Science.gov

Sample records for imaged luminous infrared

  1. Infrared and color visible image fusion system based on luminance-contrast transfer technique

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Gong, Wenfeng; Wang, Chensheng

    2012-12-01

    In this paper, an infrared and color image fusion algorithm based on luminance-contrast transfer technique is presented. This algorithm shall operate YCbCr transform on color visible image, and obtain the luminance component. Then, the grey-scale image fusion methods are utilized to fuse the luminance component of visible and infrared images to acquire grey-scale fusion image. After that, the grey-scale fusion image and visible image are fused to form color fusion image based on inversed YCbCr transform. To acquire better details appearance, a natural-sense color transfer fusion algorithm based on reference image is proposed. Furthermore, a real-time infrared/visible image fusion system based on FPGA is realized. Finally, this design and achievement is verified experimentally, and the experimental results show that the system can produce a color fusion image with good image quality and real-time performance.

  2. Adaptive Optics Imaging Survey of Luminous Infrared Galaxies

    SciTech Connect

    Laag, E A; Canalizo, G; van Breugel, W; Gates, E L; de Vries, W; Stanford, S A

    2006-03-13

    We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L{sub FIR} {ge} 10{sup 12} L{sub {circle_dot}}) and 19 new LIGs (with L{sub FIR} {ge} 10{sup 11} L{sub {circle_dot}}). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K{prime}. Galaxy morphologies were determined using the two dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines--four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.

  3. Submillimeter Imaging of the Luminous Infrared Galaxy Pair VV114

    NASA Technical Reports Server (NTRS)

    Frayer, D.; Ivison, R. J.; Smail, I.; Yun, M. S.; Armus, L.

    1999-01-01

    We report on 450 and 850 mue observations of the interacting galaxy pair, VV114E+W (IC 1623), taken with the SCUBA camera on the James Clerk Maxwell Telescope, and near-infrared observations taken with UFTI on the UK Infrared Telescope.

  4. NEAR-INFRARED ADAPTIVE OPTICS IMAGING OF INFRARED LUMINOUS GALAXIES: THE BRIGHTEST CLUSTER MAGNITUDE-STAR FORMATION RATE RELATION

    SciTech Connect

    Randriamanakoto, Z.; Väisänen, P.; Escala, A.; Kankare, E.; Kotilainen, J.; Mattila, S.; Ryder, S.

    2013-10-01

    We have established a relation between the brightest super star cluster (SSC) magnitude in a galaxy and the host star formation rate (SFR) for the first time in the near-infrared (NIR). The data come from a statistical sample of ∼40 luminous IR galaxies (LIRGs) and starbursts utilizing K-band adaptive optics imaging. While expanding the observed relation to longer wavelengths, less affected by extinction effects, it also pushes to higher SFRs. The relation we find, M{sub K} ∼ –2.6log SFR, is similar to that derived previously in the optical and at lower SFRs. It does not, however, fit the optical relation with a single optical to NIR color conversion, suggesting systematic extinction and/or age effects. While the relation is broadly consistent with a size-of-sample explanation, we argue physical reasons for the relation are likely as well. In particular, the scatter in the relation is smaller than expected from pure random sampling strongly suggesting physical constraints. We also derive a quantifiable relation tying together cluster-internal effects and host SFR properties to possibly explain the observed brightest SSC magnitude versus SFR dependency.

  5. Characterising Nearby Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Ramphul, R.; Vaisanen, P.; Van der Heyden, K.

    2017-06-01

    Luminous InfraRed Galaxies (LIRGs) in the local universe are known to be highly interacting galaxies with strong star-formation in obscured environments. LIRGs have diversity in terms of morphology and mode and location of SF, while their even more energetic counterparts, the Ultra-Luminous IR galaxies, ULIRGs, (LIR ≥ 10^12 Lsol ) are normally (remnants of) gas rich major mergers with centralised starbursts and AGN. I will present ongoing work on a survey of >40 (U)LIRGs, in a distance range of 40 to 300Mpc, observed with SALT/RSS in long-slit mode. The sample of galaxies are in various stages of interaction and merging, some with strong AGN contribution. The reduction of the SALT/RSS data, was performed efficiently with our custom-built pipeline written in python/iraf/pyraf and handles error-frames propagation. We are performing a rigorous stellar populations analysis of our sample using Starlight (Cid Fernandes, 2005) which will ultimately lead to understanding the star formation history of these galaxies. We also use automatic line intensity measurements to derive chemical abundances, star formation rates, metallicity and emission line diagnostic. The talk will showcase the latest results that we just obtained for this dataset and discuss some of the future works.

  6. The VascuLuminator: effectiveness of a near-infrared vessel imaging system as a support in arterial puncture in children

    NASA Astrophysics Data System (ADS)

    Cuper, Natascha J.; de Graaff, Jurgen C.; Kalkman, Cor J.; Verdaasdonk, Rudolf M.

    2010-02-01

    A practical near-IR blood vessel imaging system, the 'VascuLuminator', was developed to facilitate the puncturing of blood vessels for different procedures. Technical solutions were found for certain difficulties, such as obtaining a maximum image contrast by reducing the interference of IR light present in the surroundings. In phantom studies it was shown that the device is able to visualize blood vessels of different sizes to a clinically relevant maximum depth. In a preliminary clinical study, the use of the VascuLuminator resulted in decrease of the failure rate in blood withdrawal in young children from 13% to 2% and the laboratory technicians were satisfied with the practical application of the device. After this study, the effectiveness of the VascuLuminator was investigated to facilitate arterial cannulation in a group of children undergoing cardiac surgery. In an ongoing study, 71 children up to 3 years of age were included and time of arterial cannulation, number of punctures and puncture site were recorded. In 38 patients, cannulation was performed without the VascuLuminator and in 33 patients with VascuLuminator by pediatric anesthesiologists. The initial results do not show significant differences in time and in number of punctures with and without the use of the VascuLuminator. However, the VascuLuminator was able to visualize the arteries in most cases. In 11 of the 33 cases, the artery was located by using only the near-infrared image was used, without palpating for a pulse or knowledge of anatomical landmarks. Further clinical studies are needed to identify the patients groups that will benefit the most from VascuLuminator-assisted vessel punctures.

  7. Morphological classification of local luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Psychogyios, A.; Charmandaris, V.; Diaz-Santos, T.; Armus, L.; Haan, S.; Howell, J.; Le Floc'h, E.; Petty, S. M.; Evans, A. S.

    2016-06-01

    We present analysis of the morphological classification of 89 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS) sample, using non-parametric coefficients and compare their morphology as a function of wavelength. We rely on images that were obtained in the optical (B- and I-band) as well as in the infrared (H-band and 5.8 μm). Our classification is based on the calculation of Gini and the second order of light (M20) non-parametric coefficients, which we explore as a function of stellar mass (M⋆), infrared luminosity (LIR), and star formation rate (SFR). We investigate the relation between M20, the specific SFR (sSFR) and the dust temperature (Tdust) in our galaxy sample. We find that M20 is a better morphological tracer than Gini, as it allows us to distinguish systems that were formed by double systems from isolated and post-merger LIRGs. The effectiveness of M20 as a morphological tracer increases with increasing wavelength, from the B to H band. In fact, the multi-wavelength analysis allows us to identify a region in the Gini-M20 parameter space where ongoing mergers reside, regardless of the band used to calculate the coefficients. In particular, when measured in the H band, a region that can be used to identify ongoing mergers, with minimal contamination from LIRGs in other stages. We also find that, while the sSFR is positively correlated with M20 when measured in the mid-infrared, i.e. star-bursting galaxies show more compact emission, it is anti-correlated with the B-band-based M20. We interpret this as the spatial decoupling between obscured and unobscured star formation, whereby the ultraviolet/optical size of an LIRG experience an intense dust-enshrouded central starburst that is larger that in the mid-infrared since the contrast between the nuclear to the extended disk emission is smaller in the mid-infrared. This has important implications for high redshift surveys of dusty sources, where sizes of galaxies

  8. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    SciTech Connect

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro; Takahashi, Hidenori; Kato, Natsuko Mitani; Kitagawa, Yutaro; Todo, Soya; Toshikawa, Koji; Sako, Shigeyuki; Uchimoto, Yuka K.; Ohsawa, Ryou; Asano, Kentaro; Kamizuka, Takafumi; Nakamura, Tomohiko; Okada, Kazushi; Ita, Yoshifusa; Komugi, Shinya; Koshida, Shintaro; Manabe, Sho; Nakashima, Asami; and others

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with those from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.

  9. Infrared Imaging of Transient Luminous Events (1-1.5 microns) Over the Mid-Western US and Comparison with their Visible Wavelength Signatures

    NASA Astrophysics Data System (ADS)

    Bailey, Matt; Taylor, Michael J.; Pautet, Dominique; Lyons, Walter A.; Cummer, Steven

    2006-10-01

    As part of a coordinated campaign conducted from Yucca Ridge, Colorado during summer, 2005, four sensitive imaging systems were fielded by Utah State University to investigate the signatures of transient luminous events (TLE's) over a broad spectral range, extending from the near ultra violet (0.35 microns) to infrared wavelengths (1.5 microns). These measurements were made in conjunction with high speed video and electromagnetic observations providing detailed information of the TLE dynamics and their structures. The USU instruments consisted of two Gen 3 Xybion cameras, one filtered to observe N2 first positive emissions (665 nm) while the second observed white light emissions. A third intensified camera with an extended blue response was fitted with a broad band filter to observe the N2^+ first negative and N2 second positive emissions (band width, 350-475 nm). Novel infrared measurements were made using an InGaAs imaging array operating at video rates. All four cameras had similar fields of view (25^o) and were co-aligned on a single mount with the high speed imager. We discovered that sprites were easily imaged in the infrared spectral range, and over 30 events were captured with the InGaAs camera arising from thunderstorms over the mid-western United States during early July and mid August. This poster presents new measurements of the optical characteristics of TLEs imaged in the infrared spectral range (1-1.5 microns) and an initial comparison with their visible and near UV signatures.

  10. Calibration of imaging luminance measuring devices (ILMD)

    NASA Astrophysics Data System (ADS)

    Liu, Liying; Zheng, Feng; Zhu, Lingxi; Li, Ye; Huan, Kewei; Shi, Xiaoguang

    2015-11-01

    A method of calibration of imaging luminance measuring devices has been studied. By the device-independent color space transformation, the color image by digital camera could be converted to the CIE's absolute color space lab. Then, the calibration model is fitted between ln(L/t) and luminance. At last, luminance image is obtained and the dynamic range of luminance image could be adjusted by shutter speed.

  11. Infrared Imaging of Transient Luminous Events (1 - 1.5 micron) Over the Mid-Western US and Comparison With Their Visible Wavelength Signatures

    NASA Astrophysics Data System (ADS)

    Taylor, M. J.; Pautet, D.; Bailey, M.; Lyons, W. A.; Nelson, T. E.; Cummer, S.; Jaugey, N.; Gerken, E.

    2005-12-01

    As part of a coordinated campaign conducted from Yucca Ridge, Colorado, during summer, 2005, four sensitive imaging systems were fielded by Utah State University to investigate the signatures of transient luminous events (TLEs) over a broad spectral range, extending from the near ultra violet (0.35 microns) to infrared wavelengths (1.5 microns). These measurements were made in conjunction with high speed video and electromagnetic observations providing detailed information of the TLE dynamics and their structures. The USU instruments consisted of two Gen 3 Xybion cameras, one filtered to observe N2 first positive emissions (665 nm) while the second observed white light emissions. A third intensified camera with an extended blue response was fitted with a broad band filter to observe the N2+ first negative and N2 second positive emissions (band width, 350-475 nm). Novel infrared measurements were made using an InGaAs imaging array operating at video rates. All four cameras had similar field of view (25°) and were co-aligned on a single mount with the high speed imager. We discovered that sprites were easily imaged in the infrared spectral range, and over 30 events were captured with the InGaAs camera arising from thunderstorms over the mid-western United States during early July and mid August. This talk will focus on new measurements of the optical characteristics of TLEs imaged in the infrared spectral range (1-1.5 microns) and an initial comparison with their visible and near UV signatures.

  12. Understanding Local Luminous Infrared Galaxies in the Herschel Era

    NASA Astrophysics Data System (ADS)

    Chu, Jason; Sanders, David B.; Larson, Kirsten L.; Mazzarella, Joseph M.; Howell, Justin; Diaz Santos, Tanio; Xu, C. Kevin; Paladini, Roberta; Schulz, Bernhard; Shupe, David L.; Appleton, Philip N.; Armus, Lee; Billot, Nicolas; Pan Chan, Hiu; Evans, Aaron S.; Fadda, Dario; Frayer, David T.; Haan, Sebastian; Mie Ishida, Catherine; Iwasawa, Kazushi; Kim, Dong-Chan; Lord, Steven D.; Murphy, Eric J.; Petric, Andreea; Privon, George C.; Surace, Jason A.; Treister, Ezequiel; Great Observatories All-Sky LIRG Survey, Cosmic Evolution Survey

    2017-06-01

    Luminous and ultraluminous infrared galaxies [(U)LIRGs] are some of the most extreme objects in the universe with their elevated star formation rates and/or presence of a powerful AGN, playing a central role in the evolution of galaxies throughout cosmic history. The 201 local (U)LIRGs (z<0.088) within the Great Observatories All-Sky LIRG Survey (GOALS) provide an unmatched opportunity to characterize the diverse properties in a large, statistically significant sample, in addition to comparisons with their high redshift counterparts. In this thesis talk I will first present the Herschel PACS and SPIRE far infrared image atlas of the entire GOALS sample (encompassing the 70-500 micron wavelength range), and demonstrate the excellent data quality. The Herschel GOALS images presented here are the highest resolution, most sensitive and comprehensive far-infrared imaging survey of the nearest (U)LIRGs to date. This allows us for the first time to directly probe the critical far infrared and submillimeter wavelength regime of these systems, enabling us to accurately determine the bolometric luminosities, infrared surface brightnesses, star formation rates, and dust masses and temperatures on spatial scales of 2-5 kpc. In addition, the superb resolution of Herschel means we can resolve many of the galaxy pairs and systems within the GOALS sample, allowing us to measure far infrared fluxes of component galaxies. Finally, using the Herschel photometry in conjunction with Spitzer, WISE, and IRAS data, I will show our first results on the global properties of (U)LIRGs such as their average 3-500 micron infrared SEDs and far infrared colors, and compare them to lower infrared luminosity objects. We will also compare and contrast their infrared SED shapes with previously published SED templates from the literature. If time permits, I will also show initial results from our rest-frame optical spectroscopy program on z~2.3 infrared selected galaxies in the COSMOS field.

  13. Compact radio sources in luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Parra, Rodrigo

    2007-08-01

    Radio interferometry is an observational technique of high sensitivity and incomparably high spatial resolution. Moreover, because radio waves can freely propagate through interstellar dust and gas, it allows the study of regions of the universe completely obscured at other wavelengths. This thesis reports the observational and theoretical results of my research during the past four years which are mostly based on interferometric radio data. The COLA sample is an infrared selected sample of active star forming galaxies. We conducted 6 cm VLA and VLBI snapshot observations of the northern half of this sample. The radio emission seen at VLA scales is consistent with being powered by star formation activity because it follows the far infrared to radio correlation. We detect 22% of the sample sources in our VLBI snapshots. Based on luminosity arguments, we argue that these sub-parsec VLBI sources are powered by AGN activity. Furthermore, we find that VLBI detections are preferentially found in sources whose VLA scale structures have the highest peak brightnesses suggesting a strong correlation between compact starburst and AGN activity. This observational result is consistent with the theoretical picture of an Eddington-limited nuclear starburst acting as the last valve in the pipeline transporting the gas from kiloparsec scales onto the accretion disc of a buried AGN. Arp 220 is the archetypical ultra luminous infrared galaxy. For many years this source has been known to harbour a compact (~100 pc) cluster of unresolved 18 cm bright sources believed to be bright core collapse supernovae. Using multiwavelength VLBI observations, we obtained for the first time radio spectra for 18 of these sources. We find that over a half of them have spectra consistent with young supernovae. The rest can be better explained as older supernova remnants interacting with the high density starburst ISM. This finding allowed us to constrain the number of possible scenarios for the Arp 220

  14. ISM Properties of Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Diaz-Santos, Tanio; Armus, Lee; Stierwalt, Sabrina; Elbaz, David; Malhotra, Sangeeta

    2015-08-01

    Luminous and Ultra-luminous Infrared Galaxies ((U)LIRGs) represent the most important galaxy population at redshifts z > 1 as they account for more than 50% of all star formation produced in the Universe at those epochs; and encompass what it is called the main-sequence (MS) of star-forming galaxies. Investigating their local counterparts -low luminosity LIRGs- is therefore key to understand the physical properties and phases of their inter-stellar medium (ISM) - a task that is rather challenging in the distant Universe. On the other hand, high-z star-bursting (out of the MS) systems, although small in number, account for a modest yet still significant fraction of the total energy production. Here I present far-IR line emission observations ([CII]158μm, [OI]63μm, [OIII]88μm and [NII]122μm) obtained with Herschel for two large samples of nearby LIRGs: The Great Observatories All-sky LIRG Survey (GOALS), a sample of more than 240 relatively cold LIRGs, and a survey of 30 LIRGs selected to have very warm mid- to far-IR colors, suggestive of an ongoing intense nuclear starburst and/or an AGN. Using photo-dissociation region (PDR) models we derive the basic characteristics of the ISM (ionization intensity and density) for both samples and study differences among systems as a function of AGN activity, merger stage, dust temperature, and compactness of the starburst - parameters that are thought to control the life cycle of galaxies moving in and out of the MS, locally and at high-z.

  15. WARM MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Lu, N.; Zhao, Y.; Xu, C. K.; Mazzarella, J. M.; Howell, J.; Appleton, P.; Lord, S.; Schulz, B.; Gao, Y.; Armus, L.; Díaz-Santos, T.; Surace, J.; Isaak, K. G.; Petric, A. O.; Charmandaris, V.; Evans, A. S.; Inami, H.; Iwasawa, K.; Leech, J.; Sanders, D. B.; and others

    2014-06-01

    We present our initial results on the CO rotational spectral line energy distribution (SLED) of the J to J–1 transitions from J = 4 up to 13 from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey. The observed SLEDs change on average from one peaking at J ≤ 4 to a broad distribution peaking around J ∼ 6 to 7 as the IRAS 60-to-100 μm color, C(60/100), increases. However, the ratios of a CO line luminosity to the total infrared luminosity, L {sub IR}, show the smallest variation for J around 6 or 7. This suggests that, for most LIRGs, ongoing star formation (SF) is also responsible for a warm gas component that emits CO lines primarily in the mid-J regime (5 ≲ J ≲ 10). As a result, the logarithmic ratios of the CO line luminosity summed over CO (5–4), (6–5), (7–6), (8–7) and (10–9) transitions to L {sub IR}, log R {sub midCO}, remain largely independent of C(60/100), and show a mean value of –4.13 (≡log R{sub midCO}{sup SF}) and a sample standard deviation of only 0.10 for the SF-dominated galaxies. Including additional galaxies from the literature, we show, albeit with a small number of cases, the possibility that galaxies, which bear powerful interstellar shocks unrelated to the current SF, and galaxies, in which an energetic active galactic nucleus contributes significantly to the bolometric luminosity, have their R {sub midCO} higher and lower than R{sub midCO}{sup SF}, respectively.

  16. AKARI NEAR-INFRARED SPECTROSCOPY OF LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Lee, Jong Chul; Lee, Myung Gyoon; Hwang, Ho Seong

    2012-09-01

    We present the AKARI near-infrared (NIR; 2.5-5 {mu}m) spectroscopic study of 36 (ultra)luminous infrared galaxies ((U)LIRGs) at z = 0.01-0.4. We measure the NIR spectral features including the strengths of 3.3 {mu}m polycyclic aromatic hydrocarbon emission and hydrogen recombination lines (Br{alpha} and Br{beta}), optical depths at 3.1 and 3.4 {mu}m, and NIR continuum slope. These spectral features are used to identify optically elusive, buried active galactic nuclei (AGNs). We find that half of the (U)LIRGs optically classified as non-Seyferts show AGN signatures in their NIR spectra. Using a combined sample of (U)LIRGs with NIR spectra in the literature, we measure the contribution of buried AGNs to the infrared luminosity from the spectral energy distribution fitting to the IRAS photometry. The contribution of these buried AGNs to the infrared luminosity is 5%-10%, smaller than the typical AGN contribution of (U)LIRGs including Seyfert galaxies (10%-40%). We show that NIR continuum slopes correlate well with WISE [3.4]-[4.6] colors, which would be useful for identifying a large number of buried AGNs using the WISE data.

  17. Mid-Infrared Spectral Diagnostics of Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Petric, A.

    2010-06-01

    We present a statistical analysis of 248 luminous infrared galaxies (LIRGs) which comprise the Great Observatories All-sky LIRG Survey (GOALS) observed with the Infrared Spectrograph (IRS) on-board Spitzer in the rest-frame wavelength range between 5 and 38 μm. The GOALS sample enables a direct measurement of the relative contributions of star-formation and active galactic nuclei (AGN) to the total infrared (IR) emission from a large, statistically complete sample of LIRGs in the local Universe. Several diagnostics effective at isolating the AGN contribution to the Mid-infrared (MIR) emission using [NeV], [OIV] and [NeII] gas emission lines, the 6.2 μm PAH equivalent width (EQW) and the shape of the MIR continuum are compared. The [NeV] line which indicates the presence of an AGN is detected in 22% of all LIRGs. The 6.2 μm PAH EQW, [NeV]/LIR, [NeV]/[NeII] and [OIV]/[NeII] ratios, and the ratios of 6.2 μm PAH flux to the integrated continuum flux between 5.3 and 5.8 μm suggest values of around 10% for the fractional AGN contribution to the total IR luminosity of LIRGs. The median of these estimates suggests that for local LIRGs the fractional AGN contribution to the total IR luminosity is ~12%. AGN dominated LIRGs have higher global and nuclear IR luminosities, warmer MIR colors and are interacting more than starburst (SB) dominated LIRGs. However there are no obvious linear correlations between these properties, suggesting that none of these properties alone can determine the activity and evolution of an individual LIRG. A study of the IRAC colors of LIRGs confirms that methods of finding AGN on the basis of their MIR colors are effective at choosing AGN but 50% to 40% of AGN dominated LIRGs are not selected as such with these methods.

  18. The Nature of Optically-Luminous Stellar Clusters in a Large Sample of Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Vavilkin, Tatjana

    2011-08-01

    Luminous Star Clusters (SCs) are fundamental building blocks of galaxies, and they provide basic information regarding the mechanisms of star formation and the process of galaxy formation and evolution. In my PhD thesis project I investigated properties of young SCs in a sample of 87 nearby Luminous Infrared Galaxies (LIRGs: LIR>10^11 L_sun) imaged with the Hubble Space Telescope's Advanced Camera for Surveys at 0.4μm (F435W) and 0.9μm (F814W). Many LIRGs are observed to be ongoing mergers of gas-rich disk galaxies. They contain extreme starbursts and hence are expected to host particularly rich and luminous populations of SCs. This project represents the largest sample of galaxies with uniformly characterized properties of their SC population. The size of the sample allows an identification of trends in SC properties with merger stage and star formation rate. A large fraction (∼17%) of the cluster population is younger than 10 Myr. There is uncertainty in the determination of the ages of the bulk of the SCs due to an age-extinction degeneracy--the majority of the detected cluster population may have ages of up to a few hundred Myr. The median SC luminosity function index of the LIRG sample is alpha=-1.8, which is in a good agreement with previously published studies in various galaxy types. This sample contains some of the most luminous clusters observed so far, with Mmax (F435W) exceeding -17 mag. LIRGs follow the "brightest cluster--star formation rate" correlation observed for lower luminosity star-forming galaxies quite closely, although a large degree of scatter possibly due to extinction and over-estimation of Star Formation Rates (SFRs) in galaxies containing an Active Galactic Nucleus (AGN) is present. Thus, the size-of-sample effect and the observed high SFRs are responsible for high luminosity of SCs found in LIRGs. The specific luminosity TL(F435W)--SFR(far-IR + far-UV) relation observed for nearby non-interacting spiral galaxies is not applicable

  19. Gas content of infrared luminous markarian galaxies

    NASA Astrophysics Data System (ADS)

    Kandalian, R.; Martin, J.-M.; Bottinelli, L.; Gouguenheim, L.

    1995-10-01

    The atomic and molecular hydrogen gas properties of a complete sample of Markarian galaxies with flux density at 60 µm higher than 1.95 Jy are presented. We present the improved far-infrared luminosity function of Markarian galaxies; and its comparison with other samples. We find that 40% of the bright IRAS galaxies of far-infrared luminosity higher than 1010.5 L ⊙ are Markarian galaxies. There is an absence of correlation between HI content of Markarian galaxies and current star formation activity, implying that star formation in these systems has complex structure and it is not a simple function of the HI content. On the contrary, the H2 content of Markarian galaxies is well correlated with star formation activity. It is argued that tight correlation between HI and H2 contents is a consequence of transformation of atomic hydrogen into molecular.

  20. The First Hyper-Luminous Infrared Galaxy Discovered by WISE

    NASA Technical Reports Server (NTRS)

    Eisenhardt, Peter R.; Wu, Jingwen; Tsai, Chao-Wei; Assef, Roberto; Benford, Dominic; Blain, Andrew; Bridge, Carrie; Condon, J. J.; Cushing, Michael C.; Cutri, Roc; hide

    2012-01-01

    We report the discovery by the Wide-field Infrared Survey Explorer of the z = 2.452 source WISEJ181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of approximately 1000 extremely luminous "W1W2-dropouts" (sources faint or undetected by WISE at 3.4 and 4.6 micrometers and well detected at 12 or 22 micrometers). The WISE data and a 350 micrometers detection give a minimum bolometric luminosity of 3.7 x 10(exp 13) solar luminosity, with approximately 10(exp 14) solar luminosity plausible. Followup images reveal four nearby sources: a QSO and two Lyman Break Galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate approximately 300 solar mass yr(exp -1), accounting for less than or equal to 10 percent of the bolometric luminosity. Strong 22 micrometer emission relative to 350 micrometer implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is approximately 10? above the far-infrared/radio correlation, indicating an active galactic nucleus is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local MBH-bulge mass relation, the implied Eddington ratio is approximately greater than 4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation.

  1. Evolution of luminous IRAS sources - CCD imaging

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Neff, S. G.

    1991-01-01

    The paper presents optical imaging of a sample of 64 luminous IRAS galaxies which cover a wide range of IRAS spectra and luminosity and also include a range of optical types. The objects are almost all in current or recent tidal interaction. The connections between the strength and age of the interaction, the IR spectrum and luminosity, and the optical colors, and other properties of the galaxies are discussed. The principal result is that the powerful IR sources with steep IR spectra are stronger and dynamically younger interacting systems, while the flat IR spectrum objects are older. Star formation, dust obscuration, and the timescales for nuclear activity compared with IR and tidal events are discussed, and a self-consistent evolution scenario connecting the luminous IR sources is described.

  2. Discovery of luminous near-infrared transient AT 2017gbl in IRAS 23436+5257

    NASA Astrophysics Data System (ADS)

    Kool, E. C.; Ryder, S.; Mattila, S.; Reynolds, T.; Cannizzaro, G.; Kankare, E.; McDermid, R.; Fraser, M.; Perez-Torres, M.; Wevers, T.; Jonker, P.; Vaisanen, P.; Sweet, S.; Tucker, B. E.

    2017-08-01

    As part of a near-infrared adaptive optics assisted search for nuclear core-collapse supernovae in luminous infrared galaxies (project SUNBIRD) we report on the discovery of AT 2017gbl, a luminous transient superimposed on the northern nucleus of IRAS 23436+5257 at (RA, Dec.) = 23:46:05.53 +53:14:01.06, observed in JHKs with NIRC2 on Keck on 2017 July 8.56 UT. Subtraction with NIRC2 reference imaging from 2016 Oct 21 yielded near-infrared magnitudes of 13.3 (0.1) in Ks, 14.5 (0.1) in H and 16.0 (0.1) in J. Assuming a host luminosity distance of 146 Mpc (NED, H0 = 70 km s-1 Mpc-1), this yields an absolute magnitude in Ks of -22.5, not corrected for extinction.

  3. HERSCHEL OBSERVATIONS OF FAR-INFRARED COOLING LINES IN INTERMEDIATE REDSHIFT (ULTRA)-LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rigopoulou, D.; Magdis, G. E.; Thatte, N.; Hopwood, R.; Clements, D.; Swinyard, B. M.; Pearson, C.; Farrah, D.; Huang, J.-S.; Alonso-Herrero, A.; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Smith, A.; Wang, L.; Riechers, D.; Scott, D.; Vaccari, M.; Valtchanov, I.

    2014-01-20

    We report the first results from a spectroscopic survey of the [C II] 158 μm line from a sample of intermediate redshift (0.2 luminous infrared galaxies, (U)LIRGs (L {sub IR} > 10{sup 11.5} L {sub ☉}), using the Spectral and Photometric Imaging REceiver-Fourier Transform Spectrometer on board the Herschel Space Observatory. This is the first survey of [C II] emission, an important tracer of star formation, at a redshift range where the star formation rate density of the universe increases rapidly. We detect strong [C II] 158 μm line emission from over 80% of the sample. We find that the [C II] line is luminous, in the range (0.8-4) × 10{sup –3} of the far-infrared continuum luminosity of our sources, and appears to arise from photodissociation regions on the surface of molecular clouds. The L{sub [C} {sub II]}/L {sub IR} ratio in our intermediate redshift (U)LIRGs is on average ∼10 times larger than that of local ULIRGs. Furthermore, we find that the L{sub [C} {sub II]}/L {sub IR} and L{sub [CII]}/L{sub CO(1-0)} ratios in our sample are similar to those of local normal galaxies and high-z star-forming galaxies. ULIRGs at z ∼ 0.5 show many similarities to the properties of local normal and high-z star-forming galaxies. Our findings strongly suggest that rapid evolution in the properties of the star-forming regions of (U)LIRGs is likely to have occurred in the last 5 billion years.

  4. VIBRATIONALLY EXCITED HCN IN THE LUMINOUS INFRARED GALAXY NGC 4418

    SciTech Connect

    Sakamoto, Kazushi; Aalto, Susanne; Evans, Aaron S.; Wiedner, Martina C.; Wilner, David J.

    2010-12-20

    Infrared pumping and its effect on the excitation of HCN molecules can be important when using rotational lines of HCN to probe dense molecular gas in galaxy nuclei. We report the first extragalactic detection of (sub)millimeter rotational lines of vibrationally excited HCN, in the dust-enshrouded nucleus of the luminous infrared galaxy NGC 4418. We estimate the excitation temperature of T{sub vib} {approx} 230 K between the vibrational ground and excited (v{sub 2} = 1) states. This excitation is most likely due to infrared radiation. At this high vibrational temperature the path through the v{sub 2} = 1 state must have a strong impact on the rotational excitation in the vibrational ground level, although it may not be dominant for all rotational levels. Our observations also revealed nearly confusion-limited lines of CO, HCN, HCO{sup +}, H{sup 13}CN, HC{sup 15}N, CS, N{sub 2}H{sup +}, and HC{sub 3}N at {lambda} {approx} 1 mm. Their relative intensities may also be affected by the infrared pumping.

  5. Infrared Images

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Earth objects emit natural radiation invisible to the unaided human eye, but visible to infrared scanning devices such as the device developed by Inframetrics, Inc. Such devices serve a number of purposes ranging from detection of heat loss in buildings for energy conservation measures, to examining heat output of industrial machinery for trouble shooting and preventive maintenance. Representative of system is Model 525, a small, lightweight field instrument that scans infrared radiation and translates its findings to a TV picture of the temperature pattern in the scene being viewed. An accessory device permits viewing the thermal radiation in color.

  6. Clustering of very luminous infrared galaxies and their environment

    NASA Technical Reports Server (NTRS)

    Gao, YU

    1993-01-01

    The IRAS survey reveals a class of ultraluminous infrared (IR) galaxies (ULIRG's) with IR luminosities comparable to the bolometric luminosities of quasars. The nature, origin, and evolution of ULIRG's are attracting more and more attention recently. Since galaxy morphology is certainly a function of environment, morphological observations show that ULIRG's are interacting/merging galaxies, and some ULIRG's might be the dust-enshrouded quasars (S88) or giant ellipticals, the study of ULIRG's environment and large scale clustering effects should be worthwhile. ULIRG's and very luminous IR galaxies have been selected from the 2Jy IRAS redshift survey. Meanwhile, a catalog of IRAS groups of galaxies has been constructed using a percolation-like algorithm. Therefore, whether ULIRG's and/or VLIRG's have a group environment can be checked immediately. Other aspects of the survey are discussed.

  7. Infrared images of merging galaxies

    NASA Technical Reports Server (NTRS)

    Wright, G. S.; James, P. A.; Joseph, R. D.; Mclean, I. S.; Doyon, R.

    1990-01-01

    Infrared imaging of interacting galaxies is especially interesting because their optical appearance is often so chaotic due to extinction by dust and emission from star formation regions, that it is impossible to locate the nuclei or determine the true stellar distribution. However, at near-infrared wavelengths extinction is considerably reduced, and most of the flux from galaxies originates from red giant stars that comprise the dominant stellar component by mass. Thus near infrared images offer the opportunity to study directly components of galactic structure which are otherwise inaccessible. Such images may ultimately provide the framework in which to understand the activity taking place in many of the mergers with high Infrared Astronomy Satellite (IRAS) luminosities. Infrared images have been useful in identifying double structures in the nuclei of interacting galaxies which have not even been hinted at by optical observations. A striking example of this is given by the K images of Arp 220. Graham et al. (1990) have used high resolution imaging to show that it has a double nucleus coincident with the radio sources in the middle of the dust lane. The results suggest that caution should be applied in the identification of optical bright spots as multiple nuclei in the absence of other evidence. They also illustrate the advantages of using infrared imaging to study the underlying structure in merging galaxies. The authors have begun a program to take near infrared images of galaxies which are believed to be mergers of disk galaxies because they have tidal tails and filaments. In many of these the merger is thought to have induced exceptionally luminous infrared emission (cf. Joseph and Wright 1985, Sanders et al. 1988). Although the optical images of the galaxies show spectacular dust lanes and filaments, the K images all have a very smooth distribution of light with an apparently single nucleus.

  8. Luminance-model-based DCT quantization for color image compression

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Peterson, Heidi A.

    1992-01-01

    A model is developed to approximate visibility thresholds for discrete cosine transform (DCT) coefficient quantization error based on the peak-to-peak luminance of the error image. Experimentally measured visibility thresholds for R, G, and B DCT basis functions can be predicted by a simple luminance-based detection model. This model allows DCT coefficient quantization matrices to be designed for display conditions other than those of the experimental measurements: other display luminances, other veiling luminances, and other spatial frequencies (different pixel spacings, viewing distances, and aspect ratios).

  9. The merger-driven evolution of warm infrared luminous galaxies

    NASA Astrophysics Data System (ADS)

    Younger, Joshua D.; Hayward, Christopher C.; Narayanan, Desika; Cox, T. J.; Hernquist, Lars; Jonsson, Patrik

    2009-06-01

    We present a merger-driven evolutionary model for the production of luminous (LIRGs) and ultraluminous infrared galaxies (ULIRGs) with warm infrared (IR) colours. Our results show that simulations of gas-rich major mergers including star formation, black hole growth and feedback can produce warm (U)LIRGs. We also find that while the warm evolutionary phase is associated with increased active galactic nucleus (AGN) activity, star formation alone may be sufficient to produce warm IR colours. However, the transition can be suppressed entirely - even when there is a significant AGN contribution - when we assume a single-phase interstellar medium, which maximizes the attenuation. Finally, our evolutionary models are consistent with the 25-to-60 flux density ratio versus LHX/LIR relation for local LIRGs and ULIRGs, and predict the observed scatter in IR colour at fixed LHX/LIR. Therefore, our models suggest a cautionary note in the interpretation of warm IR colours: while associated with periods of active black hole growth, they are probably produced by a complex mix of star formation and AGN activity intermediate between the cold star formation dominated phase and the birth of a bright, unobscured quasar.

  10. Rest-Frame Mid-Infrared Detection of an Extremely Luminous Lyman Break Galaxy with the Spitzer Infrared Spectrograph (IRS)

    NASA Technical Reports Server (NTRS)

    Teplitz, H. I.; Charmandaris, V.; Armus, L.; Appleton, P. N.; Houck, J. R.; Soifer, B. T.; Weedman, D.; Brandl, B. R.; vanCleve, J.; Grillmair, C.; Uchid, K. I.

    2004-01-01

    We present the first rest-frame of approximately 4 microns detection of a Lyman break galaxy. The data were obtained using the 16 microns imaging capability of the Spitzer Infrared Spectrograph. The target object, J134026.44+634433.2, is an extremely luminous Lyman break galaxy at z=2.79, first identified in Sloan Digital Sky Survey (SDSS) spectra (as reported by Bentz et al.). The source is strongly detected with a flux of 0.94 +/- 0.02 mJy. Combining Spitzer and SDSS photometry with supporting ground-based J- and K-band data, we show that the spectral energy distribution is consistent with an actively star-forming galaxy. We also detect other objects in the Spitzer field of view, including a very red mid-infrared source. We find no evidence of a strong lens among the mid-infrared sources.

  11. Rest-Frame Mid-Infrared Detection of an Extremely Luminous Lyman Break Galaxy with the Spitzer Infrared Spectrograph (IRS)

    NASA Technical Reports Server (NTRS)

    Teplitz, H. I.; Charmandaris, V.; Armus, L.; Appleton, P. N.; Houck, J. R.; Soifer, B. T.; Weedman, D.; Brandl, B. R.; vanCleve, J.; Grillmair, C.; hide

    2004-01-01

    We present the first rest-frame of approximately 4 microns detection of a Lyman break galaxy. The data were obtained using the 16 microns imaging capability of the Spitzer Infrared Spectrograph. The target object, J134026.44+634433.2, is an extremely luminous Lyman break galaxy at z=2.79, first identified in Sloan Digital Sky Survey (SDSS) spectra (as reported by Bentz et al.). The source is strongly detected with a flux of 0.94 +/- 0.02 mJy. Combining Spitzer and SDSS photometry with supporting ground-based J- and K-band data, we show that the spectral energy distribution is consistent with an actively star-forming galaxy. We also detect other objects in the Spitzer field of view, including a very red mid-infrared source. We find no evidence of a strong lens among the mid-infrared sources.

  12. Super Star Clusters in Luminous Infrared Galaxies: the SUNBIRD Survey

    NASA Astrophysics Data System (ADS)

    Väisänen, P.; Randriamanakoto, Z.; Escala, A.; Kankare, E.; Kniazev, A.; Kotilainen, J. K.; Mattila, S.; Ramphul, R.; Ryder, S.; Tekola, A.

    2014-09-01

    We summarize recent results from an Adaptive Optics (AO) imaging survey of 40 Luminous IR Galaxies (LIRGs). We have constructed the first statistically significant sample of Luminosity Functions (LFs) of Super Star Clusters (SSCs) in the near-IR, and find evidence that the LF slopes in LIRGs are shallower than in more quiescent spiral galaxies. Distance and blending effects were investigated in detail paving the way for SSC studies further out than done previously. We have also correlated the luminosities of the brightest clusters with the star formation rates of the hosts and find that the characteristics of the relation suggest an underlying physical driver rather than solely a size-of-sample effect. Finally we present early results of using SSC age and mass properties to trace the histories of the target LIRG systems.

  13. Towards infrared image understanding

    NASA Astrophysics Data System (ADS)

    Foulkes, Peter

    An extensive literature survey has revealed that the majority of previous work in infrared image processing ha ignored the processes leading to the formation of infrared images. Processing has normally either been restricted to simple low-level image enhancement convolutions or has consisted of algorithms copied from computer vision without regard for the inherent differences between infrared and visible images. In this thesis, we address the problem of infrared image formation and derive an irradiance equation for simple infrared scenes. We consider the complications caused by mutual illumination of one or more bodies and indicate how the infrared irradiance equation can also be specified for more complex scenes. The infrared irradiance equation we derive is solved in closed form for some simple geometries for both Lambertian and non-Lambertian surfaces. An infrared imager has been built and is described. Images taken with the imager of a variety of scene geometries show that the experimental results compare favorably with the theoretically derived equations, indicating the validity of the theoretical analysis. We describe how a knowledge of the formation of infrared images can be used to predict the image irradiance pattern of a particular object. We also show how, with a knowledge of the radiance properties and surface geometry of the object, it is possible to detect instances of that object in a scene. Examples are given of successful object detection based on an understanding of the image irradiance. We present a brief history of infrared imagers and a description of the principles on which modern infrared imagers are based. In addition to the survey of the literature published on infrared image processing, a brief summary of some techniques from the computer vision literature and their suitability to infrared image processing is given. A selection of vision techniques are applied to both infrared and visible images to verify conclusions reached in the thesis.

  14. Towards Infrared Image Understanding

    NASA Astrophysics Data System (ADS)

    Foulkes, Peter

    Available from UMI in association with The British Library. Requires signed TDF. An extensive literature survey has revealed that the majority of previous work in infrared image processing has ignored the processes leading to the formation of infrared images. Processing has normally either been restricted to simple low-level image enhancement convolutions or has consisted of algorithms copied from computer vision without regard for the inherent differences between infrared and visible images. In this thesis, we address the problem of infrared image formation and derive an irradiance equation for simple infrared scenes. We consider the complications caused by mutual illumination of one or more bodies and indicate how the infrared irradiance equation can also be specified for more complex scenes. The infrared irradiance equation we derive is solved in closed form for some simple geometries for both Lambertian and non-Lambertian surfaces. An infrared imager has been built and is described. Images taken with the imager of a variety of scene geometries show that the experimental results compare favourably with the theoretically derived equations, indicating the validity of the theoretical analysis. We describe how a knowledge of the formation of infrared images can be used to predict the image irradiance pattern of a particular object. We also show how, with a knowledge of the radiance properties and surface geometry of the object, it is possible to detect instances of that object in a scene. Examples are given of successful object detection based on an understanding of the image irradiance. We present a brief history of infrared imagers and a description of the principles on which modern infrared imagers are based. In addition to the survey of the literature published on infrared image processing, a brief summary of some techniques from the computer vision literature and their suitability to infrared image processing is given. A selection of vision techniques are

  15. Evolution of luminous IRAS galaxies: Radio imaging

    NASA Technical Reports Server (NTRS)

    Neff, S. G.; Hutchings, J. B.

    1993-01-01

    In a recent study of IRAS galaxies' optical morphologies, we found that luminous IR sources lie in the IR color-luminosity plane in groups which separate out by optical spectroscopic type and also by degree of tidal disturbance. We found that the most luminous steep-IR-spectrum sources are generally galaxies in the initial stages of a major tidal interaction. Galaxies with active nuclei were generally found to have flatter IR spectra, to cover a range of IR luminosity, and to be in the later stages of a tidal interaction. We proposed a sequence of events by which luminous IR sources evolve: they start as interacting or merging galaxies, some develop active nuclei, and most undergo extensive star-formation in their central regions. Another way to study these objects and their individual evolution is to study their radio morphologies. Radio emission may arise at a detectable level from supernovae in star-forming regions and/or the appearance of an active nucleus can be accompanied by a nuclear radio source (which may develop extended structure). Therefore, the compact radio structure may trace the evolution of the inner regions of IRAS-luminous sources. If the radio sources are triggered by the interactions, we would expect to find the radio morphology related to the optical 'interactivity' of the systems. Here, we explore using the radio emission of IRAS galaxies as a possible tracer of galaxy evolution. We present and discuss observations of the compact radio morphology of 111 luminous IRAS-selected active galaxies covering a wide range of IR and optical properties.

  16. Evolution of luminous IRAS sources - Radio imaging

    NASA Technical Reports Server (NTRS)

    Neff, S. G.; Hutchings, J. B.

    1992-01-01

    Observations of the compact radio morphology of 111 luminous IRAS-selected active galaxies covering a wide range of IR and optical properties are presented and discussed. Of these sources, 72 are observed for the first time with the VLA A configuration. The circumnuclear radio sources are generally small and weak, with 15 nondetections to a limit of about 0.4 mJy. Comparison with the IR and optical properties of the objects indicates that the radio sources turn on within 10 exp 8 yr of the tidal encounter that is presumed to generate the IR activity. However, the radio sources do not all appear at the same time. The radio observations are consistent with the evolution scenario for luminous IRAS galaxies suggested by Hutchings and Neff (1991).

  17. FAR-INFRARED PROPERTIES OF SPITZER-SELECTED LUMINOUS STARBURSTS

    SciTech Connect

    Kovacs, A.; Omont, A.; Fiolet, N.; Beelen, A.; Dole, H.; Lagache, G.; Lonsdale, C.; Polletta, M.; Greve, T. R.; Borys, C.; Dowell, C. D.; Bell, T. A.; Cox, P.; De Breuck, C.; Farrah, D.; Menten, K. M.; Owen, F.

    2010-07-01

    We present SHARC-2 350 {mu}m data on 20 luminous z {approx} 2 starbursts with S{sub 1.2{sub mm}} > 2 mJy from the Spitzer-selected samples of Lonsdale et al. and Fiolet et al. All the sources were detected, with S{sub 350{sub {mu}m}} > 25 mJy for 18 of them. With the data, we determine precise dust temperatures and luminosities for these galaxies using both single-temperature fits and models with power-law mass-temperature distributions. We derive appropriate formulae to use when optical depths are non-negligible. Our models provide an excellent fit to the 6 {mu}m-2 mm measurements of local starbursts. We find characteristic single-component temperatures T{sub 1} {approx_equal} 35.5 {+-} 2.2 K and integrated infrared (IR) luminosities around 10{sup 12.9{+-}0.1} L{sub sun} for the SWIRE-selected sources. Molecular gas masses are estimated at {approx_equal}4 x 10{sup 10} M{sub sun}, assuming {kappa}{sub 850{sub {mu}m}} = 0.15 m{sup 2} kg{sup -1} and a submillimeter-selected galaxy (SMG)-like gas-to-dust mass ratio. The best-fit models imply {approx_gt}2 kpc emission scales. We also note a tight correlation between rest-frame 1.4 GHz radio and IR luminosities confirming star formation as the predominant power source. The far-IR properties of our sample are indistinguishable from the purely submillimeter-selected populations from current surveys. We therefore conclude that our original selection criteria, based on mid-IR colors and 24 {mu}m flux densities, provides an effective means for the study of SMGs at z {approx} 1.5-2.5.

  18. Multispectral infrared imaging interferometer

    NASA Technical Reports Server (NTRS)

    Potter, A. E., Jr.

    1971-01-01

    Device permitting simultaneous viewing of infrared images at different wavelengths consists of imaging lens, Michelson interferometer, array of infrared detectors, data processing equipment for Fourier transformation of detector signal, and image display unit. Invention is useful in earth resources applications, nondestructive testing, and medical diagnoses.

  19. Morphology and Molecular Gas Fractions of Local Luminous Infrared Galaxies as a Function of Infrared Luminosity and Merger Stage

    NASA Astrophysics Data System (ADS)

    Larson, K. L.; Sanders, D. B.; Barnes, J. E.; Ishida, C. M.; Evans, A. S.; U, V.; Mazzarella, J. M.; Kim, D.-C.; Privon, G. C.; Mirabel, I. F.; Flewelling, H. A.

    2016-07-01

    We present a new, detailed analysis of the morphologies and molecular gas fractions (MGFs) for a complete sample of 65 local luminous infrared galaxies from Great Observatories All-Sky Luminous Infrared Galaxies (LIRG) Survey using high resolution I-band images from The Hubble Space Telescope, the University of Hawaii 2.2 m Telescope and the Pan-STARRS1 Survey. Our classification scheme includes single undisturbed galaxies, minor mergers, and major mergers, with the latter divided into five distinct stages from pre-first pericenter passage to final nuclear coalescence. We find that major mergers of molecular gas-rich spirals clearly play a major role for all sources with {L}{IR}\\gt {10}11.5{L}⊙ ; however, below this luminosity threshold, minor mergers and secular processes dominate. Additionally, galaxies do not reach {L}{IR}\\gt {10}12.0{L}⊙ until late in the merger process when both disks are near final coalescence. The mean MGF ({MGF} = {M}{{{H}}2}/({M}* +{M}{{{H}}2})) for non-interacting and early-stage major merger LIRGs is 18 ± 2%, which increases to 33 ± 3%, for intermediate stage major merger LIRGs, consistent with the hypothesis that, during the early-mid stages of major mergers, most of the initial large reservoir of atomic gas (HI) at large galactocentric radii is swept inward where it is converted into molecular gas (H2).

  20. Detecting humans using luminance saliency in thermal images.

    PubMed

    Ko, ByoungChul; Kim, DeokYeon; Nam, JaeYeal

    2012-10-15

    This Letter introduces an efficient human detection method in thermal images, using a center-symmetric local binary pattern (CS-LBP) with a luminance saliency map and a random forest (RF) classifier scheme. After detecting a candidate human region, we crop only the head and shoulder region, which has a higher thermal spectrum than the legs or trunk. The CS-LBP feature is then extracted from the luminance saliency map of a hotspot and applied to the RF classifier, which is an ensemble of randomized decision trees. We demonstrate that our detection method is more robust than conventional feature descriptors and classifiers in thermal images.

  1. The ratio of molecular to atomic gas in infrared luminous galaxies

    NASA Technical Reports Server (NTRS)

    Mirabel, I. F.; Sanders, D. B.

    1989-01-01

    In infrared luminous galaxies the ratio of the CO(1 - 0) to H I integrated fluxes increases with the far-infrared excess, f(fir)/f(b). All infrared active galaxies with f(fir)/f(b) greater than 2 have molecular to atomic gas mass fractions greater than 0.5. Among the galaxies with the higher infrared excesses there are systems with strikingly small atomic mass fractions, where less than 15 percent of the total mass of interstellar gas is in atomic form. The optical morphology of luminous infrared galaxies indicates that the majority, if not all, of these objects are interacting systems. These observations suggest that the overall mass fraction of molecular to atomic gas, and the infrared luminosities per nucleon of interstellar gas are enhanced during galaxy-galaxy interactions.

  2. Age-Dating Star Clusters in the Luminous Infrared Galaxy VV340

    NASA Astrophysics Data System (ADS)

    Yarber, Aara'L.; Evans, A. S.

    2014-01-01

    The luminous infrared galaxy (LIRG: i.e., L_IR [8-1000 microns] > 10^11 L_sun) VV 340 is observed to be a pair of z = 0.03 interacting spiral galaxies, with one being observed face-on (VV340North) and one edge-on (VV 340South). The interaction has triggered a burst of star formation in both galaxies, and we make use of Hubble Space Telescope ultraviolet (ACS/SBC) and optical (ACS/WFC) imaging data to constrain the age of luminous optical clusters in the face-on galaxy VV 340South. We find that, for an instantaneous starburst, a Salpeter IMF and no reddening, the cluster ages are in the range of 10-300 million years old. However, the clusters can be a young as a few million years with significant amounts of reddening. The upper limit cluster age range is consistent with detailed modeling of a subset of LIRGs which show that pericentric passage in many LIRGs occurred 200-500 million years prior to when these systems are being observed. This study is part of the Great Observatories All-sky LIRG Survey (GOALS), which is a multi-wavelength campaign designed, in part, to study the evolution of star formation in LIRGs.

  3. Infrared spectroscopy of radio-luminous OH/IR stars

    NASA Technical Reports Server (NTRS)

    Jones, Terry Jay; Hyland, A. R.; Fix, John D.; Cobb, Michael L.

    1988-01-01

    Low-resolution 1.5-2.5-micron spectra for 21 radio-luminous OH/IR stars are presented. These spectra divide into two broad classes. Those with very strong water-vapor absorption closely resemble the spectra of classical Mira variables and are classified Type VM. Those with weaker water-vapor absorption, but still showing strong CO absorption, resemble the spectra of true core-burning supergiants and are classified Type SG. Comparison of the classification of 30 radio-luminous OH/IR stars with their Delta(V)s and luminosities suggests this classification is a good indicator of the intrinsic nature of the underlying star. There is some evidence, however, that some true supergiants (massive main-sequence progenitors) develop the pulsation properties and photospheric characteristics of the Mira-like OH/IR stars when they become optically obscured OH/IR stars.

  4. Infrared spectroscopy of radio-luminous OH/IR stars

    NASA Technical Reports Server (NTRS)

    Jones, Terry Jay; Hyland, A. R.; Fix, John D.; Cobb, Michael L.

    1988-01-01

    Low-resolution 1.5-2.5-micron spectra for 21 radio-luminous OH/IR stars are presented. These spectra divide into two broad classes. Those with very strong water-vapor absorption closely resemble the spectra of classical Mira variables and are classified Type VM. Those with weaker water-vapor absorption, but still showing strong CO absorption, resemble the spectra of true core-burning supergiants and are classified Type SG. Comparison of the classification of 30 radio-luminous OH/IR stars with their Delta(V)s and luminosities suggests this classification is a good indicator of the intrinsic nature of the underlying star. There is some evidence, however, that some true supergiants (massive main-sequence progenitors) develop the pulsation properties and photospheric characteristics of the Mira-like OH/IR stars when they become optically obscured OH/IR stars.

  5. HALESIS projet: Hight Altitude Luminous Events Studied by Infrared Spectro-imagery

    NASA Astrophysics Data System (ADS)

    Croizé, Laurence; Payan, Sébastien; Bureau, Jérome; Duruisseau, Fabrice; Huret, Nathalie

    2014-05-01

    During the last two decades, the discovery of transient luminous events (TLEs) in the high atmosphere [1], as well as the observation of gamma ray flashes of terrestrial origin (Terrestrial Gamma Flashes or TGF) [2] demonstrated the existence of another interaction processes between the different atmospheric layers (troposphere, stratosphere, mesosphere and ionosphere). Indeed, the frequency of occurrence of these phenomena over thunderstorm cells, and the energies involved provide evidence for an impulsive energy transfer between the troposphere and the highest atmospheric layers, which was not considered before. HALESIS (High Altitude Luminous Events Studied by Infrared Spectro-imagery) is an innovative project based on hyperspectral imagery. The purpose of this experience is to measure the atmospheric perturbation in the minutes following the occurrence of Transient Luminous Events (TLEs) from a stratospheric balloon in the altitude range of 20 to 40 km. The first part of the study has been dedicated to establish the project feasibility. To do that, we have simulated spectral perturbation induced by an isolated blue jet. Theoretical predictions [3] have been used to simulate the radiative perturbation due to O3, NO, NO2, NO+ concentration induced by the blue jet. Simulations have been performed using the line by line radiative transfer model LBLRM [4] taking into account of the Non Local Thermodynamic Equilibrium hypotheses. Then, the expected signatures have been compared to the available instrumentation. During this talk, HALESIS project and the results of the feasibility study will be presented. Then, the estimated spectral signatures will be confronted with the technical capabilities of different kind of hyperspectral imagers. We will conclude on the project feasibility, but also on the challenges that lie ahead for an imager perfectly suited for experiences like HALESIS. 1. Franz R, Nemzek R, Winckler J. Television image of a large upward electrical

  6. Digital image comparison using feature extraction and luminance matching

    NASA Astrophysics Data System (ADS)

    Bachnak, Ray A.; Steidley, Carl W.; Funtanilla, Jeng

    2005-03-01

    This paper presents the results of comparing two digital images acquired using two different light sources. One of the sources is a 50-W metal halide lamp located in the compartment of an industrial borescope and the other is a 1 W LED placed at the tip of the insertion tube of the borescope. The two images are compared quantitatively and qualitatively using feature extraction and luminance matching approaches. Quantitative methods included the images' histograms, intensity profiles along a line segment, edges, and luminance measurement. Qualitative methods included image registration and linear conformal transformation with eight control points. This transformation is useful when shapes in the input image are unchanged, but the image is distorted by some combination of translation, rotation, and scaling. The gray-level histogram, edge detection, image profile and image registration do not offer conclusive results. The LED light source, however, produces good images for visual inspection by the operator. The paper presents the results and discusses the usefulness and shortcomings of various comparison methods.

  7. Launching Outflows from Nuclei and Starbursts in Ultra-luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Rudy, Alexander R.; Medling, Anne Marie; U, Vivian; Srinath, Srikar; Max, Claire E.

    2015-08-01

    Multiple lines of evidence suggest that galaxies in the early universe expel much of the interstellar medium via massive outflows. Theory says that these outflows are needed to quench star formation, limit black hole accretion, and give rise to observed relationships between the central black hole's mass and properties of the galaxy's bulge. We present integral field spectroscopy of the central kiloparsec of 9 *nearby* ultra-luminous infrared-galaxies which are known to have high velocity (v>500 km/s) molecular outflows. These observations were performed with the OH-Suppressing Infra-red Imaging Spectrograph (OSIRIS) assisted by the Keck I and II Adaptive Optics systems, which enables spatial resolutions of a few 10s of parsecs. We present the preliminary results of a survey designed to explore the relationship between AGN luminosity fraction ($\\alpha_{AGN}$) and outflow properties among lower-redshift (z < 0.15) ULIRG systems that host high velocity outflows. Our data allow us to examine the opening angle and launching point of the outflow, excitation and temperature of outflowing components (through $H_2$ lines and high-excitation lines such as [SiIV] and [AlIX]), and molecular outflow mass in these systems. This work provides a nearby, spatially resolved analogue to higher-redshift outflows, allowing us to study the physical processes which launch outflows on their smallest scales, with the goal of relating this to the outflows which must govern the evolution of the most massive galaxies.

  8. Energy Diagnoses of Nine Infrared Luminous Galaxies Based on 3-4 Micron Spectra

    DTIC Science & Technology

    2000-12-20

    spectrometer (CGS4; Moun- tain et al. 1990) to obtain 3È4 km spectra of the IRLGs and NGC 253 with UKIRT on Mauna Kea , Hawaii. An observ- ing log is...DIAGNOSES OF NINE INFRARED LUMINOUS GALAXIES BASED ON 3È4 MICRON SPECTRA MASATOSHI IMANISHI1 National Astronomical Observatory , Mitaka, Tokyo 181-8588...feature at 7.7 km, systematic studies of the energy sources of IRLGs have been reported based on the Infrared Space Observatory (ISO) spectra at

  9. A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    SciTech Connect

    Magdis, Georgios E.; Rigopoulou, D.; Hopwood, R.; Clements, D.; Huang, J.-S.; Farrah, D.; Pearson, C.; Alonso-Herrero, Almudena; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Perez Fournon, I.; Riechers, D.; Swinyard, B. M.; Thatte, N.; Scott, D.; Valtchanov, I.; Vaccari, M.

    2014-11-20

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ≤ z ≤ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L {sub IR} > 10{sup 11.5} L {sub ☉}). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L {sub C} {sub II}/L {sub FIR} ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L {sub C} {sub II}–L {sub FIR} relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L {sub C} {sub II}/L {sub FIR} ratio and the far-IR color L {sub 60}/L {sub 100} observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L {sub C} {sub II}/L {sub FIR} at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L {sub C} {sub II}/L {sub FIR} ratios, the moderate star formation efficiencies (L {sub IR}/L{sub CO}{sup ′} or L {sub IR}/M{sub H{sub 2}}), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the

  10. A Far-infrared Spectroscopic Survey of Intermediate Redshift (Ultra) Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Magdis, Georgios E.; Rigopoulou, D.; Hopwood, R.; Huang, J.-S.; Farrah, D.; Pearson, C.; Alonso-Herrero, Almudena; Bock, J. J.; Clements, D.; Cooray, A.; Griffin, M. J.; Oliver, S.; Perez Fournon, I.; Riechers, D.; Swinyard, B. M.; Scott, D.; Thatte, N.; Valtchanov, I.; Vaccari, M.

    2014-11-01

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 <= z <= 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L IR > 1011.5 L ⊙). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 μm, as well as the molecular gas of z ~ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L C II /L FIR ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L C II -L FIR relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L C II /L FIR ratio and the far-IR color L 60/L 100 observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L C II /L FIR at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L C II /L FIR ratios, the moderate star formation efficiencies (L IR/L\\prime _CO or L IR/M_H2), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the present day and z > 1 is already significant by z ~ 0.3.

  11. Variable waveband infrared imager

    SciTech Connect

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  12. Radio continuum properties of luminous infrared galaxies. Identifying the presence of an AGN in the radio

    NASA Astrophysics Data System (ADS)

    Vardoulaki, E.; Charmandaris, V.; Murphy, E. J.; Diaz-Santos, T.; Armus, L.; Evans, A. S.; Mazzarella, J. M.; Privon, G. C.; Stierwalt, S.; Barcos-Muñoz, L.

    2015-02-01

    Context. Luminous infrared galaxies (LIRGs) are systems enshrouded in dust, which absorbs most of their optical/UV emission and radiates it again in the mid- and far-infrared. Radio observations are largely unaffected by dust obscuration, enabling us to study the central regions of LIRGs in an unbiased manner. Aims: The main goal of this project is to examine how the radio properties of local LIRGs relate to their infrared spectral characteristics. Here we present an analysis of the radio continuum properties of a subset of the Great Observatories All-sky LIRG Survey (GOALS), which consists of 202 nearby systems (z< 0.088). Our radio sample consists of 35 systems, containing 46 individual galaxies, that were observed at both 1.49 and 8.44 GHz with the VLA with a resolution of about 1 arcsec (FWHM). The aim of the project is to use the radio imagery to probe the central kpc of these LIRGs in search of active galactic nuclei (AGN). Methods: We used the archival data at 1.49 and 8.44 GHz to create radio-spectral-index maps using the standard relation between flux density Sν and frequency ν, Sν ~ ν- α, where α is the radio spectral index. By studying the spatial variations in α, we classified the objects as radio-AGN, radio-SB, and AGN/SB (a mixture). We identified the presence of an active nucleus using the radio morphology, deviations from the radio/infrared correlation, and spatially resolved spectral index maps, and then correlated this to the usual mid-infrared ([NeV]/[NeII] and [OIV]/[NeII] line ratios and equivalent width of the 6.2 μm PAH feature) and optical (BPT diagram) AGN diagnostics. Results: We find that 21 out of the 46 objects in our sample (~45%) are radio-AGN, 9 out of the 46 (~20%) are classified as starbursts (SB) based on the radio analysis, and 16 (~35%) are AGN/SB. After comparing to other AGN diagnostics we find 3 objects out of the 46 (~7%) that are identified as AGN based on the radio analysis, but are not classified as such based on

  13. Luminous infrared galaxies - Sizes at 10-32 microns

    NASA Technical Reports Server (NTRS)

    Wynn-Williams, C. G.; Becklin, E. E.

    1993-01-01

    We have made estimates of the sizes of 19 infrared galaxies drawn from the highest luminosity galaxies detected by the IRAS survey. The techniques we used were to make multiaperture photometric measurements on the ground-based IR Telescope Facility and to compare these flux densities with the much broader beam measurements obtained by the IRAS survey. Our primary result is that most, but not all, of the galaxies in our sample are extended at 10-25 microns, with characteristic radii of a few hundred parsecs. This result directly supports the widely held assumption that the bulk of the infrared luminosity in these galaxies comes from a central starburst region rather than from the whole disk of the galaxy or from a compact nucleus. The compact nature of Arp 220 is confirmed by direct scans with a 2.9 arcsec aperture at 32 microns.

  14. A Herschel/PACS Far-infrared Line Emission Survey of Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Díaz-Santos, T.; Armus, L.; Charmandaris, V.; Lu, N.; Stierwalt, S.; Stacey, G.; Malhotra, S.; van der Werf, P. P.; Howell, J. H.; Privon, G. C.; Mazzarella, J. M.; Goldsmith, P. F.; Murphy, E. J.; Barcos-Muñoz, L.; Linden, S. T.; Inami, H.; Larson, K. L.; Evans, A. S.; Appleton, P.; Iwasawa, K.; Lord, S.; Sanders, D. B.; Surace, J. A.

    2017-09-01

    We present an analysis of {[{{O}}{{I}}]}63, [O iii]88, [N ii]122, and {[{{C}}{{II}}]}158 far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for ∼240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey. We find pronounced declines (“deficits”) of line-to-FIR continuum emission for [N ii]122, {[{{O}}{{I}}]}63, and {[{{C}}{{II}}]}158 as a function of FIR color and infrared luminosity surface density, {{{Σ }}}{IR}. The median electron density of the ionized gas in LIRGs, based on the [N ii]122/[N ii]205 ratio, is {n}{{e}} = 41 cm‑3. We find that the dispersion in the {[{{C}}{{II}}]}158 deficit of LIRGs is attributed to a varying fractional contribution of photodissociation regions (PDRs) to the observed {[{{C}}{{II}}]}158 emission, f([{{C}} {{II}}{]}158{PDR}) = [{{C}} {{II}}{]}158{PDR}/{[{{C}}{{II}}]}158, which increases from ∼60% to ∼95% in the warmest LIRGs. The {[{{O}}{{I}}]}63/[{{C}} {{II}}{]}158{PDR} ratio is tightly correlated with the PDR gas kinetic temperature in sources where {[{{O}}{{I}}]}63 is not optically thick or self-absorbed. For each galaxy, we derive the average PDR hydrogen density, {n}{{H}}, and intensity of the interstellar radiation field, G, in units of {G}0 and find G/{n}{{H}} ratios of ∼0.1–50 {G}0 cm3, with ULIRGs populating the upper end of the distribution. There is a relation between G/{n}{{H}} and {{{Σ }}}{IR}, showing a critical break at {{{Σ }}}{IR}* ≃ 5 × 1010 L ⊙ kpc‑2. Below {{{Σ }}}{IR}* , G/{n}{{H}} remains constant, ≃0.32 {G}0 cm3, and variations in {{{Σ }}}{IR} are driven by the number density of star-forming regions within a galaxy, with no change in their PDR properties. Above {{{Σ }}}{IR}* , G/{n}{{H}} increases rapidly with {{{Σ }}}{IR}, signaling a departure from the typical PDR conditions found in normal star-forming galaxies toward more intense/harder radiation fields and compact geometries typical of starbursting sources.

  15. FAINT CO LINE WINGS IN FOUR STAR-FORMING (ULTRA)LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Leroy, Adam K.; Walter, Fabian; Decarli, Roberto; Zschaechner, Laura; Bolatto, Alberto; Weiss, Axel

    2015-09-20

    We report the results of a search for large velocity width, low-intensity line wings—a commonly used signature of molecular outflows—in four low redshift (ultra)luminous infrared galaxies that appear to be dominated by star formation. The targets were drawn from a sample of fourteen targets presented in Chung et al., who showed the stacked CO spectrum of the sample to exhibit 1000 km s{sup −1}-wide line wings. We obtained sensitive, wide bandwidth imaging of our targets using the IRAM Plateau de Bure Interferometer. We detect each target at very high significance but do not find the claimed line wings in these four targets. Instead, we constrain the flux in the line wings to be only a few percent. Casting our results as mass outflow rates following Cicone et al. we show them to be consistent with a picture in which very high mass loading factors preferentially occur in systems with high active galactic nucleus contributions to their bolometric luminosity. We identify one of our targets, IRAS 05083 (VII Zw 31), as a candidate molecular outflow.

  16. LOCAL LUMINOUS INFRARED GALAXIES. I. SPATIALLY RESOLVED OBSERVATIONS WITH THE SPITZER INFRARED SPECTROGRAPH

    SciTech Connect

    Pereira-Santaella, Miguel; Alonso-Herrero, Almudena; Colina, Luis; Diaz-Santos, Tanio; Rieke, George H.; Engelbracht, Charles W.; Smith, J.-D. T.; Perez-Gonzalez, Pablo G.

    2010-06-15

    We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 {mu}m silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 {mu}m and [Ne III]15.56 {mu}m emissions. The behavior of the integrated PAH emission and 9.7 {mu}m silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 {mu}m/[Ne II]12.81 {mu}m ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 {mu}m/[Ne II]12.81 {mu}m ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 {mu}m PAH emission appears more extended than the dust 5.5 {mu}m continuum emission. We find a dependency of the 11.3 {mu}m PAH/7.7 {mu}m PAH and [Ne II]12.81 {mu}m/11.3 {mu}m PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K

  17. Buried Quasars in Ultra-luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    We were awarded l00kS of INTEGRAL spacecraft time (Priority A) to observe the ultraluminous infrared galaxy (ULIG) Mrk 2273 in order to measure the integrated flux of the 20-1003 KeV gamma-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN). With this observation we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the hard X-ray and soft gamma-ray backgrounds. Our Priority A 100 kS observation of Mrk 273 was successfully carried out during revolution #73 using 4 separate exposures with the IBIS camera during May, 2003. Our IBIS observations of Mrk 273 were successfully executed, and the source was properly centered in the Field-of-view of the detectors. We are still in the process of interpreting the IBIS gamma-ray data.

  18. Buried Quasars in Ultra-luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    We were awarded l00kS of INTEGRAL spacecraft time (Priority A) to observe the ultraluminous infrared galaxy (ULIG) Mrk 2273 in order to measure the integrated flux of the 20-1003 KeV gamma-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN). With this observation we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the hard X-ray and soft gamma-ray backgrounds. Our Priority A 100 kS observation of Mrk 273 was successfully carried out during revolution #73 using 4 separate exposures with the IBIS camera during May, 2003. Our IBIS observations of Mrk 273 were successfully executed, and the source was properly centered in the Field-of-view of the detectors. We are still in the process of interpreting the IBIS gamma-ray data.

  19. Star formation and AGN activity in a sample of local luminous infrared galaxies through multiwavelength characterization

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, Rubén; Pérez-Torres, Miguel Á.; Randriamanakoto, Zara; Alberdi, Antxon; Efstathiou, Andreas; Väisänen, Petri; Kankare, Erkki; Kool, Erik; Mattila, Seppo; Ramphul, Rajin; Ryder, Stuart

    2017-10-01

    Nuclear starbursts and active galactic nucleus (AGN) activity are the main heating processes in luminous infrared galaxies (LIRGs) and their relationship is fundamental to understand galaxy evolution. In this paper, we study the star formation and AGN activity of a sample of 11 local LIRGs imaged with subarcsecond angular resolution at radio (8.4 GHz) and near-infrared (2.2 μm) wavelengths. This allows us to characterize the central kpc of these galaxies with a spatial resolution of ≃100 pc. In general, we find a good spatial correlation between the radio and the near-IR emission, although radio emission tends to be more concentrated in the nuclear regions. Additionally, we use an Markov Chain Monte Carlo code to model their multiwavelength spectral energy distribution (SED) using template libraries of starburst, AGN and spheroidal/cirrus models, determining the luminosity contribution of each component, and finding that all sources in our sample are starburst-dominated, except for NGC 6926 with an AGN contribution of ≃64 per cent. Our sources show high star formation rates (40-167 M⊙ yr-1), supernova rates (0.4-2.0 SN yr-1) and similar starburst ages (13-29 Myr), except for the young starburst (9 Myr) in NGC 6926. A comparison of our derived star-forming parameters with estimates obtained from different IR and radio tracers shows an overall consistency among the different star formation tracers. AGN tracers based on mid-IR, high-ionization line ratios also show an overall agreement with our SED model fit estimates for the AGN. Finally, we use our wide-band Very Large Array observations to determine pixel-by-pixel radio spectral indices for all galaxies in our sample, finding a typical median value (α ≃ -0.8) for synchrotron-powered LIRGs.

  20. FAR-INFRARED LUMINOUS SUPERNOVA REMNANT Kes 17

    SciTech Connect

    Lee, Ho-Gyu; Moon, Dae-Sik; Koo, Bon-Chul; Onaka, Takashi; Sakon, Itsuki; Jeong, Woong-Seob; Shinn, Jong-Ho E-mail: moon@astro.utoronto.ca E-mail: onaka@astron.s.u-tokyo.ac.jp E-mail: jeongws@kasi.re.kr

    2011-10-10

    We present the results of infrared (IR; 2.5-160 {mu}m) observations of the supernova remnant (SNR) Kes 17 based on the data obtained with the AKARI and Spitzer satellites. We first detect bright continuum emission of its western shell in the mid- and far-IR wavebands together with its near-IR molecular line emission. We also detect hidden mid-IR emission of its southern shell after subtraction of the background emission in this region. The far-IR luminosity of the western shell is {approx}8100 L{sub sun}, which makes Kes 17 one of the few SNRs of significant far-IR emission. The fittings of the spectral energy distribution indicate the existence of two dust components: {approx}79 K (hot) and {approx}27 K (cold) corresponding to the dust masses of {approx}6.2 x 10{sup -4} M{sub sun} and {approx}6.7 M{sub sun}, respectively. We suggest that the hot component represents the dust emission of the material swept up by the SNR to its western and southern boundaries, compatible with the distribution of radio continuum emission overlapping the mid-IR emission in the western and southern shells. The existence of hot ({approx}2000 K), shocked dense molecular gas revealed by the near-IR molecular line emission in the western shell, on the other hand, suggests that the cold dust component represents the dust emission related to the interaction between the SNR and nearby molecular gas. The excitation conditions of the molecular gas appear to be consistent with those from shocked, clumpy admixture gas of different temperatures. We discuss three possibilities for the origin of the bright far-IR emission of the cold dust in the western shell: the emission of dust in the inter-clump medium of shocked molecular clouds, the emission of dust in evaporating flows of molecular clouds engulfed by hot gas, and the emission of dust of nearby molecular clouds illuminated by radiative shocks.

  1. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback

    PubMed Central

    Liu, Haoting; Zhou, Qianxiang; Yang, Jin; Jiang, Ting; Liu, Zhizhen; Li, Jie

    2017-01-01

    An imaging sensor-based intelligent Light Emitting Diode (LED) lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs) are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes. PMID:28208781

  2. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback.

    PubMed

    Liu, Haoting; Zhou, Qianxiang; Yang, Jin; Jiang, Ting; Liu, Zhizhen; Li, Jie

    2017-02-09

    An imaging sensor-based intelligent Light Emitting Diode (LED) lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs) are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.

  3. The radio core structure of the luminous infrared galaxy NGC 4418. A young clustered starburst revealed?

    NASA Astrophysics Data System (ADS)

    Varenius, E.; Conway, J. E.; Martí-Vidal, I.; Aalto, S.; Beswick, R.; Costagliola, F.; Klöckner, H.-R.

    2014-06-01

    Context. The galaxy NGC 4418 contains one of the most compact obscured nuclei within a luminous infrared galaxy (LIRG) in the nearby Universe. This nucleus contains a rich molecular gas environment and an unusually high ratio of infrared-to-radio luminosity (q-factor). The compact nucleus is powered by either a compact starburst or an active galactic nucleus (AGN). Aims: The aim of this study is to constrain the nature of the nuclear region (starburst or AGN) within NGC 4418 via very-high-resolution radio imaging. Methods: Archival data from radio observations using the European Very Long Baseline Interferometry Network (EVN) and Multi-Element Radio Linked Interferometer Network (MERLIN) interferometers are imaged. Sizes and flux densities are obtained by fitting Gaussian intensity distributions to the image. The average spectral index of the compact radio emission is estimated from measurements at 1.4 GHz and 5.0 GHz. Results: The nuclear structure of NGC 4418 visible with EVN and MERLIN consists of eight compact (<49 mas i.e. <8 pc) features spread within a region of 250 mas, i.e. 41 pc. We derive an inverted spectral index α ≥ 0.7 (Sν ∝ να) for the compact radio emission. Conclusions: Brightness temperatures >104.8 K indicate that these compact features cannot be HII-regions. The complex morphology and inverted spectrum of the eight detected compact features is evidence against the hypothesis that an AGN alone is powering the nucleus of NGC 4418. The compact features could be super star clusters with intense star formation, and their associated free-free absorption could then naturally explain both their inverted radio spectrum and the low radio-to-IR ratio of the nucleus. The required star formation area density is extreme, however, and close to the limit of what can be observed in a well-mixed thermal/non-thermal plasma produced by star formation, and is also close to the limit of what can be physically sustained.

  4. Impact Site: Infrared Image

    NASA Image and Video Library

    2017-09-15

    This montage of images, made from data obtained by Cassini's visual and infrared mapping spectrometer, shows the location on Saturn where the NASA spacecraft entered Saturn's atmosphere on Sept. 15, 2017. This view shows Saturn in the thermal infrared, at a wavelength of 5 microns. Here, the instrument is sensing heat coming from Saturn's interior, in red. Clouds in the atmosphere are silhouetted against that inner glow. This location -- the site of Cassini's atmospheric entry -- was at this time on the night side of the planet, but would rotate into daylight by the time Cassini made its final dive into Saturn's upper atmosphere, ending its remarkable 13-year exploration of Saturn. Both an annotated version and an animation are available at https://photojournal.jpl.nasa.gov/catalog/PIA21896

  5. A tidal disruption event in the nearby ultra-luminous infrared galaxy F01004-2237

    NASA Astrophysics Data System (ADS)

    Tadhunter, C.; Spence, R.; Rose, M.; Mullaney, J.; Crowther, P.

    2017-03-01

    Tidal disruption events (TDEs), in which stars are gravitationally disrupted as they pass close to the supermassive black holes in the centres of galaxies 1 , are potentially important probes of strong gravity and accretion physics. Most TDEs have been discovered in large-area monitoring surveys of many thousands of galaxies, and a relatively low rate of one event every 104-105 years per galaxy has been deduced 2-4 . However, given the selection effects inherent in such surveys, considerable uncertainties remain about the conditions that favour TDEs. Here we report the detection of unusually strong and broad helium emission lines following a luminous optical flare in the nucleus of the nearby ultra-luminous infrared galaxy F01004-2237. This particular combination of variabi­lity and post-flare emission line spectrum is unlike any known supernova or active galactic nucleus. The most plausible explanation is a TDE — the first detected in a galaxy with an ongoing massive starburst. The fact that this event has been detected in repeat spectroscopic observations of a sample of 15 ultra-luminous infrared galaxies over a period of just 10 years suggests a much higher rate of TDEs in starburst galaxies than in the general galaxy population.

  6. Ultrabroadband infrared nanospectroscopic imaging

    PubMed Central

    Bechtel, Hans A.; Muller, Eric A.; Olmon, Robert L.; Martin, Michael C.; Raschke, Markus B.

    2014-01-01

    Characterizing and ultimately controlling the heterogeneity underlying biomolecular functions, quantum behavior of complex matter, photonic materials, or catalysis requires large-scale spectroscopic imaging with simultaneous specificity to structure, phase, and chemical composition at nanometer spatial resolution. However, as with any ultrahigh spatial resolution microscopy technique, the associated demand for an increase in both spatial and spectral bandwidth often leads to a decrease in desired sensitivity. We overcome this limitation in infrared vibrational scattering-scanning probe near-field optical microscopy using synchrotron midinfrared radiation. Tip-enhanced localized light–matter interaction is induced by low-noise, broadband, and spatially coherent synchrotron light of high spectral irradiance, and the near-field signal is sensitively detected using heterodyne interferometric amplification. We achieve sub-40-nm spatially resolved, molecular, and phonon vibrational spectroscopic imaging, with rapid spectral acquisition, spanning the full midinfrared (700–5,000 cm−1) with few cm−1 spectral resolution. We demonstrate the performance of synchrotron infrared nanospectroscopy on semiconductor, biomineral, and protein nanostructures, providing vibrational chemical imaging with subzeptomole sensitivity. PMID:24803431

  7. The FUV to Near-IR Morphologies of Luminous Infrared Galaxies in the Goals Sample

    NASA Astrophysics Data System (ADS)

    Petty, S. M.; Armus, L.; Charmandaris, V.; Evans, A. S.; Le Floc'h, E.; Bridge, C.; Díaz-Santos, T.; Howell, J. H.; Inami, H.; Psychogyios, A.; Stierwalt, S.; Surace, J. A.

    2014-12-01

    We compare the morphologies of a sample of 20 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS) in the FUV, B, I, and H bands, using the Gini (G) and M20 parameters to quantitatively estimate the distribution and concentration of flux as a function of wavelength. Hubble Space Telescope (HST) images provide an average spatial resolution of ˜ 80 pc. While our LIRGs can be reliably classified as mergers across the entire range of wavelengths studied here, there is a clear shift toward more negative M20 (more bulge-dominated) and a less significant decrease in G values at longer wavelengths. We find no correlation between the derived FUV G-M20 parameters and the global measures of the IR to FUV flux ratio (IRX). Given the fine resolution in our HST data, this suggests either that the UV morphology and IRX are correlated on very small scales, or that the regions emitting the bulk of the IR emission emit almost no FUV light. We use our multi-wavelength data to simulate how merging LIRGs would appear from z˜ 0.5-3 in deep optical and near-infrared images such as the Hubble Ultra-Deep Field, and use these simulations to measure the G-M20 at these redshifts. Our simulations indicate a noticeable decrease in G, which flattens at z≥slant 2 by as much as 40%, resulting in mis-classifying our LIRGs as disk-like, even in the rest-frame FUV. The higher redshift values of M20 for the GOALS sources do not appear to change more than about 10% from the values at z˜ 0. The change in G-M20 is caused by the surface brightness dimming of extended tidal features and asymmetries, and also the decreased spatial resolution which reduced the number of individual clumps identified. This effect, seen as early as z˜ 0.5, could easily lead to an underestimate of the number of merging galaxies at high-redshift in the rest-frame FUV.

  8. The FUR to near-IR morphologies of luminous infrared galaxies in the goals sample

    SciTech Connect

    Petty, S. M.; Armus, L.; Díaz-Santos, T.; Howell, J. H.; Surace, J. A.; Charmandaris, V.; Psychogyios, A.; Evans, A. S.; Stierwalt, S.; Floc’h, E. Le; Bridge, C.; Inami, H.

    2014-12-01

    We compare the morphologies of a sample of 20 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS) in the FUV, B, I, and H bands, using the Gini (G) and M{sub 20} parameters to quantitatively estimate the distribution and concentration of flux as a function of wavelength. Hubble Space Telescope (HST) images provide an average spatial resolution of ∼80 pc. While our LIRGs can be reliably classified as mergers across the entire range of wavelengths studied here, there is a clear shift toward more negative M{sub 20} (more bulge-dominated) and a less significant decrease in G values at longer wavelengths. We find no correlation between the derived FUV G-M{sub 20} parameters and the global measures of the IR to FUV flux ratio (IRX). Given the fine resolution in our HST data, this suggests either that the UV morphology and IRX are correlated on very small scales, or that the regions emitting the bulk of the IR emission emit almost no FUV light. We use our multi-wavelength data to simulate how merging LIRGs would appear from z∼0.5–3 in deep optical and near-infrared images such as the Hubble Ultra-Deep Field, and use these simulations to measure the G-M{sub 20} at these redshifts. Our simulations indicate a noticeable decrease in G, which flattens at z⩾2 by as much as 40%, resulting in mis-classifying our LIRGs as disk-like, even in the rest-frame FUV. The higher redshift values of M{sub 20} for the GOALS sources do not appear to change more than about 10% from the values at z∼0. The change in G-M{sub 20} is caused by the surface brightness dimming of extended tidal features and asymmetries, and also the decreased spatial resolution which reduced the number of individual clumps identified. This effect, seen as early as z∼0.5, could easily lead to an underestimate of the number of merging galaxies at high-redshift in the rest-frame FUV.

  9. MID-INFRARED PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES. I. SPITZER INFRARED SPECTROGRAPH SPECTRA FOR THE GOALS SAMPLE

    SciTech Connect

    Stierwalt, S.; Armus, L.; Surace, J. A.; Inami, H.; Petric, A. O.; Diaz-Santos, T.; Haan, S.; Howell, J.; Marshall, J.; Charmandaris, V.; Kim, D. C.; Mazzarella, J. M.; Chan, B.; Spoon, H. W. W.; Veilleux, S.; Evans, A.; Sanders, D. B.; Appleton, P.; Bothun, G.; Bridge, C. R.; and others

    2013-05-01

    The Great Observatories All-Sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present low resolution Spitzer Infrared Spectrograph spectra covering 5-38 {mu}m and provide a basic analysis of the mid-IR spectral properties observed for nearby LIRGs. In a companion paper, we discuss detailed fits to the spectra and compare the LIRGs to other classes of galaxies. The GOALS sample of 244 nuclei in 180 luminous (10{sup 11} {<=} L {sub IR}/L {sub Sun} < 10{sup 12}) and 22 ultraluminous (L {sub IR}/L {sub Sun} {>=} 10{sup 12}) IR galaxies represents a complete subset of the IRAS Revised Bright Galaxy Sample and covers a range of merger stages, morphologies, and spectral types. The majority (>60%) of the GOALS LIRGs have high 6.2 {mu}m polycyclic aromatic hydrocarbon (PAH) equivalent widths (EQW{sub 6.2{mu}m} > 0.4 {mu}m) and low levels of silicate absorption (s {sub 9.7{mu}m} > -1.0). There is a general trend among the U/LIRGs for both silicate depth and mid-infrared (MIR) slope to increase with increasing L {sub IR}. U/LIRGs in the late to final stages of a merger also have, on average, steeper MIR slopes and higher levels of dust obscuration. Together, these trends suggest that as gas and dust is funneled toward the center of a coalescing merger, the nuclei become more compact and more obscured. As a result, the dust temperature increases also leading to a steeper MIR slope. The sources that depart from these correlations have very low PAH equivalent width (EQW{sub 6.2{mu}m} < 0.1 {mu}m) consistent with their emission being dominated by an active galactic nucleus (AGN) in the MIR. These extremely low PAH EQW sources separate into two distinct types: relatively unobscured sources with a very hot dust component (and thus very shallow MIR slopes) and heavily dust obscured nuclei with a steep temperature gradient. The most heavily dust obscured sources are also the most compact in their MIR

  10. Hubble Space Telescope Observations of the Luminous IRAS Source FSC 10214+4724: A Gravitationally Lensed Infrared Quasar

    NASA Technical Reports Server (NTRS)

    Eisenhardt, Peter R.; Armus, Lee; Hogg, David W.; Soifer, B. T.; Neugebauer, G.; Werner, Michael W.

    1996-01-01

    With a redshift of 2.3, the IRAS source FSC 10214+4724 is apparently one of the most luminous objects known in the universe. We present an image of FSC 10214+4724 at 0.8 pm obtained with the Hubble Space Telescope (HST) WFPC2 Planetary Camera. The source appears as an unresolved (less then 0.06) arc 0.7 long, with significant substructure along its length. The center of curvature of the arc is located near an elliptical galaxy 1.18 to the north. An unresolved component 100 times fainter than the arc is clearly detected on the opposite side of this galaxy. The most straightforward interpretation is that FSC 10214+4724 is gravitationally lensed by the foreground elliptical galaxy, with the faint component a counter-image of the IRAS source. The brightness of the arc in the HST image is then magnified by approx. 100, and the intrinsic source diameter is approx. 0.0l (80 pc) at 0.25 microns rest wavelength. The bolometric luminosity is probably amplified by a smaller factor (approx. 30) as a result of the larger extent expected for the source in the far-infrared. A detailed lensing model is presented that reproduces the observed morphology and relative flux of the arc and counterimage and correctly predicts the position angle of the lensing galaxy. The model also predicts reasonable values for the velocity dispersion, mass, and mass-to-light ratio of the lensing galaxy for a wide range of galaxy redshifts. A redshift for the lensing galaxy of -0.9 is consistent with the measured surface brightness profile from the image, as well as with the galaxy's spectral energy distribution. The background lensed source has an intrinsic luminosity approx. 2 x 10(exp 13) L(solar mass) and remains a highly luminous quasar with an extremely large ratio of infrared to optical/ultraviolet luminosity.

  11. Infrared transform spectral imager

    NASA Astrophysics Data System (ADS)

    Vujkovic-Cvijin, Pajo; Lee, Jamine; Gregor, Brian; Goldstein, Neil; Panfili, Raphael; Fox, Marsha

    2012-10-01

    A dispersive transform spectral imager named FAROS (FAst Reconfigurable Optical Sensor) has been developed for high frame rate, moderate-to-high resolution hyperspectral imaging. A programmable digital micromirror array (DMA) modulator makes it possible to adjust spectral, temporal and spatial resolution in real time to achieve optimum tradeoff for dynamic monitoring requirements. The system's F/2.8 collection optics produces diffraction-limited images in the mid-wave infrared (MWIR) spectral region. The optical system is based on a proprietary dual-pass Offner configuration with a single spherical mirror and a confocal spherical diffraction grating. FAROS fulfills two functions simultaneously: one output produces two-dimensional polychromatic imagery at the full focal plane array (FPA) frame rate for fast object acquisition and tracking, while the other output operates in parallel and produces variable-resolution spectral images via Hadamard transform encoding to assist in object discrimination and classification. The current version of the FAROS spectral imager is a multispectral technology demonstrator that operates in the MWIR with a 320 x 256 pixel InSb FPA running at 478 frames per second resulting in time resolution of several tens of milliseconds per hypercube. The instrument has been tested by monitoring small-scale rocket engine firings in outdoor environments. The instrument has no macro-scale moving parts, and conforms to a robust, small-volume and lightweight package, suitable for integration with small surveillance vehicles. The technology is also applicable to multispectral/hyperspectral imaging applications in diverse areas such as atmospheric contamination monitoring, agriculture, process control, and biomedical imaging, and can be adapted for use in any spectral domain from the ultraviolet (UV) to the LWIR region.

  12. New Thermal Infrared Hyperspectral Imagers

    DTIC Science & Technology

    2009-10-01

    ANSI Std Z39-18 New Thermal Infrared Hyperspectral Imagers 4 - 2 RTO-MP-SET-151 UNCLASSIFIED/UNLIMITED uncooled microbolometer detector , has...temperature does not affect on the temperature of the focal plane array, which is in constant New Thermal Infrared Hyperspectral Imagers RTO-MP-SET...Boreman, G.D., Infrared Detectors and Systems, John Wiley & Sons, (1996). [5] Kruse, P.W., Uncooled Thermal Imaging, SPIE Tutorial Texts in Optical

  13. Measuring the temperature of high-luminous exitance surfaces with infrared thermography in LED applications

    NASA Astrophysics Data System (ADS)

    Perera, Indika U.; Narendran, Nadarajah

    2016-09-01

    Recently, light-emitting diode (LED) lighting systems have become popular due to their increased system performance. LED lighting system performance is affected by heat; therefore, it is important to know the temperature of a target surface or bulk medium in the LED system. In-situ temperature measurements of a surface or bulk medium using intrusive methods cause measurement errors. Typically, thermocouples are used in these applications to measure the temperatures of the various components in an LED system. This practice leads to significant errors, specifically when measuring surfaces with high-luminous exitance. In the experimental study presented in this paper, an infrared camera was used as an alternative to temperature probes in measuring LED surfaces with high-luminous exitance. Infrared thermography is a promising method because it does not respond to the visible radiation spectrum in the range of 0.38 to 0.78 micrometers. Usually, infrared thermography equipment is designed to operate either in the 3 to 5 micrometer or the 7 to 14 micrometer wavelength bands. To characterize the LED primary lens, the surface emissivity of the LED phosphor surface, the temperature dependence of the surface emissivity, the temperature of the target surface compared to the surrounding temperature, the field of view of the target, and the aim angle to the target surface need to be investigated, because these factors could contribute towards experimental errors. In this study, the effects of the above-stated parameters on the accuracy of the measured surface temperature were analyzed and reported.

  14. Infrared signature of transient luminous events in the middle atmosphere simulated for a limb line of sight observation

    NASA Astrophysics Data System (ADS)

    Payan, Sebastien; Romand, Frederic; Laurence, Croizé

    2017-04-01

    Transient Luminous Events (TLE) are electrical and optical events which occurs above thunderstorms. Their occurrence is closely linked with the lightning activity below thunderstorms. TLEs are observed from the base of the stratosphere to the thermosphere (15 - 110 km). They are a very brief phenomenon which lasts from 1 to 300 milliseconds. At a worldwide scale, some to some tenths of TLEs occurs each minute. The energy deposition, about some tenths of megajoules, is able to ionize, dissociate and excite the molecules of the atmosphere. Then, a phase of recombination and relaxation starts. The interest of their study is multiple. In atmospheric chemistry we know that lightening are important sources of NOx in the troposphere, which indirectly influence the concentrations of O3 and OH. We wonder what could be the chemical effects of TLEs in the stratosphere and mesosphere. Experimentally, the HALESIS (High altitude Luminous Events Studied by Infrared Spectro-imagery) project aims to load a spectro-imager in a stratospheric balloon in order to measure atmospheric radiances in the moments following the electrical discharge of a TLE and then, to estimate the concentration of some components of interest (CO2, NO, O3, OH…) with spectrum inversions. In a Defense point of view, some airborne detection or guiding devices are equipped with infrared sensors, which may be disturbed by the TLEs infrared signal. The objective is to provide a tool which will describe the TLE phenomenon from the electric discharge to the detection threw an infrared sensor. To achieve this work we first compute the Non Local Thermodynamic Equilibrium population of a background atmosphere with the code SAMM2. The starting atmosphere comes from the Whole Atmosphere community Climate Model (WACCM). Then, we apply a TLE perturbation to a region of the background atmosphere. To do so we compute the plasma and atmospheric chemistry consecutive to the discharge of a TLE with the codes BOLSIG+ and

  15. Automatic detection of luminal contour in intravascular ultrasound images using fuzzy clustering and snakes

    NASA Astrophysics Data System (ADS)

    Yi, Jianhua; He, Huiguang; Zhao, Mingchang; Liu, Jian; Chen, Xuejiao

    2009-10-01

    Extraction of the luminal contours from the intravascular ultrasound (IVUS) images is very important to analysis and diagnosis of coronary heart disease. Manual processing of large IVUS data is quite tedious and time consuming. This paper presented an algorithm for automatic detection of the luminal contours in intravascular ultrasound images, based on fuzzy clustering and snakes. To solve the difficulty of automatic contour initialization, this paper used fuzzy clustering and spline interpolation to obtain the initial contour. First, fuzzy clustering was used to detect the luminal contours on the multiple longitudinal images. Then, luminal contour points were transformed into the individual transversal images. Those luminal contour points were spline-interpolated on these transversal images. The spline-interpolated contour was used as the initial contour of snakes. We evaluated automatically detection method based on the average contours obtained from expert manual segmentation as the ground truth, and the results had demonstrated that our method was accurate and efficient.

  16. INFRARED CLASSIFICATION AND LUMINOSITIES FOR DUSTY ACTIVE GALACTIC NUCLEI AND THE MOST LUMINOUS QUASARS

    SciTech Connect

    Weedman, Daniel; Sargsyan, Lusine; Houck, James; Barry, Donald; Lebouteiller, Vianney

    2012-12-20

    Mid-infrared spectroscopic measurements from the Infrared Spectrometer (IRS) on Spitzer are given for 125 hard X-ray active galactic nuclei (AGNs; 14-195 keV) from the Swift Burst Alert Telescope (BAT) sample and for 32 AGNs with black hole masses (BHMs) from reverberation mapping. The 9.7 {mu}m silicate feature in emission or absorption defines an infrared AGN classification describing whether AGNs are observed through dust clouds, indicating that 55% of the BAT AGNs are observed through dust. The mid-infrared dust continuum luminosity is shown to be an excellent indicator of intrinsic AGN luminosity, scaling closely with the hard X-ray luminosity, log {nu}L{sub {nu}}(7.8 {mu}m)/L(X) = -0.31 {+-} 0.35, and independent of classification determined from silicate emission or absorption. Dust luminosity scales closely with BHM, log {nu}L{sub {nu}}(7.8 {mu}m) = (37.2 {+-} 0.5) + 0.87 log BHM for luminosity in erg s{sup -1} and BHM in M{sub Sun }. The 100 most luminous type 1 quasars as measured in {nu}L{sub {nu}}(7.8 {mu}m) are found by comparing Sloan Digital Sky Survey (SDSS) optically discovered quasars with photometry at 22 {mu}m from the Wide-Field Infrared Survey Explorer (WISE), scaled to rest frame 7.8 {mu}m using an empirical template determined from IRS spectra. The most luminous SDSS/WISE quasars have the same maximum infrared luminosities for all 1.5 < z < 5, reaching total infrared luminosity L{sub IR} = 10{sup 14.4} L{sub Sun }. Comparing with dust-obscured galaxies from Spitzer and WISE surveys, we find no evidence of hyperluminous obscured quasars whose maximum infrared luminosities exceed the maximum infrared luminosities of optically discovered quasars. Bolometric luminosities L{sub bol} estimated from rest-frame optical or ultraviolet luminosities are compared to L{sub IR}. For the local AGN, the median log L{sub IR}/L{sub bol} = -0.35, consistent with a covering factor of 45% for the absorbing dust clouds. For the SDSS/WISE quasars, the median log L

  17. Luminous Infrared Galaxies Observed from the Ground and Space in the 2020s

    NASA Astrophysics Data System (ADS)

    Inami, Hanae; Armus, L.; Packham, C.; Dickinson, M.

    2014-07-01

    The dust-penetrating power of infrared observations will allow us to reveal the physical and chemical properties in and around the dust enshrouded nuclei of galaxies. While current near-infrared spectroscopic observations with 8-10m class telescopes can access to z=1-3 regime, they are still very challenging and limited to luminous targets. For z=0 objects, these telescopes can resolve HII regions, but we still do not fully understand the properties of more extreme star formation environments (e.g., rich in gas), which are more prevalent at higher redshifts. Near- and mid-infrared TMT instruments (e.g., two of the first light instruments IRIS and IRMS, and a planned mid-infrared instrument MICHI) will exploit TMT's unprecedented high spatial resolution to constrain the physical processes in individual dusty, intense star-forming regions of local galaxies as well as obtain resolved spectra for z=2-3 star-forming galaxies. During the era of 2020, JWST and SPICA are also expected to be commissioned. The high sensitivity of these space-based infrared observatories will facilitate investigations of the properties of dusty galaxies at even higher redshifts (z > 3). Only with the combination of ground- and space-observatories, we will be able to obtain a complete picture of star formation and AGN activity to explore the evolution of LIRGs which dominate the peak of the galaxy growth in the universe.

  18. Luminous Infrared Sources in the Local Group: Identifying the Missing Links in Massive Star Evolution

    NASA Astrophysics Data System (ADS)

    Britavskiy, N.; Bonanos, A. Z.; Mehner, A.

    2015-01-01

    We present the first systematic survey of dusty massive stars (RSGs, LBVs, sgB[e]) in nearby galaxies, with the goal of understanding their importance in massive star evolution. Using the fact that these stars are bright in mid-infrared colors due to dust, we provide a technique for selecting and identifying dusty evolved stars based on the results of Bonanos et al. (2009, 2010), Britavskiy et al. (2014), and archival Spitzer/IRAC photometry. We present the results of our spectroscopic follow-up of luminous infrared sources in the Local Group dwarf irregular galaxies: Pegasus, Phoenix, Sextans A and WLM. The survey aims to complete the census of dusty massive stars in the Local Group.

  19. MORPHOLOGY AND SIZE DIFFERENCES BETWEEN LOCAL AND HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rujopakarn, Wiphu; Rieke, George H.; Eisenstein, Daniel J.; Juneau, Stephanie

    2011-01-10

    We show that the star-forming regions in high-redshift luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and submillimeter galaxies (SMGs) have similar physical scales to those in local normal star-forming galaxies. To first order, their higher infrared (IR) luminosities result from higher luminosity surface density. We also find a good correlation between the IR luminosity and IR luminosity surface density in starburst galaxies across over five orders of magnitude of IR luminosity from local normal galaxies to z {approx} 2 SMGs. The intensely star-forming regions of local ULIRGs are significantly smaller than those in their high-redshift counterparts and hence diverge significantly from this correlation, indicating that the ULIRGs found locally are a different population from the high-redshift ULIRGs and SMGs. Based on this relationship, we suggest that luminosity surface density should serve as a more accurate indicator for the IR emitting environment, and hence the observable properties, of star-forming galaxies than their IR luminosity. We demonstrate this approach by showing that ULIRGs at z {approx} 1 and a lensed galaxy at z {approx} 2.5 exhibit aromatic features agreeing with local LIRGs that are an order of magnitude less luminous, but have similar IR luminosity surface density. A consequence of this relationship is that the aromatic emission strength in star-forming galaxies will appear to increase at z>1 for a given IR luminosity compared to their local counterparts.

  20. Intravascular photoacoustic imaging of exogenously labeled atherosclerotic plaque through luminal blood

    NASA Astrophysics Data System (ADS)

    Yeager, Doug; Karpiouk, Andrei; Wang, Bo; Amirian, James; Sokolov, Konstantin; Smalling, Richard; Emelianov, Stanislav

    2012-10-01

    Combined intravascular ultrasound and intravascular photoacoustic (IVUS/IVPA) imaging has been previously established as a viable means for assessing atherosclerotic plaque morphological and compositional characteristics using both endogenous and exogenous contrast. In this study, IVUS/IVPA imaging of atherosclerotic rabbit aortas following systemic injection of gold nanorods (AUNRs) with peak absorbance within the tissue optical window is performed. Ex vivo imaging results reveal a high photoacoustic signal from localized AUNRs in regions with atherosclerotic plaques. Corresponding histological staining further confirms the preferential extravasation of AUNRs in atherosclerotic regions with compromised luminal endothelium and acute inflammation. The ability to detect AUNRs using combined IVUS and photoacoustic imaging in the presence of luminal saline and luminal blood is evaluated using both spectroscopic and single wavelength IVPA imaging techniques. Results demonstrate that AUNR detection within the arterial wall can be achieved using both methods, even in the case of imaging through luminal blood.

  1. IR Fine-Structure Line Signatures of Central Dust-Bounded Nebulae in Luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Allen, R.; Dudley, C. C.; Satyapal, S.; Luhman, M.; Wolfire, M.; Smith, H. A.

    2004-01-01

    To date, the only far-infrared spectroscopic observations of ultraluminous infrared galaxies have been obtained with the European Space Agency s Infrared Space Observatory Long Wavelength Spectrometer. The spectra of these galaxies are characterized by molecular absorption lines and weak emission lines from photodissociation regions (PDRs), but no far-infrared (greater than 40 microns) lines from ionized regions have been detected. ESA s Herschel Space Observatory, slated for launch in 2007, will likely be able to detect these lines in samples of local and moderate redshift ultra luminous galaxies and to enable measurement of the ionization parameters, the slope of the ionizing continuum, and densities present in the ionized regions of these galaxies. The higher spatial resolution of proposed observatories discussed in this workshop will enable isolation of the central regions of local galaxies and detection of these lines in high-redshift galaxies for study of the evolution of galaxies. Here we discuss evidence for the e.ects of absorption by dust within ionized regions and present the spectroscopic signatures predicted by photoionization modeling of dust-bounded regions.

  2. OPTICAL-FAINT, FAR-INFRARED-BRIGHT HERSCHEL SOURCES IN THE CANDELS FIELDS: ULTRA-LUMINOUS INFRARED GALAXIES AT z > 1 AND THE EFFECT OF SOURCE BLENDING

    SciTech Connect

    Yan, Haojing; Stefanon, Mauro; Ma, Zhiyuan; Willner, S. P.; Ashby, Matthew L. N.; Somerville, Rachel; Davé, Romeel; Pérez-González, Pablo G.; Cava, Antonio; Wiklind, Tommy; Kocevski, Dale; Rafelski, Marc; Kartaltepe, Jeyhan; Cooray, Asantha; Koekemoer, Anton M.; Grogin, Norman A.

    2014-07-01

    The Herschel very wide field surveys have charted hundreds of square degrees in multiple far-IR (FIR) bands. While the Sloan Digital Sky Survey (SDSS) is currently the best resource for optical counterpart identifications over such wide areas, it does not detect a large number of Herschel FIR sources and leaves their nature undetermined. As a test case, we studied seven ''SDSS-invisible'', very bright 250 μm sources (S {sub 250} > 55 mJy) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields where we have a rich multi-wavelength data set. We took a new approach to decompose the FIR sources, using the near-IR or the optical images directly for position priors. This is an improvement over the previous decomposition efforts where the priors are from mid-IR data that still suffer from the problem of source blending. We found that in most cases the single Herschel sources are made of multiple components that are not necessarily at the same redshifts. Our decomposition succeeded in identifying and extracting their major contributors. We show that these are all ultra-luminous infrared galaxies at z ∼ 1-2 whose high L {sub IR} is mainly due to dust-obscured star formation. Most of them would not be selected as submillimeter galaxies. They all have complicated morphologies indicative of mergers or violent instability, and their stellar populations are heterogeneous in terms of stellar masses, ages, and formation histories. Their current ultra-luminous infrared galaxy phases are of various degrees of importance in their stellar mass assembly. Our practice provides a promising starting point for developing an automatic routine to reliably study bright Herschel sources.

  3. HEAVILY OBSCURED ACTIVE GALACTIC NUCLEI IN HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Treister, Ezequiel; Sanders, David B.; Urry, C. Megan; Cardamone, Carolin N.; Schawinski, Kevin

    2010-10-20

    We take advantage of the rich multiwavelength data available in the Chandra Deep Field South (CDF-S), including the 4 Ms Chandra observations (the deepest X-ray data to date), in order to search for heavily obscured low-luminosity active galactic nuclei (AGNs) among infrared-luminous galaxies. In particular, we obtained a stacked rest-frame X-ray spectrum for samples of galaxies binned in terms of their IR luminosity or stellar mass. We detect a significant signal at E {approx} 1-8 keV, which we interpret as originating from a combination of emission associated with star formation processes at low energies combined with a heavily obscured AGN at E > 5 keV. We further find that the relative strength of this AGN signal decays with decreasing IR luminosity, indicating a higher AGN fraction for more luminous IR sources. Together, these results strongly suggest the presence of a large number of obscured AGNs in IR-luminous galaxies. Using samples binned in terms of stellar mass in the host galaxy, we find a significant excess at E = 6-7 keV for sources with M > 10{sup 11} M {sub sun}, consistent with a large obscured AGN population in high mass galaxies. In contrast, no strong evidence of AGN activity was found for less-massive galaxies. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, {approx}22%, occurs in heavily obscured systems that are not individually detected in even the deepest X-ray observations. There are also indications that the number of low-luminosity, heavily obscured AGNs does not evolve significantly with redshift, in contrast to the strong evolution seen in higher luminosity sources.

  4. EXTENDED [C II] EMISSION IN LOCAL LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Díaz-Santos, T.; Armus, L.; Surace, J. A.; Charmandaris, V.; Stacey, G.; Murphy, E. J.; Haan, S.; Stierwalt, S.; Evans, A. S.; Malhotra, S.; Appleton, P.; Inami, H.; Magdis, G. E.; Elbaz, D.; Van der Werf, P. P.; Meijerink, R.; and others

    2014-06-10

    We present Herschel/PACS observations of extended [C II] 157.7 μm line emission detected on ∼1-10 kpc scales in 60 local luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey. We find that most of the extra-nuclear emission show [C II]/FIR ratios ≥4 × 10{sup –3}, larger than the mean ratio seen in the nuclei, and similar to those found in the extended disks of normal star-forming galaxies and the diffuse interstellar medium of our Galaxy. The [C II] ''deficits'' found in the most luminous local LIRGs are therefore restricted to their nuclei. There is a trend for LIRGs with warmer nuclei to show larger differences between their nuclear and extra-nuclear [C II]/FIR ratios. We find an anti-correlation between [C II]/FIR and the luminosity surface density, Σ{sub IR}, for the extended emission in the spatially resolved galaxies. However, there is an offset between this trend and that found for the LIRG nuclei. We use this offset to derive a beam filling-factor for the star-forming regions within the LIRG disks of ∼6% relative to their nuclei. We confront the observed trend to photo-dissociation region models and find that the slope of the correlation is much shallower than the model predictions. Finally, we compare the correlation found between [C II]/FIR and Σ{sub IR} with measurements of high-redshift starbursting IR-luminous galaxies.

  5. The Dynamics and Cold Gas Content of Luminous Infrared Galaxies in the Local Universe

    NASA Astrophysics Data System (ADS)

    Privon, George C.

    2014-01-01

    Many of the most luminous galaxies in the local universe are understood to be the product of mergers and interactions between disk galaxies. These encounters trigger enhanced star formation and accretion onto supermassive black holes; the bulk of which is hidden behind significant extinction from dust. Dynamical simulations matched to individual systems can provide great insight into the merger-driven activity by placing objects on a dynamically-determined merger timeline and by enabling follow-up hydrodynamic simulations which can be used to compare simulations directly with observations. New dynamical models will be presented for luminous infrared galaxies drawn from the Great Observatories All-sky LIRG survey, along with a dynamically-motivated merger stage classification system; these are facilitating a detailed comparison of simulated and observed properties of star formation. New observations of the cold ISM in these systems will also be shown,investigating the influence of AGN activity on tracers of high density (> 10^5 cm^-3) molecular gas.

  6. Alma observations of nearby luminous infrared galaxies with various agn energetic contributions using dense gas tracers

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2014-07-01

    We present the results of our ALMA Cycle 0 observations, using HCN/HCO{sup +}/HNC J = 4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO{sup +} J = 4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J = 1-0 transition, while there is no clear difference in the HCN-to-HNC J = 4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO{sup +} J = 4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J = 4-3 emission relative to HCO{sup +} J = 4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.

  7. Infrared imaging of varicose veins

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke Jan; de Zeeuw, Raymond; Verdaasdonk, Ruud M.; Wittens, Cees H. A.

    2004-06-01

    It has been established that varicose veins are better visualized with infrared photography. As near-infrared films are nowadays hard to get and to develop in the digital world, we investigated the use of digital photography of varicose veins. Topics that are discussed are illumination setup, photography and digital image enhancement and analysis.

  8. H2O emission in high-z ultra-luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Omont, A.; Yang, C.; Cox, P.; Neri, R.; Beelen, A.; Bussmann, R. S.; Gavazzi, R.; van der Werf, P.; Riechers, D.; Downes, D.; Krips, M.; Dye, S.; Ivison, R.; Vieira, J. D.; Weiß, A.; Aguirre, J. E.; Baes, M.; Baker, A. J.; Bertoldi, F.; Cooray, A.; Dannerbauer, H.; De Zotti, G.; Eales, S. A.; Fu, H.; Gao, Y.; Guélin, M.; Harris, A. I.; Jarvis, M.; Lehnert, M.; Leeuw, L.; Lupu, R.; Menten, K.; Michałowski, M. J.; Negrello, M.; Serjeant, S.; Temi, P.; Auld, R.; Dariush, A.; Dunne, L.; Fritz, J.; Hopwood, R.; Hoyos, C.; Ibar, E.; Maddox, S.; Smith, M. W. L.; Valiante, E.; Bock, J.; Bradford, C. M.; Glenn, J.; Scott, K. S.

    2013-03-01

    Using the IRAM Plateau de Bure interferometer (PdBI), we report the detection of water vapor in six new lensed ultra-luminous starburst galaxies at high redshift, discovered in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). The sources are detected either in the 202-111 or 211-202 H2O emission lines with integrated line fluxes ranging from 1.8 to 14 Jy km s-1. The corresponding apparent luminosities are μLH2O ~ 3-12 × 108 L⊙, where μ is the lensing magnification factor (3 < μ < 12). These results confirm that H2O lines are among the strongest molecular lines in high-z ultra-luminous starburst galaxies, with intensities almost comparable to those of the high-J CO lines, and similar profiles and line widths (~200-900 km s-1). With the current sensitivity of the PdBI, the water lines can therefore easily be detected in high-z lensed galaxies (with F(500 μm) > 100 mJy) discovered in the Herschel surveys. Correcting the luminosities for amplification, using existing lensing models, LH2O is found to have a strong dependence on the infrared luminosity, varying as ~LIR1.2. This relation, which needs to be confirmed with better statistics, may indicate a role of radiative (infrared) excitation of the H2O lines, and implies that high-z galaxies with LIR ≳ 1013 L⊙ tend to be very strong emitters in water vapor, that have no equivalent in the local universe. Herschel (Pilbratt et al. 2010) is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  9. A deficit of ultraluminous X-ray sources in luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Luangtip, W.; Roberts, T.; Mineo, S.; Lehmer, B.; Alexander, D.

    2014-07-01

    Luminous infrared galaxies (LIRGs) are amongst the most energetic star-forming galaxies, producing total infrared luminosities > 10^{11} L_{⊙} that imply star formation rates (SFR) in excess of 10 M_{⊙} yr^{-1}. Given the close relationship between the number of ultraluminous X-ray sources (ULXs) and SFR, we might therefore expect to find larger populations of ULXs in LIRGs than in field galaxies. Here, we present the results of a study of the ULX population in 17 nearby (D < 60 Mpc) LIRGs, using Chandra data. Only 53 ULXs have been detected, compared to an expectation of ˜500 ULXs from studies of field galaxies (Swartz et al. 2011). We investigate the origin of this large deficit in the number of ULXs by several means. For instance, X-ray luminosity functions confirm the deficit and also reveal a possible break at a luminosity of ˜2×10^{39} erg s^{-1}. The physical interpretation for the deficit will be discussed. In addition, a study of the evolution of the ULX spectra with luminosity based on stacked X-ray spectra shows a possible transition from ˜Eddington to super-Eddington states, consistent with the ULXs being a population of ˜10 solar mass black holes.

  10. An x-ray study of luminous infrared galaxies observed with ASCA

    NASA Astrophysics Data System (ADS)

    Misaki, K.; Iwasawa, K.; Taniguchi, Y.; Terashima, Y.; Kunieda, H.; Watarai, H.

    The discovery of ultra-luminous infrared galaxies (ULIRGs) has provided a clue to an evolutionary connection between starburst and active galactic nuclei. The IRAS color is suggested to be a possible trace of the evolution. We present the results of ASCA observations of two ULIRGs, IRAS20551-4250 and IRAS23128-5919, which are southern 100 μm bright galaxies with LIR ~ 1012Lsolar. Both are mergers and have a ``warm'' IRAS color (25μm100μm >= 0.15). The ASCA spectrum of IRAS20551-4250 can be characterized by two components, one of which is a soft thermal component (kT ~ 0.3keV) and the other is a hard power-law component absorbed by a column density of 1022 cm-2. The observed X-ray luminosity is ~ 2.5 × 1042 ergs/s in the rest frame 2-10keV band (assuming H0 = 50 km/s/Mpc). IRAS23128-5919 also shows a hard spectrum (LX ~ 3 × 1042 ergs/s), but thermal emission is not as clear as that in IRAS20551-4250. Since these targets are similar in infrared luminosity as well as in hard X-rays but not in soft X-rays, LIR would be associated with hard X-rays. In addition to these results, we here compare X-ray properties of ULIRGs with IR properties.

  11. Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146

    SciTech Connect

    Tang, Qing-Wen; Wang, Xiang-Yu; Thomas Tam, Pak-Hin E-mail: phtam@phys.nthu.edu.tw

    2014-10-10

    Recent detections of high-energy gamma-ray emission from starburst galaxies M82 and NGC 253 suggest that starburst galaxies are huge reservoirs of cosmic rays and these cosmic rays convert a significant fraction of their energy into gamma-rays by colliding with the dense interstellar medium. In this paper, we report the search for high-energy gamma-ray emission from several nearby star-forming and starburst galaxies using the 68 month data obtained with the Fermi Large Area Telescope. We found a ∼5.5σ detection of gamma-ray emission above 200 MeV from a source spatially coincident with the location of the luminous infrared galaxy NGC 2146. Also taking into account the temporal and spectral properties of the gamma-ray emission, we suggest that the gamma-ray source is likely to be the counterpart of NGC 2146. The gamma-ray luminosity suggests that cosmic rays in NGC 2146 convert most of their energy into secondary pions, so NGC 2146 is a 'proton calorimeter'. It is also found that NGC 2146 obeys the quasi-linear scaling relation between gamma-ray luminosity and total infrared luminosity for star-forming galaxies, strengthening the connection between massive star formation and gamma-ray emission of star-forming galaxies. Possible TeV emission from NGC 2146 is predicted and the implications for high-energy neutrino emission from starburst galaxies are discussed.

  12. Infrared thermal imaging in medicine.

    PubMed

    Ring, E F J; Ammer, K

    2012-03-01

    This review describes the features of modern infrared imaging technology and the standardization protocols for thermal imaging in medicine. The technique essentially uses naturally emitted infrared radiation from the skin surface. Recent studies have investigated the influence of equipment and the methods of image recording. The credibility and acceptance of thermal imaging in medicine is subject to critical use of the technology and proper understanding of thermal physiology. Finally, we review established and evolving medical applications for thermal imaging, including inflammatory diseases, complex regional pain syndrome and Raynaud's phenomenon. Recent interest in the potential applications for fever screening is described, and some other areas of medicine where some research papers have included thermal imaging as an assessment modality. In certain applications thermal imaging is shown to provide objective measurement of temperature changes that are clinically significant.

  13. Visualizing Chemistry with Infrared Imaging

    ERIC Educational Resources Information Center

    Xie, Charles

    2011-01-01

    Almost all chemical processes release or absorb heat. The heat flow in a chemical system reflects the process it is undergoing. By showing the temperature distribution dynamically, infrared (IR) imaging provides a salient visualization of the process. This paper presents a set of simple experiments based on IR imaging to demonstrate its enormous…

  14. Visualizing Chemistry with Infrared Imaging

    ERIC Educational Resources Information Center

    Xie, Charles

    2011-01-01

    Almost all chemical processes release or absorb heat. The heat flow in a chemical system reflects the process it is undergoing. By showing the temperature distribution dynamically, infrared (IR) imaging provides a salient visualization of the process. This paper presents a set of simple experiments based on IR imaging to demonstrate its enormous…

  15. Simultaneous Assessment of Luminal Integrity and Vascular Perfusion of the Gastrointestinal Tract using Dual-Channel Near-Infrared Fluorescence

    PubMed Central

    Ashitate, Yoshitomo; Vooght, Carrie S.; Hutteman, Merlijn; Oketokoun, Rafiou; Choi, Hak Soo; Frangioni, John V.

    2011-01-01

    Anastomotic complications such as stenosis and leakage in the gastrointestinal (GI) tract can cause high patient morbidity and mortality. To identify the potential preconditions of these complications intraoperatively, we explored the use of two 700 nm near-infrared (NIR) fluorophores administered intraluminally: (1) chlorella, an over-the-counter herbal supplement containing high concentrations of chlorophyll and (2) methylene blue (MB). In parallel, we administered the 800 nm NIR fluorophore indocyanine green (ICG) intravenously to assess vascular function. Dual channel, real-time intraoperative imaging, and quantitation of the contrast-to-background ratio (CBR), were performed under normal conditions, or after anastomosis or leakage of the stomach and intestines in 35-kg Yorkshire pigs using the Fluorescence-Assisted Resection and Exploration (FLARE™) imaging system. Lumenal integrity could be assessed with relatively high sensitivity with either chlorella or MB, although chlorella provided significantly higher CBR. ICG angiography provided assessment of blood perfusion of normal, ischemic, and anastomotic areas of the GI tract. Used simultaneously, 700 nm (chlorella or MB) and 800 nm (ICG) NIR fluorescence permitted independent assessment of luminal integrity and vascular perfusion of the GI tract intraoperatively and in real time. This technology has the potential to identify critical complications, such as anastomotic leakage, intraoperatively, when correction is still possible. PMID:22954146

  16. Evolutionary paths along the BPT diagram for luminous and ultraluminous infrared galaxies

    SciTech Connect

    Fiorenza, Stephanie L.; Takeuchi, Tsutomu T.; Małek, Katarzyna E.; Liu, Charles T.

    2014-04-01

    The evolutionary connection between nuclear starbursts and active galactic nuclei (AGNs) in luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies (ULIRGs), which result from galaxy interactions and mergers and produce the bulk of their radiation as infrared (IR) emission, is not well understood. To this effort, we present and examine new spectrophotometric data for five U/LIRGs (10{sup 11} < L {sub IR} < 10{sup 13} L {sub ☉}) within the IRAS 2 Jy Redshift Survey with 0.05 ≲ z ≲ 0.07. We show that our sample consists almost entirely of composite objects—thus hosting both a nuclear starburst and an AGN—using the BPT diagrams. We then show that for our sample of U/LIRGs the properties that describe their nuclear starbursts and AGNs (e.g., star formation rate, L[O III], optical D parameter, D4000, and EW(Hδ)) are independent of one another, ensuring that no biases affect correlations between these parameters and the object locations on the BPT diagrams. Finally, we derive evolutionary paths on the BPT diagram involving [N II]/Hα that are based on how these parameters vary between two U/LIRGs positioned at the end-points of these paths. The U/LIRGs at the end-points of a given path represent the beginning and end states of a U/LIRG evolving along that path. These paths may be able to specifically explain how all local U/LIRGs evolve along the BPT diagram, and serve as a starting point for future quantitative analysis on the evolution of U/LIRGs.

  17. CO SPECTRAL LINE ENERGY DISTRIBUTIONS OF INFRARED-LUMINOUS GALAXIES AND ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Papadopoulos, Padeli P.; Van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M. E-mail: pvdwerf@strw.leidenuniv.n E-mail: xilouris@astro.noa.g

    2010-06-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L {sub IR}(8-1000 {mu}m) {approx}> 10{sup 11} L {sub sun}), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L {sub IR}>10{sup 12} L {sub sun}), and two powerful local active galactic nuclei (AGNs)-the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293-using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C{sup +} line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these

  18. Computational approach to radiogenomics of breast cancer: Luminal A and luminal B molecular subtypes are associated with imaging features on routine breast MRI extracted using computer vision algorithms.

    PubMed

    Grimm, Lars J; Zhang, Jing; Mazurowski, Maciej A

    2015-10-01

    To identify associations between semiautomatically extracted MRI features and breast cancer molecular subtypes. We analyzed routine clinical pre-operative breast MRIs from 275 breast cancer patients at a single institution in this retrospective, Institutional Review Board-approved study. Six fellowship-trained breast imagers reviewed the MRIs and annotated the cancers. Computer vision algorithms were then used to extract 56 imaging features from the cancers including morphologic, texture, and dynamic features. Surrogate markers (estrogen receptor [ER], progesterone receptor [PR], human epidermal growth factor receptor-2 [HER2]) were used to categorize tumors by molecular subtype: ER/PR+, HER2- (luminal A); ER/PR+, HER2+ (luminal B); ER/PR-, HER2+ (HER2); ER/PR/HER2- (basal). A multivariate analysis was used to determine associations between the imaging features and molecular subtype. The imaging features were associated with both luminal A (P = 0.0007) and luminal B (P = 0.0063) molecular subtypes. No association was found for either HER2 (P = 0.2465) or basal (P = 0.1014) molecular subtype and the imaging features. A P-value of 0.0125 (0.05/4) was considered significant. Luminal A and luminal B molecular subtype breast cancer are associated with semiautomatically extracted features from routine contrast enhanced breast MRI. © 2015 Wiley Periodicals, Inc.

  19. Galaxy pairs in the Sloan Digital Sky Survey - VII. The merger-luminous infrared galaxy connection

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Mendel, J. Trevor; Scudder, Jillian M.; Patton, David R.; Palmer, Michael J. D.

    2013-04-01

    We use a sample of 9397 low-redshift (z ≤ 0.1) galaxies with a close companion to investigate the connection between mergers and luminous infrared (IR) galaxies (LIRGs). The pairs are selected from the Sloan Digital Sky Survey (SDSS) and have projected separations rp ≤ 80 h{^{- 1}_{70}} kpc, relative velocities ΔV ≤ 300 km s-1 and stellar mass ratios within a factor of 1:10. A control sample consisting of four galaxies per pair galaxy is constructed by simultaneously matching in stellar mass, redshift and environment to galaxies with no close companion. The IR luminosities (LIR) of galaxies in the pair and control samples are determined from the SDSS - Infrared Astronomical Satellite (IRAS) matched catalogue of Hwang et al. Over the redshift range of our pairs sample, the IRAS matches are complete to LIRG luminosities (LIR ≥ 1011 L⊙), allowing us to investigate the connection between mergers and luminous IR galaxies. We find a trend for increasing LIRG fraction towards smaller pair separations, peaking at a factor of ˜5-10 above the median control fraction at the smallest separations (rp < 20 h{^{- 1}_{70}} kpc), but remaining elevated by a factor ˜2-3 even out to 80 h{^{- 1}_{70}} kpc (the widest separations in our sample). LIRG pairs predominantly have high star formation rates (SFRs), high extinction and are found in relatively low-density environments, relative to the full pairs sample. We also find that LIRGs are most likely to be found in high-mass galaxies which have an approximately equal-mass companion. We confirm the results of previous studies that both the active galactic nucleus (AGN) fraction and merger fraction increase strongly as a function of IR luminosity. About 7 per cent of LIRGs are associated with major mergers, as defined within the criteria and mass completion of our sample. Finally, we quantify an SFR offset (ΔSFR) as the enhancement (or decrement) relative to star-forming galaxies of the same mass and redshift. We

  20. Distribution of Luminosity, Gas, and Stellar Populations in Local Luminous Infrared Galaxies as a Function of Merger Stage

    NASA Astrophysics Data System (ADS)

    Larson, Kirsten L.

    Luminous infrared galaxies (LIRGs) are galaxies where intense infrared emission is driven by star formation and active galactic nuclei. In the local universe it is clear that many LIRGs are major mergers of gas rich spiral galaxies. I have performed a careful visual classification of local (z < 0.08) LIRGs as either single non-interacting systems, minor mergers, or one of 5 major merger stages. I then used these classifications to compare galaxy merger stage with molecular gas mass, automated morphology parameters, annular optical B -- I colors, and infrared surface brightness profiles. I have found that all sources above an infrared luminosity of LIR > 1011:5Lsun are merging galaxies, while below this luminosity threshold, minor mergers and secular processes dominate. The mean molecular gas fraction ( MGF = MH2=(M* + MH2)) has an average value of 18+/-2% for non-interacting and early stage major merger LIRGs, which increases to 33±3% for intermediate stage major merger LIRGs. This is consistent with the hypotheses that during the early-mid stages of major mergers, atomic gas (H I) at large galactocentric radii is swept inward where it is converted into molecular gas (H2). The interactions also drive star formation throughout the galaxy as is evident by the blue B -- I color for LIRGs at every merger stage. Late stage mergers show a reddening in their nuclear 2 kpc region, presumably also from increase in nuclear gas and dust as the galaxy nuclei coalesce. Using deep Spitzer 3.6 and 4.5 mum imaging, I find that these interactions form tidal tails and debris that extend out to 80 kpc from the galaxy nuclei. This large scale tidal debris builds up over the course of a major merger and forms up-bending infrared surface brightness profiles. I further investigate the utility of automated morphology parameters and present a refined surface brightness method for gini, M20, and concentration indices. With this new method the M20 parameter correlates with merger stage and

  1. NUSTAR Unveils a Heavily Obscured Low-luminosity Active Galactic Nucleus in the Luminous Infrared Galaxy NGC 6286

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Bauer, F. E.; Treister, E.; Romero-Cañizales, C.; Arevalo, P.; Iwasawa, K.; Privon, G. C.; Sanders, D. B.; Schawinski, K.; Stern, D.; Imanishi, M.

    2016-03-01

    We report the detection of a heavily obscured active galactic nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286 identified in a 17.5 ks Nuclear Spectroscopic Telescope Array observation. The source is in an early merging stage and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra-luminous infrared galaxies in different merger stages. NGC 6286 is clearly detected above 10 keV and by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured (NH ≃(0.95-1.32) × 1024 cm-2) with a column density consistent with being Compton-thick (CT, {log}({N}{{H}}/{{cm}}-2)≥slant 24). The AGN in NGC 6286 has a low absorption-corrected luminosity (L2-10 keV ˜ 3-20 × 1041 erg s-1) and contributes ≲1% to the energetics of the system. Because of its low luminosity, previous observations carried out in the soft X-ray band (<10 keV) and in the infrared did not notice the presence of a buried AGN. NGC 6286 has multiwavelength characteristics typical of objects with the same infrared luminosity and in the same merger stage, which might imply that there is a significant population of obscured low-luminosity AGNs in LIRGs that can only be detected by sensitive hard X-ray observations.

  2. Undetectable Changes in Image Resolution of Luminance-Contrast Gradients Affect Depth Perception

    PubMed Central

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Morita, Toshiya

    2016-01-01

    A great number of studies have suggested a variety of ways to get depth information from two dimensional images such as binocular disparity, shape-from-shading, size gradient/foreshortening, aerial perspective, and so on. Are there any other new factors affecting depth perception? A recent psychophysical study has investigated the correlation between image resolution and depth sensation of Cylinder images (A rectangle contains gradual luminance-contrast changes.). It was reported that higher resolution images facilitate depth perception. However, it is still not clear whether or not the finding generalizes to other kinds of visual stimuli, because there are more appropriate visual stimuli for exploration of depth perception of luminance-contrast changes, such as Gabor patch. Here, we further examined the relationship between image resolution and depth perception by conducting a series of psychophysical experiments with not only Cylinders but also Gabor patches having smoother luminance-contrast gradients. As a result, higher resolution images produced stronger depth sensation with both images. This finding suggests that image resolution affects depth perception of simple luminance-contrast differences (Gabor patch) as well as shape-from-shading (Cylinder). In addition, this phenomenon was found even when the resolution difference was undetectable. This indicates the existence of consciously available and unavailable information in our visual system. These findings further support the view that image resolution is a cue for depth perception that was previously ignored. It partially explains the unparalleled viewing experience of novel high resolution displays. PMID:26941693

  3. Undetectable Changes in Image Resolution of Luminance-Contrast Gradients Affect Depth Perception.

    PubMed

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Morita, Toshiya

    2016-01-01

    A great number of studies have suggested a variety of ways to get depth information from two dimensional images such as binocular disparity, shape-from-shading, size gradient/foreshortening, aerial perspective, and so on. Are there any other new factors affecting depth perception? A recent psychophysical study has investigated the correlation between image resolution and depth sensation of Cylinder images (A rectangle contains gradual luminance-contrast changes.). It was reported that higher resolution images facilitate depth perception. However, it is still not clear whether or not the finding generalizes to other kinds of visual stimuli, because there are more appropriate visual stimuli for exploration of depth perception of luminance-contrast changes, such as Gabor patch. Here, we further examined the relationship between image resolution and depth perception by conducting a series of psychophysical experiments with not only Cylinders but also Gabor patches having smoother luminance-contrast gradients. As a result, higher resolution images produced stronger depth sensation with both images. This finding suggests that image resolution affects depth perception of simple luminance-contrast differences (Gabor patch) as well as shape-from-shading (Cylinder). In addition, this phenomenon was found even when the resolution difference was undetectable. This indicates the existence of consciously available and unavailable information in our visual system. These findings further support the view that image resolution is a cue for depth perception that was previously ignored. It partially explains the unparalleled viewing experience of novel high resolution displays.

  4. Neutral Carbon Emission in Luminous Infrared Galaxies: The [C i] Lines as Total Molecular Gas Tracers

    NASA Astrophysics Data System (ADS)

    Jiao, Qian; Zhao, Yinghe; Zhu, Ming; Lu, Nanyao; Gao, Yu; Zhang, Zhi-Yu

    2017-05-01

    We present a statistical study of the [C i] (3P1 \\to 3P0), [C i] (3P2 \\to 3P1) lines (hereafter [C i] (1-0) and [C i] (2-1), respectively) and the CO(1-0) line for a sample of (ultra-)luminous infrared galaxies ((U)LIRGs). We explore the correlations between the luminosities of CO(1-0) and [C i] lines, and find that {L}{CO(1-0)}\\prime correlates almost linearly with both {L}[{{C} {{I}}](1-0)}\\prime and {L}[{{C} {{I}}](2-1)}\\prime , suggesting that [C i] lines can trace total molecular gas mass, at least for (U)LIRGs. We also investigate the dependence of {L}[{{C} {{I}}](1-0)}\\prime /{L}{CO(1-0)}\\prime , {L}[{{C} {{I}}](2-1)}\\prime /{L}{CO(1-0)}\\prime , and {L}[{{C} {{I}}](2-1)}\\prime /{L}[{{C} {{I}}](1-0)}\\prime on the far-infrared color of 60-to-100 μm, and find non-correlation, a weak correlation, and a modest correlation, respectively. Under the assumption that these two carbon transitions are optically thin, we further calculate the [C i] line excitation temperatures, atomic carbon masses, and mean [C i] line flux-to-H2 mass conversion factors for our sample. The resulting {{{H}}}2 masses using these [C i]-based conversion factors roughly agree with those derived from {L}{CO(1-0)}\\prime and CO-to-H2 conversion factor. Based on Herschel observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  5. Cold Molecular Gas Along the Merger Sequence in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Yamashita, Takuji; Komugi, Shinya; Matsuhara, Hideo; Armus, Lee; Inami, Hanae; Ueda, Junko; Iono, Daisuke; Kohno, Kotaro; Evans, Aaron S.; Arimatsu, Ko

    2017-08-01

    We present an initial result from the 12CO (J = 1-0) survey of 79 galaxies in 62 local luminous and ultraluminous infrared galaxy (LIRG and ULIRG) systems obtained using the 45 m telescope at the Nobeyama Radio Observatory. This is a systematic 12CO (J = 1-0) survey of the Great Observatories All-sky LIRGs Survey (GOALS) sample. The molecular gas mass of the sample is in the range 2.2× {10}8{--}7.0× {10}9 {M}⊙ within the central several kiloparsecs subtended by the 15\\prime\\prime beam. A method to estimate the size of a CO gas distribution is introduced, which is combined with the total CO flux in the literature. This method is applied to part of our sample, and we find that the median CO radius is 1-4 kpc. From the early stage to the late stage of mergers, we find that the CO size decreases while the median value of the molecular gas mass in the central several-kiloparsec region is constant. Our results statistically support a scenario where molecular gas inflows toward the central region from the outer disk to replenish gas consumed by starburst, and that such a process is common in merging LIRGs.

  6. An ALMA Spectral Scan of the Obscured Luminous Infrared Galaxy NGC 4418

    NASA Astrophysics Data System (ADS)

    Costagliola, F.; Sakamoto, K.; Aalto, S.; Muller, S.; Martín, S.

    2015-12-01

    Until recently, the study of the molecular interstellar medium of galaxies has been mostly focused on a few, relatively abundant, molecular species. Recent attempts at modeling the molecular emission of active galaxies have shown that standard high-density tracers do not provide univocal results and are not able to discriminate between different relevant environments (e.g., star-formation vs AGN). Spectral lines surveys allow us to explore the richness of the molecular spectrum of galaxies, provide tighter constrains to astrochemical models, and find new more sensitive tracers of specific gas properties. What started as a time-consuming pioneering work has become now routinely accessible with the advent of ALMA. Here we report the results of the first ALMA spectral scan of an obscured luminous infrared galaxy (LIRG), NGC 4418. The galaxy has a very compact IR core and narrow emission lines that make it the perfect target for the study of vibrationally excited molecules. More than 300 emission lines from 45 molecular species were identified and modeled via an LTE and NLTE analysis. The molecular excitation and abundances derived offer a unique insight into the chemistry of obscured LIRGs.

  7. Kinematics of the ionized and molecular gas in nearby luminous infrared interacting galaxies

    NASA Astrophysics Data System (ADS)

    Zaragoza-Cardiel, Javier; Beckman, John; Font, Joan; Rosado, Margarita; Camps-Fariña, Artemi; Borlaff, Alejandro

    2017-03-01

    We have observed three luminous infrared galaxy systems which are pairs of interacting galaxies, with the Galaxy Hα Fabry-Perot system mounted on the 4.2 m William Herschel Telescope at the Roque de los Muchachos Observatory, and combined the observations with the Atacama Large Millimeter Array observations of these systems in CO emission to compare the physical properties of the star formation regions and the molecular gas clouds, and specifically the internal kinematics of the star-forming regions. We identified 88 star-forming regions in the Hα emission data cubes, and 27 molecular cloud complexes in the CO emission data cubes. The surface densities of the star formation rate and the molecular gas are significantly higher in these systems than in non-interacting galaxies and the Galaxy, and are closer to the surface densities of the star formation rate and the molecular gas of extreme star-forming galaxies at higher redshifts. The large values of the velocity dispersion also show the enhanced gas surface density. The H II regions are situated on the SFR - σv envelope, and so are also in virial equilibrium. Since the virial parameter decreases with the surface densities of both the star formation rate and the molecular gas, we claim that the clouds presented here are gravitationally dominated rather than being in equilibrium with the external pressure.

  8. Landsat and Thermal Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Arvidson, Terry; Barsi, Julia; Jhabvala, Murzy; Reuter, Dennis

    2012-01-01

    The purpose of this chapter is to describe the collection of thermal images by Landsat sensors already on orbit and to introduce the new thermal sensor to be launched in 2013. The chapter describes the thematic mapper (TM) and enhanced thematic mapper plus (ETM+) sensors, the calibration of their thermal bands, and the design and prelaunch calibration of the new thermal infrared sensor (TIRS).

  9. The molecular gas in Luminous Infrared Galaxies: a new emergent picture

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; Zhang, Zhi-Yu; Weiss, Axel; van der Werf, Paul; Isaak, Kate; Gao, Yu; Xilouris, Manolis; Greve, Thomas R.

    2013-03-01

    Results from a large, multi-J CO, 13CO, and HCN line survey of Luminous Infrared Galaxies (LIRGs: LIR≥ 1010 L⊙) in the local Universe (z≤0.1), complemented by CO J=4-3 up to J=13-12 observations from the Herschel Space Observatory (HSO), paints a new picture for the average conditions of the molecular gas of the most luminous of these galaxies with turbulence and/or large cosmic ray (CR) energy densities UCR rather than far-UV/optical photons from star-forming sites as the dominant heating sources. Especially in ULIRGs (LIR>1012 L⊙) the Photon Dominated Regions (PDRs) can encompass at most a few % of their molecular gas mass while the large UCR˜ 103 UCR, Galaxy, and the strong turbulence in these merger/starbursts, can volumetrically heat much of their molecular gas to Tkin˜ (100-200) K, unhindered by the high dust extinctions. Moreover the strong supersonic turbulence in ULIRGs relocates much of their molecular gas at much higher average densities (≥104 cm-3) than in isolated spirals (˜ 102-103 cm-3). This renders low-J CO lines incapable of constraining the properties of the bulk of the molecular gas in ULIRGs, with substantial and systematic underestimates of its mass possible when only such lines are used. Finally a comparative study of multi-J HCN lines and CO SLEDs from J=1-0 up to J=13-12 of NGC 6240 and Arp 193 offers a clear example of two merger/starbursts whose similar low-J CO SLEDs, and LIR/LCO,1-0 and LHCN, 1-0/LCO,1-0 ratios (proxies of the so-called SF efficiency and dense gas mass fraction), yield no indications about their strongly diverging CO SLEDs beyond J=4-3, and ultimately the different physical conditions in their molecular ISM. The much larger sensitivity of ALMA and its excellent site in the Atacama desert now allows the observations necessary to assess the dominant energy sources of the molecular gas and its mass in LIRGs without depending on the low-J CO lines.

  10. Mid-infrared properties of luminous infrared galaxies. II. Probing the dust and gas physics of the goals sample

    SciTech Connect

    Stierwalt, S.; Armus, L.; Diaz-Santos, T.; Marshall, J.; Haan, S.; Howell, J.; Murphy, E. J.; Inami, H.; Petric, A. O.; Charmandaris, V.; Evans, A. S.; Iwasawa, K.; Kim, D. C.; Rich, J. A.; Spoon, H. W. W.; U, V.

    2014-08-01

    The Great Observatories All-sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here, we present the results of a multi-component, spectral decomposition analysis of the low-resolution mid-infrared (MIR) Spitzer Infrared Spectrograph spectra from 5-38 μm of 244 LIRG nuclei. The detailed fits and high-quality spectra allow for characterization of the individual polycyclic aromatic hydrocarbon (PAH) features, warm molecular hydrogen emission, and optical depths for both silicate dust grains and water ices. We find that starbursting LIRGs, which make up the majority of the GOALS sample, are very consistent in their MIR properties (i.e., τ{sub 9.7μm}, τ{sub ice}, neon line ratios, and PAH feature ratios). However, as their EQW{sub 6.2{sub μm}} decreases, usually an indicator of an increasingly dominant active galactic nucleus (AGN), LIRGs cover a larger spread in these MIR parameters. The contribution from PAH emission to the total IR luminosity (L(PAH)/L(IR)) in LIRGs varies from 2%-29% and LIRGs prior to their first encounter show significantly higher L(PAH)/L(IR) ratios on average. We observe a correlation between the strength of the starburst (represented by IR8 = L{sub IR}/L{sub 8{sub μm}}) and the PAH fraction at 8 μm but no obvious link between IR8 and the 7.7 to 11.3 PAH ratio, suggesting that the fractional photodissociation region (PDR) emission, and not the overall grain properties, is associated with the rise in IR8 for galaxies off the starburst main sequence. We detect crystalline silicate features in ∼6% of the sample but only in the most obscure sources (s{sub 9.7{sub μm}} < –1.24). Ice absorption features are observed in ∼11% (56%) of GOALS LIRGs (ULIRGs) in sources with a range of silicate depths. Most GOALS LIRGs have L(H{sub 2})/L(PAH) ratios elevated above those observed for normal star-forming galaxies and exhibit a trend for increasing L(H{sub 2})/L

  11. A LUMINOUS BLUE VARIABLE STAR INTERACTING WITH A NEARBY INFRARED DARK CLOUD

    SciTech Connect

    Palau, Aina; Girart, Josep M.; Rizzo, J. Ricardo; Henkel, Christian

    2014-04-01

    G79.29+0.46 is a nebula created by a luminous blue variable (LBV) star candidate characterized by two almost circular concentric shells. In order to investigate whether the shells are interacting with the infrared dark cloud (IRDC) G79.3+0.3 located at the southwestern border of the inner shell, we conducted Jansky Very Large Array observations of NH{sub 3}(1, 1), (2, 2) and c-C{sub 3}H{sub 2}, and combined them with previous Effelsberg data. The overall NH{sub 3} emission consists of one main clump, named G79A, elongated following the shape of the IRDC, plus two fainter and smaller cores to the north, which spatially match the inner infrared shell. We analyzed the NH{sub 3} spectra at each position with detected emission and inferred linewidth, rotational temperature, column density, and abundance maps, and find that: (1) the linewidth of NH{sub 3}(1, 1) in the northern cores is 0.5 km s{sup –1}, slightly larger than in their surroundings; (2) the NH{sub 3} abundance is enhanced by almost one order of magnitude toward the northwestern side of G79A; (3) there is one ''hot slab'' at the interface between the inner infrared shell and the NH{sub 3} peak of G79A; and (4) the western and southern edges of G79A present chemical differentiation, with c-C{sub 3}H{sub 2} tracing more external layers than NH{sub 3}, similar to what is found in photon-dominated regions. Overall, the kinematics and physical conditions of G79A are consistent with both shock-induced and UV radiation-induced chemistry driven by the LBV star. Therefore, the IRDC is not likely associated with the star-forming region DR15, but located farther away, near G79.29+0.46 at 1.4 kpc.

  12. Surface regions of illusory images are detected with a slower processing speed than those of luminance-defined images.

    PubMed

    Mihaylova, Milena; Manahilov, Velitchko

    2010-11-24

    Research has shown that the processing time for discriminating illusory contours is longer than for real contours. We know, however, little whether the visual processes, associated with detecting regions of illusory surfaces, are also slower as those responsible for detecting luminance-defined images. Using a speed-accuracy trade-off (SAT) procedure, we measured accuracy as a function of processing time for detecting illusory Kanizsa-type and luminance-defined squares embedded in 2D static luminance noise. The data revealed that the illusory images were detected at slower processing speed than the real images, while the points in time, when accuracy departed from chance, were not significantly different for both stimuli. The classification images for detecting illusory and real squares showed that observers employed similar detection strategies using surface regions of the real and illusory squares. The lack of significant differences between the x-intercepts of the SAT functions for illusory and luminance-modulated stimuli suggests that the detection of surface regions of both images could be based on activation of a single mechanism (the dorsal magnocellular visual pathway). The slower speed for detecting illusory images as compared to luminance-defined images could be attributed to slower processes of filling-in of regions of illusory images within the dorsal pathway.

  13. Integrated infrared and visible image sensors

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    2000-01-01

    Semiconductor imaging devices integrating an array of visible detectors and another array of infrared detectors into a single module to simultaneously detect both the visible and infrared radiation of an input image. The visible detectors and the infrared detectors may be formed either on two separate substrates or on the same substrate by interleaving visible and infrared detectors.

  14. High Resolution Radio Observations Of Energetically Dominant Regions In Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Barcos-Munoz, Loreto

    2016-07-01

    Luminous and Ultra-luminous Infrared galaxies (U/LIRGs) are one of the most powerful classes of extragalactic objects in the local universe, and they provide a unique opportunity to study star formation and feedback processes in extreme environments. They are primarily observed to be interacting or merging disk galaxies. During the interaction, large amounts of gas are funneled to the central few kpc, triggering high star formation rates (SFR) and dust production. The absorption of UV and optical radiation from stars, or active galactic nuclei (AGN), by dust produces their observed high infrared luminosities.The high level of dust obscuration intrinsic to U/LIRGs makes them difficult to study. Radio interferometry is thus the perfect tool for revealing the nature of these systems - it provides the high spatial resolution needed to resolve energetically dominant regions in U/LIRGs at wavelengths that have both diagnostic power and transparency to dust. In this thesis, 6 and 33 GHz radio continuum interferometric observations with the upgraded Karl G. Jansky Very Large Array (VLA) are used to study a sample of 22 local U/LIRGs.First, a detailed analysis of the 6 and 33 GHz radio continuum emission from the closest ULIRG, Arp 220, is presented. This late stage merger is highly obscured, being optically thick even at mid-infrared wavelengths. Further, due to its extreme environment, it is often used as a template for high redshift starbursts. Arp 220 hosts two distinct nuclei that are separated by (\\sim) 370 pc. The nuclei are well resolved with the 33 GHz observations (i.e., with a spatial resolution of ˜ 30 pc). The deconvolved radii enclosing half of the total 33 GHz light are approximately 50 and 35 pc for the eastern and western nucleus, respectively. Literature values of the gas mass and infrared luminosity are combined with the 33 GHz sizes under the assumption of co-spatiality to show that Arp 220 has one of the highest molecular gas surface densities

  15. Acoustic wavefield and Mach wave radiation of flashing arcs in strombolian explosion measured by image luminance

    NASA Astrophysics Data System (ADS)

    Genco, Riccardo; Ripepe, Maurizio; Marchetti, Emanuele; Bonadonna, Costanza; Biass, Sebastien

    2014-10-01

    Explosive activity often generates visible flashing arcs in the volcanic plume considered as the evidence of the shock-front propagation induced by supersonic dynamics. High-speed image processing is used to visualize the pressure wavefield associated with flashing arcs observed in strombolian explosions. Image luminance is converted in virtual acoustic signal compatible with the signal recorded by pressure transducer. Luminance variations are moving with a spherical front at a 344.7 m/s velocity. Flashing arcs travel at the sound speed already 14 m above the vent and are not necessarily the evidence of a supersonic explosive dynamics. However, seconds later, the velocity of small fragments increases, and the spherical acousto-luminance wavefront becomes planar recalling the Mach wave radiation generated by large scale turbulence in high-speed jet. This planar wavefront forms a Mach angle of 55° with the explosive jet axis, suggesting an explosive dynamics moving at Mo = 1.22 Mach number.

  16. Massive Star Cluster Formation and Destruction in Luminous Infrared Galaxies in GOALS

    NASA Astrophysics Data System (ADS)

    Linden, S. T.; Evans, A. S.; Rich, J.; Larson, K. L.; Armus, L.; Díaz-Santos, T.; Privon, G. C.; Howell, J.; Inami, H.; Kim, D.-C.; Chien, L.-H.; Vavilkin, T.; Mazzarella, J. M.; Modica, F.; Surace, J. A.; Manning, S.; Abdullah, A.; Blake, A.; Yarber, A.; Lambert, T.

    2017-07-01

    We present the results of a Hubble Space Telescope ACS/HRC FUV, ACS/WFC optical study into the cluster populations of a sample of 22 Luminous Infrared Galaxies in the Great Observatories All-Sky LIRG Survey. Through integrated broadband photometry, we have derived ages and masses for a total of 484 star clusters contained within these systems. This allows us to examine the properties of star clusters found in the extreme environments of LIRGs relative to lower luminosity star-forming galaxies in the local universe. We find that by adopting a Bruzual & Charlot simple stellar population model and Salpeter initial mass function, the age distribution of the clusters declines as {dN}/dτ ={τ }-0.9+/-0.3, consistent with the age distribution derived for the Antennae Galaxies, and interpreted as evidence for rapid cluster disruption occurring in the strong tidal fields of merging galaxies. The large number of {10}6 {M}⊙ young clusters identified in the sample also suggests that LIRGs are capable of producing more high-mass clusters than what is observed to date in any lower luminosity star-forming galaxy in the local universe. The observed cluster mass distribution of {dN}/{dM}={M}-1.95+/-0.11 is consistent with the canonical -2 power law used to describe the underlying initial cluster mass function (ICMF) for a wide range of galactic environments. We interpret this as evidence against mass-dependent cluster disruption, which would flatten the observed CMF relative to the underlying ICMF distribution.

  17. LOCAL LUMINOUS INFRARED GALAXIES. III. CO-EVOLUTION OF BLACK HOLE GROWTH AND STAR FORMATION ACTIVITY?

    SciTech Connect

    Alonso-Herrero, Almudena; Hernan-Caballero, Antonio; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang Yiping; Rigopoulou, Dimitra

    2013-03-10

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 Multiplication-Sign 10{sup 7} M{sub Sun} using [Ne III] 15.56 {mu}m and optical [O III] {lambda}5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear {approx}1.5 kpc region, as estimated from the nuclear 11.3 {mu}m PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.

  18. Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar

    NASA Technical Reports Server (NTRS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Balokovic, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (approx.0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by approx.1.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau approx. = 1.2, NH approx. 1.5×10(exp 24)/sq cm. We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at approx..30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH < or = 2×10(exp 23)/sq cm over long (approx.3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  19. Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar

    NASA Technical Reports Server (NTRS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; hide

    2016-01-01

    We present a broadband (approx.0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by approx.1.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau approx. = 1.2, NH approx. 1.5×10(exp 24)/sq cm. We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at approx..30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH < or = 2×10(exp 23)/sq cm over long (approx.3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  20. Chandra X-ray observations of the hyper-luminous infrared galaxy IRAS F15307+3252

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, J.; Gandhi, P.; Hogan, M. T.; Gendron-Marsolais, M.-L.; Edge, A. C.; Fabian, A. C.; Russell, H. R.; Iwasawa, K.; Mezcua, M.

    2017-01-01

    Hyper-luminous infrared galaxies (HyLIRGs) lie at the extreme luminosity end of the IR galaxy population with LIR > 1013 L⊙. They are thought to be closer counterparts of the more distant sub-millimeter galaxies, and should therefore be optimal targets to study the most massive systems in formation. We present deep Chandra observations of IRAS F15307+3252 (100 ks), a classical HyLIRG located at z = 0.93 and hosting a radio-loud AGN (L1.4 GHz ˜ 3.5 × 1025 W Hz-1). The Chandra images reveal the presence of extended (r = 160 kpc), asymmetric X-ray emission in the soft 0.3-2.0 keV band that has no radio counterpart. We therefore argue that the emission is of thermal origin originating from a hot intragroup or intracluster medium virializing in the potential. We find that the temperature (˜2 keV) and bolometric X-ray luminosity (˜3 × 1043 erg s-1) of the gas follow the expected LX-ray-T correlation for groups and clusters, and that the gas has a remarkably short cooling time of 1.2 Gyr. In addition, VLA radio observations reveal that the galaxy hosts an unresolved compact steep-spectrum (CSS) source, most likely indicating the presence of a young radio source similar to 3C186. We also confirm that the nucleus is dominated by a redshifted 6.4 keV Fe Kα line, strongly suggesting that the AGN is Compton-thick. Finally, Hubble images reveal an overdensity of galaxies and sub-structure in the galaxy that correlates with soft X-ray emission. This could be a snapshot view of on-going groupings expected in a growing cluster environment. IRAS F15307+3252 might therefore be a rare example of a group in the process of transforming into a cluster.

  1. A multiwavelength and multiscale study of Luminous and Ultraluminous Infrared Galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, Rubén

    2014-10-01

    This dissertation deals with the multiwavelength study of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs, respectively) in the local Universe under different spatial scales. The work is focused on the properties of massive starbursts, the contribution of active galactic nuclei (AGN) and the interplay between both phenomena. The study of local (U)LIRGs is the best scenario where to understand the properties of these objects at cosmological distances, where their luminosity contribution dominates the cosmic infrared background. Our first approach to the study of (U)LIRGs consisted of a spectral line study in the millimeter range, obtained with the IRAM 30m radio-telescope in Pico Veleta, Granada of a subsample of 56 (U)LIRGs from the GOALS project sample. We observed and analyzed spectra of several molecular features, focusing in the study of carbon monoxide (CO), a well-known tracer of cold molecular gas. We explored the relation between them as well as the properties of molecular gas. Besides of the sample characterization, we confirmed the increase of the isotopic ratio 12CO/13CO with the dust temperature, explained by the 12CO optical depth decreasing with temperature. We have also studied the kinematics and gas distribution using the spectral profiles of several molecular transitions. In a second part of this thesis, we analyzed the central kiloparsec region of a sample of 12 LIRGs, stressing the importance of the multiwavelength approach, aimed at deriving the star formation processes of these galaxies, as well as to study the contribution of the putative AGN to the bolometric luminosity in our sample. For one of these LIRGs, NGC1614, we performed a deep multiwavelength study, including data from radio, infrared, optical and X-rays. These data allowed us to establish that the the IR emission in the circumnuclear region is completely dominated by a powerful starburst and, in case it hosts an AGN, its contribution is irrelevant. We also performed

  2. Assessment of an optically stimulated infrared emission from image intensifier tube photocathodes

    NASA Astrophysics Data System (ADS)

    Wales, Jesse G.; Marasco, Peter L.

    2005-05-01

    Anecdotal evidence suggested that bright, night-vision imaging system (NVIS) compatible, green cockpit displays could cause a veiling luminance in night-vision goggles (NVGs) and degrade visual performance. The mechanism suspected of causing this veiling luminance was an infrared emission from the image intensifier tube photocathode stimulated by visible, NVIS compatible light. This paper describes an effort to measure this stimulated infrared emission from three different image intensifier tubes. Measurements of the emission were analyzed with respect to tube age, the wavelength of incident illumination, and illumination angle of incidence. The emission was found during certain combinations of light wavelengths, angles, and intensities. However, results suggest that this phenomenon is not sufficiently strong to cause observable veiling luminance in NVGs.

  3. High-velocity extended molecular outflow in the star-formation dominated luminous infrared galaxy ESO 320-G030

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, M.; Colina, L.; García-Burillo, S.; Alonso-Herrero, A.; Arribas, S.; Cazzoli, S.; Emonts, B.; Piqueras López, J.; Planesas, P.; Storchi Bergmann, T.; Usero, A.; Villar-Martín, M.

    2016-10-01

    We analyze new high spatial resolution (~60 pc) ALMA CO(2-1) observations of the isolated luminous infrared galaxy ESO 320-G030 (d = 48 Mpc) in combination with ancillary Hubble Space Telescope optical and near infrared (IR) imaging, as well as VLT/SINFONI near-IR integral field spectroscopy. We detect a high-velocity (~450 km s-1) spatially resolved (size~2.5 kpc; dynamical time ~3 Myr) massive (~107 M⊙; Ṁ ~ 2-8 M⊙ yr-1) molecular outflow that has originated in the central ~250 pc. We observe a clumpy structure in the outflowing cold molecular gas with clump sizes between 60 and 150 pc and masses between 105.5 and 106.4 M⊙. The mass of the clumps decreases with increasing distance, while the velocity is approximately constant. Therefore, both the momentum and kinetic energy of the clumps decrease outwards. In the innermost (~100 pc) part of the outflow, we measure a hot-to-cold molecular gas ratio of 7 × 10-5, which is similar to that measured in other resolved molecular outflows. We do not find evidence of an ionized phase in this outflow. The nuclear IR and radio properties are compatible with strong and highly obscured star-formation (Ak ~ 4.6 mag; star formation rate ~ 15 M⊙ yr-1). We do not find any evidence for the presence of an active galactic nucleus. We estimate that supernova explosions in the nuclear starburst (νSN ~ 0.2 yr-1) can power the observed molecular outflow. The kinetic energy and radial momentum of the cold molecular phase of the outflow correspond to about 2% and 20%, respectively, of the supernovae output. The cold molecular outflow velocity is lower than the escape velocity, so the gas will likely return to the galaxy disk. The mass loading factor is ~0.1-0.5, so the negative feedback owing to this star-formation-powered molecular outflow is probably limited. The reduced images and datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  4. The molecular gas in luminous infrared galaxies - I. CO lines, extreme physical conditions and their drivers

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; van der Werf, Paul P.; Xilouris, E. M.; Isaak, K. G.; Gao, Yu; Mühle, S.

    2012-11-01

    We report results from a large molecular line survey of luminous infrared galaxies (LIRGs; L IR ≳1011 L) in the local Universe (z ≤ 0.1), conducted during the last decade with the James Clerk Maxwell Telescope and the IRAM 30-m telescope. This work presents the CO and 13CO line data for 36 galaxies, further augmented by multi-J total CO line luminosities available for other infrared (IR) bright galaxies from the literature. This yields a combined sample of N = 70 galaxies with the star formation (SF) powered fraction of their IR luminosities spanning L IR (*)˜(1010-2×1012) L and a wide range of morphologies. Simple comparisons of their available CO spectral line energy distributions (SLEDs) with local ones, as well as radiative transfer models, discern a surprisingly wide range of average interstellar medium (ISM) conditions, with most of the surprises found in the high-excitation regime. These take the form of global CO SLEDs dominated by a very warm (Tkin ≳100 K) and dense (n ≥ 104 cm-3) gas phase, involving galaxy-sized (˜(few) × 109 M⊙) gas mass reservoirs under conditions that are typically found only for ˜(1-3) per cent of mass per typical SF molecular cloud in the Galaxy. Furthermore, some of the highest excitation CO SLEDs are found in ultraluminous infrared galaxies (ULIRGs; LIR ≥ 1012 L⊙) and surpass even those found solely in compact SF-powered hot spots in Galactic molecular clouds. Strong supersonic turbulence and high cosmic ray energy densities rather than far-ultraviolet/optical photons or supernova remnant induced shocks from individual SF sites can globally warm the large amounts of dense gas found in these merger-driven starbursts and easily power their extraordinary CO line excitation. This exciting possibility can now be systematically investigated with Herschel and the Atacama Large Milimeter Array (ALMA). As expected for an IR-selected (and thus SF rate selected) galaxy sample, only few 'cold' CO SLEDs are found, and for

  5. Luminous blue variables: An imaging perspective on their binarity and near environment

    NASA Astrophysics Data System (ADS)

    Martayan, Christophe; Lobel, Alex; Baade, Dietrich; Mehner, Andrea; Rivinius, Thomas; Boffin, Henri M. J.; Girard, Julien; Mawet, Dimitri; Montagnier, Guillaume; Blomme, Ronny; Kervella, Pierre; Sana, Hugues; Štefl, Stanislav; Zorec, Juan; Lacour, Sylvestre; Le Bouquin, Jean-Baptiste; Martins, Fabrice; Mérand, Antoine; Patru, Fabien; Selman, Fernando; Frémat, Yves

    2016-03-01

    Context. Luminous blue variables (LBVs) are rare massive stars with very high luminosity. They are characterized by strong photometric and spectroscopic variability related to transient eruptions. The mechanisms at the origin of these eruptions is not well known. In addition, their formation is still problematic and the presence of a companion could help to explain how they form. Aims: This article presents a study of seven LBVs (about 20% of the known Galactic population), some Wolf-Rayet stars, and massive binaries. We probe the environments that surround these massive stars with near-, mid-, and far-infrared images, investigating potential nebula/shells and the companion stars. Methods: To investigate large spatial scales, we used seeing-limited and near diffraction-limited adaptive optics images to obtain a differential diagnostic on the presence of circumstellar matter and to determine their extent. From those images, we also looked for the presence of binary companions on a wide orbit. Once a companion was detected, its gravitational binding to the central star was tested. Tests include the chance projection probability, the proper motion estimates with multi-epoch observations, flux ratio, and star separations. Results: We find that two out of seven of LBVs may have a wide orbit companion. Most of the LBVs display a large circumstellar envelope or several shells. In particular, HD 168625, known for its rings, possesses several shells with possibly a large cold shell at the edge of which the rings are formed. For the first time, we have directly imaged the companion of LBV stars. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under projects number 085.D-0625(C), 087.D-0426(C, D), and archival data 383.D-0323(A).The reduced NACO images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  6. LUMINOUS INFRARED GALAXIES WITH THE SUBMILLIMETER ARRAY. III. THE DENSE KILOPARSEC MOLECULAR CONCENTRATIONS OF Arp 299

    SciTech Connect

    Sliwa, Kazimierz; Wilson, Christine D.; Petitpas, Glen R.; Armus, Lee; Juvela, Mika; Matsushita, Satoki; Peck, Alison B.; Yun, Min S. E-mail: wilson@physics.mcmaster.ca E-mail: lee@ipac.caltech.edu E-mail: satoki@asiaa.sinica.edu.tw E-mail: myun@astro.umass.edu

    2012-07-01

    We have used high-resolution ({approx}2.''3) observations of the local (D{sub L} = 46 Mpc) luminous infrared galaxy Arp 299 to map out the physical properties of the molecular gas that provides the fuel for its extreme star formation activity. The {sup 12}CO J = 3-2, {sup 12}CO J = 2-1, and {sup 13}CO J = 2-1 lines were observed with the Submillimeter Array, and the short spacings of the {sup 12}CO J = 2-1 and J = 3-2 observations have been recovered using the James Clerk Maxwell Telescope single dish observations. We use the radiative transfer code RADEX to estimate the physical properties (density, column density, and temperature) of the different regions in this system. The RADEX solutions of the two galaxy nuclei, IC 694 and NGC 3690, are consistent with a wide range of gas components, from warm moderately dense gas with T{sub kin} > 30 K and n(H{sub 2}) {approx} 0.3-3 Multiplication-Sign 10{sup 3} cm{sup -3} to cold dense gas with T{sub kin} {approx} 10-30 K and n(H{sub 2}) > 3 Multiplication-Sign 10{sup 3} cm{sup -3}. The overlap region is shown to have a better constrained solution with T{sub kin} {approx} 10-50 K and n(H{sub 2}) {approx} 1-30 Multiplication-Sign 10{sup 3} cm{sup -3}. We estimate the gas masses and star formation rates of each region in order to derive molecular gas depletion times. The depletion times of all regions (20-50 Myr) are found to be about two orders of magnitude lower than those of normal spiral galaxies. This rapid depletion time can probably be explained by a high fraction of dense gas on kiloparsec scales in Arp 299. We estimate the CO-to-H{sub 2} factor, {alpha}{sub co} to be 0.4 {+-} 0.3(3 Multiplication-Sign 10{sup -4}/x{sub CO}) M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1} for the overlap region. This value agrees well with values determined previously for more advanced merger systems.

  7. Luminous Infrared Galaxies with the Submillimeter Array. III. The Dense Kiloparsec Molecular Concentrations of Arp 299

    NASA Astrophysics Data System (ADS)

    Sliwa, Kazimierz; Wilson, Christine D.; Petitpas, Glen R.; Armus, Lee; Juvela, Mika; Matsushita, Satoki; Peck, Alison B.; Yun, Min S.

    2012-07-01

    We have used high-resolution (~2farcs3) observations of the local (D L = 46 Mpc) luminous infrared galaxy Arp 299 to map out the physical properties of the molecular gas that provides the fuel for its extreme star formation activity. The 12CO J = 3-2, 12CO J = 2-1, and 13CO J = 2-1 lines were observed with the Submillimeter Array, and the short spacings of the 12CO J = 2-1 and J = 3-2 observations have been recovered using the James Clerk Maxwell Telescope single dish observations. We use the radiative transfer code RADEX to estimate the physical properties (density, column density, and temperature) of the different regions in this system. The RADEX solutions of the two galaxy nuclei, IC 694 and NGC 3690, are consistent with a wide range of gas components, from warm moderately dense gas with T kin > 30 K and n(H2) ~ 0.3-3 × 103 cm-3 to cold dense gas with T kin ~ 10-30 K and n(H2) > 3 × 103 cm-3. The overlap region is shown to have a better constrained solution with T kin ~ 10-50 K and n(H2) ~ 1-30 × 103 cm-3. We estimate the gas masses and star formation rates of each region in order to derive molecular gas depletion times. The depletion times of all regions (20-50 Myr) are found to be about two orders of magnitude lower than those of normal spiral galaxies. This rapid depletion time can probably be explained by a high fraction of dense gas on kiloparsec scales in Arp 299. We estimate the CO-to-H2 factor, αco to be 0.4 ± 0.3(3 × 10-4/x CO) M⊙ (K km s-1 pc2)-1 for the overlap region. This value agrees well with values determined previously for more advanced merger systems.

  8. Infrared imaging spectroradiometer program overview

    NASA Astrophysics Data System (ADS)

    Rapp, Ronald J.; Register, Henry I.

    1995-06-01

    The Department of Defense, through the US Air Force's Wright Laboratory, Armament Directorate is sponsoring the development of two types of IR imaging spectroradiometers (project name: IRIS) to measure the spatial/spectral characteristics of various military targets. Design and analysis of several technical approaches were conducted during an initial phase of the program. The technical approaches investigated included: a dispersive imaging spectrometer design utilizing a fiber-optic reformatter (contractor: ERIM); an imaging acousto-optic tunable filter (AOTF) design (contractor: Westinghouse); a spatial/spectral Fourier transform infrared (FTIR) spectrometer (contractor: Bomem Inc./Canada); a spatially modulated imaging fourier transform spectrometer (contractor: Daedalus Enterprises); an imaging Fabry-Perot design (contractor: Physical Sciences Inc.). Two of these designs were selected for brass board prototype fabrication. An FTIR prototype being built by Bomem Inc., offers an instrument with high sensitivity and high spectral resolution with modest spatial performance. An imaging Fabry-Perot prototype being built by Physical Sciences Inc., offers high spatial resolution with moderate sensitivity and spectral resolution.

  9. The Origin and Evolution of (Ultra)Luminous Infrared Galaxies Over Cosmic Time

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan S.; CANDELS Collaboration

    2014-01-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, L_IR>10^12 L_sun) are all interacting and merging systems. To date, studies of ULIRGs at high redshift have found a variety of results due to their varying selection effects and small sample sizes. Some studies have found that mergers still dominate the galaxy morphology while others have found a high fraction of morphologically normal or clumpy star forming disks. Near-infrared imaging is crucial for interpreting galaxy structure at high redshift since it probes the rest frame optical light of a galaxy and thus we can compare directly to studies in the local universe. We explore the evolution of the morphological properties of (U)LIRGs over cosmic time using a large sample of galaxies from Herschel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between 2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy's position in the star formation rate - stellar mass plane.

  10. The Modes of Star Formation in Luminous and Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan S.; Candels Team

    2015-01-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, LIR>1012 Lsun) are all interacting and merging systems. To date, studies of ULIRGs at high redshift have found a variety of results due to their varying selection effects and small sample sizes. Some studies have found that mergers still dominate the galaxy morphology while others have found a high fraction of morphologically normal or clumpy star forming disks. Near-infrared imaging is crucial for interpreting galaxy structure at high redshift since it probes the rest frame optical light of a galaxy and thus we can compare directly to studies in the local universe. We explore the evolution of the morphological properties of (U)LIRGs over cosmic time using a large sample of galaxies from Herschel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between z~2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy's position in the star formation rate - stellar mass plane. Are galaxies that have specific star formation rates elevated above the main sequence more likely to be mergers?

  11. Infrared imaging of subcutaneous veins.

    PubMed

    Zharov, Vladimir P; Ferguson, Scott; Eidt, John F; Howard, Paul C; Fink, Louis M; Waner, Milton

    2004-01-01

    Imaging of subcutaneous veins is important in many applications, such as gaining venous access and vascular surgery. Despite a long history of medical infrared (IR) photography and imaging, this technique is not widely used for this purpose. Here we revisited and explored the capability of near-IR imaging to visualize subcutaneous structures, with a focus on diagnostics of superficial veins. An IR device comprising a head-mounted IR LED array (880 nm), a small conventional CCD camera (Toshiba Ik-mui, Tokyo, Japan), virtual-reality optics, polarizers, filters, and diffusers was used in vivo to obtain images of different subcutaneous structures. The same device was used to estimate the IR image quality as a function of wavelength produced by a tunable xenon lamp-based monochrometer in the range of 500-1,000 nm and continuous-wave Nd:YAG (1.06 microm) and diode (805 nm) lasers. The various modes of optical illumination were compared in vivo. Contrast of the IR images in the reflectance mode was measured in the near-IR spectral range of 650-1,060 nm. Using the LED array, various IR images were obtained in vivo, including images of vein structure in a pigmented, fatty forearm, varicose leg veins, and vascular lesions of the tongue. Imaging in the near-IR range (880-930 nm) provides relatively good contrast of subcutaneous veins, underscoring its value for diagnosis. This technique has the potential for the diagnosis of varicose veins with a diameter of 0.5-2 mm at a depth of 1-3 mm, guidance of venous access, podiatry, phlebotomy, injection sclerotherapy, and control of laser interstitial therapy. Copyright 2004 Wiley-Liss, Inc.

  12. Method for improving visualization of infrared images

    NASA Astrophysics Data System (ADS)

    Cimbalista, Mario

    2014-05-01

    Thermography has an extremely important difference from the other visual image converting electronic systems, like XRays or ultrasound: the infrared camera operator usually spend hour after hour with his/her eyes looking only at infrared images, sometimes several intermittent hours a day if not six or more continuous hours. This operational characteristic has a very important impact on yield, precision, errors and misinterpretation of the infrared images contents. Despite a great hardware development over the last fifty years, quality infrared thermography still lacks for a solution for these problems. The human eye physiology has not evolved to see infrared radiation neither the mind-brain has the capability to understand and decode infrared information. Chemical processes inside the human eye and functional cells distributions as well as cognitive-perceptual impact of images plays a crucial role in the perception, detection, and other steps of dealing with infrared images. The system presented here, called ThermoScala and patented in USA solves this problem using a coding process applicable to an original infrared image, generated from any value matrix, from any kind of infrared camera to make it much more suitable for human usage, causing a substantial difference in the way the retina and the brain processes the resultant images. The result obtained is a much less exhaustive way to see, identify and interpret infrared images generated by any infrared camera that uses this conversion process.

  13. HST Observations of the Luminous IRAS Source FSC10214+4724: A gravitationally Lensed Infrared Quasar

    NASA Technical Reports Server (NTRS)

    Eisenhardt, P. R.; Armus, L.; Hogg, D. W.; Soifer, B. T.; Neugebauer, G.; Werner, M. W.

    1995-01-01

    Observations of a distant object in space with the data being taken by the Hubble Space Telescope (HST) Wide Field Planetary Camera. Scientific examination and hypothesis related to this object which appears to be either an extremely luminous dust embedded quasar, or a representative of a new class of astronomical objects (a primeval galaxy).

  14. Near infrared imaging with nanoparticles.

    PubMed

    Altinoğlu, Erhan I; Adair, James H

    2010-01-01

    Near infrared imaging has presented itself as a powerful diagnostic technique with potential to serve as a minimally invasive, nonionizing method for sensitive, deep tissue diagnostic imaging. This potential is further realized with the use of nanoparticle (NP)-based near infrared (NIR) contrast agents that are not prone to the rapid photobleaching and instability of their organic counterparts. This review discusses applications that have successfully demonstrated the utility of nanoparticles for NIR imaging, including NIR-emitting semiconductor quantum dots (QDs), resonant gold nanoshells, and dye-encapsulating nanoparticles. NIR QDs demonstrate superior optical performance with exceptional fluorescence brightness stability. However, the heavy metal composition and high propensity for toxicity hinder future application in clinical environments. NIR resonant gold nanoshells also exhibit brilliant signal intensities and likewise have none of the photo- or chemical-instabilities characteristic of organic contrast agents. However, concerns regarding ineffectual clearance and long-term accumulation in nontarget organs are a major issue for this technology. Finally, NIR dye-encapsulating nanoparticles synthesized from calcium phosphate (CP) also demonstrate improved optical performances by shielding the component dye from undesirable environmental influences, thereby enhancing quantum yields, emission brightness, and fluorescent lifetime. Calcium phosphate nanoparticle (CPNP) contrast agents are neither toxic, nor have issues with long-term sequestering, as they are readily dissolved in low pH environments and ultimately absorbed into the system. Though perhaps not as optically superior as QDs or nanoshells, these are a completely nontoxic, bioresorbable option for NP-based NIR imaging that still effectively improves the optical performance of conventional organic agents.

  15. Sizes and Kinematics of Extended Narrow-line Regions in Luminous Obscured AGN Selected by Broadband Images

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Lei; Greene, Jenny E.; Zakamska, Nadia L.

    2017-02-01

    To study the impact of active galactic nuclei (AGN) feedback on their galactic ISM, we present Magellan long-slit spectroscopy of 12 luminous nearby obscured AGN ({L}{bol}∼ {10}45.0-46.5 {erg} {{{s}}}-1, z ∼ 0.1). These objects are selected from a parent sample of spectroscopically identified AGN to have high [O iii]λ5007 and Wide-field Infrared Survey Explorer mid-IR luminosities and extended emission in the Sloan Digital Sky Survey r-band images, suggesting the presence of extended [O iii]λ5007 emission. We find spatially resolved [O iii] emission (2–35 kpc) in 8 out of 12 of these objects. Combined with samples of higher luminosity obscured AGN, we confirm that the size of the narrow-line region (RNLR) scales with the mid-IR luminosity until the relation flattens at RNLR ∼ 10 kpc. Nine out of 12 objects in our sample have regions with broad [O iii] line widths (w80 > 600 km s‑1), indicating outflows. We define these regions as the kinematically disturbed region (KDR). The size of the KDR ({R}{KDR}) is typically smaller than RNLR by few kiloparsecs but also correlates strongly with the AGN mid-IR luminosity. Given the uncertain outflow mass, we derive a loose constraint on the outflow energy efficiency {η }{med}=\\dot{E}/{L}{bol}∼ 0.007 % {--}7 % . We find no evidence for an AGN luminosity threshold below which outflows are not launched. To explain the sizes, velocity profiles, and high occurrence rates of the outflows in the most luminous AGN, we propose a scenario in which energy-conserving outflows are driven by AGN episodes with ∼108 year durations. Within each episode, the AGN is unlikely to be constantly luminous but could flicker on shorter timescales (≲107 yr) with a moderate duty cycle (∼10%).

  16. Simulation of the infrared signature of transient luminous events in the middle atmosphere for a limb line of sight

    NASA Astrophysics Data System (ADS)

    Romand, Frédéric; Croizé, Laurence; Payan, Sébastien; Huret, Nathalie

    2016-04-01

    Transient Luminous Events (TLE) are electrical and optical events which occurs above thunderstorms. Visual signatures are reported since the beginning of the 20th century but the first picture is accidentally recorded from a television camera in 1989. Their occurrence is closely linked with the lightning activity below thunderstorms. TLEs are observed from the base of the stratosphere to the thermosphere (15 - 110 km). They are a very brief phenomenon which lasts from 1 to 300 milliseconds. At a worldwide scale, four TLEs occur each minute. The energy deposition, about some tenth of megajoules, is able to ionize, dissociate and excite the molecules of the atmosphere. Atmospheric discharges in the troposphere are important sources of NO and NO2. TLEs might have the same effects at higher altitudes, in the stratosphere. NOx then can affect the concentration of O3 and OH. Consequently, TLEs could be locally important contributors to the chemical budget of the middle atmosphere. The perturbation of the atmospheric chemistry induced by TLEs has the consequence to locally modify the radiations in the infrared during the minutes following the event. The interest of studying the infrared signature of a TLE is twofold. For the atmospheric sciences it allows to link the perturbed composition to the resulting infrared spectrum. Then, some Defense systems like detection and guiding devices are equipped with airborne infrared sensors so that the TLE infrared signature might disturb them. We want to obtain a quantitative and kinetic evaluation of the infrared signature of the atmosphere locally perturbed by a TLE. In order to do so we must model three phenomena. 1) The plasma/chemistry coupling, which describes how the different energetic levels of atmospheric molecules are populated by the energetic deposition of the TLE. This step lasts the time of the lightning itself. 2) The chemical kinetics which describes how these populations will evolve in the following minutes. 3) The

  17. High-resolution infrared imaging

    NASA Astrophysics Data System (ADS)

    Falco, Charles M.

    2010-08-01

    The hands and mind of an artist are intimately involved in the creative process of image formation, intrinsically making paintings significantly more complex than photographs to analyze. In spite of this difficulty, several years ago the artist David Hockney and I identified optical evidence within a number of paintings that demonstrated artists began using optical projections as early as c1425 - nearly 175 years before Galileo - as aids for producing portions of their images. In the course of our work, Hockney and I developed insights that I have been applying to a new approach to computerized image analysis. Recently I developed and characterized a portable high resolution infrared for capturing additional information from paintings. Because many pigments are semi-transparent in the IR, in a number of cases IR photographs ("reflectograms") have revealed marks made by the artists that had been hidden under paint ever since they were made. I have used this IR camera to capture photographs ("reflectograms") of hundreds of paintings in over a dozen museums on three continents and, in some cases, these reflectograms have provided new insights into decisions the artists made in creating the final images that we see in the visible.

  18. Longwave infrared compressive hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Dupuis, Julia R.; Kirby, Michael; Cosofret, Bogdan R.

    2015-06-01

    Physical Sciences Inc. (PSI) is developing a longwave infrared (LWIR) compressive sensing hyperspectral imager (CS HSI) based on a single pixel architecture for standoff vapor phase plume detection. The sensor employs novel use of a high throughput stationary interferometer and a digital micromirror device (DMD) converted for LWIR operation in place of the traditional cooled LWIR focal plane array. The CS HSI represents a substantial cost reduction over the state of the art in LWIR HSI instruments. Radiometric improvements for using the DMD in the LWIR spectral range have been identified and implemented. In addition, CS measurement and sparsity bases specifically tailored to the CS HSI instrument and chemical plume imaging have been developed and validated using LWIR hyperspectral image streams of chemical plumes. These bases enable comparable statistics to detection based on uncompressed data. In this paper, we present a system model predicting the overall performance of the CS HSI system. Results from a breadboard build and test validating the system model are reported. In addition, the measurement and sparsity basis work demonstrating the plume detection on compressed hyperspectral images is presented.

  19. Identifications of The Most Luminous, Highest-Redshift Objects Discovered by WISE (Wide-field Infrared Survey Explorer)

    NASA Astrophysics Data System (ADS)

    Benford, Dominic; Stanford, Adam; Jarrett, Tom; Yan, Lin; Eisenhardt, Peter; Lonsdale, Carol; Wright, Ned; Tsai, Chao-Wei; Blain, Andrew; Cutri, Roc

    2010-08-01

    We request 4 nights to obtain KPNO/FLAMINGOS near-IR photometry and spectroscopy follow-up observations of a sample of extremely luminous, z > 1 galaxy candidates selected from WISE, a new NASA mission which is in the process of surveying the whole sky at 3.4,4.6,12 and 22 (micron) in 6 months (Jan-July 2010). The candidates are selected to have mid-IR colors indicating starburst-dominated spectra at redshifts of z=1.2 - 3, but are 100 times more luminous than local ULIRGs with L_FIR > 10^14 L_⊙, called extreme hyperluminous infrared galaxies (eHyLIRGs). In combination with the WISE mid-infrared photometry, the near-IR photometric and spectroscopic observations will allow us to distinguish high-z targets from local red populations, determine the luminosity, and further study the star formation activity from hydrogen recombination lines, extinction toward the star formation regions, and SED modeling on the stellar population of these galaxies.

  20. Image Identification Based on Color and Luminance Information by Using an Optical Correlator

    NASA Astrophysics Data System (ADS)

    Kuboyama, H.; Moriyama, K.; Arai, S.; Fukuda, M.; Kato, M.; Kawaguchi, T.; Yamamoto, S.; Inoue, M.

    2012-03-01

    A technique for distinguishing real-world images has been developed using a joint transform correlator. The real-world images, taken with a digital camera, are converted into luminance-intensity histograms and x-y chromaticity diagrams in the correlator system. These two-dimensional patterns are displayed on a spatial light modulator and are distinguished using the correlator system. The proposed identification techniques could distinguish an object image similar to the reference image of an apple among various fruits and vegetables, and could also distinguish tumor cell images from other cell images using the correlator system. These experimental results demonstrate the feasibility of using an optical correlator for the identification of complex real-world images containing large volumes of information.

  1. Optical Spectroscopy of Luminous Infrared Galaxies. II. Analysis of the Nuclear and Long-Slit Data

    NASA Astrophysics Data System (ADS)

    Veilleux, S.; Kim, D.-C.; Sanders, D. B.; Mazzarella, J. M.; Soifer, B. T.

    1995-05-01

    A spectroscopic survey of a sample of 200 luminous IRAS galaxies (LIGs: L_ir_^7^ > 3 x 10^10^ L_sun_; H_0_ = 75 km s^-1^ Mpc^-1^) was carried out using the Palomar 5 meter and University of Hawaii 2.2 m telescopes. Kim et al. (1995) described the data-taking and data-reduction procedures and presented line and continuum measurements extracted from the nucleus of these objects. In this paper, the nuclear data are combined with circumnuclear measurements on 23 of these galaxies to investigate the properties of the line-emitting gas and underlying stellar population in and out of the nucleus. The nuclear spectra of these galaxies were classified as H II region-like" or "AGN-like" using a large number of line-ratio diagnostics corrected for the underlying stellar absorption features. This correction is an important source of errors in some previous studies. The emission-line spectra of many AGNs were found to-be of relatively low ionization level and were therefore classified as LINER. We confirm that both the fraction of LIGs with AGN spectra and the fraction of Seyferts among the AGN increase with infrared luminosity, reaching values of 62% and 54% at the highest observed luminosities, respectively. The fraction of LINERs, on the other hand, is relatively constant at ~27%. The source of the ionization of the emission-line gas often is a function of the distance from the nucleus. Based on the emission-line ratios and the strengths of the stellar absorption features, circumnuclear starburst activity is a common feature of LIGs, regardless of their nuclear spectral types. The emission-line, absorption-line, continuum, radio, and IRAS properties of the LINERs suggest that most of the LINER emission in these infrared-selected galaxies is produced through shock ionization rather than photoionization by a genuine active nucleus. The nuclear region of Seyfert LIGs is found to be slightly less reddened than that of the LINERs and H II galaxies. The dust distribution generally

  2. [Infrared imaging of outer lamellar macular holes].

    PubMed

    Schaal, K B; Jakob, E; Dithmar, S

    2011-01-01

    Outer lamellar macular holes (OLMH) are very rare compared to inner lamellar macular holes. An OLMH can occur associated with optic pit maculopathy, in the progression of myopic macular retinoschisis, transient in the development of full thickness macular holes or idiopathic. This article reports on infrared imaging of OLMHs. Infrared (IR) images in 2 patients aged 22 and 34 years with OLMH were taken using IR reflection at a wavelength of 820 nm with a confocal scanning laser ophthalmoscope (Heidelberg Retina Angiograph 2, Heidelberg Engineering). IR images were correlated with linear optical coherence tomography (OCT) scans (Stratus-OCT, Zeiss). Images were acquired during follow-up of up to 30 months and if applicable preoperatively and postoperatively. Clear infrared signals were recorded especially in OLMH associated with optic pit maculopathy. Correlation with linear OCT scans showed the enhanced infrared signals to be restricted to the extent of the OLMH. The borders of the OLMH could be clearly delineated. Infrared imaging enables a top view of OLMH and therefore allows an excellent documentation of the course of OLMH. Infrared reflection is useful for two-dimensional imaging of OLMH. Infrared imaging can provide a supplement to slice imaging for OCT diagnostics and allows monitoring of OLMH over time. The postoperative sequence of OLMH closure in patients with optic pit maculopathy can be studied in more detail using infrared imaging.

  3. A COSMIC-RAY-DOMINATED INTERSTELLAR MEDIUM IN ULTRA LUMINOUS INFRARED GALAXIES: NEW INITIAL CONDITIONS FOR STAR FORMATION

    SciTech Connect

    Papadopoulos, Padelis P.

    2010-09-01

    The high-density star formation typical of the merger/starburst events that power the large IR luminosities of ultraluminous infrared galaxies (ULIRGs) (L{sub IR}(8-1000 {mu}m) {approx}>10{sup 12} L{sub sun}) throughout the universe results in extraordinarily high cosmic-ray (CR) energy densities of U{sub CR} {approx} few x(10{sup 3}-10{sup 4}) U{sub CR,Gal} permeating their interstellar medium, a direct consequence of the large supernova remnant number densities in such systems. Unlike far-UV photons emanating from numerous star-forming (SF) sites, these large CR energy densities in ULIRGs will volumetrically heat and raise the ionization fraction of dense (n > 10{sup 4} cm{sup -3}) UV-shielded gas cores throughout their compact SF volumes. Such conditions can turn most of the large molecular gas masses found in such systems and their high redshift counterparts ({approx}10{sup 9}-10{sup 10} M {sub sun}) into giant CR-dominated regions (CRDRs) rather than ensembles of photon-dominated regions (PDRs) which dominate in less IR-luminous systems where star formation and molecular gas distributions are much more extended. The molecular gas in CRDRs will have a minimum temperature of T{sub kin} {approx} (80-160) K, and very high ionization fractions of x(e) > 10{sup -6} throughout its UV-shielded dense core, which in turn will fundamentally alter the initial conditions for star formation in such systems. Observational tests of CRDRs can be provided by high-J CO and {sup 13}CO lines or multi-J transitions of any heavy rotor molecules (e.g., HCN) and their isotopologs. Chemical signatures of very high ionization fractions in dense UV-shielded gas such as low [DCO{sup +}]/[HCO{sup +}] and high [HCO{sup +}]/[CO] abundance ratios would be good probes of CRDRs in extreme starbursts. These tests, along with direct measurements of the high CO line brightness temperatures expected over the areas of compact dense gas disks found in ULIRGs, will soon be feasible as sub

  4. Infrared image mosaic using point feature operators

    NASA Astrophysics Data System (ADS)

    Huang, Zhen; Sun, Shaoyuan; Shen, Zhenyi; Hou, Junjie; Zhao, Haitao

    2016-10-01

    In this paper, we study infrared image mosaic around a single point of rotation, aiming at expanding the narrow view range of infrared images. We propose an infrared image mosaic method using point feature operators including image registration and image synthesis. Traditional mosaic algorithms usually use global image registration methods to extract the feature points in the global image, which cost too much time as well as considerable matching errors. To address this issue, we first roughly calculate the image shift amount using phase correlation and determine the overlap region between images, and then extract image features in overlap region, which shortens the registration time and increases the quality of feature points. We improve the traditional algorithm through increasing constraints of point matching based on prior knowledge of image shift amount based on which the weighted map is computed using fade in-out method. The experimental results verify that the proposed method has better real time performance and robustness.

  5. Adaptive infrared-image details enhancement technology

    NASA Astrophysics Data System (ADS)

    Guo, Shi-yong; Zhang, Yi; Bai, Lian-fa; Chen, Qian

    2014-11-01

    In order to surmount the infrared-image object differentiation difficulty caused by the blurred image edge, a kind of adaptive filter based infrared-image nonlinear edge enhancement technology was proposed in this paper. This technology integrates image nonlinear edge-sharpening and Multi-scale analyze method. The approach of Gauss pyramid structure can enhance detail information by using non-linear algorithms in different scales. The enhanced detail information is then added back to the original image iteratively. While saving the image edge information it can filter image noise and edge distortion caused by edge-sharpening and improve image's clarity and SNR obviously. Gray scale grads was defined based on gray linear increment, image edge enhancement arithmetic can be real time realized, and has been applied in high performance thermal imager. As it is shown in experiments, this algorithm has practicality and potential application value in the field of infrared images contrast enhancement

  6. Hyperspectral imaging in the infrared using LIFTIRS

    SciTech Connect

    Bennett, C.L.; Carter, M.R.; Fields, D.J.

    1995-07-01

    In this article, recent characterization measurements made with LIFTIRS, the Livermore Imaging Fourier Transform InfraRed Spectrometer, are presented. A discussion is also presented of the relative merits of the various alternative designs for imaging spectrometers.

  7. Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video

    NASA Technical Reports Server (NTRS)

    Lyons, Walter A.

    1994-01-01

    An experiment was conducted in which an image-intensified, low-light video camera systematically monitored the stratosphere above distant (100-800 km) mesoscale convective systems over the high plains of the central U.S. for 21 nights between 6 July and 27 August 1993. Complex, luminous structures were observed above large thunderstorm clusters on eleven nights, with one storm system (7 July 1993) yielding 248 events in 410 minutes. Their duration ranged from 33 to 283 ms, with an average of 98 ms. The luminous structures, generally not visible to the naked, dark-adapted eye, exhibited on video a wide variety of brightness levels and shapes including streaks, aurora-like curtains, smudges, fountains and jets. The structures were often more than 10 km wide and their upper portions extended to above 50 km msl.

  8. Optical clearing for luminal organ imaging with ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liang, Yanmei; Yuan, Wu; Mavadia-Shukla, Jessica; Li, Xingde

    2016-08-01

    The imaging depth of optical coherence tomography (OCT) in highly scattering biological tissues (such as luminal organs) is limited, particularly for OCT operating at shorter wavelength regions (such as around 800 nm). For the first time, the optical clearing effect of the mixture of liquid paraffin and glycerol on luminal organs was explored with ultrahigh-resolution spectral domain OCT at 800 nm. Ex vivo studies were performed on pig esophagus and bronchus, and guinea pig esophagus with different volume ratios of the mixture. We found that the mixture of 40% liquid paraffin had the best optical clearing effect on esophageal tissues with a short effective time of ˜10 min, which means the clearing effect occurs about 10 min after the application of the clearing agent. In contrast, no obvious optical clearing effect was identified on bronchus tissues.

  9. Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video

    SciTech Connect

    Lyons, W.A. , Inc., Ft. Collins, CO )

    1994-05-15

    An experiment was conducted in which an image-intensified, low-light video camera systematically monitored the stratosphere above distant (100-800 km) mesoscale convective systems over the high plains of the central US for 21 nights between 6 July and 27 August 1993. Complex, luminous structures were observed above large thunderstorm clusters on eleven nights, with one storm system (7 July 1993) yielding 248 events in 410 minutes. Their duration ranged from 33 to 283 ms, with an average of 98 ms. The luminous structures, generally not visible to the naked, dark-adapted eye, exhibited on video a wide variety of brightness levels and shapes including streaks, aurora-like curtains, smudges, fountains and jets. The structures were often more than 10 km wide and their upper portions extended to above 50 km msl. 14 refs., 4 figs.

  10. [Ultra] luminous infrared galaxies selected at 90 μm in the AKARI deep field: a study of AGN types contributing to their infrared emission

    NASA Astrophysics Data System (ADS)

    Małek, K.; Bankowicz, M.; Pollo, A.; Buat, V.; Takeuchi, T. T.; Burgarella, D.; Goto, T.; Malkan, M.; Matsuhara, H.

    2017-01-01

    Aims: The aim of this work is to characterize physical properties of ultra luminous infrared galaxies (ULIRGs) and luminous infrared galaxies (LIRGs) detected in the far-infrared (FIR) 90 μm band in the AKARI Deep Field-South (ADF-S) survey. In particular, we want to estimate the active galactic nucleus (AGN) contribution to the LIRGs and ULIRGs' infrared emission and which types of AGNs are related to their activity. Methods: We examined 69 galaxies at redshift ≥0.05 detected at 90 μm by the AKARI satellite in the ADF-S, with optical counterparts and spectral coverage from the ultraviolet to the FIR. We used two independent spectral energy distribution fitting codes: one fitting the SED from FIR to FUV (CIGALE) (we use the results from CIGALE as a reference) and gray-body + power spectrum fit for the infrared part of the spectra (CMCIRSED) in order to identify a subsample of ULIRGs and LIRGs, and to estimate their properties. Results: Based on the CIGALE SED fitting, we have found that LIRGs and ULIRGs selected at the 90 μm AKARI band compose 56% of our sample (we found 17 ULIRGs and 22 LIRGs, spanning over the redshift range 0.06 infrared wavelengths. We have detected a significant AGN contribution to the mid-infrared luminosity for 63% of LIRGs and ULIRGs. Our LIRGs contain Type 1, Type 2, and intermediate types of AGN, whereas for ULIRGs, a majority (more than 50%) of AGN emission originates from Type 2 AGNs. The temperature-luminosity and temperature-mass relations for the dust component of ADF-S LIRGs and ULIRGs indicate that these relations are shaped by the dust mass and not by the increased dust heating. Conclusions: We conclude that LIRGs contain Type 1, Type 2, and intermediate types of AGNs, with an AGN contribution to the mid infrared emission at the median level of 13 ± 3

  11. Generative technique for dynamic infrared image sequences

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Cao, Zhiguo; Zhang, Tianxu

    2001-09-01

    The generative technique of the dynamic infrared image was discussed in this paper. Because infrared sensor differs from CCD camera in imaging mechanism, it generates the infrared image by incepting the infrared radiation of scene (including target and background). The infrared imaging sensor is affected deeply by the atmospheric radiation, the environmental radiation and the attenuation of atmospheric radiation transfers. Therefore at first in this paper the imaging influence of all kinds of the radiations was analyzed and the calculation formula of radiation was provided, in addition, the passive scene and the active scene were analyzed separately. Then the methods of calculation in the passive scene were provided, and the functions of the scene model, the atmospheric transmission model and the material physical attribute databases were explained. Secondly based on the infrared imaging model, the design idea, the achievable way and the software frame for the simulation software of the infrared image sequence were introduced in SGI workstation. Under the guidance of the idea above, in the third segment of the paper an example of simulative infrared image sequences was presented, which used the sea and sky as background and used the warship as target and used the aircraft as eye point. At last the simulation synthetically was evaluated and the betterment scheme was presented.

  12. Edge enhanced morphology for infrared image analysis

    NASA Astrophysics Data System (ADS)

    Bai, Xiangzhi; Liu, Haonan

    2017-01-01

    Edge information is one of the critical information for infrared images. Morphological operators have been widely used for infrared image analysis. However, the edge information in infrared image is weak and the morphological operators could not well utilize the edge information of infrared images. To strengthen the edge information in morphological operators, the edge enhanced morphology is proposed in this paper. Firstly, the edge enhanced dilation and erosion operators are given and analyzed. Secondly, the pseudo operators which are derived from the edge enhanced dilation and erosion operators are defined. Finally, the applications for infrared image analysis are shown to verify the effectiveness of the proposed edge enhanced morphological operators. The proposed edge enhanced morphological operators are useful for the applications related to edge features, which could be extended to wide area of applications.

  13. Differentiation Between Luminal-A and Luminal-B Breast Cancer Using Intravoxel Incoherent Motion and Dynamic Contrast-Enhanced Magnetic Resonance Imaging.

    PubMed

    Kawashima, Hiroko; Miyati, Tosiaki; Ohno, Naoki; Ohno, Masako; Inokuchi, Masafumi; Ikeda, Hiroko; Gabata, Toshifumi

    2017-08-01

    The study aimed to investigate whether intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) can differentiate luminal-B from luminal-A breast cancer MATERIALS AND METHODS: Biexponential analyses of IVIM and DCE MRI were performed using a 3.0-T MRI scanner, involving 134 patients with 137 pathologically confirmed luminal-type invasive breast cancers. Luminal-type breast cancer was categorized as luminal-B breast cancer (LBBC, Ki-67 ≧ 14%) or luminal-A breast cancer (LABC, Ki-67 < 14%). Quantitative parameters from IVIM (pure diffusion coefficient [D], perfusion-related diffusion coefficient [D*], and fraction [f]) and DCE MRI (initial percentage of enhancement and signal enhancement ratio [SER]) were calculated. The apparent diffusion coefficient (ADC) was also calculated using monoexponential fitting. We correlated these data with the Ki-67 status. The D and ADC values of LBBC were significantly lower than those of LABC (P = 0.028, P = 0.037). The SER of LBBC was significantly higher than that of LABC (P = 0.004). A univariate analysis showed that a significantly lower D (<0.847 x 10(-3) mm(2)/s), lower ADC (<0.960 × 10(-3) mm(2)/s), and higher SER (>1.071) values were associated with LBBC (all P values <0.01), compared to LABC. In a multivariate analysis, a higher SER (>1.071; odds ratio: 3.0099, 95% confidence interval: 1.4246-6.3593; P = 0.003) value and a lower D (<0.847 × 10(-3) mm(2)/s; odds ratio: 2.6878, 95% confidence interval: 1.0445-6.9162; P = 0.040) value were significantly associated with LBBC, compared to LABC. The SER derived from DCE MRI and the D derived from IVIM are associated independently with the Ki-67 status in patients with luminal-type breast cancer. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  14. Infrared imaging of LED lighting tubes and fluorescent tubes

    NASA Astrophysics Data System (ADS)

    Siikanen, Sami; Kivi, Sini; Kauppinen, Timo; Juuti, Mikko

    2011-05-01

    The low energy efficiency of conventional light sources is mainly caused by generation of waste heat. We used infrared (IR) imaging in order to monitor the heating of both LED tube luminaires and ordinary T8 fluorescent tubes. The IR images showed clearly how the surface temperatures of the fluorescent tube ends quickly rose up to about +50...+70°C, whereas the highest surface temperatures seen on the LED tubes were only about +30...+40°C. The IR images demonstrated how the heat produced by the individual LED chips can be efficiently guided to the supporting structure in order to keep the LED emitters cool and hence maintain efficient operation. The consumed electrical power and produced illuminance were also recorded during 24 hour measurements. In order to assess the total luminous efficacy of the luminaires, separate luminous flux measurements were made in a large integrating sphere. The currently available LED tubes showed efficacies of up to 88 lm/W, whereas a standard "cool white" T8 fluorescent tube produced ca. 75 lm/W. Both lamp types gave ca. 110 - 130 lx right below the ceiling-mounted luminaire, but the LED tubes consume only 40 - 55% of the electric power compared to fluorescent tubes.

  15. Perceived depth in natural images reflects encoding of low-level luminance statistics.

    PubMed

    Cooper, Emily A; Norcia, Anthony M

    2014-08-27

    Sighted animals must survive in an environment that is diverse yet highly structured. Neural-coding models predict that the visual system should allocate its computational resources to exploit regularities in the environment, and that this allocation should facilitate perceptual judgments. Here we use three approaches (natural scenes statistical analysis, a reanalysis of single-unit data from alert behaving macaque, and a behavioral experiment in humans) to address the question of how the visual system maximizes behavioral success by taking advantage of low-level regularities in the environment. An analysis of natural scene statistics reveals that the probability distributions for light increments and decrements are biased in a way that could be exploited by the visual system to estimate depth from relative luminance. A reanalysis of neurophysiology data from Samonds et al. (2012) shows that the previously reported joint tuning of V1 cells for relative luminance and binocular disparity is well matched to a predicted distribution of binocular disparities produced by natural scenes. Finally, we show that a percept of added depth can be elicited in images by exaggerating the correlation between luminance and depth. Together, the results from these three approaches provide further evidence that the visual system allocates its processing resources in a way that is driven by the statistics of the natural environment.

  16. Luminous Infrared Galaxies with the Submillimeter Array. IV. 12CO J = 6-5 Observations of VV 114

    NASA Astrophysics Data System (ADS)

    Sliwa, Kazimierz; Wilson, Christine D.; Krips, Melanie; Petitpas, Glen R.; Iono, Daisuke; Juvela, Mika; Matsushita, Satoki; Peck, Alison; Yun, Min

    2013-11-01

    We present high-resolution (~2.''5) observations of 12CO J = 6-5 toward the luminous infrared galaxy VV 114 using the Submillimeter Array. We detect 12CO J = 6-5 emission from the eastern nucleus of VV 114 but do not detect the western nucleus or the central region. We combine the new 12CO J = 6-5 observations with previously published or archival low-J CO observations, which include 13CO J = 1-0 Atacama Large Millimeter/submillimeter Array cycle 0 observations, to analyze the beam-averaged physical conditions of the molecular gas in the eastern nucleus. We use the radiative transfer code RADEX and a Bayesian likelihood code to constrain the temperature (T kin), density (n_{H_{2}}), and column density (N_{^{12CO}}) of the molecular gas. We find that the most probable scenario for the eastern nucleus is a cold (T kin = 38 K), moderately dense (n_{H_{2}} = 102.89 cm-3) molecular gas component. We find that the most probable 12CO to 13CO abundance ratio ([12CO]/[13CO]) is 229, which is roughly three times higher than the Milky Way value. This high abundance ratio may explain the observed high 12CO/ 13CO line ratio (>25). The unusual 13CO J = 2-1/J = 1-0 line ratio of 0.6 is produced by a combination of moderate 13CO optical depths (τ = 0.4-1.1) and extremely subthermal excitation temperatures. We measure the CO-to-H2 conversion factor, αCO, to be 0.5^{+0.6}_{-0.3} M ⊙ (K km s-1 pc2)-1, which agrees with the widely used factor for ultra luminous infrared galaxies of Downes & Solomon (αCO = 0.8 M ⊙ (K km s-1 pc2)-1).

  17. LUMINOUS AND HIGH STELLAR MASS CANDIDATE GALAXIES AT z Almost-Equal-To 8 DISCOVERED IN THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    SciTech Connect

    Yan Haojing; Finkelstein, Steven L.; Huang, Kuang-Han; Ryan, Russell E.; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A.; Dickinson, Mark; Newman, Jeffrey A.; Somerville, Rachel S.; Dave, Romeel; Faber, S. M.; Guo Yicheng; Giavalisco, Mauro; Lee, Kyoung-soo; Reddy, Naveen; Siana, Brian D.; Cooray, Asantha R.; Hathi, Nimish P.; and others

    2012-12-20

    One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z Almost-Equal-To 8. Its two-tiered ''wide and deep'' strategy bridges significant gaps in existing near-infrared surveys. Here we report on z Almost-Equal-To 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 arcmin{sup 2} to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J < 26.2 mag, and are >1 mag brighter than any previously known F105W-dropouts. We derive constraints on the bright end of the rest-frame ultraviolet luminosity function of galaxies at z Almost-Equal-To 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z Almost-Equal-To 8. Their derived stellar masses are on the order of a few Multiplication-Sign 10{sup 9} M{sub Sun }, from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z Almost-Equal-To 8. The high number density of very luminous and very massive galaxies at z Almost-Equal-To 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.

  18. The X-Ray and Mid-infrared Luminosities in Luminous Type 1 Quasars

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Ting J.; Hickox, Ryan C.; Goulding, Andrew D.; Stern, Daniel; Assef, Roberto; Kochanek, Christopher S.; Brown, Michael J. I.; Harrison, Chris M.; Hainline, Kevin N.; Alberts, Stacey; Alexander, David M.; Brodwin, Mark; Del Moro, Agnese; Forman, William R.; Gorjian, Varoujan; Jones, Christine; Murray, Stephen S.; Pope, Alexandra; Rovilos, Emmanouel

    2017-03-01

    Several recent studies have reported different intrinsic correlations between the active galactic nucleus (AGN) mid-IR luminosity ({L}{MIR}) and the rest-frame 2-10 keV luminosity (L X) for luminous quasars. To understand the origin of the difference in the observed {L}{{X}}{--}{L}{MIR} relations, we study a sample of 3247 spectroscopically confirmed type 1 AGNs collected from Boötes, XMM-COSMOS, XMM-XXL-North, and the Sloan Digital Sky Survey quasars in the Swift/XRT footprint spanning over four orders of magnitude in luminosity. We carefully examine how different observational constraints impact the observed {L}{{X}}{--}{L}{MIR} relations, including the inclusion of X-ray-nondetected objects, possible X-ray absorption in type 1 AGNs, X-ray flux limits, and star formation contamination. We find that the primary factor driving the different {L}{{X}}{--}{L}{MIR} relations reported in the literature is the X-ray flux limits for different studies. When taking these effects into account, we find that the X-ray luminosity and mid-IR luminosity (measured at rest-frame 6 μ {{m}}, or {L}6μ {{m}}) of our sample of type 1 AGNs follow a bilinear relation in the log-log plane: {log}{L}{{X}}=(0.84+/- 0.03)× {log}{L}6μ {{m}}/{10}45 erg s-1 + (44.60 ± 0.01) for {L}6μ {{m}}< {10}44.79 erg s-1, and {log}{L}{{X}}=(0.40+/- 0.03)× {log}{L}6μ {{m}}/{10}45 erg s-1 + (44.51 ± 0.01) for {L}6μ {{m}} ≥slant {10}44.79 erg s-1. This suggests that the luminous type 1 quasars have a shallower {L}{{X}}{--}{L}6μ {{m}} correlation than the approximately linear relations found in local Seyfert galaxies. This result is consistent with previous studies reporting a luminosity-dependent {L}{{X}}{--}{L}{MIR} relation and implies that assuming a linear {L}{{X}}{--}{L}6μ {{m}} relation to infer the neutral gas column density for X-ray absorption might overestimate the column densities in luminous quasars.

  19. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.

    PubMed

    Kühner, Lucca; Hentschel, Mario; Zschieschang, Ute; Klauk, Hagen; Vogt, Jochen; Huck, Christian; Giessen, Harald; Neubrech, Frank

    2017-05-26

    Spectroscopic infrared chemical imaging is ideally suited for label-free and spatially resolved characterization of molecular species, but often suffers from low infrared absorption cross sections. Here, we overcome this limitation by utilizing confined electromagnetic near-fields of resonantly excited plasmonic nanoantennas, which enhance the molecular absorption by orders of magnitude. In the experiments, we evaporate microstructured chemical patterns of C60 and pentacene with nanometer thickness on top of homogeneous arrays of tailored nanoantennas. Broadband mid-infrared spectra containing plasmonic and vibrational information were acquired with diffraction-limited resolution using a two-dimensional focal plane array detector. Evaluating the enhanced infrared absorption at the respective frequencies, spatially resolved chemical images were obtained. In these chemical images, the microstructured chemical patterns are only visible if nanoantennas are used. This confirms the superior performance of our approach over conventional spectroscopic infrared imaging. In addition to the improved sensitivity, our technique provides chemical selectivity, which would not be available with plasmonic imaging that is based on refractive index sensing. To extend the accessible spectral bandwidth of nanoantenna-enhanced spectroscopic imaging, we employed nanostructures with dual-band resonances, providing broadband plasmonic enhancement and sensitivity. Our results demonstrate the potential of nanoantenna-enhanced spectroscopic infrared chemical imaging for spatially resolved characterization of organic layers with thicknesses of several nanometers. This is of potential interest for medical applications which are currently hampered by state-of-art infrared techniques, e.g., for distinguishing cancerous from healthy tissues.

  20. Clustering properties of luminous red galaxies with the Sloan Digital Sky Survey imaging data

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil

    We study the 3D spatial clustering properties of luminous red galaxies in the Sloan Digital Sky Survey (SDSS) imaging data, and discuss their cosmological implications. The need to control systematics leads us to propose a new algorithm to photometrically calibrate wide-field imaging surveys. Applying this to the SDSS, we achieve a 1% relative photometric calibration over 8500 square degrees, an improvement of a factor of ~2 over current calibrations. We then calibrate distances, derived from only the SDSS imaging data, to a class of galaxies with very regular colours, the luminous red galaxies (LRGs). Measuring their 2-point correlation function allows us to detect the non-random clustering of galaxies on gigaparsec scales for the first time. We also detect the imprint of acoustic oscillations in the plasma of the early Universe on the clustering of the LRGs. We finally discuss cross-correlating the LRGs with the cosmic microwave background, detecting the integrated Sachs-Wolfe effect and providing further evidence for a late-time acceleration in the expansion of the Universe.

  1. The luminous infrared composite Seyfert 2 galaxy NGC 7679 through the [O III] λ 5007 emission line

    NASA Astrophysics Data System (ADS)

    Yankulova, I. M.; Golev, V. K.; Jockers, K.

    2007-07-01

    Context: NGC 7679 (Mrk 534) is a nearby (z = 0.0177) nearly face-on SB0 luminous infrared Sy2 galaxy in which starburst and AGN activities co-exist. The ionization structure is maintained by both the AGN power-law continuum and starburst. The galaxy is a bright X-ray source possessing a low X-ray column density NH < 4 × 1020 cm-2. Aims: The Compton-thin nature of such unabsorbed objects infers that the simple formulation of the Unified model for SyGs is not applicable in their case. The absorption is likely to originate at larger scales instead of the pc-scale molecular torus. The main goal of this article is to investigate both gas distribution and ionization structure in the circumnuclear region of NGC 7679 in search for the presence of a hidden Sy1-type nucleus, using the [O III]λ5007 luminosity as a tracer of AGN activity. Methods: NGC 7679 was observed with the 2m RCC reflector of the Ukraine National Astronomical Observatory at peak Terskol, Caucasus, Russia. The observations were carried out in October 1996 with the Focal Reducer of the Max-Planck-Institut für Sonnensystemforschung, Germany. All observations were taken with tunable Fabry-Perot narrow-band imaging with spectral FWHM of the Airy profile δλ between 3 and 4 Å depending on the used wavelength. Results: The [O III]λ5007 emission-line image of the circumnuclear region of NGC 7679 shows elliptical isophotes extended along the PA ≈ 80° in the direction of the counterpart galaxy NGC 7682. There is a maximum of this emission which is shifted ~4 arcsec from the center as defined by the continuum emission. The maximum of ionization by the AGN power-law continuum traced by [O III]λ5007/Hα ratio is displaced by ~13 arcsec eastward from the nucleus. The direction where high ionization is observed at PA ≈ 80° ± 10° coincides with the direction to the companion galaxy NGC 7682 (PA ≈ 72°). On the contrary, at PA ~ 0° the ionization in the circumnuclear region is entirely due to hot stars

  2. Infrared Sky Imager (IRSI) Instrument Handbook

    SciTech Connect

    Morris, Victor R

    2016-04-01

    The Infrared Sky Imager (IRSI) deployed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility is a Solmirus Corp. All Sky Infrared Visible Analyzer. The IRSI is an automatic, continuously operating, digital imaging and software system designed to capture hemispheric sky images and provide time series retrievals of fractional sky cover during both the day and night. The instrument provides diurnal, radiometrically calibrated sky imagery in the mid-infrared atmospheric window and imagery in the visible wavelengths for cloud retrievals during daylight hours. The software automatically identifies cloudy and clear regions at user-defined intervals and calculates fractional sky cover, providing a real-time display of sky conditions.

  3. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images

    NASA Technical Reports Server (NTRS)

    Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.

    1999-01-01

    Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.

  4. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images

    NASA Technical Reports Server (NTRS)

    Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.

    1999-01-01

    Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.

  5. Infrared thermal imaging figures of merit

    NASA Technical Reports Server (NTRS)

    Kaplan, Herbert

    1989-01-01

    Commercially available types of infrared thermal imaging instruments, both viewers (qualitative) and imagers (quantitative) are discussed. The various scanning methods by which thermal images (thermograms) are generated will be reviewed. The performance parameters (figures of merit) that define the quality of performance of infrared radiation thermometers will be introduced. A discussion of how these parameters are extended and adapted to define the performance of thermal imaging instruments will be provided. Finally, the significance of each of the key performance parameters of thermal imaging instruments will be reviewed and procedures currently used for testing to verify performance will be outlined.

  6. Infrared image quality evaluation method without reference image

    NASA Astrophysics Data System (ADS)

    Yue, Song; Ren, Tingting; Wang, Chengsheng; Lei, Bo; Zhang, Zhijie

    2013-09-01

    Since infrared image quality depends on many factors such as optical performance and electrical noise of thermal imager, image quality evaluation becomes an important issue which can conduce to both image processing afterward and capability improving of thermal imager. There are two ways of infrared image quality evaluation, with or without reference image. For real-time thermal image, the method without reference image is preferred because it is difficult to get a standard image. Although there are various kinds of methods for evaluation, there is no general metric for image quality evaluation. This paper introduces a novel method to evaluate infrared image without reference image from five aspects: noise, clarity, information volume and levels, information in frequency domain and the capability of automatic target recognition. Generally, the basic image quality is obtained from the first four aspects, and the quality of target is acquired from the last aspect. The proposed method is tested on several infrared images captured by different thermal imagers. Calculate the indicators and compare with human vision results. The evaluation shows that this method successfully describes the characteristics of infrared image and the result is consistent with human vision system.

  7. Spatially resolved radio-to-far-infrared SED of the luminous merger remnant NGC 1614 with ALMA and VLA

    NASA Astrophysics Data System (ADS)

    Saito, Toshiki; Iono, Daisuke; Xu, Cong K.; Ueda, Junko; Nakanishi, Kouichiro; Yun, Min S.; Kaneko, Hiroyuki; Yamashita, Takuji; Lee, Minju; Espada, Daniel; Motohara, Kentaro; Kawabe, Ryohei

    2016-04-01

    We present the results of Atacama Large Millimeter/Submillimeter Array (ALMA) 108-, 233-, 352-, and 691-GHz continuum observations and Very Large Array (VLA) 4.81- and 8.36-GHz observations of the nearby luminous merger remnant NGC 1614. By analyzing the beam (1{^''.}0 × 1{^''.}0) and uv (≥45 kλ) matched ALMA and VLA maps, we find that the deconvolved source size of lower-frequency emission (≤108 GHz) is more compact (420 pc × 380 pc) compared to the higher-frequency emission (≥233 GHz) (560 pc × 390 pc), suggesting different physical origins for the continuum emission. Based on a spectral energy distribution (SED) model for a dusty starburst galaxy, it is found that the SED can be explained by three components: (1) non-thermal synchrotron emission (traced in the 4.81- and 8.36-GHz continua), (2) thermal free-free emission (traced in the 108-GHz continuum), and (3) thermal dust emission (traced in the 352- and 691-GHz continua). We also present the spatially resolved (sub-kpc scale) Kennicutt-Schmidt relation of NGC 1614. The result suggests a systematically shorter molecular gas depletion time in NGC 1614 (average τgas of 49-77 Myr and 70-226 Myr at the starburst ring and the outer region, respectively) than that of normal disk galaxies (˜2 Gyr) and a mid-stage merger VV 114 (= 0.1-1 Gyr). This implies that the star formation activities in (ultra-)luminous infrared galaxies are efficiently enhanced as the merger stage proceeds, which is consistent with the results from high-resolution numerical merger simulations.

  8. Role of active galactic nuclei in the luminous infrared galaxy phase at z ≤ 3

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yi; Hashimoto, Yasuhiro; Foucaud, Sébastien

    2016-03-01

    To understand the interactions between active galactic nuclei (AGNs) and star formation during the evolution of galaxies, we investigate 142 galaxies detected in both X-ray and 70 μm observations in the COSMOS (Cosmic Evolution Survey) field. All of our data are obtained from the archive X-ray point-source catalogues from Chandra and XMM-Newton observations, and the far-infrared 70 μm point-source catalogue from Spitzer-MIPS observations. Although the IRAC [3.6 μm]-[4.5 μm] versus [5.8 μm]-[8.0 μm] colours of our sample indicate that only ˜63 per cent of our sources would be classified as AGNs, the ratio of the rest-frame 2-10 keV luminosity to the total infrared luminosity (8-1000 μm) shows that the entire sample has comparatively higher X-ray luminosity than that expected from pure star-forming galaxies, suggesting the presence of an AGN in all of our sources. From an analysis of the X-ray hardness ratio, we find that sources with both 70 μm and X-ray detection tend to have a higher hardness ratio relative to the whole X-ray-selected source population, suggesting the presence of more X-ray absorption in the 70 μm detected sources. In addition, we find that the observed far-infrared colours of 70 μm detected sources with and without X-ray emission are similar, suggesting the far-infrared emission could be mainly powered by star formation.

  9. A Herschel Space Observatory Spectral Line Survey of Local Luminous Infrared Galaxies from 194 to 671 Microns

    NASA Astrophysics Data System (ADS)

    Lu, Nanyao; Zhao, Yinghe; Díaz-Santos, Tanio; Xu, C. Kevin; Gao, Yu; Armus, Lee; Isaak, Kate G.; Mazzarella, Joseph M.; van der Werf, Paul P.; Appleton, Philip N.; Charmandaris, Vassilis; Evans, Aaron S.; Howell, Justin; Iwasawa, Kazushi; Leech, Jamie; Lord, Steven; Petric, Andreea O.; Privon, George C.; Sanders, David B.; Schulz, Bernhard; Surace, Jason A.

    2017-05-01

    We describe a Herschel Space Observatory 194-671 μm spectroscopic survey of a sample of 121 local luminous infrared galaxies and report the fluxes of the CO J to J-1 rotational transitions for 4≤slant J≤slant 13, the [N ii] 205 μm line, the [C i] lines at 609 and 370 μm, as well as additional and usually fainter lines. The CO spectral line energy distributions (SLEDs) presented here are consistent with our earlier work, which was based on a smaller sample, that calls for two distinct molecular gas components in general: (i) a cold component, which emits CO lines primarily at J ≲ 4 and likely represents the same gas phase traced by CO (1-0), and (ii) a warm component, which dominates over the mid-J regime (4 < J ≲ 10) and is intimately related to current star formation. We present evidence that the CO line emission associated with an active galactic nucleus is significant only at J > 10. The flux ratios of the two [C i] lines imply modest excitation temperatures of 15-30 K; the [C i] 370 μm line scales more linearly in flux with CO (4-3) than with CO (7-6). These findings suggest that the [C i] emission is predominantly associated with the gas component defined in (i) above. Our analysis of the stacked spectra in different far-infrared (FIR) color bins reveals an evolution of the SLED of the rotational transitions of {{{H}}}2{{O}} vapor as a function of the FIR color in a direction consistent with infrared photon pumping. Based on Herschel observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  10. A multi-wavelength view of the central kiloparsec region in the luminous infrared galaxy NGC 1614

    SciTech Connect

    Herrero-Illana, Rubén; Pérez-Torres, Miguel Á.; Alberdi, Antxon; Hernández-García, Lorena; Alonso-Herrero, Almudena; Colina, Luis; Efstathiou, Andreas; Miralles-Caballero, Daniel; Väisänen, Petri; Packham, Christopher C.; Rajpaul, Vinesh; Zijlstra, Albert A.

    2014-05-10

    The Luminous Infrared Galaxy NGC 1614 hosts a prominent circumnuclear ring of star formation. However, the nature of the dominant emitting mechanism in its central ∼100 pc is still under debate. We present sub-arcsecond angular resolution radio, mid-infrared, Paα, optical, and X-ray observations of NGC 1614, aimed at studying in detail both the circumnuclear ring and the nuclear region. The 8.4 GHz continuum emission traced by the Very Large Array and the Gemini/T-ReCS 8.7 μm emission, as well as the Paα line emission, show remarkable morphological similarities within the star-forming ring, suggesting that the underlying emission mechanisms are tightly related. We used a Hubble Space Telescope/NICMOS Paα map of similar resolution to our radio maps to disentangle the thermal free-free and non-thermal synchrotron radio emission, from which we obtained the intrinsic synchrotron power law for each individual region within the central kiloparsec of NGC 1614. The radio ring surrounds a relatively faint, steep-spectrum source at the very center of the galaxy, suggesting that the central source is not powered by an active galactic nucleus (AGN), but rather by a compact (r ≲ 90 pc) starburst (SB). Chandra X-ray data also show that the central kiloparsec region is dominated by SB activity, without requiring the existence of an AGN. We also used publicly available infrared data to model-fit the spectral energy distribution of both the SB ring and a putative AGN in NGC 1614. In summary, we conclude that there is no need to invoke an AGN to explain the observed bolometric properties of the galaxy.

  11. Infrared spectroscopic imaging of kidney tumor tissue

    NASA Astrophysics Data System (ADS)

    Sablinskas, V.; Steiner, G.; Koch, E.; Ceponkus, J.; Pucetaite, M.; Strazdaite, S.; Urboniene, V.; Jankevicius, F.

    2011-02-01

    Infrared spectroscopic imaging of cancerous kidney tissue was performed by means of FTIR microscopy. The spectra of thin tissue cryosections were collected with 64x64 MCT FPA detector and imaging area was increased up to 5.4×5.4 mm by mapping by means of PC controlled x,y stage. Chemical images of the samples were constructed using statistical treatment of the raw spectra. Several unsupervised and supervised statistical methods were used. The imaging results are compared with results of the standard histopathological analysis. It was concluded that application of method of cluster analysis ensures the best contrast of the images. It was found that border between cancerous and normal tissues visible in the infrared spectroscopic image corresponds with the border visible in histopathological image. Closer examination of the infrared spectroscopic image reveals that small domains of cancerous cells are found beyond the border in areas distant from the border up to 3 mm. Such domains are not visible in the histopathological images. The smallest domains found in the infrared images are approx. 60 μm.

  12. Infrared Imaging of Strombolian Eruptions

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Harris, A. J.; Ripepe, M.

    2001-12-01

    A forward looking infrared radiometer (FLIR) was used experimentally to capture time series imagery of strombolian eruptions during May and June of 2001 at Stromboli and Etna volcanoes. Though an image is captured only every second or two, eruption sequences covering over 13 hours of imagery over 2 weeks were acquired. Four distinct types of bursts were captured. The first 3 types were observed at Stromboli, and a fourth unique signature was observed at SE crater on Mount Etna. At Stromboli, the three types are; 1) Spatter followed by gas emissions, 2) Gas emissions followed by spatter bursts, and 3) Simultaneous ejections of gas and spatter. Each shows a unique morphology in the time series imagery. The spatter bursts have varying amounts of gas which follow, the gas being much cooler (on the order of 100 degrees Cor more) than the spatter. The volumes of gas estimated using the 2D imagery vary widely, as yet no pattern to this behavior has been discovered. The spatter is not always a single burst, several small sustained (on the order of several seconds) spatter events were observed. The primarily gas bursts showed higher gas volumes and higher gas temperatures than the primarily spatter ejections. Spatter usually, but not always, follows these emissions, and is less voluminous than in the previous ejection type. In the third type, both spatter and gas are ejected simultaneously, the gas emission usually lasting longer than the spatter event. Determination of relative temperatures of the two components is problematic since they overlay one another in the imagery. No relative temperature determinations are made as yet to ejection temperature of spatter in these types due to the relatively small size of the lava bombs in relation to the pixel size in the imagery. However, temperatures over 700 degrees C have been recovered. At Etna a fourth type of burst, mostly gas with a mushroom-shaped structure, followed by a few high ejection angle bombs was observed. These

  13. Thermal properties of contemporary bipolar systems using infrared imaging.

    PubMed

    Keshavarzi, Sassan; Bolour, Armon; Yarbrough, Chester; Mendez, Karen; Behrouzi, Behzad; Kasasbeh, Aimen S; Levy, Michael L

    2015-03-01

    Bipolar coagulation has enhanced the capabilities and safety profile of contemporary neurosurgery and has become indispensable in the neurosurgical armamentarium. Nevertheless, significant heat transfer issues remain to be resolved before it can achieve the status of minimal risk. The Codman irrigating forceps, Codman ISOCOOL forceps, and Ellman bipolar forceps, powered by either Synergy or Ellman generators set at various power levels, were compared to investigate the combinations that would allow for the lowest rate of heat transfer. Using an infrared camera and ThermaGRAM imaging software, the temperature was calculated and used to estimate the degree of heat transfer. Codman ISOCOOL forceps powered the Ellman Surgitron generator showed the greatest dissipation (at mid-power, the luminance decreased from 250 units to 80 units within 60 seconds) and the least production of heat after activation. Codman ISOCOOL forceps powered by the Codman SYNERGY MALIS generator showed less heat dissipation (at mid-power, the luminance decreased from 250 units to 195 units within 60 seconds) than the Ellman forceps and Ellman Surgitron generator combination (at mid-power, the luminance decreased from 250 units to 125 units within 60 seconds). These data suggest that the incorporation of the Ellman Surgitron Generator can result in the reduction of thermal transfer with conventional bipolar forceps compared with other generators. The combination with Codman ISOCOOL forceps can maximize the potential safety associated with bipolar coagulation. With regard to the use of comarketed pairs of forceps and generators, the combination of Ellman Surgitron Generator and Ellman bipolar forceps provided the best thermal profile. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Constraining Gamma-Ray Emission from Luminous Infrared Galaxies with Fermi-LAT; Tentative Detection of Arp 220

    NASA Astrophysics Data System (ADS)

    Griffin, Rhiannon D.; Dai, Xinyu; Thompson, Todd A.

    2016-05-01

    Star-forming galaxies produce gamma-rays primarily via pion production, resulting from inelastic collisions between cosmic-ray protons and the interstellar medium (ISM). The dense ISM and high star formation rates of luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs) imply that they should be strong gamma-ray emitters, but so far only two LIRGs have been detected. Theoretical models for their emission depend on the unknown fraction of cosmic-ray protons that escape these galaxies before interacting. We analyze Fermi-LAT data for 82 of the brightest Infrared Astronomical Satellite LIRGs and ULIRGs. We examine each system individually and carry out a stacking analysis to constrain their gamma-ray fluxes. We report the detection of the nearest ULIRG Arp 220 (˜4.6σ). We observe a gamma-ray flux (0.8-100 GeV) of 2.4 × 10-10 phot cm-2 s-1 with a photon index of 2.23 (8.2 × 1041 erg s-1 at 77 Mpc). We also derive upper limits (ULs) for the stacked LIRGs and ULIRGs. The gamma-ray luminosity of Arp 220 and the stacked ULs agree with calorimetric predictions for dense star-forming galaxies. With the detection of Arp 220, we extend the gamma-ray-IR luminosity correlation to the high-luminosity regime with {log}{L}0.1-100{GeV}=1.25× {log}{L}8-1000μ {{m}}+26.7 as well as the gamma-ray-radio continuum luminosity correlation with {log}{L}0.1-100{GeV}=1.22× {log}{L}1.4{GHz}+13.3. The current survey of Fermi-LAT is on the verge of detecting more LIRGs/ULIRGs in the local universe, and we expect even more detections with deeper Fermi-LAT observations or the next generation of gamma-ray detectors.

  15. Infrared Imaging for Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Xie, Charles; Hazzard, Edmund

    2011-01-01

    Based on detecting long-wavelength infrared (IR) radiation emitted by the subject, IR imaging shows temperature distribution instantaneously and heat flow dynamically. As a picture is worth a thousand words, an IR camera has great potential in teaching heat transfer, which is otherwise invisible. The idea of using IR imaging in teaching was first…

  16. Infrared Imaging for Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Xie, Charles; Hazzard, Edmund

    2011-01-01

    Based on detecting long-wavelength infrared (IR) radiation emitted by the subject, IR imaging shows temperature distribution instantaneously and heat flow dynamically. As a picture is worth a thousand words, an IR camera has great potential in teaching heat transfer, which is otherwise invisible. The idea of using IR imaging in teaching was first…

  17. Infrared thermal imaging in connective tissue diseases

    PubMed Central

    2017-01-01

    Infrared thermal imaging (IRT) is a non-invasive, non-contact technique which allows one to measure and visualize infrared radiation. In medicine, thermal imaging has been used for more than 50 years in various clinical settings, including Raynaud’s phenomenon and systemic sclerosis. Imaging and quantification of surface body temperature provides an indirect measure of the microcirculation’s overall performance. As such, IRT is capable of confirming the diagnosis of Raynaud’s phenomenon, and, with additional cold or heat challenge, of differentiating between the primary and secondary condition. In systemic sclerosis IRT has a potential role in assessing disease activity and monitoring treatment response. Despite certain limitations, thermal imaging can find a place in clinical practice, and with the introduction of small, low-cost infrared cameras, possibly become a part of routine rheumatological evaluation. PMID:28386141

  18. Infrared Imaging Sharpens View in Critical Situations

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Innovative Engineering and Consulting (IEC) Infrared Systems, a leading developer of thermal imaging systems and night vision equipment, received a Glenn Alliance for Technology Exchange (GATE) award, half of which was in the form of additional NASA assistance for new product development. IEC Infrared Systems worked with electrical and optical engineers from Glenn's Diagnostics and Data Systems Branch to develop a commercial infrared imaging system that could differentiate the intensity of heat sources better than other commercial systems. The research resulted in two major thermal imaging solutions: NightStalkIR and IntrudIR Alert. These systems are being used in the United States and abroad to help locate personnel stranded in emergency situations, defend soldiers on the battlefield abroad, and protect high-value facilities and operations. The company is also applying its advanced thermal imaging techniques to medical and pharmaceutical product development with a Cleveland-based pharmaceutical company.

  19. Infrared thermal imaging in connective tissue diseases.

    PubMed

    Chojnowski, Marek

    2017-01-01

    Infrared thermal imaging (IRT) is a non-invasive, non-contact technique which allows one to measure and visualize infrared radiation. In medicine, thermal imaging has been used for more than 50 years in various clinical settings, including Raynaud's phenomenon and systemic sclerosis. Imaging and quantification of surface body temperature provides an indirect measure of the microcirculation's overall performance. As such, IRT is capable of confirming the diagnosis of Raynaud's phenomenon, and, with additional cold or heat challenge, of differentiating between the primary and secondary condition. In systemic sclerosis IRT has a potential role in assessing disease activity and monitoring treatment response. Despite certain limitations, thermal imaging can find a place in clinical practice, and with the introduction of small, low-cost infrared cameras, possibly become a part of routine rheumatological evaluation.

  20. Computerized image analysis of digitized infrared images of breasts from a scanning infrared imaging system

    NASA Astrophysics Data System (ADS)

    Head, Jonathan F.; Lipari, Charles A.; Elliot, Robert L.

    1998-10-01

    Infrared imaging of the breasts has been shown to be of value in risk assessment, detection, diagnosis and prognosis of breast cancer. However, infrared imaging has not been widely accepted for a variety of reasons, including the lack of standardization of the subjective visual analysis method. The subjective nature of the standard visual analysis makes it difficult to achieve equivalent results with different equipment and different interpreters of the infrared patterns of the breasts. Therefore, this study was undertaken to develop more objective analysis methods for infrared images of the breasts by creating objective semiquantitative and quantitative analysis of computer assisted image analysis determined mean temperatures of whole breasts and quadrants of the breasts. When using objective quantitative data on whole breasts (comparing differences in means of left and right breasts), semiquantitative data on quadrants of the breast (determining an index by summation of scores for each quadrant), or summation of quantitative data on quadrants of the breasts there was a decrease in the number of abnormal patterns (positives) in patients being screen for breast cancer and an increases in the number of abnormal patterns (true positives) in the breast cancer patients. It is hoped that the decrease in positives in women being screened for breast cancer will translate into a decrease in the false positives but larger numbers of women with longer follow-up will be needed to clarify this. Also a much larger group of breast cancer patients will need to be studied in order to see if there is a true increase in the percentage of breast cancer patients presenting with abnormal infrared images of the breast with these objective image analysis methods.

  1. Coherent infrared imaging camera (CIRIC)

    SciTech Connect

    Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.; Richards, R.K.; Emery, M.S.; Crutcher, R.I.; Sitter, D.N. Jr.; Wachter, E.A.; Huston, M.A.

    1995-07-01

    New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

  2. Coherent infrared imaging camera (CIRIC)

    NASA Astrophysics Data System (ADS)

    Hutchinson, Donald P.; Simpson, Marc L.; Bennett, Charles A.; Richards, Roger K.; Emery, Mike S.; Crutcher, Richard I.; Sitter, David; Wachter, Eric A.; Huston, Michael A.

    1995-09-01

    New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with monolithic microwave integrated circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

  3. Characterization of the luminance and shape of ash particles at Sakurajima volcano, Japan, using CCD camera images

    NASA Astrophysics Data System (ADS)

    Miwa, Takahiro; Shimano, Taketo; Nishimura, Takeshi

    2015-01-01

    We develop a new method for characterizing the properties of volcanic ash at the Sakurajima volcano, Japan, based on automatic processing of CCD camera images. Volcanic ash is studied in terms of both luminance and particle shape. A monochromatic CCD camera coupled with a stereomicroscope is used to acquire digital images through three filters that pass red, green, or blue light. On single ash particles, we measure the apparent luminance, corresponding to 256 tones for each color (red, green, and blue) for each pixel occupied by ash particles in the image, and the average and standard deviation of the luminance. The outline of each ash particle is captured from a digital image taken under transmitted light through a polarizing plate. Also, we define a new quasi-fractal dimension ( D qf ) to quantify the complexity of the ash particle outlines. We examine two ash samples, each including about 1000 particles, which were erupted from the Showa crater of the Sakurajima volcano, Japan, on February 09, 2009 and January 13, 2010. The apparent luminance of each ash particle shows a lognormal distribution. The average luminance of the ash particles erupted in 2009 is higher than that of those erupted in 2010, which is in good agreement with the results obtained from component analysis under a binocular microscope (i.e., the number fraction of dark juvenile particles is lower for the 2009 sample). The standard deviations of apparent luminance have two peaks in the histogram, and the quasi-fractal dimensions show different frequency distributions between the two samples. These features are not recognized in the results of conventional qualitative classification criteria or the sphericity of the particle outlines. Our method can characterize and distinguish ash samples, even for ash particles that have gradual property changes, and is complementary to component analysis. This method also enables the relatively fast and systematic analysis of ash samples that is required for

  4. Far-infrared emission in luminous quasars accompanied by nuclear outflows

    NASA Astrophysics Data System (ADS)

    Maddox, Natasha; Jarvis, M. J.; Banerji, M.; Hewett, P. C.; Bourne, N.; Dunne, L.; Dye, S.; Eales, S.; Furlanetto, C.; Maddox, S. J.; Smith, M. W. L.; Valiante, E.

    2017-09-01

    Combining large-area optical quasar surveys with the new far-infrared (FIR) Herschel-ATLAS Data Release 1, we search for an observational signature associated with the minority of quasars possessing bright FIR luminosities. We find that FIR-bright quasars show broad C IV emission-line blueshifts in excess of that expected from the optical luminosity alone, indicating particularly powerful nuclear outflows. The quasars show no signs of having redder optical colours than the general ensemble of optically selected quasars, ruling out differences in line-of-sight dust within the host galaxies. We postulate that these objects may be caught in a special evolutionary phase, with unobscured, high black hole accretion rates and correspondingly strong nuclear outflows. The high FIR emission found in these objects is then either a result of star formation related to the outflow, or is due to dust within the host galaxy illuminated by the quasar. We are thus directly witnessing coincident small-scale nuclear processes and galaxy-wide activity, commonly invoked in galaxy simulations that rely on feedback from quasars to influence galaxy evolution.

  5. Star Formation and AGN Activity in Luminous and Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan

    2015-08-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, L_IR > 10^12 L⊙) are all interacting and merging systems. We explore the evolution of the morphological and nuclear properties of (U)LIRGs over cosmic time using a large sample of galaxies from Her- schel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between z ˜ 2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We also use rest-frame optical emission line diagnostics, X-ray luminosity, and MIR colors to separate AGN from star-formation dominated galaxies. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy’s position in the star formation rate - stellar mass plane. Are galaxies that have specific star formation rates elevated above the main sequence more likely to be mergers? We investigate how AGN identified with different methods correspond to different morphologies and merger stages as well as position on the star formation rate - stellar mass plane.

  6. What produces the far-infrared/submillimetre emission in the most luminous QSOs?

    NASA Astrophysics Data System (ADS)

    Symeonidis, M.

    2017-02-01

    The AGN. I examine the average spectral energy distributions (SEDs) of two samples of the most powerful, unobscured quasi-stellar objects (QSOs) at 2 < z < 3.5, with rest-frame optical luminosities in the range of 46.2 < log νLν (5100 Å) < 47.4, corresponding to the tail of the 2 < z < 4 QSO optical luminosity function. I find that the active galactic nucleus (AGN) could potentially account for the entire broad-band emission from the ultraviolet to the submillimetre (submm), on the basis that the SEDs of these sources are similar to the intrinsic AGN SEDs derived for lower power, lower redshift QSOs. Although this does not preclude substantial star formation in their host galaxies, I find that the AGN dominates the total infrared (IR) luminosity, removing the necessity for a star-forming component in the far-IR/submm. I argue that the origin of the far-IR/submm emission in such powerful QSOs includes a small contribution from the AGN torus but is predominantly linked to dust at kpc-scales heated by the AGN. The latter component accounts for at least 5-10 per cent of the bolometric AGN luminosity and has an implied dust mass of the order of 108 M⊙.

  7. HECTOSPEC AND HYDRA SPECTRA OF INFRARED LUMINOUS SOURCES IN THE AKARI NORTH ECLIPTIC POLE SURVEY FIELD

    SciTech Connect

    Shim, Hyunjin; Im, Myungshin; Jeon, Yiseul; Kim, Seong Jin; Lee, Hyung Mok; Ko, Jongwan; Karouzos, Marios; Papovich, Casey; Willmer, Christopher; Weiner, Benjamin J.

    2013-08-15

    We present spectra of 1796 sources selected in the AKARI North Ecliptic Pole Wide Survey field, obtained with MMT/Hectospec and WIYN/Hydra, for which we measure 1645 redshifts. We complemented the generic flux-limited spectroscopic surveys at 11 {mu}m and 15 {mu}m, with additional sources selected based on the MIR and optical colors. In MMT/Hectospec observations, the redshift identification rates are {approx}80% for objects with R < 21.5 mag. On the other hand, in WIYN/Hydra observations, the redshift identification rates are {approx}80% at R magnitudes brighter than 19 mag. The observed spectra were classified through the visual inspection or from the line diagnostics. We identified 1128 star-forming or absorption-line-dominated galaxies, 198 Type-1 active galactic nuclei (AGNs), 8 Type-2 AGNs, 121 Galactic stars, and 190 spectra in unknown category due to low signal-to-noise ratio. The spectra were flux-calibrated but to an accuracy of 0.1-0.18 dex for most of the targets and worse for the remainder. We derive star formation rates (SFRs) from the mid-infrared fluxes or from the optical emission lines, showing that our sample spans an SFR range of 0.1 to a few hundred M{sub Sun} yr{sup -1}. We find that the extinction inferred from the difference between the IR and optical SFR increases as the IR luminosity increases but with a large scatter.

  8. Large Millimeter Telescope Observations of Extremely Luminous High Redshift Infrared Galaxies Detected by the Planck Survey

    NASA Astrophysics Data System (ADS)

    Corneilus Harrington, Kevin; Yun, Min Su; Cybulski, John R.; Wilson, Grant; Large Millimeter Telescope (LMT) Team

    2015-01-01

    We present 8‧‧resolution, 1.1mm, continuum imaging and CO spectroscopic redshift measurements of extremely bright sub-millimeter galaxies identified from the Planck and Herschel surveys, taken with the Large Millimeter Telescope's AzTEC and Redshift Search Receiver instruments. Due to their exceedingly high flux density in the Herschel/SPIRE 250, 350, and 500 micron bands (S_250 ~ S_350 ~ S_500 > 100 mJy), these sources are likely to be strongly lensed dusty galaxies at high redshift. We compiled this target list of lens candidates after cross-correlating the Planck Surveyor mission's highest frequency channel (857 GHz/350 μm, FWHM = 4.5‧) data with archival data taken with the Herschel Spectral and Photometric Imaging Receiver (SPIRE). Every Planck-Herschel counterpart found within a 150‧‧radius is further examined using the higher angular resolution Herschel and WISE images to identify only dusty, high-z starburst galaxies.

  9. Thermal Infrared Imaging of Exoplanets

    SciTech Connect

    Apai, Daniel

    2009-08-05

    High-contrast imaging remains the only way to search for and study weakly-irradiated giant exoplanets. We review here in brief a new high-contrast imaging technique that operates in the 3-5 mum window and show the exquisite sensitivity that can be reached using this technique. The two key advantages of the L-band high-contrast imaging are the superior image quality and the 2-to 4-magnitude gain in sensitivity provided by the red color of giant planets. Most excitingly, this method can be applied to constrain the yet-unexplored giant planet population at radii between 3 and 30 AU.

  10. AN INFRARED-LUMINOUS MERGER WITH TWO BIPOLAR MOLECULAR OUTFLOWS: ALMA AND SMA OBSERVATIONS OF NGC 3256

    SciTech Connect

    Sakamoto, Kazushi; Aalto, Susanne; Combes, Francoise; Evans, Aaron; Peck, Alison

    2014-12-20

    We report Atacama Large Millimeter/sub-millimeter Array and Submillimeter Array observations of the infrared-luminous merger NGC 3256, the most luminous galaxy within z = 0.01. Both of the two merger nuclei separated by 5'' (0.8 kpc) have a molecular gas concentration, a nuclear disk, with Σ{sub mol} > 10{sup 3} M {sub ☉} pc{sup –2}. The northern nucleus is more massive and is surrounded by molecular spiral arms. Its nuclear disk is face-on, while the southern nuclear disk is almost edge-on. The high-velocity molecular gas in the system can be resolved into two molecular outflows from the two nuclei. The one from the northern nucleus is part of a starburst-driven superwind seen nearly pole-on. Its maximum velocity is >750 km s{sup –1} and its mass outflow rate is >60 M {sub ☉} yr{sup –1} for a conversion factor X{sub CO}=N{sub H{sub 2}}/I{sub CO(1−0)} of 1 × 10{sup 20} cm{sup –2} (K km s{sup –1}){sup –1}. The molecular outflow from the southern nucleus is a highly collimated bipolar jet seen nearly edge-on. Its line-of-sight velocity increases with distance, out to 300 pc from the nucleus, to the maximum de-projected velocity of ∼2000 km s{sup –1} for the estimated inclination and ≳1000 km s{sup –1} taking into account the uncertainty. Its mass outflow rate is estimated to be >50 M {sub ☉} yr{sup –1} for the same X {sub CO}. This southern outflow has indications of being driven by a bipolar radio jet from an active galactic nucleus that recently weakened. The sum of these outflow rates, although subject to the uncertainty in the molecular mass estimate, either exceeds or compares to the total star formation rate. The feedback from nuclear activity through molecular outflows is therefore significant in the gas consumption, and hence evolution, of this system.

  11. Understanding the two-dimensional ionization structure in luminous infrared galaxies. A near-IR integral field spectroscopy perspective

    NASA Astrophysics Data System (ADS)

    Colina, Luis; Piqueras López, Javier; Arribas, Santiago; Riffel, Rogério; Riffel, Rogemar A.; Rodriguez-Ardila, Alberto; Pastoriza, Miriani; Storchi-Bergmann, Thaisa; Alonso-Herrero, Almudena; Sales, Dinalva

    2015-06-01

    We investigate the two-dimensional excitation structure of the interstellar medium (ISM) in a sample of luminous infrared galaxies (LIRGs) and Seyferts using near-IR integral field spectroscopy. This study extends to the near infrared the well-known optical and mid-IR emission line diagnostics used to classify activity in galaxies. Based on the spatially resolved spectroscopy of prototypes, we identify in the [FeII]1.64 μm/Brγ- H22.12 μm/Brγ plane regions dominated by the different heating sources, i.e. active galactic nuclei (AGNs), young main-sequence massive stars, and evolved stars i.e. supernovae. The ISM in LIRGs occupy a wide region in the near-IR diagnostic plane from -0.6 to +1.5 and from -1.2 to +0.8 (in log units) for the [FeII]/Brγ and H2/Brγ line ratios, respectively. The corresponding median(mode) ratios are +0.18(0.16) and +0.02(-0.04). Seyferts show on average larger values by factors ~2.5 and ~1.4 for the [FeII]/Brγ and H2/Brγ ratios, respectively. New areas and relations in the near-IR diagnostic plane are defined for the compact, high surface brightness regions dominated by AGN, young ionizing stars, and supernovae explosions, respectively. In addition to these high surface brightness regions, the diffuse regions affected by the AGN radiation field cover an area similar to that of Seyferts, but with high values in [FeII]/Brγ that are not as extreme. The extended, non-AGN diffuse regions cover a wide area in the near-IR diagnostic diagram that overlaps that of individual excitation mechanisms (i.e. AGN, young stars, and supernovae), but with its mode value to that of the young star-forming clumps. This indicates that the excitation conditions of the extended, diffuse ISM are likely due to a mixture of the different ionization sources, weighted by their spatial distribution and relative flux contribution. The integrated line ratios in LIRGs show higher excitation conditions i.e. towards AGNs, than those measured by the spatially resolved

  12. Research on infrared imaging illumination model based on materials

    NASA Astrophysics Data System (ADS)

    Hu, Hai-he; Feng, Chao-yin; Guo, Chang-geng; Zheng, Hai-jing; Han, Qiang; Hu, Hai-yan

    2013-09-01

    In order to effectively simulate infrared features of the scene and infrared high light phenomenon, Based on the visual light illumination model, according to the optical property of all material types in the scene, the infrared imaging illumination models are proposed to fulfill different materials: to the smooth material with specular characteristic, adopting the infrared imaging illumination model based on Blinn-Phone reflection model and introducing the self emission; to the ordinary material which is similar to black body without highlight feature, ignoring the computation of its high light reflection feature, calculating simply the material's self emission and its reflection to the surrounding as its infrared imaging illumination model, the radiation energy under zero range of visibility can be obtained according to the above two models. The OpenGl rendering technology is used to construct infrared scene simulation system which can also simulate infrared electro-optical imaging system, then gets the synthetic infrared images from any angle of view of the 3D scenes. To validate the infrared imaging illumination model, two typical 3D scenes are made, and their infrared images are calculated to compare and contrast with the real collected infrared images obtained by a long wave infrared band imaging camera. There are two major points in the paper according to the experiment results: firstly, the infrared imaging illumination models are capable of producing infrared images which are very similar to those received by thermal infrared camera; secondly, the infrared imaging illumination models can simulate the infrared specular feature of relative materials and common infrared features of general materials, which shows the validation of the infrared imaging illumination models. Quantitative analysis shows that the simulation images are similar to the collected images in the aspects of main features, but their histogram distribution does not match very well, the

  13. Thermoelectric infrared imaging sensors for automotive applications

    NASA Astrophysics Data System (ADS)

    Hirota, Masaki; Nakajima, Yasushi; Saito, Masanori; Satou, Fuminori; Uchiyama, Makoto

    2004-07-01

    This paper describes three low-cost thermoelectric infrared imaging sensors having a 1,536, 2,304, and 10,800 element thermoelectric focal plane array (FPA) respectively and two experimental automotive application systems. The FPAs are basically fabricated with a conventional IC process and micromachining technologies and have a low cost potential. Among these sensors, the sensor having 2,304 elements provide high responsivity of 5,500 V/W and a very small size with adopting a vacuum-sealed package integrated with a wide-angle ZnS lens. One experimental system incorporated in the Nissan ASV-2 is a blind spot pedestrian warning system that employs four infrared imaging sensors. This system helps alert the driver to the presence of a pedestrian in a blind spot by detecting the infrared radiation emitted from the person"s body. The system can also prevent the vehicle from moving in the direction of the pedestrian. The other is a rearview camera system with an infrared detection function. This system consists of a visible camera and infrared sensors, and it helps alert the driver to the presence of a pedestrian in a rear blind spot. Various issues that will need to be addressed in order to expand the automotive applications of IR imaging sensors in the future are also summarized. This performance is suitable for consumer electronics as well as automotive applications.

  14. Luminous Infrared Galaxies. III. Multiple Merger, Extended Massive Star Formation, Galactic Wind, and Nuclear Inflow in NGC 3256

    NASA Astrophysics Data System (ADS)

    Lípari, S.; Díaz, R.; Taniguchi, Y.; Terlevich, R.; Dottori, H.; Carranza, G.

    2000-08-01

    We report detailed evidence for multiple merger, extended massive star formation, galactic wind, and circular/noncircular motions in the luminous infrared galaxy NGC 3256, based on observations of high-resolution imaging (Hubble Space Telescope, ESO NTT), and extensive spectroscopic data (more than 1000 spectra, collected at Estación Astrofísica de Bosque Alegre, Complejo Astronómico el Leoncito, Cerro Tololo InterAmerican Observatory, and IUE observatories). We find in a detailed morphological study (resolution ~15 pc) that the extended massive star formation process detected previously in NGC 3256 shows extended triple asymmetrical spiral arms (r~5 kpc), emanating from three different nuclei. The main optical nucleus shows a small spiral disk (r~500 pc), which is a continuation of the external one and reaches the very nucleus. The core shows blue elongated structure (50 pc×25 pc) and harbors a blue stellar cluster candidate (r~8 pc). We discuss this complex morphology in the framework of an extended massive star formation driven by a multiple merger process (models of Hernquist et al. and Taniguchi et al.). We study the kinematics of this system and present a detailed Hα velocity field for the central region (40''×40'' rmax~30''~5 kpc), with a spatial resolution of 1" and errors of +/-15 km s-1. The color and isovelocity maps show mainly (1) a kinematic center of circular motion with ``spider'' shape, located between the main optical nucleus and the close (5") mid-IR nucleus and (2) noncircular motions in the external parts. We obtained three ``sinusoidal rotation curves'' (from the Hα velocity field) around position angle (P.A.) ~55°, ~90°, and ~130°. In the main optical nucleus we found a clear ``outflow component'' associated with galactic winds plus an ``inflow radial motion.'' The outflow component was also detected in the central and external regions (r<=5-6 kpc). The main axis of the inflow region (P.A.~80deg) is practically perpendicular to the

  15. Functional near-infrared imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Nioka, Shoko; Chance, Britton

    1997-08-01

    We developed a continuous wave (cw) light imaging probe which includes 9 light sources and four pairs detectors (each pair has one 850 nm filtered detector and one 760 nm filtered detector). The light sources are controlled by a computer and the signals from the detectors are converted and processed in the computer. There are 16 measurement sections and total detection area is 9 cm multiplied by 4 cm which can be scanned every 8 seconds. The detector-source uses 2.5 cm spacing. In this study, we present the noise, drift, detectivity and spatial resolution test results of the imager. Changes of oxygenation and blood volume in about 2 cm depth from the surface of brain model can be detected. The temporal resolution is 8 seconds and spatial resolution is about 2 cm. The detectivity of OD changes can reach 0.008. With this cw imaging probe, we measured motor function in motor cortex area, visual function in occipital area, and cognitive activity in frontal forehead area of the human brian when the subjects are stimulated by moving fingers, viewing a flashing light and doing an analogy test, respectively. The experimental results show that the cw imaging probe can be used for functional images of brain activity, base upon changes of oxygenation and blood volume due to the stimulus.

  16. Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    NASA Astrophysics Data System (ADS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Baloković, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1.̋5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (τ ≃ 1.2, NH ~ 1.5 × 1024 cm-2). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH ≤ 2 × 1023 cm-2 over long (~3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  17. The Nobeyama 45 m 12CO(J=1-0) Survey of local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Yamashita, Takuji; Komugi, Shinya; Matsuhara, Hideo; Armus, Lee; Inami, Hanae; Ueda, Junko; Iono, Daisuke; Kohno, Kotaro; Stierwalt, Sabrina; Arimatsu, Ko; Evans, Aaron

    2015-08-01

    Cold molecular gas and star formation in local Luminous Infrared Galaxies (LIRGs) are studied along the stage of the galaxy merger sequence. Most local LIRGs are starbursting and are involved with galaxy-galaxy interactions or mergers. The evolution and the direct trigger of the merger-driven starbursts are not clear observationally, although there are several theoretical explanations. In order to address these issues, information of the molecular gas, which is traced by a 12CO(J=1-0) emission line, of an unbiased LIRG sample is required. To this end, a CO survey of 79 galaxies in 62 LIRG systems were conducted with the Nobeyama 45 m telescope. A method is developed to estimate the extent of CO gas in galaxies using combinations of two single-aperture telescopes with different beam sizes. The majority of the sources have the CO radius of less than ~ 4 kpc. The CO extent is found to possibly decrease from the early stage to the late stage of the merger. The molecular gas mass in the central several kilo-parsecs is constant throughout the merger sequence. These results statistically support a theoretically predicted scenario where the global gas inflow towards the galaxy center is common in merging LIRGs. The star formation efficiencies (SFE) in the central regions are derived and are high compared to disk star-forming galaxies as is well known. The SFE are found to be fairly independent of the merger stage. The star formation of merging LIRGs may be controlled by a common relation from gas to stars regardless of the merger stage, where SFR and resultant IR luminosity are determined by the amount of the molecular gas supplied by global inflow.

  18. Infrared imaging of high density protein arrays.

    PubMed

    De Meutter, Joëlle; Vandenameele, Julie; Matagne, André; Goormaghtigh, Erik

    2017-04-10

    We propose in this paper that protein microarrays could be analysed by infrared imaging in place of enzymatic or fluorescence labelling. This label-free method reports simultaneously a large series of data on the spotted sample (protein secondary structure, phosphorylation, glycosylation, presence of impurities, etc.). In the present work, 100 μm protein spots each containing about 100 pg protein were deposited to form high density regular arrays. Using arrays of infrared detectors, high resolution images could be obtained where each pixel of the image is in fact a full infrared spectrum. With microarrays, hundreds of experimental conditions can be tested easily and quickly, with no further labelling or chemistry of any kind. We describe how the noise present in the infrared spectra can be split into image noise and detector noise. We also detail how both types of noise can be most conveniently dealt with to generate very high quality spectra of less than 100 pg protein. Finally, the results suggest that the protein secondary structure is preserved during microarray building.

  19. Infrared Image of Low Clouds on Venus

    NASA Image and Video Library

    1996-01-29

    This false-color image is a near-infrared map of lower-level clouds on the night side of Venus, obtained by NASA Galileo spacecraft as it approached the planet night side on Feb. 10, 1990. http://photojournal.jpl.nasa.gov/catalog/PIA00124

  20. Thermal infrared panoramic imaging sensor

    NASA Astrophysics Data System (ADS)

    Gutin, Mikhail; Tsui, Eddy K.; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-05-01

    Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset control, security including port security, perimeter security, video surveillance, border control, airport security, coastguard operations, search and rescue, intrusion detection, and many others. Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence of target detection, and enables both man-in-the-loop and fully automated system operation. Thermal imaging provides the benefits of all-weather, 24-hour day/night operation with no downtime. In addition, thermal signatures of different target types facilitate better classification, beyond the limits set by camera's spatial resolution. The useful range of catadioptric panoramic cameras is affected by their limited resolution. In many existing systems the resolution is optics-limited. Reflectors customarily used in catadioptric imagers introduce aberrations that may become significant at large camera apertures, such as required in low-light and thermal imaging. Advantages of panoramic imagers with high image resolution include increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) combines the strengths of improved, high-resolution panoramic optics with thermal imaging in the 8 - 14 micron spectral range, leveraged by intelligent video processing for automated detection, location, and tracking of moving targets. The work in progress supports the Future Combat Systems (FCS) and the

  1. Infrared image denoising applied in infrared sound field measurement

    NASA Astrophysics Data System (ADS)

    Su, Zhiqiang; Shen, Guofeng

    2017-03-01

    The research made use of the heat property and explored the distribution of focused ultrasound field. In our experiments, we measured the distribution of heat sources, and then, calculated the distribution of focused ultrasound field via a liner relation. In the experiments, we got a series of infrared images with noise. It's such an important thing to find out a solution to get rid of the noise in those images in order to get an accurate focused ultrasound field distribution. So the investigation following is focused in finding out a filter which can remove most noise in the infrared charts and the distribution of ultrasound filed is not impacted. Experiments compared the effects of different filters by the index of - 6dB width of the temperature rise images. By this index, we can find out a filter which is the most suitable filter for keeping the distribution of focused ultrasound field in steady. All experiments, including simulations, semi-simulations and actual verification experiments used six filters to deal with the raw data to get -6dB width and signal to noise ratio. From the results of experiments, we drew a conclusion that gauss filter is the best to keep the distribution of focused ultrasound field in steady.

  2. Soap film thickness imaging by infrared methods

    NASA Astrophysics Data System (ADS)

    Mackey, Ryan Murrill Ezekiel

    A new method of studying soap film flows is introduced and discussed from several viewpoints. Using a commercial infrared camera and a cold background as an infrared light source, one can recover nonintrusively a measurement of the film thickness distribution. Once the thickness is known it is easy to compute the two-dimensional pressure in the film, allowing one to compute other film properties as well. Blackbody and infrared detector theory are covered in brief and a simple theory of operation is introduced to explain the connection between emissivity and thickness. This theory is demonstrated to behave similarly to the physical system, predicting detected temperature values as a function of thickness of the same approximate magnitude as observed, but is too simple to provide a perfect match. An empirical calibration routine is demonstrated allowing one to calculate the film thickness to a high degree of precision. The infrared method is applied to a number of familiar test problems as a demonstration. A gravity driven soap film tunnel has been constructed, and infrared images of the film surface are provided for unobstructed flow, separated flow past a cylinder held at one wall, and turbulent flow through a grid. These images are presented in raw and processed formats and the phenomena observed are discussed.

  3. Soap film thickness imaging by infrared methods

    NASA Astrophysics Data System (ADS)

    Mackey, Ryan M. E.

    A new method of studying soap film flows is introduced and discussed from several viewpoints. Using a commercial infrared camera and a cold background as an infrared light source, one can recover nonintrusively a measurement of the film thickness distribution. Once the thickness is known it is easy to compute the two-dimensional pressure in the film, allowing one to compute other film properties as well.Blackbody and infrared detector theory are covered in brief and a simple theory of operation is introduced to explain the connection between emissivity and thickness. This theory is demonstrated to behave similarly to the physical system, predicting detected temperature values as a function of thickness of the same approximate magnitude as observed, but is too simple to provide a perfect match. An empirical calibration routine is demonstrated allowing one to calculate the film thickness to a high degree of precision.The infrared method is applied to a number of familiar test problems as a demonstration. A gravity driven soap film tunnel has been constructed, and infrared images of the film surface are provided for unobstructed flow, separated flow past a cylinder held at one wall, and turbulent flow through a grid. These images are presented in raw and processed formats and the phenomena observed are discussed.

  4. Near infrared imaging of the outer planets

    NASA Technical Reports Server (NTRS)

    Matthews, K.; Soifer, B. T.

    1991-01-01

    In the last year we have continued our program of near infrared imaging of the outer planets of the solar system. Uranus is virtually invisible at 2.3 microns, showing that the methane is an effective absorber of the incident sunlight and that there is very little aerosol content in the upper atmosphere. On the other hand, Neptune shows a haze present over the entire Northern Hemisphere at 2.3 microns. This leads to the inference that there is an aerosol layer at a high altitude. We have recovered the Neptune satellite, 1989 N1, which was first discovered in Voyager images. The satellite is exceedingly faint in the near infrared, and was detectable only because the planet itself was comparatively faint at this wavelength. Observations of this satellite, coupled with the Voyager images, permit us to substantially refine the satellite's orbit, and hence carefully probe the gravitational field of Neptune.

  5. Infrared Imaging Data Reduction Software and Techniques

    NASA Astrophysics Data System (ADS)

    Sabbey, C. N.; McMahon, R. G.; Lewis, J. R.; Irwin, M. J.

    Developed to satisfy certain design requirements not met in existing packages (e.g., full weight map handling) and to optimize the software for large data sets (non-interactive tasks that are CPU and disk efficient), the InfraRed Data Reduction software package is a small ANSI C library of fast image processing routines for automated pipeline reduction of infrared (dithered) observations. The software includes stand-alone C programs for tasks such as running sky frame subtraction with object masking, image registration and co-addition with weight maps, dither offset measurement using cross-correlation, and object mask dilation. Although currently used for near-IR mosaic images, the modular software is concise and readily adaptable for reuse in other work. IRDR, available via anonymous ftp at ftp.ast.cam.ac.uk in pub/sabbey

  6. Urban monitoring from infrared satellite images.

    PubMed

    Ghellere, M; Bellazzi, A; Belussi, L; Meroni, I

    2016-12-01

    Starting from an experimental campaign in Milan, the article describes how the infrared signal recorded by Landsat 8 sensors can be used to evaluate and monitor key urban scale environmental variables. The possibility of combining different spectral bands of the infrared signal with previously collected spectral bands is highlighted. The monitored variables have been mapped in geo-referenced images using Geographic Information System (GIS)instruments. In this way, a mapping database is created to be used as a benchmark to study urban heat islands and the environmental changes over the years.

  7. Infrared system with computerized image display

    NASA Astrophysics Data System (ADS)

    Walker, R. P.; Rex, J. D.; Schummers, J. H.

    1985-05-01

    An object of this invention is to provide a system in which detected signals from an infrared scanner can be used to provide a calibrated display, and by which the data can be stored for later use. In the system according to the invention, image signals originating from an infrared scanner are transformed into a digitized form for storage in a computer and manipulated to produce a calibrated display. This transforms the merely qualitative utility of such a scanner into a quantitative capability allowing analysis of heat energy losses from structures of interest with only modest investments in capital equipment.

  8. [Advances in infrared spectrum zoom imaging system research].

    PubMed

    Bai, Yu; Xing, Ting-wen; Jiang, Ya-dong

    2014-12-01

    Compared with the infrared spectrum fixed focal length system and infrared spectrum dual-zoom system, infrared spectrum continuous zoom imaging system which has continuous variational field of view can track targets sequentially, so it is a research direction in infrared spectrum imaging technology. Some new technologies are presented overseas in order to improve the detection performance, reduce cost and have good athermalized performance in infrared spectrum continuous zoom imaging system. Infrared material, infrared detector and variable aperture, those new technologies are su mmarized and the idiographic application of those new technologies in infrared spectrum continuous zoom imaging system are presented in the paper, for example athermalization of an infrared spectrum zoom lens system with new infrared material for target detection, dual band infrared spectrum continuous zoom imaging system with mid-wave infrared and long-wave infrared, infrared spectrum continuous zoom imaging system with high ratio, nfrared spectrum continuous zoom imaging system with dual F/number. It is useful for the development of chinese infrared continuous zoom imaging system.

  9. Aural stealth of portable HOT infrared imager

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander

    2013-06-01

    Further reduction of size, weight and power consumption of the High Operating Temperature (HOT) infrared (IR) Integrated Detector-Dewar-Cooler Assemblies (IDDCA) eventually calls for development of high-speed cryocoolers. In case of integral rotary design, the immediate penalty is the more intensive slapping of compression and expansion pistons along with intensification of micro collisions inherent for the operation of crank-slide linkages featuring ball bearings. Resulting from this is the generation of impulsive vibration export, the spectrum of which features the driving frequency along with numerous multiples covering the entire range of audible frequencies. In a typical design of an infrared imager, the metal light-weight enclosure accommodates a directly mounted IDDCA and an optical train, thus serving as an optical bench and heat sink. This usually results in excitation of structural resonances in the said enclosure and, therefore, in excessive noise generation compromising the aural stealth. The author presents the complex approach to a design of aural undetectable infrared imagers in which the IDDCA is mounted upon the imager enclosure through a silent pad. Special attention is paid to resolving the line of sight stability and heat sinking issues. The demonstration imager relying on Ricor K562S based IDDCA meets the most stringent requirement to 10 meters aural non-detectability distance (per MIL-STD 1474D, Level II) even during boost cooldown phase of operation.

  10. Star formation histories in mergers: the spatially resolved properties of the early-stage merger luminous infrared galaxies IC 1623 and NGC 6090

    NASA Astrophysics Data System (ADS)

    Cortijo-Ferrero, C.; González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; Sánchez, S. F.; de Amorim, A. L.; Di Matteo, P.; García-Benito, R.; Lacerda, E. A. D.; López Fernández, R.; Tadhunter, C.

    2017-06-01

    The role of major mergers in galaxy evolution is investigated through a detailed characterization of the stellar populations, ionized gas properties and star formation rates (SFR) in the early-stage merger luminous infrared galaxies (LIRGs) IC 1623 W and NGC 6090, by analysing optical integral field spectroscopy and high-resolution Hubble Space Telescope imaging. The spectra were processed with the starlight full spectral fitting code, and the emission lines measured in the residual spectra. The results are compared with non-interacting control spiral galaxies from the Calar Alto Legacy Integral Field Area survey. Merger-induced star formation is extended and recent, as revealed by the young ages (50-80 Myr) and high contributions to light of young stellar populations (50-90 per cent), in agreement with merger simulations in the literature. These early-stage mergers have positive central gradients of the stellar metallicity, with an average ˜0.6 Z⊙. Compared to non-interacting spirals, they have lower central nebular metallicity, and flatter profiles, in agreement with the gas inflow scenario. We find that they are dominated by star formation, although shock excitation cannot be discarded in some regions, where high velocity dispersion is found (170-200 km s-1). The average SFR in these early-stage mergers (˜23-32 M⊙ yr-1) is enhanced with respect to main-sequence Sbc galaxies by factors of 6-9, slightly above the predictions from classical merger simulations, but still possible in about 15 per cent of major galaxy mergers, where U/LIRGs belong.

  11. Near-Infrared Intraoperative Chemiluminescence Imaging.

    PubMed

    Büchel, Gabriel E; Carney, Brandon; Shaffer, Travis M; Tang, Jun; Austin, Christine; Arora, Manish; Zeglis, Brian M; Grimm, Jan; Eppinger, Jörg; Reiner, Thomas

    2016-09-20

    Intraoperative imaging technologies recently entered the operating room, and their implementation is revolutionizing how physicians plan, monitor, and perform surgical interventions. In this work, we present a novel surgical imaging reporter system: intraoperative chemiluminescence imaging (ICI). To this end, we have leveraged the ability of a chemiluminescent metal complex to generate near-infrared light upon exposure to an aqueous solution of Ce(4+) in the presence of reducing tissue or blood components. An optical camera spatially resolves the resulting photon flux. We describe the construction and application of a prototype imaging setup, which achieves a detection limit as low as 6.9 pmol cm(-2) of the transition-metal-based ICI agent. As a proof of concept, we use ICI for the in vivo detection of our transition metal tracer following both systemic and subdermal injections. The very high signal-to-noise ratios make ICI an interesting candidate for the development of new intraoperative imaging technologies.

  12. ALMA HCN and HCO+ J =3-2 Observations of Optical Seyfert and Luminous Infrared Galaxies: Confirmation of Elevated HCN-to-HCO+ Flux Ratios in AGNs

    NASA Astrophysics Data System (ADS)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma

    2016-12-01

    We present the results of our ALMA observations of three active galactic nucleus (AGN)-dominated nuclei in optical Seyfert 1 galaxies (NGC 7469, I Zw 1, and IC 4329 A) and eleven luminous infrared galaxies (LIRGs) with various levels of infrared estimated energetic contributions by AGNs at the HCN and HCO+ J = 3 - 2 emission lines. The HCN and HCO+ J = 3 - 2 emission lines are clearly detected at the main nuclei of all sources, except for IC 4329 A. The vibrationally excited (v 2 = 1f) HCN J = 3 - 2 and HCO+ J = 3 - 2 emission lines are simultaneously covered, and HCN v 2 = 1f J = 3 - 2 emission line signatures are seen in the main nuclei of two LIRGs, IRAS 12112+0305 and IRAS 22491-1808, neither of which shows clear buried AGN signatures in the infrared. If the vibrational excitation is dominated by infrared radiative pumping, through the absorption of infrared 14 μm photons, primarily originating from AGN-heated hot dust emission, then these two LIRGs may contain infrared-elusive, but (sub)millimeter-detectable, extremely deeply buried AGNs. These vibrationally excited emission lines are not detected in the three AGN-dominated optical Seyfert 1 nuclei. However, the observed HCN v 2 = 1f to v = 0 flux ratios in these optical Seyferts are still consistent with the intrinsic flux ratios in LIRGs with detectable HCN v 2 = 1f emission lines. The observed HCN-to-HCO+ J = 3 - 2 flux ratios tend to be higher in galactic nuclei with luminous AGN signatures compared with starburst-dominated regions, as previously seen at J = 1 - 0 and J = 4 - 3.

  13. Luminous Infrared Galaxies with the Submillimeter Array. V. Molecular Gas in Intermediate to Late-stage Mergers

    NASA Astrophysics Data System (ADS)

    Sliwa, Kazimierz; Wilson, Christine D.; Matsushita, Satoki; Peck, Alison B.; Petitpas, Glen R.; Saito, Toshiki; Yun, Min

    2017-05-01

    We present new high-resolution ALMA (13CO J = 1-0 and J = 2-1) and CARMA (12CO and 13CO J = 1-0) observations of two luminous infrared galaxies (LIRGs), Arp 55 and NGC 2623. The new data are complementary to published and archival submillimeter array observations of 12CO J = 2-1 and J = 3-2. We perform a Bayesian likelihood non-local thermodynamic equilibrium analysis to constrain the molecular gas physical conditions such as temperature, column, and volume densities and the [12CO]/[13CO] abundance ratio. For Arp 55, an early/intermediate-staged merger, the line measurements are consistent with cold (˜10-20 K), dense (>{10}3.5 cm-3) molecular gas. For NGC 2623, the molecular gas is warmer (˜110 K) and less dense (˜ {10}2.7 cm-3). Because Arp 55 is an early/intermediate stage merger, while NGC 2623 is a merger remnant, the difference in physical conditions may be an indicator of merger stage. Comparing the temperature and volume density of several LIRGs shows that the molecular gas, averaged over ˜kiloparsec scales, of advanced mergers is in general warmer and less dense than early/intermediate stage mergers. We also find that the [12CO]/[13CO] abundance ratio of NGC 2623 is unusually high (>250) when compared with the Milky Way; however, it follows a trend seen with other LIRGs in the literature. This high [12CO]/[13CO] value is very likely due to stellar nucleosynthesis enrichment of the interstellar medium. On the other hand, Arp 55 has a more Galactic [12CO]/[13CO] value with the most probable [12CO]/[13CO] value being 20-30. We measure the CO-to-H2 conversion factor, {α }{CO}, to be ˜0.1 and ˜0.7 (3 × 10-4/{x}{CO}) M ⊙ (K km s-1 pc2)-1 for Arp 55 and NGC 2623, respectively. Because Arp 55 is an early/intermediate-stage merger, this suggests that the transition from a Galactic conversion factor to a LIRG value happens at an even earlier merger stage.

  14. Location of foot arteries using infrared images

    NASA Astrophysics Data System (ADS)

    Villasenor-Mora, Carlos; González-Vega, Arturo; Martín Osmany Falcón, Antonio; Benítez Ferro, Jesús Francisco Guillemo; Córdova Fraga, Teodoro

    2014-11-01

    In this work are presented the results of localization of foot arteries, in a young group of participants by using infrared thermal images, these are the dorsal, posterior tibial and anterior tibial arteries. No inclusion criteria were considered, that causes that no strong statistical data about the influence of the age in the arterial localization. It was achieved to solve the confusion when veins present a heat distribution similar to the artery and in the position of this. it contributes to enhance the rate of location of arteries. In general it is possible to say that the use of infrared thermal images is a good technique to find the foot arteries and can be applied in its characterization in a future. The procedure proposed is a non-invasive technique, and in certain fashion does not requires specialized personnel to achieve locate the arteries. It is portable, safe, and relatively economical.

  15. Infrared hyperspectral imaging miniaturized for UAV applications

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl

    2017-02-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. Also, an example of how this technology can easily be used to quantify a hydrocarbon gas leak's volume and mass flowrates. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4

  16. Visual Comfort Analysis of Innovative Interior and Exterior Shading Systems for Commercial Buildings using High Resolution Luminance Images

    SciTech Connect

    Konis, Kyle; Lee, Eleanor; Clear, Robert

    2011-01-11

    The objective of this study was to explore how calibrated high dynamic range (HDR) images (luminance maps) acquired in real world daylit environments can be used to characterize, evaluate, and compare visual comfort conditions of innovative facade shading and light-redirecting systems. Detailed (1536 x 1536 pixel) luminance maps were time-lapse acquired from two view positions in an unoccupied full scale testbed facility. These maps were analyzed using existing visual comfort metrics to quantify how innovative interior and exterior shading systems compare to conventional systems under real sun and sky conditions over a solstice-to-solstice test interval. The results provide a case study in the challenges and potential of methods of visualizing, evaluating and summarizing daily and seasonal variation of visual comfort conditions computed from large sets of image data.

  17. Luminous presence

    NASA Astrophysics Data System (ADS)

    Dawson, Paula

    2008-02-01

    The Luminous Presence project examines the use of standard film language in the framing, angle and of points of view of holographic subjects though eight digital holographic stereograms; seven 25 x 25 cm, Hail, Water, Rain, Snow, Sun, Text, Imprint and 1.5 x 1 m, Luminous Presences i. However, before embarking on a discussion of how filmic language can be used in digital holograms it is first important to explain why this line of investigation could be fruitful. Undoubtedly several of the compositional practices which sprung up and evolved throughout the development of the diverse forms of the holographic medium have contributed to a unique hologram pictorial language, however it is well known that the reading of visual imagery of any type relies a great deal on the viewer's knowledge of and experience of other images .The lens-recorded imagery of film is a far more familiar language than that of holograms and the correlation between certain filmic pictorial conventions and emotional responses are well documented and understood. ii . In short the language of film contains a highly nuanced vocabulary of shot types and lens types (which may be criticised as being formulaic) yet are effective in lending emotion to figures.

  18. Infrared Spectroscopic Imaging for Prostate Pathology

    DTIC Science & Technology

    2008-03-01

    X (2002) Genetics-based machine learning using fine-grained parallelism for data mining. Doctoral dissertation, Enginyeria i Arquitectura La Salle... Arquitectura La Salle. Ramon Llull University, Barcelona, Catalonia, European Union, February, 2002. [22] X. Llorà and J. Garrell. Knowledge...spectroscopic imaging using an infrared focal-plane array detector. Anal Chem 1995, 67, (19), 3377-81. 9.Bhargava, R.; Wang, S. Q .; Koenig, J. L., FTIR

  19. Uncooled long-wave infrared hyperspectral imaging

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G. (Inventor)

    2006-01-01

    A long-wave infrared hyperspectral sensor device employs a combination of an interferometer with an uncooled microbolometer array camera to produce hyperspectral images without the use of bulky, power-hungry motorized components, making it suitable for UAV vehicles, small mobile platforms, or in extraterrestrial environments. The sensor device can provide signal-to-noise ratios near 200 for ambient temperature scenes with 33 wavenumber resolution at a frame rate of 50 Hz, with higher results indicated by ongoing component improvements.

  20. [Microscopic infrared spectral imaging of oily core].

    PubMed

    Huang, Qiao-Song; Yu, Zhao-Xian; Li, Jing; Chen, Chen

    2009-02-01

    In the present paper, the authors examined some oily core by microscopic infrared spectral imaging methods. Those methods can be classified in three modes, referred to as "transmission mode", "reflection mode" and "attenuated total reflection (ATR) mode". The observed oily core samples belong to siltstone. The samples were made of quartz (-20%), feldspar(-50%) and other rock (igneous rock 25%, metamorphic rocks 1%, sedimentary rock 4%); a little recrystallized calcite (-1%) was in the pore, and the argillaceous matter was distributed along the edge of a pore. The experimental work has been accomplished using SHIMADZU Model IRPrestige-21 Fourier transform infrared spectrophotometer plus AIM8800 infrared microscope. For IRPrestige-21, the spectral range is 7 800-350 cm(-1) spectral resolution is 1 cm(-1), and AIM8800 microscope with motorized stages has a resolution of 1 micrometer. The experiment was preformed at room temperature. In "transmission mode" infrared spectral imaging method, the spectral range was limited in wavenumbers greater than 2 000 cm(-1) because the base glass piece has strong light absorption. In contrast with "transmission mode", in "attenuated total reflection (ATR) mode", the depth of penetration into sample is very small (1-2 micrometer), then the absorbance value has nothing to do with base glass piece light absorption. In microscopic infrared transmission spectra, the experimental result shows that there are some strong absorption peaks at 2 866, 2 928, 3 618 and 2 515 cm(-1) respectively. The former two peaks correspond to methyl(methylene) symmetrical and unsymmetrical stretch vibration mode, respectively. The latter two peaks correspond to hydroxyl-stretch vibration mode and S-H, P-H chemical bond stretch vibration mode, respectively. In microscopic longwave infrared ATR spectra, there are other stronger absorption peaks at 1 400, 1 038 and 783 cm(i1)respectively, corresponding to methyl(methylene) widing vibration mode and optical mode

  1. Infrared Images of Shock-Heated Tin

    SciTech Connect

    Craig W. McCluskey; Mark D. Wilke; William D. Turley; Gerald D. Stevens; Lynn R. Veeser; Michael Grover

    2004-09-01

    High-resolution, gated infrared images were taken of tin samples shock heated to just below the 505 K melting point. Sample surfaces were either polished or diamond-turned, with grain sizes ranging from about 0.05 to 10 mm. A high explosive in contact with a 2-mm-thick tin sample induced a peak sample stress of 18 GPa. Interferometer data from similarly-driven tin shots indicate that immediately after shock breakout the samples spall near the free (imaged) surface with a scab thickness of about 0.1 mm.

  2. Uncooled infrared imaging using bimaterial microcantilever arrays

    SciTech Connect

    Grbovic, Dragoslav; Lavrik, Nickolay V; Rajic, Slobodan; Datskos, Panos G

    2006-01-01

    We report on the fabrication and characterization of microcantilever based uncooled focal plane array (FPA) for infrared imaging. By combining a streamlined design of microcantilever thermal transducers with a highly efficient optical readout, we minimized the fabrication complexity while achieving a competitive level of imaging performance. The microcantilever FPAs were fabricated using a straightforward fabrication process that involved only three photolithographic steps (i.e. three masks). A designed and constructed prototype of an IR imager employed a simple optical readout based on a noncoherent low-power light source. The main figures of merit of the IR imager were found to be comparable to those of uncooled MEMS infrared detectors with substantially higher degree of fabrication complexity. In particular, the NETD and the response time of the implemented MEMS IR detector were measured to be as low as 0.5K and 6 ms, respectively. The potential of the implemented designs can also be concluded from the fact that the constructed prototype enabled IR imaging of close to room temperature objects without the use of any advanced data processing. The most unique and practically valuable feature of the implemented FPAs, however, is their scalability to high resolution formats, such as 2000x2000, without progressively growing device complexity and cost.

  3. Uncooled infrared imaging using bimaterial microcantilever arrays

    NASA Astrophysics Data System (ADS)

    Lavrik, N. V.; Grbovic, D.; Rajic, S.; Datskos, P. G.; Forrai, D.; Nelson, E.; Devitt, J.; McIntyre, B.

    2006-05-01

    We report on the fabrication and characterization of microcantilever based uncooled focal plane array (FPA) for infrared imaging. By combining a streamlined design of microcantilever thermal transducers with a highly efficient optical readout, we minimized the fabrication complexity while achieving a competitive level of imaging performance. The microcantilever FPAs were fabricated using a straightforward fabrication process that involved only three photolithographic steps (i.e. three masks). A designed and constructed prototype of an IR imager employed a simple optical readout based on a noncoherent low-power light source. The main figures of merit of the IR imager were found to be comparable to those of uncooled MEMS infrared detectors with substantially higher degree of fabrication complexity. In particular, the NETD and the response time of the implemented MEMS IR detector were measured to be as low as 0.5K and 6 ms, respectively. The potential of the implemented designs can also be concluded from the fact that the constructed prototype enabled IR imaging of close to room temperature objects without the use of any advanced data processing. The most unique and practically valuable feature of the implemented FPAs, however, is their scalability to high resolution formats, such as 2000x2000, without progressively growing device complexity and cost.

  4. Near Infrared (nir) Imaging for Nde

    NASA Astrophysics Data System (ADS)

    Diamond, G. G.; Pallav, P.; Hutchins, D. A.

    2008-02-01

    A novel application of near infrared (NIR) signals is presented, which can be used to provide images of many different materials and objects. It is effectively a very low cost non-ionising alternative to many applications currently being investigated using electromagnetic waves at other frequencies, such as THz and X-ray imaging. This alternative technique can be realised by very simple and inexpensive electronics and is inherently far more portable and easy to use. Transmission imaging results from this technique are presented from examples industrial quality control, food inspection and various security applications, and the results compared to existing techniques. In addition, this technique can be used in through-transmission mode on biological and medical samples, and images are presented that differentiate between not only flesh and bone, but also various types of soft tissue.

  5. Infrared spectroscopic imaging of renal tumor tissue

    NASA Astrophysics Data System (ADS)

    Šablinskas, Valdas; Urbonienė, Vidita; Ceponkus, Justinas; Laurinavicius, Arvydas; Dasevicius, Darius; Jankevičius, Feliksas; Hendrixson, Vaiva; Koch, Edmund; Steiner, Gerald

    2011-09-01

    Fourier transform infrared (FTIR) spectroscopic imaging has been used to probe the biochemical composition of human renal tumor tissue and adjacent normal tissue. Freshly resected renal tumor tissue from surgery was prepared as a thin cryosection and examined by FTIR spectroscopic imaging. Tissue types could be discriminated by utilizing a combination of fuzzy k-means cluster analysis and a supervised classification algorithm based on a linear discriminant analysis. The spectral classification is compared and contrasted with the histological stained image. It is further shown that renal tumor cells have spread in adjacent normal tissue. This study demonstrates that FTIR spectroscopic imaging can potentially serve as a fast and objective approach for discrimination of renal tumor tissue from normal tissue and even in the detection of tumor infiltration in adjacent tissue.

  6. Development of liquid crystal infrared imaging sensors

    NASA Astrophysics Data System (ADS)

    Finnemeyer, Valerie

    Outside of the display industry, liquid crystals have been used to create many optical components across a wide range of applications. Their variable anisotropic properties give them the unique capability to replace more complex and expensive and less rugged components in a number of imaging applications across the electro-magnetic spectrum. In this dissertation, two key infrared imaging applications for liquid crystal sensors are described. In the long-wave infrared range, liquid crystals can be used for thermal imaging. However, this application requires pre-formed microcavities with only one fill port. This makes it extremely difficult to generate high-quality alignment for the liquid crystals. As such, a method of infusing an azo dye photoalignment layer into these microcavities is developed to align the liquid crystals. The use of a surface-localized polymer layer which is infused into the microcavities mixed with the liquid crystal is demonstrated to stabilize the alignment layer against subsequent exposure to light. Evidence is provided that infused photoalignment layers cannot be considered equivalent to spun photoalignment layers; there are several key factors which affect the quality of the infused layers, which are demonstrated in bulk liquid crystal cells. Several factors that affect the ability of the surface-localized polymer layer to stabilize the photoalignment layer are also considered. Finally, these methods are extended to the development of stable photoaligned microcavities for the thermal imaging application. Next, a birefringent Fourier-transform imaging spectrometer is described which operates in the near-infrared range. A modification to an existing birefringent design is described which offers significant field-of-view improvements. The relative trade-offs of incorporating liquid crystal variable elements into this design are considered. The majority of this work is completed using computer simulation of the propagation of light through the

  7. Uncooled Micro-Cantilever Infrared Imager Optimization

    SciTech Connect

    Panagiotis, Datskos G.

    2008-02-05

    We report on the development, fabrication and characterization of microcantilever based uncooled focal plane array (FPA) for infrared imaging. By combining a streamlined design of microcantilever thermal transducers with a highly efficient optical readout, we minimized the fabrication complexity while achieving a competitive level of imaging performance. The microcantilever FPAs were fabricated using a straightforward fabrication process that involved only three photolithographic steps (i.e. three masks). A designed and constructed prototype of an IR imager employed a simple optical readout based on a noncoherent low-power light source. The main figures of merit of the IR imager were found to be comparable to those of uncooled MEMS infrared detectors with substantially higher degree of fabrication complexity. In particular, the NETD and the response time of the implemented MEMS IR detector were measured to be as low as 0.5K and 6 ms, respectively. The potential of the implemented designs can also be concluded from the fact that the constructed prototype enabled IR imaging of close to room temperature objects without the use of any advanced data processing. The most unique and practically valuable feature of the implemented FPAs, however, is their scalability to high resolution formats, such as 2000 x 2000, without progressively growing device complexity and cost. The overall technical objective of the proposed work was to develop uncooled infrared arrays based on micromechanical sensors. Currently used miniature sensors use a number of different readout techniques to accomplish the sensing. The use of optical readout techniques sensing require the deposition of thin coatings on the surface of micromechanical thermal detectors. Oak Ridge National Laboratory (ORNL) is uniquely qualified to perform the required research and development (R&D) services that will assist our ongoing activities. Over the past decade ORNL has developed a number of unique methods and

  8. SPITZER SPECTROSCOPY OF INFRARED-LUMINOUS GALAXIES: DIAGNOSTICS OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION AND CONTRIBUTION TO TOTAL INFRARED LUMINOSITY

    SciTech Connect

    Shipley, Heath V.; Papovich, Casey; Rieke, George H.; Jannuzi, Buell T.; Weiner, Benjamin; Dey, Arjun; Moustakas, John

    2013-05-20

    We use mid-infrared (MIR) spectroscopy from the Spitzer Infrared Spectrograph to study the nature of star-formation and supermassive black hole accretion for a sample of 65 IR-luminous galaxies at 0.02 < z < 0.6 with F(24 {mu}m) > 1.2 mJy. The MIR spectra cover wavelengths 5-38 {mu}m, spanning the polycyclic aromatic hydrocarbon (PAH) features and important atomic diagnostic lines. Our sample of galaxies corresponds to a range of total IR luminosity, L{sub IR} = L(8-1000 {mu}m) = 10{sup 10}-10{sup 12} L{sub Sun} (median L{sub IR} of 3.0 Multiplication-Sign 10{sup 11} L{sub Sun }). We divide our sample into a subsample of galaxies with Spitzer Infrared Array Camera 3.6-8.0 {mu}m colors indicative of warm dust heated by an active galactic nucleus (AGN; IRAGN) and those galaxies whose colors indicate star-formation processes (non-IRAGN). Compared to the non-IRAGN, the IRAGN show smaller PAH emission equivalent widths, which we attribute to an increase in mid-IR continuum from the AGN. We find that in both the IRAGN and star-forming samples, the luminosity in the PAH features correlates strongly with [Ne II] {lambda}12.8 {mu}m emission line, from which we conclude that the PAH luminosity directly traces the instantaneous star-formation rate (SFR) in both the IRAGN and star-forming galaxies. We compare the ratio of PAH luminosity to the total IR luminosity, and we show that for most IRAGN star-formation accounts for 10%-50% of the total IR luminosity. We also find no measurable difference between the PAH luminosity ratios of L{sub 11.3}/L{sub 7.7} and L{sub 6.2}/L{sub 7.7} for the IRAGN and non-IRAGN, suggesting that AGN do not significantly excite or destroy PAH molecules on galaxy-wide scales. Interestingly, a small subset of galaxies (8 of 65 galaxies) show a strong excess of [O IV] {lambda}25.9 {mu}m emission compared to their PAH emission, which indicates the presence of heavily-obscured AGN, including 3 galaxies that are not otherwise selected as IRAGN. The low

  9. Sulfur copolymers for infrared optical imaging

    NASA Astrophysics Data System (ADS)

    Namnabat, S.; Gabriel, J. J.; Pyun, J.; Norwood, R. A.; Dereniak, E. L.; van der Laan, J.

    2014-06-01

    The development of organic polymers with low infrared absorption has been investigated as a possible alternative to inorganic metal oxide, semiconductor, or chalcogenide-based materials for a variety of optical devices and components, such as lenses, goggles, thermal imaging cameras and optical fibers. In principle, organic-based polymers are attractive for these applications because of their low weight, ease of processing, mechanical toughness, and facile chemical variation using commercially available precursors. Herein we report on the optical characterization of a new class of sulfur copolymers that are readily moldable, transparent above 500 nm, possess high refractive index (n > 1.8) and take advantage of the low infrared absorption of S-S bonds for potential use in the mid-infrared at 3-5 microns. These materials are largely made from elemental sulfur by an inverse vulcanization process; in the current study we focus on the properties of a chemically stable, branched copolymer of poly(sulfur-random-1,3-diisopropenylbenzene) (poly(S-r- DIB). Copolymers with elemental sulfur content ranging from 50% to 80% by weight were studied by UV-VIS spectroscopy, FTIR, and prism coupling for refractive index measurement. Clear correlation between material composition and the optical properties was established, confirming that the high polarizability of the sulfur atom leads to high refractive index while also maintaining low optical loss in the infrared.

  10. Applications for high-speed infrared imaging

    NASA Astrophysics Data System (ADS)

    Richards, Austin A.

    2005-03-01

    The phrase high-speed imaging is generally associated with short exposure times, fast frame rates or both. Supersonic projectiles, for example, are often impossible to see with the unaided eye, and require strobe photography to stop their apparent motion. It is often necessary to image high-speed objects in the infrared region of the spectrum, either to detect them or to measure their surface temperature. Conventional infrared cameras have time constants similar to the human eye, so they too, are often at a loss when it comes to photographing fast-moving hot targets. Other types of targets or scenes such as explosions change very rapidly with time. Visualizing those changes requires an extremely high frame rate combined with short exposure times in order to slow down a dynamic event so that it can be studied and quantified. Recent advances in infrared sensor technology and computing power have pushed the envelope of what is possible to achieve with commercial IR camera systems.

  11. Normalized methodology for medical infrared imaging

    NASA Astrophysics Data System (ADS)

    Vargas, J. V. C.; Brioschi, M. L.; Dias, F. G.; Parolin, M. B.; Mulinari-Brenner, F. A.; Ordonez, J. C.; Colman, D.

    2009-01-01

    A normalized procedure for medical infrared imaging is suggested, and illustrated by a leprosy and hepatitis C treatment follow-up, in order to investigate the effect of concurrent treatment which has not been reported before. A 50-year-old man with indeterminate leprosy and a 20-year history of hepatitis C was monitored for 587 days, starting from the day the patient received treatment for leprosy. Standard therapy for hepatitis C started 30 days later. Both visual observations and normalized infrared imaging were conducted periodically to assess the response to leprosy treatment. The primary end points were effectiveness of the method under different boundary conditions over the period, and rapid assessment of the response to leprosy treatment. The patient achieved sustained hepatitis C virological response 6 months after the end of the treatment. The normalized infrared results demonstrate the leprosy treatment success in spite of the concurrent hepatitis C treatment, since day 87, whereas repigmentation was visually assessed only after day 182, and corroborated with a skin biopsy on day 390. The method detected the effectiveness of the leprosy treatment in 87 days, whereas repigmentation started only in 182 days. Hepatitis C and leprosy treatment did not affect each other.

  12. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos, Stavros; Staggs, Michael C.

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  13. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos; Stavros , Staggs; Michael C.

    2006-03-21

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  14. A CHANDRA PERSPECTIVE ON GALAXY-WIDE X-RAY BINARY EMISSION AND ITS CORRELATION WITH STAR FORMATION RATE AND STELLAR MASS: NEW RESULTS FROM LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Lehmer, B. D.; Jenkins, L. P.; Alexander, D. M.; Goulding, A. D.; Roberts, T. P.; Bauer, F. E.; Brandt, W. N.; Ptak, A.

    2010-11-20

    We present new Chandra observations that complete a sample of seventeen (17) luminous infrared galaxies (LIRGs) with D < 60 Mpc and low Galactic column densities of N{sub H} {approx}< 5 x 10{sup 20} cm{sup -2}. The LIRGs in our sample have total infrared (8-1000 {mu}m) luminosities in the range of L{sub IR{approx}} (1-8) x 10{sup 11} L{sub sun}. The high-resolution imaging and X-ray spectral information from our Chandra observations allow us to measure separately X-ray contributions from active galactic nuclei and normal galaxy processes (e.g., X-ray binaries and hot gas). We utilized total infrared plus UV luminosities to estimate star formation rates (SFRs) and K-band luminosities and optical colors to estimate stellar masses (M{sub *}) for the sample. Under the assumption that the galaxy-wide 2-10 keV luminosity (L {sup gal}{sub HX}) traces the combined emission from high-mass X-ray binaries (HMXBs) and low-mass X-ray binaries, and that the power output from these components is linearly correlated with SFR and M{sub *}, respectively, we constrain the relation L {sup gal}{sub HX} = {alpha}M{sub *} + {beta}SFR. To achieve this, we construct a Chandra-based data set composed of our new LIRG sample combined with additional samples of less actively star-forming normal galaxies and more powerful LIRGs and ultraluminous infrared galaxies (ULIRGs) from the literature. Using these data, we measure best-fit values of {alpha} = (9.05 {+-} 0.37) x 10{sup 28} erg s{sup -1} M {sup -1}{sub sun} and {beta} = (1.62 {+-} 0.22) x 10{sup 39} erg s{sup -1} (M{sub sun} yr{sup -1}){sup -1}. This scaling provides a more physically meaningful estimate of L {sup gal}{sub HX}, with {approx}0.1-0.2 dex less scatter, than a direct linear scaling with SFR. Our results suggest that HMXBs dominate the galaxy-wide X-ray emission for galaxies with SFR/M{sub *} {approx}>5.9 x 10{sup -11} yr{sup -1}, a factor of {approx}2.9 times lower than previous estimates. We find that several of the most

  15. New far infrared images of bright, nearby, star-forming regions

    NASA Technical Reports Server (NTRS)

    Harper, D. AL, Jr.; Cole, David M.; Dowell, C. Darren; Lees, Joanna F.; Lowenstein, Robert F.

    1995-01-01

    Broadband imaging in the far infrared is a vital tool for understanding how young stars form, evolve, and interact with their environment. As the sensitivity and size of detector arrays has increased, a richer and more detailed picture has emerged of the nearest and brightest regions of active star formation. We present data on M 17, M 42, and S 106 taken recently on the Kuiper Airborne Observatory with the Yerkes Observatory 60-channel far infrared camera, which has pixel sizes of 17 in. at 60 microns, 27 in. at 100 microns, and 45 in. at 160 and 200 microns. In addition to providing a clearer view of the complex central cores of the regions, the images reveal new details of the structure and heating of ionization fronts and photodissociation zones where radiation form luminous stars interacts with adjacent molecular clouds.

  16. New far infrared images of bright, nearby, star-forming regions

    NASA Technical Reports Server (NTRS)

    Harper, D. AL, Jr.; Cole, David M.; Dowell, C. Darren; Lees, Joanna F.; Lowenstein, Robert F.

    1995-01-01

    Broadband imaging in the far infrared is a vital tool for understanding how young stars form, evolve, and interact with their environment. As the sensitivity and size of detector arrays has increased, a richer and more detailed picture has emerged of the nearest and brightest regions of active star formation. We present data on M 17, M 42, and S 106 taken recently on the Kuiper Airborne Observatory with the Yerkes Observatory 60-channel far infrared camera, which has pixel sizes of 17 in. at 60 microns, 27 in. at 100 microns, and 45 in. at 160 and 200 microns. In addition to providing a clearer view of the complex central cores of the regions, the images reveal new details of the structure and heating of ionization fronts and photodissociation zones where radiation form luminous stars interacts with adjacent molecular clouds.

  17. Uncooled infrared imaging using bimaterial mircocantilever arrays

    SciTech Connect

    Grbovic, Dragoslav; Lavrik, Nickolay V; Datskos, Panos G

    2006-01-01

    In this letter, we present results on the microfabrication and characterization of large bimaterial microcantilever arrays and discuss their performance as focal plane arrays (FPA) for uncooled infrared (IR) imagers. The arrays were fabricated using standard microfabrication processes which involved only three photolithographic steps. We used an optical readout to simultaneously measure the deflections of all the microcantilevers in the FPA. Our theoretical evaluation showed that the implemented IR imager is characterized by the background fluctuation noise equivalent temperature difference, NETDBF, of 2.52 mK. The temperature fluctuation noise equivalent temperature difference, NETDTF, and the thermomechanical NETDTM of the imager were calculated to be 14.2 mK and 151 mK, respectively. The experimentally measured response time of the FPA was 6 ms. A unique and valuable feature of the fabricated FPAs is the scalability to high resolution formats, such as 2000 2000, without progressively growing device complexity and cost.

  18. A perspective on medical infrared imaging.

    PubMed

    Jiang, L J; Ng, E Y K; Yeo, A C B; Wu, S; Pan, F; Yau, W Y; Chen, J H; Yang, Y

    2005-01-01

    Since the early days of thermography in the 1950s, image processing techniques, sensitivity of thermal sensors and spatial resolution have progressed greatly, holding out fresh promise for infrared (IR) imaging techniques. Applications in civil, industrial and healthcare fields are thus reaching a high level of technical performance. The relationship between body temperature and disease was documented since 400 bc. In many diseases there are variations in blood flow, and these in turn affect the skin temperature. IR imaging offers a useful and non-invasive approach to the diagnosis and treatment (as therapeutic aids) of many disorders, in particular in the areas of rheumatology, dermatology, orthopaedics and circulatory abnormalities. This paper reviews many usages (and hence the limitations) of thermography in biomedical fields.

  19. Some design considerations for high-performance infrared imaging seeker

    NASA Astrophysics Data System (ADS)

    Fan, Jinxiang; Huang, Jianxiong

    2015-10-01

    In recent years, precision guided weapons play more and more important role in modern war. The development and applications of infrared imaging guidance technology have been paid more and more attention. And with the increasing of the complexity of mission and environment, precision guided weapons make stricter demand for infrared imaging seeker. The demands for infrared imaging seeker include: high detection sensitivity, large dynamic range, having better target recognition capability, having better anti-jamming capability and better environment adaptability. To meet the strict demand of weapon system, several important issues should be considered in high-performance infrared imaging seeker design. The mission, targets, environment of infrared imaging guided missile must be regarded. The tradeoff among performance goal, design parameters, infrared technology constraints and missile constraints should be considered. The optimized application of IRFPA and ATR in complicated environment should be concerned. In this paper, some design considerations for high-performance infrared imaging seeker were discussed.

  20. Simulation of visible/infrared sensor images

    NASA Astrophysics Data System (ADS)

    Akiyama, Tomohiro; Tamagawa, Yasuhisa; Yanagisawa, Takayuki

    1996-06-01

    For developing an imaging system, a computer based imaging simulator that predicts the performance of the system is desired. The simulator synthesizes images by various sensors under a wide variety of field conditions in the early design stage. The advantages of eliminating unnecessary trial manufacturing and field testing under severe environmental conditions are given herewith. In the simulator described in this paper, spectral radiance of an object is assumed as being the sum of the reflection of solar irradiance and sky radiance and the emission obtained from the emissivity and temperature of an object. Wavelength bands are selected from the visible to the far-infrared wavelength region. Spatial resolution, noise, shading, ghosts, narcissus and mechanical vibration of the optical components are considered to be image degradations by the use of sensors. This paper describes the simulation procedure and illustrates synthesized images with several objects and scenarios such as wavelength band, atmospheric conditions and degradations by the use of sensors. These images show that the presented simulator is effective in determining the specifications of a desired system.

  1. Physical Conditions in the Central Parsec Derived from Mid-Infrared Imaging Photometry

    NASA Technical Reports Server (NTRS)

    Gezari, Dan; Dwek, Eli; Varosi, Frank

    2002-01-01

    Array camera images of the central 1 parsec of the Galactic Center at eight mid-infrared wavelengths between 4.8 and 20.0 microns with approximately 1 arcsec resolution are used to model the temperature, opacity and bolometric luminosity distributions of the emitting dust in the central parsec, and the extinction in the line of sight. We use the results to discriminate between two mechanisms for heating the dust: heating by radiation from a "central engine" (possibly a massive black hole associated with Sgr A*), or internal heating by luminous stars embedded in or among the dust clouds. The temperature and opacity distributions are consistent with the presence of self-luminous objects imbedded at prominent the IRS source positions. However, temperatures on the northern ann and east-west bar are highest along the inner flank of those structures surrounding the central cavity, while the dust opacity peaks further out from the central cavity. The warm inner ridge suggests heating by centrally located concentrated luminous sources, including IRS3 and IRS7. The of the model results are compared with the distributions of the various stellar populations in the central parsec. There is evidence for physical interaction between the warm emitting dust and luminous stars, including dozens of hot He1 emission line stars and B[] stars. The combined contributions of embedded stars at the IRS source positions and the luminous stars distributed throughout Sgr A West can account for the temperature enhancements and the luminosity distribution in the central parsec computed by the model.

  2. Nested object watermarking: comparison of block-luminance and blue channel LSB wet paper code image watermarking

    NASA Astrophysics Data System (ADS)

    Vielhauer, Claus; Dittmann, Jana

    2007-02-01

    Annotation watermarking (sometimes also called caption or illustration watermarking) denotes a specific application of watermarks, which embeds supplementary information directly in the media, so that additional information is intrinsically linked to media content and does not get separated from the media by non-malicious processing steps such as image cropping or compression. Recently, nested object annotation watermarking (NOAWM) has been introduced as a specialized annotation watermarking domain, whereby hierarchical object information is embedded in photographic images. In earlier work, the Hierarchical Graph Concept (HGC) has been suggested as a first approach to model object relations, which are defined by users during editing processes, into a hierarchical tree structure. The original HGC method uses a code-book decomposition of the annotation tree and a block-luminance algorithm for embedding. In this article, two new approaches for embedding nested object annotations are presented and experimentally compared to the original HGC approach. The first one adopts the code-book scheme of HGC using an alternative embedding based on Wet Paper Codes in blue-channel LSB domain, whereas the second suggests a new method based on the concept of intrinsic signal inheritance by sub-band energy and phase modulation of image luminance blocks. A comparative experimental evaluation based on more than 100 test images is presented in the paper, whereby aspects of transparency and robustness with respect to the most relevant image modifications to annotations, cropping and JPEG compression, are discussed comparatively for the two code-book schemes and the novel inheritance approach.

  3. An infrared upconverter for astronomical imaging

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.; Townes, C. H.

    1977-01-01

    An imaging upconverter has been constructed which is suitable for use in the study of the thermal 10-micron radiation from astronomical sources. The infrared radiation is converted to visible radiation by mixing in a 1-cm-long proustite crystal. The phase-matched 2-kayser bandpass is tunable from 9 to 11 microns. The conversion efficiency is 2 by 10 to the -7th power and the field of view of 40 arc seconds on the sky contains several hundred picture elements, approximately diffraction-limited resolution in a large telescope. The instrument has been used in studies of the sun, moon, Mercury, and VY Canis Majoris.

  4. An infrared upconverter for astronomical imaging

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.; Townes, C. H.

    1977-01-01

    An imaging upconverter has been constructed which is suitable for use in the study of the thermal 10-micron radiation from astronomical sources. The infrared radiation is converted to visible radiation by mixing in a 1-cm-long proustite crystal. The phase-matched 2-kayser bandpass is tunable from 9 to 11 microns. The conversion efficiency is 2 by 10 to the -7th power and the field of view of 40 arc seconds on the sky contains several hundred picture elements, approximately diffraction-limited resolution in a large telescope. The instrument has been used in studies of the sun, moon, Mercury, and VY Canis Majoris.

  5. Galileo infrared imaging spectroscopy measurements at venus

    USGS Publications Warehouse

    Carlson, R.W.; Baines, K.H.; Encrenaz, Th.; Taylor, F.W.; Drossart, P.; Kamp, L.W.; Pollack, James B.; Lellouch, E.; Collard, A.D.; Calcutt, S.B.; Grinspoon, D.; Weissman, P.R.; Smythe, W.D.; Ocampo, A.C.; Danielson, G.E.; Fanale, F.P.; Johnson, T.V.; Kieffer, H.H.; Matson, D.L.; McCord, T.B.; Soderblom, L.A.

    1991-01-01

    During the 1990 Galileo Venus flyby, the Near Infrared Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substantial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

  6. Infrared hyperspectral imaging sensor for gas detection

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2000-11-01

    A small light weight man portable imaging spectrometer has many applications; gas leak detection, flare analysis, threat warning, chemical agent detection, just to name a few. With support from the US Air Force and Navy, Pacific Advanced Technology has developed a small man portable hyperspectral imaging sensor with an embedded DSP processor for real time processing that is capable of remotely imaging various targets such as gas plums, flames and camouflaged targets. Based upon their spectral signature the species and concentration of gases can be determined. This system has been field tested at numerous places including White Mountain, CA, Edwards AFB, and Vandenberg AFB. Recently evaluation of the system for gas detection has been performed. This paper presents these results. The system uses a conventional infrared camera fitted with a diffractive optic that images as well as disperses the incident radiation to form spectral images that are collected in band sequential mode. Because the diffractive optic performs both imaging and spectral filtering, the lens system consists of only a single element that is small, light weight and robust, thus allowing man portability. The number of spectral bands are programmable such that only those bands of interest need to be collected. The system is entirely passive, therefore, easily used in a covert operation. Currently Pacific Advanced Technology is working on the next generation of this camera system that will have both an embedded processor as well as an embedded digital signal processor in a small hand held camera configuration. This will allow the implementation of signal and image processing algorithms for gas detection and identification in real time. This paper presents field test data on gas detection and identification as well as discuss the signal and image processing used to enhance the gas visibility. Flow rates as low as 0.01 cubic feet per minute have been imaged with this system.

  7. Infrared imaging with fiber optic bundles

    NASA Astrophysics Data System (ADS)

    Hilton, Albert R., Sr.; McCord, James; Thompson, W. S.; LeBlanc, Richard A.

    2003-09-01

    Efforts have resumed to improve the image quality of infrared imaging bundles formed at AMI using the ribbon stacking method. The C4 glass has been used to reduce core size, increase packing density and improve flexibility. Ribbons are formed from unclad fiber wound on a drum with pitch, ribbon count and spacing between ribbons computer controlled. A small portion of each ribbon is compressed and fused using thin, dilute Epoxy. Unfortunately, the Epoxy, serving as a clad, absorbs most all the LWIR energy making the bundles unsuited for 8-12 μm cameras. The ribbons are removed from the drum and stacked, one on top of the other observing proper orientation to form the bundle. A typical 1 meter bundle is formed from 50-70 count ribbons for a total of 2500-4900 fibers, made from 2.5-4.9 Km of C4 fiber. Typical core diameters are 60-80 μm. Active surface area ranges from 60-70%. Infrared resolution images formed using a NIR tube camera equipped with a special relay lens demonstrates the resolution limit for the bundle. Currently, the limit is about 10 lp/mm. The bundle end is imaged in the 3-5 μm Agema 210 camera using an Amtir 1 F/1 meniscus, coated 3-5 μm. Video images taken in natural light of an individual, easily recognizable at 50 feet, will be shown. Results of careful evaluation carried out at Lockheed Martin in Orlando using a high performance Raytheon Galileo camera will be presented.

  8. High-speed imaging system of luminous intensity distribution of plasma using light emission CT

    NASA Astrophysics Data System (ADS)

    Kawamura, Hirofumi; Saito, Hideo; Yuasa, Kunio; Yuge, Youji; Nakajima, Masato

    1995-02-01

    The authors developed a light emission computed tomography (LECT) system for plasma diagnosis supporting the high speed data collection function. In this paper, we describe the principles of the system and experiments in reconstructing the luminous intensity distribution of plasma in a discharge tube with the system.

  9. Infrared Imaging System for Studying Brain Function

    NASA Technical Reports Server (NTRS)

    Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

    2007-01-01

    A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be

  10. Shuttle Entry Imaging Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve

    2007-01-01

    During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne

  11. High dynamic range infrared images detail enhancement based on local edge preserving filter

    NASA Astrophysics Data System (ADS)

    Song, Qiong; Wang, Yuehuan; Bai, Kun

    2016-07-01

    In the field of infrared (IR) image processing, displaying a high dynamic range (HDR) image on a low dynamic range display equipment with a natural visual effect, clear details on local areas and less artifacts is an important issue. In this paper, we present a new approach to display HDR IR images with contrast enhancement. First, the local edge-preserving filter (LEPF) is utilized to separate the image into a base layer and detail layer(s). After the filtering procedure, we use an adaptive Gamma transformation to adjust the gray distribution of the base layer, and stretch the detail layer based on a human visual effect principle. Then, we recombine the detail layer and base layer to obtain the enhance output. Finally, we adjust the luminance of output by applying multiple exposure fusion method. The experimental results demonstrate that our proposed method can provide a significant performance in terms of enhancing details and less artifacts than the state of the arts.

  12. High-Definition Infrared Spectroscopic Imaging

    PubMed Central

    Reddy, Rohith K.; Walsh, Michael J.; Schulmerich, Matthew V.; Carney, P. Scott; Bhargava, Rohit

    2013-01-01

    The quality of images from an infrared (IR) microscope has traditionally been limited by considerations of throughput and signal-to-noise ratio (SNR). An understanding of the achievable quality as a function of instrument parameters, from first principals is needed for improved instrument design. Here, we first present a model for light propagation through an IR spectroscopic imaging system based on scalar wave theory. The model analytically describes the propagation of light along the entire beam path from the source to the detector. The effect of various optical elements and the sample in the microscope is understood in terms of the accessible spatial frequencies by using a Fourier optics approach and simulations are conducted to gain insights into spectroscopic image formation. The optimal pixel size at the sample plane is calculated and shown much smaller than that in current mid-IR microscopy systems. A commercial imaging system is modified, and experimental data are presented to demonstrate the validity of the developed model. Building on this validated theoretical foundation, an optimal sampling configuration is set up. Acquired data were of high spatial quality but, as expected, of poorer SNR. Signal processing approaches were implemented to improve the spectral SNR. The resulting data demonstrated the ability to perform high-definition IR imaging in the laboratory by using minimally-modified commercial instruments. PMID:23317676

  13. Infrared hyperspectral imaging for chemical vapour detection

    NASA Astrophysics Data System (ADS)

    Ruxton, K.; Robertson, G.; Miller, W.; Malcolm, G. P. A.; Maker, G. T.; Howle, C. R.

    2012-10-01

    Active hyperspectral imaging is a valuable tool in a wide range of applications. One such area is the detection and identification of chemicals, especially toxic chemical warfare agents, through analysis of the resulting absorption spectrum. This work presents a selection of results from a prototype midwave infrared (MWIR) hyperspectral imaging instrument that has successfully been used for compound detection at a range of standoff distances. Active hyperspectral imaging utilises a broadly tunable laser source to illuminate the scene with light at a range of wavelengths. While there are a number of illumination methods, the chosen configuration illuminates the scene by raster scanning the laser beam using a pair of galvanometric mirrors. The resulting backscattered light from the scene is collected by the same mirrors and focussed onto a suitable single-point detector, where the image is constructed pixel by pixel. The imaging instrument that was developed in this work is based around an IR optical parametric oscillator (OPO) source with broad tunability, operating in the 2.6 to 3.7 μm (MWIR) and 1.5 to 1.8 μm (shortwave IR, SWIR) spectral regions. The MWIR beam was primarily used as it addressed the fundamental absorption features of the target compounds compared to the overtone and combination bands in the SWIR region, which can be less intense by more than an order of magnitude. We show that a prototype NCI instrument was able to locate hydrocarbon materials at distances up to 15 metres.

  14. Simulating Kinect Infrared and Depth Images.

    PubMed

    Landau, Michael J; Choo, Benjamin Y; Beling, Peter A

    2015-11-13

    With the emergence of the Microsoft Kinect sensor, many developer communities and research groups have found countless uses and have already published a wide variety of papers that utilize the raw depth images for their specific goals. New methods and applications that use the device generally require an appropriately large ensemble of data sets with accompanying ground truth for testing purposes, as well as accurate models that account for the various systematic and stochastic contributors to Kinect errors. Current error models, however, overlook the intermediate infrared (IR) images that directly contribute to noisy depth estimates. We, therefore, propose a high fidelity Kinect IR and depth image predictor and simulator that models the physics of the transmitter/receiver system, unique IR dot pattern, disparity/depth processing technology, and random intensity speckle and IR noise in the detectors. The model accounts for important characteristics of Kinect's stereo triangulation system, including depth shadowing, IR dot splitting, spreading, and occlusions, correlation-based disparity estimation between windows of measured and reference IR images, and subpixel refinement. Results show that the simulator accurately produces axial depth error from imaged flat surfaces with various tilt angles, as well as the bias and standard lateral error of an object's horizontal and vertical edge.

  15. High-definition infrared spectroscopic imaging.

    PubMed

    Reddy, Rohith K; Walsh, Michael J; Schulmerich, Matthew V; Carney, P Scott; Bhargava, Rohit

    2013-01-01

    The quality of images from an infrared (IR) microscope has traditionally been limited by considerations of throughput and signal-to-noise ratio (SNR). An understanding of the achievable quality as a function of instrument parameters, from first principals is needed for improved instrument design. Here, we first present a model for light propagation through an IR spectroscopic imaging system based on scalar wave theory. The model analytically describes the propagation of light along the entire beam path from the source to the detector. The effect of various optical elements and the sample in the microscope is understood in terms of the accessible spatial frequencies by using a Fourier optics approach and simulations are conducted to gain insights into spectroscopic image formation. The optimal pixel size at the sample plane is calculated and shown much smaller than that in current mid-IR microscopy systems. A commercial imaging system is modified, and experimental data are presented to demonstrate the validity of the developed model. Building on this validated theoretical foundation, an optimal sampling configuration is set up. Acquired data were of high spatial quality but, as expected, of poorer SNR. Signal processing approaches were implemented to improve the spectral SNR. The resulting data demonstrated the ability to perform high-definition IR imaging in the laboratory by using minimally-modified commercial instruments.

  16. Simulating Kinect Infrared and Depth Images.

    PubMed

    Landau, Michael J; Choo, Benjamin Y; Beling, Peter A

    2016-12-01

    With the emergence of the Microsoft Kinect sensor, many developer communities and research groups have found countless uses and have already published a wide variety of papers that utilize the raw depth images for their specific goals. New methods and applications that use the device generally require an appropriately large ensemble of data sets with accompanying ground truth for testing purposes, as well as accurate models that account for the various systematic and stochastic contributors to Kinect errors. Current error models, however, overlook the intermediate infrared (IR) images that directly contribute to noisy depth estimates. We, therefore, propose a high fidelity Kinect IR and depth image predictor and simulator that models the physics of the transmitter/receiver system, unique IR dot pattern, disparity/depth processing technology, and random intensity speckle and IR noise in the detectors. The model accounts for important characteristics of Kinect's stereo triangulation system, including depth shadowing, IR dot splitting, spreading, and occlusions, correlation-based disparity estimation between windows of measured and reference IR images, and subpixel refinement. Results show that the simulator accurately produces axial depth error from imaged flat surfaces with various tilt angles, as well as the bias and standard lateral error of an object's horizontal and vertical edge.

  17. Short wave infrared imager cockpit interface issues

    NASA Astrophysics Data System (ADS)

    Marasco, Peter L.

    2007-04-01

    With the introduction of the night-vision goggle (NVG) into vehicle cockpits, the transfer of visual information to the observer became more complex. This problem stems primarily from the fact that the image intensifier tube photocathode was sensitive to much of the visible spectrum. NVGs were capable of sensing and amplifying visible cockpit light, making the observation of the scene outside of the cockpit, the primary use for NVGs, difficult if not impossible. One solution was to establish mutually exclusive spectral bands; a band of shorter wavelengths reserved for transmission of visible information from the cockpit instrumentation to the observer and a longer wavelength region left to the night vision goggle for imaging the night environment. Several documents have been published outlining the night vision imaging system (NVIS) compatible lighting performance enabling this approach, seen as necessary for military and civilian aviation. Recent advances in short wave infrared (SWIR) sensor technology make it a possible alternative to the image intensifiers for night imaging application. However, application-specific integration issues surrounding the new sensor type must still be thoroughly investigated. This paper examines the impact of the SWIR spectral sensitivity on several categories of lighting found in vehicle cockpits and explores cockpit integration issues that may arise from the SWIR spectral sensitivity.

  18. The Munich Near-Infrared Cluster Survey - IV. Biases in the completeness of near-infrared imaging data

    NASA Astrophysics Data System (ADS)

    Snigula, J.; Drory, N.; Bender, R.; Botzler, C. S.; Feulner, G.; Hopp, U.

    2002-11-01

    We present the results of completeness simulations for the detection of point sources as well as redshifted elliptical and spiral galaxies in the K'-band images of the Munich Near-Infrared Cluster Survey (MUNICS). The main focus of this work is to quantify the selection effects introduced by threshold-based object detection algorithms used in deep imaging surveys. Therefore, we simulate objects obeying the well-known scaling relations between effective radius and central surface brightness, for both de Vaucouleurs and exponential profiles. The results of these simulations, while presented for the MUNICS project, are applicable in a much wider context to deep optical and near-infrared selected samples. We investigate the detection probability as well as the reliability for recovering the true total magnitude with Kron-like (adaptive) aperture photometry. The results are compared with the predictions of the visibility theory of Disney and Phillipps in terms of the detection rate and the lost-light fraction. Additionally, the effects attributable to seeing are explored. The results show a bias against detecting high-redshifted massive elliptical galaxies in comparison to disc galaxies with exponential profiles, and that the measurements of the total magnitudes for intrinsically bright elliptical galaxies are systematically too faint. Disc galaxies, in contrast, show no significant offset in the magnitude measurement of luminous objects. Finally, we present an analytic formula to predict the completeness of point sources using only basic image parameters.

  19. Herschel observations and a model for IRAS 08572+3915: a candidate for the most luminous infrared galaxy in the local (z < 0.2) Universe

    NASA Astrophysics Data System (ADS)

    Efstathiou, A.; Pearson, C.; Farrah, D.; Rigopoulou, D.; Graciá-Carpio, J.; Verma, A.; Spoon, H. W. W.; Afonso, J.; Bernard-Salas, J.; Clements, D. L.; Cooray, A.; Cormier, D.; Etxaluze, M.; Fischer, J.; González-Alfonso, E.; Hurley, P.; Lebouteiller, V.; Oliver, S. J.; Rowan-Robinson, M.; Sturm, E.

    2014-01-01

    We present Herschel photometry and spectroscopy, carried out as part of the Herschel ultraluminous infrared galaxy (ULIRG) survey, and a model for the infrared to submillimetre emission of the ULIRG IRAS 08572+3915. This source shows one of the deepest known silicate absorption features and no polycyclic aromatic hydrocarbon emission. The model suggests that this object is powered by an active galactic nucleus (AGN) with a fairly smooth torus viewed almost edge-on and a very young starburst. According to our model, the AGN contributes about 90 per cent of the total luminosity of 1.1 × 1013 L⊙, which is about a factor of 5 higher than previous estimates. The large correction of the luminosity is due to the anisotropy of the emission of the best-fitting torus. Similar corrections may be necessary for other local and high-z analogues. This correction implies that IRAS 08572+3915 at a redshift of 0.058 35 may be the nearest hyperluminous infrared galaxy and probably the most luminous infrared galaxy in the local (z < 0.2) Universe. IRAS 08572+3915 shows a low ratio of [C II] to IR luminosity (log L[CII]/LIR < -3.8) and a [O I]63 μm to [C II]158 μm line ratio of about 1 that supports the model presented in this Letter.

  20. Human body region enhancement method based on Kinect infrared imaging

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Fan, Yubo; Song, Xiaowei; Cai, Wenjing

    2016-10-01

    To effectively improve the low contrast of human body region in the infrared images, a combing method of several enhancement methods is utilized to enhance the human body region. Firstly, for the infrared images acquired by Kinect, in order to improve the overall contrast of the infrared images, an Optimal Contrast-Tone Mapping (OCTM) method with multi-iterations is applied to balance the contrast of low-luminosity infrared images. Secondly, to enhance the human body region better, a Level Set algorithm is employed to improve the contour edges of human body region. Finally, to further improve the human body region in infrared images, Laplacian Pyramid decomposition is adopted to enhance the contour-improved human body region. Meanwhile, the background area without human body region is processed by bilateral filtering to improve the overall effect. With theoretical analysis and experimental verification, the results show that the proposed method could effectively enhance the human body region of such infrared images.

  1. Infrared imaging of the crime scene: possibilities and pitfalls.

    PubMed

    Edelman, Gerda J; Hoveling, Richelle J M; Roos, Martin; van Leeuwen, Ton G; Aalders, Maurice C G

    2013-09-01

    All objects radiate infrared energy invisible to the human eye, which can be imaged by infrared cameras, visualizing differences in temperature and/or emissivity of objects. Infrared imaging is an emerging technique for forensic investigators. The rapid, nondestructive, and noncontact features of infrared imaging indicate its suitability for many forensic applications, ranging from the estimation of time of death to the detection of blood stains on dark backgrounds. This paper provides an overview of the principles and instrumentation involved in infrared imaging. Difficulties concerning the image interpretation due to different radiation sources and different emissivity values within a scene are addressed. Finally, reported forensic applications are reviewed and supported by practical illustrations. When introduced in forensic casework, infrared imaging can help investigators to detect, to visualize, and to identify useful evidence nondestructively.

  2. Measurement and infrared image prediction of a heated exhaust flow

    NASA Astrophysics Data System (ADS)

    Nelson, Edward L.; Mahan, J. Robert; Turk, Jeffrey A.; Birckelbaw, Larry D.; Wardwell, Douglas A.; Hange, Craig E.

    1994-06-01

    The focus of the current research is to numerically predict an infrared image of a jet engine exhaust plume, given field variables such as temperature, pressure, and exhaust plume constituents as a function of spatial position within the plume, and to compare this predicted image directly with measured data. This work is motivated by the need to validate CFD codes through infrared imaging. The technique of reducing the 3D field-variable domain to a 2D infrared image invokes the use of an inverse Monte-Carlo ray trace algorithm and an infrared band model for exhaust gases. This paper describes an experiment in which the above- mentioned field variables were carefully measured. Data from this experiment in the form of velocity plots are shown. The inverse Monte-Carlo ray trace technique is described. Finally, an experimentally obtained infrared image is directly compared to an infrared image predicted from the measured field variables.

  3. Pain related inflammation analysis using infrared images

    NASA Astrophysics Data System (ADS)

    Bhowmik, Mrinal Kanti; Bardhan, Shawli; Das, Kakali; Bhattacharjee, Debotosh; Nath, Satyabrata

    2016-05-01

    Medical Infrared Thermography (MIT) offers a potential non-invasive, non-contact and radiation free imaging modality for assessment of abnormal inflammation having pain in the human body. The assessment of inflammation mainly depends on the emission of heat from the skin surface. Arthritis is a disease of joint damage that generates inflammation in one or more anatomical joints of the body. Osteoarthritis (OA) is the most frequent appearing form of arthritis, and rheumatoid arthritis (RA) is the most threatening form of them. In this study, the inflammatory analysis has been performed on the infrared images of patients suffering from RA and OA. For the analysis, a dataset of 30 bilateral knee thermograms has been captured from the patient of RA and OA by following a thermogram acquisition standard. The thermograms are pre-processed, and areas of interest are extracted for further processing. The investigation of the spread of inflammation is performed along with the statistical analysis of the pre-processed thermograms. The objectives of the study include: i) Generation of a novel thermogram acquisition standard for inflammatory pain disease ii) Analysis of the spread of the inflammation related to RA and OA using K-means clustering. iii) First and second order statistical analysis of pre-processed thermograms. The conclusion reflects that, in most of the cases, RA oriented inflammation affects bilateral knees whereas inflammation related to OA present in the unilateral knee. Also due to the spread of inflammation in OA, contralateral asymmetries are detected through the statistical analysis.

  4. An infrared image enhancement algorithm based on HVS

    NASA Astrophysics Data System (ADS)

    Xue, Rongkun; He, Wei; Liu, Jiahui; Li, Yufeng

    2016-10-01

    Because the infrared images have the disadvantage of low contrast and fuzzy edges, it is not suitable for us to observe them, so it is necessary to first make enhanced processing before recognition. Though the existing enhancement methods do not take into account the characteristics of HVS, the visual effect of the processed images is not good. Therefore, the paper proposes an enhancement algorithm of infrared images that combine multi-resolution wavelet transform with Retinex theory, it blends with the characteristics of HVS in order to make high-frequency details of infrared images strengthen and illumination uniformity strength and the brightness of IR images moderate. Through experimental results and data analysis, it not only improves the infrared images of low contrast and fuzzy detail, but also suppresses the noise in images to strengthen the overall visual effect of the infrared images.

  5. SDSS J163459.82+204936.0: A Ringed Infrared-luminous Quasar with Outflows in Both Absorption and Emission Lines

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hong-Yan; Jiang, Ning; Wu, Xufen; Lyu, Jianwei; Shi, Xiheng; Shu, Xinwen; Jiang, Peng; Ji, Tuo; Wang, Jian-Guo; Wang, Shu-Fen; Sun, Luming

    2016-05-01

    SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L IR = 1011.91 {L}⊙ . We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR ≈ 140 {M}⊙ yr-1, estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in Hβ, He i λλ5876, 10830, and other emission lines consistently with an offset velocity of ≈900 {km} {{{s}}}-1, as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He i λ10830 and the bulk blueshifting of [O iii]λ5007), while there exist blueshifted broad absorption lines (BALs) in Na i D and He i λλ3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 104 < n H ≲ 105 cm-3, ionization parameter 10-1.3 ≲ U ≲ 10-0.7 , and column density 1022.5 ≲ N H ≲ 1022.9 cm-2, which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of ˜48-65 pc from the nucleus and that the kinetic luminosity of the outflow is 1044-1046 {erg} {{{s}}}-1. J1634+2049 has a off-centered galactic ring on the scale of ˜30 kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the co-evolution scenario invoking galaxy merger (or

  6. Dragonfish Coming At You in Infrared

    NASA Image and Video Library

    2011-12-12

    This infrared image from NASA Spitzer Space Telescope shows the nebula nicknamed the Dragonfish. This turbulent region, jam-packed with stars, is home to some of the most luminous massive stars in our Milky Way galaxy.

  7. Infrared imaging based on quantum dot optical phase modulation

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Yang, Tao; Peng, Chen; Martini, Rainer

    2011-08-01

    In the past two decades, there is an increasing interest in developing new infrared photodetectors based on novel nanostructures, such as quantum well infrared photodetector (QWIP) and quantum dot infrared photodetector (QDIP). However, the commonly used electrical read-out approach limits the resolution of QWIP/QDIP infrared imaging to around 1 mega pixel. In this paper, we reported our theoretical study on an all-optical readout based on quantum dot phase modulation, which provides a new way for the intersubband infrared detection by measuring the phase change in the transmitted interband near infrared (NIR) and allows a high-resolution middle infrared (MIR) or far infrared (FIR) imaging. Utilizing the long life time in the quantum dots, the intersubband infrared resonant light is used to control the interband NIR resonant light phase. An infrared image can be converted into a visible or near infrared image, which can be easily captured with a high resolution CCD camera. It provides a new way to obtain a high resolution infrared image.

  8. Infrared image detail enhancement based on the gradient field specification.

    PubMed

    Zhao, Wenda; Xu, Zhijun; Zhao, Jian; Zhao, Fan; Han, Xizhen

    2014-07-01

    Human vision is sensitive to the changes of local image details, which are actually image gradients. To enhance faint infrared image details, this article proposes a gradient field specification algorithm. First we define the image gradient field and gradient histogram. Then, by analyzing the characteristics of the gradient histogram, we construct a Gaussian function to obtain the gradient histogram specification and therefore obtain the transform gradient field. In addition, subhistogram equalization is proposed based on the histogram equalization to improve the contrast of infrared images. The experimental results show that the algorithm can effectively improve image contrast and enhance weak infrared image details and edges. As a result, it can give qualified image information for different applications of an infrared image. In addition, it can also be applied to enhance other types of images such as visible, medical, and lunar surface.

  9. Image Quality Indicator for Infrared Inspections

    NASA Technical Reports Server (NTRS)

    Burke, Eric

    2011-01-01

    The quality of images generated during an infrared thermal inspection depends on many system variables, settings, and parameters to include the focal length setting of the IR camera lens. If any relevant parameter is incorrect or sub-optimal, the resulting IR images will usually exhibit inherent unsharpness and lack of resolution. Traditional reference standards and image quality indicators (IQIs) are made of representative hardware samples and contain representative flaws of concern. These standards are used to verify that representative flaws can be detected with the current IR system settings. However, these traditional standards do not enable the operator to quantify the quality limitations of the resulting images, i.e. determine the inherent maximum image sensitivity and image resolution. As a result, the operator does not have the ability to optimize the IR inspection system prior to data acquisition. The innovative IQI described here eliminates this limitation and enables the operator to objectively quantify and optimize the relevant variables of the IR inspection system, resulting in enhanced image quality with consistency and repeatability in the inspection application. The IR IQI consists of various copper foil features of known sizes that are printed on a dielectric non-conductive board. The significant difference in thermal conductivity between the two materials ensures that each appears with a distinct grayscale or brightness in the resulting IR image. Therefore, the IR image of the IQI exhibits high contrast between the copper features and the underlying dielectric board, which is required to detect the edges of the various copper features. The copper features consist of individual elements of various shapes and sizes, or of element-pairs of known shapes and sizes and with known spacing between the elements creating the pair. For example, filled copper circles with various diameters can be used as individual elements to quantify the image sensitivity

  10. The Nature of Hard X-Ray (3–24 keV) Detected Luminous Infrared Galaxies in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenta; Ueda, Yoshihiro

    2017-04-01

    We investigate the nature of far-infrared (70 μm) and hard X-ray (3–24 keV) selected galaxies in the COSMOS field detected with both Spitzer and the Nuclear Spectroscopic Telescope Array (NuSTAR). By matching the Spitzer-COSMOS catalog with the NuSTAR-COSMOS catalog, we obtain a sample consisting of a hyperluminous infrared galaxy with {log}({L}{IR}/{L}ȯ )≥slant 13, 12 ultraluminous infrared galaxies with 12≤slant {log} ({L}{IR}/{L}ȯ )≤slant 13, and 10 luminous infrared galaxies with 11≤slant {log} ({L}{IR}/{L}ȯ )≤slant 12, i.e., 23 Hy/U/LIRGs in total. Using their X-ray hardness ratios, we find that 12 sources are obscured active galactic nuclei (AGNs) with absorption column densities of {N}{{H}}> {10}22 cm‑2, including several Compton-thick ({N}{{H}}∼ {10}24 cm‑2) AGN candidates. On the basis of the infrared (60 μm) and intrinsic X-ray luminosities, we examine the relation between star formation (SF) and AGN luminosities of the 23 Hy/U/LIRGs. We find that the correlation is similar to that of the optically selected AGNs reported by Netzer, whereas local, far-infrared selected U/LIRGs show higher SF-to-AGN luminosity ratios than the average of our sample. This result suggests that our Hy/U/LIRGs detected both with Spitzer and NuSTAR are likely situated in a transition epoch between AGN-rising and cold-gas diminishing phases in SF-AGN evolutional sequences. The nature of a Compton-thick AGN candidate newly detected above 8 keV with NuSTAR (ID 245 in Civano et al.) is briefly discussed.

  11. Hyperspectral imaging in the infrared using LIFTIRS. Revision 1

    SciTech Connect

    Bennett, C.L.; Carter, M.R.; Fields, D.J.

    1995-10-01

    In this article the ideal performance for various possible designs for imaging spectrometers is discussed. Recent characterization measurements made with LIFTIRS, the Livermore Imaging Fourier Transform InfraRed Spectrometer are also presented. Hyperspectral imagers, characterized by having a large number of spectral channels, enable definitive identification and quantitative measurement of the composition of objects in the field of view. Infrared hyperspectral imagers are particularly useful for remote chemical analysis, since almost all molecules have characteristic rotation-vibration spectra in the infrared, and a broad portion of the so-called fingerprint region of the infrared spectrum lies where the atmosphere is relatively transparent, between 8 and 13 {micro}m.

  12. Vibrational Spectroscopic Microscopy: Raman, Near-Infrared and Mid-Infrared Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Lewis, E. Neil; Levin, Ira W.

    1995-02-01

    New instrumental approaches for performing vibrational Raman, near-infrared and mid-infrared spectroscopic imaging microscopy are described. The instruments integrate imaging quality filters such as acousto-optic tunable filters (AOTFs), with visible charge-coupled device (CCD) and infrared focal-plane array detectors. These systems are used in conjunction with infinity-corrected, refractive microscopes for operation in the visible and near-infrared spectral regions and with Cassegrainian reflective optics for operation in the mid-infrared spectral interval. Chemically specific images at moderate spectral resolution (2 nm) and high spatial resolution (1 [mu]m) can be collected rapidly and noninvasively. Image data are presented containing 128 × 128 pixels, although significantly larger format images can be collected in approximately the same time. The instruments can be readily configured for both absorption and reflectance spectroscopies. We present Raman emission images of polystyrene microspheres and a lipid/amino acid mixture and near-infrared images of onion epidermis and a hydrated phospholipid dispersion. Images generated from mid-infrared spectral data are presented for a KBr disk containing nonhomogeneous domains of lipid and for 50-[mu]m slices of monkey cerebellum. These are the first results illustrating the use of infrared focal-plane array detectors as chemically specific spectroscopic imaging devices and demonstrating their application in biomolecular areas. Extensions and future applications of the various vibrational spectroscopic imaging techniques are discussed.

  13. SPATIALLY RESOLVED [Fe II] 1.64 {mu}m EMISSION IN NGC 5135: CLUES FOR UNDERSTANDING THE ORIGIN OF THE HARD X-RAYS IN LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Colina, L.; Pereira-Santaella, M.; Alonso-Herrero, A.; Arribas, S.; Bedregal, A. G.

    2012-04-20

    Spatially resolved near-IR and X-ray imaging of the central region of the luminous infrared galaxy (LIRG) NGC 5135 is presented. The kinematical signatures of strong outflows are detected in the [Fe II] 1.64 {mu}m emission line in a compact region at 0.9 kpc from the nucleus. The derived mechanical energy release is consistent with a supernova rate of 0.05-0.1 yr{sup -1}. The apex of the outflowing gas spatially coincides with the strongest [Fe II] emission peak and with the dominant component of the extranuclear hard X-ray emission. All these features provide evidence for a plausible direct physical link between supernova-driven outflows and the hard X-ray emitting gas in an LIRG. This result is consistent with model predictions of starbursts concentrated in small volumes and with high thermalization efficiencies. A single high-mass X-ray binary (HMXB) as the major source of the hard X-ray emission, although not favored, cannot be ruled out. Outside the active galactic nucleus, the hard X-ray emission in NGC 5135 appears to be dominated by the hot interstellar medium produced by supernova explosions in a compact star-forming region, and not by the emission due to HMXBs. If this scenario is common to (ultra)luminous infrared galaxies, the hard X-rays would only trace the most compact ({<=}100 pc) regions with high supernova and star formation densities, therefore a lower limit to their integrated star formation. The star formation rate derived in NGC 5135 based on its hard X-ray luminosity is a factor of two and four lower than the values obtained from the 24 {mu}m and soft X-ray luminosities, respectively.

  14. Localisation of luminal epithelium edge in digital histopathology images of IHC stained slides of endometrial biopsies.

    PubMed

    Li, Guannan; Sanchez, Victor; Patel, Gnyaneshwari; Quenby, Siobhan; Rajpoot, Nasir

    2015-06-01

    Diagnosis of recurrent miscarriage due to abnormally high number of uterine natural killer (uNK) cells has recently been made possible by a protocol devised by Quenby et al. Hum Reprod 2009;24(1):45-54. The diagnosis involves detection and counting of stromal and uNK cell nuclei in endometrial biopsy slides immunohistochemically stained with haematoxylin for staining cell nuclei and CD56 as a marker for the uNK cells. However, manual diagnosis is a laborious process, fraught with subjective errors. In this paper, we present a novel method for detection of uterine natural killer (uNK) cells in the human female uterus lining and localisation of the luminal epithelium edge in endometrial biopsies. Specifically, we employ a local phase symmetry based method to detect stromal cell nuclei and propose an adaptive background removal method that significantly eases the segmentation of uNK cell nuclei regions. We also propose a novel method using alpha shapes for the identification of epithelial cell nuclei and B-Spline curve fitting on identified cell nuclei to localise the luminal epithelium edge. The objective of edge localisation is to avoid cell nuclei near the luminal epithelium edge being counted in the diagnosis process due to their non-relevance to the calculation of stromal to uNK cell ratio that determines the diagnosis of recurrent miscarriages in the end. The resulting algorithm offers a promising potential for computer-assisted diagnosis of recurrent miscarriage due to its high accuracy.

  15. Detection of rheumatoid arthritis using infrared imaging

    NASA Astrophysics Data System (ADS)

    Frize, Monique; Adéa, Cynthia; Payeur, Pierre; Di Primio, Gina; Karsh, Jacob; Ogungbemile, Abiola

    2011-03-01

    Rheumatoid arthritis (RA) is an inflammatory disease causing pain, swelling, stiffness, and loss of function in joints; it is difficult to diagnose in early stages. An early diagnosis and treatment can delay the onset of severe disability. Infrared (IR) imaging offers a potential approach to detect changes in degree of inflammation. In 18 normal subjects and 13 patients diagnosed with Rheumatoid Arthritis (RA), thermal images were collected from joints of hands, wrists, palms, and knees. Regions of interest (ROIs) were manually selected from all subjects and all parts imaged. For each subject, values were calculated from the temperature measurements: Mode/Max, Median/Max, Min/Max, Variance, Max-Min, (Mode-Mean), and Mean/Min. The data sets did not have a normal distribution, therefore non parametric tests (Kruskal-Wallis and Ranksum) were applied to assess if the data from the control group and the patient group were significantly different. Results indicate that: (i) thermal images can be detected on patients with the disease; (ii) the best joints to image are the metacarpophalangeal joints of the 2nd and 3rd fingers and the knees; the difference between the two groups was significant at the 0.05 level; (iii) the best calculations to differentiate between normal subjects and patients with RA are the Mode/Max, Variance, and Max-Min. We concluded that it is possible to reliably detect RA in patients using IR imaging. Future work will include a prospective study of normal subjects and patients that will compare IR results with Magnetic Resonance (MR) analysis.

  16. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images.

    PubMed

    Watson, Jeffrey R; Gainer, Christian F; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G Michael; Anton, Rein; Romanowski, Marek

    2015-10-01

    Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.

  17. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images

    PubMed Central

    Watson, Jeffrey R.; Gainer, Christian F.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek

    2015-01-01

    Abstract. Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures. PMID:26440760

  18. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images

    NASA Astrophysics Data System (ADS)

    Watson, Jeffrey R.; Gainer, Christian F.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael, Jr.; Anton, Rein; Romanowski, Marek

    2015-10-01

    Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.

  19. The Space Density of Luminous Dusty Star-forming Galaxies at z > 4: SCUBA-2 and LABOCA Imaging of Ultrared Galaxies from Herschel-ATLAS

    NASA Astrophysics Data System (ADS)

    Ivison, R. J.; Lewis, A. J. R.; Weiss, A.; Arumugam, V.; Simpson, J. M.; Holland, W. S.; Maddox, S.; Dunne, L.; Valiante, E.; van der Werf, P.; Omont, A.; Dannerbauer, H.; Smail, Ian; Bertoldi, F.; Bremer, M.; Bussmann, R. S.; Cai, Z.-Y.; Clements, D. L.; Cooray, A.; De Zotti, G.; Eales, S. A.; Fuller, C.; Gonzalez-Nuevo, J.; Ibar, E.; Negrello, M.; Oteo, I.; Pérez-Fournon, I.; Riechers, D.; Stevens, J. A.; Swinbank, A. M.; Wardlow, J.

    2016-11-01

    Until recently, only a handful of dusty, star-forming galaxies (DSFGs) were known at z > 4, most of them significantly amplified by gravitational lensing. Here, we have increased the number of such DSFGs substantially, selecting galaxies from the uniquely wide 250, 350, and 500 μm Herschel-ATLAS imaging survey on the basis of their extremely red far-infrared colors and faint 350 and 500 μm flux densities, based on which, they are expected to be largely unlensed, luminous, rare, and very distant. The addition of ground-based continuum photometry at longer wavelengths from the James Clerk Maxwell Telescope and the Atacama Pathfinder Experiment allows us to identify the dust peak in their spectral energy distributions (SEDs), with which we can better constrain their redshifts. We select the SED templates that are best able to determine photometric redshifts using a sample of 69 high-redshift, lensed DSFGs, then perform checks to assess the impact of the CMB on our technique, and to quantify the systematic uncertainty associated with our photometric redshifts, σ = 0.14 (1 + z), using a sample of 25 galaxies with spectroscopic redshifts, each consistent with our color selection. For Herschel-selected ultrared galaxies with typical colors of S 500/S 250 ˜ 2.2 and S 500/S 350 ˜ 1.3 and flux densities, S 500 ˜ 50 mJy, we determine a median redshift, {\\hat{z}}{phot}=3.66, an interquartile redshift range, 3.30-4.27, with a median rest-frame 8-1000 μm luminosity, {\\hat{L}}{IR}, of 1.3 × 1013 L ⊙. A third of the galaxies lie at z > 4, suggesting a space density, ρ z > 4, of ≈6 × 10-7 Mpc-3. Our sample contains the most luminous known star-forming galaxies, and the most overdense cluster of starbursting proto-ellipticals found to date.

  20. Arctic Clouds Infrared Imaging Field Campaign Report

    SciTech Connect

    Shaw, J. A.

    2016-03-01

    The Infrared Cloud Imager (ICI), a passive thermal imaging system, was deployed at the North Slope of Alaska site in Barrow, Alaska, from July 2012 to July 2014 for measuring spatial-temporal cloud statistics. Thermal imaging of the sky from the ground provides high radiometric contrast during night and polar winter when visible sensors and downward-viewing thermal sensors experience low contrast. In addition to demonstrating successful operation in the Arctic for an extended period and providing data for Arctic cloud studies, a primary objective of this deployment was to validate novel instrument calibration algorithms that will allow more compact ICI instruments to be deployed without the added expense, weight, size, and operational difficulty of a large-aperture onboard blackbody calibration source. This objective was successfully completed with a comparison of the two-year data set calibrated with and without the onboard blackbody. The two different calibration methods produced daily-average cloud amount data sets with correlation coefficient = 0.99, mean difference = 0.0029 (i.e., 0.29% cloudiness), and a difference standard deviation = 0.054. Finally, the ICI instrument generally detected more thin clouds than reported by other ARM cloud products available as of late 2015.

  1. Infrared hyperspectral imaging polarimeter using birefringent prisms.

    PubMed

    Craven-Jones, Julia; Kudenov, Michael W; Stapelbroek, Maryn G; Dereniak, Eustace L

    2011-03-10

    A compact short-wavelength and middle-wavelength infrared hyperspectral imaging polarimeter (IHIP) is introduced. The sensor includes a pair of sapphire Wollaston prisms and several high-order retarders to form an imaging Fourier transform spectropolarimeter. The Wollaston prisms serve as a birefringent interferometer with reduced sensitivity to vibration versus an unequal path interferometer, such as a Michelson. Polarimetric data are acquired through the use of channeled spectropolarimetry to modulate the spectrum with the Stokes parameter information. The collected interferogram is Fourier filtered and reconstructed to recover the spatially and spectrally varying Stokes vector data across the image. The IHIP operates over a ±5° field of view and implements a dual-scan false signature reduction technique to suppress polarimetric aliasing artifacts. In this paper, the optical layout and operation of the IHIP sensor are presented in addition to the radiometric, spectral, and polarimetric calibration techniques used with the system. Spectral and spectropolarimetric results from the laboratory and outdoor tests with the instrument are also presented.

  2. High temperature superconducting infrared imaging satellite

    NASA Technical Reports Server (NTRS)

    Angus, B.; Covelli, J.; Davinic, N.; Hailey, J.; Jones, E.; Ortiz, V.; Racine, J.; Satterwhite, D.; Spriesterbach, T.; Sorensen, D.

    1992-01-01

    A low earth orbiting platform for an infrared (IR) sensor payload is examined based on the requirements of a Naval Research Laboratory statement of work. The experiment payload is a 1.5-meter square by 0.5-meter high cubic structure equipped with the imaging system, radiators, and spacecraft mounting interface. The orbit is circular at 509 km (275 nmi) altitude and 70 deg. inclination. The spacecraft is three-axis stabilized with pointing accuracy of plus or minus 0.5 deg. in each axis. The experiment payload requires two 15-minute sensing periods over two contiguous orbit periods for 30 minutes of sensing time per day. The spacecraft design is presented for launch via a Delta 2 rocket. Subsystem designs include attitude control, propulsion, electric power, telemetry, tracking and command, thermal design, structure, and cost analysis.

  3. Ten-dollar thermal infrared imager

    NASA Astrophysics Data System (ADS)

    Hobbs, Philip C. D.

    2001-12-01

    A thermal infrared imager of competitive sensitivity and very simple construction is presented. It is a pyroelectric device of 96 pixels, based on ferroelectric polyvinylidene fluoride (PVDF). It uses a novel charge-dispensing multiplexer based on ordinary light emitting diodes to achieve a noise-equivalent temperature change (NETD) of 0.13 K at a 5 Hz frame rate (2.1 Hz BW). Design information, theory, and measured performance are presented. Achieving such a low total system cost requires the use of the very least expensive optical system, a moulded polyethylene Fresnel lens, whose advantages and limitations are discussed. Several possible improvements, aggregating approximately 30 dB in sensitivity are also discussed, leading to the interesting possibility of few-millikelvin NETD values with an uncooled pyroelectric device of extremely low cost.

  4. Dynamic infrared imaging for skin cancer screening

    NASA Astrophysics Data System (ADS)

    Godoy, Sebastián E.; Ramirez, David A.; Myers, Stephen A.; von Winckel, Greg; Krishna, Sanchita; Berwick, Marianne; Padilla, R. Steven; Sen, Pradeep; Krishna, Sanjay

    2015-05-01

    Dynamic thermal imaging (DTI) with infrared cameras is a non-invasive technique with the ability to detect the most common types of skin cancer. We discuss and propose a standardized analysis method for DTI of actual patient data, which achieves high levels of sensitivity and specificity by judiciously selecting pixels with the same initial temperature. This process compensates the intrinsic limitations of the cooling unit and is the key enabling tool in the DTI data analysis. We have extensively tested the methodology on human subjects using thermal infrared image sequences from a pilot study conducted jointly with the University of New Mexico Dermatology Clinic in Albuquerque, New Mexico (ClinicalTrials ID number NCT02154451). All individuals were adult subjects who were scheduled for biopsy or adult volunteers with clinically diagnosed benign condition. The sample size was 102 subjects for the present study. Statistically significant results were obtained that allowed us to distinguish between benign and malignant skin conditions. The sensitivity and specificity was 95% (with a 95% confidence interval of [87.8% 100.0%]) and 83% (with a 95% confidence interval of [73.4% 92.5%]), respectively, and with an area under the curve of 95%. Our results lead us to conclude that the DTI approach in conjunction with the judicious selection of pixels has the potential to provide a fast, accurate, non-contact, and non-invasive way to screen for common types of skin cancer. As such, it has the potential to significantly reduce the number of biopsies performed on suspicious lesions.

  5. A comparison of the morphological properties between local and z ∼ 1 infrared luminous galaxies: Are local and high-z (U)LIRGs different?

    SciTech Connect

    Hung, Chao-Ling; Sanders, D. B.; Larson, Kirsten L.; Lee, Nicholas; Li, Yanxia; Lockhart, Kelly; Shih, Hsin-Yi; Barnes, Joshua E.; Casey, Caitlin M.; Koss, Michael; Kartaltepe, Jeyhan S.; Smith, Howard A.

    2014-08-10

    Ultraluminous and luminous infrared galaxies (ULIRGs and LIRGs) are the most extreme star-forming galaxies in the universe and dominate the total star formation rate density at z > 1. In the local universe (z < 0.3), the majority of ULIRGs and a significant portion of LIRGs are triggered by interactions between gas-rich spiral galaxies, yet it is unclear if this is still the case at high z. To investigate the relative importance of galaxy interactions in infrared luminous galaxies, we carry out a comparison of optical morphological properties between local (U)LIRGs and (U)LIRGs at z = 0.5-1.5 based on the same sample selection, morphology classification scheme, and optical morphology at similar rest-frame wavelengths. In addition, we quantify the systematics in comparing local and high-z data sets by constructing a redshifted data set from local (U)LIRGs, in which its data quality mimics the high-z data set. Based on the Gini-M{sub 20} classification scheme, we find that the fraction of interacting systems decreases by ∼8% from local to z ≲ 1, and it is consistent with the reduction between local and redshifted data sets (6{sub −6}{sup +14}%). Based on visual classifications, the merger fraction of local ULIRGs is found to be ∼20% lower compared to published results, and the reduction due to redshifting is 15{sub −8}{sup +10}%. Consequently, the differences of merger fractions between local and z ≲ 1 (U)LIRGs is only ∼17%. These results demonstrate that there is no strong evolution in the fraction of (U)LIRGs classified as mergers at least out to z ∼ 1. At z > 1, the morphology types of ∼30% of (U)LIRGs cannot be determined due to their faintness in the F814W band; thus, the merger fraction measured at z > 1 suffers from large uncertainties.

  6. LUMINOUS SUPERNOVA-LIKE UV/OPTICAL/INFRARED TRANSIENTS ASSOCIATED WITH ULTRA-LONG GAMMA-RAY BURSTS FROM METAL-POOR BLUE SUPERGIANTS

    SciTech Connect

    Kashiyama, Kazumi; Yajima, Hidenobu; Nakauchi, Daisuke; Nakamura, Takashi; Suwa, Yudai

    2013-06-10

    Metal-poor massive stars typically end their lives as blue supergiants (BSGs). Gamma-ray bursts (GRBs) from such progenitors could have an ultra-long duration of relativistic jets. For example, Population III (Pop III) GRBs at z {approx} 10-20 might be observable as X-ray-rich events with a typical duration of T{sub 90} {approx} 10{sup 4}(1 + z) s. The recent GRB111209A at z = 0.677 has an ultra-long duration of T{sub 90} {approx} 2.5 Multiplication-Sign 10{sup 4} s and it has been suggested that its progenitor might have been a metal-poor BSG in the local universe. Here, we suggest that luminous UV/optical/infrared emission is associated with this new class of GRBs from metal-poor BSGs. Before the jet head breaks out of the progenitor envelope, the energy injected by the jet is stored in a hot plasma cocoon, which finally emerges and expands as a baryon-loaded fireball. We show that the photospheric emissions from the cocoon fireball could be intrinsically very bright (L{sub peak} {approx} 10{sup 42}-10{sup 44} erg s{sup -1}) in UV/optical bands ({epsilon}{sub peak} {approx} 10 eV) with a typical duration of {approx}100 days in the rest frame. Such cocoon emissions from Pop III GRBs might be detectable in infrared bands at {approx}years after Pop III GRBs at up to z {approx} 15 by upcoming facilities such as the James Webb Space Telescope. We also suggest that GRB111209A might have been rebrightening in UV/optical bands up to an AB magnitude of {approx}< 26. The cocoon emission from local metal-poor BSGs might have been observed previously as luminous supernovae without GRBs since they can be seen from the off-axis direction of the jet.

  7. A real-time infrared imaging simulation method with physical effects modeling of infrared sensors

    NASA Astrophysics Data System (ADS)

    Li, Ni; Huai, Wenqing; Wang, Shaodan; Ren, Lei

    2016-09-01

    Infrared imaging simulation technology can provide infrared data sources for the development, improvement and evaluation of infrared imaging systems under different environment, status and weather conditions, which is reusable and more economic than physical experiments. A real-time infrared imaging simulation process is established to reproduce a complete physical imaging process. Our emphasis is put on the modeling of infrared sensors, involving physical effects of both spatial domain and frequency domain. An improved image convolution method is proposed based on GPU parallel processing to enhance the real-time simulation ability with ensuring its simulation accuracy at the same time. Finally the effectiveness of the above methods is validated by simulation analysis and result comparison.

  8. Hubble Space Telescope Images of Nearby Luminous Quasars. 2; Results for Eight Quasars and Tests of the Detection Sensitivity

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1995-01-01

    Observations with the Wide-Field Camera of the Hubble Space Telescope (HST) are presented for eight intrinsically luminous quasars with redshifts between 0.16 and 0.29. These observations, when combined with a similar HST study of the quasar PKS 2349-014, show that luminous nearby quasars exist in a variety of environments. Seven companion galaxies brighter than M(V) = 16.5 (H(sub 0) = 100 km s(sup -1) Mpc(sup -1), Omega(sub 0) = 1.0) lie within a projected distance of 25 kpc of the quasars; three of the companions are located closer than 3'' (6 kpc projected distance) from the quasars, well within the volume that would be enclosed by a typical L* host galaxy. The observed association of quasars and companion galaxies is statistically significant and may he an important element in the luminous-quasar phenomenon. Apparent host galaxies are detected for three of the quasars: PG 1116+215, 3C 273, and PG 1444+407; the hosts have an average absolute magnitude of about 0.6 mag brighter than L*. The agreement between the previously published major-axis directions in ground-based images and in the present HST images of 3C 273 and PG 1444+407 constitutes important evidence supporting the reality of these candidate host galaxies. Upper limits are placed on the visual-band brightnesses of representative galactic hosts for all the quasars. These limits are established by placing galaxy images obtained with HST underneath the quasars and measuring at what faintness level the known galaxies are detected. On average, the HST spirals would have been detected if they were as faint as 1 mag below L*, and the early-type galaxies could have been detected down to a brightness level of about L*, where L* is the Schechter characteristic luminosity of field galaxies. Smooth, featureless galaxy models (exponential disks or de Vaucouleurs profiles) are fitted to the residual light after a best-fitting point source is subtracted from the quasar images. The results show that smooth spiral

  9. Multi-Band Large Format Infrared Imaging Arrays

    NASA Technical Reports Server (NTRS)

    Bandara, Sumith V.; Gunapala, Sarath D; Liu, John K.; Hill, Cory J.; Mumolo, Jason M.; Ting, David Z.

    2005-01-01

    Large-format and multi-band focal plane arrays (FPA) based on quantum well and quantum dot infrared photodetectors have been developed for various instruments such as imaging interferometers and hyperspectral imagers. The spectral response of these detectors are tailorable within the mid- and long-wavelength infrared bands.

  10. Cryogenic infrared imaging beryllium telescope for Infrared Astronomical Satellite (IRAS)

    NASA Technical Reports Server (NTRS)

    Devereux, W. P.

    1983-01-01

    The IRAS mission is the result of an international project involving the cooperation of the U.S., the United Kingdom, and the Netherlands. The Infrared Astronmical Satellite was placed into orbit on January 25, 1983. Its main function is to provide a survey of the entire sky as viewed in four octaves of infrared radiation in the wavelenth region from 8 to 120 microns. The cylindrical structure of the satellite contains a large dewar vessel with 70 liters of superfluid helium. The helium has the function to maintain the contents of the vessel at 2.5 K for the duration of the mission. The IRAS optics is a Ritchey-Chretien telescope of 24 inches aperture. Because of the operational requirements of the mission, it had been specified that all optical components should be beryllium. Attention is given to the cold performance test conducted with IRAS, plans for future infrared telescopes, and reflectance limits.

  11. Photothermal imaging through coherent infrared bundles

    NASA Astrophysics Data System (ADS)

    Milstein, Yonat; Tepper, Michal; Harrington, James A.; Ben David, Moshe; Gannot, Israel

    2011-03-01

    This study aims to develop a photothermal imaging system through a coherent infrared bundle. This system will be used to determine the oxygenation level of various tissues, suspected malignant tissues in particular. The oxygenation estimation is preformed using a computerized algorithm. In order to evaluate the system, different bundle configurations were used for the determination of the optimal one. Bundle transmittance and the algorithm's estimation ability were measured, measurements were performed using agar phantoms consisting of varying ratios of Methylene Blue and ICG. A bundle consisting of 19 Teflon waveguides with a of 1.1mm was found to be the optimal configuration with an RMS of the error of 9.38%. At a second stage the system was validated on blood samples with varying oxygenation levels and there oxygenation levels were estimated. This stage had an RMS of the error of 10.16% for the oxygenation level estimation for samples with a 50% oxygenation level and higher. Once the basic system was validated successfully on agar phantoms and blood samples a portable system was designed and built in order to fit the system for portable use. The portable system consists of a white light illuminating source followed by filters transmitting certain wavelengths, a transmitting fiber, a thermal imaging bundle and a portable thermal camera. This portable system will be evaluated in order to have an adequate portable system for implementing the method out of the lab.

  12. Visible-Infrared Hyperspectral Image Projector

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew

    2013-01-01

    The VisIR HIP generates spatially-spectrally complex scenes. The generated scenes simulate real-world targets viewed by various remote sensing instruments. The VisIR HIP consists of two subsystems: a spectral engine and a spatial engine. The spectral engine generates spectrally complex uniform illumination that spans the wavelength range between 380 nm and 1,600 nm. The spatial engine generates two-dimensional gray-scale scenes. When combined, the two engines are capable of producing two-dimensional scenes with a unique spectrum at each pixel. The VisIR HIP can be used to calibrate any spectrally sensitive remote-sensing instrument. Tests were conducted on the Wide-field Imaging Interferometer Testbed at NASA s Goddard Space Flight Center. The device is a variation of the calibrated hyperspectral image projector developed by the National Institute of Standards and Technology in Gaithersburg, MD. It uses Gooch & Housego Visible and Infrared OL490 Agile Light Sources to generate arbitrary spectra. The two light sources are coupled to a digital light processing (DLP(TradeMark)) digital mirror device (DMD) that serves as the spatial engine. Scenes are displayed on the DMD synchronously with desired spectrum. Scene/spectrum combinations are displayed in rapid succession, over time intervals that are short compared to the integration time of the system under test.

  13. GRIN optics for multispectral infrared imaging

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel; Bayya, Shyam; Nguyen, Vinh; Sanghera, Jas; Kotov, Mikhail; Drake, Gryphon

    2015-06-01

    Graded index (GRIN) optics offer potential for both weight savings and increased performance but have so far been limited to visible and NIR bands (wavelengths shorter than about 0.9 μm). NRL is developing a capability to extend GRIN optics to longer wavelengths in the infrared by exploiting diffused IR transmitting chalcogenide glasses. These IR-GRIN lenses are compatible with all IR wavebands (SWIR, MWIR and LWIR) and can be used alongside conventional wideband materials. Traditional multiband IR imagers require many elements for correction of chromatic aberrations, making them large and heavy and not well-suited for weight sensitive platforms. IR-GRIN optical elements designed with simultaneous optical power and chromatic correction can reduce the number of elements in wideband systems, making multi-band IR imaging practical for platforms including small UAVs and soldier handheld, helmet or weapon mounted cameras. The IR-GRIN lens technology, design space and anti-reflection considerations are presented in this paper.

  14. Million frames per second infrared imaging system

    SciTech Connect

    Zehnder, Alan T.; Guduru, Pradeep R.; Rosakis, Ares J.; Ravichandran, G.

    2000-10-01

    An infrared imaging system has been developed for measuring the temperature increase during the dynamic deformation of materials. The system consists of an 8x8 HgCdTe focal plane array, each with its own preamplifier. Outputs from the 64 detector/preamplifiers are digitized using a row-parallel scheme. In this approach, all 64 signals are simultaneously acquired and held using a bank of track and hold amplifiers. An array of eight 8:1 multiplexers then routes the signals to eight 10 MHz digitizers, acquiring data from each row of detectors in parallel. The maximum rate is one million frames per second. A fully reflective lens system was developed, consisting of two Schwarszchild objectives operating at infinite conjugation ratio. The ratio of the focal lengths of the objectives determines the lens magnification. The system has been used to image the distribution of temperature rise near the tip of a notch in a high strength steel sample (C-300) subjected to impact loading by a drop weight testing machine. The results show temperature rises at the crack tip up to around 70 K. Localization of temperature, and hence, of deformation into ''U'' shaped zones emanating from the notch tip is clearly seen, as is the onset of crack propagation.

  15. Far-infrared observations of a luminous dust-shrouded source in the nucleus of NGC 4945

    NASA Technical Reports Server (NTRS)

    Brock, David; Joy, Marshall; Lester, Daniel F.; Harvey, Paul M.; Ellis, H. Benton, Jr.

    1988-01-01

    High-resolution far-infrared observations of the galaxy NGC 4945 have been obtained from the Kuiper Airborne Observatory. Using new observational techniques and nonlinear deconvolution routines, it is found that virtually all of the far-infrared luminosity originates from a nuclear source no larger than 12 arcsec x 9 arcsec (225 pc x 170 pc) in extent. This size constraint, coupled with the far-infrared dust temperature, indicates that the source is deeply embedded in dust: the lower limit for the 100 micron optical depth is 0.35, which is by far the largest yet measured in an external galaxy. Published optical spectra of NGC 4945 reveal a heavily obscured nonthermal source which exhibits broad line profiles typical of a Seyfert 2 active nucleus; it is concluded that the far-infrared emission is probably due to thermal radiation from dust grains surrounding the nonthermal nuclear source. A compact cluster of massive young stars may also contribute to the infrared luminosity, but the evidence for such star-forming activity is weak.

  16. A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging.

    PubMed

    Kuchimaru, Takahiro; Iwano, Satoshi; Kiyama, Masahiro; Mitsumata, Shun; Kadonosono, Tetsuya; Niwa, Haruki; Maki, Shojiro; Kizaka-Kondoh, Shinae

    2016-06-14

    In preclinical cancer research, bioluminescence imaging with firefly luciferase and D-luciferin has become a standard to monitor biological processes both in vitro and in vivo. However, the emission maximum (λmax) of bioluminescence produced by D-luciferin is 562 nm where light is not highly penetrable in biological tissues. This emphasizes a need for developing a red-shifted bioluminescence imaging system to improve detection sensitivity of targets in deep tissue. Here we characterize the bioluminescent properties of the newly synthesized luciferin analogue, AkaLumine-HCl. The bioluminescence produced by AkaLumine-HCl in reactions with native firefly luciferase is in the near-infrared wavelength ranges (λmax=677 nm), and yields significantly increased target-detection sensitivity from deep tissues with maximal signals attained at very low concentrations, as compared with D-luciferin and emerging synthetic luciferin CycLuc1. These characteristics offer a more sensitive and accurate method for non-invasive bioluminescence imaging with native firefly luciferase in various animal models.

  17. A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging

    PubMed Central

    Kuchimaru, Takahiro; Iwano, Satoshi; Kiyama, Masahiro; Mitsumata, Shun; Kadonosono, Tetsuya; Niwa, Haruki; Maki, Shojiro; Kizaka-Kondoh, Shinae

    2016-01-01

    In preclinical cancer research, bioluminescence imaging with firefly luciferase and D-luciferin has become a standard to monitor biological processes both in vitro and in vivo. However, the emission maximum (λmax) of bioluminescence produced by D-luciferin is 562 nm where light is not highly penetrable in biological tissues. This emphasizes a need for developing a red-shifted bioluminescence imaging system to improve detection sensitivity of targets in deep tissue. Here we characterize the bioluminescent properties of the newly synthesized luciferin analogue, AkaLumine-HCl. The bioluminescence produced by AkaLumine-HCl in reactions with native firefly luciferase is in the near-infrared wavelength ranges (λmax=677 nm), and yields significantly increased target-detection sensitivity from deep tissues with maximal signals attained at very low concentrations, as compared with D-luciferin and emerging synthetic luciferin CycLuc1. These characteristics offer a more sensitive and accurate method for non-invasive bioluminescence imaging with native firefly luciferase in various animal models. PMID:27297211

  18. Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera.

    PubMed

    Shaw, Joseph; Nugent, Paul; Pust, Nathan; Thurairajah, Brentha; Mizutani, Kohei

    2005-07-25

    An uncooled microbolometer-array thermal infrared camera has been incorporated into a remote sensing system for radiometric sky imaging. The radiometric calibration is validated and improved through direct comparison with spectrally integrated data from the Atmospheric Emitted Radiance Interferometer (AERI). With the improved calibration, the Infrared Cloud Imager (ICI) system routinely obtains sky images with radiometric uncertainty less than 0.5 W/(m(2 )sr) for extended deployments in challenging field environments. We demonstrate the infrared cloud imaging technique with still and time-lapse imagery of clear and cloudy skies, including stratus, cirrus, and wave clouds.

  19. Infrared image enhancement based on human visual properties

    NASA Astrophysics Data System (ADS)

    Chen, Hongyu; Hui, Bin

    2015-10-01

    With the development of modern military, infrared imaging technology is widely used in this field. However, limited by the mechanism of infrared imaging and the detector, infrared images have the disadvantages of low contrast and blurry edge by comparison with the visible image. These shortcomings lead infrared image unsuitable to be observed by both human and computer. Thus image enhancement is required. Traditional image enhancement methods on the application of infrared image, without taking into account the human visual properties, is not convenient for the human observation. This article purposes a new method that combines the layering idea with the human visual properties to enhance the infrared image. The proposed method relies on bilateral filtering to separate a base component, which contains the large amplitude signal and must be compressed, from a detail component, which must be expanded because it contains the small signal variations related to fine texture. The base component is mapped into the proper range which is 8-bit using the human visual properties, and the detail component is applied the method of adaptive gain control. Finally, the two parts are recombined and quantized to 8-bit domain. Experimental results show that this algorithm exceeds most current image enhancement methods in solving the problems of low contrast and blurry detail.

  20. The method of infrared image simulation based on the measured image

    NASA Astrophysics Data System (ADS)

    Lou, Shuli; Liu, Liang; Ren, Jiancun

    2015-10-01

    The development of infrared imaging guidance technology has promoted the research of infrared imaging simulation technology and the key of infrared imaging simulation is the generation of IR image. The generation of IR image is worthful in military and economy. In order to solve the problem of credibility and economy of infrared scene generation, a method of infrared scene generation based on the measured image is proposed. Through researching on optical properties of ship-target and sea background, ship-target images with various gestures are extracted from recorded images based on digital image processing technology. The ship-target image is zoomed in and out to simulate the relative motion between the viewpoint and the target according to field of view and the distance between the target and the sensor. The gray scale of ship-target image is adjusted to simulate the radiation change of the ship-target according to the distance between the viewpoint and the target and the atmospheric transmission. Frames of recorded infrared images without target are interpolated to simulate high frame rate of missile. Processed ship-target images and sea-background infrared images are synthetized to obtain infrared scenes according to different viewpoints. Experiments proved that this method is flexible and applicable, and the fidelity and the reliability of synthesis infrared images can be guaranteed.

  1. Dynamic infrared imaging for the detection of malignancy

    NASA Astrophysics Data System (ADS)

    Button, Terry M.; Li, Haifang; Fisher, Paul; Rosenblatt, Ruth; Dulaimy, Khaldoon; Li, Song; O'Hea, Brian; Salvitti, Mathew; Geronimo, Veronica; Geronimo, Christine; Jambawalikar, Sachin; Carvelli, Paola; Weiss, Richard

    2004-07-01

    The potential for malignancy detection using dynamic infrared imaging (DIRI) has been investigated in an animal model of human malignancy. Malignancy was apparent in images formed at the vasomotor and cardiogenic frequencies of tumour bearing mice. The observation of malignancy was removed by the administration of an agent that blocks vasodilation caused by nitric oxide (NO). Image patterns similar to those that characterize malignancy could be mimicked in normal mice using an NO producing agent. Apparently DIRI allows for cancer detection in this model through vasodilation caused by malignancy generated NO. Dynamic infrared detection of vasomotor and cardiogenic surface perfusion was validated in human subjects by a comparison with laser Doppler flowmetry (LDF). Dynamic infrared imaging technology was then applied to breast cancer detection. It is shown that dynamic infrared images formed at the vasomotor and cardiogenic frequencies of the normal and malignant breast have image pattern differences, which may allow for breast cancer detection.

  2. Common feature discriminant analysis for matching infrared face images to optical face images.

    PubMed

    Li, Zhifeng; Gong, Dihong; Qiao, Yu; Tao, Dacheng

    2014-06-01

    In biometrics research and industry, it is critical yet a challenge to match infrared face images to optical face images. The major difficulty lies in the fact that a great discrepancy exists between the infrared face image and corresponding optical face image because they are captured by different devices (optical imaging device and infrared imaging device). This paper presents a new approach called common feature discriminant analysis to reduce this great discrepancy and improve optical-infrared face recognition performance. In this approach, a new learning-based face descriptor is first proposed to extract the common features from heterogeneous face images (infrared face images and optical face images), and an effective matching method is then applied to the resulting features to obtain the final decision. Extensive experiments are conducted on two large and challenging optical-infrared face data sets to show the superiority of our approach over the state-of-the-art.

  3. ALMA DETECTION OF THE VIBRATIONALLY EXCITED HCN J = 4-3 EMISSION LINE IN THE AGN-HOSTING LUMINOUS INFRARED GALAXY IRAS 20551–4250

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2013-10-01

    We present results from our ALMA Cycle 0 observations, at the frequencies around the HCN, HCO{sup +}, and HNC J = 4-3 transition lines, of the luminous infrared galaxy IRAS 20551–4250 at z = 0.043, which is known to host an energetically important obscured active galactic nucleus (AGN). In addition to the targeted HCN, HCO{sup +}, and HNC J = 4-3 emission lines, two additional strong emission lines are seen, which we attribute to H{sub 2}S and CH{sub 3}CN(+CCH). The HCN-to-HCO{sup +} J = 4-3 flux ratio (∼0.7) is higher than in the other starburst-dominated galaxy (∼0.2) observed in our ALMA Cycle 0 program. We tentatively (∼5σ) detected the vibrationally excited (v {sub 2} = 1) HCN J = 4-3 (l = 1f) emission line, which is important for testing an infrared radiative pumping scenario for HCN. This is the second detection of this molecular transition in external galaxies. The most likely reason for this detection is not only the high flux of this emission line, but also the small molecular line widths observed in this galaxy, suggesting that vibrational excitation of HCN may be relatively common in AGN-hosting galaxies.

  4. Near-Infrared Imaging of Protostellar Clusters

    NASA Astrophysics Data System (ADS)

    Megeath, S. T.; Pipher, Judy; Myers, Phil; Peterson, Dawn

    2000-08-01

    We propose SQIID multiband IR imaging of the LBS 23 and OMC2/3 regions in the Orion Giant Molecular Clouds. Submillimeter observations of these regions show a remarkable number of protostars, indicating that these regions are forming stars at a rapid rate, but neither LBS-23 or OMC-2/3 have been surveyed extensively at infrared wavelengths. Using deep observations with SQIID on the 2.1-m telescope, we will survey the embedded stellar population of pre--main sequence stars down to the hydrogen burning limit in these highly extincted regions. These observations will give us a unique opportunity to study the earlier stages of cluster formation before the parental molecular gas has been significantly disrupted by HII regions. We will examine the spatial distribution to study the fragmentation history of the molecular gas and to use the spacing of the observed YSOs to constrain theories of cluster formation. We will also study the early evolution of the IMF and fraction of stars with disks by comparing these ``protoclusters'' to more more evolved regions such as the Trapezium cluster and NGC 2024.

  5. Infrared Spectroscopic Imaging: The Next Generation

    PubMed Central

    Bhargava, Rohit

    2013-01-01

    Infrared (IR) spectroscopic imaging seemingly matured as a technology in the mid-2000s, with commercially successful instrumentation and reports in numerous applications. Recent developments, however, have transformed our understanding of the recorded data, provided capability for new instrumentation, and greatly enhanced the ability to extract more useful information in less time. These developments are summarized here in three broad areas— data recording, interpretation of recorded data, and information extraction—and their critical review is employed to project emerging trends. Overall, the convergence of selected components from hardware, theory, algorithms, and applications is one trend. Instead of similar, general-purpose instrumentation, another trend is likely to be diverse and application-targeted designs of instrumentation driven by emerging component technologies. The recent renaissance in both fundamental science and instrumentation will likely spur investigations at the confluence of conventional spectroscopic analyses and optical physics for improved data interpretation. While chemometrics has dominated data processing, a trend will likely lie in the development of signal processing algorithms to optimally extract spectral and spatial information prior to conventional chemometric analyses. Finally, the sum of these recent advances is likely to provide unprecedented capability in measurement and scientific insight, which will present new opportunities for the applied spectroscopist. PMID:23031693

  6. Photodetector Arrays for Multicolor Visible/Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Bandara, Sumith; Liu, John; Ting, David

    2006-01-01

    Monolithic focal-plane arrays of photodetectors capable of imaging the same scenes simultaneously in multiple wavelength bands in the visible and infrared spectral regions have been proposed. In prior visible/infrared imaging systems, it has been standard practice to use separate optical trains to form images in visible and infrared wavelength bands on separate visibleand infrared-photodetector arrays. Because the proposal would enable the detection of images in multiple wavelength bands on the same focal plane, the proposal would make it unnecessary to use multiple optical trains. Hence, multispectral imaging systems could be made more compact and the difficulties of aligning multiple optical trains would be eliminated. Each pixel in an array according to the proposal would contain stacks of several photodetectors. The proposal is a logical extension of prior concepts of arrays of stacked photodetectors for imaging in two or three wavelength bands. For example, such an array was described in Three-Color Focal-Plane Array of Infrared QWIPs (NPO-20683), NASA Tech Briefs, Vol. 24, No. 5 (May 2000), page 26a. In one proposed design, (see figure), each pixel would be divided into four subpixels, one being dedicated to a visible- and-near-infrared (V) band, one to a combination of the V band and a verylong- wavelength infrared (VLWIR) band, one to a combination of the V band and a long-wavelength infrared (LWIR) band, and one to a combination of the V band and a medium-wavelength infrared (MWIR) band. For this purpose, each subpixel would include a GaAs-based positive/intrinsic/negative (PIN) photodiode for detection in the V band stacked with three quantum-well infrared photodetectors (QWIPs), each optimized for one of the aforementioned infrared bands. The stacks of photodetectors in all the subpixels would be identical except for the electrical connections, which would be configured to activate the various wavelengthband combinations.

  7. Luminous supernovae.

    PubMed

    Gal-Yam, Avishay

    2012-08-24

    Supernovae, the luminous explosions of stars, have been observed since antiquity. However, various examples of superluminous supernovae (SLSNe; luminosities >7 × 10(43) ergs per second) have only recently been documented. From the accumulated evidence, SLSNe can be classified as radioactively powered (SLSN-R), hydrogen-rich (SLSN-II), and hydrogen-poor (SLSN-I, the most luminous class). The SLSN-II and SLSN-I classes are more common, whereas the SLSN-R class is better understood. The physical origins of the extreme luminosity emitted by SLSNe are a focus of current research.

  8. Infrared Images of an Infant Solar System

    NASA Astrophysics Data System (ADS)

    2002-05-01

    understanding of the formation of solar-type stars and planetary systems from the interstellar medium. However, in most cases the large difference of brightness between the young star and its surrounding material makes it impossible to image directly the circumstellar disk. But when the disk is seen nearly edge-on, the light from the central star will be blocked out by the dust grains in the disk. Other grains below and above the disk midplane scatter the stellar light, producing a typical pattern of a dark lane between two reflection nebulae. The first young stellar object (YSO) found to display this typical pattern, HH 30 IRS in the Taurus dark cloud at a distance of about 500 light-years (140 pc), was imaged by the Hubble Space telescope (HST) in 1996. Edge-on disks have since also been observed with ground-based telescopes in the near-infrared region of the spectrum, sometimes by means of adaptive optics techniques or speckle imaging, or under very good sky image quality, cf. ESO PR Photo 03d/01 with a VLT image of such an object in the Orion Nebula. A surprise discovery ESO PR Photo 12a/02 ESO PR Photo 12a/02 [Preview - JPEG: 400 x 459 pix - 55k] [Normal - JPEG: 800 x 918 pix - 352k] Caption : PR Photo 12a/02 shows a three-colour reproduction of the discovery image of strange-looking object (nicknamed the "Flying Saucer" by the astronomers), obtained with the SOFI multi-mode instrument at the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory. Compared to the unresolved stars in the field, the image of this object appears extended. Two characteristic reflection nebulae are barely visible, together with a marginally resolved dark dust lane in front of the star and oriented East-West. Technical information about the photo is available below. Last year, a group of astronomers [1] carried out follow-up observations of new X-ray sources found by the ESA XMM-Newton and NASA Chandra X-ray satellites. They were looking at the periphery of the so-called Rho

  9. A HERSCHEL SURVEY OF THE [N II] 205 {mu}m LINE IN LOCAL LUMINOUS INFRARED GALAXIES: THE [N II] 205 {mu}m EMISSION AS A STAR FORMATION RATE INDICATOR

    SciTech Connect

    Zhao Yinghe; Gao Yu; Lu, Nanyao; Xu, C. Kevin; Lord, S.; Howell, J.; Appleton, P.; Mazzarella, J.; Schulz, B.; Isaak, K. G.; Charmandaris, V.; Diaz-Santos, T.; Surace, J.; Evans, A.; Iwasawa, K.; Leech, J.; Petric, A. O.; Sanders, D. B.; Van der Werf, P. P.

    2013-03-01

    We present, for the first time, a statistical study of [N II] 205 {mu}m line emission for a large sample of local luminous infrared galaxies using Herschel Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (SPIRE FTS) data. For our sample of galaxies, we investigate the correlation between the [N II] luminosity (L{sub [N{sub II]}}) and the total infrared luminosity (L{sub IR}), as well as the dependence of L{sub [N{sub II]}}/L{sub IR} ratio on L{sub IR}, far-infrared colors (IRAS f{sub 60}/f{sub 100}), and the [O III] 88 {mu}m to [N II] luminosity ratio. We find that L{sub [N{sub II]}} correlates almost linearly with L{sub IR} for non-active galactic nucleus galaxies (all having L{sub IR} < 10{sup 12} L{sub Sun }) in our sample, which implies that L{sub [N{sub II]}} can serve as a star formation rate tracer which is particularly useful for high-redshift galaxies that will be observed with forthcoming submillimeter spectroscopic facilities such as the Atacama Large Millimeter/submillimeter Array. Our analysis shows that the deviation from the mean L{sub [N{sub II]}}-L{sub IR} relation correlates with tracers of the ionization parameter, which suggests that the scatter in this relation is mainly due to the variations in the hardness, and/or ionization parameter, of the ambient galactic UV field among the sources in our sample.

  10. The Spitzer Local Volume Legacy Survey: Infrared Imaging and Photometry for 258 Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Dale, Daniel A.; LVL Team

    2009-01-01

    Near-, mid-, and far-infrared flux properties are presented for the Local Volume Legacy survey, a Spitzer Space Telescope legacy program built upon a foundation of GALEX ultraviolet and ground-based Hα imaging of 258 galaxies within 11 Mpc. The Local Volume Legacy survey covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the faintest absolute depth and highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies (such as from SINGS, the Spitzer Infrared Nearby Galaxies Survey) with improved sampling of the low-luminosity dwarf galaxy population. LVL's unique sample selection results in a large spread in mid-infrared colors, likely due to the conspicuous deficiency of PAH emission from low-metallicity galaxies. Conversely, the LVL sample shows a tighter correlation in the infrared-to-ultraviolet ratio versus ultraviolet spectral slope, due in large part to the lack of luminous early-type galaxies in the Local Volume.

  11. Doped carbon nanostructure field emitter arrays for infrared imaging

    DOEpatents

    Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  12. Infrared imaging with quantum wells and strained layer superlattices

    NASA Astrophysics Data System (ADS)

    Sundaram, Mani; Reisinger, Axel; Dennis, Richard; Patnaude, Kelly; Burrows, Douglas; Bundas, Jason; Beech, Kim; Faska, Ross

    2012-01-01

    In the last few years infrared focal plane arrays based on Type-I GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) have been commercialized, providing excellent cost-effective imaging for security and surveillance and gas imaging applications. A second cooled infrared sensor technology that has made significant advances in recent years is photodiodes based on Type-II InAs/(In)GaSb strained layer superlattices (SLS). Imaging chips with upto a million pixels, quantum efficiency exceeding 50%, and cutoff wavelength exceeding 10 microns have been recently demonstrated. SLS offers the promise of the high quantum efficiency and operating temperature of longwave infrared mercury cadmium telluride (MCT) at the price point of QWIP and midwave infrared indium antimonide (InSb). That promise is rapidly being fulfilled. This paper presents the current state-of-the-art of both these sensor technologies at this critical stage of their evolution.

  13. POLICAN: A near-infrared imaging polarimeter at OAGH

    NASA Astrophysics Data System (ADS)

    Devaraj, R.; Luna, A.; Carrasco, L.; Mayya, Y. D.; Serrano-Bernal, O.

    2017-07-01

    We present a near-infrared linear imaging polarimeter POLICAN, developed for the Cananea near-infrared camera (CANICA) at the 2.1m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located at Cananea, Sonora, México. POLICAN reaches a limiting magnitude to about 16th mag with a polarimetric accuracy of about 1% for bright sources.

  14. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOEpatents

    Del Grande, Nancy K.; Durbin, Philip F.; Dolan, Kenneth W.; Perkins, Dwight E.

    1995-01-01

    A method for detecting flaws in structures using dual band infrared radiation. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features.

  15. Translation of infrared chemical imaging for cardiovascular evaluation

    NASA Astrophysics Data System (ADS)

    Tiwari, Saumya; Raman, Jai; Reddy, Vijaya; Dawson, Miranda; Bhargava, Rohit

    2016-03-01

    Infrared (IR) spectroscopic imaging has been applied to study histology of cardiovascular tissue, primarily using Fourier transform IR (FTIR) Imaging. Here we describe results for histologic imaging of cardiac biopsies using a fast, discrete frequency IR (DFIR) imaging system. Histologic classification of tissue is understood in terms of the constituent frequencies and speeded up by careful optimization of the data acquired. Results are compared to FTIR imaging in terms of the signal to noise ratio and information content.

  16. Infrared spectroscopic imaging microscopy: Applications to biological systems

    SciTech Connect

    Kidder, Linda H.; Levin, Ira W.; Lewis, E. Neil

    1998-06-01

    The coupling of imaging modalities with spectroscopic techniques adds additional dimensions to sample analysis in both the spectroscopic and spatial domains. The particular ability of infrared (IR) imaging to explore the spatial distribution of chemically distinct species on length scales ranging from microns to kilometers demonstrates the versatility and diversity of spectroscopic imaging. In this paper, we focus on the further development of our Fourier-transform (FT) based mid-IR spectroscopic imaging technique which combines the analytical capabilities of mid-IR spectroscopy with the morphological information obtained from optical imaging. The seamless combination of spectroscopy for molecular analysis with the power of visualization represents the future of infrared microscopy. Our spectroscopic imaging instrument integrates several infrared focal-plane arrays with a Michelson step-scan interferometer, generating high-fidelity and high spectral resolution mid-infrared spectroscopic images. The instrumentation produces multidimensional, chemically specific images, while simultaneously obtaining high resolution spectra for each detector pixel. The spatial resolution of the images approaches the diffraction limit for mid-infrared wavelengths, while the spectral resolution is determined by the interferometer, and can be 4 cm{sup -1} or higher. Data derived from a variety of materials, particularly biological samples, illustrate the capabilities of the technique for readily visualizing chemical complexity and for providing statistical data on sample heterogeneity.

  17. Digital infrared thermal imaging following anterior cruciate ligament reconstruction.

    PubMed

    Barker, Lauren E; Markowski, Alycia M; Henneman, Kimberly

    2012-03-01

    This case describes the selective use of digital infrared thermal imaging for a 48-year-old woman who was being treated by a physical therapist following left anterior cruciate ligament (ACL) reconstruction with a semitendinosus autograft.

  18. Infrared Spectroscopic Imaging of Latent Fingerprints and Associated Forensic Evidence

    PubMed Central

    Chen, Tsoching; Schultz, Zachary D.; Levin, Ira W.

    2011-01-01

    Fingerprints reflecting a specific chemical history, such as exposure to explosives, are clearly distinguished from overlapping, and interfering latent fingerprints using infrared spectroscopic imaging techniques and multivariate analysis. PMID:19684917

  19. Simulating a Chromotomographic Sensor for Hyperspectral Imaging in the Infrared

    DTIC Science & Technology

    2004-03-01

    refraction, wavefronts, optical analysis, dispersion, dispersing, spatial distribution, separation, infrared images, software tools, simulation ... modeling , wave optics, propagation 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON Matthew E. Goda, Maj, USAF, Ph. D. (ENG) a. REPORT

  20. A small deployable infrared diffractive membrane imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Jin, Jiangao; Wang, Baohua; Wu, Peng; Jiao, Jianchao; Su, Yun

    2016-10-01

    Diffractive membrane imaging can be widely used in infrared band due to its longer minimum linewidth and loose requirement of RMS to fabricate more easily and reduce production period and manufacturing cost than used in visible band. A deployable infrared diffractive membrane imaging system was designed, consisting of Φ200mm imaging aperture (actual aperture is Φ500mm) and deployable structure that supports the infrared membrane under tension. Its spectral band width is >1.2μm, field of view is >1°, and diffractive efficiency can be >60%. Stowed size is 150mm×150mm×400mm. Research result of this project can promote the application of diffractive membrane imaging in infrared band and provide an effective and feasible means for achieving extremely large optical primary mirror from compact, lightweight payload.

  1. Space imaging infrared optical guidance for autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  2. Detection of small objects in multi-layered infrared images

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Bao, Shangqi; Ralph, Jason F.; Goulermas, John Y.

    2008-04-01

    This paper uses super-resolution methods to detect small objects in infrared image sequences from a simulated airborne platform, using image registration techniques for automatic sightline stabilisation. The scene consists of multiple layers, corresponding to a static background scene and layers of cloud cover at varying heights. The motivation is to evaluate the performance of super-resolution methods in the presence of three-dimensional structured infrared clutter.

  3. Phenomenological aspects of infrared imaging in aeronautical research

    NASA Technical Reports Server (NTRS)

    Gartenberg, Ehud; Roberts, A. Sidney, Jr.

    1988-01-01

    The various factors leading to obtaining a thermography of an aerodynamic body of interest using an infrared imaging camera are scrutinized. Included is a description of how the various heat transfer mechanisms determine the final surface temperature that may be time dependent even for steady state flows. Some constraining factors of the camera are also discussed. Finally, a method is outlined showing how the infrared imaging of aerodynamic configurations may ultimately evolve as a computational fluid dynamics code validation tool.

  4. Local luminance effect on spatial summation in the foveal vision and its implication on image artifact classification

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Chung; Lin, San-Yuan; Han, Hui-Ya G.; Kuo, Sheng-Tzung; Huang, Kuo-Chung

    2006-02-01

    We investigated the spatial summation effect on pedestals with difference luminance. The targets were luminance modulation defined by Gaussian functions. The size of the Gaussian spot was determined by the scale parameter (standard deviation, σ) which ranged from 0.13°to 1.04°. The local luminance pedestal (2° radius) had mean luminance ranged from 2.9 to 29cd/m2. The no-pedestal condition had a mean luminance 58cd/m2. We used a QUEST adaptive threshold seeking procedure and 2AFC paradigm to measure the target contrast threshold at different target sizes (spatial summation curve) and pedestal luminance. The target threshold decreased as the target spatial extent increased with a slope -0.5 on log-log coordinates. However, if the target size was large enough (σ>0.3°), there was little, if any, threshold reduction as the target size further increased. The spatial summation curve had the same shape at all pedestal luminance levels. The effect of the pedestal was to shift the summation curve vertically on log-log coordinates. Hence, the size and the luminance effects on target detection are separable. The visibility of the Gaussian spot can be modeled by a function with a form f(L)*g(σ) where f(L) is a function of local luminance and g(σ) is a function of size.

  5. Discriminant analyzing system for wood wastes using a visible-near-infrared chemometric imaging technique.

    PubMed

    Kobori, Hikaru; Yonenobu, Hitoshi; Noma, Junichi; Tsuchikawa, Satoru

    2008-08-01

    A new optical system was developed and applied to automated separation of wood wastes, using a combined technique of visible-near-infrared (Vis-NIR) imaging analysis and chemometrics. Three kinds of typical wood wastes were used, i.e., non-treated, impregnated, and plastic-film overlaid wood. The classification model based on soft independent modeling of class analogy (SIMCA) was examined using the difference luminance brightness of a sample. Our newly developed system showed a good/promising performance in separation of wood wastes, with an average rate of correct separation of 89%. Hence, it is concluded that the system is efficiently feasible for online monitoring and separation of wood wastes in recycling mills.

  6. Infrared imaging simulation and detection of ship wake

    NASA Astrophysics Data System (ADS)

    Yang, Li; Chen, Xuan; Chang, Shizheng; Xu, Enchi; Wang, Xingyu; Wang, Ye; Zhao, Xiaolong; Du, Yongchen; Kou, Wei; Fan, Chunli

    2015-10-01

    The thermal wake would be formed owing to the cooling water or exhaust heat discharged by ship, and the cold wake could be formed by the cool water in the lower part of sea stirred up by the ship propeller or vortexes. Owing to the difference of surface temperature and emissivity between the ship wake and the surrounding ocean the ship wake will be easily detected by the infrared detecting system. The wave of wake also could be detected by the difference of reflected radiance between the background and the Kelvin wake of ship. In this paper the simulating models of infrared imaging of ship wake are developed based on the selfradiation of wake, the reflected radiance of the sky and sun and the transmitted radiance of atmosphere, and the infrared imaging signatures of ship wake are investigated. The results show that the infrared imaging signatures of ship wake can be really simulated by the models proposed in this paper. The effects of the detecting height, the angle of view, the NETD of detector and the temperature of wake on the infrared imaging signatures of ship wake are studied. The temperature difference between the ship wake and surrounding ocean is a main fact which effects on the detecting distance. The infrared imaging signatures of ship wake in 8-14μm wave band is stronger than that in 2-5μm wave band whenever the temperature of ship wake is warmer or cooler than the surrounding ocean. Further, the infrared imaging of thermal wake is investigated in the homogenous water and temperature stratified water at different speed of a ship and different flow rate and depth of the discharged water in a water tank. The spreading and decaying laws of infrared signature of ship wake are obtained experimentally. The results obtained in this paper have an important application in the infrared remote sensing of ship wake.

  7. Near-infrared imaging of Markarian 231: Evidence for a double nucleus

    NASA Technical Reports Server (NTRS)

    Armus, L.; Surace, J. A.; Soifer, B. T.; Matthews, K.; Graham, J. R.; Larkin, J. E.

    1994-01-01

    Near-infrared (1.2-2.4 micrometers) images are presented for the central 10 arcsec of the Seyfert 1 galaxy Markarian 231. We find a faint, but intrinsically luminous (M(sub k) approximately -20.7) secondary peak in the near-infrared light distribution approximately 3.5 arcsec (2.7 kpc) south of the primary Seyfert 1 nucleus. Since there is no optical or infrared evidence for ongoing star formation at the location of this secondary peak, and its near-infrared luminosity and color are comparable to slightly reddened spiral bulges or elliptical nuclei, we identify this peak with the stripped nucleus of the companion galaxy involved in the Mrk 231 merger event. Depending upon the exact ratio of the masses of the primary and secondary nucleus in the Mrk 231 system we estimate a merger time scale of less than or equal to 10(exp 9) yr. The morphology of the southern nucleus suggests that it may have recently survived a close passage (r less than 200 pc) with the Seyfert 1 nucleus on a highly elliptical orbit, in which case the merger time scale may be significantly shorter (approximately 10(exp 7) yr. We re-calculate the average merger time scale for the seven ultraluminous infrared galaxies with double nuclei in the Bright Galaxy Sample (the BGS) of Soifer et al. (AJ, 98, 766 (1989)) and derive a value of approximately 10(exp 8) yr. Since seven of ten of the ultraluminous infrared galaxies in the BGS are now known to be double, we estimate the ultraluminous 'phase' may be close to this value. Along with Arp 220 and Mrk 273, Mrk 231 is the third member of the class to possess a high brightness temperature non-thermal radio core and a double nucleus, suggesting the time scale for the generation or fueling of the active nucleus can be much less than the dynamical time scale for the merger of the progenitor nuclei.

  8. Comparison of image deconvolution algorithms on simulated and laboratory infrared images

    SciTech Connect

    Proctor, D.

    1994-11-15

    We compare Maximum Likelihood, Maximum Entropy, Accelerated Lucy-Richardson, Weighted Goodness of Fit, and Pixon reconstructions of simple scenes as a function of signal-to-noise ratio for simulated images with randomly generated noise. Reconstruction results of infrared images taken with the TAISIR (Temperature and Imaging System InfraRed) are also discussed.

  9. Scene recognition and colorization for vehicle infrared images

    NASA Astrophysics Data System (ADS)

    Hou, Junjie; Sun, Shaoyuan; Shen, Zhenyi; Huang, Zhen; Zhao, Haitao

    2016-10-01

    In order to make better use of infrared technology for driving assistance system, a scene recognition and colorization method is proposed in this paper. Various objects in a queried infrared image are detected and labelled with proper categories by a combination of SIFT-Flow and MRF model. The queried image is then colorized by assigning corresponding colors according to the categories of the objects appeared. The results show that the strategy here emphasizes important information of the IR images for human vision and could be used to broaden the application of IR images for vehicle driving.

  10. Uncooled infrared detector and imager development at DALI Technology

    NASA Astrophysics Data System (ADS)

    Jiang, Lijun; Liu, Haitao; Chi, Jiguang; Qian, Liangshan; Pan, Feng; Liu, Xiang; Zhu, Xiaorong; Ma, Zhigang

    2015-06-01

    Zhejiang Dali Technology Co. Ltd. is one of the major players in the China Infrared industry. The company has been working on infrared imagers using uncooled FPAs for about 15 years. It started the research and development of uncooled microbolometer detectors since 2006, and has brought several uncooled detectors into mass production, including 35um 384x288, 25um 160x120, 384x288, 640x480, and 17um 384x288, 640x480. In this presentation, we will describe the uncooled infrared detector and imager development at DALI Technology.

  11. Imaging systems for westerns: chemiluminescence vs. infrared detection.

    PubMed

    Mathews, Suresh T; Plaisance, Eric P; Kim, Teayoun

    2009-01-01

    Western blot detection methods have traditionally used X-ray films to capture chemiluminescence. The increasing costs for film, reagents, and maintenance have driven researchers away from darkrooms to more sensitive and technologically advanced digital imaging systems. Cooled charge coupled devices (CCD) cameras capture both chemiluminescence and fluorescence images, with limitations for each detection method. Chemiluminescence detection is highly sensitive and relies on an enzymatic reaction that produces light, which can be detected by a CCD camera that records photons and displays an image based on the amount of light generated. However, the enzymatic reaction is dynamic and changes over time making it necessary to optimize reaction times and imaging. Fluorescent detection with a CCD camera offers a solution to this problem since the signal generated by the proteins on the membrane is measured in a static state. Despite this advantage, many researchers continue to use chemiluminescent detection methods due to the generally poor performance of fluorophores in the visible spectrum. Infrared imaging systems offer a solution to the dynamic reactions of chemiluminescence and the poor performance of fluorophores detected in the visible spectrum by imaging fluorphores in the infrared spectrum. Infrared imaging is equally sensitive to chemiluminescence and more sensitive to visible fluorescence due in part to reduced autofluorescence in the longer infrared wavelength. Furthermore, infrared detection is static, which allows a wider linear detection range than chemiluminescence without a loss of signal. A distinct advantage of infrared imaging is the ability to simultaneously detect proteins on the same blot, which minimizes the need for stripping and reprobing leading to an increase in detection efficiency. Here, we describe the methodology for chemiluminescent (UVP BioChemi) and infrared (LI-COR Odyssey) imaging, and briefly discuss their advantages and disadvantages.

  12. The Infrared Medium-deep Survey. III. Survey of Luminous Quasars at 4.7 ≤ z ≤ 5.4

    NASA Astrophysics Data System (ADS)

    Jeon, Yiseul; Im, Myungshin; Kim, Dohyeong; Kim, Yongjung; Jun, Hyunsung David; Pak, Soojong; Taak, Yoon Chan; Baek, Giseon; Choi, Changsu; Choi, Nahyun; Hong, Jueun; Hyun, Minhee; Ji, Tae-Geun; Karouzos, Marios; Kim, Duho; Kim, Jae-Woo; Kim, Ji Hoon; Kim, Minjin; Kim, Sanghyuk; Lee, Hye-In; Lee, Seong-Kook; Park, Won-Kee; Park, Woojin; Yoon, Yongmin

    2017-08-01

    We present the first results of our survey for high-redshift quasars at 5≲ z≲ 5.7. The search for quasars in this redshift range has been known to be challenging due to the limitations of the filter sets used in previous studies. We conducted a quasar survey for two specific redshift ranges, 4.60 ≤ z ≤ 5.40 and 5.50 ≤ z ≤ 6.05, using multi-wavelength data that include observations made with custom-designed filters, is and iz. Using these filters and a new selection technique, we were able to reduce the fraction of interlopers. Through optical spectroscopy, we confirmed six quasars at 4.7 ≤ z ≤ 5.4 with -27.4< {M}1450< -26.4 that recently were discovered independently by another group. We estimated black hole masses and Eddington ratios of four of these quasars from optical and near-infrared spectra, and found that these quasars are undergoing nearly Eddington-limited accretion that is consistent with the rapid growth of supermassive black holes in luminous quasars at z ˜ 5. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory, under programme 091.A-0878.

  13. Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence

    SciTech Connect

    Li, Zhanjun; Zhang, Yuanwei; Wu, Xiang; Huang, Ling; Li, Dongsheng; Fan, Wei; Han, Gang

    2015-04-02

    Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs), possessing unique NIR PL properties, have recently emerged as important materials for a wide variety of applications in chemistry and biology, for which they must endure high-temperature solid-state annealing reactions and subsequent complicated physical post-treatments. Herein, we report on a first direct aqueous-phase chemical synthesis route to NIR PLNPs and present their enhanced in vivo renewable NIR PL. Our method leads to monodisperse PLNPs as small as ca. 8 nm. Such sub-10 nm nanocrystals are readily dispersed and functionalized, and can form stable colloidal solutions in aqueous solution and cell culture medium for biological applications. Under biotissue-penetrable red-light excitation, we found that such nanocrystals possess superior renewable PL photoluminescence in vitro and in vivo compared to their larger counterparts currently made by existing methods. In conclusion, we believe that this solid-state-reaction-free chemical approach overcomes the current key roadblock in regard to PLNP development, and thus will pave the way to broad use of these advanced miniature “luminous pearls” in photonics and biophotonics.

  14. Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence

    DOE PAGES

    Li, Zhanjun; Zhang, Yuanwei; Wu, Xiang; ...

    2015-04-02

    Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs), possessing unique NIR PL properties, have recently emerged as important materials for a wide variety of applications in chemistry and biology, for which they must endure high-temperature solid-state annealing reactions and subsequent complicated physical post-treatments. Herein, we report on a first direct aqueous-phase chemical synthesis route to NIR PLNPs and present their enhanced in vivo renewable NIR PL. Our method leads to monodisperse PLNPs as small as ca. 8 nm. Such sub-10 nm nanocrystals are readily dispersed and functionalized, and can form stable colloidal solutions in aqueous solution and cell culture medium for biologicalmore » applications. Under biotissue-penetrable red-light excitation, we found that such nanocrystals possess superior renewable PL photoluminescence in vitro and in vivo compared to their larger counterparts currently made by existing methods. In conclusion, we believe that this solid-state-reaction-free chemical approach overcomes the current key roadblock in regard to PLNP development, and thus will pave the way to broad use of these advanced miniature “luminous pearls” in photonics and biophotonics.« less

  15. Stream Temperature Estimation From Thermal Infrared Images

    NASA Astrophysics Data System (ADS)

    Handcock, R. N.; Kay, J. E.; Gillespie, A.; Naveh, N.; Cherkauer, K. A.; Burges, S. J.; Booth, D. B.

    2001-12-01

    Stream temperature is an important water quality indicator in the Pacific Northwest where endangered fish populations are sensitive to elevated water temperature. Cold water refugia are essential for the survival of threatened salmon when events such as the removal of riparian vegetation result in elevated stream temperatures. Regional assessment of stream temperatures is limited by sparse sampling of temperatures in both space and time. If critical watersheds are to be properly managed it is necessary to have spatially extensive temperature measurements of known accuracy. Remotely sensed thermal infrared (TIR) imagery can be used to derive spatially distributed estimates of the skin temperature (top 100 nm) of streams. TIR imagery has long been used to estimate skin temperatures of the ocean, where split-window techniques have been used to compensate for atmospheric affects. Streams are a more complex environment because 1) most are unresolved in typical TIR images, and 2) the near-bank environment of stream corridors may consist of tall trees or hot rocks and soils that irradiate the stream surface. As well as compensating for atmospheric effects, key problems to solve in estimating stream temperatures include both subpixel unmixing and multiple scattering. Additionally, fine resolution characteristics of the stream surface such as evaporative cooling due to wind, and water surface roughness, will effect measurements of radiant skin temperatures with TIR devices. We apply these corrections across the Green River and Yakima River watersheds in Washington State to assess the accuracy of remotely sensed stream surface temperature estimates made using fine resolution TIR imagery from a ground-based sensor (FLIR), medium resolution data from the airborne MASTER sensor, and coarse-resolution data from the Terra-ASTER satellite. We use linear spectral mixture analysis to isolate the fraction of land-leaving radiance originating from unresolved streams. To compensate the

  16. Infrared image super-resolution via transformed self-similarity

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Han, Jing; Zhang, Yi; Bai, Lian-fa

    2017-03-01

    Single image super-resolution is of great importance in computer vision. Various methods (e.g. learning methods) have been successfully developed in recent years. Despite the demonstrated success in the natural images, less research focuses on the infrared images. In this paper, we present a transformed self-similarity based super-resolution method without any learning priors, restore high-resolution infrared images from low-resolution ones. We exploit appearance similarity, dense error, and region covariances, and use the detected cues to guide the patch search process. We also add scale cue to consider local scale variations. We then present a compositional framework to simultaneously accommodate the four different cues. Experimental results demonstrate that our method performs better than previous methods, restores pleasant results, and high evaluate scores further show the effectiveness and robustness of our method for the infrared images.

  17. Segmented infrared image analysis for rotating machinery fault diagnosis

    NASA Astrophysics Data System (ADS)

    Duan, Lixiang; Yao, Mingchao; Wang, Jinjiang; Bai, Tangbo; Zhang, Laibin

    2016-07-01

    As a noncontact and non-intrusive technique, infrared image analysis becomes promising for machinery defect diagnosis. However, the insignificant information and strong noise in infrared image limit its performance. To address this issue, this paper presents an image segmentation approach to enhance the feature extraction in infrared image analysis. A region selection criterion named dispersion degree is also formulated to discriminate fault representative regions from unrelated background information. Feature extraction and fusion methods are then applied to obtain features from selected regions for further diagnosis. Experimental studies on a rotor fault simulator demonstrate that the presented segmented feature enhancement approach outperforms the one from the original image using both Naïve Bayes classifier and support vector machine.

  18. The technology of forest fire detection based on infrared image

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-guo; Liu, Guo-juan; Wang, Ming-jia; Wang, Suo-jian

    2013-09-01

    According to infrared imaging features of forest fire, we use image processing technology which is conducive to early detection and prevention of forest fires. We use image processing technology based on infrared imaging features of forest fire which is conducive to early detection and prevention of forest fires. In order to the timeliness and accuracy of fire detection, this paper proposes a forest fire detection method based on infrared image technology. We take gray histogram analysis to collected Cruising image. The image which will be detected is segmented by the adaptive dynamic threshold. Then the suspected ignitions are extracted in the image after segmentation. The ignition of forest fire which form image in the infrared image is almost circular. We use the circular degree of suspected ignition as the decision basis of the fire in the infrared image. Through the analysis of position correlation which is the same suspected ignition between adjacent frames, we judge whether there is a fire in the image. In order to verify the effectiveness of the method, we adopt image sequences of forest fire to do experiment. The experimental results show that the proposed algorithm under the conditions of different light conditions and complex backgrounds, which can effectively eliminate distractions and extract the fire target. The accuracy fire detection rate is above 95 percent. All fire can be detected. The method can quickly identify fire flame and high-risk points of early fire. The structure of method is clear and efficient which processing speed is less than 25 frames per second. So it meets the application requirement of real-time processing.

  19. High Angular Resolution Mid-Infrared Imaging of Young Stars in Orion BN/KL

    SciTech Connect

    greenhill, l

    2004-06-25

    The authors present Keck LWS images of the Orion BN/KL star forming region obtained in the first multi-wavelength study to have 0.3--0.5 resolution from 4.7 {micro}m to 22 {micro}m. The young stellar objects designed infrared source n and radio source I are believed to dominate the BN/KL region. They have detected extended emission from a probable accretion disk around source n but infer a stellar luminosity on the order of only 2000 L{sub {center_dot}}. Although source I is believed to be more luminous, they do not detect an infrared counterpart even at the longest wavelengths. However, they resolve the closeby infrared source, IRc2, into an arc of knots {approx} 10{sup 3} AU long at all wavelengths. Although the physical relation of source I to IRc2 remains ambiguous, they suggest these sources mark a high density core (10{sup 7}-10{sup 8} pc{sup -3} over {approx} 10{sup 3} AU) within the larger BN/KL star forming cluster. The high density may be a consequence of the core being young and heavily embedded. The authors suggest the energetics of the BN/KL region may be dominated by this cluster core rather than one or two individual sources.

  20. Near-infrared imaging of CfA Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    McLeod, K. K.; Rieke, G. H.

    1995-03-01

    We present near-IR images of 43 Seyfert galaxies from the CfA Seyfert sample. The near-IR luminosity is a good tracer of luminous mass in these galaxies. Most of the Seyfert nuclei are found in hosts of mass similar to that of L* galaxies and ranging in type from S0 to Sc. In addition, there is a population of low-mass host galaxies with very low luminosity Seyfert nuclei. We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is evidently not reflected clearly in the large-scale distribution of luminous mass in the galaxy. The Seyfert hosts are compared with a sample of 50 low-redshift quasar host galaxies we have also imaged. The radio-quiet quasars and the Seyfert nuclei lie in similar kinds of galaxies spanning the same range of mass centered around L*. However, for the most luminous quasars, there is a correlation between the minimum host-galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L* galaxy. The low-luminosity quasars and the Seyfert nuclei both tend to lie in host galaxies seen preferentially face-on, which suggests that there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius ratio approximately 1) and must cover a significant fraction of the narrow-line region (r greater than 100 pc).

  1. Pattern Recognition and Image Processing of Infrared Astronomical Satellite Images

    NASA Astrophysics Data System (ADS)

    He, Lun Xiong

    1996-01-01

    The Infrared Astronomical Satellite (IRAS) images with wavelengths of 60 mu m and 100 mu m contain mainly information on both extra-galactic sources and low-temperature interstellar media. The low-temperature interstellar media in the Milky Way impose a "cirrus" screen of IRAS images, especially in images with 100 mu m wavelength. This dissertation deals with the techniques of removing the "cirrus" clouds from the 100 mu m band in order to achieve accurate determinations of point sources and their intensities (fluxes). We employ an image filtering process which utilizes mathematical morphology and wavelet analysis as the key tools in removing the "cirrus" foreground emission. The filtering process consists of extraction and classification of the size information, and then using the classification results in removal of the cirrus component from each pixel of the image. Extraction of size information is the most important step in this process. It is achieved by either mathematical morphology or wavelet analysis. In the mathematical morphological method, extraction of size information is done using the "sieving" process. In the wavelet method, multi-resolution techniques are employed instead. The classification of size information distinguishes extra-galactic sources from cirrus using their averaged size information. The cirrus component for each pixel is then removed by using the averaged cirrus size information. The filtered image contains much less cirrus. Intensity alteration for extra-galactic sources in the filtered image are discussed. It is possible to retain the fluxes of the point sources when we weigh the cirrus component differently pixel by pixel. The importance of the uni-directional size information extractions are addressed in this dissertation. Such uni-directional extractions are achieved by constraining the structuring elements, or by constraining the sieving process to be sequential. The generalizations of mathematical morphology operations based

  2. IR CMOS: near infrared enhanced digital imaging (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani

    2015-08-01

    SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km

  3. Chemistry of wood in 3D: new infrared imaging

    Treesearch

    Barbara L. Illman; Julia Sedlmair; Miriam Unger; Casey Crooks; Marli Oliveira; Carol Hirschmugl

    2015-01-01

    Chemical detection, mapping and imaging in three dimensions will help refine our understanding of wood properties and durability. We describe here a pioneering infrared method to create visual 3D images of the chemicals in wood, providing for the first time, spatial and architectural information at the cellular level without liquid extraction or prior fixation....

  4. Anomaly based vessel detection in visible and infrared images

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Moinul; Islam, Mohammed Nazrul; Asari, K. Vijayan; Karim, Mohammad A.

    2009-02-01

    Detection of small vessels is a challenging task for navy, coast guard and port authority for security purposes. Vessel identification is more complex as compared to other object detection because of its variability in shapes, features and orientations. Current methods for vessel detection are primarily based on segmentation techniques which are not as efficient and also require different algorithms for visible and infrared images. In this paper, a new vessel detection technique is proposed employing anomaly detection. The input intensity image is first converted to feature space using difference of Gaussian filters. Then a detector filter in the form of Mahalanobis distance is applied to the feature points to detect anomalies whose characteristics are different from their surroundings. Anomalies are detected as bright spots in both visible and infrared image. The larger the gray value of the pixels the more anomalous they are to be. The detector output is then post-processed and a binary image is constructed where the boat edges with strong variance relative to the background are identified along with few outliers from the background. The resultant image is then clustered to identify the location of the vessel. The main contribution in this paper is developing an algorithm which can reliably detect small vessels in visible and infrared images. The proposed method is investigated using real-life vessel images and found to perform excellent in both visible and infrared images with the same system parameters.

  5. Restoration and spectral recovery of mid-infrared chemical images.

    PubMed

    Mattson, Eric C; Nasse, Michael J; Rak, Margaret; Gough, Kathleen M; Hirschmugl, Carol J

    2012-07-17

    Fourier transform infrared (FTIR) microspectroscopy is a powerful technique for label-free chemical imaging that has supplied important chemical information about heterogeneous samples for many problems across a variety of disciplines. State-of-the-art synchrotron based infrared (IR) microspectrometers can yield high-resolution images, but are truly diffraction limited for only a small spectral range. Furthermore, a fundamental trade-off exists between the number of pixels, acquisition time and the signal-to-noise ratio, limiting the applicability of the technique. The recently commissioned infrared synchrotron beamline, infrared environmental imaging (IRENI), overcomes this trade off and delivers 4096-pixel diffraction limited IR images with high signal-to-noise ratio in under a minute. The spatial oversampling for all mid-IR wavelengths makes the IRENI data ideal for spatial image restoration techniques. Here, we measured and fitted wavelength-dependent point-spread-functions (PSFs) at IRENI for a 74× objective between the sample plane and detector. Noise-free wavelength-dependent theoretical PSFs are deconvoluted from images generated from narrow bandwidths (4 cm(-1)) over the entire mid-infrared range (4000-900 cm(-1)). The stack of restored images is used to reconstruct the spectra. Restored images of metallic test samples with features that are 2.5 μm and smaller are clearly improved in comparison to the raw data images for frequencies above 2000 cm(-1). Importantly, these spatial image restoration methods also work for samples with vibrational bands in the recorded mid-IR fingerprint region (900-1800 cm(-1)). Improved signal-to-noise spectra are reconstructed from the restored images as demonstrated for a mixture of spherical polystyrene beads in a polyurethane matrix. Finally, a freshly thawed retina tissue section is used to demonstrate the success of deconvolution achievable with a heterogeneous, irregularly shaped, biologically relevant sample with

  6. New Finger Biometric Method Using Near Infrared Imaging

    PubMed Central

    Lee, Eui Chul; Jung, Hyunwoo; Kim, Daeyeoul

    2011-01-01

    In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local derivative pattern (LDP) methods. Infrared finger images include the multimodal features of finger veins and finger geometries. Instead of extracting each feature using different methods, the modified Gaussian high-pass filter is fully convolved. Therefore, the extracted binary patterns of finger images include the multimodal features of veins and finger geometries. Experimental results show that the proposed method has an error rate of 0.13%. PMID:22163741

  7. Infrared digital imaging of the equine anterior segment.

    PubMed

    McMullen, Richard J; Clode, Alison B; Gilger, Brian C

    2009-01-01

    Ocular photographs are an increasingly important method of documenting lesions for inclusion in medical records, teaching purposes, and research. Availability of affordable high-quality digital imaging equipment has allowed for enhanced capture of desired images because of immediate on-camera viewing and editing. Conversion of the standard digital camera sensor to one that is sensitive to infrared light (i.e. > 760 nm < 1 mm wavelength) can be done inexpensively. In the equine eye, advantages of infrared digital photography include increased contrast of anterior segment images, identification and monitoring of pigmentary changes, and increased visualization of the anterior segment through a cloudy or edematous cornea.

  8. Stripe noise removal for infrared images using guided filter

    NASA Astrophysics Data System (ADS)

    Zhang, Shengwei; Xiang, Wei; Xu, Baoshu; Feng, Bin

    2016-10-01

    Pixels of different columns in the infrared Focal Plane Array (FPA) have different readout circuit channels, amplifiers in different channels, different 1/f noise characteristics. Such noise may cause obvious stripe noise in the infrared images and degrades the quality of captured images. First, analyzed a stripe noise removal method making use of blurred infrared image based on average filter and pointed out the limitation in this method. Then, gave the reason that lead to the limitation. On the basis of this, introduced guided filter, and came up with an acquiring strip noise correction term method using 1D guided filter to handle the average row vector of the blurred image. The simulation experiment shows that this method is effective and efficient in removing stripe noise. Moreover, this method has a low time complexity, and can be easily implemented in the project.

  9. Infrared medical image visualization and anomalies analysis method

    NASA Astrophysics Data System (ADS)

    Gong, Jing; Chen, Zhong; Fan, Jing; Yan, Liang

    2015-12-01

    Infrared medical examination finds the diseases through scanning the overall human body temperature and obtaining the temperature anomalies of the corresponding parts with the infrared thermal equipment. In order to obtain the temperature anomalies and disease parts, Infrared Medical Image Visualization and Anomalies Analysis Method is proposed in this paper. Firstly, visualize the original data into a single channel gray image: secondly, turn the normalized gray image into a pseudo color image; thirdly, a method of background segmentation is taken to filter out background noise; fourthly, cluster those special pixels with the breadth-first search algorithm; lastly, mark the regions of the temperature anomalies or disease parts. The test is shown that it's an efficient and accurate way to intuitively analyze and diagnose body disease parts through the temperature anomalies.

  10. Scene classification of infrared images based on texture feature

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Bai, Tingzhu; Shang, Fei

    2008-12-01

    Scene Classification refers to as assigning a physical scene into one of a set of predefined categories. Utilizing the method texture feature is good for providing the approach to classify scenes. Texture can be considered to be repeating patterns of local variation of pixel intensities. And texture analysis is important in many applications of computer image analysis for classification or segmentation of images based on local spatial variations of intensity. Texture describes the structural information of images, so it provides another data to classify comparing to the spectrum. Now, infrared thermal imagers are used in different kinds of fields. Since infrared images of the objects reflect their own thermal radiation, there are some shortcomings of infrared images: the poor contrast between the objectives and background, the effects of blurs edges, much noise and so on. Because of these shortcomings, it is difficult to extract to the texture feature of infrared images. In this paper we have developed an infrared image texture feature-based algorithm to classify scenes of infrared images. This paper researches texture extraction using Gabor wavelet transform. The transformation of Gabor has excellent capability in analysis the frequency and direction of the partial district. Gabor wavelets is chosen for its biological relevance and technical properties In the first place, after introducing the Gabor wavelet transform and the texture analysis methods, the infrared images are extracted texture feature by Gabor wavelet transform. It is utilized the multi-scale property of Gabor filter. In the second place, we take multi-dimensional means and standard deviation with different scales and directions as texture parameters. The last stage is classification of scene texture parameters with least squares support vector machine (LS-SVM) algorithm. SVM is based on the principle of structural risk minimization (SRM). Compared with SVM, LS-SVM has overcome the shortcoming of

  11. Optically addressed multiband photodetector for infrared imaging applications

    NASA Astrophysics Data System (ADS)

    Cellek, O. O.; Zhang, Y.-H.

    2012-01-01

    Multiband infrared focal plane arrays (FPAs) with small pixel pitch have increased device processing complexity since they often need more than two terminals per pixel for readouts. Simpler FPAs are enabled by our newly demonstrated optically-addressed two-terminal multiband photodetector architecture. For long-wavelength infrared (LWIR) and midwavelength infrared (MWIR) imaging applications, the use of quantum well infrared photodetectors (QWIP) has been investigated. The results show that the utilization of unipolar QWIPs with bipolar near infrared (NIR) devices is feasible with this new optical-addressing scheme. Potential device performance is analyzed with an equivalent AC circuit model. Proposed design maximizes fill factor and enables small pixel-pitch FPA with single indium-bump per pixel for NIR/MWIR/LWIR multiband detection capability.

  12. Aural stealth of portable cryogenically cooled infrared imagers

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Vilenchick, Herman; Broyde, Ramon; Pundak, Nachman

    2006-05-01

    Novel tactics for carrying out military and antiterrorist operations calls for the development of a new generation of portable infrared imagers, the focal plane arrays of which are maintained at a cryogenic temperature. The rotary Stirling cryogenic engines providing for this cooling are usually mounted directly upon the light thin-walled imager frame, which is used for optical alignment, mechanical stability and heat sinking. The known disadvantage of this design approach is that the wideband vibration export produced by the cooler results in structural resonances and therefore in excessive noise radiation from the above imagers. The "noisy" thermal imager may be detected from quite a long distance using acoustic equipment relying upon a high-sensitive unidirectional microphone or aurally spotted when used in a close proximity to the opponent force. As a result, aural stealth along with enhanced imagery, compact design, low power consumption and long life-times become a crucial figure of merit characterising the modern infrared imager. Achieving the desired inaudibility level is a challenging task. As a matter of fact, even the best examples of modern "should-be silent" infrared imagers are quite audible from as far as 50 meters away even when operating in a steady-state mode. The authors report on the successful effort of designing the inaudible at greater then 10 meters cryogenically cooled infrared imager complying with the stringent MIL-STD-1774D (Level II) requirements.

  13. Near-infrared Mueller matrix imaging for colonic cancer detection

    NASA Astrophysics Data System (ADS)

    Wang, Jianfeng; Zheng, Wei; Lin, Kan; Huang, Zhiwei

    2016-03-01

    Mueller matrix imaging along with polar decomposition method was employed for the colonic cancer detection by polarized light in the near-infrared spectral range (700-1100 nm). A high-speed (<5s) Muller matrix imaging system with dual-rotating waveplates was developed. 16 (4 by 4) full Mueller matrices of the colonic tissues (i.e., normal and caner) were acquired. Polar decomposition was further implemented on the 16 images to derive the diattentuation, depolarization, and the retardance images. The decomposed images showed clear margin between the normal and cancerous colon tissue samples. The work shows the potential of near-infrared Mueller matrix imaging for the early diagnosis and detection of malignant lesions in the colon.

  14. Violent cookoff reactions in HMX-based explosives in DDT tubes: Tracking luminous waves with streak imaging

    NASA Astrophysics Data System (ADS)

    Parker, Gary; Dickson, Peter; Asay, Blaine W.; Smilowitz, Laura; Henson, Bryan; McAfee, John

    2012-03-01

    Recent implementation of modern high-speed video cameras has permitted the experimental flexibility needed to revisit classic deflagration-to-detonation (DDT) tube experiments and capture novel and valuable results displaying the progression of luminous reaction from a cookoff event. The authors present select data from a series of experiments where the HMX-based high explosives PBX 9501 and LX-07 were heated above 180°C for various durations to impose damage (i.e. phase transitions and void generation) before being driven to cook off. These two explosives have different polymeric binders, HMX mass fractions and cook off responses and a comparison between the two offers mechanistic insights on how thermal explosions evolve. From this series, results will be displayed indicating a wide range of violence from somewhat mild pressure bursts, to intermediate power compressive burns, to high-violence DDT. Image data from high temperature DDT tube experiments, where the explosive was ignited on one end, were also collected and will be included for comparison.

  15. Infrared Spectroscopic Imaging for Prostate Pathology Practice

    DTIC Science & Technology

    2008-03-01

    2002) Genetics-based machine learning using fine-grained parallelism for data mining. Doctoral dissertation, Enginyeria i Arquitectura La Salle...illigal.ge.uiuc.edu/lcs-n-gbml/. [21] X. Llorà. Genetics-Based Machine Learning using Fine-grained Parallelism for Data Mining. PhD thesis, Enginyeria i Arquitectura ...infrared focal-plane array detector. Anal Chem 1995, 67, (19), 3377-81. 9.Bhargava, R.; Wang, S. Q .; Koenig, J. L., FTIR microspectroscopy of

  16. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOEpatents

    Del Grande, N.K.; Durbin, P.F.; Dolan, K.W.; Perkins, D.E.

    1995-08-22

    A method for detecting flaws in structures using dual band infrared radiation is disclosed. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features. 1 fig.

  17. Infrared imaging: a potential powerful tool for neuroimaging and neurodiagnostics.

    PubMed

    Khoshakhlagh, Arezou; Gunapala, Sarath D

    2017-01-01

    Infrared (IR) imaging is used to detect the subtle changes in temperature needed to accurately detect and monitor disease. Technological advances have made IR a highly sensitive and reliable detection tool with strong potential in medical and neurophotonics applications. An overview of IR imaging specifically investigating quantum well IR detectors developed at Jet Propulsion Laboratory for a noninvasive, nonradiating imaging tool is provided, which could be applied for neuroscience and neurosurgery where it involves sensitive cellular temperature change.

  18. New color images of transient luminous events from dedicated observations on the International Space Station

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Rubanenko, Lior; Mezuman, Keren; Elhalel, Gal; Pariente, Meidad; Glickman-Pariente, Maya; Ziv, Baruch; Takahashi, Yukihiro; Inoue, Tomohiro

    2013-09-01

    During July-August 2011, Expedition 28/29 JAXA astronaut Satoshi Furukawa conducted TLE observations from the International Space Station in conjunction with the “Cosmic Shore” program produced by NHK. An EMCCD normal video-rate color TV camera was used to conduct directed observations from the Earth-pointing Cupola module. The target selection was based on the methodology developed for the MEIDEX sprite campaign on board the space shuttle Columbia in January 2003 (Ziv et al., 2004). The observation geometry was pre-determined and uploaded daily to the ISS with pointing options to limb, oblique or nadir, based on the predicted location of the storm with regards to the ISS. The pointing angle was rotated in real-time according to visual eyesight by the astronaut. We present results of 10 confirmed TLEs: 8 sprites, 1 sprite halo and 1 gigantic jet, out of <2 h of video. Sprites tend to appear in a single frame simultaneously with maximum lightning brightness. Unique images (a) from nadir of a sprite horizontally displaced form the lightning light and (b) from the oblique view of a sprite halo, enable the calculation of dimensions and volumes occupied by these TLEs. Since time stamping on the ISS images was accurate within 1 s, matching with ELF and WWLLN data for the parent lightning location is limited. Nevertheless, the results prove that the ISS is an ideal platform for lightning and TLE observations, and careful operational procedures greatly enhance the value of observation time.

  19. Calcium imaging shows differential sensitivity to cooling and communication in luminous transgenic plants.

    PubMed

    Campbell, A K; Trewavas, A J; Knight, M R

    1996-03-01

    Imaging of a recombinant bioluminescent Ca2+ indicator, aequorin, in an entire organism showed three novel features of Ca2+ signals in plants. First, cooling the plant from 25 degrees C to 2 degrees C demonstrated differential sensitivities between organs, the roots firing a Ca2+ signal at some 8-10 degrees C higher than the cotyledons. Secondly, prolonged cooling provoked Ca2+ oscillations, but only in the cotyledons. These oscillations occurred with a frequency of 100 s and damped down within 800 s. Thirdly, cooling the roots of mature plants triggered a Ca2+ signal in the leaves, as a result of organ-organ communication. However, warming and then recooling the roots did not generate a second Ca2+ signal in these leaves. This desensitisation was not due to down-regulation in the leaf since this was able to generate a Ca2+ signal of its own when cooled directly. Thus a combination of a recombinant bioluminescent indicator with photon counting imaging reveals startling new aspects of signalling in intact organs and whole organisms.

  20. Arrays of Nano Tunnel Junctions as Infrared Image Sensors

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong S.; Prokopuk, Nicholas

    2006-01-01

    Infrared image sensors based on high density rectangular planar arrays of nano tunnel junctions have been proposed. These sensors would differ fundamentally from prior infrared sensors based, variously, on bolometry or conventional semiconductor photodetection. Infrared image sensors based on conventional semiconductor photodetection must typically be cooled to cryogenic temperatures to reduce noise to acceptably low levels. Some bolometer-type infrared sensors can be operated at room temperature, but they exhibit low detectivities and long response times, which limit their utility. The proposed infrared image sensors could be operated at room temperature without incurring excessive noise, and would exhibit high detectivities and short response times. Other advantages would include low power demand, high resolution, and tailorability of spectral response. Neither bolometers nor conventional semiconductor photodetectors, the basic detector units as proposed would partly resemble rectennas. Nanometer-scale tunnel junctions would be created by crossing of nanowires with quantum-mechanical-barrier layers in the form of thin layers of electrically insulating material between them (see figure). A microscopic dipole antenna sized and shaped to respond maximally in the infrared wavelength range that one seeks to detect would be formed integrally with the nanowires at each junction. An incident signal in that wavelength range would become coupled into the antenna and, through the antenna, to the junction. At the junction, the flow of electrons between the crossing wires would be dominated by quantum-mechanical tunneling rather than thermionic emission. Relative to thermionic emission, quantum mechanical tunneling is a fast process.

  1. OT2_tdiazsan_1: Size is Not Everything: A PACS Emission Line Study of the Most Compact Infrared-luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Díaz-Santos, T.

    2011-09-01

    Recent results based on far-infrared (IR) data obtained with Herschel strongly suggest the existence of two modes of star formation that apply to low and high-redshift galaxies: a quiescent mode for disks (or main-sequence galaxies) and a starburst mode probably associated with more efficient nuclear, compact star formation. This dichotomy implies that the properties of the inter stellar medium (ISM) in these two types of systems must be substantially different. We have used the mid- to far-IR colors of galaxies as a proxy for their compactness to select a sample of local, compact luminous IR galaxies ((U)LIRGs; LIR >= 10^11 Lsun) from the IRAS 12-micron sample. Our sample of 73 compact (U)LIRGs includes both Seyfert galaxies as well as purely star-forming systems, and therefore is not biased towards active galaxies only. We will observe the key far-IR [CII]158, [OI]63, and [OIII]88 micron emission lines with Herschel/PACS and use models of photo-dissociation regions (PDRs), shocks, X-ray dissociation regions (XDRs), and dusty AGNs to derive the main physical parameters of the ISM in this important class of systems, which are not being targeted by any Herschel project. Our proposed galaxy sample bridges the gap between other studies focused on the analysis of local galaxies with a range of IR luminosities, mid- to far-IR colors, or more spatially extended IR emission, providing a wider view of the star formation and nuclear activity in local IR-bright galaxies in extreme environments, and thus adding a significant contribution to the Herschel legacy. The total time requested for achieving this goal is 89.8 hours.

  2. Infrared thermal facial image sequence registration analysis and verification

    NASA Astrophysics Data System (ADS)

    Chen, Chieh-Li; Jian, Bo-Lin

    2015-03-01

    To study the emotional responses of subjects to the International Affective Picture System (IAPS), infrared thermal facial image sequence is preprocessed for registration before further analysis such that the variance caused by minor and irregular subject movements is reduced. Without affecting the comfort level and inducing minimal harm, this study proposes an infrared thermal facial image sequence registration process that will reduce the deviations caused by the unconscious head shaking of the subjects. A fixed image for registration is produced through the localization of the centroid of the eye region as well as image translation and rotation processes. Thermal image sequencing will then be automatically registered using the two-stage genetic algorithm proposed. The deviation before and after image registration will be demonstrated by image quality indices. The results show that the infrared thermal image sequence registration process proposed in this study is effective in localizing facial images accurately, which will be beneficial to the correlation analysis of psychological information related to the facial area.

  3. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics

    PubMed Central

    Cardone, Daniela; Pinti, Paola; Merla, Arcangelo

    2015-01-01

    Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity. PMID:26339284

  4. Fundamental developments in infrared spectroscopic imaging for biomedical applications.

    PubMed

    Pilling, Michael; Gardner, Peter

    2016-04-07

    Infrared chemical imaging is a rapidly emerging field with new advances in instrumentation, data acquisition and data analysis. These developments have had significant impact in biomedical applications and numerous studies have now shown that this technology offers great promise for the improved diagnosis of the diseased state. Relying on purely biochemical signatures rather than contrast from exogenous dyes and stains, infrared chemical imaging has the potential to revolutionise histopathology for improved disease diagnosis. In this review we discuss the recent advances in infrared spectroscopic imaging specifically related to spectral histopathology (SHP) and consider the current state of the field. Finally we consider the practical application of SHP for disease diagnosis and consider potential barriers to clinical translation highlighting current directions and the future outlook.

  5. Development of infrared thermal imager for dry eye diagnosis

    NASA Astrophysics Data System (ADS)

    Chiang, Huihua Kenny; Chen, Chih Yen; Cheng, Hung You; Chen, Ko-Hua; Chang, David O.

    2006-08-01

    This study aims at the development of non-contact dry eye diagnosis based on an infrared thermal imager system, which was used to measure the cooling of the ocular surface temperature of normal and dry eye patients. A total of 108 subjects were measured, including 26 normal and 82 dry eye patients. We have observed that the dry eye patients have a fast cooling of the ocular surface temperature than the normal control group. We have developed a simplified algorithm for calculating the temperature decay constant of the ocular surface for discriminating between normal and dry eye. This study shows the diagnostic of dry eye syndrome by the infrared thermal imager system has reached a sensitivity of 79.3%, a specificity of 75%, and the area under the ROC curve 0.841. The infrared thermal imager system has a great potential to be developed for dry eye screening with the advantages of non-contact, fast, and convenient implementation.

  6. Adaptive fusion of infrared and visible images in dynamic scene

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Yin, Yafeng; Man, Hong; Desai, Sachi

    2011-11-01

    Multiple modalities sensor fusion has been widely employed in various surveillance and military applications. A variety of image fusion techniques including PCA, wavelet, curvelet and HSV has been proposed in recent years to improve human visual perception for object detection. One of the main challenges for visible and infrared image fusion is to automatically determine an optimal fusion strategy for different input scenes along with an acceptable computational cost. This paper, we propose a fast and adaptive feature selection based image fusion method to obtain high a contrast image from visible and infrared sensors for targets detection. At first, fuzzy c-means clustering is applied on the infrared image to highlight possible hotspot regions, which will be considered as potential targets' locations. After that, the region surrounding the target area is segmented as the background regions. Then image fusion is locally applied on the selected target and background regions by computing different linear combination of color components from registered visible and infrared images. After obtaining different fused images, histogram distributions are computed on these local fusion images as the fusion feature set. The variance ratio which is based on Linear Discriminative Analysis (LDA) measure is employed to sort the feature set and the most discriminative one is selected for the whole image fusion. As the feature selection is performed over time, the process will dynamically determine the most suitable feature for the image fusion in different scenes. Experiment is conducted on the OSU Color-Thermal database, and TNO Human Factor dataset. The fusion results indicate that our proposed method achieved a competitive performance compared with other fusion algorithms at a relatively low computational cost.

  7. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  8. Enhanced Infrared Surveillance Imaging Report for NA-22

    SciTech Connect

    Carrano, C J

    2005-10-04

    The purpose of this report is to describe our work on enhanced infrared (IR) surveillance using speckle imaging for NA-22. Speckle imaging in this context is an image post-processing algorithm that aims to solve the atmospheric blurring problem of imaging through horizontal or slant path turbulence. We will describe the IR imaging systems used in our data collections and show imagery before and after speckle processing. We will also compare IR imagery with visible wavelength imagery of the same target in the same conditions and demonstrate how going to longer wavelengths can be beneficial in the presence of strong turbulence.

  9. Near infrared imaging of Uranus and Neptune

    SciTech Connect

    Smith, B.A.

    1984-10-01

    Imaging of Uranus and Neptune in the deep methane absorption band at 890nm is used to detect high altitude atmospheric hazes and to search for possible undiscovered close in satellites. The appearances of Uranus and Neptune are very different from one another and Uranus seems to be changing with time. The Neptune images show rotation in the direct sense.

  10. BOOK REVIEW: Infrared Thermal Imaging: Fundamentals, Research and Applications Infrared Thermal Imaging: Fundamentals, Research and Applications

    NASA Astrophysics Data System (ADS)

    Planinsic, Gorazd

    2011-09-01

    Ten years ago, a book with a title like this would be interesting only to a narrow circle of specialists. Thanks to rapid advances in technology, the price of thermal imaging devices has dropped sharply, so they have, almost overnight, become accessible to a wide range of users. As the authors point out in the preface, the growth of this area has led to a paradoxical situation: now there are probably more infrared (IR) cameras sold worldwide than there are people who understand the basic physics behind them and know how to correctly interpret the colourful images that are obtained with these devices. My experience confirms this. When I started using the IR camera during lectures on the didactics of physics, I soon realized that I needed more knowledge, which I later found in this book. A wide range of potential readers and topical areas provides a good motive for writing a book such as this one, but it also represents a major challenge for authors, as compromises in the style of writing and choice of topics are required. The authors of this book have successfully achieved this, and indeed done an excellent job. This book addresses a wide range of readers, from engineers, technicians, and physics and science teachers in schools and universities, to researchers and specialists who are professionally active in the field. As technology in this area has made great progress in recent times, this book is also a valuable guide for those who opt to purchase an infrared camera. Chapters in this book could be divided into three areas: the fundamentals of IR thermal imaging and related physics (two chapters); IR imaging systems and methods (two chapters) and applications, including six chapters on pedagogical applications; IR imaging of buildings and infrastructure, industrial applications, microsystems, selected topics in research and industry, and selected applications from other fields. All chapters contain numerous colour pictures and diagrams, and a rich list of relevant

  11. Proposal generation method for object detection in infrared image

    NASA Astrophysics Data System (ADS)

    Sun, Ning; Jiang, Feng; Yan, Hengchao; Liu, Jixin; Han, Guang

    2017-03-01

    In an infrared image, there is a significant difference between the region of the interested object and its surrounding background. Based on this observation, we propose an effective and efficient proposal generation method which uses a Multi-layer and Multi-size Superpixel Segmentation (MMSS) scheme for object detection in the infrared image. The SLIC (Simple Linear Iterative Clustering) algorithm is applied to partition an infrared image into multi-layer and multi-size superpixels. In each layer, only the individual superpixel and the merging of two adjacent superpixels are used to create the candidate pool of object proposals. A superpixel-based center-surround feature is then defined to measure the discrepancy between the region of the proposal and its surrounding background. To evaluate the performance of the MMSS-based method of proposal generation method, we create an Infrared Interested Object Image Dataset (IIOID), in which the infrared images are collected from several benchmarks and the ground-truth of the interested object segmentation is manually labeled. Compared with several state-of-the-art methods of proposal generation on IIOID, the MMSS-based method has overwhelming superiority in detection recall under different Intersection over Union (IoU) thresholds and is convenient for computation. Furthermore, we implement the MMSS-based method as a processing step for pedestrian detection. Experimental results on benchmark infrared pedestrian image dataset show that the detectors with our method of proposal generation method can greatly reduce the number of candidate windows to be detected and also suppress false positives.

  12. Design of infrared diffractive telescope imaging optical systems

    NASA Astrophysics Data System (ADS)

    Zhang, ZhouFeng; Hu, BingLiang; Yin, QinYe; Xie, YongJun; Kang, FuZeng; Wang, YanJun

    2015-10-01

    Diffractive telescope is an updated imaging technology, it differs from conventional refractive and reflective imaging system, which is based on the principle of diffraction image. It has great potential for developing the larger aperture and lightweight telescope. However, one of the great challenges of design this optical system is that the diffractive optical element focuses on different wavelengths of light at different point in space, thereby distorting the color characteristics of image. In this paper, we designs a long-wavelength infrared diffractive telescope imaging system with flat surface Fresnel lens and cancels the infrared optical system chromatic aberration by another flat surface Fresnel lens, achieving broadband light(from 8μm-12μm) to a common focus with 4.6° field of view. At last, the diffuse spot size and MTF function provide diffractive-limited performance.

  13. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NASA Astrophysics Data System (ADS)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-11-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern Extended Millimeter Array (NOEMA), we have detected 14 new H2O emission lines. These include five 321-312ortho-H2O lines (Eup/k = 305 K) and nine J = 2 para-H2O lines, either 202-111(Eup/k = 101 K) or 211-202(Eup/k = 137 K). The apparent luminosities of the H2O emission lines are μLH2O 6-21 × 108 L⊙ (3 <μ< 15, where μ is the lens magnification factor), with velocity-integrated line fluxes ranging from 4-15 Jy km s-1. We have also observed CO emission lines using EMIR on the IRAM 30 m telescope in seven sources (most of those have not yet had their CO emission lines observed). The velocity widths for CO and H2O lines are found to be similar, generally within 1σ errors in the same source. With almost comparable integrated flux densities to those of the high-J CO line (ratios range from 0.4 to 1.1), H2O is found to be among the strongest molecular emitters in high-redshift Hy/ULIRGs. We also confirm our previously found correlation between luminosity of H2O (LH2O) and infrared (LIR) that LH2O LIR1.1-1.2, with ournew detections. This correlation could be explained by a dominant role of far-infrared pumping in the H2O excitation. Modelling reveals that the far-infrared radiation fields have warm dust temperature Twarm 45-75 K, H2O column density per unit velocity interval NH2O /ΔV ≳ 0.3 × 1015 cm-2 km-1 s and 100 μm continuum opacity τ100> 1 (optically thick), indicating that H2O is likely to trace highly obscured warm dense gas. However, further observations of J ≥ 4 H2O lines are needed to better constrain the continuum optical depth and other physical conditions of the molecular gas and dust. We have also detected H2O+ emission in three sources. A tight correlation

  14. Nondestructive evaluation technique using infrared thermography and terahertz imaging

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Shiozawa, Daiki; Tamaki, Yoshitaka; Iwama, Tatsuya

    2016-05-01

    Nondestructive testing (NDT) techniques using pulse heating infrared thermography and terahertz (THz) imaging were developed for detecting deterioration of oil tank floor, such as blister and delamination of corrosion protection coating, or corrosion of the bottom steel plate under coating. Experimental studies were conducted to demonstrate the practicability of developed techniques. It was found that the pulse heating infrared thermography was utilized for effective screening inspection and THz-TDS imaging technique performed well for the detailed inspection of coating deterioration and steel corrosion.

  15. The Florida Image Slicer for Infrared Astrophysics and Cosmology

    NASA Astrophysics Data System (ADS)

    Raines, S. N.; Eikenberry, S. S.; Guzmán, R.; Gruel, N.; Julian, J.; Boreman, G.; Hoffman, J.; Rodgers, M.; Glenn, P.; Hull-Allen, G.; Myrick, B.; Flint, S.; Comstock, L.

    2007-06-01

    We report on the design, manufacture, and scientific performance of the Florida Image Slicer for Infrared Astrophysics and Cosmology (FISICA), a fully cryogenic all-reflective image slicing integral field unit (IFU) for the FLAMINGOS near-infrared spectrograph (Elston et al.003). We find that FISICA is capable of delivering excellent scientific results. It now operates as a turnkey instrument at the KPNO 4-m telescope via collaboration with the instrument team, who can assist with the proposal preparation and observations, as well as provide the data reduction tools for integral field spectroscopy.

  16. Reduction and analysis techniques for infrared imaging data

    NASA Technical Reports Server (NTRS)

    Mccaughrean, Mark

    1989-01-01

    Infrared detector arrays are becoming increasingly available to the astronomy community, with a number of array cameras already in use at national observatories, and others under development at many institutions. As the detector technology and imaging instruments grow more sophisticated, more attention is focussed on the business of turning raw data into scientifically significant information. Turning pictures into papers, or equivalently, astronomy into astrophysics, both accurately and efficiently, is discussed. Also discussed are some of the factors that can be considered at each of three major stages; acquisition, reduction, and analysis, concentrating in particular on several of the questions most relevant to the techniques currently applied to near infrared imaging.

  17. Infrared Radiation Image Sensor with Function of Vacuum Pressure Detection

    NASA Astrophysics Data System (ADS)

    Ishii, Koichi; Funaki, Hideyuki; Yagi, Hitoshi; Fujiwara, Ikuo; Suzuki, Kazuhiro; Honda, Hiroto

    We propose a new detecting method of vacuum pressure utilizing reference cells with the similar structure as pixels in the IR(infrared radiation) image sensor of which the sensitivity is greatly depended on the vacuum pressure in the sensor package. This method showed the excellent correlation between the vacuum pressure and output voltage without any additional pirani gauge requiring readout circuit which is generally utilized to detect the vacuum pressure. The proposed method is understood to realize the detection of the package vacuum pressure with detecting infrared radiation as an IR image sensor.

  18. Near Infrared (nir) Spectral Imaging for Nde

    NASA Astrophysics Data System (ADS)

    Diamond, G. G.; Hutchins, D. A.; Pallav, P.; Gohel, R.

    2009-03-01

    A novel technique of NIR imaging is presented that gives access to most of the applications currently published as being solely suitable for terahertz waves. This technique also affords the means to provide simultaneous insitu chemical-bond analysis and simultaneously combine chemical/spectral identification with imaging. The two separate features of the technique can be combined in a data fusion that produces a conventional image with chemical data etc superimposed (e.g. via false colours on the image) by imaging software. The technique itself uses NIR beams wavelengths found in ordinary domestic remote controls (circa 850 nm) and various signal recovery techniques commonly found in astronomy. This alternative technique can be realised by very simple and inexpensive electronics and is inherently far more portable and easy to use and no special sources are required. Transmission imaging results from this technique are presented from several industrial examples and various security applications and are compared and contrasted directly with their terahertz-derived counterparts. It would appear possible to very cheaply and simply emulate the performance of commercial terahertz systems at a fraction of the cost and with greatly reduced processing times. Also, unlike terahertz, this technique can penetrate bulk water and high humidity atmospheres and be used in transmission mode on biological and medical samples. To illustrate this point, several results are presented of non-ionising x-ray type images that even differentiate between separate types of soft tissue.

  19. Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Edlridge, Jeffrey I.; Martin, Richard E.

    2009-01-01

    An apparatus for mid-infrared reflectance imaging has been developed as means of inspecting for subsurface damage in thermal-barrier coatings (TBCs). The apparatus is designed, more specifically, for imaging the progression of buried delamination cracks in plasma-sprayed yttria-stabilized zirconia coatings on turbine-engine components. Progression of TBC delamination occurs by the formation of buried cracks that grow and then link together to produce eventual TBC spallation. The mid-infrared reflectance imaging system described here makes it possible to see delamination progression that is invisible to the unaided eye, and therefore give sufficiently advanced warning before delamination progression adversely affects engine performance and safety. The apparatus (see figure) includes a commercial mid-infrared camera that contains a liquid-nitrogen-cooled focal plane indium antimonide photodetector array, and imaging is restricted by a narrow bandpass centered at wavelength of 4 microns. This narrow wavelength range centered at 4 microns was chosen because (1) it enables avoidance of interfering absorptions by atmospheric OH and CO2 at 3 and 4.25 microns, respectively; and (2) the coating material exhibits maximum transparency in this wavelength range. Delamination contrast is produced in the midinfrared reflectance images because the introduction of cracks into the TBC creates an internal TBC/air-gap interface with a high diffuse reflectivity of 0.81, resulting in substantially higher reflectance of mid-infrared radiation in regions that contain buried delamination cracks. The camera is positioned a short distance (.12 cm) from the specimen. The mid-infrared illumination is generated by a 50-watt silicon carbide source positioned to the side of the mid-infrared camera, and the illumination is collimated and reflected onto the specimen by a 6.35-cm-diameter off-axis paraboloidal mirror. Because the collected images are of a steady-state reflected intensity (in

  20. Optical and Near-Infrared Imaging of Infrared-Excess Palomar-Green Quasars

    NASA Astrophysics Data System (ADS)

    Surace, Jason A.; Sanders, D. B.; Evans, A. S.

    2001-12-01

    Ground-based high spatial resolution (FWHM<0.3"-0.8") optical and near-infrared imaging (0.4-2.2 μm) is presented for a complete sample of optically selected Palomar-Green QSOs with far-infrared excesses at least as great as those of ``warm'' AGN-like ultraluminous infrared galaxies (Lir/LBBB>0.46). In all cases, the host galaxies of the QSOs were detected, and most have discernible two-dimensional structure. The QSO host galaxies and the QSO nuclei are similar in magnitude at H band. H-band luminosities of the hosts range from 0.5-7.5 L*, with a mean of 2.3 L*, and are consistent with those found in ultraluminous infrared galaxies. Both the QSO nuclei and the host galaxies have near-infrared excesses, which may be the result of dust associated with the nucleus and of recent dusty star formation in the host. These results suggest that some, but not all, optically selected QSOs may have evolved from an infrared active state triggered by the merger of two similarly sized L* galaxies, in a manner similar to that of the ultraluminous infrared galaxies.

  1. Visible and infrared reflectance imaging spectroscopy of paintings: pigment mapping and improved infrared reflectography

    NASA Astrophysics Data System (ADS)

    Delaney, John K.; Zeibel, Jason G.; Thoury, Mathieu; Littleton, Roy; Morales, Kathryn M.; Palmer, Michael; de la Rie, E. René

    2009-07-01

    Reflectance imaging spectroscopy, the collection of images in narrow spectral bands, has been developed for remote sensing of the Earth. In this paper we present findings on the use of imaging spectroscopy to identify and map artist pigments as well as to improve the visualization of preparatory sketches. Two novel hyperspectral cameras, one operating from the visible to near-infrared (VNIR) and the other in the shortwave infrared (SWIR), have been used to collect diffuse reflectance spectral image cubes on a variety of paintings. The resulting image cubes (VNIR 417 to 973 nm, 240 bands, and SWIR 970 to 1650 nm, 85 bands) were calibrated to reflectance and the resulting spectra compared with results from a fiber optics reflectance spectrometer (350 to 2500 nm). The results show good agreement between the spectra acquired with the hyperspectral cameras and those from the fiber reflectance spectrometer. For example, the primary blue pigments and their distribution in Picasso's Harlequin Musician (1924) are identified from the reflectance spectra and agree with results from X-ray fluorescence data and dispersed sample analysis. False color infrared reflectograms, obtained from the SWIR hyperspectral images, of extensively reworked paintings such as Picasso's The Tragedy (1903) are found to give improved visualization of changes made by the artist. These results show that including the NIR and SWIR spectral regions along with the visible provides for a more robust identification and mapping of artist pigments than using visible imaging spectroscopy alone.

  2. Infrared thermal imagers for avionic applications

    NASA Astrophysics Data System (ADS)

    Uda, Gianni; Livi, Massimo; Olivieri, Monica; Sabatini, Maurizio; Torrini, Daniele; Baldini, Stefano; Bardazzi, Riccardo; Falli, Pietro; Maestrini, Mauro

    1999-07-01

    This paper deals with the design of two second generation thermal imagers that Alenia Difesa OFFICINE GALILEO has successfully developed for the Navigation FLIR of the NH90 Tactical Transportation Helicopter (NH90 TTH) and for the Electro-Optical Surveillance and Tracking System for the Italian 'Guardia di Finanza' ATR42 Maritime Patrol Aircraft (ATR42 MPA). Small size, lightweight and low power consumption have been the main design goals of the two programs. In particular the NH90 TTH Thermal Imager is a compact camera operating in the 8 divided by 12 micrometers bandwidth with a single wide field of view. The thermal imager developed for the ATR42 MPA features a three remotely switchable fields of view objective equipped with diffractive optics. Performance goals, innovative design aspects and test results of these two thermal imagers are reported.

  3. Infrared light field imaging using single carbon nanotube detector

    NASA Astrophysics Data System (ADS)

    Xi, Ning; Chen, Liangliang; Zhou, Zhanxin; Yang, Ruiguo; Song, Bo; Sun, Zhiyong

    2014-06-01

    The conventional photographs only record the sum total of light rays of each point on image plane so that they tell little about the amount of light traveling along individual rays. The focus and lens aberration problems have challenged photographers since the very beginning therefore light field photography was proposed to solve these problems. Lens array and multiple camera systems are used to capture 4D light rays, by reordering the different views of scene from multiple directions. The coded aperture is another method to encode the angular information in frequency domain. However, infrared light field sensing is still widely opening to research. In the paper, we will propose micro plane mirror optics together with compressive sensing algorithm to record light field in infrared spectrum. The micro mirror reflects objects irradiation and forms a virtual image behind the plane in which the mirror lies. The Digital Micromirror (DMD) consists of millions microscale mirrors which work as CCD array in the camera and it is controlled separately so as to project linear combination of object image onto lens. Coded aperture could be utilized to control angular resolution of infrared light rays. The carbon nanotube based infrared detector, which has ultra high signal to noise ratio and ultra fast responsibility, will sum up all image information on it without image distortion. Based on a number of measurements, compressive sensing algorithm was used to recover images from distinct angles, which could compute different views of scene to reconstruct infrared light field scence. Two innovative applications of full image recovery using nano scale photodetector and DMD based synthetic aperture photography will also be discussed in this paper.

  4. Thermal Infrared Pedestrian Image Segmentation Using Level Set Method

    PubMed Central

    Qiao, Yulong; Wei, Ziwei; Zhao, Yan

    2017-01-01

    The edge-based active contour model has been one of the most influential models in image segmentation, in which the level set method is usually used to minimize the active contour energy function and then find the desired contour. However, for infrared thermal pedestrian images, the traditional level set-based method that utilizes the gradient information as edge indicator function fails to provide the satisfactory boundary of the target. That is due to the poorly defined boundaries and the intensity inhomogeneity. Therefore, we propose a novel level set-based thermal infrared image segmentation method that is able to deal with the above problems. Specifically, we firstly explore the one-bit transform convolution kernel and define a soft mark, from which the target boundary is enhanced. Then we propose a weight function to adaptively adjust the intensity of the infrared image so as to reduce the intensity inhomogeneity. In the level set formulation, those processes can adaptively adjust the edge indicator function, from which the evolving curve will stop at the target boundary. We conduct the experiments on benchmark infrared pedestrian images and compare our introduced method with the state-of-the-art approaches to demonstrate the excellent performance of the proposed method. PMID:28783080

  5. New technology of functional infrared imaging and its clinical applications

    NASA Astrophysics Data System (ADS)

    Yang, Hongqin; Xie, Shusen; Lu, Zukang; Liu, Zhongqi

    2006-01-01

    With improvements in infrared camera technology, the promise of reduced costs and noninvasive character, infrared thermal imaging resurges in medicine. The paper introduces a new technology of functional infrared imaging, thermal texture maps (TTM), which is not only an apparatus for thermal radiation imaging but also a new method for revealing the relationship between the temperature distribution of the skin surface and the emission field inside body. The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Any disease in the body is associated with an alteration of the thermal distribution of human body. Infrared thermography is noninvasive, so it is the best choice for studying the physiology of thermoregulation and the thermal dysfunction associated with diseases. Reading and extracting information from the thermograms is a complex and subjective task that can be greatly facilitated by computerized techniques. Through image processing and measurement technology, surface or internal radiation sources can be non-invasively distinguished through extrapolation. We discuss the principle, the evaluation procedure and the effectiveness of TTM technology in the clinical detection and diagnosis of cancers, especially in their early stages and other diseases by comparing with other imaging technologies, such as ultrasound. Several study cases are given to show the effectiveness of this method. At last, we point out the applications of TTM technology in the research field of traditional medicine.

  6. 2001 Mars Odyssey Images Earth (Visible and Infrared)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    2001 Mars Odyssey's Thermal Emission Imaging System (THEMIS) acquired these images of the Earth using its visible and infrared cameras as it left the Earth. The visible image shows the thin crescent viewed from Odyssey's perspective. The infrared image was acquired at exactly the same time, but shows the entire Earth using the infrared's 'night-vision' capability. Invisible light the instrument sees only reflected sunlight and therefore sees nothing on the night side of the planet. In infrared light the camera observes the light emitted by all regions of the Earth. The coldest ground temperatures seen correspond to the nighttime regions of Antarctica; the warmest temperatures occur in Australia. The low temperature in Antarctica is minus 50 degrees Celsius (minus 58 degrees Fahrenheit); the high temperature at night in Australia 9 degrees Celsius(48.2 degrees Fahrenheit). These temperatures agree remarkably well with observed temperatures of minus 63 degrees Celsius at Vostok Station in Antarctica, and 10 degrees Celsius in Australia. The images were taken at a distance of 3,563,735 kilometers (more than 2 million miles) on April 19,2001 as the Odyssey spacecraft left Earth.

  7. Thermal Infrared Pedestrian Image Segmentation Using Level Set Method.

    PubMed

    Qiao, Yulong; Wei, Ziwei; Zhao, Yan

    2017-08-06

    The edge-based active contour model has been one of the most influential models in image segmentation, in which the level set method is usually used to minimize the active contour energy function and then find the desired contour. However, for infrared thermal pedestrian images, the traditional level set-based method that utilizes the gradient information as edge indicator function fails to provide the satisfactory boundary of the target. That is due to the poorly defined boundaries and the intensity inhomogeneity. Therefore, we propose a novel level set-based thermal infrared image segmentation method that is able to deal with the above problems. Specifically, we firstly explore the one-bit transform convolution kernel and define a soft mark, from which the target boundary is enhanced. Then we propose a weight function to adaptively adjust the intensity of the infrared image so as to reduce the intensity inhomogeneity. In the level set formulation, those processes can adaptively adjust the edge indicator function, from which the evolving curve will stop at the target boundary. We conduct the experiments on benchmark infrared pedestrian images and compare our introduced method with the state-of-the-art approaches to demonstrate the excellent performance of the proposed method.

  8. Near-infrared imaging spectrometer onboard NEXTSat-1

    NASA Astrophysics Data System (ADS)

    Jeong, Woong-Seob; Park, Sung-Joon; Moon, Bongkon; Lee, Dae-Hee; Pyo, Jeonghyun; Park, Won-Kee; Park, Youngsik; Kim, Il-Joong; Ko, Kyeongyeon; Lee, Dukhang; Kim, Min Gyu; Kim, Minjin; Ko, Jongwan; Shin, Goo-Hwan; Chae, Jangsoo; Matsumoto, Toshio

    2016-07-01

    The NISS (Near-infrared Imaging Spectrometer for Star formation history) is the near-infrared instrument optimized to the first next generation of small satellite (NEXTSat-1) in Korea. The spectro-photometric capability in the near-infrared range is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. For those purposes, the NISS will perform the large areal imaging spectroscopic survey for astronomical objects and low background regions. We have paid careful attention to reduce the volume and to increase the total throughput. The newly implemented off-axis optics has a wide field of view (2° x 2°) and a wide wavelength range from 0.9 to 3.8μm. The mechanical structure is designed to consider launching conditions and passive cooling of the telescope. The compact dewar after relay-lens module is to operate the infrared detector and spectral filters at 80K stage. The independent integration of relay-lens part and primary-secondary mirror assembly alleviates the complex alignment process. We confirmed that the telescope and the infrared sensor can be cooled down to around 200K and 80K, respectively. The engineering qualification model of the NISS was tested in the space environment including the launch-induced vibration and shock. The NISS will be expected to demonstrate core technologies related to the development of the future infrared space telescope in Korea.

  9. Near-infrared Molecular Probes for In Vivo Imaging

    PubMed Central

    Zhang, Xuan; Bloch, Sharon; Akers, Walter; Achilefu, Samuel

    2012-01-01

    Cellular and tissue imaging in the near-infrared (NIR) wavelengths between 700 and 900 nm is advantageous for in vivo because of the low absorption of biological molecules in this region. This Unit presents protocols for small animal imaging using planar and fluorescence lifetime imaging techniques. Included is an overview of NIR fluorescence imaging of cells and small animals using NIR organic fluorophores, nanoparticles, and multimodal imaging probes. The development, advantages, and application of NIR fluorescent probes that have been used for in vivo imaging are also summarized. The use of NIR agents in conjunction with visible dyes and considerations in selecting imaging agents are discussed. We conclude with practical considerations for the use of these dyes in cell and small animal imaging applications. PMID:22470154

  10. Near-infrared image filtering for pedestrian surveillance

    NASA Astrophysics Data System (ADS)

    Rodhouse, Kathryn N.; Watkins, Steve E.

    2012-04-01

    An image processing approach is investigated which has low computational complexity and which uses nearinfrared imaging. The target application is a surveillance system for pedestrian traffic. Near-infrared light has potential benefits including non-visible illumination requirements. An image-processing algorithm for monitoring pedestrians is implemented in outdoor and indoor environments with frequent traffic. The image sets consist of persons walking in the presence of foreground as well as background objects at different times during the day. The complex, cluttered environments are highly variable, e.g. shadows and moving foliage. The approach consists of thresholding an image and creating a silhouette of selected objects in the scene. Filtering is used to eliminate noise. The computational results using MATLABshow that the algorithm can effectively manipulate near-infrared images and that effective filtering is possible even in the presence of system noise and environmental clutter. The potential for automated surveillance based on near-infrared imaging and neural-network based feature processing is discussed.

  11. Spherical warm shield design for infrared imaging systems

    NASA Astrophysics Data System (ADS)

    Tian, Qijie; Chang, Songtao; He, Fengyun; Li, Zhou; Qiao, Yanfeng

    2017-09-01

    The F-number matching is the primary means to suppress stray radiation for infrared imaging systems. However, it is difficult to achieve exact F-number matching, owing to the restriction from detectors, or multiple F-number design. Hence, an additional shield is required to block the certain thermal radiation. Typical shield is called flat warm shield, which is flat and operates at room temperature. For flat warm shield, it cannot suppress stray radiation while achieving F-number matching. To overcome the restriction, a spherical reflective warm shield is required. First of all, the detailed theory of spherical warm shield design is developed on basis of the principle that stray radiation cannot directly reach the infrared focal plane array. According to the theory developed above, a polished spherical warm shield, whose radius is 18 mm, is designed to match an F/2 infrared detector with an F/4 infrared imaging system. Then, the performance and alignment errors of the designed spherical warm shield are analyzed by simulation. Finally, a contrast experiment between the designed spherical warm shield and two differently processed flat warm shields is performed in a chamber with controllable inside temperatures. The experimental results indicate that the designed spherical warm shield cannot only achieve F-number matching but suppress stray radiation sufficiently. Besides, it is demonstrated that the theory of spherical warm shield design developed in this paper is valid and can be employed by arbitrary infrared imaging systems.

  12. MIRIADS: miniature infrared imaging applications development system description and operation

    NASA Astrophysics Data System (ADS)

    Baxter, Christopher R.; Massie, Mark A.; McCarley, Paul L.; Couture, Michael E.

    2001-10-01

    A cooperative effort between the U.S. Air Force Research Laboratory, Nova Research, Inc., the Raytheon Infrared Operations (RIO) and Optics 1, Inc. has successfully produced a miniature infrared camera system that offers significant real-time signal and image processing capabilities by virtue of its modular design. This paper will present an operational overview of the system as well as results from initial testing of the 'Modular Infrared Imaging Applications Development System' (MIRIADS) configured as a missile early-warning detection system. The MIRIADS device can operate virtually any infrared focal plane array (FPA) that currently exists. Programmable on-board logic applies user-defined processing functions to the real-time digital image data for a variety of functions. Daughterboards may be plugged onto the system to expand the digital and analog processing capabilities of the system. A unique full hemispherical infrared fisheye optical system designed and produced by Optics 1, Inc. is utilized by the MIRIADS in a missile warning application to demonstrate the flexibility of the overall system to be applied to a variety of current and future AFRL missions.

  13. Near-infrared Imaging of Unidentified IRAS Sources

    NASA Astrophysics Data System (ADS)

    Meyer, A. W.; Rank, D.; Gilmore, K.; Temi, P.

    1992-05-01

    The performance of near-infrared imaging arrays permits photometry and mapping of infrared sources with an efficiency comparable to that provided in the visible by CCD's. An imaging survey of a target list to obtain near-infrared positions, magnitudes and morphology can be pursued at a rate limited by telescope slewing and pointing speed. The Lick Observatory NICMOS array camera was used on an instrument time-available basis to search for any near-infrared counterparts to a sample of unidentified entries in the IRAS Point Source Catalog (PSC). 36 candidates for imaging were selected from 900 unidentified PSC sources (NID=0) within a 30-degree diameter area. Additional criteria used to produce a short list of candidates included flux > 1 Jansky, good flux quality, and 2-band colors similar to those of galaxies, or at least not those of stellar photospheres. Many of the candidates were found to coincide with anonymous galaxies on the Palomar Sky Survey prints. Most of the sources observed are bright in the near-infrared, with J or K magnitudes in the range of 11 to 13.

  14. Hubble Infrared Pure Parallel Imaging Extragalactic Survey {HIPPIES}

    NASA Astrophysics Data System (ADS)

    Yan, Haojing

    2010-09-01

    WFC3 has demonstrated its unprecedented power in probing the early universe. Here we propose to continue our pure parallel program with this instrument to search for LBGs at z 6-8. Our program, dubbed as the Hubble Infrared Pure Parallel Imaging Extragalactic Survey {"HIPPIES"}, will carry on the HST pure parallel legacy in the new decade. We request 205 orbits in Cycle-18, which will spread over 50 high Galactic latitude visits {|b|>20deg} that last for 3 orbits and longer, resulting a total survey area of 230 square arcmin. Combining the WFC3 pure parallel observations in Cycle-17, HIPPIES will complement other existing and forthcoming WFC3 surveys, and will make unique contributions to the study in the new redshift frontier because of the randomness of the survey fields. To make full use of the parallel opportunities, HIPPIES will also take ACS parallels to study LBGs at z 5-6. Being a pure parallel program, HIPPIES will only make very limited demand on the scarce HST resources, but will have potentially large scientific returns. As in previous cycle, we waive all proprietary data rights, and will make the enhanced data products public in a timely manner. {1} The WFC3 part of HIPPIES aims at the most luminous LBG population at z 8 and z 7. As its survey fields are random and completely uncorrelated, the number counts of the bright LBGs from HIPPIES will be least affected by the "cosmic variance", and hence we will be able to obtain the best constraint on the bright-end of the LBG luminosity function at z 8 and 7. Comparing the result from HIPPIES to the hydrodynamic simulations will test the input physics and provide insight into the nature of the early galaxies. {2} The z 7-8 candidates from HIPPIES, most of which will be the brightest ones that any surveys would be able to find, will have the best chance to be spectroscopically confirmed at the current 8-10m telescopes. {3} The ACS part of HIPPIES will produce a significant number of candidate LBGs at z 5 and

  15. AO Infrared Imaging of M71 Core

    NASA Astrophysics Data System (ADS)

    Ruberg, Andres; Richer, H.; Brewer, J.; Davis, S.; Hickson, P.; Knigge, C.; Dieball, A.; Hurley, J.; Shara, M.; Hansen, B.; Gebhardt, K.; Fahlman, G.

    2007-05-01

    In this poster we present infrared H and K AO data taken with ALTAIR/NIRI on Gemini North of the globular cluster Messier 71. This data represents approximately 22ks of observations in H and 17ks in K, in a field 22x22 arcsec centered on the core of the cluster. These data were secured under superb conditions and will provide an excellent opportunity to pursue our scientific goals. These goals include the observation of the end of hydrogen-burning main sequence in a moderately metal-rich globular cluster and, by fitting the brightness profile and looking for deviations from a King model, we will search for evidence for a central black hole in this cluster.

  16. High dynamic range infrared radiometry and imaging

    NASA Technical Reports Server (NTRS)

    Coon, Darryl D.; Karunasiri, R. P. G.; Bandara, K. M. S. V.

    1988-01-01

    The use is described of cryogenically cooled, extrinsic silicon infrared detectors in an unconventional mode of operation which offers an unusually large dynamic range. The system performs intensity-to-frequency conversion at the focal plane via simple circuits with very low power consumption. The incident IR intensity controls the repetition rate of short duration output pulses over a pulse rate dynamic range of about 10(6). Theory indicates the possibility of monotonic and approx. linear response over the full dynamic range. A comparison between the theoretical and the experimental results shows that the model provides a reasonably good description of experimental data. Some measurements of survivability with a very intense IR source were made on these devices and found to be very encouraging. Evidence continues to indicate that some variations in interpulse time intervals are deterministic rather than probabilistic.

  17. THE MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES. II. EXTREME PHYSICAL CONDITIONS AND THEIR EFFECTS ON THE X{sub co} FACTOR

    SciTech Connect

    Papadopoulos, Padelis P.; Van der Werf, Paul; Xilouris, E.; Isaak, Kate G.; Gao, Yu E-mail: pvdwerf@strw.leidenuniv.nl E-mail: kisaak@rssd.esa.int

    2012-05-20

    In this work, we conclude the analysis of our CO line survey of luminous infrared galaxies (LIRGs: L{sub IR} {approx}> 10{sup 11} L{sub Sun }) in the local universe (Paper I) by focusing on the influence of their average interstellar medium (ISM) properties on the total molecular gas mass estimates via the so-called X{sub co} = M(H{sub 2})/L{sub co,1-0} factor. One-phase radiative transfer models of the global CO spectral line energy distributions (SLEDs) yield an X{sub co} distribution with (X{sub co}) {approx} (0.6 {+-} 0.2) M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1} over a significant range of average gas densities, temperatures, and dynamic states. The latter emerges as the most important parameter in determining X{sub co}, with unbound states yielding low values and self-gravitating states yielding the highest ones. Nevertheless, in many (U)LIRGs where available higher-J CO lines (J = 3-2, 4-3, and/or J = 6-5) or HCN line data from the literature allow a separate assessment of the gas mass at high densities ({>=}10{sup 4} cm{sup -3}) rather than a simple one-phase analysis, we find that near-Galactic X{sub co} {approx} (3-6) M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1} values become possible. We further show that in the highly turbulent molecular gas in ULIRGs, a high-density component will be common and can be massive enough for its high X{sub co} to dominate the average value for the entire galaxy. Using solely low-J CO lines to constrain X{sub co} in such environments (as has been the practice up until now) may have thus resulted in systematic underestimates of molecular gas mass in ULIRGs, as such lines are dominated by a warm, diffuse, and unbound gas phase with low X{sub co} but very little mass. Only well-sampled high-J CO SLEDs (J = 3-2 and higher) and/or multi-J observations of heavy rotor molecules (e.g., HCN) can circumvent such a bias, and the latter type of observations may have actually provided early evidence of it in local ULIRGs. The only

  18. Infrared and visible image fusion with spectral graph wavelet transform.

    PubMed

    Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Zong, Jing-guo

    2015-09-01

    Infrared and visible image fusion technique is a popular topic in image analysis because it can integrate complementary information and obtain reliable and accurate description of scenes. Multiscale transform theory as a signal representation method is widely used in image fusion. In this paper, a novel infrared and visible image fusion method is proposed based on spectral graph wavelet transform (SGWT) and bilateral filter. The main novelty of this study is that SGWT is used for image fusion. On the one hand, source images are decomposed by SGWT in its transform domain. The proposed approach not only effectively preserves the details of different source images, but also excellently represents the irregular areas of the source images. On the other hand, a novel weighted average method based on bilateral filter is proposed to fuse low- and high-frequency subbands by taking advantage of spatial consistency of natural images. Experimental results demonstrate that the proposed method outperforms seven recently proposed image fusion methods in terms of both visual effect and objective evaluation metrics.

  19. Near infrared fluorescence for image-guided surgery

    PubMed Central

    2012-01-01

    Near infrared (NIR) image-guided surgery holds great promise for improved surgical outcomes. A number of NIR image-guided surgical systems are currently in preclinical and clinical development with a few approved for limited clinical use. In order to wield the full power of NIR image-guided surgery, clinically available tissue and disease specific NIR fluorophores with high signal to background ratio are necessary. In the current review, the status of NIR image-guided surgery is discussed along with the desired chemical and biological properties of NIR fluorophores. Lastly, tissue and disease targeting strategies for NIR fluorophores are reviewed. PMID:23256079

  20. Standoff midwave infrared hyperspectral imaging of ship plumes

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Gagnon, Jean-Philippe; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Chamberland, Martin; Marcotte, Frédérick

    2016-05-01

    Characterization of ship plumes is very challenging due to the great variety of ships, fuel, and fuel grades, as well as the extent of a gas plume. In this work, imaging of ship plumes from an operating ferry boat was carried out using standoff midwave (3-5 μm) infrared hyperspectral imaging. Quantitative chemical imaging of combustion gases was achieved by fitting a radiative transfer model. Combustion efficiency maps and mass flow rates are presented for carbon monoxide (CO) and carbon dioxide (CO2). The results illustrate how valuable information about the combustion process of a ship engine can be successfully obtained using passive hyperspectral remote sensing imaging.

  1. Standoff midwave infrared hyperspectral imaging of ship plumes

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Gagnon, Jean-Philippe; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Chamberland, Martin

    2016-10-01

    Characterization of ship plumes is very challenging due to the great variety of ships, fuel, and fuel grades, as well as the extent of a gas plume. In this work, imaging of ship plumes from an operating ferry boat was carried out using standoff midwave (3-5 μm) infrared hyperspectral imaging. Quantitative chemical imaging of combustion gases was achieved by fitting a radiative transfer model. Combustion efficiency maps and mass flow rates are presented for carbon monoxide (CO) and carbon dioxide (CO2). The results illustrate how valuable information about the combustion process of a ship engine can be successfully obtained using passive hyperspectral remote sensing imaging.

  2. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.

    PubMed

    Palukuru, Uday P; Hanifi, Arash; McGoverin, Cushla M; Devlin, Sean; Lelkes, Peter I; Pleshko, Nancy

    2016-07-05

    Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model

  3. Processing infrared images of aircraft lapjoints

    NASA Technical Reports Server (NTRS)

    Syed, Hazari; Winfree, William P.; Cramer, K. E.

    1992-01-01

    Techniques for processing IR images of aging aircraft lapjoint data are discussed. Attention is given to a technique for detecting disbonds in aircraft lapjoints which clearly delineates the disbonded region from the bonded regions. The technique is weak on unpainted aircraft skin surfaces, but can be overridden by using a self-adhering contact sheet. Neural network analysis on raw temperature data has been shown to be an effective tool for visualization of images. Numerical simulation results show the above processing technique to be an effective tool in delineating the disbonds.

  4. Airborne Visible / Infrared Imaging Spectrometer AVIS: Design, Characterization and Calibration

    PubMed Central

    Oppelt, Natascha; Mauser, Wolfram

    2007-01-01

    The Airborne Visible / Infrared imaging Spectrometer AVIS is a hyperspectral imager designed for environmental monitoring purposes. The sensor, which was constructed entirely from commercially available components, has been successfully deployed during several experiments between 1999 and 2007. We describe the instrument design and present the results of laboratory characterization and calibration of the system's second generation, AVIS-2, which is currently being operated. The processing of the data is described and examples of remote sensing reflectance data are presented.

  5. Discovery in translation: near-infrared fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Sevick-Muraca, Eva M.

    2012-01-01

    When translating new imaging modalities into the clinic, one can expect new discoveries. Owing to the high photon count rates, near-infrared fluorescence (NIRF) offers exquisite sensitivity and high temporal resolution that enable new insights into human disorders. Herein, the physics of NIRF are highlighted and compared to those involved in nuclear medicine techniques. The initial application of investigational NIRF involving characterization of the lymphatics in humans and animal models of human disease yields discoveries not otherwise attainable with conventional imaging.

  6. An update of commercial infrared sensing and imaging instruments

    NASA Technical Reports Server (NTRS)

    Kaplan, Herbert

    1989-01-01

    A classification of infrared sensing instruments by type and application, listing commercially available instruments, from single point thermal probes to on-line control sensors, to high speed, high resolution imaging systems is given. A review of performance specifications follows, along with a discussion of typical thermographic display approaches utilized by various imager manufacturers. An update report on new instruments, new display techniques and newly introduced features of existing instruments is given.

  7. GPU-accelerated image reconstruction for optical and infrared interferometry

    NASA Astrophysics Data System (ADS)

    Baron, Fabien; Kloppenborg, Brian

    2010-07-01

    The advent of GPU hardware and associated software libraries for scientific computing renders possible acceleration of parallelisable problems by a typical factor of 10-100. We present the first GPU-accelerated and open source image reconstruction software for optical/infrared interferometry, making use of the OpenCL library. Finally we evaluate how this improvement in speed may translate in terms of improvement in image reconstruction quality for currently computationnally intensive algorithms.

  8. Differential thermal infrared imaging for environmental inspection

    NASA Astrophysics Data System (ADS)

    Merla, Arcangelo; Di Donato, Luigi; Di Fazio, Micaela; Greco, Pasquale; Rainone, Mario L.

    2014-01-01

    Aerial differential thermal imaging has been proposed to characterize the ground temperature distribution of two solid waste landfills. The differential approach permitted detection of regions with thermal abnormalities potentially associated with either biogas leakage and migration or improper landfill settlement and management. Methods, results, limits, and potentialities of the proposed approach are discussed.

  9. Infrared Spectroscopic Imaging for Prostate Pathology Practice

    DTIC Science & Technology

    2009-03-01

    Llorà X (2002) Genetics based machine learning using fine grained parallelism for data mining. Doctoral dissertation, Enginyeria i Arquitectura La Salle...L., Wang, S. Q . and Bhargava, R., “FTIR images,” Anal. Chem. 73, 360A-369A (2001). [7] Fernandez, D. C., Bhargava, R., Hewitt, S. M. and Levin, I

  10. Affordable, Accessible, Immediate: Capture Stunning Images with Digital Infrared Photography

    ERIC Educational Resources Information Center

    Snyder, Mark

    2011-01-01

    Technology educators who teach digital photography should consider incorporating an infrared (IR) photography component into their program. This is an area where digital photography offers significant benefits. Either type of IR imaging is very interesting to explore, but traditional film-based IR photography is difficult and expensive. In…

  11. Infrared Thermal Imaging as a Tool in University Physics Education

    ERIC Educational Resources Information Center

    Mollmann, Klaus-Peter; Vollmer, Michael

    2007-01-01

    Infrared thermal imaging is a valuable tool in physics education at the university level. It can help to visualize and thereby enhance understanding of physical phenomena from mechanics, thermal physics, electromagnetism, optics and radiation physics, qualitatively as well as quantitatively. We report on its use as lecture demonstrations, student…

  12. Affordable, Accessible, Immediate: Capture Stunning Images with Digital Infrared Photography

    ERIC Educational Resources Information Center

    Snyder, Mark

    2011-01-01

    Technology educators who teach digital photography should consider incorporating an infrared (IR) photography component into their program. This is an area where digital photography offers significant benefits. Either type of IR imaging is very interesting to explore, but traditional film-based IR photography is difficult and expensive. In…

  13. Infrared Thermal Imaging as a Tool in University Physics Education

    ERIC Educational Resources Information Center

    Mollmann, Klaus-Peter; Vollmer, Michael

    2007-01-01

    Infrared thermal imaging is a valuable tool in physics education at the university level. It can help to visualize and thereby enhance understanding of physical phenomena from mechanics, thermal physics, electromagnetism, optics and radiation physics, qualitatively as well as quantitatively. We report on its use as lecture demonstrations, student…

  14. Infrared imaging results of an excited planar jet

    SciTech Connect

    Farrington, R.B.

    1991-12-01

    Planar jets are used for many applications including heating, cooling, and ventilation. Generally such a jet is designed to provide good mixing within an enclosure. In building applications, the jet provides both thermal comfort and adequate indoor air quality. Increased mixing rates may lead to lower short-circuiting of conditioned air, elimination of dead zones within the occupied zone, reduced energy costs, increased occupant comfort, and higher indoor air quality. This paper discusses using an infrared imaging system to show the effect of excitation of a jet on the spread angle and on the jet mixing efficiency. Infrared imaging captures a large number of data points in real time (over 50,000 data points per image) providing significant advantages over single-point measurements. We used a screen mesh with a time constant of approximately 0.3 seconds as a target for the infrared camera to detect temperature variations in the jet. The infrared images show increased jet spread due to excitation of the jet. Digital data reduction and analysis show change in jet isotherms and quantify the increased mixing caused by excitation. 17 refs., 20 figs.

  15. NOVEL OBSERVATIONS AND POTENTIAL APPLICATIONS USING DIGITAL INFRARED IRIS IMAGING

    PubMed Central

    Roberts, Daniel K.; Lukic, Ana; Yang, Yongyi; Moroi, Sayoko E.; Wilensky, Jacob T.; Wernick, Miles N.

    2017-01-01

    Digital infrared (IR) iris photography using a modified digital camera system was carried out on about 300 subjects seen during routine clinical care and research at one facility. Since this image database offered opportunity to gain new insight into the potential utility of IR iris imaging, it was surveyed for unique image patterns. Then, a selection of photos was compiled that would illustrate the spectrum of this imaging experience. Potentially informative image patterns were observed in subjects with cataracts, diabetic retinopathy, Posner-Schlossman syndrome, iridociliary cysts, long anterior lens zonules, nevi, oculocutaneous albinism, pigment dispersion syndrome, pseudophakia, suspected vascular anomaly, and trauma. Image patterns were often unanticipated regardless of pre-existing information and suggest that IR iris imaging may have numerous potential clinical and research applications, some of which may still not be recognized. These observations suggest further development and study of this technology. PMID:19320317

  16. Performance evaluation of infrared imaging system in field test

    NASA Astrophysics Data System (ADS)

    Wang, Chensheng; Guo, Xiaodong; Ren, Tingting; Zhang, Zhi-jie

    2014-11-01

    Infrared imaging system has been applied widely in both military and civilian fields. Since the infrared imager has various types and different parameters, for system manufacturers and customers, there is great demand for evaluating the performance of IR imaging systems with a standard tool or platform. Since the first generation IR imager was developed, the standard method to assess the performance has been the MRTD or related improved methods which are not perfect adaptable for current linear scanning imager or 2D staring imager based on FPA detector. For this problem, this paper describes an evaluation method based on the triangular orientation discrimination metric which is considered as the effective and emerging method to evaluate the synthesis performance of EO system. To realize the evaluation in field test, an experiment instrument is developed. And considering the importance of operational environment, the field test is carried in practical atmospheric environment. The test imagers include panoramic imaging system and staring imaging systems with different optics and detectors parameters (both cooled and uncooled). After showing the instrument and experiment setup, the experiment results are shown. The target range performance is analyzed and discussed. In data analysis part, the article gives the range prediction values obtained from TOD method, MRTD method and practical experiment, and shows the analysis and results discussion. The experimental results prove the effectiveness of this evaluation tool, and it can be taken as a platform to give the uniform performance prediction reference.

  17. A survey of infrared and visual image fusion methods

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Hai, Jinjin; He, Kangjian

    2017-09-01

    Infrared (IR) and visual (VI) image fusion is designed to fuse multiple source images into a comprehensive image to boost imaging quality and reduce redundancy information, which is widely used in various imaging equipment to improve the visual ability of human and robot. The accurate, reliable and complementary descriptions of the scene in fused images make these techniques be widely used in various fields. In recent years, a large number of fusion methods for IR and VI images have been proposed due to the ever-growing demands and the progress of image representation methods; however, there has not been published an integrated survey paper about this field in last several years. Therefore, we make a survey to report the algorithmic developments of IR and VI image fusion. In this paper, we first characterize the IR and VI image fusion based applications to represent an overview of the research status. Then we present a synthesize survey of the state of the art. Thirdly, the frequently-used image fusion quality measures are introduced. Fourthly, we perform some experiments of typical methods and make corresponding analysis. At last, we summarize the corresponding tendencies and challenges in IR and VI image fusion. This survey concludes that although various IR and VI image fusion methods have been proposed, there still exist further improvements or potential research directions in different applications of IR and VI image fusion.

  18. HST Infrared Imaging of MASSIVE Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Jensen, Joseph B.; Goullaud, Charles; Blakeslee, John; Mitchiner, Casey; Ma, Chung-Pei; Greene, Jenny E.; McConnell, Nicholas J.; Thomas, Jens

    2017-01-01

    We have recently obtained high-resolution HST WFC3/IR F110W (J-band) images of 34 early-type galaxies in the MASSIVE study sample. These galaxies are among the most massive in the local universe, and were chosen to study the connection between supermassive central black holes and their host galaxies. To determine accurate masses for the black holes, we are measuring high-precision surface brightness fluctuation (SBF) distances to the galaxies. The WFC3/IR data also allow us to measure high spatial resolution central surface brightness profiles to understand better the nuclear structure and dynamics of the galaxies. We present a first look at the IR images, profiles, and SBF magnitudes for 34 galaxies in the MASSIVE sample.

  19. EXPLAINING THE [C II]157.7 {mu}m DEFICIT IN LUMINOUS INFRARED GALAXIES-FIRST RESULTS FROM A HERSCHEL/PACS STUDY OF THE GOALS SAMPLE

    SciTech Connect

    Diaz-Santos, T.; Armus, L.; Howell, J. H.; Surace, J. A.; Charmandaris, V.; Murphy, E. J.; Haan, S.; Inami, H.; Malhotra, S.; Meijerink, R.; Stacey, G.; Petric, A. O.; Lu, N.; Veilleux, S.; Van der Werf, P. P.; Lord, S.; Appleton, P.; and others

    2013-09-01

    We present the first results of a survey of the [C II]157.7 {mu}m emission line in 241 luminous infrared galaxies (LIRGs) comprising the Great Observatories All-sky LIRG Survey (GOALS) sample, obtained with the PACS instrument on board the Herschel Space Observatory. The [C II] luminosities, L{sub [C{sub II]}}, of the LIRGs in GOALS range from {approx}10{sup 7} to 2 Multiplication-Sign 10{sup 9} L{sub Sun }. We find that LIRGs show a tight correlation of [C II]/FIR with far-IR (FIR) flux density ratios, with a strong negative trend spanning from {approx}10{sup -2} to 10{sup -4}, as the average temperature of dust increases. We find correlations between the [C II]/FIR ratio and the strength of the 9.7 {mu}m silicate absorption feature as well as with the luminosity surface density of the mid-IR emitting region ({Sigma}{sub MIR}), suggesting that warmer, more compact starbursts have substantially smaller [C II]/FIR ratios. Pure star-forming LIRGs have a mean [C II]/FIR {approx} 4 Multiplication-Sign 10{sup -3}, while galaxies with low polycyclic aromatic hydrocarbon (PAH) equivalent widths (EWs), indicative of the presence of active galactic nuclei (AGNs), span the full range in [C II]/FIR. However, we show that even when only pure star-forming galaxies are considered, the [C II]/FIR ratio still drops by an order of magnitude, from 10{sup -2} to 10{sup -3}, with {Sigma}{sub MIR} and {Sigma}{sub IR}, implying that the [C II]157.7 {mu}m luminosity is not a good indicator of the star formation rate (SFR) for most local LIRGs, for it does not scale linearly with the warm dust emission most likely associated to the youngest stars. Moreover, even in LIRGs in which we detect an AGN in the mid-IR, the majority (2/3) of galaxies show [C II]/FIR {>=} 10{sup -3} typical of high 6.2 {mu}m PAH EW sources, suggesting that most AGNs do not contribute significantly to the FIR emission. We provide an empirical relation between the [C II]/FIR and the specific SFR for star

  20. Mid-infrared luminous quasars in the GOODS-Herschel fields: a large population of heavily obscured, Compton-thick quasars at z ≈ 2

    NASA Astrophysics Data System (ADS)

    Del Moro, A.; Alexander, D. M.; Bauer, F. E.; Daddi, E.; Kocevski, D. D.; McIntosh, D. H.; Stanley, F.; Brandt, W. N.; Elbaz, D.; Harrison, C. M.; Luo, B.; Mullaney, J. R.; Xue, Y. Q.

    2016-02-01

    We present the infrared (IR) and X-ray properties of a sample of 33 mid-IR luminous quasars (νL6 μm ≥ 6 × 1044 erg s-1) at redshift z ≈ 1-3, identified through detailed spectral energy distribution analyses of distant star-forming galaxies, using the deepest IR data from Spitzer and Herschel in the GOODS-Herschel fields. The aim is to constrain the fraction of obscured, and Compton-thick (CT, NH > 1.5 × 1024 cm-2) quasars at the peak era of nuclear and star formation activities. Despite being very bright in the mid-IR band, ≈30 per cent of these quasars are not detected in the extremely deep 2 and 4 Ms Chandra X-ray data available in these fields. X-ray spectral analysis of the detected sources reveals that the majority (≈67 per cent) are obscured by column densities NH > 1022 cm-2; this fraction reaches ≈80 per cent when including the X-ray-undetected sources (9 out of 33), which are likely to be the most heavily obscured, CT quasars. We constrain the fraction of CT quasars in our sample to be ≈24-48 per cent, and their space density to be Φ = (6.7 ± 2.2) × 10-6 Mpc-3. From the investigation of the quasar host galaxies in terms of star formation rates (SFRs) and morphological distortions, as a sign of galaxy mergers/interactions, we do not find any direct relation between SFRs and quasar luminosity or X-ray obscuration. On the other hand, there is tentative evidence that the most heavily obscured quasars have, on average, more disturbed morphologies than the unobscured/moderately obscured quasar hosts, which preferentially live in undisturbed systems. However, the fraction of quasars with disturbed morphology amongst the whole sample is ≈40 per cent, suggesting that galaxy mergers are not the main fuelling mechanism of quasars at z ≈ 2.

  1. Research of Registration Approaches of Thermal Infrared Images and Intensity Images of Point Cloud

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wei, Z.; Liu, X.; Yang, Z.

    2017-09-01

    In order to realize the analysis of thermal energy of the objects in 3D vision, the registration approach of thermal infrared images and TLS (Terrestrial Laser Scanner) point cloud was studied. The original data was pre-processed. For the sake of making the scale and brightness contrast of the two kinds of data meet the needs of basic matching, the intensity image of point cloud was produced and projected to spherical coordinate system, histogram equalization processing was done for thermal infrared image.This paper focused on the research of registration approaches of thermal infrared images and intensity images of point cloud based on SIFT EOH-SIFT and PIIFD operators. The latter of which is usually used for medical image matching with different spectral character. The comparison results of the experiments showed that PIIFD operator got much more accurate feature point correspondences compared to SIFT and EOH-SIFT operators. The thermal infrared image and intensity image also have ideal overlap results by quadratic polynomial transformation. Therefore, PIIFD can be used as the basic operator for the registration of thermal infrared images and intensity images, and the operator can also be further improved by incorporating the iteration method.

  2. Infrared Sensor and Imaging System. Phase 1.

    DTIC Science & Technology

    1991-01-01

    The contractor believes that this IR sensor & imaging technology has direct application for SDIO missions in surveillance, target acquisition and...dual role of IR detection target and display screen. This technology makes use of th4 dichroism of certain PDs coated onto a thin membrane using the...located outside the camera cell in order to allow focusing without breaking the vacuum of the cell (to be discussed later). The thermal target was

  3. Femtowatt incoherent image conversion from mid-infrared light to near-infrared light

    NASA Astrophysics Data System (ADS)

    Huang, Nan; Liu, Hongjun; Wang, Zhaolu; Han, Jing; Zhang, Shuan

    2017-03-01

    We report on the experimental conversion imaging of an incoherent continuous-wave dim source from mid-infrared light to near-infrared light with a lowest input power of 31 femtowatt (fW). Incoherent mid-infrared images of light emission from a heat lamp bulb with an adjustable power supply at window wavelengths ranging from 2.9 µm to 3.5 µm are used for upconversion. The sum-frequency generation is realized in a laser cavity with the resonant wavelength of 1064 nm pumped by an LD at 806 nm built around a periodically poled lithium niobate (PPLN) crystal. The converted infrared image in the wavelength range ~785 nm with a resolution of about 120  ×  70 is low-noise detected using a silicon-based camera. By optimizing the system parameters, the upconversion quantum efficiency is predicted to be 28% for correctly polarized, on-axis and phase-matching light.

  4. Detecting Exomoons Around Self-Luminous Giant Exoplanets Through Polarization

    NASA Technical Reports Server (NTRS)

    Sengupta, Sujan; Marley, Mark Scott

    2016-01-01

    Many of the directly imaged self-luminous gas giant exoplanets have been found to have cloudy atmo- spheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time resolved linear polarization signal. The peak amplitude of such time dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time resolved imaging polarimetry. Adopting detailed atmospheric models for several values of effective temperature and surface gravity which are appropriate for self-luminous exoplanets, we present the polarization profiles of these objects in the infrared during transit phase and estimate the peak amplitude of polarization that occurs during the the inner contacts of the transit ingress/egress phase. The peak polarization is predicted to range between 0.1 and 0.3 % in the infrared.

  5. Advances in submicron infrared vibrational band chemical imaging

    NASA Astrophysics Data System (ADS)

    Dragnea, Bogdan; Leone, Stephen R.

    The technique of infrared near-field microscopy with submicron resolution is an important addition to the chemical sciences arsenal in the last few years. Although related to highly successful scanning optical probe microscopies in the visible, infrared near-field microscopy had to overcome several obstacles, which slowed its development. This review illustrates the history as well as the state of the art of this new field, its limitations and perspectives. At present, two main experimental approaches have been successful: the apertureless metal tip approach and the fibre tip aperture approach. The two variants are compared from the point of view of resolution, ease of implementation in the laboratory and image formation mechanisms. The techniques using chemically specific vibrational absorption contrast are emphasized here, in the general context of chemical microscopy, which includes other methods such as chemical force, Raman and fluorescence microscopies. The phenomenon of surface-enhanced infrared absorption is also mentioned in relation to near-field infrared microscopy, with regard to important aspects of image formation and possible improvements. The main advantages of spatial resolution, chemical sensitivity, non-intrusiveness, minute amounts of specimen and the possibility of quantitative analytical measurements make infrared near-field microscopy a powerful tool. We also examine here possible future applications that go beyond the limits of classical vibrational microspectroscopy, as well as directions for additional advances.

  6. Target information enhancement using polarized component of infrared images

    NASA Astrophysics Data System (ADS)

    Qiu, Tiaowen; Zhang, Yan; Li, Jicheng; Yang, Weiping

    2014-11-01

    After a deep study of the principle of infrared polarization imaging detection, the infrared polarization information of target and background is modeled. Considering the partial polarized light can be obtained by the superposition of natural light (unpolarized light) and linearly polarized component while ignoring the component of circularly polarized light, and combing with the degree of polarization (DOLP) and the angle of polarization (AOP), the infrared polarization information is expressed by the multiplying of an intensity factor by a polarization factor. What we have modeled not only can be used to analyze the infrared polarization information visually and profoundly, but also make the extraction of polarized features convenient. Then, faced with different application fields and based on the model, a target information enhancement program is proposed, which is achieved by extracting a linear polarization component in a certain polarized direction. This program greatly improves the contrast between target and background, and can be applied in target detection or identification, especially for camouflage or stealth target. At last, we preliminarily tested the proposed enhancement method exploiting infrared polarization images obtained indoor and outdoor, which demonstrates the effectiveness of the enhancement program.

  7. Relationships Between MRI Breast Imaging-Reporting and Data System (BI-RADS) Lexicon Descriptors and Breast Cancer Molecular Subtypes: Internal Enhancement is Associated with Luminal B Subtype.

    PubMed

    Grimm, Lars J; Zhang, Jing; Baker, Jay A; Soo, Mary S; Johnson, Karen S; Mazurowski, Maciej A

    2017-03-13

    The aim of this study was to determine the associations between breast MRI findings using the Breast Imaging-Reporting and Data System (BI-RADS) lexicon descriptors and breast cancer molecular subtypes. In this retrospective, IRB-approved, single institution study MRIs from 278 women with breast cancer were reviewed by one of six fellowship-trained breast imagers. Readers reported BI-RADS descriptors for breast masses (shape, margin, internal enhancement) and non-mass enhancement (distribution, internal enhancement). Pathology reports were reviewed for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2). Surrogates were used to categorize tumors by molecular subtype: ER/PR+, HER2- (luminal A); ER/PR+, HER2+ (luminal B); ER/PR-, HER2+ (HER2); ER/PR/HER2- (basal). A univariate logistic regression model was developed to identify associations between BI-RADS descriptors and molecular subtypes. Internal enhancement for mass and non-mass enhancement was combined for analysis. There was an association between mass shape and basal subtype (p = 0.039), which was more frequently round (17.1%) than other subtypes (range: 0-8.3%). In addition, there was an association between mass margin and HER2 subtype (p = 0.040), as HER2 cancers more frequently had a smooth margin (33.3%) than other subtypes (range: 4.2-17.1%). Finally, there was an association between internal enhancement and luminal B subtype (p = 0.003), with no cases of luminal B cancer demonstrating homogeneous internal enhancement versus a range of 10.9-23.5% for other subtypes. There are associations between breast cancer molecular subtypes and lesion appearance on MRI using the BI-RADS lexicon.

  8. Low-Cost Satellite Infrared Imager Study

    DTIC Science & Technology

    2007-11-02

    Wavebands Instrument Mass GSD Swath Orbit Altitude Advanced Along-Track Scanning Radiometer (AATSR)* VIS, NIR, SWIR, MWIR, LWIR 101 kg 1 km 500 km 782...Spacecraft mass 8211 kg Payload mass 101 kg Pointing accuracy 0.5’ per axis Orbit altitude 800 km Imager Parameter Value Waveband (MWIR) 3.40 – 4.12...of the entire 92 kg spacecraft mass . The key mission objective of BIRD during it’s one year mission life, which began in October of 2001, was hot

  9. Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry.

    PubMed

    Li, Yue; Shrestha, Bindesh; Vertes, Akos

    2007-01-15

    An atmospheric pressure (AP) MALDI imaging interface was developed for an orthogonal acceleration time-of-flight mass spectrometer and utilized to analyze peptides, carbohydrates, and other small biomolecules using infrared laser excitation. In molecular imaging experiments, the spatial distribution of mock peptide patterns was recovered with a detection limit of approximately 1 fmol/pixel from a variety of MALDI matrixes. With the use of oversampling for the image acquisition, a spatial resolution of 40 microm, 5 times smaller than the laser spot size, was achieved. This approach, however, required that the analyte was largely removed at the point of analysis before the next point was interrogated. Native water in plant tissue was demonstrated to be an efficient natural matrix for AP infrared laser desorption ionization. In soft fruit tissues from bananas, grapes, and strawberries, potassiated ions of the most abundant metabolites, small carbohydrates, and their clusters produced the strongest peaks in the spectra. Molecular imaging of a strawberry skin sample revealed the distribution of the sucrose, glucose/fructose, and citric acid species around the embedded seeds. Infrared AP MALDI mass spectrometric imaging without the addition of an artificial matrix enables the in vivo investigation of small biomolecules and biological processes (e.g., metabolomics) in their natural environment.

  10. Processing Of Infrared Images By Multiple Microcomputer System

    NASA Astrophysics Data System (ADS)

    Schell, R. R.; Kodres, U. R.; Amir, H.; Wasson, J.; Tao, T. F.

    1980-12-01

    The processing of digitized infrared images in real time requires more processing power than usually provided by a single sequential processor. A system of tightly-coupled 16 bit microcomputers (INTEL 8612) is being developed to provide the needed computational capa-city. This paper first describes an image processing program for detection of moving targets in infrared images. It then describes how several microcomputers on a system bus form a cluster and how a complete star bus switch network permits memory references between clusters. The operating system allocates code and data segments to memory in order to minimize bus contention. Several computational processes are multiprogrammed on each microcomputer. Criteria for partitioning the algorithms into explicit processes and segments is discussed.

  11. An adaptive multi-feature segmentation model for infrared image

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Han, Jin; Zhang, Yi; Bai, Lianfa

    2016-04-01

    Active contour models (ACM) have been extensively applied to image segmentation, conventional region-based active contour models only utilize global or local single feature information to minimize the energy functional to drive the contour evolution. Considering the limitations of original ACMs, an adaptive multi-feature segmentation model is proposed to handle infrared images with blurred boundaries and low contrast. In the proposed model, several essential local statistic features are introduced to construct a multi-feature signed pressure function (MFSPF). In addition, we draw upon the adaptive weight coefficient to modify the level set formulation, which is formed by integrating MFSPF with local statistic features and signed pressure function with global information. Experimental results demonstrate that the proposed method can make up for the inadequacy of the original method and get desirable results in segmenting infrared images.

  12. Image-guided cancer surgery using near-infrared fluorescence

    PubMed Central

    Vahrmeijer, Alexander L.; Hutteman, Merlijn; van der Vorst, Joost R.; van de Velde, C.J.H.; Frangioni, John V.

    2013-01-01

    Paradigm shifts in surgery arise when surgeons are empowered to perform surgery faster, better, and/or less expensively. Optical imaging that exploits invisible near-infrared fluorescent light has the potential to improve cancer surgery outcomes while minimizing anesthesia time and lowering healthcare costs. Because of this, the last few years have witnessed an explosion of proof-of-concept clinical trials in the field. In this review, we introduce the concept of near-infrared fluorescence imaging for cancer surgery, review the clinical trial literature to date, outline the key issues pertaining to imaging system and contrast agent optimization, discuss limitations and leverage, and provide a framework for making the technology available for the routine care of cancer patients in the near future. PMID:23881033

  13. Acousto-optic infrared spectral imager for Pluto fast flyby

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Hillman, J. J.

    1993-01-01

    Acousto-optic tunable filters (AOTF's) enable the design of compact, two-dimensional imaging spectrometers with high spectral and spatial resolution and with no moving parts. Tellurium dioxide AOTF's operate from about 400 nm to nearly 5 microns, and a single device will tune continuously over one octave by changing the RF acoustic frequency applied to the device. An infrared (1.2-2.5 micron) Acousto-Optic Imaging Spectrometer (AImS) was designed that closely conforms to the surface composition mapping objectives of the Pluto Fast Flyby. It features a 75-cm focal length telescope, infrared AOTF, and 256 x 256 NICMOS-3 focal plane array for acquiring narrowband images with a spectral resolving power (lambda/delta(lambda)) exceeding 250. We summarize the instrument design features and its expected performance at the Pluto-Charon encounter.

  14. Infrared spectroscopy and spectroscopic imaging in forensic science.

    PubMed

    Ewing, Andrew V; Kazarian, Sergei G

    2017-01-16

    Infrared spectroscopy and spectroscopic imaging, are robust, label free and inherently non-destructive methods with a high chemical specificity and sensitivity that are frequently employed in forensic science research and practices. This review aims to discuss the applications and recent developments of these methodologies in this field. Furthermore, the use of recently emerged Fourier transform infrared (FT-IR) spectroscopic imaging in transmission, external reflection and Attenuated Total Reflection (ATR) modes are summarised with relevance and potential for forensic science applications. This spectroscopic imaging approach provides the opportunity to obtain the chemical composition of fingermarks and information about possible contaminants deposited at a crime scene. Research that demonstrates the great potential of these techniques for analysis of fingerprint residues, explosive materials and counterfeit drugs will be reviewed. The implications of this research for the examination of different materials are considered, along with an outlook of possible future research avenues for the application of vibrational spectroscopic methods to the analysis of forensic samples.

  15. Onychomycosis diagnosis using fluorescence and infrared imaging systems

    NASA Astrophysics Data System (ADS)

    da Silva, Ana Paula; Fortunato, Thereza Cury; Stringasci, Mirian D.; Kurachi, Cristina; Bagnato, Vanderlei S.; Inada, Natalia M.

    2015-06-01

    Onychomycosis is a common disease of the nail plate, constituting approximately half of all cases of nail infection. Onychomycosis diagnosis is challenging because it is hard to distinguish from other diseases of the nail lamina such as psoriasis, lichen ruber or eczematous nails. The existing methods of diagnostics so far consist of clinical and laboratory analysis, such as: Direct Mycological examination and culture, PCR and histopathology with PAS staining. However, they all share certain disadvantages in terms of sensitivity and specificity, time delay, or cost. This study aimed to evaluate the use of infrared and fluorescence imaging as new non-invasive diagnostic tools in patients with suspected onychomycosis, and compare them with established techniques. For fluorescence analysis, a Clinical Evince (MM Optics®) was used, which consists of an optical assembly with UV LED light source wavelength 400 nm +/- 10 nm and the maximum light intensity: 40 mW/cm2 +/- 20%. For infrared analysis, a Fluke® Camera FKL model Ti400 was used. Patients with onychomycosis and control group were analyzed for comparison. The fluorescence images were processed using MATLAB® routines, and infrared images were analyzed using the SmartView® 3.6 software analysis provided by the company Fluke®. The results demonstrated that both infrared and fluorescence could be complementary to diagnose different types of onychomycosis lesions. The simplicity of operation, quick response and non-invasive assessment of the nail patients in real time, are important factors to be consider for an implementation.

  16. AO imaging and infrared spectroscopy of exoplanet host stars

    NASA Astrophysics Data System (ADS)

    Skillen, I.; Pollacco, D.

    2013-05-01

    The telescopes of the ORM, La Palma have gained a worldwide reputation in the discovery and characterisation of exoplanets, which demonstrates the powerful synergy that exists between small, mid-size and large facilities such as SuperWASP, the WHT and GTC, in this rapidly evolving field. We outline a WHT programme of near-infrared adaptive optics imaging with NAOMI/INGRID, and near-infrared spectroscopy with LIRIS, of exoplanet host stars to search for associated stellar and brown dwarf companions.

  17. Practical Applications Using A High Resolution Infrared Imaging System

    NASA Astrophysics Data System (ADS)

    Baraniak, David W.

    1981-01-01

    Infrared imaging systems can be classified into three general categories, low resolution, medium resolution and high resolution. It is the purpose of this paper to highlight specific applications best suited to high resolution, television capatable, infrared data acquisition techniques. The data was collected from both ground loped andoaerial based mobile positions where the temperature differentials varied from 15 C to 25 C. Specific applications include scanning building complexes from the exterior using a ground based moving vehicle, scanning buildings, concrete bridge decks and terrain from the air using a helicopter and scanning building interiors using a mobile hand truck.

  18. Exploring the molecular chemistry and excitation in obscured luminous infrared galaxies. An ALMA mm-wave spectral scan of NGC 4418

    NASA Astrophysics Data System (ADS)

    Costagliola, F.; Sakamoto, K.; Muller, S.; Martín, S.; Aalto, S.; Harada, N.; van der Werf, P.; Viti, S.; Garcia-Burillo, S.; Spaans, M.

    2015-10-01

    Context. Extragalactic observations allow the study of molecular chemistry and excitation under physical conditions which may differ greatly from those found in the Milky Way. The compact, obscured nuclei (CON) of luminous infrared galaxies (LIRG) combine large molecular columns with intense infrared (IR), ultra-violet (UV), and X- radiation and represent ideal laboratories for the study of the chemistry of the interstellar medium (ISM) under extreme conditions. Aims: Our aim was to obtain for the first time a multi-band spectral scan of a LIRG, and to derive molecular abundances and excitation to be compared to other Galactic and extragalactic environments. Methods: We obtained an ALMA Cycle 0 spectral scan of the dusty LIRG NGC 4418, spanning a total of 70.7 GHz in bands 3, 6, and 7. We use a combined local thermal equilibrium (LTE) and non-LTE (NLTE) fit of the spectrum in order to identify the molecular species and to derive column densities and excitation temperatures. We derive molecular abundances and compare them with other Galactic and extragalactic sources by means of a principal component analysis. Results: We detect 317 emission lines from a total of 45 molecular species, including 15 isotopic substitutions and 6 vibrationally excited variants. Our LTE/NLTE fit find kinetic temperatures from 20 to 350 K, and densities between 105 and 107 cm-3. The spectrum is dominated by vibrationally excited HC3N, HCN, and HNC, with vibrational temperatures from 300 to 450 K. We find that the chemistry of NCG 4418 is characterized by high abundances of HC3N, SiO, H2S, and c-HCCCH but a low CH3OH abundance. A principal component analysis shows that NGC 4418 and Arp 220 share very similar molecular abundances and excitation, which clearly set them apart from other Galactic and extragalactic environments. Conclusions: Our spectral scan confirms that the chemical complexity in the nucleus of NGC 4418 is one of the highest ever observed outside our Galaxy. The similar

  19. Near-infrared imaging of demineralization under sealants

    NASA Astrophysics Data System (ADS)

    Tom, Henry; Simon, Jacob C.; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel

    2014-07-01

    Previous studies have shown that near-infrared (NIR) reflectance and transillumination imaging can be used to acquire high contrast images of early caries lesions and composite restorative materials. The aim of the study was to determine the optimum NIR wavelengths for imaging demineralized areas under dental sealants. Fifteen natural human premolars and molars with occlusal lesions were used in this in vitro study. Images before and after application of sealants were acquired using NIR reflectance and NIR transillumination at wavelengths of 1300, 1460, and 1500 to 1700 nm. Images were also acquired using polarization sensitive optical coherence tomography (OCT) for comparison. The highest contrast for NIR reflectance was at 1460 nm and 1500 to 1700 nm. These NIR wavelengths are coincident with higher water absorption. The clear Delton sealant investigated was not visible in either copolarization or cross-polarization OCT images. The wavelength region between 1500 and 1700 nm yielded the highest contrast of lesions under sealants for NIR reflectance measurements.

  20. Intravascular near-infrared fluorescence molecular imaging of atherosclerosis

    PubMed Central

    Thukkani, Arun K; Jaffer, Farouc A

    2013-01-01

    Novel imaging modalities are required to better identify vulnerable atherosclerotic plaques before their dire consequences of myocardial infarction, sudden death, and stroke. Moving beyond traditional diagnostic methods, the field of molecular imaging offers an innovative approach to report upon critical in vivo biological features of high-risk plaques. Molecular imaging employs engineered, targeted imaging agents in conjunction with sophisticated, high-resolution detection systems. While various modalities have been investigated for this purpose, intravascular near infrared fluorescence imaging (NIRF) strategies are uniquely poised to provide high-resolution readouts of human coronary artery plaques. To date, preclinical animal studies have demonstrated feasibility of both standalone NIRF intravascular imaging as well as dual-modality approaches detecting inflammation and fibrin deposition in coronary-sized arteries. This translatable catheter-based approach is positioned to advance the identification of biologically vulnerable coronary plaques and coronary stents at risk of thrombosis. PMID:23638334

  1. INFRARED IMAGING OF CARBON AND CERAMIC COMPOSITES: DATA REPRODUCIBILITY

    SciTech Connect

    Knight, B.; Howard, D. R.; Ringermacher, H. I.; Hudson, L. D.

    2010-02-22

    Infrared NDE techniques have proven to be superior for imaging of flaws in ceramic matrix composites (CMC) and carbon silicon carbide composites (C/SiC). Not only can one obtain accurate depth gauging of flaws such as delaminations and layered porosity in complex-shaped components such as airfoils and other aeronautical components, but also excellent reproducibility of image data is obtainable using the STTOF (Synthetic Thermal Time-of-Flight) methodology. The imaging of large complex shapes is fast and reliable. This methodology as applied to large C/SiC flight components at the NASA Dryden Flight Research Center will be described.

  2. Registration of Visible and Infrared Images Based on Gradient Information

    NASA Astrophysics Data System (ADS)

    Geng, Yingnan; Wang, Yanan

    2017-06-01

    Multi-modality image registration is very challenging due to disparate imaging theory of sensors. Extraction of similar features and evaluation of algorithms have been two key difficulties. In this paper, gradient of RGB vector space, as a similar image feature, is shown the viability of using for the registration of infrared and visible still stereo pairs. Based on adaptive support-window algorithm, a novel method, which formulates the registration problem as correspondences between gradients of RGB vector space and obtains the best matching by minimizing gradient difference in sliding correspondence support-windows, is proposed. Evaluation experiments demonstrate high rates of successful registration by yielding qualitative and quantitative results.

  3. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have

  4. Mid-infrared microspectroscopic imaging with a quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Yeh, Kevin; Schulmerich, Matthew; Bhargava, Rohit

    2013-05-01

    Conventional mid-infrared (mid-IR) Fourier transform infrared (FT-IR) spectroscopic imaging systems employ an incoherent globar source and achieve spectral contrast through interferometry. While this approach is suitable for many general applications, recent advancements in broadly tunable external cavity Quantum Cascade Lasers (QCL) offer new approaches to and new possibilities for mid-IR micro-spectroscopic imaging. While QCL-based devices have yet to achieve the wide spectral range generally employed by spectroscopists for molecular analyses, they are starting to be used for microscopy at discrete frequencies. Here, we present a discrete frequency IR (DFIR) microscope based on a QCL source and explore its utility for mid-IR imaging. In our prototype instrument, spectral contrast is achieved by tuning the QCL to bands in a narrow spectral region of interest. We demonstrate wide-field imaging employing a 128x128 pixel liquid nitrogen cooled mercury cadmium telluride (MCT) focal plane array (FPA) detector. The resulting images demonstrate successful imaging as well as several unique features due to coherence effects from the laser source. Here we discuss the effects of this coherence and compare our instrument to conventional mid-IR imaging instrumentation.

  5. Discovery of the Near-infrared Counterpart to the Luminous Neutron-star Low-mass X-Ray Binary GX 3+1

    NASA Astrophysics Data System (ADS)

    van den Berg, Maureen; Homan, Jeroen; Fridriksson, Joel K.; Linares, Manuel

    2014-10-01

    Using the High Resolution Camera on board the Chandra X-ray Observatory, we have measured an accurate position for the bright persistent neutron star X-ray binary and atoll source GX 3+1. At a location that is consistent with this new position, we have discovered the near-infrared (NIR) counterpart to GX 3+1 in images taken with the PANIC and FourStar cameras on the Magellan Baade Telescope. The identification of this Ks = 15.8 ± 0.1 mag star as the counterpart is based on the presence of a Br γ emission line in an NIR spectrum taken with the Folded-port InfraRed Echelette spectrograph on the Baade Telescope. The absolute magnitude derived from the best available distance estimate to GX 3+1 indicates that the mass donor in the system is not a late-type giant. We find that the NIR light in GX 3+1 is likely dominated by the contribution from a heated outer accretion disk. This is similar to what has been found for the NIR flux from the brighter class of Z sources, but unlike the behavior of atolls fainter (LX ≈ 1036-1037 erg s-1) than GX 3+1, where optically thin synchrotron emission from a jet probably dominates the NIR flux. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  6. Discovery of the near-infrared counterpart to the luminous neutron-star low-mass X-ray binary GX 3+1

    SciTech Connect

    Van den Berg, Maureen; Fridriksson, Joel K.; Homan, Jeroen; Linares, Manuel

    2014-10-01

    Using the High Resolution Camera on board the Chandra X-ray Observatory, we have measured an accurate position for the bright persistent neutron star X-ray binary and atoll source GX 3+1. At a location that is consistent with this new position, we have discovered the near-infrared (NIR) counterpart to GX 3+1 in images taken with the PANIC and FourStar cameras on the Magellan Baade Telescope. The identification of this K{sub s} = 15.8 ± 0.1 mag star as the counterpart is based on the presence of a Br γ emission line in an NIR spectrum taken with the Folded-port InfraRed Echelette spectrograph on the Baade Telescope. The absolute magnitude derived from the best available distance estimate to GX 3+1 indicates that the mass donor in the system is not a late-type giant. We find that the NIR light in GX 3+1 is likely dominated by the contribution from a heated outer accretion disk. This is similar to what has been found for the NIR flux from the brighter class of Z sources, but unlike the behavior of atolls fainter (L{sub X} ≈ 10{sup 36}-10{sup 37} erg s{sup –1}) than GX 3+1, where optically thin synchrotron emission from a jet probably dominates the NIR flux.

  7. Degradation of near infrared and shortwave infrared imager performance due to atmospheric scattering of diffuse night illumination.

    PubMed

    Vollmerhausen, Richard

    2013-07-20

    On moonless nights, airglow is the primary source of natural ground illumination in the near infrared and shortwave infrared spectral bands. Therefore, night vision imagers operating in these spectral bands view targets that are diffusely illuminated. Aerosol scattering of diffuse airglow illumination causes atmospheric path radiance and that radiance causes increased imager noise. These phenomena and their quantification are described in this paper.

  8. Infrared Thermal Imaging System on a Mobile Phone

    PubMed Central

    Lee, Fu-Feng; Chen, Feng; Liu, Jing

    2015-01-01

    A novel concept towards pervasively available low-cost infrared thermal imaging system lunched on a mobile phone (MTIS) was proposed and demonstrated in this article. Through digestion on the evolutional development of milestone technologies in the area, it can be found that the portable and low-cost design would become the main stream of thermal imager for civilian purposes. As a representative trial towards this important goal, a MTIS consisting of a thermal infrared module (TIM) and mobile phone with embedded exclusive software (IRAPP) was presented. The basic strategy for the TIM construction is illustrated, including sensor adoption and optical specification. The user-oriented software was developed in the Android environment by considering its popularity and expandability. Computational algorithms with non-uniformity correction and scene-change detection are established to optimize the imaging quality and efficiency of TIM. The performance experiments and analysis indicated that the currently available detective distance for the MTIS is about 29 m. Furthermore, some family-targeted utilization enabled by MTIS was also outlined, such as sudden infant death syndrome (SIDS) prevention, etc. This work suggests a ubiquitous way of significantly extending thermal infrared image into rather wide areas especially health care in the coming time. PMID:25942639

  9. NIP: the near infrared imaging photometer for Euclid

    NASA Astrophysics Data System (ADS)

    Schweitzer, Mario; Bender, Ralf; Katterloher, Reinhard; Eisenhauer, Frank; Hofmann, Reiner; Saglia, Roberto; Holmes, Rory; Krause, Oliver; Rix, Hans-Walter; Booth, Jeff; Fagrelius, Parker; Rhodes, Jason; Seshadri, Suresh; Refregier, Alexandre; Amiaux, Jerome; Augueres, Jean-Louis; Boulade, Olivier; Cara, Christophe; Amara, Adam; Lilly, Simon; Atad-Ettedgui, Eli; di Giorgio, Anna-Maria; Duvet, Ludovic; Kuehl, Christopher; Syed, Mohsin

    2010-07-01

    The NIP is a near infrared imaging photometer that is currently under investigation for the Euclid space mission in context of ESA's 2015 Cosmic Vision program. Together with the visible camera (VIS) it will form the basis of the weak lensing measurements for Euclid. The NIP channel will perform photometric imaging in 3 near infrared bands (Y, J, H) covering a wavelength range from ~ 0.9 to 2 μm over a field of view (FoV) of ~ 0.5 deg2. With the required limiting point source magnitude of 24 mAB (5 sigma) the NIP channel will be used to determine the photometric redshifts of over 2 billion galaxies collected over a wide survey area of 20 000 deg2. In addition to the photometric measurements, the NIP channel will deliver unique near infrared (NIR) imaging data over the entire extragalactic sky, enabling a wide variety of ancillary astrophysical and cosmological studies. In this paper we will present the results of the study carried out by the Euclid Imaging Consortium (EIC) during the Euclid assessment phase.

  10. Real-time mid-infrared imaging of living microorganisms.

    PubMed

    Haase, Katharina; Kröger-Lui, Niels; Pucci, Annemarie; Schönhals, Arthur; Petrich, Wolfgang

    2016-01-01

    The speed and efficiency of quantum cascade laser-based mid-infrared microspectroscopy are demonstrated using two different model organisms as examples. For the slowly moving Amoeba proteus, a quantum cascade laser is tuned over the wavelength range of 7.6 µm to 8.6 µm (wavenumbers 1320 cm(-1) and 1160 cm(-1) , respectively). The recording of a hyperspectral image takes 11.3 s whereby an average signal-to-noise ratio of 29 is achieved. The limits of time resolution are tested by imaging the fast moving Caenorhabditis elegans at a discrete wavenumber of 1265 cm(-1) . Mid-infrared imaging is performed with the 640 × 480 pixel video graphics array (VGA) standard and at a full-frame time resolution of 0.02 s (i.e. well above the most common frame rate standards). An average signal-to-noise ratio of 16 is obtained. To the best of our knowledge, these findings constitute the first mid-infrared imaging of living organisms at VGA standard and video frame rate.

  11. Infrared Imaging of Boundary Layer Transition Flight Experiments

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J., Jr.; Schwartz, Richard; Ross, Martin; Anderson, Brian; Campbell, Charles H.

    2008-01-01

    The Hypersonic Thermodynamic Infrared Measurement (HYTHIRM) project is presently focused on near term support to the Shuttle program through the development of an infrared imaging capability of sufficient spatial and temporal resolution to augment existing on-board Orbiter instrumentation. Significant progress has been made with the identification and inventory of relevant existing optical imaging assets and the development, maturation, and validation of simulation and modeling tools for assessment and mission planning purposes, which were intended to lead to the best strategies and assets for successful acquisition of quantitative global surface temperature data on the Shuttle during entry. However, there are longer-term goals of providing global infrared imaging support to other flight projects as well. A status of HYTHIRM from the perspective of how two NASA-sponsored boundary layer transition flight experiments could benefit by infrared measurements is provided. Those two flight projects are the Hypersonic Boundary layer Transition (HyBoLT) flight experiment and the Shuttle Boundary Layer Transition Flight Experiment (BLT FE), which are both intended for reducing uncertainties associated with the extrapolation of wind tunnel derived transition correlations for flight application. Thus, the criticality of obtaining high quality flight data along with the impact it would provide to the Shuttle program damage assessment process are discussed. Two recent wind tunnel efforts that were intended as risk mitigation in terms of quantifying the transition process and resulting turbulent wedge locations are briefly reviewed. Progress is being made towards finalizing an imaging strategy in support of the Shuttle BLT FE, however there are no plans currently to image HyBoLT.

  12. Study on the MWIR imaging ability of optical readout bimaterial microcantilever FPA uncooled infrared imaging system

    NASA Astrophysics Data System (ADS)

    Zhou, Bingbing; Feng, Yun; Zhao, Yuejin; Dong, Liquan; Liu, Ming; Chu, Xuhong; Yu, Xiaomei

    2016-09-01

    In this paper, we analyze and experimentally demonstrate the medium-wave infrared (MWIR) imaging ability based on optical readout bimaterial microcantilever focal plane array (FPA) uncooled infrared imaging system. Multiband infrared imaging technology has been a hotspot in the field of infrared imaging. In the infrared band, medium-wave infrared (3 5 μm) has minimal attenuation of atmospheric infrared window, and it also covers many atomic and molecular absorption peak. Imaging study on MWIR radiation source also appears particularly important. First of all, we introduce the bimaterial microcantilever IR sensing principle and the fabrication of the bimaterial microcantilever FPA. Secondly, the paper introduces the theory of the optical-thermal-mechnical reading based on FPA. Finally, the experimental platform was constructed to conduct the MWIR imaging experiment. The medium-wave infrared radiation source consists of a continuous-wave optical parametric oscillator (OPO) that is pumped by a polarization-maintained, single-mode fiber amplifier. The length of the 50mm periodically polarized LiNbO3 crystal (5%MgO) is used as the nonlinear crystal. The stable cavity of the ring is designed, and the output of the 3 4 μm band is realized by the design of the nonlinear crystal polarization period. And the FPA employed in our experiment contains 256×256 pixels fabricated on a glass substrate, whose working bandwidth is covering the three IR atmospheric windows. The experimental results show that the bimaterial microcantilever FPA has a good imaging ability to the MWIR sources.

  13. Infrared image guidance for ground vehicle based on fast wavelet image focusing and tracking

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2009-08-01

    We studied the infrared image guidance for ground vehicle based on the fast wavelet image focusing and tracking. Here we uses the image of the uncooled infrared imager mounted on the two axis gimbal system and the developed new auto focusing algorithm on the Daubechies wavelet transform. The developed new focusing algorithm on the Daubechies wavelet transform processes the result of the high pass filter effect to meet the direct detection of the objects. This new focusing gives us the distance information of the outside world smoothly, and the information of the gimbal system gives us the direction of objects in the outside world to match the sense of the spherical coordinate system. We installed this system on the hand made electric ground vehicle platform powered by 24VDC battery. The electric vehicle equips the rotary encoder units and the inertia rate sensor units to make the correct navigation process. The image tracking also uses the developed newt wavelet focusing within several image processing. The size of the hand made electric ground vehicle platform is about 1m long, 0.75m wide, 1m high, and 50kg weight. We tested the infrared image guidance for ground vehicle based on the new wavelet image focusing and tracking using the electric vehicle indoor and outdoor. The test shows the good results by the developed infrared image guidance for ground vehicle based on the new wavelet image focusing and tracking.

  14. Infrared Imaging Tools for Diagnostic Applications in Dermatology.

    PubMed

    Gurjarpadhye, Abhijit Achyut; Parekh, Mansi Bharat; Dubnika, Arita; Rajadas, Jayakumar; Inayathullah, Mohammed

    Infrared (IR) imaging is a collection of non-invasive imaging techniques that utilize the IR domain of the electromagnetic spectrum for tissue assessment. A subset of these techniques construct images using back-reflected light, while other techniques rely on detection of IR radiation emitted by the tissue as a result of its temperature. Modern IR detectors sense thermal emissions and produce a heat map of surface temperature distribution in tissues. Thus, the IR spectrum offers a variety of imaging applications particularly useful in clinical diagnostic area, ranging from high-resolution, depth-resolved visualization of tissue to temperature variation assessment. These techniques have been helpful in the diagnosis of many medical conditions including skin/breast cancer, arthritis, allergy, burns, and others. In this review, we discuss current roles of IR-imaging techniques for diagnostic applications in dermatology with an emphasis on skin cancer, allergies, blisters, burns and wounds.

  15. Infrared Imaging Tools for Diagnostic Applications in Dermatology

    PubMed Central

    Gurjarpadhye, Abhijit Achyut; Parekh, Mansi Bharat; Dubnika, Arita; Rajadas, Jayakumar; Inayathullah, Mohammed

    2015-01-01

    Infrared (IR) imaging is a collection of non-invasive imaging techniques that utilize the IR domain of the electromagnetic spectrum for tissue assessment. A subset of these techniques construct images using back-reflected light, while other techniques rely on detection of IR radiation emitted by the tissue as a result of its temperature. Modern IR detectors sense thermal emissions and produce a heat map of surface temperature distribution in tissues. Thus, the IR spectrum offers a variety of imaging applications particularly useful in clinical diagnostic area, ranging from high-resolution, depth-resolved visualization of tissue to temperature variation assessment. These techniques have been helpful in the diagnosis of many medical conditions including skin/breast cancer, arthritis, allergy, burns, and others. In this review, we discuss current roles of IR-imaging techniques for diagnostic applications in dermatology with an emphasis on skin cancer, allergies, blisters, burns and wounds. PMID:26691203

  16. Size-varying small target detection for infrared image processing

    NASA Astrophysics Data System (ADS)

    Li, Miao; Zhu, Ran; Long, Yunli; An, Wei; Zhou, Yiyu

    2015-10-01

    IRST (Infrared Search and Track) has been applied to many military or civil fields such as precise guidance, aerospace, early warning. As a key technique, small target detection based on infrared image plays an important role. However, infrared targets have their own characteristics, such as target size variation, which make the detection work quite difficult. In practical application, the target size may vary due to many reasons, such as optic angle of sensors, imaging distance, environment and so on. For conventional detection methods, it is difficult to detect such size-varying targets, especially when the backgrounds have strong clutters. This paper presents a novel method to detect size-varying infrared targets in a cluttered background. It is easy to find that the target region is salient in infrared images. It means that target region have a signature of discontinuity with its neighboring regions and concentrates in a relatively small region, which can be considered as a homogeneous compact region, and the background is consistent with its neighboring regions. Motivated by the saliency feature and gradient feature, we introduce minimum target intensity (MTI) to measure the dissimilarity between different scales, and use mean gradient to restrict the target scale in a reasonable range. They are integrated to be multiscale MTI filter. The proposed detection method is designed based on multiscale MTI filter. Firstly, salient region is got by morphological low-pass filtering, where the potential target exists in. Secondly, the candidate target regions are extracted by multiscale minimum target intensity filter, which can effectively give the optimal target size. At last, signal-to-clutter ratio (SCR) is used to segment targets, which is computed based on optimal scale of candidate targets. The experimental results indicate that the proposed method can achieve both higher detection precision and robustness in complex background.

  17. Use of endocytoscopy for identification of sessile serrated adenoma/polyps and hyperplastic polyps by quantitative image analysis of the luminal areas.

    PubMed

    Ogawa, Yushi; Kudo, Shin-Ei; Mori, Yuichi; Ikehara, Nobunao; Maeda, Yasuharu; Wakamura, Kunihiko; Misawa, Masashi; Kudo, Toyoki; Hayashi, Takemasa; Miyachi, Hideyuki; Katagiri, Atsushi; Ishida, Fumio; Inoue, Haruhiro

    2017-08-01

     Recent studies that used magnifying chromoendoscopy and endocytoscopy (EC) to investigate endoscopic features of sessile serrated adenoma/polyps (SSA/Ps) suggested that a dilated crypt opening was an important indicator of SSA/Ps. However, no studies to date have measured the actual extent of dilatation. Hence, we investigated retrospectively the luminal areas using EC to determine a cutoff value for differentiating SSA/Ps from hyperplastic polyps (HPs). A total of 101 lesions, including 25 SSA/Ps, 66 HPs, and 10 normal mucosal samples, assessed by an integrated-type EC were collected. For each lesion, 1 image that showed the widest lumen was selected and the average area of the contiguous 3 lumens were calculated. The cutoff value differentiating SSAPs from HPs was determined by receiver operating curve (ROC) analysis.  The mean luminal areas of SSA/Ps and HPs were 4152 μm (2) and 2117 μm (2) , respectively. ROC analysis found that a luminal area cutoff of 3068 μm (2) had a sensitivity of 80.0 %, a specificity of 77.3 %, an accuracy of 78.0 %, and an area under the ROC curve of 0.865. Furthermore, a cutoff of ≥ 556 μm (2) was found to accurately distinguish between HPs and normal mucosa (sensitivity 98.5 %, specificity 100 %, accuracy 98.7 %, and AUC 0.998).  EC analysis of the luminal area is useful for differentiating between SSAPs and HPs. This approach could be adapted for computer-aided diagnosis of SSA/P.

  18. Intraoperative near-infrared autofluorescence imaging of parathyroid glands.

    PubMed

    Ladurner, Roland; Sommerey, Sandra; Arabi, Nora Al; Hallfeldt, Klaus K J; Stepp, Herbert; Gallwas, Julia K S

    2017-08-01

    To identify parathyroid glands intraoperatively by exposing their autofluorescence using near-infrared light. Fluorescence imaging was carried out during minimally invasive and open parathyroid and thyroid surgery. After identification, the parathyroid glands as well as the surrounding tissue were exposed to near-infrared (NIR) light with a wavelength of 690-770 nm using a modified Karl Storz near-infrared/indocyanine green (NIR/ICG) endoscopic system. Parathyroid tissue was expected to show near-infrared autofluorescence, captured in the blue channel of the camera. Whenever possible the visual identification of parathyroid tissue was confirmed histologically. In preliminary investigations, using the original NIR/ICG endoscopic system we noticed considerable interference of light in the blue channel overlying the autofluorescence. Therefore, we modified the light source by interposing additional filters. In a second series, we investigated 35 parathyroid glands from 25 patients. Twenty-seven glands were identified correctly based on NIR autofluorescence. Regarding the extent of autofluorescence, there were no noticeable differences between parathyroid adenomas, hyperplasia and normal parathyroid glands. In contrast, thyroid tissue, lymph nodes and adipose tissue revealed no substantial autofluorescence. Parathyroid tissue is characterized by showing autofluorescence in the near-infrared spectrum. This effect can be used to distinguish parathyroid glands from other cervical tissue entities.

  19. Enhancement system of nighttime infrared video image and visible video image

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Piao, Yan

    2016-11-01

    Visibility of Nighttime video image has a great significance for military and medicine areas, but nighttime video image has so poor quality that we can't recognize the target and background. Thus we enhance the nighttime video image by fuse infrared video image and visible video image. According to the characteristics of infrared and visible images, we proposed improved sift algorithm andαβ weighted algorithm to fuse heterologous nighttime images. We would deduced a transfer matrix from improved sift algorithm. The transfer matrix would rapid register heterologous nighttime images. And theαβ weighted algorithm can be applied in any scene. In the video image fusion system, we used the transfer matrix to register every frame and then used αβ weighted method to fuse every frame, which reached the time requirement soft video. The fused video image not only retains the clear target information of infrared video image, but also retains the detail and color information of visible video image and the fused video image can fluency play.

  20. Infrared laser ablation sample transfer for MALDI imaging.

    PubMed

    Park, Sung-Gun; Murray, Kermit K

    2012-04-03

    An infrared laser was used to ablate material from tissue sections under ambient conditions for direct collection on a matrix assisted laser desorption ionization (MALDI) target. A 10 μm thick tissue sample was placed on a microscope slide and was mounted tissue-side down between 70 and 450 μm from a second microscope slide. The two slides were mounted on a translation stage, and the tissue was scanned in two dimensions under a focused mid-infrared (IR) laser beam to transfer material to the target slide via ablation. After the material was transferred to the target slide, it was analyzed using MALDI imaging using a tandem time-of-flight mass spectrometer. Images were obtained from peptide standards for initial optimization of the system and from mouse brain tissue sections using deposition either onto a matrix precoated target or with matrix addition after sample transfer and compared with those from standard MALDI mass spectrometry imaging. The spatial resolution of the transferred material is approximately 400 μm. Laser ablation sample transfer provides several new capabilities not possible with conventional MALDI imaging including (1) ambient sampling for MALDI imaging, (2) area to spot concentration of ablated material, (3) collection of material for multiple imaging analyses, and (4) direct collection onto nanostructure assisted laser desorption ionization (NALDI) targets without blotting or ultrathin sections.

  1. Low-cost infrared glass for IR imaging applications

    NASA Astrophysics Data System (ADS)

    Graham, Amy G.; LeBlanc, Richard A.; Hilton, Ray A., Sr.

    2003-09-01

    With the advent of the uncooled detectors, the fraction of infrared (IR) imaging system cost due to lens elements has risen to the point where work was needed in the area of cost. Since these IR imaging systems often have tight packaging requirements which drive the optical elements to have complex surfaces, typical IR optical elements are costly to manufacture. The drive of our current optical material research is to lower the cost of the materials as well as the element fabrication for IR imaging systems. A low cost, moldable amorphous material, Amtir-4, has been developed and characterized. Ray Hilton Sr., Amorphous Materials Inc., Richard A. LeBlanc, Amy Graham and Others at Lockheed Martin Missiles and Fire Control Orlando (LMMFC-O) and James Johnson, General Electric Global Research Center (GE-GRC), along with others have been doing research for the past three years characterizing and designing IR imaging systems with this material. These IR imaging systems have been conventionally fabricated via diamond turning and techniques required to mold infrared optical elements have been developed with this new material, greatly reducing manufacturing costs. This paper will outline efforts thus far in incorporating this new material into prototype IR imaging systems.

  2. Infrared image acquisition system for vein pattern analysis

    NASA Astrophysics Data System (ADS)

    Castro-Ortega, R.; Toxqui-Quitl, C.; Padilla-Vivanco, A.; Solís-Villarreal, J.

    2016-09-01

    The physical shape of the hand vascular distribution contains useful information that can be used for identifying and authenticating purposes; which provide a high level of security as a biometric. Furthermore, this pattern can be used widely in health field such as venography and venipuncture. In this paper, we analyze different IR imaging systems in order to obtain high visibility images of the hand vein pattern. The images are acquired in the range of 400 nm to 1300 nm, using infrared and thermal cameras. For the first image acquisition system, we use a CCD camera and a light source with peak emission in the 880 nm obtaining the images by reflection. A second system consists only of a ThermaCAM P65 camera acquiring the naturally emanating infrared light from the hand. A method of digital image analysis is implemented using Contrast Limited Adaptive Histogram Equalization (CLAHE) to remove noise. Subsequently, adaptive thresholding and mathematical morphology operations are implemented to get the vein pattern distribution.

  3. Spacecraft design project: High temperature superconducting infrared imaging satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

  4. CO2 leak detection through acoustic sensing and infrared imaging

    NASA Astrophysics Data System (ADS)

    Cui, Xiwang; Yan, Yong; Ma, Lin; Ma, Yifan; Han, Xiaojuan

    2014-04-01

    When CO2 leakage occurs from a high pressure enclosure, the CO2 jet formed can produce fierce turbulent flow generating acoustic emission with possible phase change, depending on the pressure of the enclosure, and a significant temperature drop in the region close to the releasing point. Acoustic Emission (AE) and infrared imaging technologiesare promising methods for on-line monitoring of such accidental leakage. In this paper, leakage experiments were carried out with a CO2 container under well controlled conditions in a laboratory. Acoustic signals and temperature distribution at the leakage area were acquired using an acoustic sensor and an infraredthermalimaging camera. The acoustic signal was analyzed in both time and frequency domains. The characteristics of the signal frequencies areidentified, and their suitability for leakage detectionis investigated. The location of the leakage can be identified by seeking the lowest temperature area or point in the infrared image.

  5. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    SciTech Connect

    Thompson, David R.; McCubbin, Ian; Gao, Bo Cai; Green, Robert O.; Matthews, Alyssa A.; Mei, Fan; Meyer, Kerry G.; Platnick, Steven; Schmid, Beat; Tomlinson, Jason; Wilcox, Eric

    2016-08-12

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA’s “Classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARM Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. Finally, the coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.

  6. FISICA: The Florida image slicer for infrared cosmology and astrophysics

    NASA Astrophysics Data System (ADS)

    Eikenberry, Stephen S.; Elston, Richard; Guzman, Rafael; Raines, S. Nicholas; Julian, J.; Gruel, N.; Boreman, Glenn; Hoffmann, Jeff; Rodgers, Michael; Glenn, Paul; Hull-Allen, Greg; Myrick, Bruce; Flint, Scott; Comstock, Lovell

    2006-06-01

    We report on the design and status of the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA) - a fully-cryogenic all-reflective image-slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Designed to accept input beams near f/15, FISICA with FLAMINGOS provides R ˜ 1300 spectra over a 16 × 33″ field-of-view on the Cassegrain f/15 focus of the KPNO 4-m telescope, or a 6 × 12″ field-of-view on the Nasmyth or Bent Cassegrain foci of the Gran Telescopio Canarias 10.4-m telescope. FISICA accomplishes this using three sets of "monolithic" powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. We review the optical and opto-mechanical design, fabrication, laboratory test results, and on-telescope performance for FISICA.

  7. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, David R.; McCubbin, Ian; Gao, Bo Cai; Green, Robert O.; Matthews, Alyssa A.; Mei, Fan; Meyer, Kerry G.; Platnick, Steven; Schmid, Beat; Tomlinson, Jason; Wilcox, Eric

    2016-08-01

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA's "Classic" Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARM Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. The coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.

  8. The Evaluation Of Infrared Imaging Systems Used For Building Inspections

    NASA Astrophysics Data System (ADS)

    Grot, Richard A.; Chang, Yui-May

    1984-03-01

    The results of the laboratory evaluation of three high resolution infrared imaging systems are presented. The systems were evaluated for their minimum resolvable temperature difference (MRTD) at spatial frequencies from 0.02 to 0.16 cycles per milliradian and at ambient temperatures in the range of -7° C to 20° C. The results of these tests are compared with the predicted dependence of the MRTD given in the ASHRAE Standard 101-83. It is shown that the dependence on temperature of the MRTD of two of the systems is predicted well by the theory given in the ASHRAE standard. The calibration curves of the infrared imaging systems are given. These are in good agreement with those given by the manufacturers of the equipment.

  9. A visible-infrared imaging spectrometer for planetary missions

    NASA Technical Reports Server (NTRS)

    McCord, Thomas (Principal Investigator); Voelker, Mark; Owensby, Pam; Warren, Cris; Mooradian, Greg

    1996-01-01

    This final report summarizes the design effort for the construction of a visible-infrared imaging spectrometer for planetary missions, funded by NASA under the Planetary Instrument Definition and Development Program. The goal was to design and develop a prototype brassboard pushbroom imaging spectrometer covering the 0.35 gm to 2.5 gm spectral region using a simplified optical layout that would minimize the size, mass and parts count of the instrument by using a single holographic grating to disperse and focus light from a single slit onto both the infrared and visible focal plane arrays. Design approaches are presented and analyzed, along with problems encountered and recommended solutions to those problems. In particular, a new type of grating, incorporating two sets of rulings and a filter in a layered structure, is presented for further development.

  10. Miniature infrared hyperspectral imaging sensor for airborne applications

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl

    2017-05-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each

  11. First THEMIS Infrared and Visible Images of Mars

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This picture shows both a visible and a thermal infrared image taken by the thermal emission imaging system on NASA's 2001 Mars Odyssey spacecraft on November 2, 2001. The images were taken as part of the ongoing calibration and testing of the camera system as the spacecraft orbited Mars on its 13threvolution of the planet.

    The visible wavelength image, shown on the right in black and white, was obtained using one of the instrument's five visible filters. The spacecraft was approximately 22,000 kilometers (about 13,600 miles) above Mars looking down toward the south pole when this image was acquired. It is late spring in the martian southern hemisphere.

    The thermal infrared image, center, shows the temperature of the surface in color. The circular feature seen in blue is the extremely cold martian south polar carbon dioxide ice cap. The instrument has measured a temperature of minus 120 degrees Celsius (minus 184 degrees Fahrenheit) on the south polar ice cap. The polar cap is more than 900 kilometers (540 miles) in diameter at this time.

    The visible image shows additional details along the edge of the ice cap, as well as atmospheric hazes near the cap. The view of the surface appears hazy due to dust that still remains in the martian atmosphere from the massive martian dust storms that have occurred over the past several months.

    The infrared image covers a length of over 6,500 kilometers (3,900 miles)spanning the planet from limb to limb, with a resolution of approximately 5.5 kilometers per picture element, or pixel, (3.4 miles per pixel) at the point directly beneath the spacecraft. The visible image has a resolution of approximately 1 kilometer per pixel (.6 miles per pixel) and covers an area roughly the size of the states of Arizona and New Mexico combined.

    An annotated image is available at the same resolution in tiff format. Click the image to download (note: it is a 5.2 mB file) [figure removed for brevity, see original site]

    NASA's Jet

  12. Ge/Si Integrated Circuit For Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.

    1990-01-01

    Proposed integrated circuit consists of focal-plane array of metal/germanium Schottky-barrier photodetectors on same chip with silicon-based circuits that processes signals from photodetectors. Made compatible with underlying silicon-based circuitry by growing germanium epitaxially on silicon circuit wafers. Metal deposited in ultrahigh vacuum immediately after growth of germanium. Combination of described techniques results in high-resolution infrared-imaging circuits of superior performance.

  13. Near-Infrared Fluorescent Nanoprobes for in Vivo Optical Imaging

    PubMed Central

    Quek, Chai-Hoon; Leong, Kam W.

    2012-01-01

    Near-infrared (NIR) fluorescent probes offer advantages of high photon penetration, reduced light scattering and minimal autofluorescence from living tissues, rendering them valuable for noninvasive mapping of molecular events, assessment of therapeutic efficacy, and monitoring of disease progression in animal models. This review provides an overview of the recent development of the design and optical property of the different classes of NIR fluorescent nanoprobes associated with in vivo imaging applications.

  14. Advanced indium antimonide monolithic charge coupled infrared imaging arrays

    NASA Technical Reports Server (NTRS)

    Koch, T. L.; Merilainen, C. A.; Thom, R. D.

    1981-01-01

    The continued process development of SiO2 insulators for use in advanced InSb monolithic charge coupled infrared imaging arrays is described. Specific investigations into the use of plasma enhanced chemical vapor deposited (PECVD) SiO2 as a gate insulator for InSb charge coupled devices is discussed, as are investigations of other chemical vapor deposited SiO2 materials.

  15. Optical butting of linear infrared detector array for pushbroom imager

    NASA Astrophysics Data System (ADS)

    Qiu, Minpu; Ma, Wenpo

    2017-02-01

    High resolution and large FOV represents the developing trends of space optical imaging systems, Considering the characters of infrared optical systems, A low cost and low technical risk method of optical butting concept which offer the promise of butting smaller arrays into long linear detector assemblies is presented in this paper, the design method of optical butting is described, and a hypothetical system is demonstrated as well.

  16. A Mathematical Model for Simulating Infrared Images of Ships

    DTIC Science & Technology

    1986-12-01

    DEFENCE RESEARCH CENTRE SALISBURY SOUTH AUSTRALIA TECHNICAL REPORT ER L-0396-TR A MATHEMATICAL MODEL FOR SIMULATING INFRARED IMAGES OF SHIPS OS SCO1T...lli,wlng purposes: Reports documents prepared for maneagrial purposes, Technical recodAs of scientific end technical work of a permanent value Intended...They are Memoranda usually tentative in nature and reflec the personal views of the author, 3j, . A ~ ~ ~ ,~tu’~’ ’. . . UNCLASSIFIED AR-004.885

  17. An Imaging Infrared (IIR) seeker using a microprogrammed processor

    NASA Technical Reports Server (NTRS)

    Richmond, K. V.

    1980-01-01

    A recently developed Imaging Infrared Seeker uses a microprogrammed processor to perform gimbal servo control and system interface while performing the seeker functions of automatic target detection, acquisition, and tracking. The automatic detection mode requires up to 80% of the available capability of a high performance microprogrammed processor. Although system complexity was increased significantly, this approach can be cost effective when the basic computation capacity is already available.

  18. Infrared Thermal Imaging for Automated Detection of Diabetic Foot Complications

    PubMed Central

    van Netten, Jaap J.; van Baal, Jeff G.; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A.

    2013-01-01

    Background Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. Methods The