; Usero, A.; Alonso-Herrero, A.; Arribas, S.; Cazzoli, S.; Emonts, B.; Piqueras López, J.; Villar-Martín, M.

    2016-03-01

    We analyze the spatially resolved (250 pc scales) and integrated star formation (SF) law in the local luminous infrared galaxy (LIRG) IC 4687. This is one of the first studies of the SF law on a starburst LIRG at these small spatial scales. We combined new interferometric ALMA CO(2-1) data with existing HST/NICMOS Paα narrowband imaging and VLT/SINFONI near-IR integral field spectroscopy to obtain accurate extinction-corrected SF rate (SFR) and cold molecular gas surface densities (Σgas and ΣSFR). We find that IC 4687 forms stars very efficiently with an average depletion time (tdep) of 160 Myr for the individual 250 pc regions. This is approximately one order of magnitude shorter than the tdep of local normal spirals and also shorter than that of main-sequence high-z objects, even when we use a Galactic αCO conversion factor. This result suggests a bimodal SF law in the ΣSFR∝ΣgasN representation. A universal SF law is recovered if we normalize the Σgas by the global dynamical time. However, at the spatial scales studied here, we find that the SF efficiency (or tdep) does not depend on the local dynamical time for this object. Therefore, an alternative normalization (e.g., free-fall time) should be found if a universal SF law exists at these scales. A FITS file for the reduced datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A44

  8. Luminous blue variables: An imaging perspective on their binarity and near environment

    NASA Astrophysics Data System (ADS)

    Martayan, Christophe; Lobel, Alex; Baade, Dietrich; Mehner, Andrea; Rivinius, Thomas; Boffin, Henri M. J.; Girard, Julien; Mawet, Dimitri; Montagnier, Guillaume; Blomme, Ronny; Kervella, Pierre; Sana, Hugues; Štefl, Stanislav; Zorec, Juan; Lacour, Sylvestre; Le Bouquin, Jean-Baptiste; Martins, Fabrice; Mérand, Antoine; Patru, Fabien; Selman, Fernando; Frémat, Yves

    2016-03-01

    Context. Luminous blue variables (LBVs) are rare massive stars with very high luminosity. They are characterized by strong photometric and spectroscopic variability related to transient eruptions. The mechanisms at the origin of these eruptions is not well known. In addition, their formation is still problematic and the presence of a companion could help to explain how they form. Aims: This article presents a study of seven LBVs (about 20% of the known Galactic population), some Wolf-Rayet stars, and massive binaries. We probe the environments that surround these massive stars with near-, mid-, and far-infrared images, investigating potential nebula/shells and the companion stars. Methods: To investigate large spatial scales, we used seeing-limited and near diffraction-limited adaptive optics images to obtain a differential diagnostic on the presence of circumstellar matter and to determine their extent. From those images, we also looked for the presence of binary companions on a wide orbit. Once a companion was detected, its gravitational binding to the central star was tested. Tests include the chance projection probability, the proper motion estimates with multi-epoch observations, flux ratio, and star separations. Results: We find that two out of seven of LBVs may have a wide orbit companion. Most of the LBVs display a large circumstellar envelope or several shells. In particular, HD 168625, known for its rings, possesses several shells with possibly a large cold shell at the edge of which the rings are formed. For the first time, we have directly imaged the companion of LBV stars. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under projects number 085.D-0625(C), 087.D-0426(C, D), and archival data 383.D-0323(A).The reduced NACO images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  9. Longwave infrared compressive hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Dupuis, Julia R.; Kirby, Michael; Cosofret, Bogdan R.

    2015-06-01

    Physical Sciences Inc. (PSI) is developing a longwave infrared (LWIR) compressive sensing hyperspectral imager (CS HSI) based on a single pixel architecture for standoff vapor phase plume detection. The sensor employs novel use of a high throughput stationary interferometer and a digital micromirror device (DMD) converted for LWIR operation in place of the traditional cooled LWIR focal plane array. The CS HSI represents a substantial cost reduction over the state of the art in LWIR HSI instruments. Radiometric improvements for using the DMD in the LWIR spectral range have been identified and implemented. In addition, CS measurement and sparsity bases specifically tailored to the CS HSI instrument and chemical plume imaging have been developed and validated using LWIR hyperspectral image streams of chemical plumes. These bases enable comparable statistics to detection based on uncompressed data. In this paper, we present a system model predicting the overall performance of the CS HSI system. Results from a breadboard build and test validating the system model are reported. In addition, the measurement and sparsity basis work demonstrating the plume detection on compressed hyperspectral images is presented.

  10. Luminous Infrared Galaxies with the Submillimeter Array. III. The Dense Kiloparsec Molecular Concentrations of Arp 299

    NASA Astrophysics Data System (ADS)

    Sliwa, Kazimierz; Wilson, Christine D.; Petitpas, Glen R.; Armus, Lee; Juvela, Mika; Matsushita, Satoki; Peck, Alison B.; Yun, Min S.

    2012-07-01

    We have used high-resolution (~2farcs3) observations of the local (D L = 46 Mpc) luminous infrared galaxy Arp 299 to map out the physical properties of the molecular gas that provides the fuel for its extreme star formation activity. The 12CO J = 3-2, 12CO J = 2-1, and 13CO J = 2-1 lines were observed with the Submillimeter Array, and the short spacings of the 12CO J = 2-1 and J = 3-2 observations have been recovered using the James Clerk Maxwell Telescope single dish observations. We use the radiative transfer code RADEX to estimate the physical properties (density, column density, and temperature) of the different regions in this system. The RADEX solutions of the two galaxy nuclei, IC 694 and NGC 3690, are consistent with a wide range of gas components, from warm moderately dense gas with T kin > 30 K and n(H2) ~ 0.3-3 × 103 cm-3 to cold dense gas with T kin ~ 10-30 K and n(H2) > 3 × 103 cm-3. The overlap region is shown to have a better constrained solution with T kin ~ 10-50 K and n(H2) ~ 1-30 × 103 cm-3. We estimate the gas masses and star formation rates of each region in order to derive molecular gas depletion times. The depletion times of all regions (20-50 Myr) are found to be about two orders of magnitude lower than those of normal spiral galaxies. This rapid depletion time can probably be explained by a high fraction of dense gas on kiloparsec scales in Arp 299. We estimate the CO-to-H2 factor, αco to be 0.4 ± 0.3(3 × 10-4/x CO) M⊙ (K km s-1 pc2)-1 for the overlap region. This value agrees well with values determined previously for more advanced merger systems.

  11. LUMINOUS INFRARED GALAXIES WITH THE SUBMILLIMETER ARRAY. III. THE DENSE KILOPARSEC MOLECULAR CONCENTRATIONS OF Arp 299

    SciTech Connect

    Sliwa, Kazimierz; Wilson, Christine D.; Petitpas, Glen R.; Armus, Lee; Juvela, Mika; Matsushita, Satoki; Peck, Alison B.; Yun, Min S. E-mail: wilson@physics.mcmaster.ca E-mail: lee@ipac.caltech.edu E-mail: satoki@asiaa.sinica.edu.tw E-mail: myun@astro.umass.edu

    2012-07-01

    We have used high-resolution ({approx}2.''3) observations of the local (D{sub L} = 46 Mpc) luminous infrared galaxy Arp 299 to map out the physical properties of the molecular gas that provides the fuel for its extreme star formation activity. The {sup 12}CO J = 3-2, {sup 12}CO J = 2-1, and {sup 13}CO J = 2-1 lines were observed with the Submillimeter Array, and the short spacings of the {sup 12}CO J = 2-1 and J = 3-2 observations have been recovered using the James Clerk Maxwell Telescope single dish observations. We use the radiative transfer code RADEX to estimate the physical properties (density, column density, and temperature) of the different regions in this system. The RADEX solutions of the two galaxy nuclei, IC 694 and NGC 3690, are consistent with a wide range of gas components, from warm moderately dense gas with T{sub kin} > 30 K and n(H{sub 2}) {approx} 0.3-3 Multiplication-Sign 10{sup 3} cm{sup -3} to cold dense gas with T{sub kin} {approx} 10-30 K and n(H{sub 2}) > 3 Multiplication-Sign 10{sup 3} cm{sup -3}. The overlap region is shown to have a better constrained solution with T{sub kin} {approx} 10-50 K and n(H{sub 2}) {approx} 1-30 Multiplication-Sign 10{sup 3} cm{sup -3}. We estimate the gas masses and star formation rates of each region in order to derive molecular gas depletion times. The depletion times of all regions (20-50 Myr) are found to be about two orders of magnitude lower than those of normal spiral galaxies. This rapid depletion time can probably be explained by a high fraction of dense gas on kiloparsec scales in Arp 299. We estimate the CO-to-H{sub 2} factor, {alpha}{sub co} to be 0.4 {+-} 0.3(3 Multiplication-Sign 10{sup -4}/x{sub CO}) M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1} for the overlap region. This value agrees well with values determined previously for more advanced merger systems.

  12. Aerodynamic investigation by infrared imaging

    NASA Technical Reports Server (NTRS)

    Roberts, A. Sidney, Jr.; Mcree, Griffith J.; Gartenberg, Ehud

    1988-01-01

    Infrared imaging systems can be used to measure temperatures of actively heated bodies immersed in an airstream. This monitoring of the convective heat transfer process, provides also information about the interaction between the body and the flow. The concept appeals to Nusselt/Reynolds numbers relations in order to produce data of interest from surface temperatures. Two test cases are presented and reference is made to analytical results: the mapping of a laminar jet and the temperature distribution along a constant power heated flat plate in laminar boundary layer regime. Although this research is currently focused on low speed aerodynamics, the extension to high speed aerodynamics, where the body undergoes frictional heating is of interest in this context, too.

  13. Modeling countermeasures to imaging infrared seekers

    NASA Astrophysics Data System (ADS)

    Cox, Laurence J.; Batten, Michael A.; Carpenter, Stephen R.; Saddleton, Philip A. B.

    2004-12-01

    The threat to aircraft from missiles with imaging infrared seekers has developed more rapidly and in more countries independently than the original infrared missile threat. This is, in part, a consequence of the civil sector's demand for high-resolution infrared imagers and the development of computer processors capable of implementing complex image-processing algorithms im real time. Dstl has developed the Fly-In model to analyse the potential effectiveness of existing countermeasures (CM) to imaging infrared seekers and to test new CM approaches before trialling them against surrogate imaging seekers. The validation of the Fly-In model is extremely important, particularly as the newness of the imaging infrared threat, means that actual examples of the threat are not available for study. Extensive measurements have been carried out on the appearance of flare CM in different infrared wavebands, and on the effects of lasers on the optics and detector of an surrogate imageing seeker. Other parts of the model are derived from other Dstl models, including the NATO Infrared Airborne Target Model (NIRATAM) and HADES (missile dynamics) that are validated against trials' data. Initial studies have shown that existing CM, and those under development, can be very effective against imaging infrared seekers, by defeating the seeker's image-processing algorithms. It is already clear that laser CM will play an increasing role in the defence of aircraft, thereby enhancing aircraft survivability. Moreover, this model will aid the military planner in determining the best mix of CM and the tactics for using them.

  14. Hyperspectral imaging in the infrared using LIFTIRS

    SciTech Connect

    Bennett, C.L.; Carter, M.R.; Fields, D.J.

    1995-07-01

    In this article, recent characterization measurements made with LIFTIRS, the Livermore Imaging Fourier Transform InfraRed Spectrometer, are presented. A discussion is also presented of the relative merits of the various alternative designs for imaging spectrometers.

  15. Livermore Imaging Fourier Transform Infrared Spectrometer (LIFTIRS)

    SciTech Connect

    Carter, M.R.; Bennett, C.L.; Fields, D.J.; Lee, F.D.

    1995-05-10

    Lawrence Livermore National Laboratory is currently operating a hyperspectral imager, the Livermore Imaging Fourier Transform Infrared Spectrometer (LIFTIRS). This instrument is capable of operating throughout the infrared spectrum from 3 to 12.5 {mu}m with controllable spectral resolution. In this presentation we report on it`s operating characteristics, current capabilities, data throughput and calibration issues.

  16. Simulation of the infrared signature of transient luminous events in the middle atmosphere for a limb line of sight

    NASA Astrophysics Data System (ADS)

    Romand, Frédéric; Croizé, Laurence; Payan, Sébastien; Huret, Nathalie

    2016-04-01

    Transient Luminous Events (TLE) are electrical and optical events which occurs above thunderstorms. Visual signatures are reported since the beginning of the 20th century but the first picture is accidentally recorded from a television camera in 1989. Their occurrence is closely linked with the lightning activity below thunderstorms. TLEs are observed from the base of the stratosphere to the thermosphere (15 - 110 km). They are a very brief phenomenon which lasts from 1 to 300 milliseconds. At a worldwide scale, four TLEs occur each minute. The energy deposition, about some tenth of megajoules, is able to ionize, dissociate and excite the molecules of the atmosphere. Atmospheric discharges in the troposphere are important sources of NO and NO2. TLEs might have the same effects at higher altitudes, in the stratosphere. NOx then can affect the concentration of O3 and OH. Consequently, TLEs could be locally important contributors to the chemical budget of the middle atmosphere. The perturbation of the atmospheric chemistry induced by TLEs has the consequence to locally modify the radiations in the infrared during the minutes following the event. The interest of studying the infrared signature of a TLE is twofold. For the atmospheric sciences it allows to link the perturbed composition to the resulting infrared spectrum. Then, some Defense systems like detection and guiding devices are equipped with airborne infrared sensors so that the TLE infrared signature might disturb them. We want to obtain a quantitative and kinetic evaluation of the infrared signature of the atmosphere locally perturbed by a TLE. In order to do so we must model three phenomena. 1) The plasma/chemistry coupling, which describes how the different energetic levels of atmospheric molecules are populated by the energetic deposition of the TLE. This step lasts the time of the lightning itself. 2) The chemical kinetics which describes how these populations will evolve in the following minutes. 3) The

  17. VLT/VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies: 2D kinematic properties

    NASA Astrophysics Data System (ADS)

    Bellocchi, Enrica; Arribas, Santiago; Colina, Luis; Miralles-Caballero, Daniel

    2013-09-01

    Context. (Ultra) Luminous infrared galaxies [(U)LIRGs] host the most extreme star-forming events in the present universe and are places where a significant fraction of the past star formation beyond z ~ 1 has occurred. The kinematic characterization of this population is important to constrain the processes that govern such events. Aims: We present and discuss the 2D kinematic properties of the ionized gas (Hα) in sample local (U)LIRGs, for which relatively high linear resolution and signal-to-noise (S/N) ratio can be obtained. Methods: We have obtained Very Large Telescope VIMOS optical integral field spectroscopy (IFS) for 38 local (z < 0.1) (U)LIRGs (31 LIRGs and 7 ULIRGs, 51 individual galaxies). This sample covers well the less studied LIRG luminosity range, and it includes the morphological types corresponding to the different phases along the merging process (i.e., isolated disks, interacting and merging systems). Results: The vast majority of objects have two main kinematically distinct components. One component (i.e., narrow or systemic) extends over the whole line-emitting region and is characterized by small-to-intermediate velocity dispersions (i.e., σ from 30 to 160 km s-1). The second component (broad) has a larger velocity dispersion (up to 320 km s-1); it is mainly found in the inner regions and is generally blueshifted with respect to the systemic component. The largest extensions and extreme kinematic properties are observed in interacting and merging systems, and they are likely associated with nuclear outflows. The systemic component traces the overall velocity field, showing a large variety of kinematic 2D structures, from very regular velocity patterns typical of pure rotating disks (29%) to kinematically perturbed disks (47%) and highly disrupted and complex velocity fields (24%). Thus, most of the objects (76%) are dominated by rotation. We find that rotation is more relevant in LIRGs than in ULIRGs. There is a clear correlation between

  18. A method for image quality evaluation considering adaptation to luminance of surround and noise in stimuli

    NASA Astrophysics Data System (ADS)

    Kim, Youn Jin

    2010-09-01

    This study intends to quantify the effects of the surround luminance and noise of a given stimulus on the shape of spatial luminance contrast sensitivity function (CSF) and to propose an adaptive image quality evaluation method. The proposed image evaluation method extends a model called square-root integral (SQRI). The non-linear behaviour of the human visual system was taken into account by using CSF. This model can be defined as the square root integration of multiplication between display modulation transfer function and CSF. The CSF term in the original SQRI was replaced by the surround adaptive CSF quantified in this study and it is divided by the Fourier transform of a given stimulus for compensating for the noise adaptation.

  19. Adaptation with a stabilized retinal image: effect of luminance and contrast.

    PubMed

    Olson, J D; Tulunay-Keesey, U; Saleh, B E

    1994-11-01

    The addition of a uniform increment of luminance (L) to a faded retinally-stabilized target results in the subjective reappearance of the image with contrast opposite to that of the target. This phenomenon, called apparent phase reversal (APR), reveals a nonlinear gain mechanism in the adaptation process. The magnitude of the threshold increment to elicit APR (Lapr) is a measure of the state of stabilized adaptation. In the experiments reported here, Lapr was studied as a function of background luminance (Lo) and contrast (m) of the adapting stimulus. It was found that Lapr increases with increasing Lo, but does not depend on m. The data are analyzed within the context of a previously proposed model of stabilized image fading consisting of a multiplicative inverse gain followed by a subtractive process. It was found that the addition of a contrast processing stage was required to account for the relationship between Lapr and m.

  20. Identifications of The Most Luminous, Highest-Redshift Objects Discovered by WISE (Wide-field Infrared Survey Explorer)

    NASA Astrophysics Data System (ADS)

    Benford, Dominic; Stanford, Adam; Jarrett, Tom; Yan, Lin; Eisenhardt, Peter; Lonsdale, Carol; Wright, Ned; Tsai, Chao-Wei; Blain, Andrew; Cutri, Roc

    2010-08-01

    We request 4 nights to obtain KPNO/FLAMINGOS near-IR photometry and spectroscopy follow-up observations of a sample of extremely luminous, z > 1 galaxy candidates selected from WISE, a new NASA mission which is in the process of surveying the whole sky at 3.4,4.6,12 and 22 (micron) in 6 months (Jan-July 2010). The candidates are selected to have mid-IR colors indicating starburst-dominated spectra at redshifts of z=1.2 - 3, but are 100 times more luminous than local ULIRGs with L_FIR > 10^14 L_⊙, called extreme hyperluminous infrared galaxies (eHyLIRGs). In combination with the WISE mid-infrared photometry, the near-IR photometric and spectroscopic observations will allow us to distinguish high-z targets from local red populations, determine the luminosity, and further study the star formation activity from hydrogen recombination lines, extinction toward the star formation regions, and SED modeling on the stellar population of these galaxies.

  1. An adaptive algorithm for low contrast infrared image enhancement

    NASA Astrophysics Data System (ADS)

    Liu, Sheng-dong; Peng, Cheng-yuan; Wang, Ming-jia; Wu, Zhi-guo; Liu, Jia-qi

    2013-08-01

    An adaptive infrared image enhancement algorithm for low contrast is proposed in this paper, to deal with the problem that conventional image enhancement algorithm is not able to effective identify the interesting region when dynamic range is large in image. This algorithm begin with the human visual perception characteristics, take account of the global adaptive image enhancement and local feature boost, not only the contrast of image is raised, but also the texture of picture is more distinct. Firstly, the global image dynamic range is adjusted from the overall, the dynamic range of original image and display grayscale form corresponding relationship, the gray scale of bright object is raised and the the gray scale of dark target is reduced at the same time, to improve the overall image contrast. Secondly, the corresponding filtering algorithm is used on the current point and its neighborhood pixels to extract image texture information, to adjust the brightness of the current point in order to enhance the local contrast of the image. The algorithm overcomes the default that the outline is easy to vague in traditional edge detection algorithm, and ensure the distinctness of texture detail in image enhancement. Lastly, we normalize the global luminance adjustment image and the local brightness adjustment image, to ensure a smooth transition of image details. A lot of experiments is made to compare the algorithm proposed in this paper with other convention image enhancement algorithm, and two groups of vague IR image are taken in experiment. Experiments show that: the contrast ratio of the picture is boosted after handled by histogram equalization algorithm, but the detail of the picture is not clear, the detail of the picture can be distinguished after handled by the Retinex algorithm. The image after deal with by self-adaptive enhancement algorithm proposed in this paper becomes clear in details, and the image contrast is markedly improved in compared with Retinex

  2. Infrared imaging of LED lighting tubes and fluorescent tubes

    NASA Astrophysics Data System (ADS)

    Siikanen, Sami; Kivi, Sini; Kauppinen, Timo; Juuti, Mikko

    2011-05-01

    The low energy efficiency of conventional light sources is mainly caused by generation of waste heat. We used infrared (IR) imaging in order to monitor the heating of both LED tube luminaires and ordinary T8 fluorescent tubes. The IR images showed clearly how the surface temperatures of the fluorescent tube ends quickly rose up to about +50...+70°C, whereas the highest surface temperatures seen on the LED tubes were only about +30...+40°C. The IR images demonstrated how the heat produced by the individual LED chips can be efficiently guided to the supporting structure in order to keep the LED emitters cool and hence maintain efficient operation. The consumed electrical power and produced illuminance were also recorded during 24 hour measurements. In order to assess the total luminous efficacy of the luminaires, separate luminous flux measurements were made in a large integrating sphere. The currently available LED tubes showed efficacies of up to 88 lm/W, whereas a standard "cool white" T8 fluorescent tube produced ca. 75 lm/W. Both lamp types gave ca. 110 - 130 lx right below the ceiling-mounted luminaire, but the LED tubes consume only 40 - 55% of the electric power compared to fluorescent tubes.

  3. A COSMIC-RAY-DOMINATED INTERSTELLAR MEDIUM IN ULTRA LUMINOUS INFRARED GALAXIES: NEW INITIAL CONDITIONS FOR STAR FORMATION

    SciTech Connect

    Papadopoulos, Padelis P.

    2010-09-01

    The high-density star formation typical of the merger/starburst events that power the large IR luminosities of ultraluminous infrared galaxies (ULIRGs) (L{sub IR}(8-1000 {mu}m) {approx}>10{sup 12} L{sub sun}) throughout the universe results in extraordinarily high cosmic-ray (CR) energy densities of U{sub CR} {approx} few x(10{sup 3}-10{sup 4}) U{sub CR,Gal} permeating their interstellar medium, a direct consequence of the large supernova remnant number densities in such systems. Unlike far-UV photons emanating from numerous star-forming (SF) sites, these large CR energy densities in ULIRGs will volumetrically heat and raise the ionization fraction of dense (n > 10{sup 4} cm{sup -3}) UV-shielded gas cores throughout their compact SF volumes. Such conditions can turn most of the large molecular gas masses found in such systems and their high redshift counterparts ({approx}10{sup 9}-10{sup 10} M {sub sun}) into giant CR-dominated regions (CRDRs) rather than ensembles of photon-dominated regions (PDRs) which dominate in less IR-luminous systems where star formation and molecular gas distributions are much more extended. The molecular gas in CRDRs will have a minimum temperature of T{sub kin} {approx} (80-160) K, and very high ionization fractions of x(e) > 10{sup -6} throughout its UV-shielded dense core, which in turn will fundamentally alter the initial conditions for star formation in such systems. Observational tests of CRDRs can be provided by high-J CO and {sup 13}CO lines or multi-J transitions of any heavy rotor molecules (e.g., HCN) and their isotopologs. Chemical signatures of very high ionization fractions in dense UV-shielded gas such as low [DCO{sup +}]/[HCO{sup +}] and high [HCO{sup +}]/[CO] abundance ratios would be good probes of CRDRs in extreme starbursts. These tests, along with direct measurements of the high CO line brightness temperatures expected over the areas of compact dense gas disks found in ULIRGs, will soon be feasible as sub

  4. PMAS optical integral field spectroscopy of luminous infrared galaxies. II. Spatially resolved stellar populations and excitation conditions

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; García-Marín, M.; Rodríguez Zaurín, J.; Monreal-Ibero, A.; Colina, L.; Arribas, S.

    2010-11-01

    Context. The general properties (e.g., activity class, star formation rates, metallicities, extinctions, average ages, etc.) of luminous (LIRGs) and ultraluminous infrared galaxies (ULIRGs) in the local universe are well known because large samples of these objects have been the subject of numerous spectroscopic works over the past three decades. There are, however, relatively few studies of the spatially-resolved spectroscopic properties of large samples of LIRGs and ULIRGs using integral field spectroscopy (IFS). Aims: We are carrying out an IFS survey of local (z<0.26) samples of LIRGs and ULIRGs to characterize their two-dimensional spectroscopic properties. The main goal of this paper is to study the spatially resolved properties of the stellar populations and the excitation conditions in a sample of LIRGs. Methods: We analyze optical (3800-7200 Å) IFS data taken with the Potsdam Multi-Aperture Spectrophotometer (PMAS) of the central few kiloparsecs of eleven LIRGs. To study these stellar populations, we fit the optical stellar continuum and the hydrogen recombination lines of selected regions in the galaxies. We analyzed the excitation conditions of the gas using the spatially resolved properties of the brightest optical emission lines. We complemented the PMAS observations with existing HST/NICMOS near-infrared continuum and Paα imaging. Results: The optical continua of selected regions in our LIRGs are well fitted with a combination of an evolved (~0.7-10 Gyr) stellar population with an ionizing stellar population (1-20 Myr). The latter population is more obscured than the evolved population, and has visual extinctions in good agreement with those obtained from the Balmer decrement. Except for NGC 7771, we find no clear that there is an important contribution to the optical light from an intermediate-aged stellar population (~100-500 Myr). Even after correcting for the presence of stellar absorption, a large number of spaxels with low observed equivalent

  5. The application of ghost imaging in infrared imaging detection technology

    NASA Astrophysics Data System (ADS)

    Peng, Hongtao; Yang, Zhaohua; Li, Dapeng; Wu, Ling-an

    2015-11-01

    Traditional imaging are mostly based on the principle of lens imaging which is simple but the imaging result is heavily dependent on the quality of detector. It is usual to increase the detector array density or reduce the size of pixels to improve the imaging resolution, especially for infrared imaging. It will decrease the light flux causing the noise enhance relatively and add the cost on the contrary. Besides, there is a novel imaging technology called ghost imaging. We present a new infrared imaging method named computational ghost imaging only using a bucket detector without spatial resolution, which avoiding the allocation of flux on the pixel dimension as well as reducing the cost.

  6. Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video

    NASA Technical Reports Server (NTRS)

    Lyons, Walter A.

    1994-01-01

    An experiment was conducted in which an image-intensified, low-light video camera systematically monitored the stratosphere above distant (100-800 km) mesoscale convective systems over the high plains of the central U.S. for 21 nights between 6 July and 27 August 1993. Complex, luminous structures were observed above large thunderstorm clusters on eleven nights, with one storm system (7 July 1993) yielding 248 events in 410 minutes. Their duration ranged from 33 to 283 ms, with an average of 98 ms. The luminous structures, generally not visible to the naked, dark-adapted eye, exhibited on video a wide variety of brightness levels and shapes including streaks, aurora-like curtains, smudges, fountains and jets. The structures were often more than 10 km wide and their upper portions extended to above 50 km msl.

  7. Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video

    SciTech Connect

    Lyons, W.A. , Inc., Ft. Collins, CO )

    1994-05-15

    An experiment was conducted in which an image-intensified, low-light video camera systematically monitored the stratosphere above distant (100-800 km) mesoscale convective systems over the high plains of the central US for 21 nights between 6 July and 27 August 1993. Complex, luminous structures were observed above large thunderstorm clusters on eleven nights, with one storm system (7 July 1993) yielding 248 events in 410 minutes. Their duration ranged from 33 to 283 ms, with an average of 98 ms. The luminous structures, generally not visible to the naked, dark-adapted eye, exhibited on video a wide variety of brightness levels and shapes including streaks, aurora-like curtains, smudges, fountains and jets. The structures were often more than 10 km wide and their upper portions extended to above 50 km msl. 14 refs., 4 figs.

  8. Infrared thermal imaging figures of merit

    NASA Technical Reports Server (NTRS)

    Kaplan, Herbert

    1989-01-01

    Commercially available types of infrared thermal imaging instruments, both viewers (qualitative) and imagers (quantitative) are discussed. The various scanning methods by which thermal images (thermograms) are generated will be reviewed. The performance parameters (figures of merit) that define the quality of performance of infrared radiation thermometers will be introduced. A discussion of how these parameters are extended and adapted to define the performance of thermal imaging instruments will be provided. Finally, the significance of each of the key performance parameters of thermal imaging instruments will be reviewed and procedures currently used for testing to verify performance will be outlined.

  9. Quantum Cascade Lasers in Biomedical Infrared Imaging.

    PubMed

    Bird, Benjamin; Baker, Matthew J

    2015-10-01

    Technological advances, namely the integration of quantum cascade lasers (QCLs) within an infrared (IR) microscope, are enabling the development of valuable label-free biomedical-imaging tools capable of targeting and detecting salient chemical species within practical clinical timeframes.

  10. Luminous and High Stellar Mass Candidate Galaxies at z ≈ 8 Discovered in the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey

    NASA Astrophysics Data System (ADS)

    Yan, Haojing; Finkelstein, Steven L.; Huang, Kuang-Han; Ryan, Russell E.; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A.; Dickinson, Mark; Newman, Jeffrey A.; Somerville, Rachel S.; Davé, Romeel; Faber, S. M.; Papovich, Casey; Guo, Yicheng; Giavalisco, Mauro; Lee, Kyoung-soo; Reddy, Naveen; Cooray, Asantha R.; Siana, Brian D.; Hathi, Nimish P.; Fazio, Giovanni G.; Ashby, Matthew; Weiner, Benjamin J.; Lucas, Ray A.; Dekel, Avishai; Pentericci, Laura; Conselice, Christopher J.; Kocevski, Dale D.; Lai, Kamson

    2012-12-01

    One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z ≈ 8. Its two-tiered "wide and deep" strategy bridges significant gaps in existing near-infrared surveys. Here we report on z ≈ 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 arcmin2 to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J < 26.2 mag, and are >1 mag brighter than any previously known F105W-dropouts. We derive constraints on the bright end of the rest-frame ultraviolet luminosity function of galaxies at z ≈ 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z ≈ 8. Their derived stellar masses are on the order of a few × 109 M ⊙, from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z ≈ 8. The high number density of very luminous and very massive galaxies at z ≈ 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.

  11. Luminous Infrared Galaxies with the Submillimeter Array. IV. 12CO J = 6-5 Observations of VV 114

    NASA Astrophysics Data System (ADS)

    Sliwa, Kazimierz; Wilson, Christine D.; Krips, Melanie; Petitpas, Glen R.; Iono, Daisuke; Juvela, Mika; Matsushita, Satoki; Peck, Alison; Yun, Min

    2013-11-01

    We present high-resolution (~2.''5) observations of 12CO J = 6-5 toward the luminous infrared galaxy VV 114 using the Submillimeter Array. We detect 12CO J = 6-5 emission from the eastern nucleus of VV 114 but do not detect the western nucleus or the central region. We combine the new 12CO J = 6-5 observations with previously published or archival low-J CO observations, which include 13CO J = 1-0 Atacama Large Millimeter/submillimeter Array cycle 0 observations, to analyze the beam-averaged physical conditions of the molecular gas in the eastern nucleus. We use the radiative transfer code RADEX and a Bayesian likelihood code to constrain the temperature (T kin), density (n_{H_{2}}), and column density (N_{^{12CO}}) of the molecular gas. We find that the most probable scenario for the eastern nucleus is a cold (T kin = 38 K), moderately dense (n_{H_{2}} = 102.89 cm-3) molecular gas component. We find that the most probable 12CO to 13CO abundance ratio ([12CO]/[13CO]) is 229, which is roughly three times higher than the Milky Way value. This high abundance ratio may explain the observed high 12CO/ 13CO line ratio (>25). The unusual 13CO J = 2-1/J = 1-0 line ratio of 0.6 is produced by a combination of moderate 13CO optical depths (τ = 0.4-1.1) and extremely subthermal excitation temperatures. We measure the CO-to-H2 conversion factor, αCO, to be 0.5^{+0.6}_{-0.3} M ⊙ (K km s-1 pc2)-1, which agrees with the widely used factor for ultra luminous infrared galaxies of Downes & Solomon (αCO = 0.8 M ⊙ (K km s-1 pc2)-1).

  12. Infrared image enhancement using Cellular Automata

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Han, Jing; Zhang, Yi; Bai, Lian-fa

    2016-05-01

    Image enhancement is a crucial technique for infrared images. The clear image details are important for improving the quality of infrared images in computer vision. In this paper, we propose a new enhancement method based on two priors via Cellular Automata. First, we directly learn the gradient distribution prior from the images via Cellular Automata. Second, considering the importance of image details, we propose a new gradient distribution error to encode the structure information via Cellular Automata. Finally, an iterative method is applied to remap the original image based on two priors, further improving the quality of enhanced image. Our method is simple in implementation, easy to understand, extensible to accommodate other vision tasks, and produces more accurate results. Experiments show that the proposed method performs better than other methods using qualitative and quantitative measures.

  13. CMOS image sensor for the analysis of fast-moving luminous objects

    NASA Astrophysics Data System (ADS)

    Bellach, Benaissa; Lamalle, Bernard; Lew Yan Voon, Lew F.; Cathebras, Guy

    2003-07-01

    We present an image sensor dedicated to the analysis of fast moving luminous objects. The circuit is fabricated in standard 0.6 μm CMOS technology with an image sensing array of 64 x 64 pixels. Its working principle is as follows: An electronic unit integrated at the pixel level measures the elapsed time since the beginning of the acquisition till the passage of the luminous object in front of the pixel under consideration. This value that corresponds to a number of clock cycles is stored in a 4-bit memory at the pixel level and translated into a gray level, the brighter ones corresponding to the shortest time. The result is a 16-gray level image that represents the trajectory and direction of motion of the object. Knowing the frequency of the clock, the distance between the pixels and the difference in gray levels of the pixels, the speed of the moving object can be determined. Alternatively, the 16-gray level image can be considered as a superposition of 16 one gray level images that represent the 16 positions of the moving object at 16 different time instances in the course of its displacement. The frequency of the clock can be as high as 20 MHz for the analysis of very high speed phenomena. The working principle and the architecture of the image sensor will be described in details in this paper. Moreover, the results of the tests carried out on the circuit, namely the analysis of the movement of the spot on an oscilloscope screen, will also be reported and the potential applications of the image sensor discussed.

  14. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images

    NASA Technical Reports Server (NTRS)

    Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.

    1999-01-01

    Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.

  15. Fourier transform infrared imaging of bone.

    PubMed

    Paschalis, Eleftherios P

    2012-01-01

    Fourier transform infrared imaging (FTIRI) is a technique that can be used to analyze the material properties of bone using tissue sections. In this chapter I describe the basic principles of FTIR and the methods for capturing and analyzing FTIR images in bone sections.

  16. Infrared Imaging for Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Xie, Charles; Hazzard, Edmund

    2011-01-01

    Based on detecting long-wavelength infrared (IR) radiation emitted by the subject, IR imaging shows temperature distribution instantaneously and heat flow dynamically. As a picture is worth a thousand words, an IR camera has great potential in teaching heat transfer, which is otherwise invisible. The idea of using IR imaging in teaching was first…

  17. Infrared Imaging Sharpens View in Critical Situations

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Innovative Engineering and Consulting (IEC) Infrared Systems, a leading developer of thermal imaging systems and night vision equipment, received a Glenn Alliance for Technology Exchange (GATE) award, half of which was in the form of additional NASA assistance for new product development. IEC Infrared Systems worked with electrical and optical engineers from Glenn's Diagnostics and Data Systems Branch to develop a commercial infrared imaging system that could differentiate the intensity of heat sources better than other commercial systems. The research resulted in two major thermal imaging solutions: NightStalkIR and IntrudIR Alert. These systems are being used in the United States and abroad to help locate personnel stranded in emergency situations, defend soldiers on the battlefield abroad, and protect high-value facilities and operations. The company is also applying its advanced thermal imaging techniques to medical and pharmaceutical product development with a Cleveland-based pharmaceutical company.

  18. A High Resolution, Unobscured View of the Active Regions in (Ultra) Luminous Infrared Galaxies from a VLA 33 GHz Survey

    NASA Astrophysics Data System (ADS)

    Barcos-Muñoz, Loreto; Leroy, Adam K.; Evans, Aaron S.; Armus, Lee; Condon, James J.; Mazzarella, Joseph M.; Meier, David S.; Momjian, Emmanuel; Murphy, Eric J.; Ott, Juergen; Privon, George C.; Reichardt, Ashley; Sakamoto, Kazushi; Sanders, David B.; Schinnerer, Eva; Stierwalt, Sabrina; Surace, Jason A.; Thompson, Todd A.; Walter, Fabian

    2016-01-01

    I will present a new survey of 33 GHz radio continuum emission from local U/LIRGs carried out using the Karl G. Jansky Very Large Array (VLA). This is the first such survey and it combines high resolution, good sensitivity, and multi-configuration observations that should have sensitivity to emission on all spatial scales. (Ultra) luminous infrared galaxies host some of the most extreme star-forming environments in the local universe, with large reservoirs of molecular gas and dust concentrated in the central few kpc. Our VLA observations allow us to see through the dust in these systems and to resolve the sizes of their active regions, which is essential to understand the surface and volume densities of star formation and gas in these extreme systems. I will present the best size measurements to date of the active regions for our 22 targets. I will show what these sizes imply about gas volume and surface density and infrared luminosity surface densities. I will also lay out the physical implications of these values for the strength of star formation and feedback (especially radiative feedback) in extreme environments.

  19. A High Resolution, Unobscured View of the Active Regions in (Ultra) Luminous Infrared Galaxies from a VLA 33 GHz Survey

    NASA Astrophysics Data System (ADS)

    Barcos-Muñoz, L.; Leroy, A.; Evans, A.; et al.

    2016-06-01

    I will present a new survey of 33 GHz radio continuum emission from local U/LIRGs carried out using the Karl G. Jansky Very Large Array (VLA). This is the first such survey and it combines high resolution, good sensitivity, and multi-configuration observations that should have sensitivity to emission on all spatial scales. (Ultra) luminous infrared galaxies host some of the most extreme star-forming environments in the local universe, with large reservoirs of molecular gas and dust concentrated in the central few kpc. Our VLA observations allow us to see through the dust in these systems to resolve the sizes of their active regions, which is essential to understand the surface and volume densities of star formation and gas in these extreme systems. I will present the best size measurements to date of the active regions for our 22 targets. I will show what these sizes imply about gas volume and surface density and infrared luminosity surface densities. I will also lay out the physical implications of these values for the strength of star formation and feedback (especially radiative feedback) in extreme environments.

  20. Analysis of abdominal wounds made by surgical trocars using functional luminal imaging probe (FLIP) technology.

    PubMed

    McMahon, Barry P; O'Donovan, Deidre; Liao, Donghua; Zhao, Jingbo; Schiretz, Rich; Heninrich, Russell; Gregersen, Hans

    2008-09-01

    The aim was to use a novel functional luminal imaging probe for evaluation of wound defects and tissue damage resulting from the use of trocars. Following general anesthesia of 4 adult pigs, 6 different trocars were randomly inserted at preselected locations in the porcine abdominal wall. The functional luminal imaging probe was used to profile the trocar holes during bag distension from 8 axial cross-sectional area measurements. The cross-sectional areas and pressure in the bag were recorded and exported to Matlab for analysis and data display. Geometric profiles were generated, and the minimum cross-sectional area and hole length (abdominal wall thickness) were used as endpoints. Successful distensions were made in all cases. The slope of the contours increased away from the narrowest point of the hole. The slope increased more rapidly toward the inner abdominal wall than toward the outer wall. The slope of the linear trend lines for the cross-sectional area-pressure relation represents the compliance at the narrowest point in the wall. The hole length (abdominal wall thickness) could be obtained at different cross-sectional area cutoff points. A cutoff point of 300 mm(2) gave good results when compared to the length of the hole measured after the tissue was excised. This technique represents a new and straightforward way to evaluate the effects of trocars on the abdominal wall. It may also prove useful in comparing techniques and technology from different manufacturers. PMID:18757380

  1. A Multi-wavelength View of the Central Kiloparsec Region in the Luminous Infrared Galaxy NGC 1614

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, Rubén; Pérez-Torres, Miguel Á.; Alonso-Herrero, Almudena; Alberdi, Antxon; Colina, Luis; Efstathiou, Andreas; Hernández-García, Lorena; Miralles-Caballero, Daniel; Väisänen, Petri; Packham, Christopher C.; Rajpaul, Vinesh; Zijlstra, Albert A.

    2014-05-01

    The Luminous Infrared Galaxy NGC 1614 hosts a prominent circumnuclear ring of star formation. However, the nature of the dominant emitting mechanism in its central ~100 pc is still under debate. We present sub-arcsecond angular resolution radio, mid-infrared, Paα, optical, and X-ray observations of NGC 1614, aimed at studying in detail both the circumnuclear ring and the nuclear region. The 8.4 GHz continuum emission traced by the Very Large Array and the Gemini/T-ReCS 8.7 μm emission, as well as the Paα line emission, show remarkable morphological similarities within the star-forming ring, suggesting that the underlying emission mechanisms are tightly related. We used a Hubble Space Telescope/NICMOS Paα map of similar resolution to our radio maps to disentangle the thermal free-free and non-thermal synchrotron radio emission, from which we obtained the intrinsic synchrotron power law for each individual region within the central kiloparsec of NGC 1614. The radio ring surrounds a relatively faint, steep-spectrum source at the very center of the galaxy, suggesting that the central source is not powered by an active galactic nucleus (AGN), but rather by a compact (r <~ 90 pc) starburst (SB). Chandra X-ray data also show that the central kiloparsec region is dominated by SB activity, without requiring the existence of an AGN. We also used publicly available infrared data to model-fit the spectral energy distribution of both the SB ring and a putative AGN in NGC 1614. In summary, we conclude that there is no need to invoke an AGN to explain the observed bolometric properties of the galaxy.

  2. A multi-wavelength view of the central kiloparsec region in the luminous infrared galaxy NGC 1614

    SciTech Connect

    Herrero-Illana, Rubén; Pérez-Torres, Miguel Á.; Alberdi, Antxon; Hernández-García, Lorena; Alonso-Herrero, Almudena; Colina, Luis; Efstathiou, Andreas; Miralles-Caballero, Daniel; Väisänen, Petri; Packham, Christopher C.; Rajpaul, Vinesh; Zijlstra, Albert A.

    2014-05-10

    The Luminous Infrared Galaxy NGC 1614 hosts a prominent circumnuclear ring of star formation. However, the nature of the dominant emitting mechanism in its central ∼100 pc is still under debate. We present sub-arcsecond angular resolution radio, mid-infrared, Paα, optical, and X-ray observations of NGC 1614, aimed at studying in detail both the circumnuclear ring and the nuclear region. The 8.4 GHz continuum emission traced by the Very Large Array and the Gemini/T-ReCS 8.7 μm emission, as well as the Paα line emission, show remarkable morphological similarities within the star-forming ring, suggesting that the underlying emission mechanisms are tightly related. We used a Hubble Space Telescope/NICMOS Paα map of similar resolution to our radio maps to disentangle the thermal free-free and non-thermal synchrotron radio emission, from which we obtained the intrinsic synchrotron power law for each individual region within the central kiloparsec of NGC 1614. The radio ring surrounds a relatively faint, steep-spectrum source at the very center of the galaxy, suggesting that the central source is not powered by an active galactic nucleus (AGN), but rather by a compact (r ≲ 90 pc) starburst (SB). Chandra X-ray data also show that the central kiloparsec region is dominated by SB activity, without requiring the existence of an AGN. We also used publicly available infrared data to model-fit the spectral energy distribution of both the SB ring and a putative AGN in NGC 1614. In summary, we conclude that there is no need to invoke an AGN to explain the observed bolometric properties of the galaxy.

  3. Thermal Infrared Imaging of Exoplanets

    SciTech Connect

    Apai, Daniel

    2009-08-05

    High-contrast imaging remains the only way to search for and study weakly-irradiated giant exoplanets. We review here in brief a new high-contrast imaging technique that operates in the 3-5 mum window and show the exquisite sensitivity that can be reached using this technique. The two key advantages of the L-band high-contrast imaging are the superior image quality and the 2-to 4-magnitude gain in sensitivity provided by the red color of giant planets. Most excitingly, this method can be applied to constrain the yet-unexplored giant planet population at radii between 3 and 30 AU.

  4. Detection of latent fingerprints by near-infrared spectral imaging

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Dai, Yong

    2014-05-01

    Spectral imaging technology research is becoming more extensive in the field of examination of material evidence. Near-Infrared spectral imaging technology is an important part of the full spectrum of imaging technology. This paper finished the experiment contents of the Near-Infrared spectrum imaging method and image acquisition system Near-Infrared spectral imaging technology. The experiment of Near-Infrared spectral imaging method obtains the image set of the Near-Infrared spectrum, and formats a pseudo-color images to show the potential traces successfully by processing the set of spectral images; Near-Infrared spectral imaging technology explores the technology method of obtaining the image set of Near-Infrared spectrometer and image acquisition system, and extensive access to the Near-Infrared spectrum information of latent blood, stamp and smear fingerprints on common objects, and study the characteristics of the Near-Infrared spectrum. Near-Infrared spectroscopic imaging experiments explores a wide variety of Near-Infrared reflectance spectra of the object material curve and its Near-Infrared spectrum of imaging modalities, can not only gives a reference for choosing Near-Infrared wavelength to show the object surface potential traces of substances, but also gives important data for the Near-Infrared spectrum of imaging technology development.

  5. Effects of Phosphor Persistence on High-Speed Imaging of Transient Luminous Events

    NASA Astrophysics Data System (ADS)

    Qin, J.; Pasko, V. P.; Celestin, S. J.; Cummer, S. A.; McHarg, M. G.; Stenbaek-Nielsen, H. C.

    2014-12-01

    High-speed intensified cameras are commonly used to observe and study the transient luminous events known as sprite halos and sprite streamers occurring in the Earth's upper atmosphere in association with thunderstorm activity. In such observations the phosphor persistence in the image intensifier, depending on its characteristic decay time, might lead to a significant distortion of the optical signals recorded by those cameras. In the present work, we analyze observational data obtained using different camera systems to discuss the effects of phosphor persistence on high-speed video observations of sprites, and introduce a deconvolution technique to effectively reduce such effects. The discussed technique could also be used to enhance the high-speed images of other transient optical phenomena in the case when the phosphor persistence has a characteristic decay time that is comparable to the temporal resolution of the cameras required to resolve the phenomena.

  6. Mid-infrared spectroscopy of Spitzer-selected ultra-luminous starbursts at z ~ 2

    NASA Astrophysics Data System (ADS)

    Fiolet, N.; Omont, A.; Lagache, G.; Bertincourt, B.; Fadda, D.; Baker, A. J.; Beelen, A.; Berta, S.; Boulanger, F.; Farrah, D.; Kovács, A.; Lonsdale, C.; Owen, F.; Polletta, M.; Shupe, D.; Yan, L.

    2010-12-01

    Context. Spitzer's wide-field surveys and followup capabilities have allowed a new breakthrough in mid-IR spectroscopy up to redshifts ≥ 2, especially for 24 μm detected sources. Aims: We want to study the mid-infrared properties and the starburst and AGN contributions, of 24 μm sources at z ~ 2, through analysis of mid-infrared spectra combined with millimeter, radio, and infrared photometry. Mid-infrared spectroscopy allows us to recover accurate redshifts. Methods: A complete sample of 16 Spitzer-selected sources (ULIRGs) believed to be starbursts at z ~ 2 (“5.8 μm-peakers”) was selected in the (0.5 deg2) J1064+56 SWIRE Lockman Hole field (“Lockman-North”). These sources have S24µ > 0.5 mJy, a stellar emission peak redshifted to 5.8 μm, and r'Vega > 23. The entire sample was observed with the low resolution units of the Spitzer/IRS infrared spectrograph. These sources have 1.2 mm observations with IRAM 30 m/MAMBO and very deep 20 cm observations from the VLA. Nine of our sources also benefit from 350 μm observation and detection from CSO/SHARC-II. All these data were jointly analyzed. Results: The entire sample shows good quality IRS spectra dominated by strong PAH features. The main PAH features at 6.2, 7.7, 8.6, and 11.3 μm have high S/N average luminosities of 2.90±0.31, 10.38±1.09, 3.62±0.27, and 2.29±0.26×1010 L⊙, respectively. Thanks to their PAH spectra, we derived accurate redshifts spanning from 1.750 to 2.284. The average of these redshifts is 2.017±0.038. This result confirms that the selection criteria of “5.8 μm-peakers” associated with a strong detection at 24 μm are reliable to select sources at z ~ 2. We have analyzed the different correlations between PAH emission and infrared, millimeter, and radio emissions. Practically all our sources are strongly dominated by starburst emission, with only one source showing an important AGN contribution. We have also defined two subsamples based on the equivalent width at 7.7

  7. Constraining Gamma-Ray Emission from Luminous Infrared Galaxies with Fermi-LAT; Tentative Detection of Arp 220

    NASA Astrophysics Data System (ADS)

    Griffin, Rhiannon D.; Dai, Xinyu; Thompson, Todd A.

    2016-05-01

    Star-forming galaxies produce gamma-rays primarily via pion production, resulting from inelastic collisions between cosmic-ray protons and the interstellar medium (ISM). The dense ISM and high star formation rates of luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs) imply that they should be strong gamma-ray emitters, but so far only two LIRGs have been detected. Theoretical models for their emission depend on the unknown fraction of cosmic-ray protons that escape these galaxies before interacting. We analyze Fermi-LAT data for 82 of the brightest Infrared Astronomical Satellite LIRGs and ULIRGs. We examine each system individually and carry out a stacking analysis to constrain their gamma-ray fluxes. We report the detection of the nearest ULIRG Arp 220 (˜4.6σ). We observe a gamma-ray flux (0.8-100 GeV) of 2.4 × 10-10 phot cm-2 s-1 with a photon index of 2.23 (8.2 × 1041 erg s-1 at 77 Mpc). We also derive upper limits (ULs) for the stacked LIRGs and ULIRGs. The gamma-ray luminosity of Arp 220 and the stacked ULs agree with calorimetric predictions for dense star-forming galaxies. With the detection of Arp 220, we extend the gamma-ray-IR luminosity correlation to the high-luminosity regime with {log}{L}0.1-100{GeV}=1.25× {log}{L}8-1000μ {{m}}+26.7 as well as the gamma-ray-radio continuum luminosity correlation with {log}{L}0.1-100{GeV}=1.22× {log}{L}1.4{GHz}+13.3. The current survey of Fermi-LAT is on the verge of detecting more LIRGs/ULIRGs in the local universe, and we expect even more detections with deeper Fermi-LAT observations or the next generation of gamma-ray detectors.

  8. Constraining Gamma-Ray Emission from Luminous Infrared Galaxies with Fermi-LAT; Tentative Detection of Arp 220

    NASA Astrophysics Data System (ADS)

    Griffin, Rhiannon D.; Dai, Xinyu; Thompson, Todd A.

    2016-05-01

    Star-forming galaxies produce gamma-rays primarily via pion production, resulting from inelastic collisions between cosmic-ray protons and the interstellar medium (ISM). The dense ISM and high star formation rates of luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs) imply that they should be strong gamma-ray emitters, but so far only two LIRGs have been detected. Theoretical models for their emission depend on the unknown fraction of cosmic-ray protons that escape these galaxies before interacting. We analyze Fermi-LAT data for 82 of the brightest Infrared Astronomical Satellite LIRGs and ULIRGs. We examine each system individually and carry out a stacking analysis to constrain their gamma-ray fluxes. We report the detection of the nearest ULIRG Arp 220 (˜4.6σ). We observe a gamma-ray flux (0.8–100 GeV) of 2.4 × 10‑10 phot cm‑2 s‑1 with a photon index of 2.23 (8.2 × 1041 erg s‑1 at 77 Mpc). We also derive upper limits (ULs) for the stacked LIRGs and ULIRGs. The gamma-ray luminosity of Arp 220 and the stacked ULs agree with calorimetric predictions for dense star-forming galaxies. With the detection of Arp 220, we extend the gamma-ray–IR luminosity correlation to the high-luminosity regime with {log}{L}0.1-100{GeV}=1.25× {log}{L}8-1000μ {{m}}+26.7 as well as the gamma-ray–radio continuum luminosity correlation with {log}{L}0.1-100{GeV}=1.22× {log}{L}1.4{GHz}+13.3. The current survey of Fermi-LAT is on the verge of detecting more LIRGs/ULIRGs in the local universe, and we expect even more detections with deeper Fermi-LAT observations or the next generation of gamma-ray detectors.

  9. Herschel imaging and spectroscopy of the nebula around the luminous blue variable star WRAY 15-751

    NASA Astrophysics Data System (ADS)

    Vamvatira-Nakou, C.; Hutsemékers, D.; Royer, P.; Nazé, Y.; Magain, P.; Exter, K.; Waelkens, C.; Groenewegen, M. A. T.

    2013-09-01

    We have obtained far-infrared Herschel-PACS imaging and spectroscopic observations of the nebular environment of the luminous blue variable (LBV) WRAY 15-751. The far-infrared images clearly show that the main, dusty nebula is a shell of radius 0.5 pc and width 0.35 pc extending outside the Hα nebula. Furthermore, these images reveal a second, bigger and fainter dust nebula that is observed for the first time. Both nebulae lie in an empty cavity, very likely the remnant of the O-star wind bubble formed when the star was on the main sequence. The kinematic ages of the nebulae are calculated to be about 2 × 104 and 8 × 104 years, and we estimated that each nebula contains ~0.05 M⊙ of dust. Modeling of the inner nebula indicates a Fe-rich dust. The far-infrared spectrum of the main nebula revealed forbidden emission lines coming from ionized and neutral gas. Our study shows that the main nebula consists of a shell of ionized gas surrounded by a thin photodissociation region illuminated by an "average" early-B star. We derive the abundance ratios N/O = 1.0 ± 0.4 and C/O = 0.4 ± 0.2, which indicate a mild N/O enrichment. From both the ionized and neutral gas components we estimate that the inner shell contains 1.7 ± 0.6 M⊙ of gas. Assuming a similar dust-to-gas ratio for the outer nebula, the total mass ejected by WRAY 15-751 amounts to 4 ± 2 M⊙. The measured abundances, masses and kinematic ages of the nebulae were used to constrain the evolution of the star and the epoch at which the nebulae were ejected. Our results point to an ejection of the nebulae during the red super-giant (RSG) evolutionary phase of an ~40 M⊙ star. The multiple shells around the star suggest that the mass-loss was not a continuous ejection but rather a series of episodes of extreme mass-loss. Our measurements are compatible with the recent evolutionary tracks computed for an ~40 M⊙ star with little rotation. They support the O-BSG-RSG-YSG-LBV filiation and the idea that high

  10. Research on infrared imaging illumination model based on materials

    NASA Astrophysics Data System (ADS)

    Hu, Hai-he; Feng, Chao-yin; Guo, Chang-geng; Zheng, Hai-jing; Han, Qiang; Hu, Hai-yan

    2013-09-01

    In order to effectively simulate infrared features of the scene and infrared high light phenomenon, Based on the visual light illumination model, according to the optical property of all material types in the scene, the infrared imaging illumination models are proposed to fulfill different materials: to the smooth material with specular characteristic, adopting the infrared imaging illumination model based on Blinn-Phone reflection model and introducing the self emission; to the ordinary material which is similar to black body without highlight feature, ignoring the computation of its high light reflection feature, calculating simply the material's self emission and its reflection to the surrounding as its infrared imaging illumination model, the radiation energy under zero range of visibility can be obtained according to the above two models. The OpenGl rendering technology is used to construct infrared scene simulation system which can also simulate infrared electro-optical imaging system, then gets the synthetic infrared images from any angle of view of the 3D scenes. To validate the infrared imaging illumination model, two typical 3D scenes are made, and their infrared images are calculated to compare and contrast with the real collected infrared images obtained by a long wave infrared band imaging camera. There are two major points in the paper according to the experiment results: firstly, the infrared imaging illumination models are capable of producing infrared images which are very similar to those received by thermal infrared camera; secondly, the infrared imaging illumination models can simulate the infrared specular feature of relative materials and common infrared features of general materials, which shows the validation of the infrared imaging illumination models. Quantitative analysis shows that the simulation images are similar to the collected images in the aspects of main features, but their histogram distribution does not match very well, the

  11. Functional near-infrared imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Nioka, Shoko; Chance, Britton

    1997-08-01

    We developed a continuous wave (cw) light imaging probe which includes 9 light sources and four pairs detectors (each pair has one 850 nm filtered detector and one 760 nm filtered detector). The light sources are controlled by a computer and the signals from the detectors are converted and processed in the computer. There are 16 measurement sections and total detection area is 9 cm multiplied by 4 cm which can be scanned every 8 seconds. The detector-source uses 2.5 cm spacing. In this study, we present the noise, drift, detectivity and spatial resolution test results of the imager. Changes of oxygenation and blood volume in about 2 cm depth from the surface of brain model can be detected. The temporal resolution is 8 seconds and spatial resolution is about 2 cm. The detectivity of OD changes can reach 0.008. With this cw imaging probe, we measured motor function in motor cortex area, visual function in occipital area, and cognitive activity in frontal forehead area of the human brian when the subjects are stimulated by moving fingers, viewing a flashing light and doing an analogy test, respectively. The experimental results show that the cw imaging probe can be used for functional images of brain activity, base upon changes of oxygenation and blood volume due to the stimulus.

  12. High-throughput imaging of self-luminous objects through a single optical fibre.

    PubMed

    Barankov, Roman; Mertz, Jerome

    2014-01-01

    Imaging through a single optical fibre offers attractive possibilities in many applications such as micro-endoscopy or remote sensing. However, the direct transmission of an image through an optical fibre is difficult because spatial information is scrambled upon propagation. We demonstrate an image transmission strategy where spatial information is first converted to spectral information. Our strategy is based on a principle of spread-spectrum encoding, borrowed from wireless communications, wherein object pixels are converted into distinct spectral codes that span the full bandwidth of the object spectrum. Image recovery is performed by numerical inversion of the detected spectrum at the fibre output. We provide a simple demonstration of spread-spectrum encoding using Fabry-Perot etalons. Our technique enables the two-dimensional imaging of self-luminous (that is, incoherent) objects with high throughput in principle independent of pixel number. Moreover, it is insensitive to fibre bending, contains no moving parts and opens the possibility of extreme miniaturization. PMID:25410902

  13. Tasking on Natural Statistics of Infrared Images.

    PubMed

    Goodall, Todd Richard; Bovik, Alan Conrad; Paulter, Nicholas G

    2016-01-01

    Natural scene statistics (NSSs) provide powerful, perceptually relevant tools that have been successfully used for image quality analysis of visible light images. Since NSS capture statistical regularities that arise from the physical world, they are relevant to long wave infrared (LWIR) images, which differ from visible light images mainly by the wavelengths captured at the imaging sensors. We show that NSS models of bandpass LWIR images are similar to those of visible light images, but with different parameterizations. Using this difference, we exploit the power of NSS to successfully distinguish between LWIR images and visible light images. In addition, we study distortions unique to LWIR and find directional models useful for detecting the halo effect, simple bandpass models useful for detecting hotspots, and combinations of these models useful for measuring the degree of non-uniformity present in many LWIR images. For local distortion identification and measurement, we also describe a method for generating distortion maps using NSS features. To facilitate our evaluation, we analyze the NSS of LWIR images under pristine and distorted conditions, using four databases, each captured with a different IR camera. Predicting human performance for assessing distortion and quality in LWIR images is critical for task efficacy. We find that NSS features improve human targeting task performance prediction. Furthermore, we conducted a human study on the perceptual quality of noise-and blur-distorted LWIR images and create a new blind image quality predictor for IR images.

  14. NTT images of ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Melnick, J.; Mirabel, I. F.

    1990-01-01

    New Technology Telescope (NTT) images of 16 southern ultraluminous infrared (LIR greater than 10 to the 12th solar luminosities) galaxies in the Local Universe (z less than 0.13) are presented. All these galaxies are strongly interacting systems showing double nuclei, wisps, and tails that are characteristic of advanced mergers. The most spectacular instance of these cosmic accidents is the 'superantenna', a system with long slender tails that extend over 500 kpc. It is concluded that ultraluminous infrared galaxies are mergers of giant spiral galaxies, and that the distinguishing features of tidal interactions in this type of galaxies become blurred at higher redshifts. The CCD images suggest the existence of a critical separation between the colliding galaxies of about 10 kpc at which the merging systems become ultraluminous in the infrared.

  15. Infrared scanning images: An archeological application

    USGS Publications Warehouse

    Schaber, G.G.; Gumerman, G.J.

    1969-01-01

    Aerial infrared scanner images of an area near the Little Colorado River in north-central Arizona disclosed the existence of scattered clusters of parallel linear features in the ashfall area of Sunset Crater. The features are not obvious in conventional aerial photographs, and only one cluster could be recognized on the ground. Soil and pollen analyses reveal that they are prehistoric agricultural plots.

  16. Quantum Cascade Lasers in Biomedical Infrared Imaging.

    PubMed

    Bird, Benjamin; Baker, Matthew J

    2015-10-01

    Technological advances, namely the integration of quantum cascade lasers (QCLs) within an infrared (IR) microscope, are enabling the development of valuable label-free biomedical-imaging tools capable of targeting and detecting salient chemical species within practical clinical timeframes. PMID:26409774

  17. Application of infrared imaging in ferrocyanide tanks

    SciTech Connect

    Morris, K.L.; Mailhot, R.B. Jr.; McLaren, J.M.; Morris, K.L.

    1994-09-28

    This report analyzes the feasibility of using infrared imaging techniques and scanning equipment to detect potential hot spots within ferrocyanide waste tanks at the Hanford Site. A hot spot is defined as a volumetric region within a waste tank with an excessively warm temperature that is generated by radioactive isotopes. The thermal image of a hot spot was modeled by computer. this model determined the image an IR system must detect. Laboratory and field tests of the imaging system are described, and conclusions based on laboratory and field data are presented. The report shows that infrared imaging is capable of detecting hot spots in ferrocyanide waste tanks with depths of up to 3.94 m (155 in.). The infrared imaging system is a useful technology for initial evaluation and assessment of hot spots in the majority of ferrocyanide waste tanks at the Hanford Site. The system will not allow an exact hot spot and temperature determination, but it will provide the necessary information to determine the worst-case hot spot detected in temperature patterns. Ferrocyanide tanks are one type of storage tank on the Watch List. These tanks are identified as priority 1 Hanford Site Tank farm Safety Issues.

  18. HECTOSPEC AND HYDRA SPECTRA OF INFRARED LUMINOUS SOURCES IN THE AKARI NORTH ECLIPTIC POLE SURVEY FIELD

    SciTech Connect

    Shim, Hyunjin; Im, Myungshin; Jeon, Yiseul; Kim, Seong Jin; Lee, Hyung Mok; Ko, Jongwan; Karouzos, Marios; Papovich, Casey; Willmer, Christopher; Weiner, Benjamin J.

    2013-08-15

    We present spectra of 1796 sources selected in the AKARI North Ecliptic Pole Wide Survey field, obtained with MMT/Hectospec and WIYN/Hydra, for which we measure 1645 redshifts. We complemented the generic flux-limited spectroscopic surveys at 11 {mu}m and 15 {mu}m, with additional sources selected based on the MIR and optical colors. In MMT/Hectospec observations, the redshift identification rates are {approx}80% for objects with R < 21.5 mag. On the other hand, in WIYN/Hydra observations, the redshift identification rates are {approx}80% at R magnitudes brighter than 19 mag. The observed spectra were classified through the visual inspection or from the line diagnostics. We identified 1128 star-forming or absorption-line-dominated galaxies, 198 Type-1 active galactic nuclei (AGNs), 8 Type-2 AGNs, 121 Galactic stars, and 190 spectra in unknown category due to low signal-to-noise ratio. The spectra were flux-calibrated but to an accuracy of 0.1-0.18 dex for most of the targets and worse for the remainder. We derive star formation rates (SFRs) from the mid-infrared fluxes or from the optical emission lines, showing that our sample spans an SFR range of 0.1 to a few hundred M{sub Sun} yr{sup -1}. We find that the extinction inferred from the difference between the IR and optical SFR increases as the IR luminosity increases but with a large scatter.

  19. Characterization of the luminance and shape of ash particles at Sakurajima volcano, Japan, using CCD camera images

    NASA Astrophysics Data System (ADS)

    Miwa, Takahiro; Shimano, Taketo; Nishimura, Takeshi

    2015-01-01

    We develop a new method for characterizing the properties of volcanic ash at the Sakurajima volcano, Japan, based on automatic processing of CCD camera images. Volcanic ash is studied in terms of both luminance and particle shape. A monochromatic CCD camera coupled with a stereomicroscope is used to acquire digital images through three filters that pass red, green, or blue light. On single ash particles, we measure the apparent luminance, corresponding to 256 tones for each color (red, green, and blue) for each pixel occupied by ash particles in the image, and the average and standard deviation of the luminance. The outline of each ash particle is captured from a digital image taken under transmitted light through a polarizing plate. Also, we define a new quasi-fractal dimension ( D qf ) to quantify the complexity of the ash particle outlines. We examine two ash samples, each including about 1000 particles, which were erupted from the Showa crater of the Sakurajima volcano, Japan, on February 09, 2009 and January 13, 2010. The apparent luminance of each ash particle shows a lognormal distribution. The average luminance of the ash particles erupted in 2009 is higher than that of those erupted in 2010, which is in good agreement with the results obtained from component analysis under a binocular microscope (i.e., the number fraction of dark juvenile particles is lower for the 2009 sample). The standard deviations of apparent luminance have two peaks in the histogram, and the quasi-fractal dimensions show different frequency distributions between the two samples. These features are not recognized in the results of conventional qualitative classification criteria or the sphericity of the particle outlines. Our method can characterize and distinguish ash samples, even for ash particles that have gradual property changes, and is complementary to component analysis. This method also enables the relatively fast and systematic analysis of ash samples that is required for

  20. AN INFRARED-LUMINOUS MERGER WITH TWO BIPOLAR MOLECULAR OUTFLOWS: ALMA AND SMA OBSERVATIONS OF NGC 3256

    SciTech Connect

    Sakamoto, Kazushi; Aalto, Susanne; Combes, Francoise; Evans, Aaron; Peck, Alison

    2014-12-20

    We report Atacama Large Millimeter/sub-millimeter Array and Submillimeter Array observations of the infrared-luminous merger NGC 3256, the most luminous galaxy within z = 0.01. Both of the two merger nuclei separated by 5'' (0.8 kpc) have a molecular gas concentration, a nuclear disk, with Σ{sub mol} > 10{sup 3} M {sub ☉} pc{sup –2}. The northern nucleus is more massive and is surrounded by molecular spiral arms. Its nuclear disk is face-on, while the southern nuclear disk is almost edge-on. The high-velocity molecular gas in the system can be resolved into two molecular outflows from the two nuclei. The one from the northern nucleus is part of a starburst-driven superwind seen nearly pole-on. Its maximum velocity is >750 km s{sup –1} and its mass outflow rate is >60 M {sub ☉} yr{sup –1} for a conversion factor X{sub CO}=N{sub H{sub 2}}/I{sub CO(1−0)} of 1 × 10{sup 20} cm{sup –2} (K km s{sup –1}){sup –1}. The molecular outflow from the southern nucleus is a highly collimated bipolar jet seen nearly edge-on. Its line-of-sight velocity increases with distance, out to 300 pc from the nucleus, to the maximum de-projected velocity of ∼2000 km s{sup –1} for the estimated inclination and ≳1000 km s{sup –1} taking into account the uncertainty. Its mass outflow rate is estimated to be >50 M {sub ☉} yr{sup –1} for the same X {sub CO}. This southern outflow has indications of being driven by a bipolar radio jet from an active galactic nucleus that recently weakened. The sum of these outflow rates, although subject to the uncertainty in the molecular mass estimate, either exceeds or compares to the total star formation rate. The feedback from nuclear activity through molecular outflows is therefore significant in the gas consumption, and hence evolution, of this system.

  1. Infrared image denoising by nonlocal means filtering

    NASA Astrophysics Data System (ADS)

    Dee-Noor, Barak; Stern, Adrian; Yitzhaky, Yitzhak; Kopeika, Natan

    2012-05-01

    The recently introduced non-local means (NLM) image denoising technique broke the traditional paradigm according to which image pixels are processed by their surroundings. Non-local means technique was demonstrated to outperform state-of-the art denoising techniques when applied to images in the visible. This technique is even more powerful when applied to low contrast images, which makes it tractable for denoising infrared (IR) images. In this work we investigate the performance of NLM applied to infrared images. We also present a new technique designed to speed-up the NLM filtering process. The main drawback of the NLM is the large computational time required by the process of searching similar patches. Several techniques were developed during the last years to reduce the computational burden. Here we present a new techniques designed to reduce computational cost and sustain optimal filtering results of NLM technique. We show that the new technique, which we call Multi-Resolution Search NLM (MRS-NLM), reduces significantly the computational cost of the filtering process and we present a study of its performance on IR images.

  2. [Advances in infrared spectrum zoom imaging system research].

    PubMed

    Bai, Yu; Xing, Ting-wen; Jiang, Ya-dong

    2014-12-01

    Compared with the infrared spectrum fixed focal length system and infrared spectrum dual-zoom system, infrared spectrum continuous zoom imaging system which has continuous variational field of view can track targets sequentially, so it is a research direction in infrared spectrum imaging technology. Some new technologies are presented overseas in order to improve the detection performance, reduce cost and have good athermalized performance in infrared spectrum continuous zoom imaging system. Infrared material, infrared detector and variable aperture, those new technologies are su mmarized and the idiographic application of those new technologies in infrared spectrum continuous zoom imaging system are presented in the paper, for example athermalization of an infrared spectrum zoom lens system with new infrared material for target detection, dual band infrared spectrum continuous zoom imaging system with mid-wave infrared and long-wave infrared, infrared spectrum continuous zoom imaging system with high ratio, nfrared spectrum continuous zoom imaging system with dual F/number. It is useful for the development of chinese infrared continuous zoom imaging system.

  3. Aural stealth of portable HOT infrared imager

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander

    2013-06-01

    Further reduction of size, weight and power consumption of the High Operating Temperature (HOT) infrared (IR) Integrated Detector-Dewar-Cooler Assemblies (IDDCA) eventually calls for development of high-speed cryocoolers. In case of integral rotary design, the immediate penalty is the more intensive slapping of compression and expansion pistons along with intensification of micro collisions inherent for the operation of crank-slide linkages featuring ball bearings. Resulting from this is the generation of impulsive vibration export, the spectrum of which features the driving frequency along with numerous multiples covering the entire range of audible frequencies. In a typical design of an infrared imager, the metal light-weight enclosure accommodates a directly mounted IDDCA and an optical train, thus serving as an optical bench and heat sink. This usually results in excitation of structural resonances in the said enclosure and, therefore, in excessive noise generation compromising the aural stealth. The author presents the complex approach to a design of aural undetectable infrared imagers in which the IDDCA is mounted upon the imager enclosure through a silent pad. Special attention is paid to resolving the line of sight stability and heat sinking issues. The demonstration imager relying on Ricor K562S based IDDCA meets the most stringent requirement to 10 meters aural non-detectability distance (per MIL-STD 1474D, Level II) even during boost cooldown phase of operation.

  4. Near-Infrared Intraoperative Chemiluminescence Imaging.

    PubMed

    Büchel, Gabriel E; Carney, Brandon; Shaffer, Travis M; Tang, Jun; Austin, Christine; Arora, Manish; Zeglis, Brian M; Grimm, Jan; Eppinger, Jörg; Reiner, Thomas

    2016-09-20

    Intraoperative imaging technologies recently entered the operating room, and their implementation is revolutionizing how physicians plan, monitor, and perform surgical interventions. In this work, we present a novel surgical imaging reporter system: intraoperative chemiluminescence imaging (ICI). To this end, we have leveraged the ability of a chemiluminescent metal complex to generate near-infrared light upon exposure to an aqueous solution of Ce(4+) in the presence of reducing tissue or blood components. An optical camera spatially resolves the resulting photon flux. We describe the construction and application of a prototype imaging setup, which achieves a detection limit as low as 6.9 pmol cm(-2) of the transition-metal-based ICI agent. As a proof of concept, we use ICI for the in vivo detection of our transition metal tracer following both systemic and subdermal injections. The very high signal-to-noise ratios make ICI an interesting candidate for the development of new intraoperative imaging technologies.

  5. SUBMILLIMETER INTERFEROMETRY OF THE LUMINOUS INFRARED GALAXY NGC 4418: A HIDDEN HOT NUCLEUS WITH AN INFLOW AND AN OUTFLOW

    SciTech Connect

    Sakamoto, Kazushi; Ohyama, Youichi; Aalto, Susanne; Costagliola, Francesco; Martin, Sergio; Wiedner, Martina C.; Wilner, David J.

    2013-02-10

    We have observed the nucleus of the nearby luminous infrared galaxy NGC 4418 with subarcsec resolution at 860 and 450 {mu}m for the first time to characterize its hidden power source. A {approx}20 pc (0.''1) hot dusty core was found inside a 100 pc scale concentration of molecular gas at the galactic center. The 860 {mu}m continuum core has a deconvolved (peak) brightness temperature of 120-210 K. The CO(3-2) peak brightness temperature there is as high as 90 K at 50 pc resolution. The core has a bolometric luminosity of about 10{sup 11} L {sub Sun }, which accounts for most of the galaxy luminosity. It is Compton thick (N {sub H} {approx}> 10{sup 25} cm{sup -2}) and has a high luminosity-to-mass ratio (L/M) {approx} 500 L {sub Sun} M {sub Sun} {sup -1} as well as a high luminosity surface density 10{sup 8.5{+-}0.5} L {sub Sun} pc{sup -2}. These parameters are consistent with an active galactic nucleus to be the main luminosity source (with an Eddington ratio about 0.3), while they can be also due to a young starburst near its maximum L/M. We also found an optical color (reddening) feature that we attribute to an outflow cone emanating from the nucleus. The hidden hot nucleus thus shows evidence of both an inflow, previously seen with absorption lines, and the new outflow reported here in a different direction. The nucleus must be rapidly evolving with these gas flows.

  6. Uncooled long-wave infrared hyperspectral imaging

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G. (Inventor)

    2006-01-01

    A long-wave infrared hyperspectral sensor device employs a combination of an interferometer with an uncooled microbolometer array camera to produce hyperspectral images without the use of bulky, power-hungry motorized components, making it suitable for UAV vehicles, small mobile platforms, or in extraterrestrial environments. The sensor device can provide signal-to-noise ratios near 200 for ambient temperature scenes with 33 wavenumber resolution at a frame rate of 50 Hz, with higher results indicated by ongoing component improvements.

  7. [Microscopic infrared spectral imaging of oily core].

    PubMed

    Huang, Qiao-Song; Yu, Zhao-Xian; Li, Jing; Chen, Chen

    2009-02-01

    In the present paper, the authors examined some oily core by microscopic infrared spectral imaging methods. Those methods can be classified in three modes, referred to as "transmission mode", "reflection mode" and "attenuated total reflection (ATR) mode". The observed oily core samples belong to siltstone. The samples were made of quartz (-20%), feldspar(-50%) and other rock (igneous rock 25%, metamorphic rocks 1%, sedimentary rock 4%); a little recrystallized calcite (-1%) was in the pore, and the argillaceous matter was distributed along the edge of a pore. The experimental work has been accomplished using SHIMADZU Model IRPrestige-21 Fourier transform infrared spectrophotometer plus AIM8800 infrared microscope. For IRPrestige-21, the spectral range is 7 800-350 cm(-1) spectral resolution is 1 cm(-1), and AIM8800 microscope with motorized stages has a resolution of 1 micrometer. The experiment was preformed at room temperature. In "transmission mode" infrared spectral imaging method, the spectral range was limited in wavenumbers greater than 2 000 cm(-1) because the base glass piece has strong light absorption. In contrast with "transmission mode", in "attenuated total reflection (ATR) mode", the depth of penetration into sample is very small (1-2 micrometer), then the absorbance value has nothing to do with base glass piece light absorption. In microscopic infrared transmission spectra, the experimental result shows that there are some strong absorption peaks at 2 866, 2 928, 3 618 and 2 515 cm(-1) respectively. The former two peaks correspond to methyl(methylene) symmetrical and unsymmetrical stretch vibration mode, respectively. The latter two peaks correspond to hydroxyl-stretch vibration mode and S-H, P-H chemical bond stretch vibration mode, respectively. In microscopic longwave infrared ATR spectra, there are other stronger absorption peaks at 1 400, 1 038 and 783 cm(i1)respectively, corresponding to methyl(methylene) widing vibration mode and optical mode

  8. [Microscopic infrared spectral imaging of oily core].

    PubMed

    Huang, Qiao-Song; Yu, Zhao-Xian; Li, Jing; Chen, Chen

    2009-02-01

    In the present paper, the authors examined some oily core by microscopic infrared spectral imaging methods. Those methods can be classified in three modes, referred to as "transmission mode", "reflection mode" and "attenuated total reflection (ATR) mode". The observed oily core samples belong to siltstone. The samples were made of quartz (-20%), feldspar(-50%) and other rock (igneous rock 25%, metamorphic rocks 1%, sedimentary rock 4%); a little recrystallized calcite (-1%) was in the pore, and the argillaceous matter was distributed along the edge of a pore. The experimental work has been accomplished using SHIMADZU Model IRPrestige-21 Fourier transform infrared spectrophotometer plus AIM8800 infrared microscope. For IRPrestige-21, the spectral range is 7 800-350 cm(-1) spectral resolution is 1 cm(-1), and AIM8800 microscope with motorized stages has a resolution of 1 micrometer. The experiment was preformed at room temperature. In "transmission mode" infrared spectral imaging method, the spectral range was limited in wavenumbers greater than 2 000 cm(-1) because the base glass piece has strong light absorption. In contrast with "transmission mode", in "attenuated total reflection (ATR) mode", the depth of penetration into sample is very small (1-2 micrometer), then the absorbance value has nothing to do with base glass piece light absorption. In microscopic infrared transmission spectra, the experimental result shows that there are some strong absorption peaks at 2 866, 2 928, 3 618 and 2 515 cm(-1) respectively. The former two peaks correspond to methyl(methylene) symmetrical and unsymmetrical stretch vibration mode, respectively. The latter two peaks correspond to hydroxyl-stretch vibration mode and S-H, P-H chemical bond stretch vibration mode, respectively. In microscopic longwave infrared ATR spectra, there are other stronger absorption peaks at 1 400, 1 038 and 783 cm(i1)respectively, corresponding to methyl(methylene) widing vibration mode and optical mode

  9. Infrared Images of Shock-Heated Tin

    SciTech Connect

    Craig W. McCluskey; Mark D. Wilke; William D. Turley; Gerald D. Stevens; Lynn R. Veeser; Michael Grover

    2004-09-01

    High-resolution, gated infrared images were taken of tin samples shock heated to just below the 505 K melting point. Sample surfaces were either polished or diamond-turned, with grain sizes ranging from about 0.05 to 10 mm. A high explosive in contact with a 2-mm-thick tin sample induced a peak sample stress of 18 GPa. Interferometer data from similarly-driven tin shots indicate that immediately after shock breakout the samples spall near the free (imaged) surface with a scab thickness of about 0.1 mm.

  10. Uncooled Micro-Cantilever Infrared Imager Optimization

    SciTech Connect

    Panagiotis, Datskos G.

    2008-02-05

    We report on the development, fabrication and characterization of microcantilever based uncooled focal plane array (FPA) for infrared imaging. By combining a streamlined design of microcantilever thermal transducers with a highly efficient optical readout, we minimized the fabrication complexity while achieving a competitive level of imaging performance. The microcantilever FPAs were fabricated using a straightforward fabrication process that involved only three photolithographic steps (i.e. three masks). A designed and constructed prototype of an IR imager employed a simple optical readout based on a noncoherent low-power light source. The main figures of merit of the IR imager were found to be comparable to those of uncooled MEMS infrared detectors with substantially higher degree of fabrication complexity. In particular, the NETD and the response time of the implemented MEMS IR detector were measured to be as low as 0.5K and 6 ms, respectively. The potential of the implemented designs can also be concluded from the fact that the constructed prototype enabled IR imaging of close to room temperature objects without the use of any advanced data processing. The most unique and practically valuable feature of the implemented FPAs, however, is their scalability to high resolution formats, such as 2000 x 2000, without progressively growing device complexity and cost. The overall technical objective of the proposed work was to develop uncooled infrared arrays based on micromechanical sensors. Currently used miniature sensors use a number of different readout techniques to accomplish the sensing. The use of optical readout techniques sensing require the deposition of thin coatings on the surface of micromechanical thermal detectors. Oak Ridge National Laboratory (ORNL) is uniquely qualified to perform the required research and development (R&D) services that will assist our ongoing activities. Over the past decade ORNL has developed a number of unique methods and

  11. Sulfur copolymers for infrared optical imaging

    NASA Astrophysics Data System (ADS)

    Namnabat, S.; Gabriel, J. J.; Pyun, J.; Norwood, R. A.; Dereniak, E. L.; van der Laan, J.

    2014-06-01

    The development of organic polymers with low infrared absorption has been investigated as a possible alternative to inorganic metal oxide, semiconductor, or chalcogenide-based materials for a variety of optical devices and components, such as lenses, goggles, thermal imaging cameras and optical fibers. In principle, organic-based polymers are attractive for these applications because of their low weight, ease of processing, mechanical toughness, and facile chemical variation using commercially available precursors. Herein we report on the optical characterization of a new class of sulfur copolymers that are readily moldable, transparent above 500 nm, possess high refractive index (n > 1.8) and take advantage of the low infrared absorption of S-S bonds for potential use in the mid-infrared at 3-5 microns. These materials are largely made from elemental sulfur by an inverse vulcanization process; in the current study we focus on the properties of a chemically stable, branched copolymer of poly(sulfur-random-1,3-diisopropenylbenzene) (poly(S-r- DIB). Copolymers with elemental sulfur content ranging from 50% to 80% by weight were studied by UV-VIS spectroscopy, FTIR, and prism coupling for refractive index measurement. Clear correlation between material composition and the optical properties was established, confirming that the high polarizability of the sulfur atom leads to high refractive index while also maintaining low optical loss in the infrared.

  12. Jansky VLA Imaging of Heavily Obscured, Luminous Quasars at Redshifts ~2

    NASA Astrophysics Data System (ADS)

    Trapp, Adam; Lonsdale, Carol J.; Patil, Palavi; Whittle, Mark; Lacy, Mark; Lonsdale, Colin J.

    2016-01-01

    We present JVLA A and B array observations in X-band (8-12 GHz) of a sample of radio powerful, bolometrically luminous, but optically obscured quasars. The quasars were selected using a cross-match between WISE mid-IR sources brighter than 7 mJ at 22 mu and NVSS and/or FIRST radio surveys, with a further constraint that the sources were optically faint. The survey aims to select young quasars with young radio sources at redshifts z ~ 1-3. Ultimately, we wish to study the role that radio jets play in quasar driven feedback. Our VLA observations provide fundamental information on radio source size, structure, power and spectral index, all of which shed light on the properties of the young radio source. We will present images and data on 155 objects from our primary sample WISE-NVSS sample of 156.The majority of sources are found to be compact, steep-spectrum, and sub-galactic in scale, with a significant minority of resolved doubles, triples, and core-jets. Using radio data at other wavelengths taken from the literature, we use SED fits to identify or constrain the turn-over frequencies. Combining size and turn-over frequency, the majority of the sources are found to be CSS, GPS or HFPs, consistent with young radio source ages.

  13. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos, Stavros; Staggs, Michael C.

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  14. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos; Stavros , Staggs; Michael C.

    2006-03-21

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  15. Infrared and visible images fusion based on RPCA and NSCT

    NASA Astrophysics Data System (ADS)

    Fu, Zhizhong; Wang, Xue; Xu, Jin; Zhou, Ning; Zhao, Yufei

    2016-07-01

    Current infrared and visible images fusion algorithms cannot efficiently extract the object information in the infrared image while retaining the background information in visible image. To address this issue, we propose a new infrared and visible image fusion algorithm by taking advantage of robust principal component analysis (RPCA) and non-subsampled Contourlet transform (NSCT). Firstly, RPCA decomposition is performed on the infrared and visible images respectively to obtain their corresponding sparse matrixes, which can well represent the sparse feature of images. Secondly, the infrared and visible images are decomposed into low frequency sub-band and high-frequency sub-band coefficients by using NSCT. Subsequently, the sparse matrixes are used to guide the fusion rule of low frequency sub-band coefficients and high frequency sub-band coefficients. Experimental results demonstrate that our fusion algorithm can highlight the infrared objects as well as retain the background information in visible image.

  16. Using quantum filters as edge detectors in infrared images

    NASA Astrophysics Data System (ADS)

    Bolaños Marín, Daniela

    2014-06-01

    Some new filters inspired in quantum models are used as edge detectors in infrared images. In this case, Bessel, Hermite and Morse filters will be applied to detect edges and fibrillar structures in infrared images. The edge detectors will be built by the Laplacian of the mentioned quantum filters. Furthermore, using curvature operators, curvature detectors and amplifiers of contrast will be constructed to analyze infrared images. The quantum filter prototyping will be done using computer algebra software, specifically Maple and its package, ImageTools. The quantum filters will be applied to infrared images using the technique of convolutions and blurred derivatives. It is expected that designed quantum filters will be useful for analysis and processing of infrared images. As future investigations, we propose to design plugins with the quantum filters that can be incorporated into the program ImageJ, which will facilitate the use of the quantum filters for the infrared image processing.

  17. Design of spatio-temporally modulated static infrared imaging Fourier transform spectrometer.

    PubMed

    Wang, WenCong; Liang, JingQiu; Liang, ZhongZhu; Lü, JinGuang; Qin, YuXin; Tian, Chao; Wang, WeiBiao

    2014-08-15

    A novel static medium wave infrared (MWIR) imaging Fourier transform spectrometer (IFTS) is conceptually proposed and experimentally demonstrated. In this system, the moving mirror in traditional temporally modulated IFTS is replaced by multi-step micro-mirrors to realize the static design. Compared with the traditional spatially modulated IFTS, they have no slit system and are superior with larger luminous flux and higher energy efficiency. The use of the multi-step micro-mirrors can also make the system compact and light.

  18. Some design considerations for high-performance infrared imaging seeker

    NASA Astrophysics Data System (ADS)

    Fan, Jinxiang; Huang, Jianxiong

    2015-10-01

    In recent years, precision guided weapons play more and more important role in modern war. The development and applications of infrared imaging guidance technology have been paid more and more attention. And with the increasing of the complexity of mission and environment, precision guided weapons make stricter demand for infrared imaging seeker. The demands for infrared imaging seeker include: high detection sensitivity, large dynamic range, having better target recognition capability, having better anti-jamming capability and better environment adaptability. To meet the strict demand of weapon system, several important issues should be considered in high-performance infrared imaging seeker design. The mission, targets, environment of infrared imaging guided missile must be regarded. The tradeoff among performance goal, design parameters, infrared technology constraints and missile constraints should be considered. The optimized application of IRFPA and ATR in complicated environment should be concerned. In this paper, some design considerations for high-performance infrared imaging seeker were discussed.

  19. Visual Comfort Analysis of Innovative Interior and Exterior Shading Systems for Commercial Buildings using High Resolution Luminance Images

    SciTech Connect

    Konis, Kyle; Lee, Eleanor; Clear, Robert

    2011-01-11

    The objective of this study was to explore how calibrated high dynamic range (HDR) images (luminance maps) acquired in real world daylit environments can be used to characterize, evaluate, and compare visual comfort conditions of innovative facade shading and light-redirecting systems. Detailed (1536 x 1536 pixel) luminance maps were time-lapse acquired from two view positions in an unoccupied full scale testbed facility. These maps were analyzed using existing visual comfort metrics to quantify how innovative interior and exterior shading systems compare to conventional systems under real sun and sky conditions over a solstice-to-solstice test interval. The results provide a case study in the challenges and potential of methods of visualizing, evaluating and summarizing daily and seasonal variation of visual comfort conditions computed from large sets of image data.

  20. Infrared imager requirements for breast cancer detection.

    PubMed

    González, Francisco Javier

    2007-01-01

    Infrared imaging was introduced into medicine in the late 1950s, early studies suggested there were applications of the technology in areas as diverse as detection of breast cancer and malfunctions of the nervous system, however the early instrumentation was not sensitive enough to detect the subtle changes in temperature needed to accurately detect and monitor disease. In recent years the sensitivity of infrared instruments has greatly improved. In this paper the bioheat transfer equation is solved for a simplified model of a female breast and a cancerous tumor in order to quantify the minimum size of a tumor or the maximum depth of a certain sized tumor that a modern state-of-the-art imager can detect. Finite Element simulations showed that current state-of-the-art imagers are capable of detecting 3 cm tumors located deeper than 7 cm from the skin surface and tumors smaller than 0.5 cm can be detected if they are close to the surface of the skin.

  1. Infrared hyperspectral imaging sensor for gas detection

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2000-11-01

    A small light weight man portable imaging spectrometer has many applications; gas leak detection, flare analysis, threat warning, chemical agent detection, just to name a few. With support from the US Air Force and Navy, Pacific Advanced Technology has developed a small man portable hyperspectral imaging sensor with an embedded DSP processor for real time processing that is capable of remotely imaging various targets such as gas plums, flames and camouflaged targets. Based upon their spectral signature the species and concentration of gases can be determined. This system has been field tested at numerous places including White Mountain, CA, Edwards AFB, and Vandenberg AFB. Recently evaluation of the system for gas detection has been performed. This paper presents these results. The system uses a conventional infrared camera fitted with a diffractive optic that images as well as disperses the incident radiation to form spectral images that are collected in band sequential mode. Because the diffractive optic performs both imaging and spectral filtering, the lens system consists of only a single element that is small, light weight and robust, thus allowing man portability. The number of spectral bands are programmable such that only those bands of interest need to be collected. The system is entirely passive, therefore, easily used in a covert operation. Currently Pacific Advanced Technology is working on the next generation of this camera system that will have both an embedded processor as well as an embedded digital signal processor in a small hand held camera configuration. This will allow the implementation of signal and image processing algorithms for gas detection and identification in real time. This paper presents field test data on gas detection and identification as well as discuss the signal and image processing used to enhance the gas visibility. Flow rates as low as 0.01 cubic feet per minute have been imaged with this system.

  2. Lightness perception in high dynamic range images: local and remote luminance effects.

    PubMed

    Allred, Sarah R; Radonjic, Ana; Gilchrist, Alan L; Brainard, David H

    2012-01-01

    We measured the perceived lightness of target patches embedded in high dynamic range checkerboards. We independently varied the luminance of checks immediately surrounding the test and those remote from it. The data establish context transfer functions (CTFs) that characterize perceptual matches across checkerboard contexts. Several features of the CTFs are broadly consistent with previous research: Matched luminance decreases when overall context luminance decreases; matched luminance increases when overall context luminance increases; manipulating context locations near the target has a greater effect than manipulating locations far from the target patch. The measured CTFs are not well described, however, by changes with context in multiplicative gain alone or by changes in both multiplicative and subtractive adaptation parameters. We were able to fit the data with a three-parameter model of adaptation. This allowed us to characterize the CTFs by specifying the luminances that appeared white, black, and gray (white point, black point, and gray point, respectively). The white and black points depended additively on the local and remote contrasts, but accounting for the gray point required an interaction term. Analysis of this effect suggests that the target patch itself must be included in a description of the visual context.

  3. Galileo infrared imaging spectroscopy measurements at venus

    USGS Publications Warehouse

    Carlson, R.W.; Baines, K.H.; Encrenaz, Th.; Taylor, F.W.; Drossart, P.; Kamp, L.W.; Pollack, James B.; Lellouch, E.; Collard, A.D.; Calcutt, S.B.; Grinspoon, D.; Weissman, P.R.; Smythe, W.D.; Ocampo, A.C.; Danielson, G.E.; Fanale, F.P.; Johnson, T.V.; Kieffer, H.H.; Matson, D.L.; McCord, T.B.; Soderblom, L.A.

    1991-01-01

    During the 1990 Galileo Venus flyby, the Near Infrared Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substantial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

  4. Development of shutter subsystems for infrared imagers

    NASA Astrophysics Data System (ADS)

    Dewitt, Frank; Durfee, David; Stephenson, Stanley; Wagner, Gary

    2010-04-01

    Requirements for shutters used in Infrared Thermal Weapon Sight (TWS) systems, Driver Vision Enhancement (DVE) and other thermal imaging systems are becoming increasingly more demanding. These performance requirements have been achieved using a unique, modular, reconfigurable rotary drive actuator with bi-stability and direct connection to the blade. A "Smart Shutter" acts as a complete sub-system that can be tested as an integral module. A multi-blade variant has been developed that retains the reliability of the rotary drive system and decreases the physical size of largeraperture shutters. Predictions of next-generation application-specific shutter designs will be offered in the paper.

  5. An infrared upconverter for astronomical imaging

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.; Townes, C. H.

    1977-01-01

    An imaging upconverter has been constructed which is suitable for use in the study of the thermal 10-micron radiation from astronomical sources. The infrared radiation is converted to visible radiation by mixing in a 1-cm-long proustite crystal. The phase-matched 2-kayser bandpass is tunable from 9 to 11 microns. The conversion efficiency is 2 by 10 to the -7th power and the field of view of 40 arc seconds on the sky contains several hundred picture elements, approximately diffraction-limited resolution in a large telescope. The instrument has been used in studies of the sun, moon, Mercury, and VY Canis Majoris.

  6. Infrared imaging with fiber optic bundles

    NASA Astrophysics Data System (ADS)

    Hilton, Albert R., Sr.; McCord, James; Thompson, W. S.; LeBlanc, Richard A.

    2003-09-01

    Efforts have resumed to improve the image quality of infrared imaging bundles formed at AMI using the ribbon stacking method. The C4 glass has been used to reduce core size, increase packing density and improve flexibility. Ribbons are formed from unclad fiber wound on a drum with pitch, ribbon count and spacing between ribbons computer controlled. A small portion of each ribbon is compressed and fused using thin, dilute Epoxy. Unfortunately, the Epoxy, serving as a clad, absorbs most all the LWIR energy making the bundles unsuited for 8-12 μm cameras. The ribbons are removed from the drum and stacked, one on top of the other observing proper orientation to form the bundle. A typical 1 meter bundle is formed from 50-70 count ribbons for a total of 2500-4900 fibers, made from 2.5-4.9 Km of C4 fiber. Typical core diameters are 60-80 μm. Active surface area ranges from 60-70%. Infrared resolution images formed using a NIR tube camera equipped with a special relay lens demonstrates the resolution limit for the bundle. Currently, the limit is about 10 lp/mm. The bundle end is imaged in the 3-5 μm Agema 210 camera using an Amtir 1 F/1 meniscus, coated 3-5 μm. Video images taken in natural light of an individual, easily recognizable at 50 feet, will be shown. Results of careful evaluation carried out at Lockheed Martin in Orlando using a high performance Raytheon Galileo camera will be presented.

  7. Improved target identification using synthetic infrared images

    NASA Astrophysics Data System (ADS)

    Weber, Bruce A.; Penn, Joseph A.

    2002-07-01

    The performance of infrared (IR) target identification classifiers, trained on randomly selected subsets of target chips taken from larger databases of either synthetic or measured data, is shown to improve rapidly with increasing subset size. This increase continues until the new data no longer provides additional information, or the classifier can not handle the information, at which point classifier performance levels off. It will also be shown that subsets of data selected with advanced knowledge can significantly outperform randomly selected sets, suggesting that classifier training-sets must be carefully selected if optimal performance is desired. Performance will also be shown to be subject to the quality of data used to train the classifier. Thus while increasing training set size generally improves classifier performance, the level to which the classifier performance can be raised will be shown to depend on the similarity between the training data and testing data. In fact, if the training data to be added to a given set of training data is unlike the testing data, performance will often not improve and may possibly diminish. Having too much data can reduce performance as much as having too little. Our results again demonstrate that an infrared (IR) target-identification classifier, trained on synthetic images of targets and tested on measured images, can perform as well as a classifier trained on measured images alone. We also demonstrate that the combination of the measured and the synthetic image databases can be used to train a classifier whose performance exceeds that of classifiers trained on either database alone. Results suggest that it may be possible to select data subsets from image databases that can optimize target classifiers performance for specific locations and operational scenarios.

  8. Infrared Imaging System for Studying Brain Function

    NASA Technical Reports Server (NTRS)

    Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

    2007-01-01

    A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be

  9. Shuttle Entry Imaging Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve

    2007-01-01

    During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne

  10. SPITZER SPECTROSCOPY OF INFRARED-LUMINOUS GALAXIES: DIAGNOSTICS OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION AND CONTRIBUTION TO TOTAL INFRARED LUMINOSITY

    SciTech Connect

    Shipley, Heath V.; Papovich, Casey; Rieke, George H.; Jannuzi, Buell T.; Weiner, Benjamin; Dey, Arjun; Moustakas, John

    2013-05-20

    We use mid-infrared (MIR) spectroscopy from the Spitzer Infrared Spectrograph to study the nature of star-formation and supermassive black hole accretion for a sample of 65 IR-luminous galaxies at 0.02 < z < 0.6 with F(24 {mu}m) > 1.2 mJy. The MIR spectra cover wavelengths 5-38 {mu}m, spanning the polycyclic aromatic hydrocarbon (PAH) features and important atomic diagnostic lines. Our sample of galaxies corresponds to a range of total IR luminosity, L{sub IR} = L(8-1000 {mu}m) = 10{sup 10}-10{sup 12} L{sub Sun} (median L{sub IR} of 3.0 Multiplication-Sign 10{sup 11} L{sub Sun }). We divide our sample into a subsample of galaxies with Spitzer Infrared Array Camera 3.6-8.0 {mu}m colors indicative of warm dust heated by an active galactic nucleus (AGN; IRAGN) and those galaxies whose colors indicate star-formation processes (non-IRAGN). Compared to the non-IRAGN, the IRAGN show smaller PAH emission equivalent widths, which we attribute to an increase in mid-IR continuum from the AGN. We find that in both the IRAGN and star-forming samples, the luminosity in the PAH features correlates strongly with [Ne II] {lambda}12.8 {mu}m emission line, from which we conclude that the PAH luminosity directly traces the instantaneous star-formation rate (SFR) in both the IRAGN and star-forming galaxies. We compare the ratio of PAH luminosity to the total IR luminosity, and we show that for most IRAGN star-formation accounts for 10%-50% of the total IR luminosity. We also find no measurable difference between the PAH luminosity ratios of L{sub 11.3}/L{sub 7.7} and L{sub 6.2}/L{sub 7.7} for the IRAGN and non-IRAGN, suggesting that AGN do not significantly excite or destroy PAH molecules on galaxy-wide scales. Interestingly, a small subset of galaxies (8 of 65 galaxies) show a strong excess of [O IV] {lambda}25.9 {mu}m emission compared to their PAH emission, which indicates the presence of heavily-obscured AGN, including 3 galaxies that are not otherwise selected as IRAGN. The low

  11. High-Definition Infrared Spectroscopic Imaging

    PubMed Central

    Reddy, Rohith K.; Walsh, Michael J.; Schulmerich, Matthew V.; Carney, P. Scott; Bhargava, Rohit

    2013-01-01

    The quality of images from an infrared (IR) microscope has traditionally been limited by considerations of throughput and signal-to-noise ratio (SNR). An understanding of the achievable quality as a function of instrument parameters, from first principals is needed for improved instrument design. Here, we first present a model for light propagation through an IR spectroscopic imaging system based on scalar wave theory. The model analytically describes the propagation of light along the entire beam path from the source to the detector. The effect of various optical elements and the sample in the microscope is understood in terms of the accessible spatial frequencies by using a Fourier optics approach and simulations are conducted to gain insights into spectroscopic image formation. The optimal pixel size at the sample plane is calculated and shown much smaller than that in current mid-IR microscopy systems. A commercial imaging system is modified, and experimental data are presented to demonstrate the validity of the developed model. Building on this validated theoretical foundation, an optimal sampling configuration is set up. Acquired data were of high spatial quality but, as expected, of poorer SNR. Signal processing approaches were implemented to improve the spectral SNR. The resulting data demonstrated the ability to perform high-definition IR imaging in the laboratory by using minimally-modified commercial instruments. PMID:23317676

  12. Physical Conditions in the Central Parsec Derived from Mid-Infrared Imaging Photometry

    NASA Technical Reports Server (NTRS)

    Gezari, Dan; Dwek, Eli; Varosi, Frank

    2002-01-01

    Array camera images of the central 1 parsec of the Galactic Center at eight mid-infrared wavelengths between 4.8 and 20.0 microns with approximately 1 arcsec resolution are used to model the temperature, opacity and bolometric luminosity distributions of the emitting dust in the central parsec, and the extinction in the line of sight. We use the results to discriminate between two mechanisms for heating the dust: heating by radiation from a "central engine" (possibly a massive black hole associated with Sgr A*), or internal heating by luminous stars embedded in or among the dust clouds. The temperature and opacity distributions are consistent with the presence of self-luminous objects imbedded at prominent the IRS source positions. However, temperatures on the northern ann and east-west bar are highest along the inner flank of those structures surrounding the central cavity, while the dust opacity peaks further out from the central cavity. The warm inner ridge suggests heating by centrally located concentrated luminous sources, including IRS3 and IRS7. The of the model results are compared with the distributions of the various stellar populations in the central parsec. There is evidence for physical interaction between the warm emitting dust and luminous stars, including dozens of hot He1 emission line stars and B[] stars. The combined contributions of embedded stars at the IRS source positions and the luminous stars distributed throughout Sgr A West can account for the temperature enhancements and the luminosity distribution in the central parsec computed by the model.

  13. High dynamic range infrared images detail enhancement based on local edge preserving filter

    NASA Astrophysics Data System (ADS)

    Song, Qiong; Wang, Yuehuan; Bai, Kun

    2016-07-01

    In the field of infrared (IR) image processing, displaying a high dynamic range (HDR) image on a low dynamic range display equipment with a natural visual effect, clear details on local areas and less artifacts is an important issue. In this paper, we present a new approach to display HDR IR images with contrast enhancement. First, the local edge-preserving filter (LEPF) is utilized to separate the image into a base layer and detail layer(s). After the filtering procedure, we use an adaptive Gamma transformation to adjust the gray distribution of the base layer, and stretch the detail layer based on a human visual effect principle. Then, we recombine the detail layer and base layer to obtain the enhance output. Finally, we adjust the luminance of output by applying multiple exposure fusion method. The experimental results demonstrate that our proposed method can provide a significant performance in terms of enhancing details and less artifacts than the state of the arts.

  14. Pain related inflammation analysis using infrared images

    NASA Astrophysics Data System (ADS)

    Bhowmik, Mrinal Kanti; Bardhan, Shawli; Das, Kakali; Bhattacharjee, Debotosh; Nath, Satyabrata

    2016-05-01

    Medical Infrared Thermography (MIT) offers a potential non-invasive, non-contact and radiation free imaging modality for assessment of abnormal inflammation having pain in the human body. The assessment of inflammation mainly depends on the emission of heat from the skin surface. Arthritis is a disease of joint damage that generates inflammation in one or more anatomical joints of the body. Osteoarthritis (OA) is the most frequent appearing form of arthritis, and rheumatoid arthritis (RA) is the most threatening form of them. In this study, the inflammatory analysis has been performed on the infrared images of patients suffering from RA and OA. For the analysis, a dataset of 30 bilateral knee thermograms has been captured from the patient of RA and OA by following a thermogram acquisition standard. The thermograms are pre-processed, and areas of interest are extracted for further processing. The investigation of the spread of inflammation is performed along with the statistical analysis of the pre-processed thermograms. The objectives of the study include: i) Generation of a novel thermogram acquisition standard for inflammatory pain disease ii) Analysis of the spread of the inflammation related to RA and OA using K-means clustering. iii) First and second order statistical analysis of pre-processed thermograms. The conclusion reflects that, in most of the cases, RA oriented inflammation affects bilateral knees whereas inflammation related to OA present in the unilateral knee. Also due to the spread of inflammation in OA, contralateral asymmetries are detected through the statistical analysis.

  15. Infrared imaging of the crime scene: possibilities and pitfalls.

    PubMed

    Edelman, Gerda J; Hoveling, Richelle J M; Roos, Martin; van Leeuwen, Ton G; Aalders, Maurice C G

    2013-09-01

    All objects radiate infrared energy invisible to the human eye, which can be imaged by infrared cameras, visualizing differences in temperature and/or emissivity of objects. Infrared imaging is an emerging technique for forensic investigators. The rapid, nondestructive, and noncontact features of infrared imaging indicate its suitability for many forensic applications, ranging from the estimation of time of death to the detection of blood stains on dark backgrounds. This paper provides an overview of the principles and instrumentation involved in infrared imaging. Difficulties concerning the image interpretation due to different radiation sources and different emissivity values within a scene are addressed. Finally, reported forensic applications are reviewed and supported by practical illustrations. When introduced in forensic casework, infrared imaging can help investigators to detect, to visualize, and to identify useful evidence nondestructively. PMID:23919285

  16. High Resolution Near-Infrared Imaging with Tip - Adaptive Optics.

    NASA Astrophysics Data System (ADS)

    Close, Laird Miller

    1995-01-01

    The development and design of the first operational tip-tilt Cassegrain secondary mirror are presented. This system, FASTTRAC, samples image motion at up to 50 Hz by tracking either infrared (m_{k } <=q 11) or visible (mR <=q 16) guide stars up to 30" and 90" away from the science target respectively. The Steward Observatory 2.3m or 1.5m telescope secondaries act as rapid tip-tilt mirrors to stabilize image motion (<=q0.1" rms;~5 Hz -3 dB frequency) based on the motion of the guide star. FASTTRAC obtains nearly diffraction-limited resolutions in seeing conditions where D/r_circ < 4 in agreement with theoretical expectations. FASTTRAC's unique ability to guide on infrared stars has allowed the first adaptively corrected images of the heavily extincted Galactic Center to be obtained. Over a hundred excellent (0.28" < FWHM < 0.6") images have been obtained of this region. These images do not detect any long term variations in the massive black hole candidate Sgr A*'s luminosity from June 1993 to September 1995. The average infrared magnitudes observed are K = 12.1 +/- 0.3, H = 13.7 +/- 0.3 and J = 16.6 +/- 0.4 integrated over 0.5" at the position of Sgr A*. No significant rapid periodicities were observed from Sgr A* for amplitudes >=q50% of the mean flux in the period range of 3-30 minutes. It is confirmed in the latest 0.28" FWHM image that there is 0.5" "bar" of emission running East-West at the position of Sgr A* as was earlier seen by Eckart et al. 1993. The observed fluxes are consistent with an inclined accretion disk around a ~1 times 10^6 M _odot black hole. However, they are also explained by a line of hot luminous (integrated luminosity of ~10^{3.5 -4.6}L_odot) central cluster stars positionally coincident with Sgr A* naturally explaining the observed 0.5" "bar". High-resolution images with FASTTRAC guiding on a faint (R = 16) visible guide star, combined with spectra from the MMT, have shown that IRAS FSC 10214 + 4724 (z = 2.28) gains its uniquely large

  17. Image Quality Indicator for Infrared Inspections

    NASA Technical Reports Server (NTRS)

    Burke, Eric

    2011-01-01

    The quality of images generated during an infrared thermal inspection depends on many system variables, settings, and parameters to include the focal length setting of the IR camera lens. If any relevant parameter is incorrect or sub-optimal, the resulting IR images will usually exhibit inherent unsharpness and lack of resolution. Traditional reference standards and image quality indicators (IQIs) are made of representative hardware samples and contain representative flaws of concern. These standards are used to verify that representative flaws can be detected with the current IR system settings. However, these traditional standards do not enable the operator to quantify the quality limitations of the resulting images, i.e. determine the inherent maximum image sensitivity and image resolution. As a result, the operator does not have the ability to optimize the IR inspection system prior to data acquisition. The innovative IQI described here eliminates this limitation and enables the operator to objectively quantify and optimize the relevant variables of the IR inspection system, resulting in enhanced image quality with consistency and repeatability in the inspection application. The IR IQI consists of various copper foil features of known sizes that are printed on a dielectric non-conductive board. The significant difference in thermal conductivity between the two materials ensures that each appears with a distinct grayscale or brightness in the resulting IR image. Therefore, the IR image of the IQI exhibits high contrast between the copper features and the underlying dielectric board, which is required to detect the edges of the various copper features. The copper features consist of individual elements of various shapes and sizes, or of element-pairs of known shapes and sizes and with known spacing between the elements creating the pair. For example, filled copper circles with various diameters can be used as individual elements to quantify the image sensitivity

  18. Infrared Imaging for Inquiry-Based Learning

    NASA Astrophysics Data System (ADS)

    Xie, Charles; Hazzard, Edmund

    2011-09-01

    Based on detecting long-wavelength infrared (IR) radiation emitted by the subject, IR imaging shows temperature distribution instantaneously and heat flow dynamically. As a picture is worth a thousand words, an IR camera has great potential in teaching heat transfer, which is otherwise invisible. The idea of using IR imaging in teaching was first discussed by Vollmer et al. in 2001.1-3 IR cameras were then too expensive for most schools. Thanks to the growing need of home energy inspection using IR thermography, the price of IR cameras has plummeted and they have become easy to use. As of 2011, the price of an entry-level handheld IR camera such as the FLIR I3 has fallen below 900 for educators. A slightly better version, FLIR I5, was used to take the IR images in this paper. As easy to use as a digital camera, the I5 camera automatically generates IR images of satisfactory quality with a temperature sensitivity of 0.1°C. The purpose of this paper is to demonstrate how these affordable IR cameras can be used as a visualization, inquiry, and discovery tool. As the prices of IR cameras continue to drop, it is time to give teachers an update about the educational power of this fascinating tool, especially in supporting inquiry-based learning.

  19. Hyperspectral imaging in the infrared using LIFTIRS. Revision 1

    SciTech Connect

    Bennett, C.L.; Carter, M.R.; Fields, D.J.

    1995-10-01

    In this article the ideal performance for various possible designs for imaging spectrometers is discussed. Recent characterization measurements made with LIFTIRS, the Livermore Imaging Fourier Transform InfraRed Spectrometer are also presented. Hyperspectral imagers, characterized by having a large number of spectral channels, enable definitive identification and quantitative measurement of the composition of objects in the field of view. Infrared hyperspectral imagers are particularly useful for remote chemical analysis, since almost all molecules have characteristic rotation-vibration spectra in the infrared, and a broad portion of the so-called fingerprint region of the infrared spectrum lies where the atmosphere is relatively transparent, between 8 and 13 {micro}m.

  20. Detection of rheumatoid arthritis using infrared imaging

    NASA Astrophysics Data System (ADS)

    Frize, Monique; Adéa, Cynthia; Payeur, Pierre; Di Primio, Gina; Karsh, Jacob; Ogungbemile, Abiola

    2011-03-01

    Rheumatoid arthritis (RA) is an inflammatory disease causing pain, swelling, stiffness, and loss of function in joints; it is difficult to diagnose in early stages. An early diagnosis and treatment can delay the onset of severe disability. Infrared (IR) imaging offers a potential approach to detect changes in degree of inflammation. In 18 normal subjects and 13 patients diagnosed with Rheumatoid Arthritis (RA), thermal images were collected from joints of hands, wrists, palms, and knees. Regions of interest (ROIs) were manually selected from all subjects and all parts imaged. For each subject, values were calculated from the temperature measurements: Mode/Max, Median/Max, Min/Max, Variance, Max-Min, (Mode-Mean), and Mean/Min. The data sets did not have a normal distribution, therefore non parametric tests (Kruskal-Wallis and Ranksum) were applied to assess if the data from the control group and the patient group were significantly different. Results indicate that: (i) thermal images can be detected on patients with the disease; (ii) the best joints to image are the metacarpophalangeal joints of the 2nd and 3rd fingers and the knees; the difference between the two groups was significant at the 0.05 level; (iii) the best calculations to differentiate between normal subjects and patients with RA are the Mode/Max, Variance, and Max-Min. We concluded that it is possible to reliably detect RA in patients using IR imaging. Future work will include a prospective study of normal subjects and patients that will compare IR results with Magnetic Resonance (MR) analysis.

  1. Infrared hyperspectral imaging polarimeter using birefringent prisms.

    PubMed

    Craven-Jones, Julia; Kudenov, Michael W; Stapelbroek, Maryn G; Dereniak, Eustace L

    2011-03-10

    A compact short-wavelength and middle-wavelength infrared hyperspectral imaging polarimeter (IHIP) is introduced. The sensor includes a pair of sapphire Wollaston prisms and several high-order retarders to form an imaging Fourier transform spectropolarimeter. The Wollaston prisms serve as a birefringent interferometer with reduced sensitivity to vibration versus an unequal path interferometer, such as a Michelson. Polarimetric data are acquired through the use of channeled spectropolarimetry to modulate the spectrum with the Stokes parameter information. The collected interferogram is Fourier filtered and reconstructed to recover the spatially and spectrally varying Stokes vector data across the image. The IHIP operates over a ±5° field of view and implements a dual-scan false signature reduction technique to suppress polarimetric aliasing artifacts. In this paper, the optical layout and operation of the IHIP sensor are presented in addition to the radiometric, spectral, and polarimetric calibration techniques used with the system. Spectral and spectropolarimetric results from the laboratory and outdoor tests with the instrument are also presented. PMID:21394189

  2. Infrared hyperspectral imaging polarimeter using birefringent prisms.

    PubMed

    Craven-Jones, Julia; Kudenov, Michael W; Stapelbroek, Maryn G; Dereniak, Eustace L

    2011-03-10

    A compact short-wavelength and middle-wavelength infrared hyperspectral imaging polarimeter (IHIP) is introduced. The sensor includes a pair of sapphire Wollaston prisms and several high-order retarders to form an imaging Fourier transform spectropolarimeter. The Wollaston prisms serve as a birefringent interferometer with reduced sensitivity to vibration versus an unequal path interferometer, such as a Michelson. Polarimetric data are acquired through the use of channeled spectropolarimetry to modulate the spectrum with the Stokes parameter information. The collected interferogram is Fourier filtered and reconstructed to recover the spatially and spectrally varying Stokes vector data across the image. The IHIP operates over a ±5° field of view and implements a dual-scan false signature reduction technique to suppress polarimetric aliasing artifacts. In this paper, the optical layout and operation of the IHIP sensor are presented in addition to the radiometric, spectral, and polarimetric calibration techniques used with the system. Spectral and spectropolarimetric results from the laboratory and outdoor tests with the instrument are also presented.

  3. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images.

    PubMed

    Watson, Jeffrey R; Gainer, Christian F; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G Michael; Anton, Rein; Romanowski, Marek

    2015-10-01

    Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.

  4. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images

    NASA Astrophysics Data System (ADS)

    Watson, Jeffrey R.; Gainer, Christian F.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael, Jr.; Anton, Rein; Romanowski, Marek

    2015-10-01

    Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.

  5. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images

    PubMed Central

    Watson, Jeffrey R.; Gainer, Christian F.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek

    2015-01-01

    Abstract. Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures. PMID:26440760

  6. Infrared and optical imaging of newborn stars

    SciTech Connect

    Heyer, M.H.; Ladd, E.F.; Myers, P.C.; Campbell, B. Harvard Univ., Cambridge, MA Harvard-Smithsonian Center for Astrophysics, Cambridge, MA New Mexico Univ., Albuquerque )

    1990-05-01

    Deep optical and near-infrared imaging observations of five low- to intermediate-luminosity pre-main-sequence stars embedded within dense cores reveal an extended emission component. Four of the five stars were previously identified as outflow sources. Nebulosity is detected with the optical and J and H bandpasses for each source. The large measured polarization values (p = 10 to 70 percent) at H and K identify the nebulosity as scattered light. At K the intensity distribution is generally less extended than at J and H, and is characterized by an additional, unresolved component. The position of this point source likely identifies the location of the newborn star within the field. For all sources, the illuminating star is redder than its associated nebula. The observed correlation of cometary reflection nebulae with newborn stars undergoing mass outflow suggests that the low-opacity paths are cavities associated with energetic stellar winds. 35 refs.

  7. High temperature superconducting infrared imaging satellite

    NASA Technical Reports Server (NTRS)

    Angus, B.; Covelli, J.; Davinic, N.; Hailey, J.; Jones, E.; Ortiz, V.; Racine, J.; Satterwhite, D.; Spriesterbach, T.; Sorensen, D.

    1992-01-01

    A low earth orbiting platform for an infrared (IR) sensor payload is examined based on the requirements of a Naval Research Laboratory statement of work. The experiment payload is a 1.5-meter square by 0.5-meter high cubic structure equipped with the imaging system, radiators, and spacecraft mounting interface. The orbit is circular at 509 km (275 nmi) altitude and 70 deg. inclination. The spacecraft is three-axis stabilized with pointing accuracy of plus or minus 0.5 deg. in each axis. The experiment payload requires two 15-minute sensing periods over two contiguous orbit periods for 30 minutes of sensing time per day. The spacecraft design is presented for launch via a Delta 2 rocket. Subsystem designs include attitude control, propulsion, electric power, telemetry, tracking and command, thermal design, structure, and cost analysis.

  8. Dynamic infrared imaging for skin cancer screening

    NASA Astrophysics Data System (ADS)

    Godoy, Sebastián E.; Ramirez, David A.; Myers, Stephen A.; von Winckel, Greg; Krishna, Sanchita; Berwick, Marianne; Padilla, R. Steven; Sen, Pradeep; Krishna, Sanjay

    2015-05-01

    Dynamic thermal imaging (DTI) with infrared cameras is a non-invasive technique with the ability to detect the most common types of skin cancer. We discuss and propose a standardized analysis method for DTI of actual patient data, which achieves high levels of sensitivity and specificity by judiciously selecting pixels with the same initial temperature. This process compensates the intrinsic limitations of the cooling unit and is the key enabling tool in the DTI data analysis. We have extensively tested the methodology on human subjects using thermal infrared image sequences from a pilot study conducted jointly with the University of New Mexico Dermatology Clinic in Albuquerque, New Mexico (ClinicalTrials ID number NCT02154451). All individuals were adult subjects who were scheduled for biopsy or adult volunteers with clinically diagnosed benign condition. The sample size was 102 subjects for the present study. Statistically significant results were obtained that allowed us to distinguish between benign and malignant skin conditions. The sensitivity and specificity was 95% (with a 95% confidence interval of [87.8% 100.0%]) and 83% (with a 95% confidence interval of [73.4% 92.5%]), respectively, and with an area under the curve of 95%. Our results lead us to conclude that the DTI approach in conjunction with the judicious selection of pixels has the potential to provide a fast, accurate, non-contact, and non-invasive way to screen for common types of skin cancer. As such, it has the potential to significantly reduce the number of biopsies performed on suspicious lesions.

  9. Research of infrared image optimization algorithm in optical read-out IR imaging

    NASA Astrophysics Data System (ADS)

    Wu, Jianxiong; Cheng, Teng; Zhang, Qingchuan; Gao, Jie; Wu, Xiaoping

    2014-09-01

    Different from traditional electrical readout infrared imaging, optical readout infrared imaging system readout the thermo-mechanical response of focal plane array via visible light. Due to the different parameters of the optical system, usually,the infrared thermal image pixel corresponding to the thermal element of focal plane array is not consistent. And the substrate-free focal plane array brings thermal crosstalk, the image blur. This manuscript analyzes the optical readout infrared imaging principle, proposes an one to one correspondence method between the infrared thermal image pixel and the thermal element of focal plane array, optimizes the digital infrared image by the thermal crosstalk on substrate-free focal plane array. Simulation and experiments show that the algorithm can effectively enhance the contours of the infrared image detail, enhancing image quality.

  10. SDSS J163459.82+204936.0: A Ringed Infrared-luminous Quasar with Outflows in Both Absorption and Emission Lines

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hong-Yan; Jiang, Ning; Wu, Xufen; Lyu, Jianwei; Shi, Xiheng; Shu, Xinwen; Jiang, Peng; Ji, Tuo; Wang, Jian-Guo; Wang, Shu-Fen; Sun, Luming

    2016-05-01

    SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L IR = 1011.91 {L}ȯ . We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR ≈ 140 {M}ȯ yr‑1, estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in Hβ, He i λλ5876, 10830, and other emission lines consistently with an offset velocity of ≈900 {km} {{{s}}}-1, as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He i λ10830 and the bulk blueshifting of [O iii]λ5007), while there exist blueshifted broad absorption lines (BALs) in Na i D and He i λλ3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 104 < n H ≲ 105 cm‑3, ionization parameter 10‑1.3 ≲ U ≲ 10‑0.7 , and column density 1022.5 ≲ N H ≲ 1022.9 cm‑2, which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of ˜48–65 pc from the nucleus and that the kinetic luminosity of the outflow is 1044–1046 {erg} {{{s}}}-1. J1634+2049 has a off-centered galactic ring on the scale of ˜30 kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the co-evolution scenario invoking galaxy

  11. SDSS J163459.82+204936.0: A Ringed Infrared-luminous Quasar with Outflows in Both Absorption and Emission Lines

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hong-Yan; Jiang, Ning; Wu, Xufen; Lyu, Jianwei; Shi, Xiheng; Shu, Xinwen; Jiang, Peng; Ji, Tuo; Wang, Jian-Guo; Wang, Shu-Fen; Sun, Luming

    2016-05-01

    SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L IR = 1011.91 {L}⊙ . We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR ≈ 140 {M}⊙ yr-1, estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in Hβ, He i λλ5876, 10830, and other emission lines consistently with an offset velocity of ≈900 {km} {{{s}}}-1, as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He i λ10830 and the bulk blueshifting of [O iii]λ5007), while there exist blueshifted broad absorption lines (BALs) in Na i D and He i λλ3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 104 < n H ≲ 105 cm-3, ionization parameter 10-1.3 ≲ U ≲ 10-0.7 , and column density 1022.5 ≲ N H ≲ 1022.9 cm-2, which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of ˜48-65 pc from the nucleus and that the kinetic luminosity of the outflow is 1044-1046 {erg} {{{s}}}-1. J1634+2049 has a off-centered galactic ring on the scale of ˜30 kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the co-evolution scenario invoking galaxy merger (or

  12. ESO imaging survey: infrared deep public survey

    NASA Astrophysics Data System (ADS)

    Olsen, L. F.; Miralles, J.-M.; da Costa, L.; Madejsky, R.; Jørgensen, H. E.; Mignano, A.; Arnouts, S.; Benoist, C.; Dietrich, J. P.; Slijkhuis, R.; Zaggia, S.

    2006-09-01

    This paper is part of the series presenting the final results obtained by the ESO Imaging Survey (EIS) project. It presents new J and Ks data obtained from observations conducted at the ESO 3.5 m New Technology Telescope (NTT) using the SOFI camera. These data were taken as part of the Deep Public Survey (DPS) carried out by the ESO Imaging Survey program, significantly extending the earlier optical/infrared EIS-DEEP survey presented in a previous paper of this series. The DPS-IR survey comprises two observing strategies: shallow Ks observations providing nearly full coverage of pointings with complementary multi-band (in general {UBVRI}) optical data obtained using ESO's wide-field imager (WFI) and deeper J and Ks observations of the central parts of these fields. Currently, the DPS-IR survey provides a coverage of roughly 2.1 square degrees ( 300 SOFI pointings) in Ks with 0.63 square degrees to fainter magnitudes and also covered in J, over three independent regions of the sky. The goal of the present paper is to briefly describe the observations, the data reduction procedures, and to present the final survey products which include fully calibrated pixel-maps and catalogs extracted from them. The astrometric solution with an estimated accuracy of ⪉0.15 arcsec is based on the USNO catalog and limited only by the accuracy of the reference catalog. The final stacked images presented here number 89 and 272, in J and K_s, respectively, the latter reflecting the larger surveyed area. The J and Ks images were taken with a median seeing of 0.77 arcsec and 0.8 arcsec. The images reach a median 5σ limiting magnitude of JAB˜23.06 as measured within an aperture of 2´´, while the corresponding limiting magnitude in KsAB is 21.41 and 22.16 mag for the shallow and deep strategies. Although some spatial variation due to varying observing conditions is observed, overall the observed limiting magnitudes are consistent with those originally proposed. The quality of the data

  13. A real-time infrared imaging simulation method with physical effects modeling of infrared sensors

    NASA Astrophysics Data System (ADS)

    Li, Ni; Huai, Wenqing; Wang, Shaodan; Ren, Lei

    2016-09-01

    Infrared imaging simulation technology can provide infrared data sources for the development, improvement and evaluation of infrared imaging systems under different environment, status and weather conditions, which is reusable and more economic than physical experiments. A real-time infrared imaging simulation process is established to reproduce a complete physical imaging process. Our emphasis is put on the modeling of infrared sensors, involving physical effects of both spatial domain and frequency domain. An improved image convolution method is proposed based on GPU parallel processing to enhance the real-time simulation ability with ensuring its simulation accuracy at the same time. Finally the effectiveness of the above methods is validated by simulation analysis and result comparison.

  14. Cryogenic infrared imaging beryllium telescope for Infrared Astronomical Satellite (IRAS)

    NASA Technical Reports Server (NTRS)

    Devereux, W. P.

    1983-01-01

    The IRAS mission is the result of an international project involving the cooperation of the U.S., the United Kingdom, and the Netherlands. The Infrared Astronmical Satellite was placed into orbit on January 25, 1983. Its main function is to provide a survey of the entire sky as viewed in four octaves of infrared radiation in the wavelenth region from 8 to 120 microns. The cylindrical structure of the satellite contains a large dewar vessel with 70 liters of superfluid helium. The helium has the function to maintain the contents of the vessel at 2.5 K for the duration of the mission. The IRAS optics is a Ritchey-Chretien telescope of 24 inches aperture. Because of the operational requirements of the mission, it had been specified that all optical components should be beryllium. Attention is given to the cold performance test conducted with IRAS, plans for future infrared telescopes, and reflectance limits.

  15. Estimation of errors in luminance signals encoded by primate retina resulting from sampling of natural images with red and green cones.

    PubMed

    Osorio, D; Ruderman, D L; Cronin, T W

    1998-01-01

    Both long-wavelength-sensitive (L) and medium-wavelength-sensitive (M) cones contribute to luminance mechanisms in human vision. This means that luminance and chromatic signals may be confounded. We use power spectra from natural images to estimate the magnitude of the corruption of luminance signals encoded by an array of retinal ganglion cells resembling the primate magnocellular neurons. The magnitude of this corruption is dependent on the cone lattice and is most severe where cones form clumps of a single spectral type. We find that chromatic corruption may equal or exceed the amplitude of other sources of noise and so could impose constraints on visual performance and on eye design.

  16. Visible-Infrared Hyperspectral Image Projector

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew

    2013-01-01

    The VisIR HIP generates spatially-spectrally complex scenes. The generated scenes simulate real-world targets viewed by various remote sensing instruments. The VisIR HIP consists of two subsystems: a spectral engine and a spatial engine. The spectral engine generates spectrally complex uniform illumination that spans the wavelength range between 380 nm and 1,600 nm. The spatial engine generates two-dimensional gray-scale scenes. When combined, the two engines are capable of producing two-dimensional scenes with a unique spectrum at each pixel. The VisIR HIP can be used to calibrate any spectrally sensitive remote-sensing instrument. Tests were conducted on the Wide-field Imaging Interferometer Testbed at NASA s Goddard Space Flight Center. The device is a variation of the calibrated hyperspectral image projector developed by the National Institute of Standards and Technology in Gaithersburg, MD. It uses Gooch & Housego Visible and Infrared OL490 Agile Light Sources to generate arbitrary spectra. The two light sources are coupled to a digital light processing (DLP(TradeMark)) digital mirror device (DMD) that serves as the spatial engine. Scenes are displayed on the DMD synchronously with desired spectrum. Scene/spectrum combinations are displayed in rapid succession, over time intervals that are short compared to the integration time of the system under test.

  17. Photothermal imaging through coherent infrared bundles

    NASA Astrophysics Data System (ADS)

    Milstein, Yonat; Tepper, Michal; Harrington, James A.; Ben David, Moshe; Gannot, Israel

    2011-03-01

    This study aims to develop a photothermal imaging system through a coherent infrared bundle. This system will be used to determine the oxygenation level of various tissues, suspected malignant tissues in particular. The oxygenation estimation is preformed using a computerized algorithm. In order to evaluate the system, different bundle configurations were used for the determination of the optimal one. Bundle transmittance and the algorithm's estimation ability were measured, measurements were performed using agar phantoms consisting of varying ratios of Methylene Blue and ICG. A bundle consisting of 19 Teflon waveguides with a of 1.1mm was found to be the optimal configuration with an RMS of the error of 9.38%. At a second stage the system was validated on blood samples with varying oxygenation levels and there oxygenation levels were estimated. This stage had an RMS of the error of 10.16% for the oxygenation level estimation for samples with a 50% oxygenation level and higher. Once the basic system was validated successfully on agar phantoms and blood samples a portable system was designed and built in order to fit the system for portable use. The portable system consists of a white light illuminating source followed by filters transmitting certain wavelengths, a transmitting fiber, a thermal imaging bundle and a portable thermal camera. This portable system will be evaluated in order to have an adequate portable system for implementing the method out of the lab.

  18. SPATIALLY RESOLVED [Fe II] 1.64 {mu}m EMISSION IN NGC 5135: CLUES FOR UNDERSTANDING THE ORIGIN OF THE HARD X-RAYS IN LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Colina, L.; Pereira-Santaella, M.; Alonso-Herrero, A.; Arribas, S.; Bedregal, A. G.

    2012-04-20

    Spatially resolved near-IR and X-ray imaging of the central region of the luminous infrared galaxy (LIRG) NGC 5135 is presented. The kinematical signatures of strong outflows are detected in the [Fe II] 1.64 {mu}m emission line in a compact region at 0.9 kpc from the nucleus. The derived mechanical energy release is consistent with a supernova rate of 0.05-0.1 yr{sup -1}. The apex of the outflowing gas spatially coincides with the strongest [Fe II] emission peak and with the dominant component of the extranuclear hard X-ray emission. All these features provide evidence for a plausible direct physical link between supernova-driven outflows and the hard X-ray emitting gas in an LIRG. This result is consistent with model predictions of starbursts concentrated in small volumes and with high thermalization efficiencies. A single high-mass X-ray binary (HMXB) as the major source of the hard X-ray emission, although not favored, cannot be ruled out. Outside the active galactic nucleus, the hard X-ray emission in NGC 5135 appears to be dominated by the hot interstellar medium produced by supernova explosions in a compact star-forming region, and not by the emission due to HMXBs. If this scenario is common to (ultra)luminous infrared galaxies, the hard X-rays would only trace the most compact ({<=}100 pc) regions with high supernova and star formation densities, therefore a lower limit to their integrated star formation. The star formation rate derived in NGC 5135 based on its hard X-ray luminosity is a factor of two and four lower than the values obtained from the 24 {mu}m and soft X-ray luminosities, respectively.

  19. Reproducing kernel hilbert space based single infrared image super resolution

    NASA Astrophysics Data System (ADS)

    Chen, Liangliang; Deng, Liangjian; Shen, Wei; Xi, Ning; Zhou, Zhanxin; Song, Bo; Yang, Yongliang; Cheng, Yu; Dong, Lixin

    2016-07-01

    The spatial resolution of Infrared (IR) images is limited by lens optical diffraction, sensor array pitch size and pixel dimension. In this work, a robust model is proposed to reconstruct high resolution infrared image via a single low resolution sampling, where the image features are discussed and classified as reflective, cooled emissive and uncooled emissive based on infrared irradiation source. A spline based reproducing kernel hilbert space and approximative heaviside function are deployed to model smooth part and edge component of image respectively. By adjusting the parameters of heaviside function, the proposed model can enhance distinct part of images. The experimental results show that the model is applicable on both reflective and emissive low resolution infrared images to improve thermal contrast. The overall outcome produces a high resolution IR image, which makes IR camera better measurement accuracy and observes more details at long distance.

  20. Infrared hyperspectral upconversion imaging using spatial object translation.

    PubMed

    Kehlet, Louis Martinus; Sanders, Nicolai; Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Pedersen, Christian

    2015-12-28

    In this paper hyperspectral imaging in the mid-infrared wavelength region is realised using nonlinear frequency upconversion. The infrared light is converted to the near-infrared region for detection with a Si-based CCD camera. The object is translated in a predefined grid by motorized actuators and an image is recorded for each position. A sequence of such images is post-processed into a series of monochromatic images in a wavelength range defined by the phasematch condition and numerical aperture of the upconversion system. A standard USAF resolution target and a polystyrene film are used to impart spatial and spectral information unto the source. PMID:26832059

  1. Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera.

    PubMed

    Shaw, Joseph; Nugent, Paul; Pust, Nathan; Thurairajah, Brentha; Mizutani, Kohei

    2005-07-25

    An uncooled microbolometer-array thermal infrared camera has been incorporated into a remote sensing system for radiometric sky imaging. The radiometric calibration is validated and improved through direct comparison with spectrally integrated data from the Atmospheric Emitted Radiance Interferometer (AERI). With the improved calibration, the Infrared Cloud Imager (ICI) system routinely obtains sky images with radiometric uncertainty less than 0.5 W/(m(2 )sr) for extended deployments in challenging field environments. We demonstrate the infrared cloud imaging technique with still and time-lapse imagery of clear and cloudy skies, including stratus, cirrus, and wave clouds. PMID:19498585

  2. Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera.

    PubMed

    Shaw, Joseph; Nugent, Paul; Pust, Nathan; Thurairajah, Brentha; Mizutani, Kohei

    2005-07-25

    An uncooled microbolometer-array thermal infrared camera has been incorporated into a remote sensing system for radiometric sky imaging. The radiometric calibration is validated and improved through direct comparison with spectrally integrated data from the Atmospheric Emitted Radiance Interferometer (AERI). With the improved calibration, the Infrared Cloud Imager (ICI) system routinely obtains sky images with radiometric uncertainty less than 0.5 W/(m(2 )sr) for extended deployments in challenging field environments. We demonstrate the infrared cloud imaging technique with still and time-lapse imagery of clear and cloudy skies, including stratus, cirrus, and wave clouds.

  3. Localisation of luminal epithelium edge in digital histopathology images of IHC stained slides of endometrial biopsies.

    PubMed

    Li, Guannan; Sanchez, Victor; Patel, Gnyaneshwari; Quenby, Siobhan; Rajpoot, Nasir

    2015-06-01

    Diagnosis of recurrent miscarriage due to abnormally high number of uterine natural killer (uNK) cells has recently been made possible by a protocol devised by Quenby et al. Hum Reprod 2009;24(1):45-54. The diagnosis involves detection and counting of stromal and uNK cell nuclei in endometrial biopsy slides immunohistochemically stained with haematoxylin for staining cell nuclei and CD56 as a marker for the uNK cells. However, manual diagnosis is a laborious process, fraught with subjective errors. In this paper, we present a novel method for detection of uterine natural killer (uNK) cells in the human female uterus lining and localisation of the luminal epithelium edge in endometrial biopsies. Specifically, we employ a local phase symmetry based method to detect stromal cell nuclei and propose an adaptive background removal method that significantly eases the segmentation of uNK cell nuclei regions. We also propose a novel method using alpha shapes for the identification of epithelial cell nuclei and B-Spline curve fitting on identified cell nuclei to localise the luminal epithelium edge. The objective of edge localisation is to avoid cell nuclei near the luminal epithelium edge being counted in the diagnosis process due to their non-relevance to the calculation of stromal to uNK cell ratio that determines the diagnosis of recurrent miscarriages in the end. The resulting algorithm offers a promising potential for computer-assisted diagnosis of recurrent miscarriage due to its high accuracy.

  4. A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging.

    PubMed

    Kuchimaru, Takahiro; Iwano, Satoshi; Kiyama, Masahiro; Mitsumata, Shun; Kadonosono, Tetsuya; Niwa, Haruki; Maki, Shojiro; Kizaka-Kondoh, Shinae

    2016-01-01

    In preclinical cancer research, bioluminescence imaging with firefly luciferase and D-luciferin has become a standard to monitor biological processes both in vitro and in vivo. However, the emission maximum (λmax) of bioluminescence produced by D-luciferin is 562 nm where light is not highly penetrable in biological tissues. This emphasizes a need for developing a red-shifted bioluminescence imaging system to improve detection sensitivity of targets in deep tissue. Here we characterize the bioluminescent properties of the newly synthesized luciferin analogue, AkaLumine-HCl. The bioluminescence produced by AkaLumine-HCl in reactions with native firefly luciferase is in the near-infrared wavelength ranges (λmax=677 nm), and yields significantly increased target-detection sensitivity from deep tissues with maximal signals attained at very low concentrations, as compared with D-luciferin and emerging synthetic luciferin CycLuc1. These characteristics offer a more sensitive and accurate method for non-invasive bioluminescence imaging with native firefly luciferase in various animal models. PMID:27297211

  5. A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging.

    PubMed

    Kuchimaru, Takahiro; Iwano, Satoshi; Kiyama, Masahiro; Mitsumata, Shun; Kadonosono, Tetsuya; Niwa, Haruki; Maki, Shojiro; Kizaka-Kondoh, Shinae

    2016-06-14

    In preclinical cancer research, bioluminescence imaging with firefly luciferase and D-luciferin has become a standard to monitor biological processes both in vitro and in vivo. However, the emission maximum (λmax) of bioluminescence produced by D-luciferin is 562 nm where light is not highly penetrable in biological tissues. This emphasizes a need for developing a red-shifted bioluminescence imaging system to improve detection sensitivity of targets in deep tissue. Here we characterize the bioluminescent properties of the newly synthesized luciferin analogue, AkaLumine-HCl. The bioluminescence produced by AkaLumine-HCl in reactions with native firefly luciferase is in the near-infrared wavelength ranges (λmax=677 nm), and yields significantly increased target-detection sensitivity from deep tissues with maximal signals attained at very low concentrations, as compared with D-luciferin and emerging synthetic luciferin CycLuc1. These characteristics offer a more sensitive and accurate method for non-invasive bioluminescence imaging with native firefly luciferase in various animal models.

  6. A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging

    PubMed Central

    Kuchimaru, Takahiro; Iwano, Satoshi; Kiyama, Masahiro; Mitsumata, Shun; Kadonosono, Tetsuya; Niwa, Haruki; Maki, Shojiro; Kizaka-Kondoh, Shinae

    2016-01-01

    In preclinical cancer research, bioluminescence imaging with firefly luciferase and D-luciferin has become a standard to monitor biological processes both in vitro and in vivo. However, the emission maximum (λmax) of bioluminescence produced by D-luciferin is 562 nm where light is not highly penetrable in biological tissues. This emphasizes a need for developing a red-shifted bioluminescence imaging system to improve detection sensitivity of targets in deep tissue. Here we characterize the bioluminescent properties of the newly synthesized luciferin analogue, AkaLumine-HCl. The bioluminescence produced by AkaLumine-HCl in reactions with native firefly luciferase is in the near-infrared wavelength ranges (λmax=677 nm), and yields significantly increased target-detection sensitivity from deep tissues with maximal signals attained at very low concentrations, as compared with D-luciferin and emerging synthetic luciferin CycLuc1. These characteristics offer a more sensitive and accurate method for non-invasive bioluminescence imaging with native firefly luciferase in various animal models. PMID:27297211

  7. Colored three-dimensional reconstruction of vehicular thermal infrared images

    NASA Astrophysics Data System (ADS)

    Sun, Shaoyuan; Leung, Henry; Shen, Zhenyi

    2015-06-01

    Enhancement of vehicular night vision thermal infrared images is an important problem in intelligent vehicles. We propose to create a colorful three-dimensional (3-D) display of infrared images for the vehicular night vision assistant driving system. We combine the plane parameter Markov random field (PP-MRF) model-based depth estimation with classification-based infrared image colorization to perform colored 3-D reconstruction of vehicular thermal infrared images. We first train the PP-MRF model to learn the relationship between superpixel features and plane parameters. The infrared images are then colorized and we perform superpixel segmentation and feature extraction on the colorized images. The PP-MRF model is used to estimate the superpixel plane parameter and to analyze the structure of the superpixels according to the characteristics of vehicular thermal infrared images. Finally, we estimate the depth of each pixel to perform 3-D reconstruction. Experimental results demonstrate that the proposed method can give a visually pleasing and daytime-like colorful 3-D display from a monochromatic vehicular thermal infrared image, which can help drivers to have a better understanding of the environment.

  8. The method of infrared image simulation based on the measured image

    NASA Astrophysics Data System (ADS)

    Lou, Shuli; Liu, Liang; Ren, Jiancun

    2015-10-01

    The development of infrared imaging guidance technology has promoted the research of infrared imaging simulation technology and the key of infrared imaging simulation is the generation of IR image. The generation of IR image is worthful in military and economy. In order to solve the problem of credibility and economy of infrared scene generation, a method of infrared scene generation based on the measured image is proposed. Through researching on optical properties of ship-target and sea background, ship-target images with various gestures are extracted from recorded images based on digital image processing technology. The ship-target image is zoomed in and out to simulate the relative motion between the viewpoint and the target according to field of view and the distance between the target and the sensor. The gray scale of ship-target image is adjusted to simulate the radiation change of the ship-target according to the distance between the viewpoint and the target and the atmospheric transmission. Frames of recorded infrared images without target are interpolated to simulate high frame rate of missile. Processed ship-target images and sea-background infrared images are synthetized to obtain infrared scenes according to different viewpoints. Experiments proved that this method is flexible and applicable, and the fidelity and the reliability of synthesis infrared images can be guaranteed.

  9. Defects' geometric feature recognition based on infrared image edge detection

    NASA Astrophysics Data System (ADS)

    Junyan, Liu; Qingju, Tang; Yang, Wang; Yumei, Lu; Zhiping, Zhang

    2014-11-01

    Edge detection is an important technology in image segmentation, feature extraction and other digital image processing areas. Boundary contains a wealth of information in the image, so to extract defects' edges in infrared images effectively enables the identification of defects' geometric features. This paper analyzed the detection effect of classic edge detection operators, and proposed fuzzy C-means (FCM) clustering-Canny operator algorithm to achieve defects' edges in the infrared images. Results show that the proposed algorithm has better effect than the classic edge detection operators, which can identify the defects' geometric feature much more completely and clearly. The defects' diameters have been calculated based on the image edge detection results.

  10. Infrared imaging diagnostics for INTF ion beam

    NASA Astrophysics Data System (ADS)

    Sudhir, D.; Bandyopadhyay, M.; Pandey, R.; Joshi, J.; Yadav, A.; Rotti, C.; Bhuyan, M.; Bansal, G.; Soni, J.; Tyagi, H.; Pandya, K.; Chakraborty, A.

    2015-04-01

    In India, testing facility named INTF [1] (Indian test facility) is being built in Institute for Plasma Research to characterize ITER-Diagnostic Neutral Beam (DNB). INTF is expected to deliver 60A negative hydrogen ion beam current of energy 100keV. The beam will be operated with 5Hz modulation having 3s ON/20s OFF duty cycle. To characterize the beam parameters several diagnostics are at different stages of design and development. One of them will be a beam dump, made of carbon fiber composite (CFC) plates placed perpendicular to the beam direction at a distance lm approximately. The beam dump needs to handle ˜ 6MW of beam power with peak power density ˜ 38.5MW/m2. The diagnostic is based on thermal (infra-red - IR) imaging of the footprint of the 1280 beamlets falling on the beam dump using four IR cameras from the rear side of the dump. The beam dump will be able to measure beam uniformity, beamlet divergence. It may give information on relative variation of negative ion stripping losses for different beam pulses. The design of this CFC based beam dump needs to address several physics and engineering issues, including some specific inputs from manufacturers. The manuscript will describe an overview of the diagnostic system and its design methodology highlighting those issues and the present status of its development.

  11. Infrared Spectroscopic Imaging: The Next Generation

    PubMed Central

    Bhargava, Rohit

    2013-01-01

    Infrared (IR) spectroscopic imaging seemingly matured as a technology in the mid-2000s, with commercially successful instrumentation and reports in numerous applications. Recent developments, however, have transformed our understanding of the recorded data, provided capability for new instrumentation, and greatly enhanced the ability to extract more useful information in less time. These developments are summarized here in three broad areas— data recording, interpretation of recorded data, and information extraction—and their critical review is employed to project emerging trends. Overall, the convergence of selected components from hardware, theory, algorithms, and applications is one trend. Instead of similar, general-purpose instrumentation, another trend is likely to be diverse and application-targeted designs of instrumentation driven by emerging component technologies. The recent renaissance in both fundamental science and instrumentation will likely spur investigations at the confluence of conventional spectroscopic analyses and optical physics for improved data interpretation. While chemometrics has dominated data processing, a trend will likely lie in the development of signal processing algorithms to optimally extract spectral and spatial information prior to conventional chemometric analyses. Finally, the sum of these recent advances is likely to provide unprecedented capability in measurement and scientific insight, which will present new opportunities for the applied spectroscopist. PMID:23031693

  12. Near-Infrared Imaging of Protostellar Clusters

    NASA Astrophysics Data System (ADS)

    Megeath, S. T.; Pipher, Judy; Myers, Phil; Peterson, Dawn

    2000-08-01

    We propose SQIID multiband IR imaging of the LBS 23 and OMC2/3 regions in the Orion Giant Molecular Clouds. Submillimeter observations of these regions show a remarkable number of protostars, indicating that these regions are forming stars at a rapid rate, but neither LBS-23 or OMC-2/3 have been surveyed extensively at infrared wavelengths. Using deep observations with SQIID on the 2.1-m telescope, we will survey the embedded stellar population of pre--main sequence stars down to the hydrogen burning limit in these highly extincted regions. These observations will give us a unique opportunity to study the earlier stages of cluster formation before the parental molecular gas has been significantly disrupted by HII regions. We will examine the spatial distribution to study the fragmentation history of the molecular gas and to use the spacing of the observed YSOs to constrain theories of cluster formation. We will also study the early evolution of the IMF and fraction of stars with disks by comparing these ``protoclusters'' to more more evolved regions such as the Trapezium cluster and NGC 2024.

  13. A comparison of the morphological properties between local and z ∼ 1 infrared luminous galaxies: Are local and high-z (U)LIRGs different?

    SciTech Connect

    Hung, Chao-Ling; Sanders, D. B.; Larson, Kirsten L.; Lee, Nicholas; Li, Yanxia; Lockhart, Kelly; Shih, Hsin-Yi; Barnes, Joshua E.; Casey, Caitlin M.; Koss, Michael; Kartaltepe, Jeyhan S.; Smith, Howard A.

    2014-08-10

    Ultraluminous and luminous infrared galaxies (ULIRGs and LIRGs) are the most extreme star-forming galaxies in the universe and dominate the total star formation rate density at z > 1. In the local universe (z < 0.3), the majority of ULIRGs and a significant portion of LIRGs are triggered by interactions between gas-rich spiral galaxies, yet it is unclear if this is still the case at high z. To investigate the relative importance of galaxy interactions in infrared luminous galaxies, we carry out a comparison of optical morphological properties between local (U)LIRGs and (U)LIRGs at z = 0.5-1.5 based on the same sample selection, morphology classification scheme, and optical morphology at similar rest-frame wavelengths. In addition, we quantify the systematics in comparing local and high-z data sets by constructing a redshifted data set from local (U)LIRGs, in which its data quality mimics the high-z data set. Based on the Gini-M{sub 20} classification scheme, we find that the fraction of interacting systems decreases by ∼8% from local to z ≲ 1, and it is consistent with the reduction between local and redshifted data sets (6{sub −6}{sup +14}%). Based on visual classifications, the merger fraction of local ULIRGs is found to be ∼20% lower compared to published results, and the reduction due to redshifting is 15{sub −8}{sup +10}%. Consequently, the differences of merger fractions between local and z ≲ 1 (U)LIRGs is only ∼17%. These results demonstrate that there is no strong evolution in the fraction of (U)LIRGs classified as mergers at least out to z ∼ 1. At z > 1, the morphology types of ∼30% of (U)LIRGs cannot be determined due to their faintness in the F814W band; thus, the merger fraction measured at z > 1 suffers from large uncertainties.

  14. LUMINOUS SUPERNOVA-LIKE UV/OPTICAL/INFRARED TRANSIENTS ASSOCIATED WITH ULTRA-LONG GAMMA-RAY BURSTS FROM METAL-POOR BLUE SUPERGIANTS

    SciTech Connect

    Kashiyama, Kazumi; Yajima, Hidenobu; Nakauchi, Daisuke; Nakamura, Takashi; Suwa, Yudai

    2013-06-10

    Metal-poor massive stars typically end their lives as blue supergiants (BSGs). Gamma-ray bursts (GRBs) from such progenitors could have an ultra-long duration of relativistic jets. For example, Population III (Pop III) GRBs at z {approx} 10-20 might be observable as X-ray-rich events with a typical duration of T{sub 90} {approx} 10{sup 4}(1 + z) s. The recent GRB111209A at z = 0.677 has an ultra-long duration of T{sub 90} {approx} 2.5 Multiplication-Sign 10{sup 4} s and it has been suggested that its progenitor might have been a metal-poor BSG in the local universe. Here, we suggest that luminous UV/optical/infrared emission is associated with this new class of GRBs from metal-poor BSGs. Before the jet head breaks out of the progenitor envelope, the energy injected by the jet is stored in a hot plasma cocoon, which finally emerges and expands as a baryon-loaded fireball. We show that the photospheric emissions from the cocoon fireball could be intrinsically very bright (L{sub peak} {approx} 10{sup 42}-10{sup 44} erg s{sup -1}) in UV/optical bands ({epsilon}{sub peak} {approx} 10 eV) with a typical duration of {approx}100 days in the rest frame. Such cocoon emissions from Pop III GRBs might be detectable in infrared bands at {approx}years after Pop III GRBs at up to z {approx} 15 by upcoming facilities such as the James Webb Space Telescope. We also suggest that GRB111209A might have been rebrightening in UV/optical bands up to an AB magnitude of {approx}< 26. The cocoon emission from local metal-poor BSGs might have been observed previously as luminous supernovae without GRBs since they can be seen from the off-axis direction of the jet.

  15. A background suppression algorithm for infrared image based on shearlet

    NASA Astrophysics Data System (ADS)

    Zou, Ruibin; Shi, Caicheng; Qin, Xiao

    2015-04-01

    Because of the relative far distance between infrared imaging system and target or the wide field infrared optical, the imaging area of infrared target is only a few pixels, which is isolated or spots to be showed in the field of view. The only available is the intensity information (gray value) for the target detection. Simultaneously, there are many shortcomings of the infrared image, such as large noise, interference and so on, therefore the small target is always buried in the background and noises. The small target is relatively difficult to detect, so generally, it is impossible to make reliable detection to this target in a single frame image. Summarily, the core of the infrared small target detection algorithm is the background and noise suppression based on a single frame image. Aiming at the infrared small target detection and the above problems, a shearlets-based background suppression algorithm for infrared image is proposed. The algorithm demonstrates the performance of advantage based on shearlets, which is especially designed to address anisotropic and directional information at various scales. This transform provides an optimally efficient representation of images, which is greatly reduced the amount of the information and the available information representation. In the paper, introducing the principle of shearlets first, and then proposing the theory of the algorithm and explaining the implementation step. Finally, giving the simulation results. In Matlab simulations with this method for several sets of infrared images, simulation results conformed to the theory on background suppression based on shearlets. The result showed that this method can effectively suppress background, and improve the SCR and achieve a satisfactory effect in the sky background. The method is very effectively for target detection, identification, track in infrared image system for the future.

  16. Infrared Images of an Infant Solar System

    NASA Astrophysics Data System (ADS)

    2002-05-01

    understanding of the formation of solar-type stars and planetary systems from the interstellar medium. However, in most cases the large difference of brightness between the young star and its surrounding material makes it impossible to image directly the circumstellar disk. But when the disk is seen nearly edge-on, the light from the central star will be blocked out by the dust grains in the disk. Other grains below and above the disk midplane scatter the stellar light, producing a typical pattern of a dark lane between two reflection nebulae. The first young stellar object (YSO) found to display this typical pattern, HH 30 IRS in the Taurus dark cloud at a distance of about 500 light-years (140 pc), was imaged by the Hubble Space telescope (HST) in 1996. Edge-on disks have since also been observed with ground-based telescopes in the near-infrared region of the spectrum, sometimes by means of adaptive optics techniques or speckle imaging, or under very good sky image quality, cf. ESO PR Photo 03d/01 with a VLT image of such an object in the Orion Nebula. A surprise discovery ESO PR Photo 12a/02 ESO PR Photo 12a/02 [Preview - JPEG: 400 x 459 pix - 55k] [Normal - JPEG: 800 x 918 pix - 352k] Caption : PR Photo 12a/02 shows a three-colour reproduction of the discovery image of strange-looking object (nicknamed the "Flying Saucer" by the astronomers), obtained with the SOFI multi-mode instrument at the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory. Compared to the unresolved stars in the field, the image of this object appears extended. Two characteristic reflection nebulae are barely visible, together with a marginally resolved dark dust lane in front of the star and oriented East-West. Technical information about the photo is available below. Last year, a group of astronomers [1] carried out follow-up observations of new X-ray sources found by the ESA XMM-Newton and NASA Chandra X-ray satellites. They were looking at the periphery of the so-called Rho

  17. Hubble Space Telescope Images of Nearby Luminous Quasars. 2; Results for Eight Quasars and Tests of the Detection Sensitivity

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1995-01-01

    Observations with the Wide-Field Camera of the Hubble Space Telescope (HST) are presented for eight intrinsically luminous quasars with redshifts between 0.16 and 0.29. These observations, when combined with a similar HST study of the quasar PKS 2349-014, show that luminous nearby quasars exist in a variety of environments. Seven companion galaxies brighter than M(V) = 16.5 (H(sub 0) = 100 km s(sup -1) Mpc(sup -1), Omega(sub 0) = 1.0) lie within a projected distance of 25 kpc of the quasars; three of the companions are located closer than 3'' (6 kpc projected distance) from the quasars, well within the volume that would be enclosed by a typical L* host galaxy. The observed association of quasars and companion galaxies is statistically significant and may he an important element in the luminous-quasar phenomenon. Apparent host galaxies are detected for three of the quasars: PG 1116+215, 3C 273, and PG 1444+407; the hosts have an average absolute magnitude of about 0.6 mag brighter than L*. The agreement between the previously published major-axis directions in ground-based images and in the present HST images of 3C 273 and PG 1444+407 constitutes important evidence supporting the reality of these candidate host galaxies. Upper limits are placed on the visual-band brightnesses of representative galactic hosts for all the quasars. These limits are established by placing galaxy images obtained with HST underneath the quasars and measuring at what faintness level the known galaxies are detected. On average, the HST spirals would have been detected if they were as faint as 1 mag below L*, and the early-type galaxies could have been detected down to a brightness level of about L*, where L* is the Schechter characteristic luminosity of field galaxies. Smooth, featureless galaxy models (exponential disks or de Vaucouleurs profiles) are fitted to the residual light after a best-fitting point source is subtracted from the quasar images. The results show that smooth spiral

  18. New technique for enhancement of high dynamic range infrared images

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Wang, Xin-sai; Xu, Hualiang; He, Ming; Li, Mingming

    2012-10-01

    A Bilateral Filter (BF) and Multi-scale Retinex (MSR) based infrared image enhancement algorithm is proposed in this paper. It's known that the MSR algorithm derived from vision theory can achieve dynamic range compression and tonal rendition effectively but suffers from `halo' phenomena caused by the existence of "sharp" edges in infrared images. Research shows that bilateral filter has the property of separating image details from strong edges. Therefore, we process detail components containing strong edges in MSR algorithm with bilateral filter to achieve dynamic range compression, detail enhancement and avoid `halo' artifacts at the same time. The performance of proposed algorithm is then validated by experiments with three real infrared images and compared with other two infrared images enhancement algorithms.

  19. Development of practical thermal infrared hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Wang, Jianyu; Li, Chunlai; Lv, Gang; Yuan, Liyin; Liu, Enguang; Jin, Jian; Ji, Hongzhen

    2014-11-01

    As an optical remote sensing equipment, the thermal infrared hyperspectral imager operates in the thermal infrared spectral band and acquires about 180 wavebands in range of 8.0~12.5μm. The field of view of this imager is 13° and the spatial resolution is better than 1mrad. Its noise equivalent temperature difference (NETD) is less than 0.2K@300K(average). 1 The influence of background radiation of the thermal infrared hyperspectral imager,and a simulation model of simplified background radiation is builded. 2 The design and implementationof the Cryogenic Optics. 3 Thermal infrared focal plane array (FPA) and special dewar component for the thermal infrared hyperspectral imager. 4 Parts of test results of the thermal infrared hyperspectral imager.The hyperspectral imaging system is China's first success in developing this type of instrument, whose flight validation experiments have already been embarked on. The thermal infrared hyperspectral data acquired will play an important role in fields such as geological exploration and air pollutant identification.

  20. Doped carbon nanostructure field emitter arrays for infrared imaging

    DOEpatents

    Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  1. Infrared imaging of power plant components

    NASA Astrophysics Data System (ADS)

    Teskey, Mike E.; Adamson, R. D.

    1995-05-01

    The application of infrared thermography (IR) to electric utility applications is discussed. A joint program with electric power research institute (EPRI) demonstrated the inspection of specific power plant components including boiler casing, condenser air-inleakage, and condenser tube leakage. Infrared thermography was successfully demonstrated as a predictive maintenance tool for power plant applications and real dollar savings by the utility.

  2. Translation of infrared chemical imaging for cardiovascular evaluation

    NASA Astrophysics Data System (ADS)

    Tiwari, Saumya; Raman, Jai; Reddy, Vijaya; Dawson, Miranda; Bhargava, Rohit

    2016-03-01

    Infrared (IR) spectroscopic imaging has been applied to study histology of cardiovascular tissue, primarily using Fourier transform IR (FTIR) Imaging. Here we describe results for histologic imaging of cardiac biopsies using a fast, discrete frequency IR (DFIR) imaging system. Histologic classification of tissue is understood in terms of the constituent frequencies and speeded up by careful optimization of the data acquired. Results are compared to FTIR imaging in terms of the signal to noise ratio and information content.

  3. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOEpatents

    Del Grande, Nancy K.; Durbin, Philip F.; Dolan, Kenneth W.; Perkins, Dwight E.

    1995-01-01

    A method for detecting flaws in structures using dual band infrared radiation. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features.

  4. Digital infrared thermal imaging following anterior cruciate ligament reconstruction.

    PubMed

    Barker, Lauren E; Markowski, Alycia M; Henneman, Kimberly

    2012-03-01

    This case describes the selective use of digital infrared thermal imaging for a 48-year-old woman who was being treated by a physical therapist following left anterior cruciate ligament (ACL) reconstruction with a semitendinosus autograft. PMID:22383168

  5. The remnant of the luminous red nova PSN J14021678+5426205/M 101 in infrared and optical ranges

    NASA Astrophysics Data System (ADS)

    Goranskij, V. P.; Tatarnikov, A. M.; Shatsky, N. I.; Nadjip, A. E.; Barsukova, E. A.; Valeev, A. F.

    2016-01-01

    We report a detection of the infrared source at the position of this red nova in the galaxy M 101 (ATel #7069, #7070, #7072, #7079, #7082, #7206). The object was discovered on 2015 February 10 by C. D. Vintdevara (Barlad Observatory, Romania) in the course of the repeated outburst, the first outburst was happened in 2014 November.

  6. Space imaging infrared optical guidance for autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  7. ALMA DETECTION OF THE VIBRATIONALLY EXCITED HCN J = 4-3 EMISSION LINE IN THE AGN-HOSTING LUMINOUS INFRARED GALAXY IRAS 20551–4250

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2013-10-01

    We present results from our ALMA Cycle 0 observations, at the frequencies around the HCN, HCO{sup +}, and HNC J = 4-3 transition lines, of the luminous infrared galaxy IRAS 20551–4250 at z = 0.043, which is known to host an energetically important obscured active galactic nucleus (AGN). In addition to the targeted HCN, HCO{sup +}, and HNC J = 4-3 emission lines, two additional strong emission lines are seen, which we attribute to H{sub 2}S and CH{sub 3}CN(+CCH). The HCN-to-HCO{sup +} J = 4-3 flux ratio (∼0.7) is higher than in the other starburst-dominated galaxy (∼0.2) observed in our ALMA Cycle 0 program. We tentatively (∼5σ) detected the vibrationally excited (v {sub 2} = 1) HCN J = 4-3 (l = 1f) emission line, which is important for testing an infrared radiative pumping scenario for HCN. This is the second detection of this molecular transition in external galaxies. The most likely reason for this detection is not only the high flux of this emission line, but also the small molecular line widths observed in this galaxy, suggesting that vibrational excitation of HCN may be relatively common in AGN-hosting galaxies.

  8. Infrared imaging simulation and detection of ship wake

    NASA Astrophysics Data System (ADS)

    Yang, Li; Chen, Xuan; Chang, Shizheng; Xu, Enchi; Wang, Xingyu; Wang, Ye; Zhao, Xiaolong; Du, Yongchen; Kou, Wei; Fan, Chunli

    2015-10-01

    The thermal wake would be formed owing to the cooling water or exhaust heat discharged by ship, and the cold wake could be formed by the cool water in the lower part of sea stirred up by the ship propeller or vortexes. Owing to the difference of surface temperature and emissivity between the ship wake and the surrounding ocean the ship wake will be easily detected by the infrared detecting system. The wave of wake also could be detected by the difference of reflected radiance between the background and the Kelvin wake of ship. In this paper the simulating models of infrared imaging of ship wake are developed based on the selfradiation of wake, the reflected radiance of the sky and sun and the transmitted radiance of atmosphere, and the infrared imaging signatures of ship wake are investigated. The results show that the infrared imaging signatures of ship wake can be really simulated by the models proposed in this paper. The effects of the detecting height, the angle of view, the NETD of detector and the temperature of wake on the infrared imaging signatures of ship wake are studied. The temperature difference between the ship wake and surrounding ocean is a main fact which effects on the detecting distance. The infrared imaging signatures of ship wake in 8-14μm wave band is stronger than that in 2-5μm wave band whenever the temperature of ship wake is warmer or cooler than the surrounding ocean. Further, the infrared imaging of thermal wake is investigated in the homogenous water and temperature stratified water at different speed of a ship and different flow rate and depth of the discharged water in a water tank. The spreading and decaying laws of infrared signature of ship wake are obtained experimentally. The results obtained in this paper have an important application in the infrared remote sensing of ship wake.

  9. e-MERLIN and VLBI observations of the luminous infrared galaxy IC 883: a nuclear starburst and an AGN candidate revealed

    NASA Astrophysics Data System (ADS)

    Romero-Cañizales, C.; Pérez-Torres, M. A.; Alberdi, A.; Argo, M. K.; Beswick, R. J.; Kankare, E.; Batejat, F.; Efstathiou, A.; Mattila, S.; Conway, J. E.; Garrington, S. T.; Muxlow, T. W. B.; Ryder, S. D.; Väisänen, P.

    2012-07-01

    Context. The high star formation rates of luminous infrared galaxies (LIRGs) make them ideal places for core-collapse supernova (CCSN) searches. Massive star formation can often be found in coexistence with an active galactic nucleus (AGN), contributing jointly to the energy source of LIRGs. At radio frequencies, where light is unaffected by dust extinction, it is possible to detect compact components within the innermost LIRG nuclear regions, such as SNe and SN remnants, as well as AGN buried deep in the LIRG nuclei. Aims: Our study of the LIRG IC 883 aims at: (i) investigating the parsec-scale radio structure of the (circum-)nuclear regions of IC 883; (ii) detecting at radio frequencies the two recently reported circumnuclear SNe 2010cu and 2011hi, which were discovered by near-IR (NIR) adaptive optics observations of IC 883; and (iii) further investigating the nature of SN 2011hi at NIR wavelengths. Methods: We used the electronic European very long baseline interferometry (VLBI) Network (e-EVN) at 5 GHz, and the electronic Multi-Element Remotely Linked Interferometer Network (e-MERLIN) at 6.9 GHz, to observe contemporaneously the LIRG IC 883 at high angular-resolution (from tens to hundreds of milliarcsec) and with high sensitivity (<70 μJy), complemented by archival VLBI data at 5 GHz and 8.4 GHz. We also used the Gemini North telescope to obtain late-time JHK photometry for SN 2011hi. Results: The circumnuclear regions traced by e-MERLIN at 6.9 GHz have an extension of ~ 1 kpc, at a position angle of 130°, and show a striking double-sided structure, which very likely corresponds to a warped rotating ring, in agreement with previous studies. Our e-EVN observations at 5 GHz and complementary archival VLBI data at 5 GHz and 8.4 GHz, reveal various milliarcsec compact components in the nucleus of IC 883. A single compact source, an AGN candidate, dominates the emission at both nuclear and circumnuclear scales, as imaged with the e-EVN and e-MERLIN, respectively

  10. Comparison of image deconvolution algorithms on simulated and laboratory infrared images

    SciTech Connect

    Proctor, D.

    1994-11-15

    We compare Maximum Likelihood, Maximum Entropy, Accelerated Lucy-Richardson, Weighted Goodness of Fit, and Pixon reconstructions of simple scenes as a function of signal-to-noise ratio for simulated images with randomly generated noise. Reconstruction results of infrared images taken with the TAISIR (Temperature and Imaging System InfraRed) are also discussed.

  11. Uncooled infrared detector and imager development at DALI Technology

    NASA Astrophysics Data System (ADS)

    Jiang, Lijun; Liu, Haitao; Chi, Jiguang; Qian, Liangshan; Pan, Feng; Liu, Xiang; Zhu, Xiaorong; Ma, Zhigang

    2015-06-01

    Zhejiang Dali Technology Co. Ltd. is one of the major players in the China Infrared industry. The company has been working on infrared imagers using uncooled FPAs for about 15 years. It started the research and development of uncooled microbolometer detectors since 2006, and has brought several uncooled detectors into mass production, including 35um 384x288, 25um 160x120, 384x288, 640x480, and 17um 384x288, 640x480. In this presentation, we will describe the uncooled infrared detector and imager development at DALI Technology.

  12. Discriminant analyzing system for wood wastes using a visible-near-infrared chemometric imaging technique.

    PubMed

    Kobori, Hikaru; Yonenobu, Hitoshi; Noma, Junichi; Tsuchikawa, Satoru

    2008-08-01

    A new optical system was developed and applied to automated separation of wood wastes, using a combined technique of visible-near-infrared (Vis-NIR) imaging analysis and chemometrics. Three kinds of typical wood wastes were used, i.e., non-treated, impregnated, and plastic-film overlaid wood. The classification model based on soft independent modeling of class analogy (SIMCA) was examined using the difference luminance brightness of a sample. Our newly developed system showed a good/promising performance in separation of wood wastes, with an average rate of correct separation of 89%. Hence, it is concluded that the system is efficiently feasible for online monitoring and separation of wood wastes in recycling mills.

  13. Near-infrared imaging of Markarian 231: Evidence for a double nucleus

    NASA Technical Reports Server (NTRS)

    Armus, L.; Surace, J. A.; Soifer, B. T.; Matthews, K.; Graham, J. R.; Larkin, J. E.

    1994-01-01

    Near-infrared (1.2-2.4 micrometers) images are presented for the central 10 arcsec of the Seyfert 1 galaxy Markarian 231. We find a faint, but intrinsically luminous (M(sub k) approximately -20.7) secondary peak in the near-infrared light distribution approximately 3.5 arcsec (2.7 kpc) south of the primary Seyfert 1 nucleus. Since there is no optical or infrared evidence for ongoing star formation at the location of this secondary peak, and its near-infrared luminosity and color are comparable to slightly reddened spiral bulges or elliptical nuclei, we identify this peak with the stripped nucleus of the companion galaxy involved in the Mrk 231 merger event. Depending upon the exact ratio of the masses of the primary and secondary nucleus in the Mrk 231 system we estimate a merger time scale of less than or equal to 10(exp 9) yr. The morphology of the southern nucleus suggests that it may have recently survived a close passage (r less than 200 pc) with the Seyfert 1 nucleus on a highly elliptical orbit, in which case the merger time scale may be significantly shorter (approximately 10(exp 7) yr. We re-calculate the average merger time scale for the seven ultraluminous infrared galaxies with double nuclei in the Bright Galaxy Sample (the BGS) of Soifer et al. (AJ, 98, 766 (1989)) and derive a value of approximately 10(exp 8) yr. Since seven of ten of the ultraluminous infrared galaxies in the BGS are now known to be double, we estimate the ultraluminous 'phase' may be close to this value. Along with Arp 220 and Mrk 273, Mrk 231 is the third member of the class to possess a high brightness temperature non-thermal radio core and a double nucleus, suggesting the time scale for the generation or fueling of the active nucleus can be much less than the dynamical time scale for the merger of the progenitor nuclei.

  14. Segmented infrared image analysis for rotating machinery fault diagnosis

    NASA Astrophysics Data System (ADS)

    Duan, Lixiang; Yao, Mingchao; Wang, Jinjiang; Bai, Tangbo; Zhang, Laibin

    2016-07-01

    As a noncontact and non-intrusive technique, infrared image analysis becomes promising for machinery defect diagnosis. However, the insignificant information and strong noise in infrared image limit its performance. To address this issue, this paper presents an image segmentation approach to enhance the feature extraction in infrared image analysis. A region selection criterion named dispersion degree is also formulated to discriminate fault representative regions from unrelated background information. Feature extraction and fusion methods are then applied to obtain features from selected regions for further diagnosis. Experimental studies on a rotor fault simulator demonstrate that the presented segmented feature enhancement approach outperforms the one from the original image using both Naïve Bayes classifier and support vector machine.

  15. High-resolution study of luminous infrared galaxies. I - The composite nature of the Seyfert 1 galaxy IRAS 20044-6114 (NGC 6860)

    NASA Technical Reports Server (NTRS)

    Lipari, Sebastian; Tsvetanov, Zlatan; Macchetto, F.

    1993-01-01

    The physical conditions in the ionized gas, the stellar population, and the kinematics of the Seyfert 1 galaxy IRAS 20044-6114 (NGC 6860) are studied by high spatial resolution optical imaging and optical and near-IR spectroscopy of this luminous IR source. The broadband images show a compact nucleus, two weak spiral arms, a bar, a bulge, an inner ring, and a possible outer ring. The I-alpha image reveals bright emission-line regions associated with the Seyfert nucleus and an inner ring of intense star formation. The forbidden O III 5007-A image shows that the high-excitation gas is elongated perpendicularly to the direction of the bar, and reveals a bright compact object at about 40 arcsec NE of the nucleus which is undetectable in the broadband images. This object is interpreted as a dwarf young H II galaxy. The optical, near-IR, and FIR results show clear evidence that the nuclear and circumnuclear regions have composite and complex structure: a variable Seyfert 1 nucleus embedded in an intense and dusty star formation. environment.

  16. Infrared imagery acquisition process supporting simulation and real image training

    NASA Astrophysics Data System (ADS)

    O'Connor, John

    2012-05-01

    The increasing use of infrared sensors requires development of advanced infrared training and simulation tools to meet current Warfighter needs. In order to prepare the force, a challenge exists for training and simulation images to be both realistic and consistent with each other to be effective and avoid negative training. The US Army Night Vision and Electronic Sensors Directorate has corrected this deficiency by developing and implementing infrared image collection methods that meet the needs of both real image trainers and real-time simulations. The author presents innovative methods for collection of high-fidelity digital infrared images and the associated equipment and environmental standards. The collected images are the foundation for US Army, and USMC Recognition of Combat Vehicles (ROC-V) real image combat ID training and also support simulations including the Night Vision Image Generator and Synthetic Environment Core. The characteristics, consistency, and quality of these images have contributed to the success of these and other programs. To date, this method has been employed to generate signature sets for over 350 vehicles. The needs of future physics-based simulations will also be met by this data. NVESD's ROC-V image database will support the development of training and simulation capabilities as Warfighter needs evolve.

  17. Detecting and tracking small moving target in infrared image sequence

    NASA Astrophysics Data System (ADS)

    Yan, Hong-lei; Huang, Geng-hua; Wang, Hai-wei; Shu, Rong

    2013-09-01

    Nowadays, infrared imaging systems play important roles in the field of civil and military. Especially small infrared target detecting and recognizing is one of the most widely use. The capability of target-detection algorithm is an important index of the system. This paper presents a novel algorithm for detecting a small moving target in infrared (IR) image sequences and finding its mass center, and recording the target moving track. In the target searching and recognizing algorithm of infrared image sequences, infrared image sequence is broken into frames, filtered by spatial filter algorithm, which helped to reduce granular noise. We use the Canny algorithm factor to find the edge of the target, and the result of detecting target edge is process by ecological open-loop filter method, including erosion and dilation algorithm with a same scale. Then, the candidate targets are recognized and saved temporarily. In order to get the mass centers of the candidate targets, the valid area of the candidate targets is defined by different weight valves, and then the mass centers are calculated by weighted average algorithm, and record per frame. After got several frames mass centers of the candidate targets, we get rid of the non-target mass centers by frame difference algorithm, and get the real mass center of the small moving infrared target. If the background is observed for enough time, the effect of frame difference algorithm is more efficiency. Finally, the moving track of the target is found out. The infrared (IR) image sequences used here are obtained through an IR camera in the laboratory, which uses a 288*384 silicon infrared image sensor produced by ULIS company. The methods referred above are realized and simulated on compute with Matlab. Theory analysis and experiments prove the method is reasonable and efficient.

  18. Astronomical imaging with infrared array detectors.

    PubMed

    Gatley, I; Depoy, D L; Fowler, A M

    1988-12-01

    History shows that progress in astronomy often stems directly from technological innovation and that each portion of the electromagnetic spectrum offers unique insights into the nature of the universe. Most recently, the widespread availability of infrared-sensitive two-dimensional array detectors has led to dramatic improvements in the capabilities of conventional ground-based observatories. The impact of this new technology on our understanding of a wide variety of phenomena is illustrated here by infrared pictures of star-forming regions, of nebulae produced by the late stages of stellar evolution, of the nucleus of our own galaxy(the Milky Way), and of activity in other galaxies. PMID:17817072

  19. High Angular Resolution Mid-Infrared Imaging of Young Stars in Orion BN/KL

    SciTech Connect

    greenhill, l

    2004-06-25

    The authors present Keck LWS images of the Orion BN/KL star forming region obtained in the first multi-wavelength study to have 0.3--0.5 resolution from 4.7 {micro}m to 22 {micro}m. The young stellar objects designed infrared source n and radio source I are believed to dominate the BN/KL region. They have detected extended emission from a probable accretion disk around source n but infer a stellar luminosity on the order of only 2000 L{sub {center_dot}}. Although source I is believed to be more luminous, they do not detect an infrared counterpart even at the longest wavelengths. However, they resolve the closeby infrared source, IRc2, into an arc of knots {approx} 10{sup 3} AU long at all wavelengths. Although the physical relation of source I to IRc2 remains ambiguous, they suggest these sources mark a high density core (10{sup 7}-10{sup 8} pc{sup -3} over {approx} 10{sup 3} AU) within the larger BN/KL star forming cluster. The high density may be a consequence of the core being young and heavily embedded. The authors suggest the energetics of the BN/KL region may be dominated by this cluster core rather than one or two individual sources.

  20. IR CMOS: near infrared enhanced digital imaging (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani

    2015-08-01

    SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km

  1. New Finger Biometric Method Using Near Infrared Imaging

    PubMed Central

    Lee, Eui Chul; Jung, Hyunwoo; Kim, Daeyeoul

    2011-01-01

    In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local derivative pattern (LDP) methods. Infrared finger images include the multimodal features of finger veins and finger geometries. Instead of extracting each feature using different methods, the modified Gaussian high-pass filter is fully convolved. Therefore, the extracted binary patterns of finger images include the multimodal features of veins and finger geometries. Experimental results show that the proposed method has an error rate of 0.13%. PMID:22163741

  2. Infrared medical image visualization and anomalies analysis method

    NASA Astrophysics Data System (ADS)

    Gong, Jing; Chen, Zhong; Fan, Jing; Yan, Liang

    2015-12-01

    Infrared medical examination finds the diseases through scanning the overall human body temperature and obtaining the temperature anomalies of the corresponding parts with the infrared thermal equipment. In order to obtain the temperature anomalies and disease parts, Infrared Medical Image Visualization and Anomalies Analysis Method is proposed in this paper. Firstly, visualize the original data into a single channel gray image: secondly, turn the normalized gray image into a pseudo color image; thirdly, a method of background segmentation is taken to filter out background noise; fourthly, cluster those special pixels with the breadth-first search algorithm; lastly, mark the regions of the temperature anomalies or disease parts. The test is shown that it's an efficient and accurate way to intuitively analyze and diagnose body disease parts through the temperature anomalies.

  3. Scene classification of infrared images based on texture feature

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Bai, Tingzhu; Shang, Fei

    2008-12-01

    Scene Classification refers to as assigning a physical scene into one of a set of predefined categories. Utilizing the method texture feature is good for providing the approach to classify scenes. Texture can be considered to be repeating patterns of local variation of pixel intensities. And texture analysis is important in many applications of computer image analysis for classification or segmentation of images based on local spatial variations of intensity. Texture describes the structural information of images, so it provides another data to classify comparing to the spectrum. Now, infrared thermal imagers are used in different kinds of fields. Since infrared images of the objects reflect their own thermal radiation, there are some shortcomings of infrared images: the poor contrast between the objectives and background, the effects of blurs edges, much noise and so on. Because of these shortcomings, it is difficult to extract to the texture feature of infrared images. In this paper we have developed an infrared image texture feature-based algorithm to classify scenes of infrared images. This paper researches texture extraction using Gabor wavelet transform. The transformation of Gabor has excellent capability in analysis the frequency and direction of the partial district. Gabor wavelets is chosen for its biological relevance and technical properties In the first place, after introducing the Gabor wavelet transform and the texture analysis methods, the infrared images are extracted texture feature by Gabor wavelet transform. It is utilized the multi-scale property of Gabor filter. In the second place, we take multi-dimensional means and standard deviation with different scales and directions as texture parameters. The last stage is classification of scene texture parameters with least squares support vector machine (LS-SVM) algorithm. SVM is based on the principle of structural risk minimization (SRM). Compared with SVM, LS-SVM has overcome the shortcoming of

  4. Optically addressed multiband photodetector for infrared imaging applications

    NASA Astrophysics Data System (ADS)

    Cellek, O. O.; Zhang, Y.-H.

    2012-01-01

    Multiband infrared focal plane arrays (FPAs) with small pixel pitch have increased device processing complexity since they often need more than two terminals per pixel for readouts. Simpler FPAs are enabled by our newly demonstrated optically-addressed two-terminal multiband photodetector architecture. For long-wavelength infrared (LWIR) and midwavelength infrared (MWIR) imaging applications, the use of quantum well infrared photodetectors (QWIP) has been investigated. The results show that the utilization of unipolar QWIPs with bipolar near infrared (NIR) devices is feasible with this new optical-addressing scheme. Potential device performance is analyzed with an equivalent AC circuit model. Proposed design maximizes fill factor and enables small pixel-pitch FPA with single indium-bump per pixel for NIR/MWIR/LWIR multiband detection capability.

  5. Near-infrared Mueller matrix imaging for colonic cancer detection

    NASA Astrophysics Data System (ADS)

    Wang, Jianfeng; Zheng, Wei; Lin, Kan; Huang, Zhiwei

    2016-03-01

    Mueller matrix imaging along with polar decomposition method was employed for the colonic cancer detection by polarized light in the near-infrared spectral range (700-1100 nm). A high-speed (<5s) Muller matrix imaging system with dual-rotating waveplates was developed. 16 (4 by 4) full Mueller matrices of the colonic tissues (i.e., normal and caner) were acquired. Polar decomposition was further implemented on the 16 images to derive the diattentuation, depolarization, and the retardance images. The decomposed images showed clear margin between the normal and cancerous colon tissue samples. The work shows the potential of near-infrared Mueller matrix imaging for the early diagnosis and detection of malignant lesions in the colon.

  6. Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence

    SciTech Connect

    Li, Zhanjun; Zhang, Yuanwei; Wu, Xiang; Huang, Ling; Li, Dongsheng; Fan, Wei; Han, Gang

    2015-04-02

    Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs), possessing unique NIR PL properties, have recently emerged as important materials for a wide variety of applications in chemistry and biology, for which they must endure high-temperature solid-state annealing reactions and subsequent complicated physical post-treatments. Herein, we report on a first direct aqueous-phase chemical synthesis route to NIR PLNPs and present their enhanced in vivo renewable NIR PL. Our method leads to monodisperse PLNPs as small as ca. 8 nm. Such sub-10 nm nanocrystals are readily dispersed and functionalized, and can form stable colloidal solutions in aqueous solution and cell culture medium for biological applications. Under biotissue-penetrable red-light excitation, we found that such nanocrystals possess superior renewable PL photoluminescence in vitro and in vivo compared to their larger counterparts currently made by existing methods. In conclusion, we believe that this solid-state-reaction-free chemical approach overcomes the current key roadblock in regard to PLNP development, and thus will pave the way to broad use of these advanced miniature “luminous pearls” in photonics and biophotonics.

  7. Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence

    DOE PAGESBeta

    Li, Zhanjun; Zhang, Yuanwei; Wu, Xiang; Huang, Ling; Li, Dongsheng; Fan, Wei; Han, Gang

    2015-04-02

    Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs), possessing unique NIR PL properties, have recently emerged as important materials for a wide variety of applications in chemistry and biology, for which they must endure high-temperature solid-state annealing reactions and subsequent complicated physical post-treatments. Herein, we report on a first direct aqueous-phase chemical synthesis route to NIR PLNPs and present their enhanced in vivo renewable NIR PL. Our method leads to monodisperse PLNPs as small as ca. 8 nm. Such sub-10 nm nanocrystals are readily dispersed and functionalized, and can form stable colloidal solutions in aqueous solution and cell culture medium for biologicalmore » applications. Under biotissue-penetrable red-light excitation, we found that such nanocrystals possess superior renewable PL photoluminescence in vitro and in vivo compared to their larger counterparts currently made by existing methods. In conclusion, we believe that this solid-state-reaction-free chemical approach overcomes the current key roadblock in regard to PLNP development, and thus will pave the way to broad use of these advanced miniature “luminous pearls” in photonics and biophotonics.« less

  8. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOEpatents

    Del Grande, N.K.; Durbin, P.F.; Dolan, K.W.; Perkins, D.E.

    1995-08-22

    A method for detecting flaws in structures using dual band infrared radiation is disclosed. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features. 1 fig.

  9. Arrays of Nano Tunnel Junctions as Infrared Image Sensors

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong S.; Prokopuk, Nicholas

    2006-01-01

    Infrared image sensors based on high density rectangular planar arrays of nano tunnel junctions have been proposed. These sensors would differ fundamentally from prior infrared sensors based, variously, on bolometry or conventional semiconductor photodetection. Infrared image sensors based on conventional semiconductor photodetection must typically be cooled to cryogenic temperatures to reduce noise to acceptably low levels. Some bolometer-type infrared sensors can be operated at room temperature, but they exhibit low detectivities and long response times, which limit their utility. The proposed infrared image sensors could be operated at room temperature without incurring excessive noise, and would exhibit high detectivities and short response times. Other advantages would include low power demand, high resolution, and tailorability of spectral response. Neither bolometers nor conventional semiconductor photodetectors, the basic detector units as proposed would partly resemble rectennas. Nanometer-scale tunnel junctions would be created by crossing of nanowires with quantum-mechanical-barrier layers in the form of thin layers of electrically insulating material between them (see figure). A microscopic dipole antenna sized and shaped to respond maximally in the infrared wavelength range that one seeks to detect would be formed integrally with the nanowires at each junction. An incident signal in that wavelength range would become coupled into the antenna and, through the antenna, to the junction. At the junction, the flow of electrons between the crossing wires would be dominated by quantum-mechanical tunneling rather than thermionic emission. Relative to thermionic emission, quantum mechanical tunneling is a fast process.

  10. Infrared thermal facial image sequence registration analysis and verification

    NASA Astrophysics Data System (ADS)

    Chen, Chieh-Li; Jian, Bo-Lin

    2015-03-01

    To study the emotional responses of subjects to the International Affective Picture System (IAPS), infrared thermal facial image sequence is preprocessed for registration before further analysis such that the variance caused by minor and irregular subject movements is reduced. Without affecting the comfort level and inducing minimal harm, this study proposes an infrared thermal facial image sequence registration process that will reduce the deviations caused by the unconscious head shaking of the subjects. A fixed image for registration is produced through the localization of the centroid of the eye region as well as image translation and rotation processes. Thermal image sequencing will then be automatically registered using the two-stage genetic algorithm proposed. The deviation before and after image registration will be demonstrated by image quality indices. The results show that the infrared thermal image sequence registration process proposed in this study is effective in localizing facial images accurately, which will be beneficial to the correlation analysis of psychological information related to the facial area.

  11. Color contrast enhancement method of infrared polarization fused image

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Xie, Chen

    2015-10-01

    As the traditional color fusion method based on color transfer algorithm has an issue that the color of target and background is similar. A kind of infrared polarization image color fusion method based on color contrast enhancement was proposed. Firstly the infrared radiation intensity image and the polarization image were color fused, and then color transfer technology was used between color reference image and initial fused image in the YCbCr color space. Secondly Otsu segmentation method was used to extract the target area image from infrared polarization image. Lastly the H,S,I component of the color fusion image which obtained by color transfer was adjusted to obtain the final fused image by using target area in the HSI space. Experimental results show that, the fused result which obtained by the proposed method is rich in detail and makes the contrast of target and background more outstanding. And then the ability of target detection and identification can be improved by the method.

  12. Enhanced Infrared Surveillance Imaging Report for NA-22

    SciTech Connect

    Carrano, C J

    2005-10-04

    The purpose of this report is to describe our work on enhanced infrared (IR) surveillance using speckle imaging for NA-22. Speckle imaging in this context is an image post-processing algorithm that aims to solve the atmospheric blurring problem of imaging through horizontal or slant path turbulence. We will describe the IR imaging systems used in our data collections and show imagery before and after speckle processing. We will also compare IR imagery with visible wavelength imagery of the same target in the same conditions and demonstrate how going to longer wavelengths can be beneficial in the presence of strong turbulence.

  13. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  14. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics.

    PubMed

    Cardone, Daniela; Pinti, Paola; Merla, Arcangelo

    2015-01-01

    Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity.

  15. Fundamental developments in infrared spectroscopic imaging for biomedical applications.

    PubMed

    Pilling, Michael; Gardner, Peter

    2016-04-01

    Infrared chemical imaging is a rapidly emerging field with new advances in instrumentation, data acquisition and data analysis. These developments have had significant impact in biomedical applications and numerous studies have now shown that this technology offers great promise for the improved diagnosis of the diseased state. Relying on purely biochemical signatures rather than contrast from exogenous dyes and stains, infrared chemical imaging has the potential to revolutionise histopathology for improved disease diagnosis. In this review we discuss the recent advances in infrared spectroscopic imaging specifically related to spectral histopathology (SHP) and consider the current state of the field. Finally we consider the practical application of SHP for disease diagnosis and consider potential barriers to clinical translation highlighting current directions and the future outlook. PMID:26996636

  16. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics.

    PubMed

    Cardone, Daniela; Pinti, Paola; Merla, Arcangelo

    2015-01-01

    Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity. PMID:26339284

  17. Near infrared imaging of Uranus and Neptune

    SciTech Connect

    Smith, B.A.

    1984-10-01

    Imaging of Uranus and Neptune in the deep methane absorption band at 890nm is used to detect high altitude atmospheric hazes and to search for possible undiscovered close in satellites. The appearances of Uranus and Neptune are very different from one another and Uranus seems to be changing with time. The Neptune images show rotation in the direct sense.

  18. BOOK REVIEW: Infrared Thermal Imaging: Fundamentals, Research and Applications Infrared Thermal Imaging: Fundamentals, Research and Applications

    NASA Astrophysics Data System (ADS)

    Planinsic, Gorazd

    2011-09-01

    Ten years ago, a book with a title like this would be interesting only to a narrow circle of specialists. Thanks to rapid advances in technology, the price of thermal imaging devices has dropped sharply, so they have, almost overnight, become accessible to a wide range of users. As the authors point out in the preface, the growth of this area has led to a paradoxical situation: now there are probably more infrared (IR) cameras sold worldwide than there are people who understand the basic physics behind them and know how to correctly interpret the colourful images that are obtained with these devices. My experience confirms this. When I started using the IR camera during lectures on the didactics of physics, I soon realized that I needed more knowledge, which I later found in this book. A wide range of potential readers and topical areas provides a good motive for writing a book such as this one, but it also represents a major challenge for authors, as compromises in the style of writing and choice of topics are required. The authors of this book have successfully achieved this, and indeed done an excellent job. This book addresses a wide range of readers, from engineers, technicians, and physics and science teachers in schools and universities, to researchers and specialists who are professionally active in the field. As technology in this area has made great progress in recent times, this book is also a valuable guide for those who opt to purchase an infrared camera. Chapters in this book could be divided into three areas: the fundamentals of IR thermal imaging and related physics (two chapters); IR imaging systems and methods (two chapters) and applications, including six chapters on pedagogical applications; IR imaging of buildings and infrastructure, industrial applications, microsystems, selected topics in research and industry, and selected applications from other fields. All chapters contain numerous colour pictures and diagrams, and a rich list of relevant

  19. The Florida Image Slicer for Infrared Astrophysics and Cosmology

    NASA Astrophysics Data System (ADS)

    Raines, S. N.; Eikenberry, S. S.; Guzmán, R.; Gruel, N.; Julian, J.; Boreman, G.; Hoffman, J.; Rodgers, M.; Glenn, P.; Hull-Allen, G.; Myrick, B.; Flint, S.; Comstock, L.

    2007-06-01

    We report on the design, manufacture, and scientific performance of the Florida Image Slicer for Infrared Astrophysics and Cosmology (FISICA), a fully cryogenic all-reflective image slicing integral field unit (IFU) for the FLAMINGOS near-infrared spectrograph (Elston et al.003). We find that FISICA is capable of delivering excellent scientific results. It now operates as a turnkey instrument at the KPNO 4-m telescope via collaboration with the instrument team, who can assist with the proposal preparation and observations, as well as provide the data reduction tools for integral field spectroscopy.

  20. Facility for testing infrared imaging seekers in a countermeasures environment

    NASA Astrophysics Data System (ADS)

    Sidery, Colin J.; Pyle, Andrew

    2001-08-01

    A new Imaging Infrared Countermeasure Hardware-in-the-Loop facility has been designed and built by Matra BAe Dynamics to test imaging sensors in a complex infrared environment. Drawing upon currently available leading edge technologies and UK expertise, the test bed has ben completed in a twelve-month program. The facility comprises a Thermal Picture Synthesizer with up to four further independent channels, each capable of representing a countermeasure (jammer, flare or laser) within the scene. A six stage broadband reflective collimator relays the complex scene to the sensor.

  1. Nondestructive evaluation technique using infrared thermography and terahertz imaging

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Shiozawa, Daiki; Tamaki, Yoshitaka; Iwama, Tatsuya

    2016-05-01

    Nondestructive testing (NDT) techniques using pulse heating infrared thermography and terahertz (THz) imaging were developed for detecting deterioration of oil tank floor, such as blister and delamination of corrosion protection coating, or corrosion of the bottom steel plate under coating. Experimental studies were conducted to demonstrate the practicability of developed techniques. It was found that the pulse heating infrared thermography was utilized for effective screening inspection and THz-TDS imaging technique performed well for the detailed inspection of coating deterioration and steel corrosion.

  2. Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Edlridge, Jeffrey I.; Martin, Richard E.

    2009-01-01

    An apparatus for mid-infrared reflectance imaging has been developed as means of inspecting for subsurface damage in thermal-barrier coatings (TBCs). The apparatus is designed, more specifically, for imaging the progression of buried delamination cracks in plasma-sprayed yttria-stabilized zirconia coatings on turbine-engine components. Progression of TBC delamination occurs by the formation of buried cracks that grow and then link together to produce eventual TBC spallation. The mid-infrared reflectance imaging system described here makes it possible to see delamination progression that is invisible to the unaided eye, and therefore give sufficiently advanced warning before delamination progression adversely affects engine performance and safety. The apparatus (see figure) includes a commercial mid-infrared camera that contains a liquid-nitrogen-cooled focal plane indium antimonide photodetector array, and imaging is restricted by a narrow bandpass centered at wavelength of 4 microns. This narrow wavelength range centered at 4 microns was chosen because (1) it enables avoidance of interfering absorptions by atmospheric OH and CO2 at 3 and 4.25 microns, respectively; and (2) the coating material exhibits maximum transparency in this wavelength range. Delamination contrast is produced in the midinfrared reflectance images because the introduction of cracks into the TBC creates an internal TBC/air-gap interface with a high diffuse reflectivity of 0.81, resulting in substantially higher reflectance of mid-infrared radiation in regions that contain buried delamination cracks. The camera is positioned a short distance (.12 cm) from the specimen. The mid-infrared illumination is generated by a 50-watt silicon carbide source positioned to the side of the mid-infrared camera, and the illumination is collimated and reflected onto the specimen by a 6.35-cm-diameter off-axis paraboloidal mirror. Because the collected images are of a steady-state reflected intensity (in

  3. Infrared light field imaging using single carbon nanotube detector

    NASA Astrophysics Data System (ADS)

    Xi, Ning; Chen, Liangliang; Zhou, Zhanxin; Yang, Ruiguo; Song, Bo; Sun, Zhiyong

    2014-06-01

    The conventional photographs only record the sum total of light rays of each point on image plane so that they tell little about the amount of light traveling along individual rays. The focus and lens aberration problems have challenged photographers since the very beginning therefore light field photography was proposed to solve these problems. Lens array and multiple camera systems are used to capture 4D light rays, by reordering the different views of scene from multiple directions. The coded aperture is another method to encode the angular information in frequency domain. However, infrared light field sensing is still widely opening to research. In the paper, we will propose micro plane mirror optics together with compressive sensing algorithm to record light field in infrared spectrum. The micro mirror reflects objects irradiation and forms a virtual image behind the plane in which the mirror lies. The Digital Micromirror (DMD) consists of millions microscale mirrors which work as CCD array in the camera and it is controlled separately so as to project linear combination of object image onto lens. Coded aperture could be utilized to control angular resolution of infrared light rays. The carbon nanotube based infrared detector, which has ultra high signal to noise ratio and ultra fast responsibility, will sum up all image information on it without image distortion. Based on a number of measurements, compressive sensing algorithm was used to recover images from distinct angles, which could compute different views of scene to reconstruct infrared light field scence. Two innovative applications of full image recovery using nano scale photodetector and DMD based synthetic aperture photography will also be discussed in this paper.

  4. Improving the uniformity of luminous system in radial imaging capsule endoscope system

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De

    2013-02-01

    This study concerns the illumination system in a radial imaging capsule endoscope (RICE). Uniformly illuminating the object is difficult because the intensity of the light from the light emitting diodes (LEDs) varies with angular displacement. When light is emitted from the surface of the LED, it first encounters the cone mirror, from which it is reflected, before directly passing through the lenses and complementary metal oxide semiconductor (CMOS) sensor. The light that is strongly reflected from the transparent view window (TVW) propagates again to the cone mirror, to be reflected and to pass through the lenses and CMOS sensor. The above two phenomena cause overblooming on the image plane. Overblooming causes nonuniform illumination on the image plane and consequently reduced image quality. In this work, optical design software was utilized to construct a photometric model for the optimal design of the LED illumination system. Based on the original RICE model, this paper proposes an optimal design to improve the uniformity of the illumination. The illumination uniformity in the RICE is increased from its original value of 0.128 to 0.69, greatly improving light uniformity.

  5. Measurement and analysis of perceivable signal-to-noise ratio for infrared imaging system with human vision

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Zhao, Jing; Chang, Honghua; Ma, Lin

    2012-12-01

    The relationship between correct discrimination probability of the human eye and perceivable signal-to-noise (SNR) threshold is studied for different equilateral triangle sizes with specified luminance through combining theoretical calculation with practical experiment based on triangle orientation discrimination (TOD) performance evaluation method. Specifically, the simulation images of triangle patterns are generated by an infrared imaging system (IRIS) simulation model. And the perceivable SNRs for these images are calculated by establishing the system theoretical model and the human vision system model. Meanwhile, the Four-Alternative Forced-Choice experiment is performed. Experiment results of several observers are averaged statistically and the curves of perceivable SNR threshold which change with the correct discrimination probability are obtained. Finally, the analyses of these results show that these changes are in accordance with the psychometric function and that the fitting curves become steep with the increase of triangle sizes. These data and conclusions are helpful to modify the existing TOD performance model of an IRIS.

  6. Near-infrared imaging spectrometer onboard NEXTSat-1

    NASA Astrophysics Data System (ADS)

    Jeong, Woong-Seob; Park, Sung-Joon; Moon, Bongkon; Lee, Dae-Hee; Pyo, Jeonghyun; Park, Won-Kee; Park, Youngsik; Kim, Il-Joong; Ko, Kyeongyeon; Lee, Dukhang; Kim, Min Gyu; Kim, Minjin; Ko, Jongwan; Shin, Goo-Hwan; Chae, Jangsoo; Matsumoto, Toshio

    2016-07-01

    The NISS (Near-infrared Imaging Spectrometer for Star formation history) is the near-infrared instrument optimized to the first next generation of small satellite (NEXTSat-1) in Korea. The spectro-photometric capability in the near-infrared range is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. For those purposes, the NISS will perform the large areal imaging spectroscopic survey for astronomical objects and low background regions. We have paid careful attention to reduce the volume and to increase the total throughput. The newly implemented off-axis optics has a wide field of view (2° x 2°) and a wide wavelength range from 0.9 to 3.8μm. The mechanical structure is designed to consider launching conditions and passive cooling of the telescope. The compact dewar after relay-lens module is to operate the infrared detector and spectral filters at 80K stage. The independent integration of relay-lens part and primary-secondary mirror assembly alleviates the complex alignment process. We confirmed that the telescope and the infrared sensor can be cooled down to around 200K and 80K, respectively. The engineering qualification model of the NISS was tested in the space environment including the launch-induced vibration and shock. The NISS will be expected to demonstrate core technologies related to the development of the future infrared space telescope in Korea.

  7. Near-infrared Molecular Probes for In Vivo Imaging

    PubMed Central

    Zhang, Xuan; Bloch, Sharon; Akers, Walter; Achilefu, Samuel

    2012-01-01

    Cellular and tissue imaging in the near-infrared (NIR) wavelengths between 700 and 900 nm is advantageous for in vivo because of the low absorption of biological molecules in this region. This Unit presents protocols for small animal imaging using planar and fluorescence lifetime imaging techniques. Included is an overview of NIR fluorescence imaging of cells and small animals using NIR organic fluorophores, nanoparticles, and multimodal imaging probes. The development, advantages, and application of NIR fluorescent probes that have been used for in vivo imaging are also summarized. The use of NIR agents in conjunction with visible dyes and considerations in selecting imaging agents are discussed. We conclude with practical considerations for the use of these dyes in cell and small animal imaging applications. PMID:22470154

  8. Assessing Drought Responses Using Thermal Infrared Imaging.

    PubMed

    Prashar, Ankush; Jones, Hamlyn G

    2016-01-01

    Canopy temperature, a surrogate for stomatal conductance, is shown to be a good indicator of plant water status and a potential tool for phenotyping and irrigation scheduling. Measurement of stomatal conductance and leaf temperature has traditionally been done by using porometers or gas exchange analyzers and fine-wire thermocouples attached to the leaves, which are labor intensive and point measurements. The advent of remote or proximal thermal sensing technologies has provided the potential for scaling up to leaves, plants, and canopies. Thermal cameras with a temperature resolution of <0.1 K now allow one to study the temperature variation within and between plants. This chapter discusses some applications of infrared thermography for assessing drought and other abiotic and biotic stress and outlines some of the main factors that need to be considered when applying this to the study of leaf or canopy temperature whether in controlled environments or in the field. PMID:26867626

  9. High dynamic range infrared radiometry and imaging

    NASA Technical Reports Server (NTRS)

    Coon, Darryl D.; Karunasiri, R. P. G.; Bandara, K. M. S. V.

    1988-01-01

    The use is described of cryogenically cooled, extrinsic silicon infrared detectors in an unconventional mode of operation which offers an unusually large dynamic range. The system performs intensity-to-frequency conversion at the focal plane via simple circuits with very low power consumption. The incident IR intensity controls the repetition rate of short duration output pulses over a pulse rate dynamic range of about 10(6). Theory indicates the possibility of monotonic and approx. linear response over the full dynamic range. A comparison between the theoretical and the experimental results shows that the model provides a reasonably good description of experimental data. Some measurements of survivability with a very intense IR source were made on these devices and found to be very encouraging. Evidence continues to indicate that some variations in interpulse time intervals are deterministic rather than probabilistic.

  10. Assessing Drought Responses Using Thermal Infrared Imaging.

    PubMed

    Prashar, Ankush; Jones, Hamlyn G

    2016-01-01

    Canopy temperature, a surrogate for stomatal conductance, is shown to be a good indicator of plant water status and a potential tool for phenotyping and irrigation scheduling. Measurement of stomatal conductance and leaf temperature has traditionally been done by using porometers or gas exchange analyzers and fine-wire thermocouples attached to the leaves, which are labor intensive and point measurements. The advent of remote or proximal thermal sensing technologies has provided the potential for scaling up to leaves, plants, and canopies. Thermal cameras with a temperature resolution of <0.1 K now allow one to study the temperature variation within and between plants. This chapter discusses some applications of infrared thermography for assessing drought and other abiotic and biotic stress and outlines some of the main factors that need to be considered when applying this to the study of leaf or canopy temperature whether in controlled environments or in the field.

  11. Morphological analysis of infrared images for waterjets

    NASA Astrophysics Data System (ADS)

    Gong, Yuxin; Long, Aifang

    2013-03-01

    High-speed waterjet has been widely used in industries and been investigated as a model of free shearing turbulence. This paper presents an investigation involving the flow visualization of high speed water jet, the noise reduction of the raw thermogram using a high-pass morphological filter ? and a median filter; the image enhancement using white top-hat filter; and the image segmentation using the multiple thresholding method. The image processing results by the designed morphological filters, ? - top-hat, were proved being ideal for further quantitative and in-depth analysis and can be used as a new morphological filter bank that may be of general implications for the analogous work

  12. Standoff midwave infrared hyperspectral imaging of ship plumes

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Gagnon, Jean-Philippe; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Chamberland, Martin; Marcotte, Frédérick

    2016-05-01

    Characterization of ship plumes is very challenging due to the great variety of ships, fuel, and fuel grades, as well as the extent of a gas plume. In this work, imaging of ship plumes from an operating ferry boat was carried out using standoff midwave (3-5 μm) infrared hyperspectral imaging. Quantitative chemical imaging of combustion gases was achieved by fitting a radiative transfer model. Combustion efficiency maps and mass flow rates are presented for carbon monoxide (CO) and carbon dioxide (CO2). The results illustrate how valuable information about the combustion process of a ship engine can be successfully obtained using passive hyperspectral remote sensing imaging.

  13. Processing infrared images of aircraft lapjoints

    NASA Technical Reports Server (NTRS)

    Syed, Hazari; Winfree, William P.; Cramer, K. E.

    1992-01-01

    Techniques for processing IR images of aging aircraft lapjoint data are discussed. Attention is given to a technique for detecting disbonds in aircraft lapjoints which clearly delineates the disbonded region from the bonded regions. The technique is weak on unpainted aircraft skin surfaces, but can be overridden by using a self-adhering contact sheet. Neural network analysis on raw temperature data has been shown to be an effective tool for visualization of images. Numerical simulation results show the above processing technique to be an effective tool in delineating the disbonds.

  14. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.

    PubMed

    Palukuru, Uday P; Hanifi, Arash; McGoverin, Cushla M; Devlin, Sean; Lelkes, Peter I; Pleshko, Nancy

    2016-07-01

    Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model

  15. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.

    PubMed

    Palukuru, Uday P; Hanifi, Arash; McGoverin, Cushla M; Devlin, Sean; Lelkes, Peter I; Pleshko, Nancy

    2016-07-01

    Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model

  16. An update of commercial infrared sensing and imaging instruments

    NASA Technical Reports Server (NTRS)

    Kaplan, Herbert

    1989-01-01

    A classification of infrared sensing instruments by type and application, listing commercially available instruments, from single point thermal probes to on-line control sensors, to high speed, high resolution imaging systems is given. A review of performance specifications follows, along with a discussion of typical thermographic display approaches utilized by various imager manufacturers. An update report on new instruments, new display techniques and newly introduced features of existing instruments is given.

  17. Violent cookoff reactions in HMX-based explosives in DDT tubes: Tracking luminous waves with streak imaging

    NASA Astrophysics Data System (ADS)

    Parker, Gary; Dickson, Peter; Asay, Blaine W.; Smilowitz, Laura; Henson, Bryan; McAfee, John

    2012-03-01

    Recent implementation of modern high-speed video cameras has permitted the experimental flexibility needed to revisit classic deflagration-to-detonation (DDT) tube experiments and capture novel and valuable results displaying the progression of luminous reaction from a cookoff event. The authors present select data from a series of experiments where the HMX-based high explosives PBX 9501 and LX-07 were heated above 180°C for various durations to impose damage (i.e. phase transitions and void generation) before being driven to cook off. These two explosives have different polymeric binders, HMX mass fractions and cook off responses and a comparison between the two offers mechanistic insights on how thermal explosions evolve. From this series, results will be displayed indicating a wide range of violence from somewhat mild pressure bursts, to intermediate power compressive burns, to high-violence DDT. Image data from high temperature DDT tube experiments, where the explosive was ignited on one end, were also collected and will be included for comparison.

  18. Affordable, Accessible, Immediate: Capture Stunning Images with Digital Infrared Photography

    ERIC Educational Resources Information Center

    Snyder, Mark

    2011-01-01

    Technology educators who teach digital photography should consider incorporating an infrared (IR) photography component into their program. This is an area where digital photography offers significant benefits. Either type of IR imaging is very interesting to explore, but traditional film-based IR photography is difficult and expensive. In…

  19. Infrared Thermal Imaging as a Tool in University Physics Education

    ERIC Educational Resources Information Center

    Mollmann, Klaus-Peter; Vollmer, Michael

    2007-01-01

    Infrared thermal imaging is a valuable tool in physics education at the university level. It can help to visualize and thereby enhance understanding of physical phenomena from mechanics, thermal physics, electromagnetism, optics and radiation physics, qualitatively as well as quantitatively. We report on its use as lecture demonstrations, student…

  20. Infrared imaging results of an excited planar jet

    SciTech Connect

    Farrington, R.B.

    1991-12-01

    Planar jets are used for many applications including heating, cooling, and ventilation. Generally such a jet is designed to provide good mixing within an enclosure. In building applications, the jet provides both thermal comfort and adequate indoor air quality. Increased mixing rates may lead to lower short-circuiting of conditioned air, elimination of dead zones within the occupied zone, reduced energy costs, increased occupant comfort, and higher indoor air quality. This paper discusses using an infrared imaging system to show the effect of excitation of a jet on the spread angle and on the jet mixing efficiency. Infrared imaging captures a large number of data points in real time (over 50,000 data points per image) providing significant advantages over single-point measurements. We used a screen mesh with a time constant of approximately 0.3 seconds as a target for the infrared camera to detect temperature variations in the jet. The infrared images show increased jet spread due to excitation of the jet. Digital data reduction and analysis show change in jet isotherms and quantify the increased mixing caused by excitation. 17 refs., 20 figs.

  1. Motion artifact reduction in breast dynamic infrared imaging.

    PubMed

    Agostini, Valentina; Knaflitz, Marco; Molinari, Filippo

    2009-03-01

    Dynamic infrared imaging is a promising technique in breast oncology. In this paper, a quantum well infrared photodetector infrared camera is used to acquire a sequence of consecutive thermal images of the patient's breast for 10 s. Information on the local blood perfusion is obtained from the spectral analysis of the time series at each image pixel. Due to respiratory and motion artifacts, the direct comparison of the temperature values that a pixel assumes along the sequence becomes difficult. In fact, the small temperature changes due to blood perfusion, of the order of 10-50 mK, which constitute the signal of interest in the time domain, are superimposed onto large temperature fluctuations due to the subject's motion, which represent noise. To improve the time series S/N, and as a consequence, enhance the specificity and sensitivity of the dynamic infrared examination, it is important to realign the thermal images of the acquisition sequence, thus reducing motion artifacts. In a previous study, we demonstrated that a registration algorithm based on fiducial points is suitable to both clinical applications and research, when associated with a proper set of skin markers. In this paper, we quantitatively evaluate the performance of different marker sets by means of a model that allows for estimating the S/N increment due to registration, and we conclude that a 12-marker set is a good compromise between motion artifact reduction and the time required to prepare the patient.

  2. Infrared-visual image sequence fusion algorithm with noise suppression

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liu, Fu; Wei, Youli; Zhou, Huantian

    2013-09-01

    Video sequence fusion has a high request on real-time. A new fusion method of infrared and visible video fusion is proposed, which has the characteristics of low computational complexity and noise suppression. Firstly the improved mixed frame difference method is used to achieve the separation of the infrared target areas and the background areas. Secondly the new fusion algorithm is proposed to fuse the target areas of the infrared and visible light sequence. By image smoothness operator , the source images are divided into two parts: the edge region and the smooth region. Different fusion strategies are adopted for the different regions, can highlight the image edges and texture details more accurately and remove redundant, as well as suppressing noise. Finally, the fused target areas are combined with the background area of the visible light sequence to form the final fused image, which can avoid the high background noise of infrared sequence. The experimental results show that the proposed method not only can suppress noise effectively ,but also can acquire good fusion effects as well as achieve the real time need.

  3. Infrared imaging using carbon nanotube-based detector

    NASA Astrophysics Data System (ADS)

    Chen, Hongzhi; Xi, Ning; Song, Bo; Chen, Liangliang; Lai, King W. C.; Lou, Jianyong

    2011-06-01

    Using carbon nanotubes (CNT), high performance infrared detectors have been developed. Since the CNTs have extraordinary optoelectronics properties due to its unique one dimensional geometry and structure, the CNT based infrared detectors have extremely low dark current, low noise equivalent temperature difference (NETD), short response time, and high dynamic range. Most importantly, it can detect 3-5 um middle-wave infrared (MWIR) at room temperature. This unique feature can significantly reduce the size and weight of a MWIR imaging system by eliminating a cryogenic cooling system. However, there are two major difficulties that impede the application of CNT based IR detectors for imaging systems. First, the small diameter of the CNTs results in low fill factor. Secondly, it is difficult to fabricate large scale of detector array for high resolution focal plane due to the limitations on the efficiency and cost of the manufacturing. In this paper, a new CNT based IR imaging system will be presented. Integrating the CNT detectors with photonic crystal resonant cavity, the fill factor of the CNT based IR sensor can reach as high as 0.91. Furthermore, using the compressive sensing technology, a high resolution imaging can be achieved by CNT based IR detectors. The experimental testing results show that the new imaging system can achieve the superb performance enabled by CNT based IR detectors, and, at the same time, overcame its difficulties to achieve high resolution and efficient imaging.

  4. Performance evaluation of infrared imaging system in field test

    NASA Astrophysics Data System (ADS)

    Wang, Chensheng; Guo, Xiaodong; Ren, Tingting; Zhang, Zhi-jie

    2014-11-01

    Infrared imaging system has been applied widely in both military and civilian fields. Since the infrared imager has various types and different parameters, for system manufacturers and customers, there is great demand for evaluating the performance of IR imaging systems with a standard tool or platform. Since the first generation IR imager was developed, the standard method to assess the performance has been the MRTD or related improved methods which are not perfect adaptable for current linear scanning imager or 2D staring imager based on FPA detector. For this problem, this paper describes an evaluation method based on the triangular orientation discrimination metric which is considered as the effective and emerging method to evaluate the synthesis performance of EO system. To realize the evaluation in field test, an experiment instrument is developed. And considering the importance of operational environment, the field test is carried in practical atmospheric environment. The test imagers include panoramic imaging system and staring imaging systems with different optics and detectors parameters (both cooled and uncooled). After showing the instrument and experiment setup, the experiment results are shown. The target range performance is analyzed and discussed. In data analysis part, the article gives the range prediction values obtained from TOD method, MRTD method and practical experiment, and shows the analysis and results discussion. The experimental results prove the effectiveness of this evaluation tool, and it can be taken as a platform to give the uniform performance prediction reference.

  5. New color images of transient luminous events from dedicated observations on the International Space Station

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Rubanenko, Lior; Mezuman, Keren; Elhalel, Gal; Pariente, Meidad; Glickman-Pariente, Maya; Ziv, Baruch; Takahashi, Yukihiro; Inoue, Tomohiro

    2013-09-01

    During July-August 2011, Expedition 28/29 JAXA astronaut Satoshi Furukawa conducted TLE observations from the International Space Station in conjunction with the “Cosmic Shore” program produced by NHK. An EMCCD normal video-rate color TV camera was used to conduct directed observations from the Earth-pointing Cupola module. The target selection was based on the methodology developed for the MEIDEX sprite campaign on board the space shuttle Columbia in January 2003 (Ziv et al., 2004). The observation geometry was pre-determined and uploaded daily to the ISS with pointing options to limb, oblique or nadir, based on the predicted location of the storm with regards to the ISS. The pointing angle was rotated in real-time according to visual eyesight by the astronaut. We present results of 10 confirmed TLEs: 8 sprites, 1 sprite halo and 1 gigantic jet, out of <2 h of video. Sprites tend to appear in a single frame simultaneously with maximum lightning brightness. Unique images (a) from nadir of a sprite horizontally displaced form the lightning light and (b) from the oblique view of a sprite halo, enable the calculation of dimensions and volumes occupied by these TLEs. Since time stamping on the ISS images was accurate within 1 s, matching with ELF and WWLLN data for the parent lightning location is limited. Nevertheless, the results prove that the ISS is an ideal platform for lightning and TLE observations, and careful operational procedures greatly enhance the value of observation time.

  6. Multispectral mid-infrared imaging using frequency upconversion

    NASA Astrophysics Data System (ADS)

    Sanders, Nicolai; Dam, Jeppe Seidelin; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-03-01

    It has recently been shown that it is possible to upconvert infrared images to the near infrared region with high quantum efficiency and low noise by three-wave mixing with a laser field [1]. If the mixing laser is single-frequency, the upconverted image is simply a band-pass filtered version of the infrared object field, with a bandwidth corresponding given by the acceptance parameter of the conversion process, and a center frequency given by the phase-match condition. Tuning of the phase-matched wavelengths has previously been demonstrated by changing the temperature [2] or angle [3 Keywords: Infrared imaging, nonlinear frequency conversion, diode lasers, upconversion ] of the nonlinear material. Unfortunately, temperature tuning is slow, and angle tuning typically results in alignment issues. Here we present a novel approach where the wavelength of the mixing field is used as a tuning parameter, allowing for fast tuning and hence potentially fast image acquisition, paving the way for upconversion based real time multispectral imaging. In the present realization the upconversion module consists of an external cavity tapered diode laser in a Littrow configuration with a computer controlled feedback grating. The output from a tunable laser is used as seed for a fiber amplifier system, boosting the power to approx. 3 W over the tuning range from 1025 to 1085 nm. Using a periodically poled lithium niobate crystal, the infrared wavelength that can be phase-matched is tunable over more than 200 nm. Using a crystal with multiple poling periods allows for upconversion within the entire transparency range of the nonlinear material.

  7. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NASA Astrophysics Data System (ADS)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-11-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern Extended Millimeter Array (NOEMA), we have detected 14 new H2O emission lines. These include five 321-312ortho-H2O lines (Eup/k = 305 K) and nine J = 2 para-H2O lines, either 202-111(Eup/k = 101 K) or 211-202(Eup/k = 137 K). The apparent luminosities of the H2O emission lines are μLH2O 6-21 × 108 L⊙ (3 <μ< 15, where μ is the lens magnification factor), with velocity-integrated line fluxes ranging from 4-15 Jy km s-1. We have also observed CO emission lines using EMIR on the IRAM 30 m telescope in seven sources (most of those have not yet had their CO emission lines observed). The velocity widths for CO and H2O lines are found to be similar, generally within 1σ errors in the same source. With almost comparable integrated flux densities to those of the high-J CO line (ratios range from 0.4 to 1.1), H2O is found to be among the strongest molecular emitters in high-redshift Hy/ULIRGs. We also confirm our previously found correlation between luminosity of H2O (LH2O) and infrared (LIR) that LH2O LIR1.1-1.2, with ournew detections. This correlation could be explained by a dominant role of far-infrared pumping in the H2O excitation. Modelling reveals that the far-infrared radiation fields have warm dust temperature Twarm 45-75 K, H2O column density per unit velocity interval NH2O /ΔV ≳ 0.3 × 1015 cm-2 km-1 s and 100 μm continuum opacity τ100> 1 (optically thick), indicating that H2O is likely to trace highly obscured warm dense gas. However, further observations of J ≥ 4 H2O lines are needed to better constrain the continuum optical depth and other physical conditions of the molecular gas and dust. We have also detected H2O+ emission in three sources. A tight correlation

  8. Target information enhancement using polarized component of infrared images

    NASA Astrophysics Data System (ADS)

    Qiu, Tiaowen; Zhang, Yan; Li, Jicheng; Yang, Weiping

    2014-11-01

    After a deep study of the principle of infrared polarization imaging detection, the infrared polarization information of target and background is modeled. Considering the partial polarized light can be obtained by the superposition of natural light (unpolarized light) and linearly polarized component while ignoring the component of circularly polarized light, and combing with the degree of polarization (DOLP) and the angle of polarization (AOP), the infrared polarization information is expressed by the multiplying of an intensity factor by a polarization factor. What we have modeled not only can be used to analyze the infrared polarization information visually and profoundly, but also make the extraction of polarized features convenient. Then, faced with different application fields and based on the model, a target information enhancement program is proposed, which is achieved by extracting a linear polarization component in a certain polarized direction. This program greatly improves the contrast between target and background, and can be applied in target detection or identification, especially for camouflage or stealth target. At last, we preliminarily tested the proposed enhancement method exploiting infrared polarization images obtained indoor and outdoor, which demonstrates the effectiveness of the enhancement program.

  9. Need for image processing in infrared camera design

    NASA Astrophysics Data System (ADS)

    Allred, Lloyd G.; Jones, Martin H.

    2000-03-01

    While the value of image processing has been longly recognized, this is usually done during post-processing. For scientific application, the presence of large noise errors, data drop out, and dead sensors would invalidate any conclusion made from the data until noise-removal and sensor calibration has been accomplished. With the growing need for ruggedized, real-time image acquisition systems, including applications to automotive and aerospace, post processing may not be an option. With post processing, the operator does not have the opportunity to view the cleaned-up image. Focal plane arrays are plagued by bad sensors, high manufacturing costs, and low yields, often forcing a six digit cost tag. Perhaps infrared camera design is too serious an issue to leave to the camera manufacturers. Alternative camera designs using a single spinning mirror can yield perfect infrared images at rates up to 12000 frames per second using a fraction of the hardware in the current focal-plane arrays. Using a 768 X 5 sensor array, redundant 2048 X 768 images are produced by each row of the sensor array. Sensor arrays with flawed sensors would no longer need to be discarded because data from dead sensors can be discarded, thus increasing manufacturing yields and reducing manufacturing costs. Furthermore, very rapid image processing chips are available, allowing for real-time morphological image processing (including real-time sensor calibration), thus significantly increasing thermal precision, making thermal imaging amenable for an increased variety of applications.

  10. Galileo infrared imaging spectroscopy measurements at venus.

    PubMed

    Carlson, R W; Baines, K H; Encrenaz, T; Taylor, F W; Drossart, P; Kamp, L W; Pollack, J B; Lellouch, E; Collard, A D; Calcutt, S B; Grinspoon, D; Weissman, P R; Smythe, W D; Ocampo, A C; Danielson, G E; Fanale, F P; Johnson, T V; Kieffer, H H; Matson, D L; McCord, T B; Soderblom, L A

    1991-09-27

    During the 1990 Galileo Venus flyby, the Near Infaied Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substanmial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species. PMID:17784099

  11. Galileo infrared imaging spectroscopy measurements at venus.

    PubMed

    Carlson, R W; Baines, K H; Encrenaz, T; Taylor, F W; Drossart, P; Kamp, L W; Pollack, J B; Lellouch, E; Collard, A D; Calcutt, S B; Grinspoon, D; Weissman, P R; Smythe, W D; Ocampo, A C; Danielson, G E; Fanale, F P; Johnson, T V; Kieffer, H H; Matson, D L; McCord, T B; Soderblom, L A

    1991-09-27

    During the 1990 Galileo Venus flyby, the Near Infaied Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substanmial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

  12. Image-guided cancer surgery using near-infrared fluorescence

    PubMed Central

    Vahrmeijer, Alexander L.; Hutteman, Merlijn; van der Vorst, Joost R.; van de Velde, C.J.H.; Frangioni, John V.

    2013-01-01

    Paradigm shifts in surgery arise when surgeons are empowered to perform surgery faster, better, and/or less expensively. Optical imaging that exploits invisible near-infrared fluorescent light has the potential to improve cancer surgery outcomes while minimizing anesthesia time and lowering healthcare costs. Because of this, the last few years have witnessed an explosion of proof-of-concept clinical trials in the field. In this review, we introduce the concept of near-infrared fluorescence imaging for cancer surgery, review the clinical trial literature to date, outline the key issues pertaining to imaging system and contrast agent optimization, discuss limitations and leverage, and provide a framework for making the technology available for the routine care of cancer patients in the near future. PMID:23881033

  13. Infrared Moon imaging for remote sensing of atmospheric smoke layers.

    PubMed

    Shaw, Joseph A; Nugent, Paul W; Vollmer, Michael

    2015-02-01

    Simultaneous visible and long-wave infrared (IR) images of the Moon were used with a simple energy-balance model to study the spatial pattern of lunar surface temperatures. The thermal images were obtained with a radiometrically calibrated, compact, low-cost, commercial IR camera mounted on a small telescope. Differences between the predicted and measured maximum Moon temperatures were used to determine the infrared optical depth (OD), which represents the path-integrated extinction of an elevated layer of wildfire smoke in the atmosphere. The OD values retrieved from the IR Moon images were combined with simultaneous OD measurements from a ground-based, zenith-pointing lidar operating at a wavelength of 532 nm to determine an IR-to-visible OD ratio of 0.50±0.18 for moderately aged wildfire smoke aerosol.

  14. Infrared Moon imaging for remote sensing of atmospheric smoke layers.

    PubMed

    Shaw, Joseph A; Nugent, Paul W; Vollmer, Michael

    2015-02-01

    Simultaneous visible and long-wave infrared (IR) images of the Moon were used with a simple energy-balance model to study the spatial pattern of lunar surface temperatures. The thermal images were obtained with a radiometrically calibrated, compact, low-cost, commercial IR camera mounted on a small telescope. Differences between the predicted and measured maximum Moon temperatures were used to determine the infrared optical depth (OD), which represents the path-integrated extinction of an elevated layer of wildfire smoke in the atmosphere. The OD values retrieved from the IR Moon images were combined with simultaneous OD measurements from a ground-based, zenith-pointing lidar operating at a wavelength of 532 nm to determine an IR-to-visible OD ratio of 0.50±0.18 for moderately aged wildfire smoke aerosol. PMID:25967840

  15. Acousto-optic infrared spectral imager for Pluto fast flyby

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Hillman, J. J.

    1993-01-01

    Acousto-optic tunable filters (AOTF's) enable the design of compact, two-dimensional imaging spectrometers with high spectral and spatial resolution and with no moving parts. Tellurium dioxide AOTF's operate from about 400 nm to nearly 5 microns, and a single device will tune continuously over one octave by changing the RF acoustic frequency applied to the device. An infrared (1.2-2.5 micron) Acousto-Optic Imaging Spectrometer (AImS) was designed that closely conforms to the surface composition mapping objectives of the Pluto Fast Flyby. It features a 75-cm focal length telescope, infrared AOTF, and 256 x 256 NICMOS-3 focal plane array for acquiring narrowband images with a spectral resolving power (lambda/delta(lambda)) exceeding 250. We summarize the instrument design features and its expected performance at the Pluto-Charon encounter.

  16. Near-infrared imaging of demineralization under sealants

    NASA Astrophysics Data System (ADS)

    Tom, Henry; Simon, Jacob C.; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel

    2014-07-01

    Previous studies have shown that near-infrared (NIR) reflectance and transillumination imaging can be used to acquire high contrast images of early caries lesions and composite restorative materials. The aim of the study was to determine the optimum NIR wavelengths for imaging demineralized areas under dental sealants. Fifteen natural human premolars and molars with occlusal lesions were used in this in vitro study. Images before and after application of sealants were acquired using NIR reflectance and NIR transillumination at wavelengths of 1300, 1460, and 1500 to 1700 nm. Images were also acquired using polarization sensitive optical coherence tomography (OCT) for comparison. The highest contrast for NIR reflectance was at 1460 nm and 1500 to 1700 nm. These NIR wavelengths are coincident with higher water absorption. The clear Delton sealant investigated was not visible in either copolarization or cross-polarization OCT images. The wavelength region between 1500 and 1700 nm yielded the highest contrast of lesions under sealants for NIR reflectance measurements.

  17. Onychomycosis diagnosis using fluorescence and infrared imaging systems

    NASA Astrophysics Data System (ADS)

    da Silva, Ana Paula; Fortunato, Thereza Cury; Stringasci, Mirian D.; Kurachi, Cristina; Bagnato, Vanderlei S.; Inada, Natalia M.

    2015-06-01

    Onychomycosis is a common disease of the nail plate, constituting approximately half of all cases of nail infection. Onychomycosis diagnosis is challenging because it is hard to distinguish from other diseases of the nail lamina such as psoriasis, lichen ruber or eczematous nails. The existing methods of diagnostics so far consist of clinical and laboratory analysis, such as: Direct Mycological examination and culture, PCR and histopathology with PAS staining. However, they all share certain disadvantages in terms of sensitivity and specificity, time delay, or cost. This study aimed to evaluate the use of infrared and fluorescence imaging as new non-invasive diagnostic tools in patients with suspected onychomycosis, and compare them with established techniques. For fluorescence analysis, a Clinical Evince (MM Optics®) was used, which consists of an optical assembly with UV LED light source wavelength 400 nm +/- 10 nm and the maximum light intensity: 40 mW/cm2 +/- 20%. For infrared analysis, a Fluke® Camera FKL model Ti400 was used. Patients with onychomycosis and control group were analyzed for comparison. The fluorescence images were processed using MATLAB® routines, and infrared images were analyzed using the SmartView® 3.6 software analysis provided by the company Fluke®. The results demonstrated that both infrared and fluorescence could be complementary to diagnose different types of onychomycosis lesions. The simplicity of operation, quick response and non-invasive assessment of the nail patients in real time, are important factors to be consider for an implementation.

  18. Infrared hyperspectral imaging results from vapor plume experiments

    SciTech Connect

    Bennett, C.L.; Carter, M.R.; Fields, D.J.

    1995-04-17

    In this article, recent measurements made with LIFTIRS, the Livermore Imaging Fourier Transform InfraRed Spectrometer, are presented. The experience gained with this instrument has produced a variety of insights into the tradeoffs between signal to noise ratio (SNR), spectral resolution and temporal resolution for time multiplexed Fourier transform imaging spectrometers. This experience has also clarified the practical advantages and disadvantages of Fourier transform hyperspectral imaging spectrometers regarding adaptation to varying measurement requirements on SNR vs. spectral resolution, spatial resolution and temporal resolution.

  19. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have

  20. Lossless image compression technique for infrared thermal images

    NASA Astrophysics Data System (ADS)

    Allred, Lloyd G.; Kelly, Gary E.

    1992-07-01

    The authors have achieved a 6.5-to-one image compression technique for thermal images (640 X 480, 1024 colors deep). Using a combination of new and more traditional techniques, the combined algorithm is computationally simple, enabling `on-the-fly' compression and storage of an image in less time than it takes to transcribe the original image to or from a magnetic medium. Similar compression has been achieved on visual images by virtue of the feature that all optical devices possess a modulation transfer function. As a consequence of this property, the difference in color between adjacent pixels is a usually small number, often between -1 and +1 graduations for a meaningful color scheme. By differentiating adjacent rows and columns, the original image can be expressed in terms of these small numbers. A simple compression algorithm for these small numbers achieves a four to one image compression. By piggy-backing this technique with a LZW compression or a fixed Huffman coding, an additional 35% image compression is obtained, resulting in a 6.5-to-one lossless image compression. Because traditional noise-removal operators tend to minimize the color graduations between adjacent pixels, an additional 20% reduction can be obtained by preprocessing the image with a noise-removal operator. Although noise removal operators are not lossless, their application may prove crucial in applications requiring high compression, such as the storage or transmission of a large number or images. The authors are working with the Air Force Photonics Technology Application Program Management office to apply this technique to transmission of optical images from satellites.

  1. THE MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES. II. EXTREME PHYSICAL CONDITIONS AND THEIR EFFECTS ON THE X{sub co} FACTOR

    SciTech Connect

    Papadopoulos, Padelis P.; Van der Werf, Paul; Xilouris, E.; Isaak, Kate G.; Gao, Yu E-mail: pvdwerf@strw.leidenuniv.nl E-mail: kisaak@rssd.esa.int

    2012-05-20

    In this work, we conclude the analysis of our CO line survey of luminous infrared galaxies (LIRGs: L{sub IR} {approx}> 10{sup 11} L{sub Sun }) in the local universe (Paper I) by focusing on the influence of their average interstellar medium (ISM) properties on the total molecular gas mass estimates via the so-called X{sub co} = M(H{sub 2})/L{sub co,1-0} factor. One-phase radiative transfer models of the global CO spectral line energy distributions (SLEDs) yield an X{sub co} distribution with (X{sub co}) {approx} (0.6 {+-} 0.2) M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1} over a significant range of average gas densities, temperatures, and dynamic states. The latter emerges as the most important parameter in determining X{sub co}, with unbound states yielding low values and self-gravitating states yielding the highest ones. Nevertheless, in many (U)LIRGs where available higher-J CO lines (J = 3-2, 4-3, and/or J = 6-5) or HCN line data from the literature allow a separate assessment of the gas mass at high densities ({>=}10{sup 4} cm{sup -3}) rather than a simple one-phase analysis, we find that near-Galactic X{sub co} {approx} (3-6) M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1} values become possible. We further show that in the highly turbulent molecular gas in ULIRGs, a high-density component will be common and can be massive enough for its high X{sub co} to dominate the average value for the entire galaxy. Using solely low-J CO lines to constrain X{sub co} in such environments (as has been the practice up until now) may have thus resulted in systematic underestimates of molecular gas mass in ULIRGs, as such lines are dominated by a warm, diffuse, and unbound gas phase with low X{sub co} but very little mass. Only well-sampled high-J CO SLEDs (J = 3-2 and higher) and/or multi-J observations of heavy rotor molecules (e.g., HCN) can circumvent such a bias, and the latter type of observations may have actually provided early evidence of it in local ULIRGs. The only

  2. In vivo near infrared fluorescence (NIRF) intravascular molecular imaging of inflammatory plaque, a multimodal approach to imaging of atherosclerosis.

    PubMed

    Calfon, Marcella A; Rosenthal, Amir; Mallas, Georgios; Mauskapf, Adam; Nudelman, R Nika; Ntziachristos, Vasilis; Jaffer, Farouc A

    2011-08-04

    The vascular response to injury is a well-orchestrated inflammatory response triggered by the accumulation of macrophages within the vessel wall leading to an accumulation of lipid-laden intra-luminal plaque, smooth muscle cell proliferation and progressive narrowing of the vessel lumen. The formation of such vulnerable plaques prone to rupture underlies the majority of cases of acute myocardial infarction. The complex molecular and cellular inflammatory cascade is orchestrated by the recruitment of T lymphocytes and macrophages and their paracrine effects on endothelial and smooth muscle cells.(1) Molecular imaging in atherosclerosis has evolved into an important clinical and research tool that allows in vivo visualization of inflammation and other biological processes. Several recent examples demonstrate the ability to detect high-risk plaques in patients, and assess the effects of pharmacotherapeutics in atherosclerosis.(4) While a number of molecular imaging approaches (in particular MRI and PET) can image biological aspects of large vessels such as the carotid arteries, scant options exist for imaging of coronary arteries.(2) The advent of high-resolution optical imaging strategies, in particular near-infrared fluorescence (NIRF), coupled with activatable fluorescent probes, have enhanced sensitivity and led to the development of new intravascular strategies to improve biological imaging of human coronary atherosclerosis. Near infrared fluorescence (NIRF) molecular imaging utilizes excitation light with a defined band width (650-900 nm) as a source of photons that, when delivered to an optical contrast agent or fluorescent probe, emits fluorescence in the NIR window that can be detected using an appropriate emission filter and a high sensitivity charge-coupled camera. As opposed to visible light, NIR light penetrates deeply into tissue, is markedly less attenuated by endogenous photon absorbers such as hemoglobin, lipid and water, and enables high target

  3. Real-time mid-infrared imaging of living microorganisms.

    PubMed

    Haase, Katharina; Kröger-Lui, Niels; Pucci, Annemarie; Schönhals, Arthur; Petrich, Wolfgang

    2016-01-01

    The speed and efficiency of quantum cascade laser-based mid-infrared microspectroscopy are demonstrated using two different model organisms as examples. For the slowly moving Amoeba proteus, a quantum cascade laser is tuned over the wavelength range of 7.6 µm to 8.6 µm (wavenumbers 1320 cm(-1) and 1160 cm(-1) , respectively). The recording of a hyperspectral image takes 11.3 s whereby an average signal-to-noise ratio of 29 is achieved. The limits of time resolution are tested by imaging the fast moving Caenorhabditis elegans at a discrete wavenumber of 1265 cm(-1) . Mid-infrared imaging is performed with the 640 × 480 pixel video graphics array (VGA) standard and at a full-frame time resolution of 0.02 s (i.e. well above the most common frame rate standards). An average signal-to-noise ratio of 16 is obtained. To the best of our knowledge, these findings constitute the first mid-infrared imaging of living organisms at VGA standard and video frame rate. PMID:26572683

  4. Infrared thermal imaging system on a mobile phone.

    PubMed

    Lee, Fu-Feng; Chen, Feng; Liu, Jing

    2015-04-30

    A novel concept towards pervasively available low-cost infrared thermal imaging system lunched on a mobile phone (MTIS) was proposed and demonstrated in this article. Through digestion on the evolutional development of milestone technologies in the area, it can be found that the portable and low-cost design would become the main stream of thermal imager for civilian purposes. As a representative trial towards this important goal, a MTIS consisting of a thermal infrared module (TIM) and mobile phone with embedded exclusive software (IRAPP) was presented. The basic strategy for the TIM construction is illustrated, including sensor adoption and optical specification. The user-oriented software was developed in the Android environment by considering its popularity and expandability. Computational algorithms with non-uniformity correction and scene-change detection are established to optimize the imaging quality and efficiency of TIM. The performance experiments and analysis indicated that the currently available detective distance for the MTIS is about 29 m. Furthermore, some family-targeted utilization enabled by MTIS was also outlined, such as sudden infant death syndrome (SIDS) prevention, etc. This work suggests a ubiquitous way of significantly extending thermal infrared image into rather wide areas especially health care in the coming time.

  5. Infrared Thermal Imaging System on a Mobile Phone

    PubMed Central

    Lee, Fu-Feng; Chen, Feng; Liu, Jing

    2015-01-01

    A novel concept towards pervasively available low-cost infrared thermal imaging system lunched on a mobile phone (MTIS) was proposed and demonstrated in this article. Through digestion on the evolutional development of milestone technologies in the area, it can be found that the portable and low-cost design would become the main stream of thermal imager for civilian purposes. As a representative trial towards this important goal, a MTIS consisting of a thermal infrared module (TIM) and mobile phone with embedded exclusive software (IRAPP) was presented. The basic strategy for the TIM construction is illustrated, including sensor adoption and optical specification. The user-oriented software was developed in the Android environment by considering its popularity and expandability. Computational algorithms with non-uniformity correction and scene-change detection are established to optimize the imaging quality and efficiency of TIM. The performance experiments and analysis indicated that the currently available detective distance for the MTIS is about 29 m. Furthermore, some family-targeted utilization enabled by MTIS was also outlined, such as sudden infant death syndrome (SIDS) prevention, etc. This work suggests a ubiquitous way of significantly extending thermal infrared image into rather wide areas especially health care in the coming time. PMID:25942639

  6. Infrared thermal imaging system on a mobile phone.

    PubMed

    Lee, Fu-Feng; Chen, Feng; Liu, Jing

    2015-01-01

    A novel concept towards pervasively available low-cost infrared thermal imaging system lunched on a mobile phone (MTIS) was proposed and demonstrated in this article. Through digestion on the evolutional development of milestone technologies in the area, it can be found that the portable and low-cost design would become the main stream of thermal imager for civilian purposes. As a representative trial towards this important goal, a MTIS consisting of a thermal infrared module (TIM) and mobile phone with embedded exclusive software (IRAPP) was presented. The basic strategy for the TIM construction is illustrated, including sensor adoption and optical specification. The user-oriented software was developed in the Android environment by considering its popularity and expandability. Computational algorithms with non-uniformity correction and scene-change detection are established to optimize the imaging quality and efficiency of TIM. The performance experiments and analysis indicated that the currently available detective distance for the MTIS is about 29 m. Furthermore, some family-targeted utilization enabled by MTIS was also outlined, such as sudden infant death syndrome (SIDS) prevention, etc. This work suggests a ubiquitous way of significantly extending thermal infrared image into rather wide areas especially health care in the coming time. PMID:25942639

  7. Broadband infrared imaging spectroscopy for standoff detection of trace explosives

    NASA Astrophysics Data System (ADS)

    Kendziora, Christopher A.; Furstenberg, Robert; Papantonakis, Michael; Nguyen, Viet; McGill, R. Andrew

    2016-05-01

    This manuscript describes advancements toward a mobile platform for standoff detection of trace explosives on relevant substrates using broadband infrared spectroscopic imaging. In conjunction with this, we are developing a technology for detection based on photo-thermal infrared (IR) imaging spectroscopy (PT-IRIS). PT-IRIS leverages one or more IR quantum cascade lasers (QCL), tuned to strong absorption bands in the analytes and directed to illuminate an area on a surface of interest. An IR focal plane array is used to image the surface thermal emission upon laser illumination. The PT-IRIS signal is processed as a hyperspectral image cube comprised of spatial, spectral and temporal dimensions as vectors within a detection algorithm. Here we describe methods to increase both sensitivity to trace explosives and selectivity between different analyte types by exploiting a broader spectral range than in previous configurations. Previously we demonstrated PT-IRIS at several meters of standoff distance indoors and in field tests, while operating the lasers below the infrared eye-safe intensity limit (100 mW/cm2). Sensitivity to explosive traces as small as a single 10 μm diameter particle (~1 ng) has been demonstrated.

  8. Rapid hyperspectral imaging in the mid-infrared

    NASA Astrophysics Data System (ADS)

    Kröger, N.; Egl, A.; Engel, M.; Gretz, N.; Haase, K.; Herpich, I.; Neudecker, S.; Pucci, A.; Schönhals, A.; Petrich, W.

    2014-03-01

    Despite the successes of mid-infrared hyperspectral imaging in a research environment, progress in the migration of technology into the day-to-day clinical application is slow. Clinical acceptance may be improved if the spectroscopy would be faster and the infrared microscopes available at lower cost. Here we present first results of a fast, multi-scale mid-infrared microscopy setup which allows for the investigation of 10.6×11.7 mm2 and 2.8×3.1mm2 fields of view with a resolution of 23.0+/-3.5 μm and 9.4+/-1.8 μm, respectively. Tunable quantum cascade lasers in the wavenumber ranges of 1030-1090 cm-1 and 1160-1320 cm-1 serve as light sources. A vapor cell is used as a frequency reference during the rapid scanning. As far as the imaging is concerned, it is the high spectral power density of the quantum cascade laser which enables the use of a microbolometer array while still obtaining reasonable signal-to-noise ratios on each pixel. Hyperspectral images are taken in times which can be as low as 52s for the overall image acquisition including referencing.

  9. Real-time mid-infrared imaging of living microorganisms.

    PubMed

    Haase, Katharina; Kröger-Lui, Niels; Pucci, Annemarie; Schönhals, Arthur; Petrich, Wolfgang

    2016-01-01

    The speed and efficiency of quantum cascade laser-based mid-infrared microspectroscopy are demonstrated using two different model organisms as examples. For the slowly moving Amoeba proteus, a quantum cascade laser is tuned over the wavelength range of 7.6 µm to 8.6 µm (wavenumbers 1320 cm(-1) and 1160 cm(-1) , respectively). The recording of a hyperspectral image takes 11.3 s whereby an average signal-to-noise ratio of 29 is achieved. The limits of time resolution are tested by imaging the fast moving Caenorhabditis elegans at a discrete wavenumber of 1265 cm(-1) . Mid-infrared imaging is performed with the 640 × 480 pixel video graphics array (VGA) standard and at a full-frame time resolution of 0.02 s (i.e. well above the most common frame rate standards). An average signal-to-noise ratio of 16 is obtained. To the best of our knowledge, these findings constitute the first mid-infrared imaging of living organisms at VGA standard and video frame rate.

  10. Gas cloud infrared image enhancement based on anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    Li, Jiakun; Wang, Lingxue; Zhang, Changxing; Long, Yunting; Zhang, Bei

    2011-05-01

    Leakage of dangerous gases will not only pollute the environment, but also seriously threat public safety. Thermal infrared imaging has been proved to be an efficient method to qualitatively detect the gas leakage. But some problems are remained, especially when monitoring the leakage in a passive way. For example, the signal is weak and the edge of gas cloud in the infrared image is not obvious enough. However, we notice some important characteristics of the gas plume and therefore propose a gas cloud infrared image enhancement method based on anisotropic diffusion. As the gas plume presents a large gas cloud in the image and the gray value is even inside the cloud, strong forward diffusion will be used to reduce the noise and to expand the range of the gas cloud. Frames subtraction and K-means cluttering pop out the gas cloud area. Forward-and-Backward diffusion is to protect background details. Additionally, the best iteration times and the time step parameters are researched. Results show that the gas cloud can be marked correctly and enhanced by black or false color, and so potentially increase the possibility of gas leakage detection.

  11. Infrared Imaging of Boundary Layer Transition Flight Experiments

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J., Jr.; Schwartz, Richard; Ross, Martin; Anderson, Brian; Campbell, Charles H.

    2008-01-01

    The Hypersonic Thermodynamic Infrared Measurement (HYTHIRM) project is presently focused on near term support to the Shuttle program through the development of an infrared imaging capability of sufficient spatial and temporal resolution to augment existing on-board Orbiter instrumentation. Significant progress has been made with the identification and inventory of relevant existing optical imaging assets and the development, maturation, and validation of simulation and modeling tools for assessment and mission planning purposes, which were intended to lead to the best strategies and assets for successful acquisition of quantitative global surface temperature data on the Shuttle during entry. However, there are longer-term goals of providing global infrared imaging support to other flight projects as well. A status of HYTHIRM from the perspective of how two NASA-sponsored boundary layer transition flight experiments could benefit by infrared measurements is provided. Those two flight projects are the Hypersonic Boundary layer Transition (HyBoLT) flight experiment and the Shuttle Boundary Layer Transition Flight Experiment (BLT FE), which are both intended for reducing uncertainties associated with the extrapolation of wind tunnel derived transition correlations for flight application. Thus, the criticality of obtaining high quality flight data along with the impact it would provide to the Shuttle program damage assessment process are discussed. Two recent wind tunnel efforts that were intended as risk mitigation in terms of quantifying the transition process and resulting turbulent wedge locations are briefly reviewed. Progress is being made towards finalizing an imaging strategy in support of the Shuttle BLT FE, however there are no plans currently to image HyBoLT.

  12. Infrared image guidance for ground vehicle based on fast wavelet image focusing and tracking

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2009-08-01

    We studied the infrared image guidance for ground vehicle based on the fast wavelet image focusing and tracking. Here we uses the image of the uncooled infrared imager mounted on the two axis gimbal system and the developed new auto focusing algorithm on the Daubechies wavelet transform. The developed new focusing algorithm on the Daubechies wavelet transform processes the result of the high pass filter effect to meet the direct detection of the objects. This new focusing gives us the distance information of the outside world smoothly, and the information of the gimbal system gives us the direction of objects in the outside world to match the sense of the spherical coordinate system. We installed this system on the hand made electric ground vehicle platform powered by 24VDC battery. The electric vehicle equips the rotary encoder units and the inertia rate sensor units to make the correct navigation process. The image tracking also uses the developed newt wavelet focusing within several image processing. The size of the hand made electric ground vehicle platform is about 1m long, 0.75m wide, 1m high, and 50kg weight. We tested the infrared image guidance for ground vehicle based on the new wavelet image focusing and tracking using the electric vehicle indoor and outdoor. The test shows the good results by the developed infrared image guidance for ground vehicle based on the new wavelet image focusing and tracking.

  13. Size-varying small target detection for infrared image processing

    NASA Astrophysics Data System (ADS)

    Li, Miao; Zhu, Ran; Long, Yunli; An, Wei; Zhou, Yiyu

    2015-10-01

    IRST (Infrared Search and Track) has been applied to many military or civil fields such as precise guidance, aerospace, early warning. As a key technique, small target detection based on infrared image plays an important role. However, infrared targets have their own characteristics, such as target size variation, which make the detection work quite difficult. In practical application, the target size may vary due to many reasons, such as optic angle of sensors, imaging distance, environment and so on. For conventional detection methods, it is difficult to detect such size-varying targets, especially when the backgrounds have strong clutters. This paper presents a novel method to detect size-varying infrared targets in a cluttered background. It is easy to find that the target region is salient in infrared images. It means that target region have a signature of discontinuity with its neighboring regions and concentrates in a relatively small region, which can be considered as a homogeneous compact region, and the background is consistent with its neighboring regions. Motivated by the saliency feature and gradient feature, we introduce minimum target intensity (MTI) to measure the dissimilarity between different scales, and use mean gradient to restrict the target scale in a reasonable range. They are integrated to be multiscale MTI filter. The proposed detection method is designed based on multiscale MTI filter. Firstly, salient region is got by morphological low-pass filtering, where the potential target exists in. Secondly, the candidate target regions are extracted by multiscale minimum target intensity filter, which can effectively give the optimal target size. At last, signal-to-clutter ratio (SCR) is used to segment targets, which is computed based on optimal scale of candidate targets. The experimental results indicate that the proposed method can achieve both higher detection precision and robustness in complex background.

  14. Explaining the [C II]157.7 μm Deficit in Luminous Infrared Galaxies—First Results from a Herschel/PACS Study of the GOALS Sample

    NASA Astrophysics Data System (ADS)

    Díaz-Santos, T.; Armus, L.; Charmandaris, V.; Stierwalt, S.; Murphy, E. J.; Haan, S.; Inami, H.; Malhotra, S.; Meijerink, R.; Stacey, G.; Petric, A. O.; Evans, A. S.; Veilleux, S.; van der Werf, P. P.; Lord, S.; Lu, N.; Howell, J. H.; Appleton, P.; Mazzarella, J. M.; Surace, J. A.; Xu, C. K.; Schulz, B.; Sanders, D. B.; Bridge, C.; Chan, B. H. P.; Frayer, D. T.; Iwasawa, K.; Melbourne, J.; Sturm, E.

    2013-09-01

    We present the first results of a survey of the [C II]157.7 μm emission line in 241 luminous infrared galaxies (LIRGs) comprising the Great Observatories All-sky LIRG Survey (GOALS) sample, obtained with the PACS instrument on board the Herschel Space Observatory. The [C II] luminosities, L [C II], of the LIRGs in GOALS range from ~107 to 2 × 109 L ⊙. We find that LIRGs show a tight correlation of [C II]/FIR with far-IR (FIR) flux density ratios, with a strong negative trend spanning from ~10-2 to 10-4, as the average temperature of dust increases. We find correlations between the [C II]/FIR ratio and the strength of the 9.7 μm silicate absorption feature as well as with the luminosity surface density of the mid-IR emitting region (ΣMIR), suggesting that warmer, more compact starbursts have substantially smaller [C II]/FIR ratios. Pure star-forming LIRGs have a mean [C II]/FIR ~ 4 × 10-3, while galaxies with low polycyclic aromatic hydrocarbon (PAH) equivalent widths (EWs), indicative of the presence of active galactic nuclei (AGNs), span the full range in [C II]/FIR. However, we show that even when only pure star-forming galaxies are considered, the [C II]/FIR ratio still drops by an order of magnitude, from 10-2 to 10-3, with ΣMIR and ΣIR, implying that the [C II]157.7 μm luminosity is not a good indicator of the star formation rate (SFR) for most local LIRGs, for it does not scale linearly with the warm dust emission most likely associated to the youngest stars. Moreover, even in LIRGs in which we detect an AGN in the mid-IR, the majority (2/3) of galaxies show [C II]/FIR >= 10-3 typical of high 6.2 μm PAH EW sources, suggesting that most AGNs do not contribute significantly to the FIR emission. We provide an empirical relation between the [C II]/FIR and the specific SFR for star-forming LIRGs. Finally, we present predictions for the starburst size based on the observed [C II] and FIR luminosities which should be useful for comparing with results from

  15. Mid-infrared luminous quasars in the GOODS-Herschel fields: a large population of heavily obscured, Compton-thick quasars at z ≈ 2

    NASA Astrophysics Data System (ADS)

    Del Moro, A.; Alexander, D. M.; Bauer, F. E.; Daddi, E.; Kocevski, D. D.; McIntosh, D. H.; Stanley, F.; Brandt, W. N.; Elbaz, D.; Harrison, C. M.; Luo, B.; Mullaney, J. R.; Xue, Y. Q.

    2016-02-01

    We present the infrared (IR) and X-ray properties of a sample of 33 mid-IR luminous quasars (νL6 μm ≥ 6 × 1044 erg s-1) at redshift z ≈ 1-3, identified through detailed spectral energy distribution analyses of distant star-forming galaxies, using the deepest IR data from Spitzer and Herschel in the GOODS-Herschel fields. The aim is to constrain the fraction of obscured, and Compton-thick (CT, NH > 1.5 × 1024 cm-2) quasars at the peak era of nuclear and star formation activities. Despite being very bright in the mid-IR band, ≈30 per cent of these quasars are not detected in the extremely deep 2 and 4 Ms Chandra X-ray data available in these fields. X-ray spectral analysis of the detected sources reveals that the majority (≈67 per cent) are obscured by column densities NH > 1022 cm-2; this fraction reaches ≈80 per cent when including the X-ray-undetected sources (9 out of 33), which are likely to be the most heavily obscured, CT quasars. We constrain the fraction of CT quasars in our sample to be ≈24-48 per cent, and their space density to be Φ = (6.7 ± 2.2) × 10-6 Mpc-3. From the investigation of the quasar host galaxies in terms of star formation rates (SFRs) and morphological distortions, as a sign of galaxy mergers/interactions, we do not find any direct relation between SFRs and quasar luminosity or X-ray obscuration. On the other hand, there is tentative evidence that the most heavily obscured quasars have, on average, more disturbed morphologies than the unobscured/moderately obscured quasar hosts, which preferentially live in undisturbed systems. However, the fraction of quasars with disturbed morphology amongst the whole sample is ≈40 per cent, suggesting that galaxy mergers are not the main fuelling mechanism of quasars at z ≈ 2.

  16. ANIR: Atacama near infrared camera for Paschen α imaging

    NASA Astrophysics Data System (ADS)

    Motohara, Kentaro; Mitani, Natsuko; Sako, Shigeyuki; Uchimoto, Yuka K.; Toshikawa, Koji; Yamamuro, Tomoyasu; Handa, Toshihiro; Tanaka, Masuo; Aoki, Tsutomu; Doi, Mamoru; Kawara, Kimiaki; Kohno, Kotaro; Minezaki, Takeo; Miyata, Takashi; Soyano, Takao; Tanabe, Toshihiko; Tarusawa, Ken'ichi; Yoshii, Yuzuru

    2008-07-01

    We have been developing a near infrared camera called ANIR (Atacama Near InfraRed camera), for the University of Tokyo Atacama 1.0m telescope installed at the summit of Co. Chajnantor (5640m altitude) in Northern Chile. The major aim of this camera is to carry out an imaging survey in Paschen α emission line (1.8751μm) from the ground for the first time. The camera is based on a PACE-HAWAII2 array with an Offner relay optics for re-imaging, and field of view is 5.'3 × 5.'3 with pixel scale of 0."308/pix. It is scheduled to see first light in the end of 2008, and start the Paschen α/β survey of the Galactic plane in 2009.

  17. Detecting cracks in teeth using ultrasonic excitation and infrared imaging

    NASA Astrophysics Data System (ADS)

    Han, Xiaoyan; Favro, Lawrence D.; Thomas, Robert L.

    2001-06-01

    We describe a new technique, Thermosonics, that can be used to detect cracks in teeth. This technique was initially invented and developed for finding cracks in industrial and aerospace applications. The thermosonics technique employs a single short pulse (typically tens of milliseconds) of ultrasound excitation combined with infrared imaging. Ultrasonic waves vibrate the target material. This vibration causes rubbing and clapping between faying surfaces of any cracks which are present, resulting in a temperature rise around the cracks. An infrared camera is used to image the temperature distribution during and after the ultrasound excitation. Thus, cracks in teeth can be detected. Although this technique is still under development, it shows promise for clinical use by dentists.

  18. FISICA: The Florida image slicer for infrared cosmology and astrophysics

    NASA Astrophysics Data System (ADS)

    Eikenberry, Stephen S.; Elston, Richard; Guzman, Rafael; Raines, S. Nicholas; Julian, J.; Gruel, N.; Boreman, Glenn; Hoffmann, Jeff; Rodgers, Michael; Glenn, Paul; Hull-Allen, Greg; Myrick, Bruce; Flint, Scott; Comstock, Lovell

    2006-06-01

    We report on the design and status of the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA) - a fully-cryogenic all-reflective image-slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Designed to accept input beams near f/15, FISICA with FLAMINGOS provides R ˜ 1300 spectra over a 16 × 33″ field-of-view on the Cassegrain f/15 focus of the KPNO 4-m telescope, or a 6 × 12″ field-of-view on the Nasmyth or Bent Cassegrain foci of the Gran Telescopio Canarias 10.4-m telescope. FISICA accomplishes this using three sets of "monolithic" powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. We review the optical and opto-mechanical design, fabrication, laboratory test results, and on-telescope performance for FISICA.

  19. A visible-infrared imaging spectrometer for planetary missions

    NASA Technical Reports Server (NTRS)

    McCord, Thomas (Principal Investigator); Voelker, Mark; Owensby, Pam; Warren, Cris; Mooradian, Greg

    1996-01-01

    This final report summarizes the design effort for the construction of a visible-infrared imaging spectrometer for planetary missions, funded by NASA under the Planetary Instrument Definition and Development Program. The goal was to design and develop a prototype brassboard pushbroom imaging spectrometer covering the 0.35 gm to 2.5 gm spectral region using a simplified optical layout that would minimize the size, mass and parts count of the instrument by using a single holographic grating to disperse and focus light from a single slit onto both the infrared and visible focal plane arrays. Design approaches are presented and analyzed, along with problems encountered and recommended solutions to those problems. In particular, a new type of grating, incorporating two sets of rulings and a filter in a layered structure, is presented for further development.

  20. Spacecraft design project: High temperature superconducting infrared imaging satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

  1. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, David R.; McCubbin, Ian; Gao, Bo Cai; Green, Robert O.; Matthews, Alyssa A.; Mei, Fan; Meyer, Kerry G.; Platnick, Steven; Schmid, Beat; Tomlinson, Jason; Wilcox, Eric

    2016-08-01

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA's "Classic" Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARM Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. The coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.

  2. [A coarse-to-fine registration method for satellite infrared image and visual image].

    PubMed

    Hu, Yong-Li; Wang, Liang; Liu, Rong; Zhang, Li; Duan, Fu-Qing

    2013-11-01

    In the present paper, in order to resolve the registration of the multi-mode satellite images with different signal properties and features, a two-phase coarse-to-fine registration method is presented and is applied to the registration of satellite infrared images and visual images. In the coarse registration phase of this method, the edge of infrared and visual images is firstly detected. Then the Fourier-Mellin transform is adopted to process the edge images. Finally, the affine transformation parameters of the registration are computed rapidly by the transformation relation between the registering images in frequency domain. In the fine registration phase of the proposed method, the feature points of infrared and visual images are firstly detected by Harris operator. Then the matched feature points of infrared and visual images are determined by the cross-correlation similarity of their local neighborhoods. The fine registration is finally realized according to the spatial correspondent relation of the matched feature points in infrared and visual images. The proposed coarse-to-fine registration method derives both the advantages of two methods, the high efficiency of Fourier-Mellin transform based registration method and the accuracy of Harris operator based registration method, which is considered the novelty and merit of the proposed method. To evaluate the performance of the proposed registration method, the coarse-to-fine registration method is implemented on the infrared and visual images captured by the FY-2D meteorological satellite. The experimental results show that the presented registration method is robust and has acceptable registration accuracy.

  3. Advanced indium antimonide monolithic charge coupled infrared imaging arrays

    NASA Technical Reports Server (NTRS)

    Koch, T. L.; Merilainen, C. A.; Thom, R. D.

    1981-01-01

    The continued process development of SiO2 insulators for use in advanced InSb monolithic charge coupled infrared imaging arrays is described. Specific investigations into the use of plasma enhanced chemical vapor deposited (PECVD) SiO2 as a gate insulator for InSb charge coupled devices is discussed, as are investigations of other chemical vapor deposited SiO2 materials.

  4. An Imaging Infrared (IIR) seeker using a microprogrammed processor

    NASA Technical Reports Server (NTRS)

    Richmond, K. V.

    1980-01-01

    A recently developed Imaging Infrared Seeker uses a microprogrammed processor to perform gimbal servo control and system interface while performing the seeker functions of automatic target detection, acquisition, and tracking. The automatic detection mode requires up to 80% of the available capability of a high performance microprogrammed processor. Although system complexity was increased significantly, this approach can be cost effective when the basic computation capacity is already available.

  5. Ge/Si Integrated Circuit For Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.

    1990-01-01

    Proposed integrated circuit consists of focal-plane array of metal/germanium Schottky-barrier photodetectors on same chip with silicon-based circuits that processes signals from photodetectors. Made compatible with underlying silicon-based circuitry by growing germanium epitaxially on silicon circuit wafers. Metal deposited in ultrahigh vacuum immediately after growth of germanium. Combination of described techniques results in high-resolution infrared-imaging circuits of superior performance.

  6. Detecting Exomoons around Self-luminous Giant Exoplanets through Polarization

    NASA Astrophysics Data System (ADS)

    Sengupta, Sujan; Marley, Mark S.

    2016-06-01

    Many of the directly imaged self-luminous gas-giant exoplanets have been found to have cloudy atmospheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk-averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk-averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with a cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time-resolved linear polarization signal. The peak amplitude of such time-dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time-resolved imaging polarimetry. Adopting detailed atmospheric models for several values of effective temperature and surface gravity that are appropriate for self-luminous exoplanets, we present the polarization profiles of these objects in the infrared during the transit phase and estimate the peak amplitude of polarization that occurs during the inner contacts of the transit ingress/egress phase. The peak polarization is predicted to range between 0.1% and 0.3% in the infrared.

  7. Dual-band infrared remote sensing system with combined long-wave infrared imaging and mid-wave infrared spectral analysis.

    PubMed

    Fang, Zheng; Yi, Xinjian; Liu, Xiangyan; Zhang, Wei; Zhang, Tianxu

    2013-08-01

    We present a new optical system for infrared (IR) image-spectrum integration remote sensing. The purpose to develop this instrument is to find the key spectral characteristics of typical hot target and to explore a new intelligence fusion method for the recognition. When mounted on a two-dimensional rotation stage, it can track the suspected target by image processing, and then get its spectrum to do recognition. It is a dual-band system with long-wave infrared (LWIR) imaging and mid-wave infrared (MWIR) spectrum. An IR dichroic beamsplitter is used to divide wideband incident infrared into LWIR and MWIR. Compared to traditional infrared combined imaging and spectral-analysis instruments, it yields higher sensitivity for measuring the IR spectrum. The sensors for imaging and spectrum detection are separate, so high spatial resolution, frame rate, and spectrum resolution can all be obtained simultaneously.

  8. Fast infrared chemical imaging with a quantum cascade laser.

    PubMed

    Yeh, Kevin; Kenkel, Seth; Liu, Jui-Nung; Bhargava, Rohit

    2015-01-01

    Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm(-1)) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues.

  9. Fast Infrared Chemical Imaging with a Quantum Cascade Laser

    PubMed Central

    2015-01-01

    Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm–1) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues. PMID:25474546

  10. Fast infrared chemical imaging with a quantum cascade laser.

    PubMed

    Yeh, Kevin; Kenkel, Seth; Liu, Jui-Nung; Bhargava, Rohit

    2015-01-01

    Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm(-1)) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues. PMID:25474546

  11. Requirements for a Moderate-Resolution Infrared Imaging Sounder (MIRIS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Gerber, Andrew J.; Kuai, Le; Gontijo, I.; DeLeon, Berta; Susskind, Joel; Iredell, Lena; Bajpai, Shyam

    2013-01-01

    The high cost of imaging and sounding from space warrants exploration of new methods for obtaining the required information, including changing the spectral band sets, employing new technologies and merging instruments. In some cases we must consider relaxation of the current capability. In others, we expect higher performance. In general our goal is to meet the VIIRS and CrIS requirements while providing the enhanced next generation capabilities: 1) Hyperspectral Imaging in the Vis/NIR bands, 2) High Spatial Resolution Sounding in the Infrared bands. The former will improve the accuracy of ocean color products, aerosols and water vapor, surface vegetation and geology. The latter will enable the high-impact achieved by the current suite of hyperspectral infrared sounders to be achieved by the next generation high resolution forecast models. We examine the spectral, spatial and radiometric requirements for a next generation system and technologies that can be applied from the available inventory within government and industry. A two-band grating spectrometer instrument called the Moderate-resolution Infrared Imaging Sounder (MIRIS) is conceived that, when used with the planned NASA PACE Ocean Color Instrument (OCI) will meet the vast majority of CrIS and VIIRS requirements in the all bands and provide the next generation capabilities desired. MIRIS resource requirements are modest and the Technology Readiness Level is high leading to the expectation that the cost and risk of MIRIS will be reasonable.

  12. Charge-Injection Device (CID) Infrared Staring Imaging Sensor

    NASA Astrophysics Data System (ADS)

    Baker, W. D.; Wilson, S. H.; Missman, R. A.; Nuttall, D. E.; Ting, R. N.

    1981-07-01

    A laboratory version of an infrared staring imaging sensor, based on a 32 x 32 indium antimonide CID detector array, has been developed. That sensor serves both as a test bed for array evaluation and as a tool for investigating concepts such as non-uniformity compensation. The system is microprocessor based to provide for flexible array operation as well as for the collection and logging of array operating conditions and data. Design features of the sensor, including the focal plane and the supporting electronics, are described. Operation of the sensor is discussed and some of the imaging data collected with this system is presented.

  13. Suppression of fixed pattern noise for infrared image system

    NASA Astrophysics Data System (ADS)

    Park, Changhan; Han, Jungsoo; Bae, Kyung-Hoon

    2008-04-01

    In this paper, we propose suppression of fixed pattern noise (FPN) and compensation of soft defect for improvement of object tracking in cooled staring infrared focal plane array (IRFPA) imaging system. FPN appears an observable image which applies to non-uniformity compensation (NUC) by temperature. Soft defect appears glittering black and white point by characteristics of non-uniformity for IR detector by time. This problem is very important because it happen serious problem for object tracking as well as degradation for image quality. Signal processing architecture in cooled staring IRFPA imaging system consists of three tables: low, normal, high temperature for reference gain and offset values. Proposed method operates two offset tables for each table. This is method which operates six term of temperature on the whole. Proposed method of soft defect compensation consists of three stages: (1) separates sub-image for an image, (2) decides a motion distribution of object between each sub-image, (3) analyzes for statistical characteristic from each stationary fixed pixel. Based on experimental results, the proposed method shows an improved image which suppresses FPN by change of temperature distribution from an observational image in real-time.

  14. A model of PSF estimation for coded mask infrared imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Ao; Jin, Jie; Wang, Qing; Yang, Jingyu; Sun, Yi

    2014-11-01

    The point spread function (PSF) of imaging system with coded mask is generally acquired by practical measure- ment with calibration light source. As the thermal radiation of coded masks are relatively severe than it is in visible imaging systems, which buries the modulation effects of the mask pattern, it is difficult to estimate and evaluate the performance of mask pattern from measured results. To tackle this problem, a model for infrared imaging systems with masks is presented in this paper. The model is composed with two functional components, the coded mask imaging with ideal focused lenses and the imperfection imaging with practical lenses. Ignoring the thermal radiation, the systems PSF can then be represented by a convolution of the diffraction pattern of mask with the PSF of practical lenses. To evaluate performances of different mask patterns, a set of criterion are designed according to different imaging and recovery methods. Furthermore, imaging results with inclined plane waves are analyzed to achieve the variation of PSF within the view field. The influence of mask cell size is also analyzed to control the diffraction pattern. Numerical results show that mask pattern for direct imaging systems should have more random structures, while more periodic structures are needed in system with image reconstruction. By adjusting the combination of random and periodic arrangement, desired diffraction pattern can be achieved.

  15. Learning-based compressed sensing for infrared image super resolution

    NASA Astrophysics Data System (ADS)

    Zhao, Yao; Sui, Xiubao; Chen, Qian; Wu, Shaochi

    2016-05-01

    This paper presents an infrared image super-resolution method based on compressed sensing (CS). First, the reconstruction model under the CS framework is established and a Toeplitz matrix is selected as the sensing matrix. Compared with traditional learning-based methods, the proposed method uses a set of sub-dictionaries instead of two coupled dictionaries to recover high resolution (HR) images. And Toeplitz sensing matrix allows the proposed method time-efficient. Second, all training samples are divided into several feature spaces by using the proposed adaptive k-means classification method, which is more accurate than the standard k-means method. On the basis of this approach, a complex nonlinear mapping from the HR space to low resolution (LR) space can be converted into several compact linear mappings. Finally, the relationships between HR and LR image patches can be obtained by multi-sub-dictionaries and HR infrared images are reconstructed by the input LR images and multi-sub-dictionaries. The experimental results show that the proposed method is quantitatively and qualitatively more effective than other state-of-the-art methods.

  16. Infrared imaging-based combat casualty care system

    NASA Astrophysics Data System (ADS)

    Davidson, James E., Sr.

    1997-08-01

    A Small Business Innovative Research (SBIR) contract was recently awarded to a start up company for the development of an infrared (IR) image based combat casualty care system. The company, Medical Thermal Diagnostics, or MTD, is developing a light weight, hands free, energy efficient uncooled IR imaging system based upon a Texas Instruments design which will allow emergency medical treatment of wounded soldiers in complete darkness without any type of light enhancement equipment. The principal investigator for this effort, Dr. Gene Luther, DVM, Ph.D., Professor Emeritus, LSU School of Veterinary Medicine, will conduct the development and testing of this system with support from Thermalscan, Inc., a nondestructive testing company experienced in IR thermography applications. Initial research has been done with surgery on a cat for feasibility of the concept as well as forensic research on pigs as a close representation of human physiology to determine time of death. Further such studies will be done later as well as trauma studies. IR images of trauma injuries will be acquired by imaging emergency room patients to create an archive of emergency medical situations seen with an infrared imaging camera. This archived data will then be used to develop training material for medical personnel using the system. This system has potential beyond military applications. Firefighters and emergency medical technicians could directly benefit from the capability to triage and administer medical care to trauma victims in low or no light conditions.

  17. Exploring the molecular chemistry and excitation in obscured luminous infrared galaxies. An ALMA mm-wave spectral scan of NGC 4418

    NASA Astrophysics Data System (ADS)

    Costagliola, F.; Sakamoto, K.; Muller, S.; Martín, S.; Aalto, S.; Harada, N.; van der Werf, P.; Viti, S.; Garcia-Burillo, S.; Spaans, M.

    2015-10-01

    Context. Extragalactic observations allow the study of molecular chemistry and excitation under physical conditions which may differ greatly from those found in the Milky Way. The compact, obscured nuclei (CON) of luminous infrared galaxies (LIRG) combine large molecular columns with intense infrared (IR), ultra-violet (UV), and X- radiation and represent ideal laboratories for the study of the chemistry of the interstellar medium (ISM) under extreme conditions. Aims: Our aim was to obtain for the first time a multi-band spectral scan of a LIRG, and to derive molecular abundances and excitation to be compared to other Galactic and extragalactic environments. Methods: We obtained an ALMA Cycle 0 spectral scan of the dusty LIRG NGC 4418, spanning a total of 70.7 GHz in bands 3, 6, and 7. We use a combined local thermal equilibrium (LTE) and non-LTE (NLTE) fit of the spectrum in order to identify the molecular species and to derive column densities and excitation temperatures. We derive molecular abundances and compare them with other Galactic and extragalactic sources by means of a principal component analysis. Results: We detect 317 emission lines from a total of 45 molecular species, including 15 isotopic substitutions and 6 vibrationally excited variants. Our LTE/NLTE fit find kinetic temperatures from 20 to 350 K, and densities between 105 and 107 cm-3. The spectrum is dominated by vibrationally excited HC3N, HCN, and HNC, with vibrational temperatures from 300 to 450 K. We find that the chemistry of NCG 4418 is characterized by high abundances of HC3N, SiO, H2S, and c-HCCCH but a low CH3OH abundance. A principal component analysis shows that NGC 4418 and Arp 220 share very similar molecular abundances and excitation, which clearly set them apart from other Galactic and extragalactic environments. Conclusions: Our spectral scan confirms that the chemical complexity in the nucleus of NGC 4418 is one of the highest ever observed outside our Galaxy. The similar

  18. Effects of hypersonic vehicle's optical dome on infrared imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenjun; Cao, Zhiguo; Wang, Wenwu

    2011-09-01

    When an optically guided hypersonic vehicle flies in the atmosphere, the scene is viewed through an optical dome. Because of hypersonic friction with the atmosphere, the optical dome is inevitably covered by a serious shock wave, which threatens to alter the dome's physical parameters and further induce wavefront distortion and degradation of images. By studying the physical phenomena occurring within the optical dome in such an adverse environment, this paper identifies the relationship between the variation of the dome's optical characteristics and the infrared image degradation. The research indicates that the image quality degrades sharply as the vehicle's Mach number increases. Simulations also show that while the thermo-optic effect, elastic-optic effect, thermal deformation, and variation of transmittance have little effect on the optical system, the thermal radiation severely degrades images when vehicles fly at hypersonic speeds. Photo-Optical Instrumentation Engineers

  19. Dual-band infrared imaging for concrete bridge deck inspection

    SciTech Connect

    Durbin, P.; Del Grande, N.

    1994-02-01

    Dual-band infrared (DBIR) imaging methods and unique image-correction algorithms used successfully for underground and obscured object imaging and detection (of buried mines, archaeological structures, geothermal aquifers and airframe defects) are adapted for inspection of concrete highways and bridge decks to provide early warnings of subsurface defects. To this end, we prepared small concrete test slabs with defects (embedded plastic layers). We used selective DBIR (3--5 {mu}m and 8--12 {mu}m) image ratios to depict the defect sites and remove the effects of surface clutter. We distinguish true temperature-difference signals (at surrogate delamination sites) from emissivity noise (at sites with oil stains, sand, gravel, metal parts and roughness differences) towards improved concrete bridge deck inspections.

  20. Correction of aeroheating-induced intensity nonuniformity in infrared images

    NASA Astrophysics Data System (ADS)

    Liu, Li; Yan, Luxin; Zhao, Hui; Dai, Xiaobing; Zhang, Tianxu

    2016-05-01

    Aeroheating-induced intensity nonuniformity effects severely influence the effective performance of an infrared (IR) imaging system in high-speed flight. In this paper, we propose a new approach to the correction of intensity nonuniformity in IR images. The basic assumption is that the low-frequency intensity bias is additive and smoothly varying so that it can be modeled as a bivariate polynomial and estimated by using an isotropic total variation (TV) model. A half quadratic penalty method is applied to the isotropic form of TV discretization. And an alternating minimization algorithm is adopted for solving the optimization model. The experimental results of simulated and real aerothermal images show that the proposed correction method can effectively improve IR image quality.

  1. Uncooled emissive infrared imagers for CubeSats

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffery J.; Masini, Paolo

    2014-09-01

    Raytheon's fourth generation uncooled microbolometer array technology with digital output, High Definition (HD) 1920 × 1200 format and 12 μm cell size enables uncooled thermal infrared (TIR) multispectral imagers with the sensitivity and spatial sampling needed for a variety of Earth observation missions in LEO, GEO and HEO. A powerful combination of small detector cell size, fast optics and high sensitivity achieved without cryogenic cooling leads to instruments that are much smaller than current TIR systems, while still offering the capability to meet challenging measurement requirements for Earth observation missions. To consider how this technology could be implemented for Earth observation missions, we extend our previous studies with visible wavelength CubeSat imagers for environmental observations from LEO and examine whether small thermal infrared imagers based on fourth generation uncooled technology could be made small enough to fit onboard a 3U CubeSat and still meet challenging requirements for legacy missions. We found that moderate spatial resolution (~200 m) high sensitivity cloud and surface temperature observations meeting legacy MODIS/VIIRS requirements could be collected successfully with CubeSat-sized imagers but that multiple imagers are needed to cover the full swath for these missions. Higher spatial resolution land imagers are more challenging to fit into the CubeSat form factor, but it may be possible to do so for systems that require roughly 100 m spatial resolution. Regardless of whether it can fit into a CubeSat or not, uncooled land imagers meeting candidate TIR requirements can be implemented with a much smaller instrument than previous imagers. Even though this technology appears to be very promising, more work is needed to qualify this newly available uncooled infrared technology for use in space. If these new devices prove to be as space worthy as the first generation arrays that Raytheon qualified and built into the THEMIS imager

  2. Discovery of the Near-infrared Counterpart to the Luminous Neutron-star Low-mass X-Ray Binary GX 3+1

    NASA Astrophysics Data System (ADS)

    van den Berg, Maureen; Homan, Jeroen; Fridriksson, Joel K.; Linares, Manuel

    2014-10-01

    Using the High Resolution Camera on board the Chandra X-ray Observatory, we have measured an accurate position for the bright persistent neutron star X-ray binary and atoll source GX 3+1. At a location that is consistent with this new position, we have discovered the near-infrared (NIR) counterpart to GX 3+1 in images taken with the PANIC and FourStar cameras on the Magellan Baade Telescope. The identification of this Ks = 15.8 ± 0.1 mag star as the counterpart is based on the presence of a Br γ emission line in an NIR spectrum taken with the Folded-port InfraRed Echelette spectrograph on the Baade Telescope. The absolute magnitude derived from the best available distance estimate to GX 3+1 indicates that the mass donor in the system is not a late-type giant. We find that the NIR light in GX 3+1 is likely dominated by the contribution from a heated outer accretion disk. This is similar to what has been found for the NIR flux from the brighter class of Z sources, but unlike the behavior of atolls fainter (LX ≈ 1036-1037 erg s-1) than GX 3+1, where optically thin synchrotron emission from a jet probably dominates the NIR flux. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  3. Discovery of the near-infrared counterpart to the luminous neutron-star low-mass X-ray binary GX 3+1

    SciTech Connect

    Van den Berg, Maureen; Fridriksson, Joel K.; Homan, Jeroen; Linares, Manuel

    2014-10-01

    Using the High Resolution Camera on board the Chandra X-ray Observatory, we have measured an accurate position for the bright persistent neutron star X-ray binary and atoll source GX 3+1. At a location that is consistent with this new position, we have discovered the near-infrared (NIR) counterpart to GX 3+1 in images taken with the PANIC and FourStar cameras on the Magellan Baade Telescope. The identification of this K{sub s} = 15.8 ± 0.1 mag star as the counterpart is based on the presence of a Br γ emission line in an NIR spectrum taken with the Folded-port InfraRed Echelette spectrograph on the Baade Telescope. The absolute magnitude derived from the best available distance estimate to GX 3+1 indicates that the mass donor in the system is not a late-type giant. We find that the NIR light in GX 3+1 is likely dominated by the contribution from a heated outer accretion disk. This is similar to what has been found for the NIR flux from the brighter class of Z sources, but unlike the behavior of atolls fainter (L{sub X} ≈ 10{sup 36}-10{sup 37} erg s{sup –1}) than GX 3+1, where optically thin synchrotron emission from a jet probably dominates the NIR flux.

  4. Cooled Dyson long-wave infrared push-broom imaging spectrometer by re-imaging

    NASA Astrophysics Data System (ADS)

    Sun, Jiayin; Liu, Ying; Jiang, Yang; Li, Chun; Sun, Qiang; Hu, Xinrong

    2016-05-01

    A cooled long-wave infrared push-broom imaging spectrometer with an F-number of 2 was designed based on the Dyson configuration. A three-mirror off-axis aspherical optical system that provided excellent slit-shaped images was selected as the fore telescope objective. The re-imaging method was applied to obtain a cold stop efficiency of 100%, and the corrector lens in traditional Dyson imaging spectrometers was replaced with re-imaging lenses to correct spherical aberrations. The designed imaging spectrometer provided a spectral resolution of 25 nm at a range of 8-12 μm and possessed a relatively small volume.

  5. The (new) Mid-Infrared Spectrometer and Imager (MIRSI) for the NASA Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Hora, Joseph L.; Trilling, David; Mommert, Michael; Smith, Howard A.; Moskovitz, Nicholas; Marscher, Alan P.; Tokunaga, Alan; Bergknut, Lars; Bonnet, Morgan; Bus, Schelte J.; Connelly, Michael; Rayner, John; Watanabe, Darryl

    2015-11-01

    The Mid-Infrared Spectrometer and Imager (MIRSI) was developed at Boston University and has been in use since 2002 on the Infrared Telescope Facility (IRTF), making observations of asteroids, planets, and comets in the 2 - 25 μm wavelength range. Recently the instrument has been unavailable due to electronics issues and the high cost of supplying liquid helium on Maunakea. We have begun a project to upgrade MIRSI to a cryocooler-based system with new array readout electronics and a dichroic and optical camera to simultaneously image the science field for image acquisition and optical photometry. The mechanical cryocooler will enable MIRSI to be continuously mounted on the IRTF multiple instrument mount (MIM) along with the other facility instruments, making it available to the entire community for multi-wavelength imaging and spectral observations. We will propose to use the refurbished MIRSI to measure the 10 μm flux from Near Earth Objects (NEOs) and determine their diameters and albedos through the use of a thermal model. We plan to observe up to 750 NEOs over the course of a three year survey, most of whose diameters will be under 300 meters. Here we present an overview of the MIRSI upgrade and give the current status of the project.This work is funded by the NASA Solar System Observations/NEOO program.

  6. Near-Infrared Optical Imaging Noninvasively Detects Acutely Damaged Muscle.

    PubMed

    Chrzanowski, Stephen M; Batra, Abhinandan; Lee-McMullen, Brittany; Vohra, Ravneet S; Forbes, Sean C; Jiang, Huabei; Vandenborne, Krista; Walter, Glenn A

    2016-10-01

    Muscle damage is currently assessed through methods such as muscle biopsy, serum biomarkers, functional testing, and imaging procedures, each with its own inherent limitations, and a pressing need for a safe, repeatable, inexpensive, and noninvasive modality to assess the state of muscle health remains. Our aim was to develop and assess near-infrared (NIR) optical imaging as a novel noninvasive method of detecting and quantifying muscle damage. An immobilization-reambulation model was used for inducing muscle damage and recovery in the lower hindlimbs in mice. Confirmation of muscle damage was obtained using in vivo indocyanine green-enhanced NIR optical imaging, magnetic resonance imaging, and ex vivo tissue analysis. The soleus of the immobilized-reambulated hindlimb was found to have a greater amount of muscle damage compared to that in the contralateral nonimmobilized limb, confirmed by in vivo indocyanine green-enhanced NIR optical imaging (3.86-fold increase in radiant efficiency), magnetic resonance imaging (1.41-fold increase in T2), and an ex vivo spectrophotometric assay of indocyanine green uptake (1.87-fold increase in normalized absorbance). Contrast-enhanced NIR optical imaging provides a sensitive, rapid, and noninvasive screening method that can be used for imaging and quantifying muscle damage and recovery in vivo. PMID:27565039

  7. Using short-wave infrared imaging for fruit quality evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Lee, Dah-Jye; Desai, Alok

    2013-12-01

    Quality evaluation of agricultural and food products is important for processing, inventory control, and marketing. Fruit size and surface quality are two important quality factors for high-quality fruit such as Medjool dates. Fruit size is usually measured by length that can be done easily by simple image processing techniques. Surface quality evaluation on the other hand requires more complicated design, both in image acquisition and image processing. Skin delamination is considered a major factor that affects fruit quality and its value. This paper presents an efficient histogram analysis and image processing technique that is designed specifically for real-time surface quality evaluation of Medjool dates. This approach, based on short-wave infrared imaging, provides excellent image contrast between the fruit surface and delaminated skin, which allows significant simplification of image processing algorithm and reduction of computational power requirements. The proposed quality grading method requires very simple training procedure to obtain a gray scale image histogram for each quality level. Using histogram comparison, each date is assigned to one of the four quality levels and an optimal threshold is calculated for segmenting skin delamination areas from the fruit surface. The percentage of the fruit surface that has skin delamination can then be calculated for quality evaluation. This method has been implemented and used for commercial production and proven to be efficient and accurate.

  8. A dual-band adaptor for infrared imaging.

    PubMed

    McLean, A G; Ahn, J-W; Maingi, R; Gray, T K; Roquemore, A L

    2012-05-01

    A novel imaging adaptor providing the capability to extend a standard single-band infrared (IR) camera into a two-color or dual-band device has been developed for application to high-speed IR thermography on the National Spherical Tokamak Experiment (NSTX). Temperature measurement with two-band infrared imaging has the advantage of being mostly independent of surface emissivity, which may vary significantly in the liquid lithium divertor installed on NSTX as compared to that of an all-carbon first wall. In order to take advantage of the high-speed capability of the existing IR camera at NSTX (1.6-6.2 kHz frame rate), a commercial visible-range optical splitter was extensively modified to operate in the medium wavelength and long wavelength IR. This two-band IR adapter utilizes a dichroic beamsplitter, which reflects 4-6 μm wavelengths and transmits 7-10 μm wavelength radiation, each with >95% efficiency and projects each IR channel image side-by-side on the camera's detector. Cutoff filters are used in each IR channel, and ZnSe imaging optics and mirrors optimized for broadband IR use are incorporated into the design. In-situ and ex-situ temperature calibration and preliminary data of the NSTX divertor during plasma discharges are presented, with contrasting results for dual-band vs. single-band IR operation.

  9. Application of DIRI dynamic infrared imaging in reconstructive surgery

    NASA Astrophysics Data System (ADS)

    Pawlowski, Marek; Wang, Chengpu; Jin, Feng; Salvitti, Matthew; Tenorio, Xavier

    2006-04-01

    We have developed the BioScanIR System based on QWIP (Quantum Well Infrared Photodetector). Data collected by this sensor are processed using the DIRI (Dynamic Infrared Imaging) algorithms. The combination of DIRI data processing methods with the unique characteristics of the QWIP sensor permit the creation of a new imaging modality capable of detecting minute changes in temperature at the surface of the tissue and organs associated with blood perfusion due to certain diseases such as cancer, vascular disease and diabetes. The BioScanIR System has been successfully applied in reconstructive surgery to localize donor flap feeding vessels (perforators) during the pre-surgical planning stage. The device is also used in post-surgical monitoring of skin flap perfusion. Since the BioScanIR is mobile; it can be moved to the bedside for such monitoring. In comparison to other modalities, the BioScanIR can localize perforators in a single, 20 seconds scan with definitive results available in minutes. The algorithms used include (FFT) Fast Fourier Transformation, motion artifact correction, spectral analysis and thermal image scaling. The BioScanIR is completely non-invasive and non-toxic, requires no exogenous contrast agents and is free of ionizing radiation. In addition to reconstructive surgery applications, the BioScanIR has shown promise as a useful functional imaging modality in neurosurgery, drug discovery in pre-clinical animal models, wound healing and peripheral vascular disease management.

  10. Indeterminacy and Image Improvement in Snake Infrared ``Vision''

    NASA Astrophysics Data System (ADS)

    van Hemmen, J. Leo

    2006-03-01

    Many snake species have infrared sense organs located on their head that can detect warm-blooded prey even in total darkness. The physical mechanism underlying this sense is that of a pinhole camera. The infrared image is projected onto a sensory `pit membrane' of small size (of order mm^2). To get a neuronal response the energy flux per unit time has to exceed a minimum threshold; furthermore, the source of this energy, the prey, is moving at a finite speed so the pinhole substituting for a lens has to be rather large (˜1 mm). Accordingly the image is totally blurred. We have therefore done two things. First, we have determined the precise optical resolution that a snake can achieve for a given input. Second, in view of known, though still restricted, precision one may ask whether, and how, a snake can reconstruct the original image. The point is that the information needed to reconstruct the original temperature distribution in space is still available. We present an explicit mathematical model [1] allowing even high-quality reconstruction from the low-quality image on the pit membrane and indicate how a neuronal implementation might be realized. Ref: [1] A.B. Sichert, P. Friedel, and J.L. van Hemmen, TU Munich preprint (2005).

  11. Microscopic spectral imaging using mid-infrared semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Guo, Bujin-.; Wang, Yi; Peng, Chuan; Luo, Guipeng; Le, Han Q.

    2003-07-01

    Infrared micro-spectroscopy is a useful tool for basic research and biomedical applications. Conventional microspectroscopic imaging apparatuses use thermal sources for sample illumination, which have low brightness, low optical spectral intensity, and high noise. This work evaluates the system engineering advantages of using mid-infrared semiconductor lasers that offer orders-of magnitude higher brightness, spectral intensity, and lower noise. A laser-based microscopic spectral imaging system with focal plane array detectors demonstrated a high signal-to-noise ratio (>20 dB) at video frame rate for a large illuminated area. Microscopic spectral imaging with fixed-wavelength and tunable lasers of 4.6, 6, and 9.3-μm wavelength was applied to a number of representative samples that consist of biological tissues (plant and animal) and solid material (a stack of laminated polymers). Transmission spectral images with ~30-dB dynamic range were obtained with clear evidence of spectral features for different samples. The potential of more advanced systems with a wide coverage of spectral bands is discussed.

  12. Segmentation of knee injury swelling on infrared images

    NASA Astrophysics Data System (ADS)

    Puentes, John; Langet, Hélène; Herry, Christophe; Frize, Monique

    2011-03-01

    Interpretation of medical infrared images is complex due to thermal noise, absence of texture, and small temperature differences in pathological zones. Acute inflammatory response is a characteristic symptom of some knee injuries like anterior cruciate ligament sprains, muscle or tendons strains, and meniscus tear. Whereas artificial coloring of the original grey level images may allow to visually assess the extent inflammation in the area, their automated segmentation remains a challenging problem. This paper presents a hybrid segmentation algorithm to evaluate the extent of inflammation after knee injury, in terms of temperature variations and surface shape. It is based on the intersection of rapid color segmentation and homogeneous region segmentation, to which a Laplacian of a Gaussian filter is applied. While rapid color segmentation enables to properly detect the observed core of swollen area, homogeneous region segmentation identifies possible inflammation zones, combining homogeneous grey level and hue area segmentation. The hybrid segmentation algorithm compares the potential inflammation regions partially detected by each method to identify overlapping areas. Noise filtering and edge segmentation are then applied to common zones in order to segment the swelling surfaces of the injury. Experimental results on images of a patient with anterior cruciate ligament sprain show the improved performance of the hybrid algorithm with respect to its separated components. The main contribution of this work is a meaningful automatic segmentation of abnormal skin temperature variations on infrared thermography images of knee injury swelling.

  13. Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Abbott, Elsa; Kahle, Anne

    1991-01-01

    The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the surfaces. These changes have been mapped using remote sensing data from the visible and reflected infrared and thermal infrared wavelength regions. They are related to the physical breakdown of surface chill coats, the development and erosion of silica coatings, the oxidation of mafic minerals, and the development of vegetation cover. These effects show systematic behavior with age and can be mapped using the image data and related to relative ages of pahoehoe and aa flows. The thermal data are sensitive to silica rind development and fine structure of the scene; the reflectance data show the degree of oxidation and differentiate vegetation from aa and cinders. Together, data from the two wavelength regions show more than either separately. The combined data potentially provide a powerful tool for mapping basalt flows in arid to semiarid volcanic environments.

  14. Infrared optical coatings for the EarthCARE Multispectral Imager.

    PubMed

    Hawkins, Gary; Woods, David; Sherwood, Richard; Djotni, Karim

    2014-10-20

    The Earth Cloud, Aerosol and Radiation Explorer mission (EarthCARE) Multispectral Imager (MSI) is a radiometric instrument designed to provide the imaging of the atmospheric cloud cover and the cloud top surface temperature from a sun-synchronous low Earth orbit. The MSI forms part of a suite of four instruments destined to support the European Space Agency Living Planet mission on-board the EarthCARE satellite payload to be launched in 2016, whose synergy will be used to construct three-dimensional scenes, textures, and temperatures of atmospheric clouds and aerosols. The MSI instrument contains seven channels: four solar channels to measure visible and short-wave infrared wavelengths, and three channels to measure infrared thermal emission. In this paper, we describe the optical layout of the infrared instrument channels, thin-film multilayer designs, the coating deposition method, and the spectral system throughput for the bandpass interference filters, dichroic beam splitters, lenses, and mirror coatings to discriminate wavelengths at 8.8, 10.8, and 12.0 μm. The rationale for the selection of thin-film materials, spectral measurement technique, and environmental testing performance are also presented.

  15. Towards an Imaging Mid-Infrared Heterodyne Spectrometer

    NASA Technical Reports Server (NTRS)

    Hewagama, T.; Aslam, S.; Jones, H.; Kostiuk, T.; Villanueva, G.; Roman, P.; Shaw, G. B.; Livengood, T.; Allen, J. E.

    2012-01-01

    We are developing a concept for a compact, low-mass, low-power, mid-infrared (MIR; 5- 12 microns) imaging heterodyne spectrometer that incorporates fiber optic coupling, Quantum Cascade Laser (QCL) local oscillator, photomixer array, and Radio Frequency Software Defined Readout (RFSDR) for spectral analysis. Planetary Decadal Surveys have highlighted the need for miniaturized, robust, low-mass, and minimal power remote sensing technologies for flight missions. The drive for miniaturization of remote sensing spectroscopy and radiometry techniques has been a continuing process. The advent of MIR fibers, and MEMS techniques for producing waveguides has proven to be an important recent advancement for miniaturization of infrared spectrometers. In conjunction with well-established photonics techniques, the miniaturization of spectrometers is transitioning from classic free space optical systems to waveguide/fiber-based structures for light transport and producing interference effects. By their very nature, these new devices are compact and lightweight. Mercury-Cadmium-Telluride (MCT) and Quantum Well Infrared Photodiodes (QWIP) arrays for heterodyne applications are also being developed. Bulky electronics is another barrier that precluded the extension of heterodyne systems into imaging applications, and our RFSDR will address this aspect.

  16. Infrared optical coatings for the EarthCARE Multispectral Imager.

    PubMed

    Hawkins, Gary; Woods, David; Sherwood, Richard; Djotni, Karim

    2014-10-20

    The Earth Cloud, Aerosol and Radiation Explorer mission (EarthCARE) Multispectral Imager (MSI) is a radiometric instrument designed to provide the imaging of the atmospheric cloud cover and the cloud top surface temperature from a sun-synchronous low Earth orbit. The MSI forms part of a suite of four instruments destined to support the European Space Agency Living Planet mission on-board the EarthCARE satellite payload to be launched in 2016, whose synergy will be used to construct three-dimensional scenes, textures, and temperatures of atmospheric clouds and aerosols. The MSI instrument contains seven channels: four solar channels to measure visible and short-wave infrared wavelengths, and three channels to measure infrared thermal emission. In this paper, we describe the optical layout of the infrared instrument channels, thin-film multilayer designs, the coating deposition method, and the spectral system throughput for the bandpass interference filters, dichroic beam splitters, lenses, and mirror coatings to discriminate wavelengths at 8.8, 10.8, and 12.0 μm. The rationale for the selection of thin-film materials, spectral measurement technique, and environmental testing performance are also presented. PMID:25402784

  17. Infrared Imaging Bolometer for the HL-2A Tokamak

    NASA Astrophysics Data System (ADS)

    Gao, Jinming; Li, Wei; Lu, Jie; Xia, Zhiwei; Yi, Ping; Liu, Yi; Yang, Qingwei; HL-2A Team

    2016-06-01

    An infrared imaging bolometer diagnostic has been upgraded recently to be adapted for the complications of the signal-to-noise ratio arising from the low level of plasma radiation and high reflectivity of low energy photon (<6.2 eV). It utilizes a platinum foil, blackened on both sides with graphite spray, as the bolometer detector. The advantage of the blackened foil is the light absorption extending into the infrared. After a careful calibration of the foil, the incident power density distribution on the foil is determined by solving the heat diffusion equation with a numerical technique. The local plasma radiated power density is reconstructed with a minimum fisher information regularization method by assuming plasma emission toroidal symmetry. Comparisons of the results and the profiles measured by an ordinary bolometric detector demonstrate that this method is good enough to provide the plasma radiated power pattern. The typical plasma radiated power density distribution before and after high mode (H-mode) transition is firstly reconstructed with the infrared imaging bolometer. Moreover, during supersonic molecular beam injection (SMBI), an enhanced radiation region is observed at the edge of the plasma. supported by National Natural Science Foundation of China (Nos. 10805016 and 11175061), and the Chinese National Fusion Project for ITER (No. 2014GB109001)

  18. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.

    PubMed

    Hanifi, Arash; McCarthy, Helen; Roberts, Sally; Pleshko, Nancy

    2013-01-01

    Hyaline cartilage and mechanically inferior fibrocartilage consisting of mixed collagen types are frequently found together in repairing articular cartilage. The present study seeks to develop methodology to identify collagen type and other tissue components using Fourier transform infrared (FTIR) spectral evaluation of matrix composition in combination with multivariate analyses. FTIR spectra of the primary molecular components of repair cartilage, types I and II collagen, and aggrecan, were used to develop multivariate spectral models for discrimination of the matrix components of the tissues of interest. Infrared imaging data were collected from bovine bone, tendon, normal cartilage, meniscus and human repair cartilage tissues, and composition predicted using partial least squares analyses. Histology and immunohistochemistry results were used as standards for validation. Infrared fiber optic probe spectral data were also obtained from meniscus (a tissue with mixed collagen types) to evaluate the potential of this method for identification of collagen type in a minimally-invasive clinical application. Concentration profiles of the tissue components obtained from multivariate analysis were in excellent agreement with histology and immunohistochemistry results. Bone and tendon showed a uniform distribution of predominantly type I collagen through the tissue. Normal cartilage showed a distribution of type II collagen and proteoglycan similar to the known composition, while in repair cartilage, the spectral distribution of both types I and II collagen were similar to that observed via immunohistochemistry. Using the probe, the outer and inner regions of the meniscus were shown to be primarily composed of type I and II collagen, respectively, in accordance with immunohistochemistry data. In summary, multivariate analysis of infrared spectra can indeed be used to differentiate collagen type I and type II, even in the presence of proteoglycan, in connective tissues

  19. Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors.

    PubMed

    Lu, Rongwen; Levy, Alexander M; Zhang, Qiuxiang; Pittler, Steven J; Yao, Xincheng

    2013-10-01

    Stiles-Crawford effect (SCE) is exclusively observed in cone photoreceptors, but why the SCE is absent in rod photoreceptors is still a mystery. In this study, we employed dynamic near infrared light imaging to monitor photoreceptor kinetics in freshly isolated frog and mouse retinas stimulated by oblique visible light flashes. It was observed that retinal rods could rapidly (onset: ∼10 ms for frog and 5 ms for mouse; time-to-peak: ∼200 ms for frog and 30 ms for mouse) shift toward the direction of the visible light, which might quickly compensate for the loss of luminous efficiency due to oblique illumination. In contrast, such directional movement was negligible in retinal cones. Moreover, transient rod phototropism could contribute to characteristic intrinsic optical signal (IOS). We anticipate that further study of the transient rod phototropism may not only provide insight into better understanding of the nature of vision but also promise an IOS biomarker for functional mapping of rod physiology at high resolution.

  20. Strategies for absolute calibration of near infrared tomographic tissue imaging.

    PubMed

    McBride, Troy O; Pogue, Brian W; Osterberg, Ulf L; Paulsen, Keith D

    2003-01-01

    Quantitative near infrared (NIR) imaging of tissue requires the use of a diffusion model-based reconstruction algorithm, which solves for the absorption and scattering coefficients of a tissue volume by matching transmission measurements of light to the predictive diffusion equation solution. Calibration problems as well as other practical considerations arise for an imaging system when using a model-based method for a real system. For example, systematic noise in the data acquisition hardware and source/detector fibers must be removed to prevent spurious results in the reconstructed image. Practical considerations for a NIR diffuse tomographic imaging system include: (1) calibration with a homogeneous phantom, (2) use of a homogenous fitting algorithm to arrive at an initial optical property estimate for image reconstruction of a heterogeneous medium, and (3) correction for fluctuations in source strength and initial phase offset during data acquisition. These practical considerations, which rely on an accurate homogeneous fitting algorithm are described. They have allowed demonstration of a prototype imaging system that has the ability to quantitatively reconstruct heterogeneous images of hemoglobin concentrations within a highly scattering medium with no a priori information.

  1. Research and experiment of InGaAs shortwave infrared imaging system based on FPGA

    NASA Astrophysics Data System (ADS)

    Ren, Ling; Min, Chaobo; Sun, Jianning; Gu, Yan; Yang, Feng; Zhu, Bo; Pan, Jingsheng; Guo, Yiliang

    2015-04-01

    The design and imaging characteristic experiment of InGaAs shortwave infrared imaging system are introduced. Through the adoption of InGaAs focal plane array, the real time image process structure of InGaAs shortwave infrared imaging system is researched. The hardware circuit and image process software of the imaging system based on FPGA are researched. The InGaAs shortwave infrared imaging system is composed of shortwave infrared lens, InGaAs focal plane array, temperature controller module, power supply module, analog-to-digital converter module, digital-to-analog converter module, FPGA image processing module and optical-mechanical structure. The main lock frequency of InGaAs shortwave infrared imaging system is 30MHz. The output mode of the InGaAs shortwave infrared imaging system is PAL analog signal. The power dissipation of the imaging system is 2.6W. The real time signal process in InGaAs shortwave infrared imaging system includes non-uniformly correction algorithm, bad pixel replacement algorithm, and histogram equalization algorithm. Based on the InGaAs shortwave infrared imaging system, the imaging characteristic test of shortwave infrared is carried out for different targets in different conditions. In the foggy weather, the haze and fog penetration are tested. The InGaAs shortwave infrared imaging system could be used for observing humans, boats, architecture, and mountains in the haze and foggy weather. The configuration and performance of InGaAs shortwave infrared imaging system are respectively logical and steady. The research on the InGaAs shortwave infrared imaging system is worthwhile for improving the development of night vision technology.

  2. Chemical Imaging of Biological Tissue with Synchrotron Infrared Light

    SciTech Connect

    Miller,L.; Dumas, P.

    2006-01-01

    Fourier transform infrared micro-spectroscopy (FTIRM) and imaging (FTIRI) have become valuable techniques for examining the chemical makeup of biological materials by probing their vibrational motions on a microscopic scale. Synchrotron infrared (S-IR) light is an ideal source for FTIRM and FTIRI due to the combination of its high brightness (i.e., flux density), also called brilliance, and broadband nature. Through a 10-{mu}m pinhole, the brightness of a synchrotron source is 100-1000 times higher than a conventional thermal (globar) source. Accordingly, the improvement in spatial resolution and in spectral quality to the diffraction limit has led to a plethora of applications that is just being realized. In this review, we describe the development of synchrotron-based FTIRM, illustrate its advantages in many applications to biological systems, and propose some potential future directions for the technique.

  3. Uncooled infrared focal plane array imaging in China

    NASA Astrophysics Data System (ADS)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  4. Research of infrared laser based pavement imaging and crack detection

    NASA Astrophysics Data System (ADS)

    Hong, Hanyu; Wang, Shu; Zhang, Xiuhua; Jing, Genqiang

    2013-08-01

    Road crack detection is seriously affected by many factors in actual applications, such as some shadows, road signs, oil stains, high frequency noise and so on. Due to these factors, the current crack detection methods can not distinguish the cracks in complex scenes. In order to solve this problem, a novel method based on infrared laser pavement imaging is proposed. Firstly, single sensor laser pavement imaging system is adopted to obtain pavement images, high power laser line projector is well used to resist various shadows. Secondly, the crack extraction algorithm which has merged multiple features intelligently is proposed to extract crack information. In this step, the non-negative feature and contrast feature are used to extract the basic crack information, and circular projection based on linearity feature is applied to enhance the crack area and eliminate noise. A series of experiments have been performed to test the proposed method, which shows that the proposed automatic extraction method is effective and advanced.

  5. Infrared-thermography imaging system multiapplications for manufacturing

    NASA Astrophysics Data System (ADS)

    Stern, Sharon A.

    1990-03-01

    Imaging systems technology has been utilized traditionally for diagnosing structural envelope or insulation problems in the general thermographic comunity. Industrially, new applications for utilizing thermal imaging technology have been developed i n pred i cti ve/preventi ye mai ntenance and prod uct moni tori ng prociures at Eastman Kodak Company, the largest photographic manufacturering producer in the world. In the manufacturing processes used at Eastman Kodak Company, new applications for thermal imaging include: (1) Fluid transfer line insulation (2) Web coating drying uniformity (3) Web slitter knives (4) Heating/cooling coils (5) Overheated tail bearings, and (6) Electrical phase imbalance. The substantial cost benefits gained from these applications of infrared thermography substantiate the practicality of this approach and indicate the desirability of researching further appl i cati ons.

  6. Exoplanet Community Report on Direct Infrared Imaging of Exoplanets

    NASA Technical Reports Server (NTRS)

    Danchi, William C.; Lawson, Peter R.

    2009-01-01

    Direct infrared imaging and spectroscopy of exoplanets will allow for detailed characterization of the atmospheric constituents of more than 200 nearby Earth-like planets, more than is possible with any other method under consideration. A flagship mission based on larger passively cooled infrared telescopes and formation flying technologies would have the highest angular resolution of any concept under consideration. The 2008 Exoplanet Forum committee on Direct Infrared Imaging of Exoplanets recommends: (1) a vigorous technology program including component development, integrated testbeds, and end-to-end modeling in the areas of formation flying and mid-infrared nulling; (2) a probe-scale mission based on a passively cooled structurally connected interferometer to be started within the next two to five years, for exoplanetary system characterization that is not accessible from the ground, and which would provide transformative science and lay the engineering groundwork for the flagship mission with formation flying elements. Such a mission would enable a complete exozodiacal dust survey (<1 solar system zodi) in the habitable zone of all nearby stars. This information will allow for a more efficient strategy of spectral characterization of Earth-sized planets for the flagship missions, and also will allow for optimization of the search strategy of an astrometric mission if such a mission were delayed due to cost or technology reasons. (3) Both the flagship and probe missions should be pursued with international partners if possible. Fruitful collaboration with international partners on mission concepts and relevant technology should be continued. (4) Research and Analysis (R&A) should be supported for the development of preliminary science and mission designs. Ongoing efforts to characterize the the typical level of exozodiacal light around Sun-like stars with ground-based nulling technology should be continued.

  7. The evolution of and starburst-agn connection in luminous and ultraluminous infrared galaxies and their link to globular cluster formation

    NASA Astrophysics Data System (ADS)

    Fiorenza, Stephanie Lynn

    The evolutionary connection between nuclear starbursts and active galactic nuclei (AGN) in luminous infrared galaxies (LIRGs; 1011 < LIR < 1012 L[special character omitted]) and ultraluminous infrared galaxies (ULIRGs; 1012 < LIR < 1013 L[special character omitted]), which result from galaxy interactions and mergers and produce the bulk of their radiation as infrared (IR) emission, is not well understood. To this effort, I first spectroscopically examine U/LIRGs (1011 < LIR < 1013 L[special character omitted]) within the IRAS 2 Jansky Redshift Survey with 0.05 < z < 0.16. Using new spectrophotometric data, I classify the primary source of IR radiation as being a nuclear starburst or a type of AGN by using the Baldwin-Phillips-Terlevich (BPT) diagrams. I show that for the U/LIRGs in my sample the properties that describe their nuclear starbursts and AGN (e.g. star formation rate (SFR), L[O III], optical D parameter, D4000, and EW(Hdelta)) are independent of one another, ensuring that no biases affect correlations between these properties and objects' locations on the BPT diagrams. I then derive evolutionary paths on the BPT diagram involving [N II]/Halpha that are based on how these properties vary between two U/LIRGs positioned at the end-points. The paths involve U/LIRGs that decrease in SFR and increase in AGN activity. Paths with U/LIRGs that evolve into high luminosity AGN likely do so due to recent, strong starbursts. Second, to study how the properties of the IR power sources in U/LIRGs vary, I use a combination of photometric data points that I carefully measure (using photometry from SDSS, 2MASS, WISE, and Spitzer) and that I retrieve from catalogues (IRAS, AKARI, and ISO) to perform UV to FIR SED-fitting with CIGALE (Code Investigating GALaxy Emission) for 34 U/LIRGs from the IRAS 2 Jy Redshift Survey with 0.01 < z < 0.16. I find evidence that the nuclear starburst forms first in U/LIRGs, and also find that U/LIRGs with relatively similar SFRs show

  8. CHANDRA AND SPITZER IMAGING OF THE INFRARED CLUSTER IN NGC 2071

    SciTech Connect

    Skinner, Stephen L.; Sokal, Kimberly R.; Megeath, S. Thomas; Guedel, Manuel; Audard, Marc; Flaherty, Kevin M.; Meyer, Michael R.; Damineli, Augusto

    2009-08-10

    We present results of a sensitive Chandra X-ray observation and Spitzer mid-infrared (mid-IR) observations of the IR cluster lying north of the NGC 2071 reflection nebula in the Orion B molecular cloud. We focus on the dense cluster core known as NGC 2071-IR, which contains at least nine IR sources within a 40'' x 40'' region. This region shows clear signs of active star formation including powerful molecular outflows, Herbig-Haro objects, and both OH and H{sub 2}O masers. We use Spitzer Infrared Array Camera (IRAC) images to aid in X-ray source identification and to determine young stellar object (YSO) classes using mid-IR colors. Spitzer IRAC colors show that the luminous source IRS 1 is a class I protostar. IRS 1 is believed to be driving a powerful bipolar molecular outflow and may be an embedded B-type star or its progenitor. Its X-ray spectrum reveals a fluorescent Fe emission line at 6.4 keV, arising in cold material near the protostar. The line is present even in the absence of large flares, raising questions about the nature of the ionizing mechanism responsible for producing the 6.4 keV fluorescent line. Chandra also detects X-ray sources at or near the positions of IRS 2, IRS 3, IRS 4, and IRS 6 and a variable X-ray source coincident with the radio source VLA 1, located just 2'' north of IRS 1. No IR data are yet available to determine a YSO classification for VLA 1, but its high X-ray absorption shows that it is even more deeply embedded than IRS 1, suggesting that it could be an even younger, less-evolved protostar.

  9. Radiation characterization analysis of pushbroom longwave infrared imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Shi, Rongbao; Chen, Yuheng; Zhou, Jiankang; Shen, Weiming

    2013-12-01

    Noise equivalent temperature difference (NETD) is the key parameter characterizing the detectivity of infrared systems. Our developed pushbroom longwave infrared imaging spectrometer works in a waveband between 8μm to 10.5 μm. Its temperature sensitivity property is not only affected by atmosphere attenuation, transmittance of the optical system and the characteristics of electric circuit, but also restricted by the self-radiation. The NETD accurate calculation formula is derived according to its definition. Radiation analysis model of a pushbroom image spectrometer is set up, and its self-radiation is analyzed and calculated at different temperatures, such as 300K, 150K and 120K. Based on the obtained accurate formula, the relationships between the NETD of imaging spectrometer and atmospheric attenuation, F-number, effective pixel area of detector, equivalent noise bandwidth and CCD detectivity are analyzed in detail, and self-radiation is particularly discussed. The work we have done is to provide the basis for parameters determination in spectrometer system.

  10. New solutions and technologies for uncooled infrared imaging

    NASA Astrophysics Data System (ADS)

    Rollin, Joël.; Diaz, Frédéric; Fontaine, Christophe; Loiseaux, Brigitte; Lee, Mane-Si Laure; Clienti, Christophe; Lemonnier, Fabrice; Zhang, Xianghua; Calvez, Laurent

    2013-06-01

    The military uncooled infrared market is driven by the continued cost reduction of the focal plane arrays whilst maintaining high standards of sensitivity and steering towards smaller pixel sizes. As a consequence, new optical solutions are called for. Two approaches can come into play: the bottom up option consists in allocating improvements to each contributor and the top down process rather relies on an overall optimization of the complete image channel. The University of Rennes I with Thales Angénieux alongside has been working over the past decade through French MOD funding's, on low cost alternatives of infrared materials based upon chalcogenide glasses. A special care has been laid on the enhancement of their mechanical properties and their ability to be moulded according to complex shapes. New manufacturing means developments capable of better yields for the raw materials will be addressed, too. Beyond the mere lenses budget cuts, a wave front coding process can ease a global optimization. This technic gives a way of relaxing optical constraints or upgrading thermal device performances through an increase of the focus depths and desensitization against temperature drifts: it combines image processing and the use of smart optical components. Thales achievements in such topics will be enlightened and the trade-off between image quality correction levels and low consumption/ real time processing, as might be required in hand-free night vision devices, will be emphasized. It is worth mentioning that both approaches are deeply leaning on each other.

  11. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  12. Sensitivity analysis of near-infrared functional lymphatic imaging

    NASA Astrophysics Data System (ADS)

    Weiler, Michael; Kassis, Timothy; Dixon, J. Brandon

    2012-06-01

    Near-infrared imaging of lymphatic drainage of injected indocyanine green (ICG) has emerged as a new technology for clinical imaging of lymphatic architecture and quantification of vessel function, yet the imaging capabilities of this approach have yet to be quantitatively characterized. We seek to quantify its capabilities as a diagnostic tool for lymphatic disease. Imaging is performed in a tissue phantom for sensitivity analysis and in hairless rats for in vivo testing. To demonstrate the efficacy of this imaging approach to quantifying immediate functional changes in lymphatics, we investigate the effects of a topically applied nitric oxide (NO) donor glyceryl trinitrate ointment. Premixing ICG with albumin induces greater fluorescence intensity, with the ideal concentration being 150 μg/mL ICG and 60 g/L albumin. ICG fluorescence can be detected at a concentration of 150 μg/mL as deep as 6 mm with our system, but spatial resolution deteriorates below 3 mm, skewing measurements of vessel geometry. NO treatment slows lymphatic transport, which is reflected in increased transport time, reduced packet frequency, reduced packet velocity, and reduced effective contraction length. NIR imaging may be an alternative to invasive procedures measuring lymphatic function in vivo in real time.

  13. Near-infrared imaging spectroscopy for counterfeit drug detection

    NASA Astrophysics Data System (ADS)

    Arnold, Thomas; De Biasio, Martin; Leitner, Raimund

    2011-06-01

    Pharmaceutical counterfeiting is a significant issue in the healthcare community as well as for the pharmaceutical industry worldwide. The use of counterfeit medicines can result in treatment failure or even death. A rapid screening technique such as near infrared (NIR) spectroscopy could aid in the search for and identification of counterfeit drugs. This work presents a comparison of two laboratory NIR imaging systems and the chemometric analysis of the acquired spectroscopic image data. The first imaging system utilizes a NIR liquid crystal tuneable filter and is designed for the investigation of stationary objects. The second imaging system utilizes a NIR imaging spectrograph and is designed for the fast analysis of moving objects on a conveyor belt. Several drugs in form of tablets and capsules were analyzed. Spectral unmixing techniques were applied to the mixed reflectance spectra to identify constituent parts of the investigated drugs. The results show that NIR spectroscopic imaging can be used for contact-less detection and identification of a variety of counterfeit drugs.

  14. Development of Thermal Infrared Sensor to Supplement Operational Land Imager

    NASA Technical Reports Server (NTRS)

    Shu, Peter; Waczynski, Augustyn; Kan, Emily; Wen, Yiting; Rosenberry, Robert

    2012-01-01

    The thermal infrared sensor (TIRS) is a quantum well infrared photodetector (QWIP)-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 m. The focal plane will contain three 640 512 QWIP arrays mounted onto a silicon substrate. The readout integrated circuit (ROIC) addresses each pixel on the QWIP arrays and reads out the pixel value (signal). The ROIC is controlled by the focal plane electronics (FPE) by means of clock signals and bias voltage value. The means of how the FPE is designed to control and interact with the TIRS focal plane assembly (FPA) is the basis for this work. The technology developed under the FPE is for the TIRS focal plane assembly (FPA). The FPE must interact with the FPA to command and control the FPA, extract analog signals from the FPA, and then convert the analog signals to digital format and send them via a serial link (USB) to a computer. The FPE accomplishes the described functions by converting electrical power from generic power supplies to the required bias power that is needed by the FPA. The FPE also generates digital clocking signals and shifts the typical transistor-to-transistor logic (TTL) to }5 V required by the FPA. The FPE also uses an application- specific integrated circuit (ASIC) named System Image, Digitizing, Enhancing, Controlling, And Retrieving (SIDECAR) from Teledyne Corp. to generate the clocking patterns commanded by the user. The uniqueness of the FPE for TIRS lies in that the TIRS FPA has three QWIP detector arrays, and all three detector arrays must be in synchronization while in operation. This is to avoid data skewing while observing Earth flying in space. The observing scenario may be customized by uploading new control software to the SIDECAR.

  15. Prismatic imaging polarimeter calibration for the infrared spectral region.

    PubMed

    Kudenov, Michael W; Pezzaniti, Larry; Dereniak, Eustace L; Gerhart, Grant R

    2008-09-01

    The calibration of a complete Stokes birefringent prismatic imaging polarimeter (BPIP) in the MWIR is demonstrated. The BPIP technique, originally developed by K. Oka, is implemented with a set of four Yttrium Vanadate (YVO(4)) crystal prisms. A mathematical model for the polarimeter is presented in which diattenuation due to Fresnel effects and dichroism in the crystal are included. An improved polarimetric calibration technique is introduced to remove the diattenuation effects, along with the relative radiometric calibration required for the BPIP operating with a thermal background and large detector offsets. Data demonstrating emission polarization are presented from various blackbodies, which are compared to data from our Fourier transform infrared spectropolarimeter. PMID:18772984

  16. Note: wearable near-infrared spectroscopy imager for haired region.

    PubMed

    Kiguchi, M; Atsumori, H; Fukasaku, I; Kumagai, Y; Funane, T; Maki, A; Kasai, Y; Ninomiya, A

    2012-05-01

    A wearable optical topography system was developed that is based on near-infrared spectroscopy (NIRS) for observing brain activity noninvasively including in regions covered by hair. An avalanche photo diode, high voltage dc-dc converter, and preamplifier were placed in an electrically shielded case to be safely mounted on the head. Rubber teeth and a glass rod were prepared to clear away hair and reach the scalp. These devices realized for the first time a wearable NIRS imager for any region of the cortex. The activity in the motor cortex during finger tapping was successfully observed.

  17. Prismatic imaging polarimeter calibration for the infrared spectral region.

    PubMed

    Kudenov, Michael W; Pezzaniti, Larry; Dereniak, Eustace L; Gerhart, Grant R

    2008-09-01

    The calibration of a complete Stokes birefringent prismatic imaging polarimeter (BPIP) in the MWIR is demonstrated. The BPIP technique, originally developed by K. Oka, is implemented with a set of four Yttrium Vanadate (YVO(4)) crystal prisms. A mathematical model for the polarimeter is presented in which diattenuation due to Fresnel effects and dichroism in the crystal are included. An improved polarimetric calibration technique is introduced to remove the diattenuation effects, along with the relative radiometric calibration required for the BPIP operating with a thermal background and large detector offsets. Data demonstrating emission polarization are presented from various blackbodies, which are compared to data from our Fourier transform infrared spectropolarimeter.

  18. Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)

    SciTech Connect

    Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H.; Barhen, J.

    1997-04-01

    A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

  19. Infrared Radiography: Modeling X-ray Imaging Without Harmful Radiation

    NASA Astrophysics Data System (ADS)

    Zietz, Otto; Mylott, Elliot; Widenhorn, Ralf

    2015-01-01

    Planar x-ray imaging is a ubiquitous diagnostic tool and is routinely performed to diagnose conditions as varied as bone fractures and pneumonia. The underlying principle is that the varying attenuation coefficients of air, water, tissue, bone, or metal implants within the body result in non-uniform transmission of x-ray radiation. Through the detection of transmitted radiation, the spatial organization and composition of materials in the body can be ascertained. In this paper, we describe an original apparatus that teaches these concepts by utilizing near infrared radiation and an up-converting phosphorescent screen to safely probe the contents of an opaque enclosure.

  20. Note: Wearable near-infrared spectroscopy imager for haired region

    NASA Astrophysics Data System (ADS)

    Kiguchi, M.; Atsumori, H.; Fukasaku, I.; Kumagai, Y.; Funane, T.; Maki, A.; Kasai, Y.; Ninomiya, A.

    2012-05-01

    A wearable optical topography system was developed that is based on near-infrared spectroscopy (NIRS) for observing brain activity noninvasively including in regions covered by hair. An avalanche photo diode, high voltage dc-dc converter, and preamplifier were placed in an electrically shielded case to be safely mounted on the head. Rubber teeth and a glass rod were prepared to clear away hair and reach the scalp. These devices realized for the first time a wearable NIRS imager for any region of the cortex. The activity in the motor cortex during finger tapping was successfully observed.

  1. Multifractal analysis of dynamic infrared imaging of breast cancer

    NASA Astrophysics Data System (ADS)

    Gerasimova, E.; Audit, B.; Roux, S. G.; Khalil, A.; Argoul, F.; Naimark, O.; Arneodo, A.

    2013-12-01

    The wavelet transform modulus maxima (WTMM) method was used in a multifractal analysis of skin breast temperature time-series recorded using dynamic infrared (IR) thermography. Multifractal scaling was found for healthy breasts as the signature of a continuous change in the shape of the probability density function (pdf) of temperature fluctuations across time scales from \\sim0.3 to 3 s. In contrast, temperature time-series from breasts with malignant tumors showed homogeneous monofractal temperature fluctuations statistics. These results highlight dynamic IR imaging as a very valuable non-invasive technique for preliminary screening in asymptomatic women to identify those with risk of breast cancer.

  2. Infrared imaging - A validation technique for computational fluid dynamics codes used in STOVL applications

    NASA Technical Reports Server (NTRS)

    Hardman, R. R.; Mahan, J. R.; Smith, M. H.; Gelhausen, P. A.; Van Dalsem, W. R.

    1991-01-01

    The need for a validation technique for computational fluid dynamics (CFD) codes in STOVL applications has led to research efforts to apply infrared thermal imaging techniques to visualize gaseous flow fields. Specifically, a heated, free-jet test facility was constructed. The gaseous flow field of the jet exhaust was characterized using an infrared imaging technique in the 2 to 5.6 micron wavelength band as well as conventional pitot tube and thermocouple methods. These infrared images are compared to computer-generated images using the equations of radiative exchange based on the temperature distribution in the jet exhaust measured with the thermocouple traverses. Temperature and velocity measurement techniques, infrared imaging, and the computer model of the infrared imaging technique are presented and discussed. From the study, it is concluded that infrared imaging techniques coupled with the radiative exchange equations applied to CFD models are a valid method to qualitatively verify CFD codes used in STOVL applications.

  3. Visible-Near Infrared Imaging Spectrometer Data of Explosion Craters

    NASA Technical Reports Server (NTRS)

    Farr, T. G.

    2005-01-01

    In a continuing study to capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained new high resolution visible-near infrared images of several explosion craters at the Nevada Test Site. We used the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) to obtain images in 224 spectral bands from 0.4-2.5 microns [1]. The main craters that were imaged were Sedan, Scooter, Schooner, Buggy, and Danny Boy [2]. The 390 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of the detonation of a 104 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a "simple" crater [2]. Sedan was formed in alluvium of mixed lithology [3] and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also imaged by AVIRIS. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m, Fig. 1) craters were also important targets for AVIRIS as they were excavated in hard welded tuff and basaltic andesite, respectively [3, 4]. This variation in targets will allow the study of ejecta patterns, compositional modifications due to the explosions, and the role of craters as subsurface probes.

  4. Degradation of near infrared and shortwave infrared imager performance due to atmospheric scattering of diffuse night illumination.

    PubMed

    Vollmerhausen, Richard

    2013-07-20

    On moonless nights, airglow is the primary source of natural ground illumination in the near infrared and shortwave infrared spectral bands. Therefore, night vision imagers operating in these spectral bands view targets that are diffusely illuminated. Aerosol scattering of diffuse airglow illumination causes atmospheric path radiance and that radiance causes increased imager noise. These phenomena and their quantification are described in this paper. PMID:23872754

  5. Predicted NETD performance of a polarized infrared imaging sensor

    NASA Astrophysics Data System (ADS)

    Preece, Bradley; Hodgkin, Van A.; Thompson, Roger; Leonard, Kevin; Krapels, Keith

    2014-05-01

    Polarization filters are commonly used as a means of increasing the contrast of a scene thereby increasing sensor range performance. The change in the signal to noise ratio (SNR) is a function of the polarization of the target and background, the type and orientation of the polarization filter(s), and the overall transparency of the filter. However, in the mid-wave and longwave infrared bands (MWIR and LWIR), the noise equivalent temperature difference (NETD), which directly affects the SNR, is a function of the filter's re-emission and its reflected temperature radiance. This paper presents a model, by means of a Stokes vector input, that can be incorporated into the Night Vision Integrated Performance Model (NV-IPM) in order to predict the change in SNR, NETD, and noise equivalent irradiance (NEI) for infrared polarimeter imaging systems. The model is then used to conduct a SNR trade study, using a modeled Stokes vector input, for a notional system looking at a reference target. Future laboratory and field measurements conducted at Night Vision Electronic Sensors Directorate (NVESD) will be used to update, validate, and mature the model of conventional infrared systems equipped with polarization filters.

  6. Infrared super-resolution imaging method based on retina micro-motion

    NASA Astrophysics Data System (ADS)

    Sui, Xiubao; Gao, Hang; Sun, Yicheng; Chen, Qian; Gu, Guohua

    2013-09-01

    With the wide application of infrared focal plane arrays (IRFPA), military, aerospace, public security and other applications have higher and higher requirements on the spatial resolution of infrared images. However, traditional super-resolution imaging methods have increasingly unable to meet this requirement in technology. In this paper, we adopt the achievement that the human retina micro-motion is the important reason why the human has the hyperacuity ability. Based on the achievement, we bring forward an infrared super-resolution imaging method based on retina micro-motion. In the method, we use the piezoelectric ceramic equipment to control the infrared detector moving variably within a plane parallel to the focal plane. The motion direction is toward each other into a direction of 90°. In the four directions of the movement, we get four sub-images and generate a high spatial resolution infrared image by image interpolation method. In the process of the shifting movement of the detector, we set the threshold of the detector response and record the response time difference when adjacent pixel responses are up to the threshold. By the method, we get the object's edges, enhance them in the high resolution infrared image and get the super-resolution infrared image. The experimental results show that our proposed super-resolution imaging methods can improve the spatial resolution of the infrared image effectively. The method will offer a new idea for the super-resolution reconstruction of infrared images.

  7. An infrared image based methodology for breast lesions screening

    NASA Astrophysics Data System (ADS)

    Morais, K. C. C.; Vargas, J. V. C.; Reisemberger, G. G.; Freitas, F. N. P.; Oliari, S. H.; Brioschi, M. L.; Louveira, M. H.; Spautz, C.; Dias, F. G.; Gasperin, P.; Budel, V. M.; Cordeiro, R. A. G.; Schittini, A. P. P.; Neto, C. D.

    2016-05-01

    The objective of this paper is to evaluate the potential of utilizing a structured methodology for breast lesions screening, based on infrared imaging temperature measurements of a healthy control group to establish expected normality ranges, and of breast cancer patients, previously diagnosed through biopsies of the affected regions. An analysis of the systematic error of the infrared camera skin temperature measurements was conducted in several different regions of the body, by direct comparison to high precision thermistor temperature measurements, showing that infrared camera temperatures are consistently around 2 °C above the thermistor temperatures. Therefore, a method of conjugated gradients is proposed to eliminate the infrared camera direct temperature measurement imprecision, by calculating the temperature difference between two points to cancel out the error. The method takes into account the human body approximate bilateral symmetry, and compares measured dimensionless temperature difference values (Δ θ bar) between two symmetric regions of the patient's breast, that takes into account the breast region, the surrounding ambient and the individual core temperatures, and doing so, the results interpretation for different individuals become simple and non subjective. The range of normal whole breast average dimensionless temperature differences for 101 healthy individuals was determined, and admitting that the breasts temperatures exhibit a unimodal normal distribution, the healthy normal range for each region was considered to be the dimensionless temperature difference plus/minus twice the standard deviation of the measurements, Δ θ bar ‾ + 2σ Δ θ bar ‾ , in order to represent 95% of the population. Forty-seven patients with previously diagnosed breast cancer through biopsies were examined with the method, which was capable of detecting breast abnormalities in 45 cases (96%). Therefore, the conjugated gradients method was considered effective

  8. Non-linear direct multi-scale image enhancement based on the luminance and contrast masking characteristics of the human visual system.

    PubMed

    Nercessian, Shahan C; Panetta, Karen A; Agaian, Sos S

    2013-09-01

    Image enhancement is a crucial pre-processing step for various image processing applications and vision systems. Many enhancement algorithms have been proposed based on different sets of criteria. However, a direct multi-scale image enhancement algorithm capable of independently and/or simultaneously providing adequate contrast enhancement, tonal rendition, dynamic range compression, and accurate edge preservation in a controlled manner has yet to be produced. In this paper, a multi-scale image enhancement algorithm based on a new parametric contrast measure is presented. The parametric contrast measure incorporates not only the luminance masking characteristic, but also the contrast masking characteristic of the human visual system. The formulation of the contrast measure can be adapted for any multi-resolution decomposition scheme in order to yield new human visual system-inspired multi-scale transforms. In this article, it is exemplified using the Laplacian pyramid, discrete wavelet transform, stationary wavelet transform, and dual-tree complex wavelet transform. Consequently, the proposed enhancement procedure is developed. The advantages of the proposed method include: 1) the integration of both the luminance and contrast masking phenomena; 2) the extension of non-linear mapping schemes to human visual system inspired multi-scale contrast coefficients; 3) the extension of human visual system-based image enhancement approaches to the stationary and dual-tree complex wavelet transforms, and a direct means of; 4) adjusting overall brightness; and 5) achieving dynamic range compression for image enhancement within a direct multi-scale enhancement framework. Experimental results demonstrate the ability of the proposed algorithm to achieve simultaneous local and global enhancements.

  9. Broadband near-infrared tomography for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Wang, Jia

    Near-infrared (NIR) light provides potential for a new approach to non-invasive detection, diagnosis and clinical management of breast cancer. Using NIR spectroscopic imaging techniques, the physiological information about breast tissue composition can be quantitatively estimated, including hemoglobin, water and lipid concentrations, together with scattering properties. In this thesis work, strategies to improve the accuracy of NIR imaging have been explored experimentally and numerically. A novel Ti:Sapphire laser-based frequency domain tomography system was developed to achieve maximum spectral information, using intrinsic phase-locked detection of the signal propagation. The improvement in quantification through addition of more wavelengths was demonstrated in simulations and in tissue-phantom experiments. A hybrid NIR tomography system combining frequency domain and continuous wave spectroscopy approaches was implemented for imaging healthy subjects and women with malignant breast tumors. Adding measurements at wavelengths above 850nm with the continuous wave method significantly improved the accuracy of water and lipid estimation. When used in cancer imaging in vivo, the NIR contrast information is consistent with physiological and pathological values expected in tumor as seen by investigational studies with Magnetic Resonance Imaging (MRI) and pathology analysis.

  10. Detail enhancement of blurred infrared images based on frequency extrapolation

    NASA Astrophysics Data System (ADS)

    Xu, Fuyuan; Zeng, Deguo; Zhang, Jun; Zheng, Ziyang; Wei, Fei; Wang, Tiedan

    2016-05-01

    A novel algorithm for enhancing the details of the blurred infrared images based on frequency extrapolation has been raised in this paper. Unlike other researchers' work, this algorithm mainly focuses on how to predict the higher frequency information based on the Laplacian pyramid separation of the blurred image. This algorithm uses the first level of the high frequency component of the pyramid of the blurred image to reverse-generate a higher, non-existing frequency component, and adds back to the histogram equalized input blurred image. A simple nonlinear operator is used to analyze the extracted first level high frequency component of the pyramid. Two critical parameters are participated in the calculation known as the clipping parameter C and the scaling parameter S. The detailed analysis of how these two parameters work during the procedure is figure demonstrated in this paper. The blurred image will become clear, and the detail will be enhanced due to the added higher frequency information. This algorithm has the advantages of computational simplicity and great performance, and it can definitely be deployed in the real-time industrial applications. We have done lots of experiments and gave illustrations of the algorithm's performance in this paper to convince its effectiveness.

  11. In vivo imaging with near-infrared fluorescence lifetime contrast

    NASA Astrophysics Data System (ADS)

    Akers, Walter J.; Berezin, Mikhail Y.; Lee, Hyeran; Achilefu, Samuel

    2009-02-01

    Fluorescence imaging is a mainstay of biomedical research, allowing detection of molecular events in both fixed and living cells, tissues and whole animals. Such high resolution fluorescence imaging is hampered by unwanted signal from intrinsic background fluorescence and scattered light. The signal to background ratio can be improved by using extrinsic contrast agents and greatly enhanced by multispectral imaging methods. Unfortunately, these methods are insufficient for deep tissue imaging where high contrast and speedy acquisition are necessary. Fluorescence lifetime (FLT) is an inherent characteristic of each fluorescent species that can be independent of intensity and spectral properties. Accordingly, FLT-based detection provides an additional contrast mechanism to optical measurements. This contrast is particularly important in the near-infrared (NIR) due to relative transparency of tissue as well as the broad absorption and emission spectra of dyes that are active in this region. Here we report comparative analysis of signal distribution of several NIR fluorescent polymethine dyes in living mice and their correlations with lifetimes obtained in vitro using solution models. The FLT data obtained from dyes dissolved in serum albumin solution correlated well with FLTs measured in vivo. Thus the albumin solution model could be used as a good predictive model for in vivo FLT behavior of newly developed fluorescent reporters. Subsequent experiments in vivo, including monitoring slow release kinetics and detecting proteinuria, demonstrate the complementary nature of FLT for fluorescence intensity imaging.

  12. Dynamic full-field infrared imaging with multiple synchrotron beams

    PubMed Central

    Stavitski, Eli; Smith, Randy J.; Bourassa, Megan W.; Acerbo, Alvin S.; Carr, G. L.; Miller, Lisa M.

    2013-01-01

    Microspectroscopic imaging in the infrared (IR) spectral region allows for the examination of spatially resolved chemical composition on the microscale. More than a decade ago, it was demonstrated that diffraction limited spatial resolution can be achieved when an apertured, single pixel IR microscope is coupled to the high brightness of a synchrotron light source. Nowadays, many IR microscopes are equipped with multi-pixel Focal Plane Array (FPA) detectors, which dramatically improve data acquisition times for imaging large areas. Recently, progress been made toward efficiently coupling synchrotron IR beamlines to multi-pixel detectors, but they utilize expensive and highly customized optical schemes. Here we demonstrate the development and application of a simple optical configuration that can be implemented on most existing synchrotron IR beamlines in order to achieve full-field IR imaging with diffraction-limited spatial resolution. Specifically, the synchrotron radiation fan is extracted from the bending magnet and split into four beams that are combined on the sample, allowing it to fill a large section of the FPA. With this optical configuration, we are able to oversample an image by more than a factor of two, even at the shortest wavelengths, making image restoration through deconvolution algorithms possible. High chemical sensitivity, rapid acquisition times, and superior signal-to-noise characteristics of the instrument are demonstrated. The unique characteristics of this setup enabled the real time study of heterogeneous chemical dynamics with diffraction-limited spatial resolution for the first time. PMID:23458231

  13. Infrared thermal imaging for detection of peripheral vascular disorders.

    PubMed

    Bagavathiappan, S; Saravanan, T; Philip, John; Jayakumar, T; Raj, Baldev; Karunanithi, R; Panicker, T M R; Korath, M Paul; Jagadeesan, K

    2009-01-01

    Body temperature is a very useful parameter for diagnosing diseases. There is a definite correlation between body temperature and diseases. We have used Infrared Thermography to study noninvasive diagnosis of peripheral vascular diseases. Temperature gradients are observed in the affected regions of patients with vascular disorders, which indicate abnormal blood flow in the affected region. Thermal imaging results are well correlated with the clinical findings. Certain areas on the affected limbs show increased temperature profiles, probably due to inflammation and underlying venous flow changes. In general the temperature contrast in the affected regions is about 0.7 to 1 degrees C above the normal regions, due to sluggish blood circulation. The results suggest that the thermal imaging technique is an effective technique for detecting small temperature changes in the human body due to vascular disorders.

  14. Assessment of piano-related injuries using infrared imaging.

    PubMed

    Mohamed, Safaa; Frize, Monique; Comeau, Gilles

    2011-01-01

    Playing the piano is a repetitive task that involves the use of the hands and the arms. Pain related to piano-playing can result in extending the tissues and ligaments of the hands and arms beyond their mechanical tolerance. Infrared imaging records the skin temperature and produces a thermal map of the imaged body part; small variations in the skin temperature could be a sign of inflammation or stress of the tissues. In this paper, we used statistical analysis to examine the difference in hand and arm temperatures of pianists with pain and pianists without pain related to piano-playing. We found that there is a statistically significant difference in hand temperatures between the two populations, but not in the lower arm and upper arm temperatures. PMID:22255437

  15. Componential distribution analysis of food using near infrared ray image

    NASA Astrophysics Data System (ADS)

    Yamauchi, Hiroki; Kato, Kunihito; Yamamoto, Kazuhiko; Ogawa, Noriko; Ohba, Kimie

    2008-11-01

    The components of the food related to the "deliciousness" are usually evaluated by componential analysis. The component content and type of components in the food are determined by this analysis. However, componential analysis is not able to analyze measurements in detail, and the measurement is time consuming. We propose a method to measure the two-dimensional distribution of the component in food using a near infrared ray (IR) image. The advantage of our method is to be able to visualize the invisible components. Many components in food have characteristics such as absorption and reflection of light in the IR range. The component content is measured using subtraction between two wavelengths of near IR light. In this paper, we describe a method to measure the component of food using near IR image processing, and we show an application to visualize the saccharose in the pumpkin.

  16. Far-Infrared Imaging Spectroscopy with SAFIRE on SOFIA

    NASA Technical Reports Server (NTRS)

    Shafer, Richard A.; Benford, D. J.; Irwin, K. D.; Moseley, S. H.; Pajot, F.; Stacey, G. J.; Staguhn, J. G.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The SOFIA airborne observatory will provide a high spatial resolution, low background telescope for far-infrared astrophysical investigations. Selected as a PI instrument for SOFIA, SAFIRE is an imaging Fabry-Perot spectrograph covering 100 micrometers - 655 micrometers, with spectral resolving power of approx. 1500 (200 kilometers per second). This resolution is well matched to extragalactic emission lines and yields the greatest sensitivity for line detection. SAFIRE will make important scientific contributions to the study of the powering of ULIRGs and AGN, the role of CII cooling in extragalactic star formation, the evolution of matter in the early Universe, and the energetics of the Galactic center. SAFIRE will employ a two-dimensional pop-up barometer array in a 16 x 32 format to provide background-limited imaging spectrometry. Superconducting transition edge barometers and SQUID amplifiers have been developed for these detectors.

  17. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains.

    PubMed

    Pollard, Benjamin; Raschke, Markus B

    2016-01-01

    Intermolecular interactions and nanoscale phase separation govern the properties of many molecular soft-matter systems. Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM) with force-distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multichannel images and correlative analysis of chemical composition, spectral IR line shape, modulus, adhesion, deformation, and dissipation acquired for a thin film of a nanophase separated block copolymer (PS-b-PMMA) reveal complex structural variations, in particular at domain interfaces, not resolved in any individual signal channel alone. These variations suggest that regions of multicomponent chemical composition, such as the interfacial mixing regions between microdomains, are correlated with high spatial heterogeneity in nanoscale material properties. PMID:27335750

  18. SAFIRE: Far-Infrared Imaging Spectroscopy with SOFIA

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Moseley, Harvey; Chervenak, Jay; Irwin, Kent; Pajot, Francois; Shafer, Rick; Staguhn, Johannes; Stacey, Gorden; Oegerle, William (Technical Monitor)

    2002-01-01

    The SOFIA airborne observatory will provide a high spatial resolution, low background telescope for far-infrared astrophysical investigations. Selected as a PI instrument for SOFIA, SAFIRE is an imaging Fabry-Perot spectrograph covering 145 microns-655microns, with spectral resolving power of approx. 1500 (200 kilometers per second). This resolution is well matched to extragalactic emission lines and yields the greatest sensitivity for line detection. SAFIRE will make important scientific contributions to the study of the powering of ULIRGs and AGN, the role of CII cooling in extragalactic star formation, the evolution of matter in the early Universe, and the energetics of the Galactic center. SAFIRE will employ a two-dimensional pop-up bolometer array to provide background limited imaging spectrometry. Superconducting transition edge bolometers and SQUID amplifiers have been developed for these detectors.

  19. Imaging infrared spectroscopy for fixation-free liver tumor detection

    NASA Astrophysics Data System (ADS)

    Coe, James V.; Chen, Zhaomin; Li, Ran; Butke, Ryan; Miller, Barrie; Hitchcock, Charles L.; Allen, Heather C.; Povoski, Stephen P.; Martin, Edward W.

    2014-03-01

    Infrared (IR) imaging spectroscopy of human liver tissue slices has been used to identify and characterize a liver metastasis of breast origin (mucinous carcinoma) which was surgically removed from a consenting patient and frozen without formalin fixation or dehydration procedures, so that lipids and water remain in the tissues. Previously, a set of IR metrics was determined for tumors in fixation-free liver tissues facilitating a k-means cluster analysis differentiating tumor from nontumor. Different and more in depth aspects of these results are examined in this work including three metric color imaging, differencing for lipid identification, and a new technique to simultaneously fit band lineshapes and their 2nd derivatives in order to better characterize protein changes.

  20. Early detection of plant disease using infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Xu, Huirong; Zhu, Shengpan; Ying, Yibin; Jiang, Huanyu

    2006-10-01

    By using imaging techniques, plant physiological parameters can be assessed without contact with the plant and in a non-destructive way. During plant-pathogen infection, the physiological state of the infected tissue is altered, such as changes in photosynthesis, transpiration, stomatal conductance, accumulation of Salicylic acid (SA) and even cell death. In this study, the different temperature distribution between the leaves infected by tobacco mosaic virus strain-TMV-U1 and the noninfected leaves was visualized by digital infrared thermal imaging with the microscopic observations of the different structure within different species tomatoes. Results show a presymptomatic decrease in leaf temperature about 0.5-1.3 °C lower than the healthy leaves. The temperature difference allowed the discrimination between the infected and healthy leaves before the appearance of visible necrosis on leaves.

  1. Antimony-based superlattices for high-performance infrared imagers

    NASA Astrophysics Data System (ADS)

    Walther, Martin; Rehm, Robert; Schmitz, Johannes; Rutz, Frank; Fleissner, Joachim; Ziegler, Johann

    2008-04-01

    InAs/GaSb short-period superlattices (SL) for the fabrication of mono- and bispectral thermal imaging systems in the mid-wavelength infrared region (MWIR) have been optimized in order to increase the spectral response of the imaging systems. The responsivity in monospectral InAs/GaSb short-period superlattices increases with the number of periods in the intrinsic region of the diode and does not show a diffusion limited behavior for detector structures with up to 1000 periods. This allows the fabrication of InAs/GaSb SL camera systems with high responsivity. Dual-color MWIR/MWIR InAs/GaSb SL camera systems with high quantum efficiency for missile approach warning systems with simultaneous and spatially coincident detection in both spectral channels have been realized.

  2. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains.

    PubMed

    Pollard, Benjamin; Raschke, Markus B

    2016-01-01

    Intermolecular interactions and nanoscale phase separation govern the properties of many molecular soft-matter systems. Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM) with force-distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multichannel images and correlative analysis of chemical composition, spectral IR line shape, modulus, adhesion, deformation, and dissipation acquired for a thin film of a nanophase separated block copolymer (PS-b-PMMA) reveal complex structural variations, in particular at domain interfaces, not resolved in any individual signal channel alone. These variations suggest that regions of multicomponent chemical composition, such as the interfacial mixing regions between microdomains, are correlated with high spatial heterogeneity in nanoscale material properties.

  3. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains

    PubMed Central

    Pollard, Benjamin

    2016-01-01

    Summary Intermolecular interactions and nanoscale phase separation govern the properties of many molecular soft-matter systems. Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM) with force–distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multichannel images and correlative analysis of chemical composition, spectral IR line shape, modulus, adhesion, deformation, and dissipation acquired for a thin film of a nanophase separated block copolymer (PS-b-PMMA) reveal complex structural variations, in particular at domain interfaces, not resolved in any individual signal channel alone. These variations suggest that regions of multicomponent chemical composition, such as the interfacial mixing regions between microdomains, are correlated with high spatial heterogeneity in nanoscale material properties. PMID:27335750

  4. Assessment of piano-related injuries using infrared imaging.

    PubMed

    Mohamed, Safaa; Frize, Monique; Comeau, Gilles

    2011-01-01

    Playing the piano is a repetitive task that involves the use of the hands and the arms. Pain related to piano-playing can result in extending the tissues and ligaments of the hands and arms beyond their mechanical tolerance. Infrared imaging records the skin temperature and produces a thermal map of the imaged body part; small variations in the skin temperature could be a sign of inflammation or stress of the tissues. In this paper, we used statistical analysis to examine the difference in hand and arm temperatures of pianists with pain and pianists without pain related to piano-playing. We found that there is a statistically significant difference in hand temperatures between the two populations, but not in the lower arm and upper arm temperatures.

  5. Self-testable CMOS thermopile-based infrared imager

    NASA Astrophysics Data System (ADS)

    Charlot, Benoit; Parrain, F.; Mir, Salvador; Courtois, Bernard

    2001-04-01

    This paper describes a CMOS-compatible self-testable uncooled InfraRed (IR) imager that can be used in multiple applications such as overheating detection, night vision, and earth tracking for satellite positioning. The imager consists of an array of thermal pixels that sense an infrared radiation. Each pixel is implemented as a front-side bulk micromachined membrane suspended by four arms, each arm containing a thermopile made of Poly/Al thermocouples. The imager has a pixel self-test function that can be activated off-line in the field for validation and maintenance purposes, with an on-chip test signal generation that requires only slight modifications in the pixel design. The self-test of a pixel takes about 15 ms. The area overhead required by the test electronics does not imply any reduction of the pixel fill factor, since the electronics fits in the pixel silicon boundary. However, the additional self-test circuitry contributes to a small increase in the thermal conductance of a pixel due to the wiring of a heating resistor over the suspended arms. The self-test capability of the imager allows for a production test with a standard test equipment, without the need of special infrared sources and the associated optical equipment. A prototype with 8 X 8 pixels is currently in fabrication for validation of the self-test approach. In this prototype, each pixel occupies an area of 200 X 200 micrometer2, with a membrane size of 90 X 90 micrometer2 (fill factor of 0.2). Simulation results indicate a pixel thermal conductance of 22.6 (mu) W/K, giving a responsivity of 138 V/W, with a thermocouple Seebeck coefficient that has been measured at 248 (mu) V/K for the 0.6 micrometer CMOS technology used. The noise equivalent power (considering only Johnson noise in the thermopile) is calculated as 0.18 nW.H-1/2 with a detectivity of 5.03 X 107 cm.Hz1/2.W-1, in line with current state-of-the-art. Since the imager may need to measure irradiation intensities below 1(mu) W

  6. Novel concepts in infrared imaging at nanoscale resolution

    NASA Astrophysics Data System (ADS)

    Taubner, Thomas

    2010-03-01

    Within the recent years, various novel optical concepts have been invented to improve the diffraction-limited resolution of optical microscopy. The first approach of scanning near-field optical microscopy (SNOM) employed a small, subwavelength-sized aperture that is scanned close to the object of interest, capable of a resolution of about 50 nm. More advanced concepts rely on the light scattering of a sharp tip probing the sample, allowing for higher resolution (10-30 nm) and the use of longer wavelengths. Another exciting new imaging device, a planar slab of a material with negative permittivity called a superlens, allows for subwavelength resolved imaging over large areas. I will focus on the latter two systems that operate with infrared light and offer the capability of chemical sensing by directly probing molecular vibrations. Particularly, I will present the latest results on superlensing that became accessible by phase-sensitive infrared near-field microscopy and thus provide new insight into the imaging process of a such a device [1]. I will also explain the basics of scattering-type near-field optical microscopy (s-SNOM) and present various examples of unambiguous nanoscale material characterization from various areas such as semiconductor analysis, materials science, chemistry, and biology [2-4]. In these examples, the use of infrared spectroscopy allows to sense molecular vibrations as well as collective excitation of lattice vibrations (``phonons'') in polar crystals [5]. Currently, the main limitation of this technique comprises of the low signals that demand tunable laser sources and restrict the spectral range of operation. Consequently, I will introduce new concepts for increasing the sensitivity of infrared near-field spectroscopy to ultimately allow for a broadband operation. [4pt] [1] T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, Science 313, 1595 (2006). [0pt] [2] T. Taubner, R. Hillenbrand, F. Keilmann, Applied Physics Letters

  7. Application of infrared imaging systems to maritime security

    NASA Astrophysics Data System (ADS)

    Zeng, Debing

    Enhancing maritime security through video based systems is a very challenging task, not only due to the different scales of vessels to be monitored, but also due to the constantly changing background and environmental conditions. Yet video systems operating in the visible part of the electromagnetic spectrum have established themselves as one of the most crucial tools in maritime security. However, certain inherent limitations such as requirements of proper scene illumination and failure under low visibility weather conditions like fog could be overcome utilizing different spectral regions. Thermal imaging systems present themselves as a good alternative in maritime security. They could overcome these problems and allow for additional detection of local variation of water temperature, yet have been rarely used efficiently in maritime environment evaluated. Here we present a first order study of the advantage of using long-wavelength infrared (LWIR) imaging for diver detection. Within these tasks we study the reasons and effects of bubbles on water surface in laboratory IR imaging study and have determined the changes in infrared emissivity and reflectivity due to the corresponding surface manifestation. This was compared and used to analyze experiments in the Hudson Estuary to the real-world applicability of infrared technology in maritime security application. Utilizing a LWIR camera, we limit ourselves on the detection of the scuba diver as well as the determination of its depth---information normally not obtainable in very low visibility water like the Hudson River. For this purpose we observed the thermal surface signature of the diver and obtained and analyzed its temporal behavior with respect to area, perimeter and infrared brightness. Additional qualitative and quantitative analyses of the area and perimeter growth show different behaviors with more or less pronounced correlation to the diver's depth---yet clearly showing a trend allowing for estimation of

  8. Automatic solar panel recognition and defect detection using infrared imaging

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Munson, Eric; Abousleman, Glen P.; Si, Jennie

    2015-05-01

    Failure-free operation of solar panels is of fundamental importance for modern commercial solar power plants. To achieve higher power generation efficiency and longer panel life, a simple and reliable panel evaluation method is required. By using thermal infrared imaging, anomalies can be detected without having to incorporate expensive electrical detection circuitry. In this paper, we propose a solar panel defect detection system, which automates the inspection process and mitigates the need for manual panel inspection in a large solar farm. Infrared video sequences of each array of solar panels are first collected by an infrared camera mounted to a moving cart, which is driven from array to array in a solar farm. The image processing algorithm segments the solar panels from the background in real time, with only the height of the array (specified as the number of rows of panels in the array) being given as prior information to aid in the segmentation process. In order to "count" the number the panels within any given array, frame-to frame panel association is established using optical flow. Local anomalies in a single panel such as hotspots and cracks will be immediately detected and labeled as soon as the panel is recognized in the field of view. After the data from an entire array is collected, hot panels are detected using DBSCAN clustering. On real-world test data containing over 12,000 solar panels, over 98% of all panels are recognized and correctly counted, with 92% of all types of defects being identified by the system.

  9. FISICA: the Florida image slicer for infrared cosmology and astrophysics

    NASA Astrophysics Data System (ADS)

    Eikenberry, Stephen S.; Elston, Richard; Guzman, Rafael; Julian, Jeff; Raines, S. Nicholas; Gruel, Nicolas; Boreman, Glenn; Glenn, Paul E.; Hull-Allen, C. Gregory; Hoffman, Jeff; Rodgers, Michael; Thompson, Kevin; Flint, Scott; Comstock, Lovell; Myrick, Bruce

    2004-09-01

    We report on the design and status of the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA) - a fully-cryogenic all-reflective image-slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Designed to accept input beams near f/15, FISICA with FLAMINGOS provides R~1300 spectra over a 16x33-arcsec field-of-view on the Cassegrain f/15 focus of the KPNO 4-meter telescope, or a 6x12-arcsec field-of-view on the Nasmyth or Bent Cassegrain foci of the Gran Telescopio Canarias 10.4-meter telescope. FISICA accomplishes this using three sets of "monolithic" powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. We review the optical and opto-mechanical design and fabrication of FISICA, as well as laboratory test results for FISICA integrated with the FLAMINGOS instrument. We also discuss plans for first-light observations on the KPNO 4-meter telescope in July 2004.

  10. FISICA: the Florida imager slicer for infrared cosmology and astrophysics

    NASA Astrophysics Data System (ADS)

    Eikenberry, Stephen; Raines, S. Nicholas; Gruel, Nicolas; Elston, Richard; Guzman, Rafael; Julian, Jeff; Boreman, Glenn; Glenn, Paul; Hull-Allen, Gregory; Hoffman, Jeffrey; Rodgers, Michael; Thompson, Kevin; Flint, Scott; Comstock, Lovell; Myrick, Bruce

    2006-06-01

    We report on the design, fabrication, and on-sky performance of the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA) - a fully-cryogenic all-reflective image-slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Designed to accept input beams near f/15, FISICA with FLAMINGOS provides R~1300 spectra over a 16x33-arcsec field-of-view on the Cassegrain f/15 focus of the KPNO 4-meter telescope, or a 6x12-arcsec field-of-view on the Nasmyth or Bent Cassegrain foci of the Gran Telescopio Canarias 10.4-meter telescope. FISICA accomplishes this using three sets of "monolithic" powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. We review the optical and opto-mechanical design and fabrication of FISICA, as well as laboratory test results for FISICA integrated with the FLAMINGOS instrument. Finally, we present performance results from observations with FISICA at the KPNO 4-m telescope and comparisons of FISICA performance to other available IFUs on 4-m to 8-m-class telescopes.

  11. Thermal detection of embedded tumors using infrared imaging.

    PubMed

    Mital, Manu; Scott, E P

    2007-02-01

    Breast cancer is the most common cancer among women. Thermography, also known as thermal or infrared imaging, is a procedure to determine if an abnormality is present in the breast tissue temperature distribution. This abnormality in temperature distribution might indicate the presence of an embedded tumor. Although thermography is currently used to indicate the presence of an abnormality, there are no standard procedures to interpret these and determine the location of an embedded tumor. This research is a first step towards this direction. It explores the relationship between the characteristics (location and power) of an embedded heat source and the resulting temperature distribution on the surface. Experiments were conducted using a resistance heater that was embedded in agar in order to simulate the heat produced by a tumor in the biological tissue. The resulting temperature distribution on the surface was imaged using an infrared camera. In order to estimate the location and heat generation rate of the source from these temperature distributions, a genetic algorithm was used as the estimation method. The genetic algorithm utilizes a finite difference scheme for the direct solution of the Pennes bioheat equation. It was determined that a genetic algorithm based approach is well suited for the estimation problem since both the depth and the heat generation rate of the heat source were accurately predicted.

  12. Buildings Research using Infrared Imaging Radiometers with Laboratory Thermal Chambers

    SciTech Connect

    Griffith, Brent; Arasteh, Dariush

    1999-01-12

    Infrared thermal imagers are used at Lawrence Berkeley National Laboratory to study heat transfer through components of building thermal envelopes. Two thermal chambers maintain steady-state heat flow through test specimens under environmental conditions for winter heating design. Infrared thermography is used to map surface temperatures on the specimens' warm side. Features of the quantitative thermography process include use of external reference emitters, complex background corrections, and spatial location markers. Typical uncertainties in the data are {+-} 0.5 C and 3 mm. Temperature controlled and directly measured external reference emitters are used to correct data from each thermal image. Complex background corrections use arrays of values for background thermal radiation in calculating temperatures of self-viewing surfaces. Temperature results are used to validate computer programs that predict heat flow including Finite-Element Analysis (FEA) conduction simulations and conjugate Computational Fluid Dynamics (CFD) simulations. Results are also used to study natural convection surface heat transfer. Example data show the distribution of temperatures down the center line of an insulated window.

  13. Dual-band infrared capabilities for imaging buried object sites

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.; Gorvad, M.R.; Perkins, D.E.; Clark, G.A.; Hernandez, J.E.; Sherwood, R.J.

    1993-04-02

    We discuss dual-band infrared (DBIR) capabilities for imaging buried object sizes. We identify physical features affecting thermal contrast needed to distinguish buried object sites from undisturbed sites or surface clutter. Apart from atmospheric transmission and system performance, these features include: object size, shape, and burial depth; ambient soil, disturbed soil and object site thermal diffusivity differences; surface temperature, emissivity, plant-cover, slope, albedo and roughness variations; weather conditions and measurement times. We use good instrumentation to measure the time-varying temperature differences between buried object sites and undisturbed soil sites. We compare near surface soil temperature differences with radiometric infrared (IR) surface temperature differences recorded at 4.7 {plus_minus} 0.4 {mu}m and at 10.6 {plus_minus} 1.0 {mu}m. By producing selective DBIR image ratio maps, we distinguish temperature-difference patterns from surface emissivity effects. We discuss temperature differences between buried object sites, filled hole site (without buried objects), cleared (undisturbed) soil sites, and grass-covered sites (with and without different types of surface clutter). We compare temperature, emissivity-ratio, visible and near-IR reflectance signatures of surface objects, leafy plants and sod. We discuss the physical aspects of environmental, surface and buried target features affecting interpretation of buried targets, surface objects and natural backgrounds.

  14. Infrared imaging based hyperventilation monitoring through respiration rate estimation

    NASA Astrophysics Data System (ADS)

    Basu, Anushree; Routray, Aurobinda; Mukherjee, Rashmi; Shit, Suprosanna

    2016-07-01

    A change in the skin temperature is used as an indicator of physical illness which can be detected through infrared thermography. Thermograms or thermal images can be used as an effective diagnostic tool for monitoring and diagnosis of various diseases. This paper describes an infrared thermography based approach for detecting hyperventilation caused due to stress and anxiety in human beings by computing their respiration rates. The work employs computer vision techniques for tracking the region of interest from thermal video to compute the breath rate. Experiments have been performed on 30 subjects. Corner feature extraction using Minimum Eigenvalue (Shi-Tomasi) algorithm and registration using Kanade Lucas-Tomasi algorithm has been used here. Thermal signature around the extracted region is detected and subsequently filtered through a band pass filter to compute the respiration profile of an individual. If the respiration profile shows unusual pattern and exceeds the threshold we conclude that the person is stressed and tending to hyperventilate. Results obtained are compared with standard contact based methods which have shown significant correlations. It is envisaged that the thermal image based approach not only will help in detecting hyperventilation but can assist in regular stress monitoring as it is non-invasive method.

  15. The research on the effect of atmospheric transmittance for the measuring accuracy of infrared thermal imager

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-cun; Chen, Yi-ming; Fu, Xian-bin; Luo, Cheng

    2016-07-01

    The effect of atmospheric transmittance on infrared thermal imager temperature measuring accuracy cannot be ignored when the object is far from infrared thermal imager. In this paper, a method of reducing the influence of atmospheric transmittance is proposed for the infrared thermal imager. Firstly, the temperature measuring formula of infrared thermal imager and the effect of atmospheric transmittance on temperature measuring accuracy is analyzed. According to the composition of the atmosphere, the main factors influencing the atmosphere transmittance are determined. Secondly, the temperature measuring model of infrared thermal imager in sea level is established according to the absorption of water vapor and carbon dioxide, the scattering of air molecules and aerosol particulate, and the attenuation effects of weather conditions such as rain and snow. Finally, the correctness and feasibility of the proposed model is verified by the comparison experiments of four different environmental conditions. According to the experiments, the temperature measuring accuracy of the infrared thermal imager is improved.

  16. Intraoperative Near-Infrared Imaging Can Identify Pulmonary Nodules

    PubMed Central

    Okusanya, Olugbenga T.; Holt, David; Heitjan, Daniel; Deshpande, Charuhas; Venegas, Ollin; Jiang, Jack; Judy, Ryan; DeJesus, Elizabeth; Madajewski, Brian; Oh, Kenny; Albelda, Steven M.; Nie, Shuming; Singhal, Sunil

    2014-01-01

    Background Over 80,000 people undergo pulmonary resection for a lung nodule in the United States each year. Small nodules are frequently missed or difficult to find despite preoperative imaging. We hypothesized that near-infrared (NIR) imaging technology could be used to identify and locate lung nodules during surgery. Methods We enrolled 18 patients who were diagnosed with a pulmonary nodule that required resection. All patients had a fine-cut 1mm computed tomography scan preoperatively. The patients were given systemic 5 mg/kg indocyanine green (ICG) and then underwent an open thoracotomy 24 hours later. NIR imaging was used to identify the primary nodule and search for additional nodules that were not found by visual inspection or manual palpation of the ipsilateral lung. Results Manual palpation and visual inspection identified all 18 primary pulmonary nodules and no additional lesions. Intraoperative NIR imaging detected 16 out of the 18 primary nodules. NIR imaging also identified 5 additional subcentimeter nodules: 3 metastatic adenocarcinomas and 2 metastatic sarcomas. This technology could identify nodules as small as 0.2 cm and as deep as 1.3 cm from the pleural surface. This approach discovered 3 nodules that were in different lobes than the primary tumor. Nodule fluorescence was independent of size, metabolic activity, histology, tumor grade and vascularity. Conclusions This is the first-in-human demonstration of identifying pulmonary nodules during Thoracic surgery with NIR imaging without a priori knowledge of their location or existence. NIR imaging can detect pulmonary nodules during lung resections that are poorly visualized on computed tomography and difficult to discriminate on finger palpation. PMID:25106680

  17. Sensitivity analysis of near-infrared functional lymphatic imaging

    NASA Astrophysics Data System (ADS)

    Weiler, Michael; Kassis, Timothy; Dixon, J. Brandon

    2012-03-01

    Background - Near-infrared (NIR) imaging of lymphatic drainage of injected indocyanine green (ICG) has emerged as a new technology for clinical imaging of lymphatic architecture and quantification of vessel function, offering better spatial and temporal resolution than competing imaging modalities. While NIR lymphatic imaging has begun to be reported in the literature, the technology is still in its infancy and its imaging capabilities have yet to be quantitatively characterized. The objective of this study, therefore, was to characterize the parameters of NIR lymphatic imaging to quantify its capabilities as a diagnostic tool for evaluating lymphatic disease. Methods - An NIR imaging system was developed using a laser diode for excitation, ICG as a fluorescent agent, and a CCD camera to detect emission. A tissue phantom with mock lymphatic vessels of known depths and diameters was used as an alternative to in vivo lymphatic vessels due to the greater degree of control with the phantom. Results and Conclusions - When dissolved in an albumin physiological salt solution (APSS) to mimic interstitial fluid, ICG experiences shifts in the excitation/emission wavelengths such that it is maximally excited at 805nm and produces peak fluorescence at 840nm. Premixing ICG with albumin induces greater fluorescence intensity, with the ideal concentration being: 900μM (60g/L) albumin and 193.5μM (150μg/mL) ICG. ICG fluorescence can be detected as deep as 6mm, but spatial resolution deteriorates severely below 3mm, thus skewing vessel geometry measurements. ICG packet travel, a common measure of lymphatic transport, can be detected as deep as 5mm.

  18. InSb charge coupled infrared imaging device: The 20 element linear imager

    NASA Technical Reports Server (NTRS)

    Thom, R. D.; Koch, T. L.; Parrish, W. J.; Langan, J. D.; Chase, S. C.

    1980-01-01

    The design and fabrication of the 8585 InSb charge coupled infrared imaging device (CCIRID) chip are reported. The InSb material characteristics are described along with mask and process modifications. Test results for the 2- and 20-element CCIRID's are discussed, including gate oxide characteristics, charge transfer efficiency, optical mode of operation, and development of the surface potential diagram.

  19. Computational imaging from non-uniform degradation of staggered TDI thermal infrared imager.

    PubMed

    Sun, Tao; Liu, Jian Guo; Shi, Yan; Chen, Wangli; Qin, Qianqing; Zhang, Zijian

    2015-09-21

    For the Time Delay Integration (TDI) staggered line-scanning thermal infrared imager, a Computational Imaging (CI) approach is developed to achieve higher spatial resolution images. After a thorough analysis of the causes of non-uniform image displacement and degradation for multi-channel staggered TDI arrays, the study aims to approach one-dimensional (1D) sub-pixel displacement estimation and superposition of images from time-division multiplexing scanning lines. Under the assumption that a thermal image is 2D piecewise C(2) smooth, a sparse-and-smooth deconvolution algorithm with L1-norm regularization terms combining the first and second order derivative operators is proposed to restore high frequency components and to suppress aliasing simultaneously. It is theoretically and experimentally demonstrated, with simulation and airborne thermal infrared images, that this is a state-of-the-art practical CI method to reconstruct clear images with higher frequency components from raw thermal images that are subject to instantaneous distortion and blurring. PMID:26406660

  20. Fast approach to infrared image restoration based on shrinkage functions calibration

    NASA Astrophysics Data System (ADS)

    Zhang, Chengshuo; Shi, Zelin; Xu, Baoshu; Feng, Bin

    2016-05-01

    High-quality image restoration in real time is a challenge for infrared imaging systems. We present a fast approach to infrared image restoration based on shrinkage functions calibration. Rather than directly modeling the prior of sharp images to obtain the shrinkage functions, we calibrate them for restoration directly by using the acquirable sharp and blurred image pairs from the same infrared imaging system. The calibration method is employed to minimize the sum of squared errors between sharp images and restored images from the blurred images. Our restoration algorithm is noniterative and its shrinkage functions are stored in the look-up tables, so an architecture solution of pipeline structure can work in real time. We demonstrate the effectiveness of our approach by testing its quantitative performance from simulation experiments and its qualitative performance from a developed wavefront coding infrared imaging system.

  1. High Definition Infrared Spectroscopic Imaging for Lymph Node Histopathology

    PubMed Central

    Leslie, L. Suzanne; Wrobel, Tomasz P.; Mayerich, David; Bindra, Snehal; Emmadi, Rajyasree; Bhargava, Rohit

    2015-01-01

    Chemical imaging is a rapidly emerging field in which molecular information within samples can be used to predict biological function and recognize disease without the use of stains or manual identification. In Fourier transform infrared (FT-IR) spectroscopic imaging, molecular absorption contrast provides a large signal relative to noise. Due to the long mid-IR wavelengths and sub-optimal instrument design, however, pixel sizes have historically been much larger than cells. This limits both the accuracy of the technique in identifying small regions, as well as the ability to visualize single cells. Here we obtain data with micron-sized sampling using a tabletop FT-IR instrument, and demonstrate that the high-definition (HD) data lead to accurate identification of multiple cells in lymph nodes that was not previously possible. Highly accurate recognition of eight distinct classes - naïve and memory B cells, T cells, erythrocytes, connective tissue, fibrovascular network, smooth muscle, and light and dark zone activated B cells was achieved in healthy, reactive, and malignant lymph node biopsies using a random forest classifier. The results demonstrate that cells currently identifiable only through immunohistochemical stains and cumbersome manual recognition of optical microscopy images can now be distinguished to a similar level through a single IR spectroscopic image from a lymph node biopsy. PMID:26039216

  2. Micropolarizing device for long wavelength infrared polarization imaging.

    SciTech Connect

    Wendt, Joel Robert; Carter, Tony Ray; Samora, Sally; Cruz-Cabrera, Alvaro Augusto; Vawter, Gregory Allen; Kemme, Shanalyn A.; Alford, Charles Fred; Boye, Robert R.; Smith, Jody Lynn

    2006-11-01

    The goal of this project is to fabricate a four-state pixelated subwavelength optical device that enables mid-wave infrared (MWIR) or long-wave infrared (LWIR) snapshot polarimetric imaging. The polarization information can help to classify imaged materials and identify objects of interest for numerous remote sensing and military applications. While traditional, sequential polarimetric imaging produces scenes with polarization information through a series of assembled images, snapshot polarimetric imaging collects the spatial distribution of all four Stokes parameters simultaneously. In this way any noise due to scene movement from one frame to the next is eliminated. We fabricated several arrays of subwavelength components for MWIR polarization imaging applications. Each pixel unit of the array consists of four elements. These elements are micropolarizers with three or four different polarizing axis orientations. The fourth element sometimes has a micro birefringent waveplate on the top of one of the micropolarizers. The linear micropolarizers were fabricated by patterning nano-scale metallic grids on a transparent substrate. A large area birefringent waveplate was fabricated by deeply etching a subwavelength structure into a dielectric substrate. The principle of making linear micropolarizers for long wavelengths is based upon strong anisotropic absorption of light in the nano-metallic grid structures. The nano-metallic grid structures are patterned with different orientations; therefore, the micropolarizers have different polarization axes. The birefringent waveplate is a deeply etched dielectric one-dimensional subwavelength grating; therefore two orthogonally polarized waves have different phase delays. Finally, in this project, we investigated the near field and diffractive effects of the subwavelength element apertures upon detection. The fabricated pixelated polarizers had a measured extinction ratios larger than 100:1 for pixel sizes in the order of 15

  3. Tissue-Specific Near-Infrared Fluorescence Imaging.

    PubMed

    Owens, Eric A; Henary, Maged; El Fakhri, Georges; Choi, Hak Soo

    2016-09-20

    Near-infrared (NIR) fluorescence light has been widely utilized in clinical imaging by providing surgeons highly specific images of target tissue. The "NIR window" from 650 to 900 nm is especially useful due to several special features such as minimal autofluorescence and absorption of biomolecules in tissue, as well as low light scattering. Compared with visible wavelengths, NIR fluorescence light is invisible, thus allowing highly sensitivity real-time image guidance in human surgery without changing the surgical field. The benefit of using NIR fluorescence light as a clinical imaging technology can be attributed to its molecular fluorescence as an exogenous contrast agent. Indeed, whole body preoperative imaging of single-photon emission computed tomography (SPECT) and positron emission tomography (PET) remains important in diagnostic utility, but they lack the efficacy of innocuous and targeted NIR fluorophores to simultaneously facilitate the real-time delineation of diseased tissue while preserving vital tissues. Admittedly, NIR imaging technology has been slow to enter clinical use mostly due to the late-coming development of truly breakthrough contrast agents for use with current imaging systems. Therefore, clearly defining the physical margins of tumorous tissue remains of paramount importance in bioimaging and targeted therapy. An equally noteworthy yet less researched goal is the ability to outline healthy vital tissues that should be carefully navigated without transection during the intraoperative surgery. Both of these paths require optimizing a gauntlet of design considerations to obtain not only an effective imaging agent in the NIR window but also high molecular brightness, water solubility, biocompatibility, and tissue-specific targetability. The imaging community recognizes three strategic approaches which include (1) passive targeting via the EPR effect, (2) active targeting using the innate overall biodistribution of known molecules, and (3

  4. Tissue-Specific Near-Infrared Fluorescence Imaging.

    PubMed

    Owens, Eric A; Henary, Maged; El Fakhri, Georges; Choi, Hak Soo

    2016-09-20

    Near-infrared (NIR) fluorescence light has been widely utilized in clinical imaging by providing surgeons highly specific images of target tissue. The "NIR window" from 650 to 900 nm is especially useful due to several special features such as minimal autofluorescence and absorption of biomolecules in tissue, as well as low light scattering. Compared with visible wavelengths, NIR fluorescence light is invisible, thus allowing highly sensitivity real-time image guidance in human surgery without changing the surgical field. The benefit of using NIR fluorescence light as a clinical imaging technology can be attributed to its molecular fluorescence as an exogenous contrast agent. Indeed, whole body preoperative imaging of single-photon emission computed tomography (SPECT) and positron emission tomography (PET) remains important in diagnostic utility, but they lack the efficacy of innocuous and targeted NIR fluorophores to simultaneously facilitate the real-time delineation of diseased tissue while preserving vital tissues. Admittedly, NIR imaging technology has been slow to enter clinical use mostly due to the late-coming development of truly breakthrough contrast agents for use with current imaging systems. Therefore, clearly defining the physical margins of tumorous tissue remains of paramount importance in bioimaging and targeted therapy. An equally noteworthy yet less researched goal is the ability to outline healthy vital tissues that should be carefully navigated without transection during the intraoperative surgery. Both of these paths require optimizing a gauntlet of design considerations to obtain not only an effective imaging agent in the NIR window but also high molecular brightness, water solubility, biocompatibility, and tissue-specific targetability. The imaging community recognizes three strategic approaches which include (1) passive targeting via the EPR effect, (2) active targeting using the innate overall biodistribution of known molecules, and (3

  5. Two-scale image fusion of visible and infrared images using saliency detection

    NASA Astrophysics Data System (ADS)

    Bavirisetti, Durga Prasad; Dhuli, Ravindra

    2016-05-01

    Military, navigation and concealed weapon detection need different imaging modalities such as visible and infrared to monitor a targeted scene. These modalities provide complementary information. For better situation awareness, complementary information of these images has to be integrated into a single image. Image fusion is the process of integrating complementary source information into a composite image. In this paper, we propose a new image fusion method based on saliency detection and two-scale image decomposition. This method is beneficial because the visual saliency extraction process introduced in this paper can highlight the saliency information of source images very well. A new weight map construction process based on visual saliency is proposed. This process is able to integrate the visually significant information of source images into the fused image. In contrast to most of the multi-scale image fusion techniques, proposed technique uses only two-scale image decomposition. So it is fast and efficient. Our method is tested on several image pairs and is evaluated qualitatively by visual inspection and quantitatively using objective fusion metrics. Outcomes of the proposed method are compared with the state-of-art multi-scale fusion techniques. Results reveal that the proposed method performance is comparable or superior to the existing methods.

  6. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    underlying physics. There are now at least six different disciplines that deal with infrared radiation in one form or another, and in one or several different spectral portions of the whole IR range. These are spectroscopy, astronomy, thermal imaging, detector and source development and metrology, as well the field of optical data transmission. Scientists working in these fields range from chemists and astronomers through to physicists and even photographers. This issue presents examples from some of these fields. All the papers—though some of them deal with fundamental or applied research—include interesting elements that make them directly applicable to university-level teaching at the graduate or postgraduate level. Source (e.g. quantum cascade lasers) and detector development (e.g. multispectral sensors), as well as metrology issues and optical data transmission, are omitted since they belong to fundamental research journals. Using a more-or-less arbitrary order according to wavelength range, the issue starts with a paper on the physics of near-infrared photography using consumer product cameras in the spectral range from 800 nm to 1.1 µm [1]. It is followed by a series of three papers dealing with IR imaging in spectral ranges from 3 to 14 µm [2-4]. One of them deals with laboratory courses that may help to characterize the IR camera response [2], the second discusses potential applications for nondestructive testing techniques [3] and the third gives an example of how IR thermal imaging may be used to understand cloud cover of the Earth [4], which is the prerequisite for successful climate modelling. The next two papers cover the vast field of IR spectroscopy [5, 6]. The first of these deals with Fourier transform infrared spectroscopy in the spectral range from 2.5 to 25 µm, studying e.g. ro-vibrational excitations in gases or optical phonon interactions within solids [5]. The second deals mostly with the spectroscopy of liquids such as biofuels and special

  7. 320 x 256 Complementary Barrier Infrared Detector Focal Plane Array for Long-Wave Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Nguyen, Jean; Rafol, Sir B.; Soibel, Alexander; Khoskhlagh, Arezou; Ting, David Z.-Y.; Liu, John K.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    A 320 x 256 Complementary Barrier Infrared (CBIRD) focal plane array for long-wavelength infrared (LWIR) imaging is reported. The arrays were grown by molecular beam expitaxy (MBE) with a 300 period 1.9 um thick absorber. The mean dark current density of 2.2 x 10-4 A/cm2 was measured at an operating bias of 128 mV with a long wavelength cutoff of 8.8 ?m observed at 50% of the peak. The maximum quantum efficiency was 54% measured at 5.6 ?m. Operating at T = 80K, the array yielded an 81% fill factor with 97% operability. Good imagery with a mean noise equivalent different temperature (NE?T) of 18.6 mK and a mean detectivity of D* = 1.3 x 1011 cm-Hz1/2/W was achieved. The substrate was thinned using mechanical lapping and neither an AR coating nor a passivation layer was applied. This article provides the details of the fabrication process for achieving low-dark current LWIR CBIRD arrays. Discussion for an effective hard mask for excellent pattern transfer is given and appropriate mounting techniques for good thermal contact during the dry etching process is described. The challenges and differences between etching large 200 ?m test diodes and small 28 ?m FPA pixels are given.

  8. [Passive remote measurement of flame infrared image by a FTIR scanning imaging system].

    PubMed

    Liu, Zhi-Ming; Gao, Min-Guang; Liu, Wen-Qing; Lu, Yi-Huai; Zhang, Tian-Shu; Xu, Liang; Wei, Xiu-Li

    2008-11-01

    The present paper introduced a FTIR scanning imaging system. This system is based on the combination of a FTIR spectrometer and a scanning mirror. So it has the advantage of FTIR spectrometer: non-contact, real-time, celerity, nicety and high sensitivity. Through scanning mirror, the authors can obtain the space information of targets. The authors used this system to measure the flames infrared emission spectra of three alcohol burners at a flat roof in our laboratory. According to Planck's law, the authors calculated the relative temperature of from each spectrum. These temperature data formed an array. The authors used matlab software to plot the infrared images of target and contrasted them with video image. They were consistent with each other very well. This experiment allowed us to obtain the temperature distribution of three alcohol burners' flames, and provide identification, visualization, and quantification of pollutant clouds.

  9. Image processing techniques for detection of buried objects with infrared images

    NASA Astrophysics Data System (ADS)

    Cerón-Correa, Alexander

    2006-01-01

    This document describes the principles of infrared thermography and its application to humanitarian demining in the world as well as the factors influencing its application in a country like Colombia which suffers badly the problem posed by antipersonnel mines. The main factors that affect the images taken by different sensors are: day time, mine size and material, installation angle, object's burial depth, moisture, emissivity, wind, rain, as well as other objects in the proximity shadowing the images. Infrared image processing methods and results of tests done in different sites of the country such as Cartagena, Bogota, and Tolemaida are also shown. Finally, a method for the detection of the presence of a buried object is presented with its successful results.

  10. Visible and infrared linear detector arrays for the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Bailey, Gary C.

    1987-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument uses four separate focal plane assemblies consisting of line array detectors that are multiplexed to a common J-FET preamp using a FET switch multiplexing (MUX) technique. A 32-element silicon line array covers the spectral range from 0.41 to 0.70 microns. Three additional 64-element indium antimonide (InSb) line arrays cover the spectral range from 0.68 to 2.45 microns. The spectral sampling interval per detector element is nominally 9.8 nm, giving a total of 224 spectral channels. All focal planes operate at liquid nitrogen temperature and are housed in separate dewars. Electrical performance characteristics include a read noise of less than 1000 e(-) in all channels, response and dark nonuniformity of 5 percent peak to peak, and quantum efficiency of greater than 60 percent.

  11. NEAR-INFRARED SURVEY OF THE GOODS-NORTH FIELD: SEARCH FOR LUMINOUS GALAXY CANDIDATES AT z {approx}> 6.5 {sup ,}

    SciTech Connect

    Hathi, Nimish P.; Mobasher, Bahram; Capak, Peter; Wang, Wei-Hao; Ferguson, Henry C.

    2012-09-20

    We present near-infrared (NIR; J and K{sub s}) survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field. The publicly available imaging data were obtained using the MOIRCS instrument on the 8.2 m Subaru and the WIRCam instrument on the 3.6 m Canada-France-Hawaii Telescope (CFHT). These observations fulfill a serious wavelength gap in the GOODS-N data, i.e., lack of deep NIR observations. We combine the Subaru/MOIRCS and CFHT/WIRCam archival data to generate deep J- and K{sub s}-band images, covering the full GOODS-N field ({approx}169 arcmin{sup 2}) to an AB magnitude limit of {approx}25 mag (3{sigma}). We applied z{sub 850}-band dropout color selection criteria, using the NIR data generated here. We have identified two possible Lyman break galaxy (LBG) candidates at z {approx}> 6.5 with J {approx}< 24.5. The first candidate is a likely LBG at z {approx_equal} 6.5 based on a weak spectral feature tentatively identified as Ly{alpha} line in the deep Keck/DEIMOS spectrum, while the second candidate is a possible LBG at z {approx_equal} 7 based on its photometric redshift. These z{sub 850}-dropout objects, if confirmed, are among the brightest such candidates found so far. At z {approx}> 6.5, their star formation rate is estimated as 100-200 M{sub Sun} yr{sup -1}. If they continue to form stars at this rate, they assemble a stellar mass of {approx}5 Multiplication-Sign 10{sup 10} M{sub Sun} after about 400 million years, becoming the progenitors of massive galaxies observed at z {approx_equal} 5. We study the implication of the z{sub 850}-band dropout candidates discovered here, in constraining the bright end of the luminosity function and understanding the nature of high-redshift galaxies.

  12. Synegies Between Visible/Near-Infrared Imaging Spectrometry and the Thermal Infrared in an Urban Environment: An Evaluation of the Hyperspectral Infrared Imager (HYSPIRI) Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Quattrochi, Dale A.; Hulley, Glynn C.; Hook, Simon J.; Green, Robert O.

    2012-01-01

    A majority of the human population lives in urban areas and as such, the quality of urban environments is becoming increasingly important to the human population. Furthermore, these areas are major sources of environmental contaminants and sinks of energy and materials. Remote sensing provides an improved understanding of urban areas and their impacts by mapping urban extent, urban composition (vegetation and impervious cover fractions), and urban radiation balance through measures of albedo, emissivity and land surface temperature (LST). Recently, the National Research Council (NRC) completed an assessment of remote sensing needs for the next decade (NRC, 2007), proposing several missions suitable for urban studies, including a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer and a multispectral thermal infrared (TIR) instrument called the Hyperspectral Infrared Imagery (HyspIRI). In this talk, we introduce the HyspIRI mission, focusing on potential synergies between VSWIR and TIR data in an urban area. We evaluate potential synergies using an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS-ASTER (MASTER) image pair acquired over Santa Barbara, United States. AVIRIS data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. Surface reflectance was calculated using ACORN and a ground reflectance target to remove atmospheric and sensor artifacts. MASTER data were processed to generate estimates of spectral emissivity and LST using Modtran radiative transfer code and the ASTER Temperature Emissivity Separation algorithm. A spectral library of common urban materials, including urban vegetation, roofs and roads was assembled from combined AVIRIS and field-measured reflectance spectra. LST and emissivity were also retrieved from MASTER and reflectance/emissivity spectra for a subset of urban materials were retrieved from co-located MASTER and

  13. Using the shortwave infrared to image middle ear pathologies.

    PubMed

    Carr, Jessica A; Valdez, Tulio A; Bruns, Oliver T; Bawendi, Moungi G

    2016-09-01

    Visualizing structures deep inside opaque biological tissues is one of the central challenges in biomedical imaging. Optical imaging with visible light provides high resolution and sensitivity; however, scattering and absorption of light by tissue limits the imaging depth to superficial features. Imaging with shortwave infrared light (SWIR, 1-2 μm) shares many advantages of visible imaging, but light scattering in tissue is reduced, providing sufficient optical penetration depth to noninvasively interrogate subsurface tissue features. However, the clinical potential of this approach has been largely unexplored because suitable detectors, until recently, have been either unavailable or cost prohibitive. Here, taking advantage of newly available detector technology, we demonstrate the potential of SWIR light to improve diagnostics through the development of a medical otoscope for determining middle ear pathologies. We show that SWIR otoscopy has the potential to provide valuable diagnostic information complementary to that provided by visible pneumotoscopy. We show that in healthy adult human ears, deeper tissue penetration of SWIR light allows better visualization of middle ear structures through the tympanic membrane, including the ossicular chain, promontory, round window niche, and chorda tympani. In addition, we investigate the potential for detection of middle ear fluid, which has significant implications for diagnosing otitis media, the overdiagnosis of which is a primary factor in increased antibiotic resistance. Middle ear fluid shows strong light absorption between 1,400 and 1,550 nm, enabling straightforward fluid detection in a model using the SWIR otoscope. Moreover, our device is easily translatable to the clinic, as the ergonomics, visual output, and operation are similar to a conventional otoscope. PMID:27551085

  14. Infrared imaging diagnostics for intense pulsed electron beam

    SciTech Connect

    Yu, Xiao; Shen, Jie; Liu, Wenbin; Zhong, Haowen; Zhang, Jie; Zhang, Gaolong; Le, Xiaoyun; Qu, Miao; Yan, Sha

    2015-08-15

    Infrared imaging diagnostic method for two-dimensional calorimetric diagnostics has been developed for intense pulsed electron beam (IPEB). By using a 100-μm-thick tungsten film as the infrared heat sink for IPEB, the emitting uniformity of the electron source can be analyzed to evaluate the efficiency and stability of the diode system. Two-dimensional axisymmetric finite element method heat transfer simulation, combined with Monte Carlo calculation, was performed for error estimation and optimization of the method. The test of the method was finished with IPEB generated by explosive emission electron diode with pulse duration (FWHM) of 80 ns, electron energy up to 450 keV, and a total beam current of over 1 kA. The results showed that it is possible to measure the cross-sectional energy density distribution of IPEB with energy sensitivity of 0.1 J/cm{sup 2} and spatial resolution of 1 mm. The technical details, such as irradiation protection of bremsstrahlung γ photons and the functional extensibility of the method were discussed in this work.

  15. Infrared Images and Millimeter Data from Cold Southern IRAS Sources

    NASA Astrophysics Data System (ADS)

    Osterloh, M.; Henning, Th.; Launhardt, R.

    1997-05-01

    We present near-infrared (H, K'), CO (2-1), CS (2-1), and 1.3 mm continuum data for 31 southern objects [δ(1950) <= 10°] known to have extremely red IRAS colors [Fν(100 μm) > Fν(60 μm) > Fν(25 μm) > 20 × Fν(12 μm)]. The data are meant to help reveal new, very young stellar objects. K'-band near-infrared counterparts to the IRAS point sources are detected in 22 of 25 good K' images. Most K' counterparts are multiples. Eighteen of 21 objects were detected in CS, implying the presence of dense gas. Completing the set of CS (2-1) spectra by including the data of Bronfman, Nyman, & Ray, we still find only three nondetections among all 31 objects; these three were also not detected in K'. Wings indicative of outflows are found in a large fraction (20/30) of CO spectra. Twenty-six of 31 observations in the millimeter continuum were detections and point to the presence of large amounts of circumstellar matter. Most of the objects have 103-105 times solar luminosity; we speculate that most contain at least one massive star capable of producing a compact/ultracompact H II region. Based on observations performed at the European Southern Observatory.

  16. Infrared imaging diagnostics for intense pulsed electron beam.

    PubMed

    Yu, Xiao; Shen, Jie; Qu, Miao; Liu, Wenbin; Zhong, Haowen; Zhang, Jie; Yan, Sha; Zhang, Gaolong; Le, Xiaoyun

    2015-08-01

    Infrared imaging diagnostic method for two-dimensional calorimetric diagnostics has been developed for intense pulsed electron beam (IPEB). By using a 100-μm-thick tungsten film as the infrared heat sink for IPEB, the emitting uniformity of the electron source can be analyzed to evaluate the efficiency and stability of the diode system. Two-dimensional axisymmetric finite element method heat transfer simulation, combined with Monte Carlo calculation, was performed for error estimation and optimization of the method. The test of the method was finished with IPEB generated by explosive emission electron diode with pulse duration (FWHM) of 80 ns, electron energy up to 450 keV, and a total beam current of over 1 kA. The results showed that it is possible to measure the cross-sectional energy density distribution of IPEB with energy sensitivity of 0.1 J/cm(2) and spatial resolution of 1 mm. The technical details, such as irradiation protection of bremsstrahlung γ photons and the functional extensibility of the method were discussed in this work.

  17. NEAR-INFRARED CIRCULAR POLARIZATION IMAGES OF NGC 6334-V

    SciTech Connect

    Kwon, Jungmi; Tamura, Motohide; Hashimoto, Jun; Kusakabe, Nobuhiko; Kandori, Ryo; Lucas, Phil W.; Hough, James H.; Nakajima, Yasushi; Nagayama, Takahiro; Nagata, Tetsuya

    2013-03-01

    We present results from deep imaging linear and circular polarimetry of the massive star-forming region NGC 6334-V. These observations show high degrees of circular polarization (CP), as much as 22% in the K{sub s} band, in the infrared nebula associated with the outflow. The CP has an asymmetric positive/negative pattern and is very extended ({approx}80'' or 0.65 pc). Both the high CP and its extended size are larger than those seen in the Orion CP region. Three-dimensional Monte Carlo light-scattering models are used to show that the high CP may be produced by scattering from the infrared nebula followed by dichroic extinction by an optically thick foreground cloud containing aligned dust grains. Our results show not only the magnetic field orientation of around young stellar objects, but also the structure of circumstellar matter such as outflow regions and their parent molecular cloud along the line of sight. The detection of the large and extended CP in this source and the Orion nebula may imply the CP origin of the biological homochirality on Earth.

  18. Novel silicon lenses for long-wave infrared imaging

    NASA Astrophysics Data System (ADS)

    Kintz, Gregory; Stephanou, Philip; Petersen, Kurt

    2016-05-01

    The design, fabrication and performance of a novel silicon lens for Long Wave Infrared (LWIR) imaging are presented. The silicon lenses are planar in nature, and are created using standard wafer scale silicon micro-fabrication processes. The silicon batch processes are used to generate subwavelength structures that introduce spatially varying phase shifts in the incident light. We will show that the silicon lens designs can be extended to produce lenses of varying focal lengths and diameters, thus enabling IR imaging at significantly lower cost and reduced weight and form factor. An optical design program and a Finite-Difference Time-Domain (FDTD) simulation software tool are used to model the lens performance. The effects of polarization anisotropy are computed for the resultant subwavelength structures. Test samples with lenses with focal lengths in the range of 10 to 50 mm were fabricated. The test sample also included a prism structure, which is characterized by measuring the deflection of a CO2 laser beam and compared to theoretical beam deflection. The silicon lenses are used to produce an image on a VGA micro-bolometer array.

  19. High-sensitivity uncooled microcantilever infrared imaging arrays

    NASA Astrophysics Data System (ADS)

    Hunter, Scott R.; Maurer, Gregory; Jiang, Lijun; Simelgor, Gregory

    2006-05-01

    The design and operation of an advanced bimorph microcantilever based infrared imaging detector are presented. This technology has the potential to achieve very high sensitivities due to its inherent high responsivity and low noise sensor and detection electronics. The sensor array is composed of bimaterial, thermally sensitive microcantilever structures that are the moving elements of variable plate capacitors. The heat sensing microcantilever structures are integrated with CMOS control and amplification electronics to produce a low cost imager that is compatible with standard silicon IC foundry processing and materials. The bimorph sensor structure is fabricated using low thermal expansion, high thermal isolation silicon oxide and oxynitride materials, and a high thermal expansion aluminum alloy bimetal. The microcantilever paddle is designed to move away from the substrate at elevated imaging temperatures, leading to large modeled sensor dynamic ranges (~16 bits). A temperature coefficient of capacitance, ▵C/C, (equivalent to TCR for microbolometers) above 30% has been modeled and measured for these structures, leading to modeled NEDT < 20 mK and thermal time constants in the 5-10 msec range giving a figure-of-merit [1] NEDT.Tau = 100-200 mK.msec. The development efforts to date have focused on the fabrication of 160x120 pixel arrays with 50 micron pitch pixels. Results from detailed thermo-electro-opto-mechanical modeling of the operation of these sensors are compared with experimental measurements from various test and integrated sensor structures and arrays.

  20. Tailored Near-Infrared Contrast Agents for Image Guided Surgery

    PubMed Central

    Njiojob, Costyl N.; Owens, Eric A.; Narayana, Lakshminarayana; Hyun, Hoon; Choi, Hak Soo; Henary, Maged

    2015-01-01

    The success of near-infrared (NIR) fluorescence to be employed for intraoperative imaging relies on the ability to develop a highly stable, NIR fluorescent, nontoxic, biocompatible, and highly excreted compound that retains a reactive functionality for conjugation to a cancer-recognizing peptide. Herein, systematic modifications to previously detailed fluorophore ZW800-1 are explored. Specific modifications, including the isosteric replacement of the O atom of ZW800-1, include nucleophilic amine and sulfur species attached to the heptamethine core. These novel compounds have shown similar satisfactory results in biodistribution and clearance while also expressing increased stability in serum. Most importantly, all of the synthesized and evaluated compounds display a reactive functionality (either a free amino group or carboxylic acid moiety) for further bioconjugation. The results obtained from the newly prepared derivatives demonstrate that the central substitution with the studied linking agents retains the ultralow background in vivo performance of the fluorophores regardless of the total net charge. PMID:25711712

  1. Analysis of Forensic Casework Utilizing Infrared Spectroscopic Imaging.

    PubMed

    Lanzarotta, Adam

    2016-01-01

    A search of the current scientific literature yields a limited number of studies that describe the use of Fourier transform infrared (FT-IR) spectroscopic imaging for the analysis of forensic casework, which is likely due to the fact that these instruments are fairly new commodities to the field of analytical chemistry and are therefore not yet commonplace in forensic laboratories. This report describes recent forensic case studies that have used the technique for determining the composition of a wide variety of multi-component sample types, including animal tissue sections for toxic inclusions, drugs/dietary supplements, an antibiotic with an active pharmaceutical ingredient (API) present as several different salt forms, an adulterated bulk API, unknown trace powders for illicit drugs and an ophthalmic solution suspected of being adulterated with bleach.

  2. Combining near-infrared illuminants to optimize venous imaging

    NASA Astrophysics Data System (ADS)

    Paquit, Vincent; Price, Jeffery R.; Mériaudeau, Fabrice; Tobin, Kenneth W., Jr.; Ferrell, Thomas L.

    2007-03-01

    The first and perhaps most important phase of a surgical procedure is the insertion of an intravenous (IV) catheter. Currently, this is performed manually by trained personnel. In some visions of future operating rooms, however, this process is to be replaced by an automated system. We previously presented work for localizing near-surface veins via near-infrared (NIR) imaging in combination with structured light ranging for surface mapping and robotic guidance. In this paper, we describe experiments to determine the best NIR wavelengths to optimize vein contrast for physiological differences such as skin tone and/or the presence of hair on the arm or wrist surface. For illumination, we employ an array of NIR LEDs comprising six different wavelength centers from 740nm to 910nm. We capture imagery of each subject under every possible combination of illuminants and determine the optimal combination of wavelengths for a given subject to maximize vein contrast using linear discriminant analysis.

  3. Near-Infrared Fluorescent NanoGUMBOS for Biomedical Imaging

    SciTech Connect

    Bwambok, David; El-Zahab, Bilal; Challa, Santhosh; Li, Min; Chandler, Lin; Baker, Gary A; Warner, Isiah M

    2009-01-01

    Herein, we report on near-infrared (NIR) fluorescent nanoparticles generated from an emergent class of materials we refer to as a Group of Uniform Materials Based on Organic Salts (GUMBOS). GUMBOS are largely frozen ionic liquids, although the concept is more general and is also easily applied to solid ionic materials with melting points in excess of 100 C. Nanoparticles based on GUMBOS (nanoGUMBOS) derived from a NIR fluorophore are prepared using a reprecipitation method and evaluated for in vivo fluorescence imaging. Due to their uniformity, single-step preparation, and composite nature, nanoGUMBOS help to resolve issues with dye leakage problems innate to alternate cellular stains and unlock a myriad of applications for these materials, highlighting exciting possibilities for multifunctional nanoGUMBOS.

  4. A thermal model for analysis of infrared images

    NASA Technical Reports Server (NTRS)

    Watson, K.

    1970-01-01

    A mathematical model derived from the equation of heat conduction was developed to assist in interpreting thermal infrared images acquired from aircraft and spacecraft. The model assumes steady state boundary conditions. It contains parameters of rock and soil properties, atmospheric effects, site location, and season. The results predicted provide an explanation for the thermal differences among granite, limestone, and dolomite recorded in the December 1968 daytime and predawn flights over the Mill Creek, Oklahoma test site, during which representative thermal inertia and albedo values were used. A second test of the model made use of data acquired during the June 1970 predawn overflight of Mill Creek. A simple model of transient heating of the ground was constructed as an extension of the overall model, in order to examine the effects of atmospheric perturbations. The results obtained are consistent with those of ground observations made at the time of the overflight.

  5. Optimized microbolometers with higher sensitivity for visible and infrared imaging

    NASA Astrophysics Data System (ADS)

    Razansky, D.; Einziger, P. D.; Adam, D. R.; Tamir, T.

    2006-10-01

    Optimal absorption method for improving the sensitivity of bolometric detection is explored. We show that, in addition to its role in conventional conducting-film detection, the application of plasmon resonance absorption offers highly promising characteristics for efficient far-field thermal detection and imaging. These characteristics include good frequency sensitivity, intrinsic spatial (angle) selectivity without focusing lenses, wide tunability over both infrared and visible light domains, high responsivity and miniaturization capabilities. In this context, we examine the well-known surface plasmon resonance (SPR) regime, but also report on a new type of plasmon resonance excitation, the cavity plasmon resonance (CPR), which offers more flexibility over wide ranges of wavelengths, bandwidths, and device dimensions. Both CPR and SPR occur in metallic films, which are characterized by high thermal diffusivity essential for fast bolometric response.

  6. Optimized microbolometers with higher sensitivity for visible and infrared imaging.

    PubMed

    Razansky, D; Einziger, P D; Adam, D R; Tamir, T

    2006-10-30

    Optimal absorption method for improving the sensitivity of bolometric detection is explored. We show that, in addition to its role in conventional conducting-film detection, the application of plasmon resonance absorption offers highly promising characteristics for efficient far-field thermal detection and imaging. These characteristics include good frequency sensitivity, intrinsic spatial (angle) selectivity without focusing lenses, wide tunability over both infrared and visible light domains, high responsivity and miniaturization capabilities. In this context, we examine the well-known surface plasmon resonance (SPR) regime, but also report on a new type of plasmon resonance excitation, the cavity plasmon resonance (CPR), which offers more flexibility over wide ranges of wavelengths, bandwidths, and device dimensions. Both CPR and SPR occur in metallic films, which are characterized by high thermal diffusivity essential for fast bolometric response.

  7. Tailored near-infrared contrast agents for image guided surgery.

    PubMed

    Njiojob, Costyl N; Owens, Eric A; Narayana, Lakshminarayana; Hyun, Hoon; Choi, Hak Soo; Henary, Maged

    2015-03-26

    The success of near-infrared (NIR) fluorescence to be employed for intraoperative imaging relies on the ability to develop a highly stable, NIR fluorescent, nontoxic, biocompatible, and highly excreted compound that retains a reactive functionality for conjugation to a cancer-recognizing peptide. Herein, systematic modifications to previously detailed fluorophore ZW800-1 are explored. Specific modifications, including the isosteric replacement of the O atom of ZW800-1, include nucleophilic amine and sulfur species attached to the heptamethine core. These novel compounds have shown similar satisfactory results in biodistribution and clearance while also expressing increased stability in serum. Most importantly, all of the synthesized and evaluated compounds display a reactive functionality (either a free amino group or carboxylic acid moiety) for further bioconjugation. The results obtained from the newly prepared derivatives demonstrate that the central substitution with the studied linking agents retains the ultralow background in vivo performance of the fluorophores regardless of the total net charge.

  8. Advanced Image Processing for Defect Visualization in Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1997-01-01

    Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.

  9. Near Infrared Fluorescent NanoGUMBOS for Biomedical Imaging

    PubMed Central

    Bwambok, David K.; El-Zahab, Bilal; Challa, Santhosh K.; Li, Min; Chandler, Lin; Baker, Gary A.; Warner, Isiah M.

    2009-01-01

    Herein, we report on near infrared (NIR) fluorescent nanoparticles generated from an emergent class of materials we refer to as a Group of Uniform Materials Based on Organic Salts (GUMBOS). GUMBOS are largely frozen ionic liquids, although the concept is more general and is also easily applied to solid ionic materials with melting points in excess of 100 °C. Nanoparticles based on GUMBOS (nanoGUMBOS) derived from a NIR fluorophore are prepared using a reprecipitation method and evaluated for in vivo fluorescence imaging. Due to their uniformity, single-step preparation, and composite nature, nanoGUMBOS help to resolve issues with dye leakage problems innate to alternate cellular stains and unlock a myriad of applications for these materials, highlighting exciting possibilities for multifunctional nanoGUMBOS. PMID:19928781

  10. Thermal infrared imaging in psychophysiology: Potentialities and limits

    PubMed Central

    Ioannou, Stephanos; Gallese, Vittorio; Merla, Arcangelo

    2014-01-01

    Functional infrared thermal imaging (fITI) is considered an upcoming, promising methodology in the emotional arena. Driven by sympathetic nerves, observations of affective nature derive from muscular activity subcutaneous blood flow as well as perspiration patterns in specific body parts. A review of 23 experimental procedures that employed fITI for investigations of affective nature is provided, along with the adopted experimental protocol and the thermal changes that took place on selected regions of interest in human and nonhuman subjects. Discussion is provided regarding the selection of an appropriate baseline, the autonomic nature of the thermal print, the experimental setup, methodological issues, limitations, and considerations, as well as future directions. PMID:24961292

  11. Observing temperature fluctuations in humans using infrared imaging

    PubMed Central

    Liu, Wei-Min; Meyer, Joseph; Scully, Christopher G.; Elster, Eric; Gorbach, Alexander M.

    2013-01-01

    In this work we demonstrate that functional infrared imaging is capable of detecting low frequency temperature fluctuations in intact human skin and revealing spatial, temporal, spectral, and time-frequency based differences among three tissue classes: microvasculature, large sub-cutaneous veins, and the remaining surrounding tissue of the forearm. We found that large veins have stronger contractility in the range of 0.005-0.06 Hz compared to the other two tissue classes. Wavelet phase coherence and power spectrum correlation analysis show that microvasculature and skin areas without vessels visible by IR have high phase coherence in the lowest three frequency ranges (0.005-0.0095 Hz, 0.0095-0.02 Hz, and 0.02-0.06 Hz), whereas large veins oscillate independently. PMID:23538682

  12. Analysis of Forensic Casework Utilizing Infrared Spectroscopic Imaging

    PubMed Central

    Lanzarotta, Adam

    2016-01-01

    A search of the current scientific literature yields a limited number of studies that describe the use of Fourier transform infrared (FT-IR) spectroscopic imaging for the analysis of forensic casework, which is likely due to the fact that these instruments are fairly new commodities to the field of analytical chemistry and are therefore not yet commonplace in forensic laboratories. This report describes recent forensic case studies that have used the technique for determining the composition of a wide variety of multi-component sample types, including animal tissue sections for toxic inclusions, drugs/dietary supplements, an antibiotic with an active pharmaceutical ingredient (API) present as several different salt forms, an adulterated bulk API, unknown trace powders for illicit drugs and an ophthalmic solution suspected of being adulterated with bleach. PMID:26927101

  13. Stripe noise removal for infrared image by minimizing difference between columns

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Peng

    2016-07-01

    This paper introduces a novel approach to eliminate stripe noise in infrared images. The differences between bias voltages in column readout circuit of uncooled infrared sensors result in strong stripe noise which changes slowly in time. The problem can be solved by estimating the bias of each column of infrared images and correcting infrared images with the estimated biases. The bias estimation is translated into an energy optimization problem in the paper. The optimization aims to minimize difference between neighboring columns of images. Our approach can be processed on a single image, or in a recursive way in order to significantly reduce the computation in one frame time. Our approach is compared to the state-of-the-art the stripe noise removal method using realistic infrared images, and the experimental results show the effectiveness and efficiencies of our proposed approach.

  14. A low cost thermal infrared hyperspectral imager for small satellites

    NASA Astrophysics Data System (ADS)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.

    2011-06-01

    The traditional model for space-based earth observations involves long mission times, high cost, and long development time. Because of the significant time and monetary investment required, riskier instrument development missions or those with very specific scientific goals are unlikely to successfully obtain funding. However, a niche for earth observations exploiting new technologies in focused, short lifetime missions is opening with the growth of the small satellite market and launch opportunities for these satellites. These low-cost, short-lived missions provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off the shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCOR), to demonstrate the ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable the use of COTS electronics, and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230-meter pixels with 20 wavenumber spectral resolution from a 400-km orbit.

  15. Preliminary status of POLICAN: A near-infrared imaging polarimeter

    NASA Astrophysics Data System (ADS)

    Devaraj, R.; Luna, A.; Carrasco, L.; Mayya, Y. D.

    2015-10-01

    POLICAN is a near-infrared (J, H, K) imaging polarimeter developed for the Cananea near infrared camera (CANICA) at the 2.1m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located at Cananea, Sonora, México. The camera has a 1024 x 1024 HgCdTe detector (HAWAII array) with a plate scale of 0.32 arcsec/pixel providing a field of view of 5.5 x 5.5 arcmin. POLICAN is mounted externally to CANICA for narrow-field (f/12) linear polarimetric observations. It consists of a rotating super achromatic (1-2.7μm) half waveplate and a fixed wire-grid polarizer as the analyzer. The light is modulated by setting the half waveplate at different angles (0°, 22.5°, 45°, 67.5°) and linear combinations of the Stokes parameters (I, Q and U) are obtained. Image reduction and removal of instrumental polarization consist of dark noise subtraction, polarimetric flat fielding and background sky subtraction. Polarimetric calibration is performed by observing polarization standards available in the literature. The astrometry correction is performed by matching common stars with the Two Micron All Sky Survey. POLICAN's bright and limiting magnitudes are approximately 6th and 16th magnitude, which correspond to saturation and photon noise, respectively. POLICAN currently achieves a polarimetric accuracy about 3.0% and polarization angle uncertainties within 3°. Preliminary observations of star forming regions are being carried out in order to study their magnetic field properties.

  16. FISICA: The Florida Image Slicer for Infrared Astrophysics and Cosmology

    NASA Astrophysics Data System (ADS)

    Raines, S. N.; Eikenberry, S. S.; Elston, R.; Guzman, R.; Gruel, N.; Julian, J.; Boreman, G.; Hoffman, J.; Rodgers, M.; Glenn, P.; Hull-Allen, G.; Myrick, B.; Flint, S.; Comstock, L.

    2005-12-01

    We report on the design, manufacture, and scientific performance of the Florida Image Slicer for Infrared Astrophysics and Cosmology (FISICA) - a fully cryogenic all-reflective image slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Originally conceived as a bench-top demonstration proof-of-concept instrument, after three productive engineering runs at the KPNO 4-m telescope (as of 15 Oct 2005) we find that FISICA is capable of delivering excellent scientific results. It now operates as a 'turnkey' instrument at the KPNO 4-m telescope. FISICA is now open for community access as a visitor instrument on the KPNO 4-m telescope via collaboration with the instrument team, who can assist with the proposal preparation and observations, as well as provide the data reduction tools for integral field spectroscopy. We review the optical and opto-mechanical design, fabrication, laboratory test results, and on-telescope performance for FISICA. Designed to accept input beams near f/15, FISICA with FLAMINGOS slices a 16x33 arcsec field of view into 22 parallel elements using three sets of monolithic powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. However, slight vignetting for some field positions limits the effective field of view to 15x32 arcsec. The effective spatial sampling of 0.70 arcsec delivers 960 spatial resolution elements. Combined with the FLAMINGOS spectrograph, R 1300 spectroscopy over the 1-2.4 micron wavelength range is possible, in either the J+H combined bandpass or the H+K combined bandpass. FISICA was funded by the UCF-UF Space Research Initiative; FLAMINGOS was designed and was constructed by the IR Instrumentation Group (PI: R. Elston) at the University of Florida, Department of Astronomy, with support from NSF grant AST97-31180 and Kitt Peak National Observatory.

  17. Advances in photo-thermal infrared imaging microspectroscopy

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Kendziora, Chris; Papantonakis, Michael; Nguyen, Viet; McGill, Andrew

    2013-05-01

    There is a growing need for chemical imaging techniques in many fields of science and technology: forensics, materials science, pharmaceutical and chemical industries, just to name a few. While FTIR micro-spectroscopy is commonly used, its practical resolution limit of about 20 microns or more is often insufficient. Raman micro-spectroscopy provides better spatial resolution (~1 micron), but is not always practical because of samples exhibiting fluorescence or low Raman scattering efficiency. We are developing a non-contact and non-destructive technique we call photo-thermal infrared imaging spectroscopy (PT-IRIS). It involves photo-thermal heating of the sample with a tunable quantum cascade laser and measuring the resulting increase in thermal emission with an infrared detector. Photo-thermal emission spectra resemble FTIR absorbance spectra and can be acquired in both stand-off and microscopy configurations. Furthermore, PT-IRIS allows the acquisition of absorbance-like photo-thermal spectra in a reflected geometry, suitable for field applications and for in-situ study of samples on optically IR-opaque substrates (metals, fabrics, paint, glass etc.). Conventional FTIR microscopes in reflection mode measure the reflectance spectra which are different from absorbance spectra and are usually not catalogued in FTIR spectral libraries. In this paper, we continue developing this new technique. We perform a series of numerical simulations of the laser heating of samples during photo-thermal microscopy. We develop parameterized formulas to help the user pick the appropriate laser illumination power. We also examine the influence of sample geometry on spectral signatures. Finally, we measure and compare photo-thermal and reflectance spectra for two test samples.

  18. Far infrared structure of spiral galaxies from the IRAS CPC images

    NASA Technical Reports Server (NTRS)

    Wainscoat, Richard J.; Chokshi, Arati; Doyle, Laurance R.

    1989-01-01

    Significant extended far infrared (50 micron and 100 micron) structure was found for five face-on spiral galaxies (NGC2403, M51, M83, NGC6946, and IC342) from fourteen galaxies searched in the Infrared Astronomy Satellite (IRAS) chopped photometric channel (CPC) catalogue. Images were initially processed to remove instrumental and background artifacts, the isophotal centroids of each image determined, and multiple images of each galaxy (for each wavelength) superimposed and averaged to improve signal-to-noise. Calibration of these images was performed using IRAS survey array data. Infrared isophotes were then superimposed on optical (blue) images so that direct structural comparisons could be made.

  19. Automatic target recognition algorithm based on statistical dispersion of infrared multispectral image

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Cao, Le-lin; Wu, Chun-feng; Hou, Qing-yu

    2009-07-01

    A novel automatic target recognition algorithm based on statistical dispersion of infrared multispectral images(SDOIMI) is proposed. Firstly, infrared multispectral characteristic matrix of the scenario is constructed based on infrared multispectral characteristic information (such as radiation intensity and spectral distribution etc.) of targets, background and decoys. Then the infrared multispectral characteristic matrix of targets is reconstructed after segmenting image by maximum distance method and fusing spatial and spectral information. Finally, an statistical dispersion of infrared multispectral images(SDOIMI) recognition criteria is formulated in terms of spectral radiation difference of interesting targets. In simulation, nine sub-bands multispectral images of real ship target and shipborne aerosol infrared decoy modulated by laser simulating ship geometry appearance are obtained via using spectral radiation curves. Digital simulation experiment result verifies that the algorithm is effective and feasible.

  20. Measuring glacier surface temperatures with ground-based thermal infrared imaging

    NASA Astrophysics Data System (ADS)

    Aubry-Wake, Caroline; Baraer, Michel; McKenzie, Jeffrey M.; Mark, Bryan G.; Wigmore, Oliver; Hellström, Robert È.; Lautz, Laura; Somers, Lauren

    2015-10-01

    Spatially distributed surface temperature is an important, yet difficult to observe, variable for physical glacier melt models. We utilize ground-based thermal infrared imagery to obtain spatially distributed surface temperature data for alpine glaciers. The infrared images are used to investigate thermal microscale processes at the glacier surface, such as the effect of surface cover type and the temperature gradient at the glacier margins on the glacier's temperature dynamics. Infrared images were collected at Cuchillacocha Glacier, Cordillera Blanca, Peru, on 23-25 June 2014. The infrared images were corrected based on ground truth points and local meteorological data. For the control points, the Pearson's correlation coefficient between infrared and station temperatures was 0.95. The ground-based infrared camera has the potential for greatly improving glacier energy budget studies, and our research shows that it is critical to properly correct the thermal images to produce robust, quantifiable data.

  1. In-field stray light due to surface scattering effects in infrared imaging systems

    NASA Astrophysics Data System (ADS)

    Sun, Ke; Jiang, Hou-man; Cheng, Xiang-ai

    2011-08-01

    In-field stray light caused by surface scattering is a serious problem in many infrared imaging systems. Light that scattered from lenses in infrared imaging system produces a halo of stray light within the field of view and often degrades the performance of an optical system especially irradiated by intensive light such as laser. The experiments are performed by using infrared thermal imaging system, irradiated by CW DF infrared laser. The relationship between the diameter of saturated area on the detector and the incident laser irradiance is obtained, which can be well explained by the point spread function (PSF) of the optics including both diffraction and scattering components.

  2. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    underlying physics. There are now at least six different disciplines that deal with infrared radiation in one form or another, and in one or several different spectral portions of the whole IR range. These are spectroscopy, astronomy, thermal imaging, detector and source development and metrology, as well the field of optical data transmission. Scientists working in these fields range from chemists and astronomers through to physicists and even photographers. This issue presents examples from some of these fields. All the papers—though some of them deal with fundamental or applied research—include interesting elements that make them directly applicable to university-level teaching at the graduate or postgraduate level. Source (e.g. quantum cascade lasers) and detector development (e.g. multispectral sensors), as well as metrology issues and optical data transmission, are omitted since they belong to fundamental research journals. Using a more-or-less arbitrary order according to wavelength range, the issue starts with a paper on the physics of near-infrared photography using consumer product cameras in the spectral range from 800 nm to 1.1 µm [1]. It is followed by a series of three papers dealing with IR imaging in spectral ranges from 3 to 14 µm [2-4]. One of them deals with laboratory courses that may help to characterize the IR camera response [2], the second discusses potential applications for nondestructive testing techniques [3] and the third gives an example of how IR thermal imaging may be used to understand cloud cover of the Earth [4], which is the prerequisite for successful climate modelling. The next two papers cover the vast field of IR spectroscopy [5, 6]. The first of these deals with Fourier transform infrared spectroscopy in the spectral range from 2.5 to 25 µm, studying e.g. ro-vibrational excitations in gases or optical phonon interactions within solids [5]. The second deals mostly with the spectroscopy of liquids such as biofuels and special

  3. An image analysis system for near-infrared (NIR) fluorescence lymph imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdan; Zhou, Shaohua Kevin; Xiang, Xiaoyan; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2011-03-01

    Quantitative analysis of lymphatic function is crucial for understanding the lymphatic system and diagnosing the associated diseases. Recently, a near-infrared (NIR) fluorescence imaging system is developed for real-time imaging lymphatic propulsion by intradermal injection of microdose of a NIR fluorophore distal to the lymphatics of interest. However, the previous analysis software3, 4 is underdeveloped, requiring extensive time and effort to analyze a NIR image sequence. In this paper, we develop a number of image processing techniques to automate the data analysis workflow, including an object tracking algorithm to stabilize the subject and remove the motion artifacts, an image representation named flow map to characterize lymphatic flow more reliably, and an automatic algorithm to compute lymph velocity and frequency of propulsion. By integrating all these techniques to a system, the analysis workflow significantly reduces the amount of required user interaction and improves the reliability of the measurement.

  4. Deep infrared images of the Small Magellanic Cloud and comparison with the distribution of ultraviolet emission

    NASA Technical Reports Server (NTRS)

    Okumura, K.; Viallefond, F.; Viton, M.; Rice, W.

    1992-01-01

    Deep infrared images of the Small Magellanic Cloud have been produced and compared to an ultraviolet image at an angular resolution of 8 min. There is a strong correlation between the far infrared and the ultraviolet emission but the dispersion in this correlation is unrelated to infrared colors. Comparing with the results for the nearby spiral M33 at different radial distances, it is suggested that the population of dust grains in the Small Magellanic Cloud has very different properties.

  5. Tone mapping infrared images using conditional filtering-based multi-scale retinex

    NASA Astrophysics Data System (ADS)

    Luo, Haibo; Xu, Lingyun; Hui, Bin; Chang, Zheng

    2015-10-01

    Tone mapping can be used to compress the dynamic range of the image data such that it can be fitted within the range of the reproduction media and human vision. The original infrared images that captured with infrared focal plane arrays (IFPA) are high dynamic images, so tone mapping infrared images is an important component in the infrared imaging systems, and it has become an active topic in recent years. In this paper, we present a tone mapping framework using multi-scale retinex. Firstly, a Conditional Gaussian Filter (CGF) was designed to suppress "halo" effect. Secondly, original infrared image is decomposed into a set of images that represent the mean of the image at different spatial resolutions by applying CGF of different scale. And then, a set of images that represent the multi-scale details of original image is produced by dividing the original image pointwise by the decomposed image. Thirdly, the final detail image is reconstructed by weighted sum of the multi-scale detail images together. Finally, histogram scaling and clipping is adopted to remove outliers and scale the detail image, 0.1% of the pixels are clipped at both extremities of the histogram. Experimental results show that the proposed algorithm efficiently increases the local contrast while preventing "halo" effect and provides a good rendition of visual effect.

  6. Monitoring of historical frescoes by timed infrared imaging analysis

    NASA Astrophysics Data System (ADS)

    Cadelano, G.; Bison, P.; Bortolin, A.; Ferrarini, G.; Peron, F.; Girotto, M.; Volinia, M.

    2015-03-01

    The subflorescence and efflorescence phenomena are widely acknowledged as the major causes of permanent damage to fresco wall paintings. They are related to the occurrence of cycles of dry/wet conditions inside the walls. Therefore, it is essential to identify the presence of water on the decorated surfaces and inside the walls. Nondestructive testing in industrial applications have confirmed that active infrared thermography with continuous timed images acquisition can improve the outcomes of thermal analysis aimed to moisture identification. In spite of that, in cultural heritage investigations these techniques have not been yet used extensively on a regular basis. This paper illustrates an application of these principles in order to evaluate the decay of fresco mural paintings in a medieval chapel located in North-West of Italy. One important feature of this study is the use of a robotic system called aIRview that can be utilized to automatically acquire and process thermal images. Multiple accurate thermal views of the inside walls of the building have been produced in a survey that lasted several days. Signal processing algorithms based on Fast Fourier Transform analysis have been applied to the acquired data in order to formulate trustworthy hypotheses about the deterioration mechanisms.

  7. High-Resolution Mars Camera Test Image of Moon (Infrared)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This crescent view of Earth's Moon in infrared wavelengths comes from a camera test by NASA's Mars Reconnaissance Orbiter spacecraft on its way to Mars. The mission's High Resolution Imaging Science Experiment camera took the image on Sept. 8, 2005, while at a distance of about 10 million kilometers (6 million miles) from the Moon. The dark feature on the right is Mare Crisium. From that distance, the Moon would appear as a star-like point of light to the unaided eye. The test verified the camera's focusing capability and provided an opportunity for calibration. The spacecraft's Context Camera and Optical Navigation Camera also performed as expected during the test.

    The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across.

  8. SAFIRE: A Far-Infrared Imaging Spectrometer for SOFIA

    NASA Technical Reports Server (NTRS)

    Shafer, Richard A.; Benford, D. J.; Moseley, S. H.; Pajot, F.; Stacey, G. J.; Staguhn, J. G.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The SOFIA airborne observatory will provide a high spatial resolution, low background telescope for far-infrared astrophysical investigations. Selected as a PI instrument for SOFIA, SAFIRE is an imaging Fabry-Perot spectrograph covering 145 micrometers-655 micrometers with spectral resolving power of approx. 1500 (200km/s). This resolution is well matched to extragalactic emission lines and yields the greatest sensitivity for line detection. SAFIRE will make important scientific contributions to the study of the powering of ULIRGs and AGN, the role of CII cooling in extragalactic star formation, the evolution of matter in the early Universe, and the energetics of the Galactic center. SAFIRE will employ a two-dimensional pop-up bolometer array to provide background-limited imaging spectrometry. Superconducting transition edge bolometers and SQUID amplifiers have been developed for these detectors. An engineering prototype of SAFIRE with a small but cutting edge detector array will be available for use during the initial SOFIA operations; further expansion to larger format arrays will be incorporated during SAFIRE's lifetime.

  9. Multi-point sources and imaging compound infrared target simulator

    NASA Astrophysics Data System (ADS)

    Shi, Rui; Xu, Rui; Wang, Hongjie; Wang, Xin; Wu, Di; Li, Zhuo

    2014-11-01

    Infrared target simulator is an important unit in guidance hardware-in-the-loop simulation systems. It is used to simulate the radiation and motion characteristics of target, decoy and background. This paper proposed a multi-channel IR target simulator. It could generate one IR point target, two pairs of IR decoys and background respectively in the same field of view of the seeker's optical system simultaneously. An IR imaging fiber bundle as the focal plane of the projection optical system was used to compound the target, decoys and background. The compound scene was projected to the seeker by the projection optical system. In IR imaging channel, IR scene was generated by an optical film chip as a visible to thermal transducer which was placed in a vacuum cell. The simulated temperature range of IR scene could be from room temperature to 430K.The thin film transducer had 512×512 pixels. Its frame rate could reach to 100Hz. Light sources with high equivalent black body temperature were adopted in IR target and decoy channels. The size and the radiation intensity of the IR point target and decoys could be controlled by pin holes and attenuators. The point target and decoys driven by high precise motors could travel through the whole instantaneous field of view of the seeker's optical system. Two pairs of decoys could move away from the center to the edge of the instantaneous field of view. The highest simulated black body temperature of the point source was 1200K.

  10. Investigation of Latent Traces Using Infrared Reflectance Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Schubert, Till; Wenzel, Susanne; Roscher, Ribana; Stachniss, Cyrill

    2016-06-01

    The detection of traces is a main task of forensics. Hyperspectral imaging is a potential method from which we expect to capture more fluorescence effects than with common forensic light sources. This paper shows that the use of hyperspectral imaging is suited for the analysis of latent traces and extends the classical concept to the conservation of the crime scene for retrospective laboratory analysis. We examine specimen of blood, semen and saliva traces in several dilution steps, prepared on cardboard substrate. As our key result we successfully make latent traces visible up to dilution factor of 1:8000. We can attribute most of the detectability to interference of electromagnetic light with the water content of the traces in the shortwave infrared region of the spectrum. In a classification task we use several dimensionality reduction methods (PCA and LDA) in combination with a Maximum Likelihood classifier, assuming normally distributed data. Further, we use Random Forest as a competitive approach. The classifiers retrieve the exact positions of labelled trace preparation up to highest dilution and determine posterior probabilities. By modelling the classification task with a Markov Random Field we are able to integrate prior information about the spatial relation of neighboured pixel labels.

  11. Thermal Infrared Spectral Imager for Airborne Science Applications

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2009-01-01

    An airborne thermal hyperspectral imager is under development which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution for lighter-than-air (LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of apparent emissivity for various known standard minerals (such as quartz). A comparison is made using data from the ASTER spectral library.

  12. Gas plume quantification in downlooking hyperspectral longwave infrared images

    NASA Astrophysics Data System (ADS)

    Turcotte, Caroline S.; Davenport, Michael R.

    2010-10-01

    Algorithms have been developed to support quantitative analysis of a gas plume using down-looking airborne hyperspectral long-wave infrared (LWIR) imagery. The resulting gas quantification "GQ" tool estimates the quantity of one or more gases at each pixel, and estimates uncertainty based on factors such as atmospheric transmittance, background clutter, and plume temperature contrast. GQ uses gas-insensitive segmentation algorithms to classify the background very precisely so that it can infer gas quantities from the differences between plume-bearing pixels and similar non-plume pixels. It also includes MODTRAN-based algorithms to iteratively assess various profiles of air temperature, water vapour, and ozone, and select the one that implies smooth emissivity curves for the (unknown) materials on the ground. GQ then uses a generalized least-squares (GLS) algorithm to simultaneously estimate the most likely mixture of background (terrain) material and foreground plume gases. Cross-linking of plume temperature to the estimated gas quantity is very non-linear, so the GLS solution was iteratively assessed over a range of plume temperatures to find the best fit to the observed spectrum. Quantification errors due to local variations in the camera-topixel distance were suppressed using a subspace projection operator. Lacking detailed depth-maps for real plumes, the GQ algorithm was tested on synthetic scenes generated by the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software. Initial results showed pixel-by-pixel gas quantification errors of less than 15% for a Freon 134a plume.

  13. Design and fabrication of the Infrared Spectral Imaging Radiometer (ISIR)

    NASA Astrophysics Data System (ADS)

    Hoffman, James W.; Grush, Ronald C.

    1997-09-01

    The design and fabrication of the infrared spectral imaging radiometer (ISIR) is presented. The ISIR was designed in 1994 to provide calibrated images in four thermal wavelength bands without cryogenic cooling by utilizing the new, uncooled microbolometer detector technology. The complete system was fabricated at Space Instruments, Inc. (SI) in 1995 and 1996 and delivered to NASA Goddard Space Flight Center (GSFC) for flight on the space shuttle in 1997. Photographs of the flight hardware are shown. The ISIR operates in a pushbroom fashion and utilizes real time, digital time delay and integration (TDI) to improve the signal to noise ratio. From a nominal shuttle altitude of 140 nmi, the nadir pixel subtends 240 by 240 meters on the ground. The size of the radiometer is minimized by the elimination of mechanical scan mechanisms and a space radiator. The ISIR instrument utilizes a through-the- optics calibration system to periodically obtain a two-point calibration for each pixel in the detector array. A blackbody with both heating and cooling capability is used to obtain accurate calibration data for both terrestrial and cloudtop measurements. The timeline logic, TDI integration, mechanism control, calibration, and data formatting are performed in the onboard digital processor which utilizes two microprocessors and seven programmable logic devices. The output data is recorded on two, 8 mm tape recorders.

  14. Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications

    NASA Astrophysics Data System (ADS)

    Lagueux, Philippe; Puckrin, Eldon; Turcotte, Caroline S.; Gagnon, Marc-André; Bastedo, John; Farley, Vincent; Chamberland, Martin

    2012-09-01

    Persistent surveillance and collection of airborne intelligence, surveillance and reconnaissance information is critical in today's warfare against terrorism. High resolution imagery in visible and infrared bands provides valuable detection capabilities based on target shapes and temperatures. However, the spectral resolution provided by a hyperspectral imager adds a spectral dimension to the measurements, leading to additional tools for detection and identification of targets, based on their spectral signature. The Telops Hyper-Cam sensor is an interferometer-based imaging system that enables the spatial and spectral analysis of targets using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320×256 pixels at spectral resolutions as fine as 0.25 cm-1. The LWIR version covers the 8.0 to 11.8 μm spectral range. The Hyper-Cam has been recently used for the first time in two compact airborne platforms: a bellymounted gyro-stabilized platform and a gyro-stabilized gimbal ball. Both platforms are described in this paper, and successful results of high-altitude detection and identification of targets, including industrial plumes, and chemical spills are presented.

  15. Airborne infrared hyperspectral imager for intelligence, surveillance, and reconnaissance applications

    NASA Astrophysics Data System (ADS)

    Puckrin, Eldon; Turcotte, Caroline S.; Gagnon, Marc-André; Bastedo, John; Farley, Vincent; Chamberland, Martin

    2012-06-01

    Persistent surveillance and collection of airborne intelligence, surveillance and reconnaissance information is critical in today's warfare against terrorism. High resolution imagery in visible and infrared bands provides valuable detection capabilities based on target shapes and temperatures. However, the spectral resolution provided by a hyperspectral imager adds a spectral dimension to the measurements, leading to additional tools for detection and identification of targets, based on their spectral signature. The Telops Hyper-Cam sensor is an interferometer-based imaging system that enables the spatial and spectral analysis of targets using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320×256 pixels at spectral resolutions as fine as 0.25 cm-1. The LWIR version covers the 8.0 to 11.8 μm spectral range. The Hyper-Cam has been recently used for the first time in two compact airborne platforms: a belly-mounted gyro-stabilized platform and a gyro-stabilized gimbal ball. Both platforms are described in this paper, and successful results of high-altitude detection and identification of targets, including industrial plumes, and chemical spills are presented.

  16. Visible and infrared remote imaging of hazardous waste: A review

    USGS Publications Warehouse

    Slonecker, Terrence; Fisher, Gary B.; Aiello, Danielle P.; Haack, Barry

    2010-01-01

    One of the critical global environmental problems is human and ecological exposure to hazardous wastes from agricultural, industrial, military and mining activities. These wastes often include heavy metals, hydrocarbons and other organic chemicals. Traditional field and laboratory detection and monitoring of these wastes are generally expensive and time consuming. The synoptic perspective of overhead remote imaging can be very useful for the detection and remediation of hazardous wastes. Aerial photography has a long and effective record in waste site evaluations. Aerial photographic archives allow temporal evaluation and change detection by visual interpretation. Multispectral aircraft and satellite systems have been successfully employed in both spectral and morphological analysis of hazardous wastes on the landscape and emerging hyperspectral sensors have permitted determination of the specific contaminants by processing strategies using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote sensing and overhead imaging in the context of hazardous waste and discusses future monitoring needs and emerging scientific research areas.

  17. Infrared imaging of fossil fuel power plant boiler interiors

    NASA Astrophysics Data System (ADS)

    Howard, James W.; Cranton, Brian W.; Armstrong, Karen L.; Hammaker, Robert G.

    1997-08-01

    Fossil fuel power plant boilers operate continuously for months at a time, typically shutting down only for routine maintenance or to address serious equipment failures. These shutdowns are very costly, and diagnostic tools and techniques which could be used to minimize shutdown duration and frequency are highly desirable. Due to the extremely hostile environment in these boilers, few tools exist to inspect and monitor operating boiler interiors. This paper presents the design of a passively cooled, infrared borescope used to inspect the interior of operating boilers. The borescope operates at 3.9 micrometer, where flame is partially transparent. The primary obstacles overcome in the instrument design were the harsh industrial environment surrounding the boilers and the high temperatures encountered inside the boilers. A portable yet durable lens system and enclosure was developed to work with a scanning radiometer to address these two problems by both shielding the radiometer from the environment and by extending the optical train into a snout designed to be inserted into access ports on the sides of the boiler. In this manner, interior images of the boiler can be made while keeping the radiometer safely outside the boiler. The lens views a 40 degree field of view through any 2.5' or larger opening in a foot thick boiler wall. Three of these borescopes have been built, and high resolution images of boiler interiors have been obtained.

  18. Near-surface Thermal Infrared Imaging of a Mixed Forest

    NASA Astrophysics Data System (ADS)

    Aubrecht, D. M.; Helliker, B. R.; Richardson, A. D.

    2014-12-01

    Measurement of an organism's temperature is of basic physiological importance and therefore necessary for ecosystem modeling, yet most models derive leaf temperature from energy balance arguments or assume it is equal to air temperature. This is because continuous, direct measurement of leaf temperature outside of a controlled environment is difficult and rarely done. Of even greater challenge is measuring leaf temperature with the resolution required to understand the underlying energy balance and regulation of plant processes. To measure leaf temperature through the year, we have mounted a high-resolution, thermal infrared camera overlooking the canopy of a temperate deciduous forest. The camera is co-located with an eddy covariance system and a suite of radiometric sensors. Our camera measures longwave thermal infrared (λ = 7.5-14 microns) using a microbolometer array. Suspended in the canopy within the camera FOV is a matte black copper plate instrumented with fine wire thermocouples that acts as a thermal reference for each image. In this presentation, I will discuss the challenges of continuous, long-term field operation of the camera, as well as measurement sensitivity to physical and environmental parameters. Based on this analysis, I will show that the uncertainties in converting radiometric signal to leaf temperature are well constrained. The key parameter for minimizing uncertainty is the emissivity of the objects being imaged: measuring the emissivity to within 0.01 enables leaf temperature to be calculated to within 0.5°C. Finally, I will present differences in leaf temperature observed amongst species. From our two-year record, we characterize high frequency, daily, and seasonal thermal signatures of leaves and crowns, in relation to environmental conditions. Our images are taken with sufficient spatial and temporal resolution to quantify the preferential heating of sunlit portions of the canopy and the cooling effect of wind gusts. Future work will

  19. Thermal infrared hyperspectral imaging from vehicle-carried instrumentation

    NASA Astrophysics Data System (ADS)

    Kirkland, Laurel E.; Herr, Kenneth C.; Adams, Paul M.; McAfee, John; Salisbury, John

    2002-09-01

    Stand-off identification in the field using thermal infrared spectrometers (hyperspectral) is a maturing technique for gases and aerosols. However, capabilities to identify solid-phase materials on the surface lag substantially, particularly for identification in the field without benefit of ground truth (e.g. for "denied areas"). Spectral signatures of solid phase materials vary in complex and non-intuitive ways, including non-linear variations with surface texture, particle size, and intimate mixing. Also, in contrast to airborne or satellite measurements, reflected downwelling radiance strongly affects the signature measured by field spectrometers. These complex issues can confound interpretations or cause a misidentification in the field. Problems that remain particularly obstinate are (1) low ambiguity identification when there is no accompanying ground truth (e.g. measurements of denied areas, or Mars surface by the 2003 Mars lander spectrometer); (2) real- or near real-time identification, especially when a low ambiguity answer is critical; (3) identification of intimate mixtures (e.g. two fine powders mixed together) and targets composed of very small particles (e.g. aerosol fallout dust, some tailings); and (4) identification of non-diffuse targets (e.g. smooth coatings such as paint and desert varnish), particularly when measured at a high emission angle. In most studies that focus on gas phase targets or specific manmade targets, the solid phase background signatures are called "clutter" and are thrown out. Here we discuss our field spectrometer images measured of test targets that were selected to include a range of particle sizes, diffuse, non-diffuse, high, and low reflectance materials. This study was designed to identify and improve understanding of the issues that complicate stand-off identification in the field, with a focus on developing identification capabilities to proceed without benefit of ground truth. This information allows both improved

  20. Infrared image non-rigid registration based on regional information entropy demons algorithm

    NASA Astrophysics Data System (ADS)

    Lu, Chaoliang; Ma, Lihua; Yu, Ming; Cui, Shumin; Wu, Qingrong

    2015-02-01

    Infrared imaging fault detection which is treated as an ideal, non-contact, non-destructive testing method is applied to the circuit board fault detection. Since Infrared images obtained by handheld infrared camera with wide-angle lens have both rigid and non-rigid deformations. To solve this problem, a new demons algorithm based on regional information entropy was proposed. The new method overcame the shortcomings of traditional demons algorithm that was sensitive to the intensity. First, the information entropy image was gotten by computing regional information entropy of the image. Then, the deformation between the two images was calculated that was the same as demons algorithm. Experimental results demonstrated that the proposed algorithm has better robustness in intensity inconsistent images registration compared with the traditional demons algorithm. Achieving accurate registration between intensity inconsistent infrared images provided strong support for the temperature contrast.

  1. Infrared and multi-type images fusion algorithm based on contrast pyramid transform

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Wang, Yan; Wu, Yujing; Qian, Yunsheng

    2016-09-01

    A fusion algorithm for infrared and multi-type images based on contrast pyramid transform (CPT) combined with Otsu method and morphology is proposed in this paper. Firstly, two sharpened images are combined to the first fused image based on information entropy weighted scheme. Afterwards, two enhanced images and the first fused one are decomposed into a series of images with different dimensions and spatial frequencies. To the low-frequency layer, the Otsu method is applied to calculate the optimal segmentation threshold of the first fused image, which is subsequently used to determine the pixel values in top layer fused image. With respect to the high-frequency layers, the top-bottom hats morphological transform is employed to each layer before maximum selection criterion. Finally, the series of decomposed images are reconstructed and then superposed with the enhanced image processed by morphological gradient operation as a second fusion to get the final fusion image. Infrared and visible images fusion, infrared and low-light-level (LLL) images fusion, infrared intensity and infrared polarization images fusion, and multi-focus images fusion are discussed in this paper. Both experimental results and objective metrics demonstrate the effectiveness and superiority of the proposed algorithm over the conventional ones used to compare.

  2. Lidar Luminance Quantizer

    NASA Technical Reports Server (NTRS)

    Quilligan, Gerard; DeMonthier, Jeffrey; Suarez, George

    2011-01-01

    This innovation addresses challenges in lidar imaging, particularly with the detection scheme and the shapes of the detected signals. Ideally, the echoed pulse widths should be extremely narrow to resolve fine detail at high event rates. However, narrow pulses require wideband detection circuitry with increased power dissipation to minimize thermal noise. Filtering is also required to shape each received signal into a form suitable for processing by a constant fraction discriminator (CFD) followed by a time-to-digital converter (TDC). As the intervals between the echoes decrease, the finite bandwidth of the shaping circuits blends the pulses into an analog signal (luminance) with multiple modes, reducing the ability of the CFD to discriminate individual events

  3. Near Infrared Imaging of Molecular Beacons in Cancers

    NASA Astrophysics Data System (ADS)

    Chance, Britton

    2001-03-01

    The recent demonstrations of the efficacy of the tumor to background contrast in breast cancer using the tricarbo-cyanine near infrared (NIR) agent with time domain 2-D imaging presages the greater efficacy of site-directed optical contrast agents for early detection of cancers which show contrast (tissue to background) of over 20 fold. Further increases of contrast are obtained with structures that quench the fluorescence until the agent is delivered, recognized, and opened by specific enzymatic activity of the tumor. These are termed ``Molecular Beacons". In order to image the localization of the Beacons, we employ light pen (< 40μ) scanning of the freeze trapped tumor in order to immobilize the tissue, to increase the fluorescence quantum yield and to limit the penetration of the excitation to a thin superficial layer (< 20μ). Precision milling of layers (> 20μ) in LN2 gives the desired 3D high resolution image of the location of the Beacon within in the cancer cell. Since cancer prevention is linked to early detection, the high signal to background obtainable with Molecular Beacons enables the detection of very early subsurface cancers, especially breast and prostate (NIH, UIP). Thus the fluorescent Beacon excites and emits in the NIR window and signals from several cm deep in breast are detected by diffusive wave optical tomography (DWOT). Detection of objects (< 1 mm) is achieved by phased array optical system using 0^O, 180^O 50 MHz modulation of pairs of laser diodes (780 nm) and fluorescence detection (> 800 nm) affording 0.2 mm object detection of even low Beacon concentrations. One, two, and 3-D localization is made possible by one, two, and three orthogonal phase array null planes.

  4. Visible/Infrared Imaging Spectroscopy and Energy-Resolving Detectors

    NASA Astrophysics Data System (ADS)

    Eisenhauer, Frank; Raab, Walfried

    2015-08-01

    Imaging spectroscopy has seen rapid progress over the past 25 years, leading to breakthroughs in many fields of astronomy that would not have been otherwise possible. This review overviews the visible/infrared imaging spectroscopy techniques as well as energy-resolving detectors. We introduce the working principle of scanning Fabry-Perot and Fourier transform spectrometers and explain the most common integral field concepts based on mirror slicers, lenslet arrays, and fibers. The main advantage of integral field spectrographs is the simultaneous measurement of spatial and spectral information. Although Fabry-Perot and Fourier transform spectrometers can provide a larger field of view, it is ultimately the higher sensitivity of integral field units that make them the technique of choice. This is arguably the case for image slicers, which make the most efficient use of the available detector pixels and have equal or higher transmission than lenslet arrays and fiber integral field units, respectively. We also address the more specific issues of large étendue operation, focal ratio degradation, anamorphic magnification, and diffraction-limited operation. This review also covers the emerging technology of energy-resolving detectors, which promise very simple and efficient instrument designs. These energy-resolving detectors are based on superconducting thin film technology and exploit either the very small superconducting energy to count the number of quasi-particles excited in the absorption of the photon or the extremely steep phase transition between the normal- and superconducting phase to measure a temperature increase. We have put special emphasis on an overview of the underlying physical phenomena as well as on the recent technological progress and astronomical path finder experiments.

  5. Methods of foreign fiber detecting based on PCA analyzing of infrared spectral images

    NASA Astrophysics Data System (ADS)

    Tian, LiXun; Fu, WeiSen; Liu, JieYu; Zhang, HongBo; Pan, Jin; Wang, YaPeng; Tong, Fei

    2014-02-01

    A set of near infrared high resolution spectral imaging system is set up, the infrared absorption properties of raw cotton and colorless foreign are analyzed through the system, and scheme of polypropylene fiber detection based on the near infrared spectral image is proposed; On this basis, reduce dimensions the spectral images through the principal component analysis, further improve the efficiency of colorless foreign detection. The experimental results show that the spectral images after reducing dimensions can be used to detect colorless or light color raw cotton fiber effectively.

  6. Single camera imaging system for color and near-infrared fluorescence image guided surgery

    PubMed Central

    Chen, Zhenyue; Zhu, Nan; Pacheco, Shaun; Wang, Xia; Liang, Rongguang

    2014-01-01

    Near-infrared (NIR) fluorescence imaging systems have been developed for image guided surgery in recent years. However, current systems are typically bulky and work only when surgical light in the operating room (OR) is off. We propose a single camera imaging system that is capable of capturing NIR fluorescence and color images under normal surgical lighting illumination. Using a new RGB-NIR sensor and synchronized NIR excitation illumination, we have demonstrated that the system can acquire both color information and fluorescence signal with high sensitivity under normal surgical lighting illumination. The experimental results show that ICG sample with concentration of 0.13 μM can be detected when the excitation irradiance is 3.92 mW/cm2 at an exposure time of 10 ms. PMID:25136502

  7. Investigation into the merits of infrared imaging in the investigation of tattoos postmortem.

    PubMed

    Starkie, Alexandra; Birch, Wendy; Ferllini, Roxana; Thompson, Tim J U

    2011-11-01

    Infrared imaging has a history of use in the forensic examination of artwork and documents and is investigated here for its wider use in the detection of tattoos on the human body postmortem. Infrared photographic and reflectographic techniques were tested on 18 living individuals, displaying a total of 30 tattoos. It was observed that neither age, sex, age of the tattoo, nor, most significantly, skin color affected the ability to image the tattoos using infrared imaging techniques. Second, a piglet carcass was tattooed and the impact of the decomposition process on the visibility of the tattoos assessed. Changes were recorded for 17 days and decomposition included partial mummification and skin discoloration. Crucially, the discoloration was recorded as greatly affecting the image quality using conventional photography, but was insignificant to the infrared recording of these tattoos. It was concluded that infrared reflectography was beneficial in the investigation into tattoos postmortem. PMID:21827465

  8. Investigation into the merits of infrared imaging in the investigation of tattoos postmortem.

    PubMed

    Starkie, Alexandra; Birch, Wendy; Ferllini, Roxana; Thompson, Tim J U

    2011-11-01

    Infrared imaging has a history of use in the forensic examination of artwork and documents and is investigated here for its wider use in the detection of tattoos on the human body po