Sample records for imagery pattern recognition

  1. Proceedings of the Second Annual Symposium on Mathematical Pattern Recognition and Image Analysis Program

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr. (Principal Investigator)

    1984-01-01

    Several papers addressing image analysis and pattern recognition techniques for satellite imagery are presented. Texture classification, image rectification and registration, spatial parameter estimation, and surface fitting are discussed.

  2. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery.

    PubMed

    Casado, Monica Rivas; Gonzalez, Rocio Ballesteros; Kriechbaumer, Thomas; Veal, Amanda

    2015-11-04

    European legislation is driving the development of methods for river ecosystem protection in light of concerns over water quality and ecology. Key to their success is the accurate and rapid characterisation of physical features (i.e., hydromorphology) along the river. Image pattern recognition techniques have been successfully used for this purpose. The reliability of the methodology depends on both the quality of the aerial imagery and the pattern recognition technique used. Recent studies have proved the potential of Unmanned Aerial Vehicles (UAVs) to increase the quality of the imagery by capturing high resolution photography. Similarly, Artificial Neural Networks (ANN) have been shown to be a high precision tool for automated recognition of environmental patterns. This paper presents a UAV based framework for the identification of hydromorphological features from high resolution RGB aerial imagery using a novel classification technique based on ANNs. The framework is developed for a 1.4 km river reach along the river Dee in Wales, United Kingdom. For this purpose, a Falcon 8 octocopter was used to gather 2.5 cm resolution imagery. The results show that the accuracy of the framework is above 81%, performing particularly well at recognising vegetation. These results leverage the use of UAVs for environmental policy implementation and demonstrate the potential of ANNs and RGB imagery for high precision river monitoring and river management.

  3. Proceedings of the NASA Symposium on Mathematical Pattern Recognition and Image Analysis

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1983-01-01

    The application of mathematical and statistical analyses techniques to imagery obtained by remote sensors is described by Principal Investigators. Scene-to-map registration, geometric rectification, and image matching are among the pattern recognition aspects discussed.

  4. Pattern recognition of satellite cloud imagery for improved weather prediction

    NASA Technical Reports Server (NTRS)

    Gautier, Catherine; Somerville, Richard C. J.; Volfson, Leonid B.

    1986-01-01

    The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products.

  5. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  6. Cloud cover typing from environmental satellite imagery. Discriminating cloud structure with Fast Fourier Transforms (FFT)

    NASA Technical Reports Server (NTRS)

    Logan, T. L.; Huning, J. R.; Glackin, D. L.

    1983-01-01

    The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs.

  7. Trends in Correlation-Based Pattern Recognition and Tracking in Forward-Looking Infrared Imagery

    PubMed Central

    Alam, Mohammad S.; Bhuiyan, Sharif M. A.

    2014-01-01

    In this paper, we review the recent trends and advancements on correlation-based pattern recognition and tracking in forward-looking infrared (FLIR) imagery. In particular, we discuss matched filter-based correlation techniques for target detection and tracking which are widely used for various real time applications. We analyze and present test results involving recently reported matched filters such as the maximum average correlation height (MACH) filter and its variants, and distance classifier correlation filter (DCCF) and its variants. Test results are presented for both single/multiple target detection and tracking using various real-life FLIR image sequences. PMID:25061840

  8. Window-based method for approximating the Hausdorff in three-dimensional range imagery

    DOEpatents

    Koch, Mark W [Albuquerque, NM

    2009-06-02

    One approach to pattern recognition is to use a template from a database of objects and match it to a probe image containing the unknown. Accordingly, the Hausdorff distance can be used to measure the similarity of two sets of points. In particular, the Hausdorff can measure the goodness of a match in the presence of occlusion, clutter, and noise. However, existing 3D algorithms for calculating the Hausdorff are computationally intensive, making them impractical for pattern recognition that requires scanning of large databases. The present invention is directed to a new method that can efficiently, in time and memory, compute the Hausdorff for 3D range imagery. The method uses a window-based approach.

  9. Change detection in Arctic satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Wilson, Cathy J.; Rowland, Joel C.; Altmann, Garrett L.

    2015-06-01

    Advanced pattern recognition and computer vision algorithms are of great interest for landscape characterization, change detection, and change monitoring in satellite imagery, in support of global climate change science and modeling. We present results from an ongoing effort to extend neuroscience-inspired models for feature extraction to the environmental sciences, and we demonstrate our work using Worldview-2 multispectral satellite imagery. We use a Hebbian learning rule to derive multispectral, multiresolution dictionaries directly from regional satellite normalized band difference index data. These feature dictionaries are used to build sparse scene representations, from which we automatically generate land cover labels via our CoSA algorithm: Clustering of Sparse Approximations. These data adaptive feature dictionaries use joint spectral and spatial textural characteristics to help separate geologic, vegetative, and hydrologic features. Land cover labels are estimated in example Worldview-2 satellite images of Barrow, Alaska, taken at two different times, and are used to detect and discuss seasonal surface changes. Our results suggest that an approach that learns from both spectral and spatial features is promising for practical pattern recognition problems in high resolution satellite imagery.

  10. The use of ERTS imagery in reservoir management and operation

    NASA Technical Reports Server (NTRS)

    Cooper, S. (Principal Investigator)

    1973-01-01

    There are no author-identified significant results in this report. Preliminary analysis of ERTS-1 imagery suggests that the configuration and areal coverage of surface waters, as well as other hydrologically related terrain features, may be obtained from ERTS-1 imagery to an extent that would be useful. Computer-oriented pattern recognition techniques are being developed to help automate the identification and analysis of hydrologic features. Considerable man-machine interaction is required while training the computer for these tasks.

  11. Pattern recognition analysis of polar clouds during summer and winter

    NASA Technical Reports Server (NTRS)

    Ebert, Elizabeth E.

    1992-01-01

    A pattern recognition algorithm is demonstrated which classifies eighteen surface and cloud types in high-latitude AVHRR imagery based on several spectral and textural features, then estimates the cloud properties (fractional coverage, albedo, and brightness temperature) using a hybrid histogram and spatial coherence technique. The summertime version of the algorithm uses both visible and infrared data (AVHRR channels 1-4), while the wintertime version uses only infrared data (AVHRR channels 3-5). Three days of low-resolution AVHRR imagery from the Arctic and Antarctic during January and July 1984 were analyzed for cloud type and fractional coverage. The analysis showed significant amounts of high cloudiness in the Arctic during one day in winter. The Antarctic summer scene was characterized by heavy cloud cover in the southern ocean and relatively clear conditions in the continental interior. A large region of extremely low brightness temperatures in East Antarctica during winter suggests the presence of polar stratospheric cloud.

  12. Individually adapted imagery improves brain-computer interface performance in end-users with disability.

    PubMed

    Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V C; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R

    2015-01-01

    Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage.

  13. Individually Adapted Imagery Improves Brain-Computer Interface Performance in End-Users with Disability

    PubMed Central

    Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V. C.; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R.

    2015-01-01

    Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage. PMID:25992718

  14. The use of ERTS-1 multispectral imagery for crop identification in a semi-arid climate

    NASA Technical Reports Server (NTRS)

    Stockton, J. G.; Bauer, M. E.; Blair, B. O.; Baumgardner, M. F.

    1975-01-01

    Crop identification using multispectral satellite imagery and multivariate pattern recognition was used to identify wheat accurately in Greeley County, Kansas. A classification accuracy of 97 percent was found for wheat and the wheat estimate in hectares was within 5 percent of the USDA's Statistical Reporting Service estimate for 1973. The multispectral response of cotton and sorghum in Texas was not unique enough to distinguish between them nor to separate them from other cultivated crops.

  15. Appearance-Based Facial Recognition Using Visible and Thermal Imagery: A Comparative Study

    DTIC Science & Technology

    2006-01-01

    Appearance-Based Facial Recognition Using Visible and Thermal Imagery: A Comparative Study ∗ Andrea Selinger† Diego A. Socolinsky‡ †Equinox...TYPE 3. DATES COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE Appearance-Based Facial Recognition Using Visible and Thermal Imagery: A

  16. Change detection and classification of land cover in multispectral satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.

    Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less

  17. Change detection and classification of land cover in multispectral satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    DOE PAGES

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...

    2014-10-01

    Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less

  18. Gabor Filters and Neural Networks for Segmentation of Synthetic Aperture Radar Imagery

    DTIC Science & Technology

    1990-12-01

    unending enthusiasm focused my efforts. I would also like to thank Dr Matthew Kabrisky and Maj Rogers for their enlightening pattern recognition courses...merit in neurophysiology . Specifically, interest in the Gabor function results from recent research demonstrating its close approximation to measured

  19. Insensitivity of visual short-term memory to irrelevant visual information.

    PubMed

    Andrade, Jackie; Kemps, Eva; Werniers, Yves; May, Jon; Szmalec, Arnaud

    2002-07-01

    Several authors have hypothesized that visuo-spatial working memory is functionally analogous to verbal working memory. Irrelevant background speech impairs verbal short-term memory. We investigated whether irrelevant visual information has an analogous effect on visual short-term memory, using a dynamic visual noise (DVN) technique known to disrupt visual imagery (Quinn & McConnell, 1996b). Experiment I replicated the effect of DVN on pegword imagery. Experiments 2 and 3 showed no effect of DVN on recall of static matrix patterns, despite a significant effect of a concurrent spatial tapping task. Experiment 4 showed no effect of DVN on encoding or maintenance of arrays of matrix patterns, despite testing memory by a recognition procedure to encourage visual rather than spatial processing. Serial position curves showed a one-item recency effect typical of visual short-term memory. Experiment 5 showed no effect of DVN on short-term recognition of Chinese characters, despite effects of visual similarity and a concurrent colour memory task that confirmed visual processing of the characters. We conclude that irrelevant visual noise does not impair visual short-term memory. Visual working memory may not be functionally analogous to verbal working memory, and different cognitive processes may underlie visual short-term memory and visual imagery.

  20. Ocean Thermal Feature Recognition, Discrimination and Tracking Using Infrared Satellite Imagery

    DTIC Science & Technology

    1991-06-01

    rejected if the temperature in the mapped area exceeds classification criteria ............................... 17 viii 2.6 Ideal feature space mapping from...in seconds, and 1P is the side dimension of the pixel in meters. Figure 2.6: Ideal feature space mapping from pattern tile - search tile comparison. 20

  1. Multi-texture local ternary pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Essa, Almabrok; Asari, Vijayan

    2017-05-01

    In imagery and pattern analysis domain a variety of descriptors have been proposed and employed for different computer vision applications like face detection and recognition. Many of them are affected under different conditions during the image acquisition process such as variations in illumination and presence of noise, because they totally rely on the image intensity values to encode the image information. To overcome these problems, a novel technique named Multi-Texture Local Ternary Pattern (MTLTP) is proposed in this paper. MTLTP combines the edges and corners based on the local ternary pattern strategy to extract the local texture features of the input image. Then returns a spatial histogram feature vector which is the descriptor for each image that we use to recognize a human being. Experimental results using a k-nearest neighbors classifier (k-NN) on two publicly available datasets justify our algorithm for efficient face recognition in the presence of extreme variations of illumination/lighting environments and slight variation of pose conditions.

  2. Beyond sensory images: Object-based representation in the human ventral pathway

    PubMed Central

    Pietrini, Pietro; Furey, Maura L.; Ricciardi, Emiliano; Gobbini, M. Ida; Wu, W.-H. Carolyn; Cohen, Leonardo; Guazzelli, Mario; Haxby, James V.

    2004-01-01

    We investigated whether the topographically organized, category-related patterns of neural response in the ventral visual pathway are a representation of sensory images or a more abstract representation of object form that is not dependent on sensory modality. We used functional MRI to measure patterns of response evoked during visual and tactile recognition of faces and manmade objects in sighted subjects and during tactile recognition in blind subjects. Results showed that visual and tactile recognition evoked category-related patterns of response in a ventral extrastriate visual area in the inferior temporal gyrus that were correlated across modality for manmade objects. Blind subjects also demonstrated category-related patterns of response in this “visual” area, and in more ventral cortical regions in the fusiform gyrus, indicating that these patterns are not due to visual imagery and, furthermore, that visual experience is not necessary for category-related representations to develop in these cortices. These results demonstrate that the representation of objects in the ventral visual pathway is not simply a representation of visual images but, rather, is a representation of more abstract features of object form. PMID:15064396

  3. Image Processor

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Texas Instruments Programmable Remapper is a research tool used to determine how to best utilize the part of a patient's visual field still usable by mapping onto his field of vision with manipulated imagery. It is an offshoot of a NASA program for speeding up, improving the accuracy of pattern recognition in video imagery. The Remapper enables an image to be "pushed around" so more of it falls into the functional portions in the retina of a low vision person. It works at video rates, and researchers hope to significantly reduce its size and cost, creating a wearable prosthesis for visually impaired people.

  4. Application of standard photogeologic techniques to LANDSAT imagery for mineral exploration in the basin and range province of Utah and Nevada

    NASA Technical Reports Server (NTRS)

    Lattman, L. H. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Standard photogeologic techniques were applied to LANDSAT imagery of the basin and range province of Utah and Nevada to relate linear, tonal, textural, drainage, and geomorphic features to known mineralized areas in an attempt to develop criteria for the location of mineral deposits. No consistent correlation was found between lineaments, mapped according to specified criteria, and locations of mines, mining districts, or intrusive outcrops. Tonal and textural patterns were more closely related to geologic outcrop patterns than to mineralization. A statistical study of drainage azimuths of various length classes as measured on LANDSAT showed significant correlation with mineralized districts in the length class of 3-6 km. Alignments of outcrops of basalt, a rock type highly visible on LANDSAT imagery, appear to be colinear with acidic and intermediate intrusive centers in some areas and may assist on the recognition of regional fracture systems for mineral exploration.

  5. A study of atmospheric effects on pattern recognition devices. [Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Thomson, F. J. (Principal Investigator); Sadowski, F. G.

    1975-01-01

    The author has identified the following significant results. ERTS-1 imagery can be applied in the broadscale assessment of forest resources as a supplement to aerial photography and field survey. There was no application to inventory of crop and pasture diseases mainly because of poor quality and low resolution, and unreliability of image acquisition. Inventory of soil erosion was satisfactory in humid eastern New South Wales, but not in semi-arid areas. Patterns of snow cover, areas of water in natural and artificial water bodies, extent of bushfires, and location of coastal mobile sand bodies were readily apparent. ERTS-1 imagery was judged to be a valuable addition to conventional techniques of regional small scale geological mapping. ERTS data was successfully used to map flooding and flood progression. The imagery was found suitable for mapping at 1:1,000,000 scale both on the mainland and in Antarctica, but did not meet accuracy specifications for 1:250,000 mapping.

  6. A rat in the sewer: How mental imagery interacts with object recognition

    PubMed Central

    Hamburger, Kai

    2018-01-01

    The role of mental imagery has been puzzling researchers for more than two millennia. Both positive and negative effects of mental imagery on information processing have been discussed. The aim of this work was to examine how mental imagery affects object recognition and associative learning. Based on different perceptual and cognitive accounts we tested our imagery-induced interaction hypothesis in a series of two experiments. According to that, mental imagery could lead to (1) a superior performance in object recognition and associative learning if these objects are imagery-congruent (semantically) and to (2) an inferior performance if these objects are imagery-incongruent. In the first experiment, we used a static environment and tested associative learning. In the second experiment, subjects encoded object information in a dynamic environment by means of a virtual sewer system. Our results demonstrate that subjects who received a role adoption task (by means of guided mental imagery) performed better when imagery-congruent objects were used and worse when imagery-incongruent objects were used. We finally discuss our findings also with respect to alternative accounts and plead for a multi-methodological approach for future research in order to solve this issue. PMID:29590161

  7. A rat in the sewer: How mental imagery interacts with object recognition.

    PubMed

    Karimpur, Harun; Hamburger, Kai

    2018-01-01

    The role of mental imagery has been puzzling researchers for more than two millennia. Both positive and negative effects of mental imagery on information processing have been discussed. The aim of this work was to examine how mental imagery affects object recognition and associative learning. Based on different perceptual and cognitive accounts we tested our imagery-induced interaction hypothesis in a series of two experiments. According to that, mental imagery could lead to (1) a superior performance in object recognition and associative learning if these objects are imagery-congruent (semantically) and to (2) an inferior performance if these objects are imagery-incongruent. In the first experiment, we used a static environment and tested associative learning. In the second experiment, subjects encoded object information in a dynamic environment by means of a virtual sewer system. Our results demonstrate that subjects who received a role adoption task (by means of guided mental imagery) performed better when imagery-congruent objects were used and worse when imagery-incongruent objects were used. We finally discuss our findings also with respect to alternative accounts and plead for a multi-methodological approach for future research in order to solve this issue.

  8. Terrain feature recognition for synthetic aperture radar (SAR) imagery employing spatial attributes of targets

    NASA Astrophysics Data System (ADS)

    Iisaka, Joji; Sakurai-Amano, Takako

    1994-08-01

    This paper describes an integrated approach to terrain feature detection and several methods to estimate spatial information from SAR (synthetic aperture radar) imagery. Spatial information of image features as well as spatial association are key elements in terrain feature detection. After applying a small feature preserving despeckling operation, spatial information such as edginess, texture (smoothness), region-likeliness and line-likeness of objects, target sizes, and target shapes were estimated. Then a trapezoid shape fuzzy membership function was assigned to each spatial feature attribute. Fuzzy classification logic was employed to detect terrain features. Terrain features such as urban areas, mountain ridges, lakes and other water bodies as well as vegetated areas were successfully identified from a sub-image of a JERS-1 SAR image. In the course of shape analysis, a quantitative method was developed to classify spatial patterns by expanding a spatial pattern through the use of a series of pattern primitives.

  9. Index finger motor imagery EEG pattern recognition in BCI applications using dictionary cleaned sparse representation-based classification for healthy people

    NASA Astrophysics Data System (ADS)

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Fengkui; Liu, Feixiang

    2017-09-01

    Electroencephalogram (EEG)-based motor imagery (MI) brain-computer interface (BCI) has shown its effectiveness for the control of rehabilitation devices designed for large body parts of the patients with neurologic impairments. In order to validate the feasibility of using EEG to decode the MI of a single index finger and constructing a BCI-enhanced finger rehabilitation system, we collected EEG data during right hand index finger MI and rest state for five healthy subjects and proposed a pattern recognition approach for classifying these two mental states. First, Fisher's linear discriminant criteria and power spectral density analysis were used to analyze the event-related desynchronization patterns. Second, both band power and approximate entropy were extracted as features. Third, aiming to eliminate the abnormal samples in the dictionary and improve the classification performance of the conventional sparse representation-based classification (SRC) method, we proposed a novel dictionary cleaned sparse representation-based classification (DCSRC) method for final classification. The experimental results show that the proposed DCSRC method gives better classification accuracies than SRC and an average classification accuracy of 81.32% is obtained for five subjects. Thus, it is demonstrated that single right hand index finger MI can be decoded from the sensorimotor rhythms, and the feature patterns of index finger MI and rest state can be well recognized for robotic exoskeleton initiation.

  10. Working group organizational meeting

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Scene radiation and atmospheric effects, mathematical pattern recognition and image analysis, information evaluation and utilization, and electromagnetic measurements and signal handling are considered. Research issues in sensors and signals, including radar (SAR) reflectometry, SAR processing speed, registration, including overlay of SAR and optical imagery, entire system radiance calibration, and lack of requirements for both sensors and systems, etc. were discussed.

  11. Scene Context Dependency of Pattern Constancy of Time Series Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn A.; Jobson, Daniel J.; Rahman, Zia-ur

    2008-01-01

    A fundamental element of future generic pattern recognition technology is the ability to extract similar patterns for the same scene despite wide ranging extraneous variables, including lighting, turbidity, sensor exposure variations, and signal noise. In the process of demonstrating pattern constancy of this kind for retinex/visual servo (RVS) image enhancement processing, we found that the pattern constancy performance depended somewhat on scene content. Most notably, the scene topography and, in particular, the scale and extent of the topography in an image, affects the pattern constancy the most. This paper will explore these effects in more depth and present experimental data from several time series tests. These results further quantify the impact of topography on pattern constancy. Despite this residual inconstancy, the results of overall pattern constancy testing support the idea that RVS image processing can be a universal front-end for generic visual pattern recognition. While the effects on pattern constancy were significant, the RVS processing still does achieve a high degree of pattern constancy over a wide spectrum of scene content diversity, and wide ranging extraneousness variations in lighting, turbidity, and sensor exposure.

  12. [The Changes in the Hemodynamic Activity of the Brain during Moroe Imagery Training with the Use of Brain-Computer Interface].

    PubMed

    Frolov, A A; Husek, D; Silchenko, A V; Tintera, Y; Rydlo, J

    2016-01-01

    With the use of functional MRI (fMRI), we studied the changes in brain hemodynamic activity of healthy subjects during motor imagery training with the use brain-computer interface (BCI), which is based on the recognition of EEG patterns of imagined movements. ANOVA dispersion analysis showed there are 14 areas of the brain where statistically sgnificant changes were registered. Detailed analysis of the activity in these areas before and after training (Student's and Mann-Whitney tests) reduced the amount of areas with significantly changed activity to five; these are Brodmann areas 44 and 45, insula, middle frontal gyrus, and anterior cingulate gyrus. We suggest that these changes are caused by the formation of memory traces of those brain activity patterns which are most accurately recognized by BCI classifiers as correspondent with limb movements. We also observed a tendency of increase in the activity of motor imagery after training. The hemodynamic activity in all these 14 areas during real movements was either approximatly the same or significantly higher than during motor imagery; activity during imagined leg movements was higher that that during imagined arm movements, except for the areas of representation of arms.

  13. Proceedings of the Third Annual Symposium on Mathematical Pattern Recognition and Image Analysis

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1985-01-01

    Topics addressed include: multivariate spline method; normal mixture analysis applied to remote sensing; image data analysis; classifications in spatially correlated environments; probability density functions; graphical nonparametric methods; subpixel registration analysis; hypothesis integration in image understanding systems; rectification of satellite scanner imagery; spatial variation in remotely sensed images; smooth multidimensional interpolation; and optimal frequency domain textural edge detection filters.

  14. Word-level recognition of multifont Arabic text using a feature vector matching approach

    NASA Astrophysics Data System (ADS)

    Erlandson, Erik J.; Trenkle, John M.; Vogt, Robert C., III

    1996-03-01

    Many text recognition systems recognize text imagery at the character level and assemble words from the recognized characters. An alternative approach is to recognize text imagery at the word level, without analyzing individual characters. This approach avoids the problem of individual character segmentation, and can overcome local errors in character recognition. A word-level recognition system for machine-printed Arabic text has been implemented. Arabic is a script language, and is therefore difficult to segment at the character level. Character segmentation has been avoided by recognizing text imagery of complete words. The Arabic recognition system computes a vector of image-morphological features on a query word image. This vector is matched against a precomputed database of vectors from a lexicon of Arabic words. Vectors from the database with the highest match score are returned as hypotheses for the unknown image. Several feature vectors may be stored for each word in the database. Database feature vectors generated using multiple fonts and noise models allow the system to be tuned to its input stream. Used in conjunction with database pruning techniques, this Arabic recognition system has obtained promising word recognition rates on low-quality multifont text imagery.

  15. Activity and function recognition for moving and static objects in urban environments from wide-area persistent surveillance inputs

    NASA Astrophysics Data System (ADS)

    Levchuk, Georgiy; Bobick, Aaron; Jones, Eric

    2010-04-01

    In this paper, we describe results from experimental analysis of a model designed to recognize activities and functions of moving and static objects from low-resolution wide-area video inputs. Our model is based on representing the activities and functions using three variables: (i) time; (ii) space; and (iii) structures. The activity and function recognition is achieved by imposing lexical, syntactic, and semantic constraints on the lower-level event sequences. In the reported research, we have evaluated the utility and sensitivity of several algorithms derived from natural language processing and pattern recognition domains. We achieved high recognition accuracy for a wide range of activity and function types in the experiments using Electro-Optical (EO) imagery collected by Wide Area Airborne Surveillance (WAAS) platform.

  16. Automatic Estimation of Volcanic Ash Plume Height using WorldView-2 Imagery

    NASA Technical Reports Server (NTRS)

    McLaren, David; Thompson, David R.; Davies, Ashley G.; Gudmundsson, Magnus T.; Chien, Steve

    2012-01-01

    We explore the use of machine learning, computer vision, and pattern recognition techniques to automatically identify volcanic ash plumes and plume shadows, in WorldView-2 imagery. Using information of the relative position of the sun and spacecraft and terrain information in the form of a digital elevation map, classification, the height of the ash plume can also be inferred. We present the results from applying this approach to six scenes acquired on two separate days in April and May of 2010 of the Eyjafjallajokull eruption in Iceland. These results show rough agreement with ash plume height estimates from visual and radar based measurements.

  17. LANDSAT and radar mapping of intrusive rocks in SE-Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Dossantos, A. R.; Dosanjos, C. E.; Moreira, J. C.; Barbosa, M. P.; Veneziani, P.

    1982-01-01

    The feasibility of intrusive rock mapping was investigated and criteria for regional geological mapping established at the scale of 1:500,00 in polycyclic and polymetamorphic areas using the logic method of photointerpretation of LANDSAT imagery and radar from the RADAMBRASIL project. The spectral behavior of intrusive rocks, was evaluated using the interactive multispectral image analysis system (Image-100). The region of Campos (city) in northern Rio de Janeiro State was selected as the study area and digital imagery processing and pattern recognition techniques were applied. Various maps at the 2:250,000 scale were obtained to evaluate the results of automatic data processing.

  18. Object Recognition in Mental Representations: Directions for Exploring Diagnostic Features through Visual Mental Imagery.

    PubMed

    Roldan, Stephanie M

    2017-01-01

    One of the fundamental goals of object recognition research is to understand how a cognitive representation produced from the output of filtered and transformed sensory information facilitates efficient viewer behavior. Given that mental imagery strongly resembles perceptual processes in both cortical regions and subjective visual qualities, it is reasonable to question whether mental imagery facilitates cognition in a manner similar to that of perceptual viewing: via the detection and recognition of distinguishing features. Categorizing the feature content of mental imagery holds potential as a reverse pathway by which to identify the components of a visual stimulus which are most critical for the creation and retrieval of a visual representation. This review will examine the likelihood that the information represented in visual mental imagery reflects distinctive object features thought to facilitate efficient object categorization and recognition during perceptual viewing. If it is the case that these representational features resemble their sensory counterparts in both spatial and semantic qualities, they may well be accessible through mental imagery as evaluated through current investigative techniques. In this review, methods applied to mental imagery research and their findings are reviewed and evaluated for their efficiency in accessing internal representations, and implications for identifying diagnostic features are discussed. An argument is made for the benefits of combining mental imagery assessment methods with diagnostic feature research to advance the understanding of visual perceptive processes, with suggestions for avenues of future investigation.

  19. Object Recognition in Mental Representations: Directions for Exploring Diagnostic Features through Visual Mental Imagery

    PubMed Central

    Roldan, Stephanie M.

    2017-01-01

    One of the fundamental goals of object recognition research is to understand how a cognitive representation produced from the output of filtered and transformed sensory information facilitates efficient viewer behavior. Given that mental imagery strongly resembles perceptual processes in both cortical regions and subjective visual qualities, it is reasonable to question whether mental imagery facilitates cognition in a manner similar to that of perceptual viewing: via the detection and recognition of distinguishing features. Categorizing the feature content of mental imagery holds potential as a reverse pathway by which to identify the components of a visual stimulus which are most critical for the creation and retrieval of a visual representation. This review will examine the likelihood that the information represented in visual mental imagery reflects distinctive object features thought to facilitate efficient object categorization and recognition during perceptual viewing. If it is the case that these representational features resemble their sensory counterparts in both spatial and semantic qualities, they may well be accessible through mental imagery as evaluated through current investigative techniques. In this review, methods applied to mental imagery research and their findings are reviewed and evaluated for their efficiency in accessing internal representations, and implications for identifying diagnostic features are discussed. An argument is made for the benefits of combining mental imagery assessment methods with diagnostic feature research to advance the understanding of visual perceptive processes, with suggestions for avenues of future investigation. PMID:28588538

  20. Machine processing for remotely acquired data. [using multivariate statistical analysis

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A.

    1974-01-01

    This paper is a general discussion of earth resources information systems which utilize airborne and spaceborne sensors. It points out that information may be derived by sensing and analyzing the spectral, spatial and temporal variations of electromagnetic fields emanating from the earth surface. After giving an overview system organization, the two broad categories of system types are discussed. These are systems in which high quality imagery is essential and those more numerically oriented. Sensors are also discussed with this categorization of systems in mind. The multispectral approach and pattern recognition are described as an example data analysis procedure for numerically-oriented systems. The steps necessary in using a pattern recognition scheme are described and illustrated with data obtained from aircraft and the Earth Resources Technology Satellite (ERTS-1).

  1. Optical processing for landmark identification

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Luu, T. K.

    1981-01-01

    A study of optical pattern recognition techniques, available components and airborne optical systems for use in landmark identification was conducted. A data base of imagery exhibiting multisensor, seasonal, snow and fog cover, exposure, and other differences was assembled. These were successfully processed in a scaling optical correlator using weighted matched spatial filter synthesis. Distinctive data classes were defined and a description of the data (with considerable input information and content information) emerged from this study. It has considerable merit with regard to the preprocessing needed and the image difference categories advanced. A optical pattern recognition airborne applications was developed, assembled and demontrated. It employed a laser diode light source and holographic optical elements in a new lensless matched spatial filter architecture with greatly reduced size and weight, as well as component positioning toleranced.

  2. New generation of human machine interfaces for controlling UAV through depth-based gesture recognition

    NASA Astrophysics Data System (ADS)

    Mantecón, Tomás.; del Blanco, Carlos Roberto; Jaureguizar, Fernando; García, Narciso

    2014-06-01

    New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.

  3. Summary of an integrated ERTS-1 project and its results at the Missouri Geological Survey

    NASA Technical Reports Server (NTRS)

    Martin, J. A.; Allen, W. H.; Rath, D. L.; Rueff, A.

    1974-01-01

    Use of the ERTS imagery involved the recognition and interpretation of various ground patterns. Analysis and application are tied to ongoing programs. Specific studies utilizing the imagery and NASA aircraft photography are: a statewide lake and dam inventory; assessment of flooding and floodprone areas along the Missouri portion of the Mississippi and Missouri Rivers; land-use classification for several counties; structural features in selected areas; and Pleistocene features in northern Missouri. Though it has been suggested that repetitive coverage is not necessary for geologic studies, it is this specific feature along with the synoptic view of large portions of the State that provided the potential for the utilization of the ERTS imagery in Missouri. Other State agencies, Departments of Conservation, Agriculture, and Community Affairs, have expressed interest in the potential application of ERTS data in their respective fields.

  4. Photomorphic analysis techniques: An interim spatial analysis using satellite remote sensor imagery and historical data

    NASA Technical Reports Server (NTRS)

    Keuper, H. R.; Peplies, R. W.; Gillooly, R. P.

    1977-01-01

    The use of machine scanning and/or computer-based techniques to provide greater objectivity in the photomorphic approach was investigated. Photomorphic analysis and its application in regional planning are discussed. Topics included: delineation of photomorphic regions; inadequacies of existing classification systems; tonal and textural characteristics and signature analysis techniques; pattern recognition and Fourier transform analysis; and optical experiments. A bibliography is included.

  5. Pattern recognition of native plant communities: Manitou Colorado test site

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.

    1972-01-01

    Optimum channel selection among 12 channels of multispectral scanner imagery identified six as providing the best information about 11 vegetation classes and two nonvegetation classes at the Manitou Experimental Forest. Intensive preprocessing of the scanner signals was required to eliminate a serious scan angle effect. Final processing of the normalized data provided acceptable recognition results of generalized plant community types. Serious errors occurred with attempts to classify specific community types within upland grassland areas. The consideration of the convex mixtures concept (effects of amounts of live plant cover, exposed soil, and plant litter cover on apparent scene radiances) significantly improved the classification of some of the grassland classes.

  6. A reconnaissance space sensing investigation of crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Analysis of ERTS-1 MSS imagery over the sourthern Basin-Range Province of California, Nevada, and Arizona has led to recognition of regional tectonic control of volcanism, plutonism, mineralization, and fault patterns. This conclusion is the result of geologic reconnaissance of anomalies observed in ERTS-1 and Apollo-9 data, guided by intermediate scale U-2 photography, SLAR, and relevant geologic literature. In addition to regional tectonic studies, the ERTS-1 imagery provides a basis for detailed research of relatively small geologic features. Interpretation of ERTS-1 and Apollo-9 space imagery and intermediate scale X-15 and U-2 photography indicates the presence of a major fault zone along the California-Nevada state line, here named the Pahrump fault zone. Field mapping confirms previously unreported evidence of fault breaks in bedrock, along range fronts and in Quaternary alluvium and lake sediments. Regional gravity lows and fault traces within the Pahrump fault zone from a general left stepping en echelon pattern. The trend and postulated diplacement for this fault are similar to other major strike slip fault zones in the southern Basin-Range Province.

  7. Recognition and characterization of networks of water bodies in the Arctic ice-wedge polygonal tundra using high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Skurikhin, A. N.; Gangodagamage, C.; Rowland, J. C.; Wilson, C. J.

    2013-12-01

    Arctic lowland landscapes underlain by permafrost are often characterized by polygon-like patterns such as ice-wedge polygons outlined by networks of ice wedges and complemented with polygon rims, troughs, shallow ponds and thermokarst lakes. Polygonal patterns and corresponding features are relatively easy to recognize in high spatial resolution satellite imagery by a human, but their automated recognition is challenging due to the variability in their spectral appearance, the irregularity of individual trough spacing and orientation within the patterns, and a lack of unique spectral response attributable to troughs with widths commonly between 1 m and 2 m. Accurate identification of fine scale elements of ice-wedge polygonal tundra is important as their imprecise recognition may bias estimates of water, heat and carbon fluxes in large-scale climate models. Our focus is on the problem of identification of Arctic polygonal tundra fine-scale landscape elements (as small as 1 m - 2 m width). The challenge of the considered problem is that while large water bodies (e.g. lakes and rivers) can be recognized based on spectral response, reliable recognition of troughs is more difficult. Troughs do not have unique spectral signature, their appearance is noisy (edges are not strong), their width is small, and they often form connected networks with ponds and lakes, and thus they have overlapping spectral response with other water bodies and surrounding non-water bodies. We present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components across the range of spatial scales, such as troughs, ponds, river- and lake-like objects, using high spatial resolution satellite imagery. The novelty of the approach lies in: (1) the combined use of segmentation and shape-based classification to identify a broad range of water bodies, including troughs, and (2) the use of high-resolution WorldView-2 satellite imagery (with resolution of 0.6 m) for this identification. The approach starts by segmenting water bodies from an image, which are then categorized using shape-based classification. Segmentation uses combination of pan sharpened multispectral bands and is based on the active contours without edges technique. The segmentation is robust to noise and can detect objects with weak boundaries that is important for extraction of troughs. We then categorize the segmented regions via shape based classification. Because segmentation accuracy is the main factor impacting the quality of the shape-based classification, for segmentation accuracy assessment we created reference image using WorldView-2 satellite image of ice-wedge polygonal tundra. Reference image contained manually labelled image regions which cover components of drainage networks, such as troughs, ponds, rivers and lakes. The evaluation has shown that the approach provides a good accuracy of segmentation and reasonable classification results. The overall accuracy of the segmentation is approximately 95%, the segmentation user's and producer's accuracies are approximately 92% and 97% respectively.

  8. Peripheral dysgraphia: dissociations of lowercase from uppercase letters and of print from cursive writing.

    PubMed

    Ingles, Janet L; Fisk, John D; Fleetwood, Ian; Burrell, Steven; Darvesh, Sultan

    2014-03-01

    Clinical analyses of patients with acquired dysgraphia provide unique opportunities to understand the cognitive and neural organization of written language production. We report J.B., a 50-year-old woman with peripheral dysgraphia who had prominent dissociations in her ability to write in lowercase versus uppercase and print versus cursive. We gave J.B. a series of tasks that evaluated her skills at writing uppercase and lowercase print and cursive, spelling aloud and in writing, writing numbers and symbols, and visual letter recognition and imagery. She was impaired in printing letters, with lowercase more affected than uppercase, but her cursive writing was relatively intact. This pattern was consistent across letter, word, and nonword writing tasks. She was unimpaired on tasks assessing her visual recognition and imagery of lowercase and uppercase letters. Her writing of numbers was preserved. J.B.'s handwriting disorder was accompanied by a central phonological dysgraphia. Our findings indicate functional independence of graphomotor programs for print and cursive letter styles and for letters and numbers. We discuss the relationship between peripheral and central writing disorders.

  9. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units

    PubMed Central

    Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik

    2017-01-01

    This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684

  10. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units.

    PubMed

    Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik

    2017-02-12

    This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.

  11. The role of visual imagery in the retention of information from sentences.

    PubMed

    Drose, G S; Allen, G L

    1994-01-01

    We conducted two experiments to evaluate a multiple-code model for sentence memory that posits both propositional and visual representational systems. Both sentences involved recognition memory. The results of Experiment 1 indicated that subjects' recognition memory for concrete sentences was superior to their recognition memory for abstract sentences. Instructions to use visual imagery to enhance recognition performance yielded no effects. Experiment 2 tested the prediction that interference by a visual task would differentially affect recognition memory for concrete sentences. Results showed the interference task to have had a detrimental effect on recognition memory for both concrete and abstract sentences. Overall, the evidence provided partial support for both a multiple-code model and a semantic integration model of sentence memory.

  12. Dual Use of Image Based Tracking Techniques: Laser Eye Surgery and Low Vision Prosthesis

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Barton, R. Shane

    1994-01-01

    With a concentration on Fourier optics pattern recognition, we have developed several methods of tracking objects in dynamic imagery to automate certain space applications such as orbital rendezvous and spacecraft capture, or planetary landing. We are developing two of these techniques for Earth applications in real-time medical image processing. The first is warping of a video image, developed to evoke shift invariance to scale and rotation in correlation pattern recognition. The technology is being applied to compensation for certain field defects in low vision humans. The second is using the optical joint Fourier transform to track the translation of unmodeled scenes. Developed as an image fixation tool to assist in calculating shape from motion, it is being applied to tracking motions of the eyeball quickly enough to keep a laser photocoagulation spot fixed on the retina, thus avoiding collateral damage.

  13. Dual use of image based tracking techniques: Laser eye surgery and low vision prosthesis

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1994-01-01

    With a concentration on Fourier optics pattern recognition, we have developed several methods of tracking objects in dynamic imagery to automate certain space applications such as orbital rendezvous and spacecraft capture, or planetary landing. We are developing two of these techniques for Earth applications in real-time medical image processing. The first is warping of a video image, developed to evoke shift invariance to scale and rotation in correlation pattern recognition. The technology is being applied to compensation for certain field defects in low vision humans. The second is using the optical joint Fourier transform to track the translation of unmodeled scenes. Developed as an image fixation tool to assist in calculating shape from motion, it is being applied to tracking motions of the eyeball quickly enough to keep a laser photocoagulation spot fixed on the retina, thus avoiding collateral damage.

  14. Spatially Invariant Vector Quantization: A pattern matching algorithm for multiple classes of image subject matter including pathology.

    PubMed

    Hipp, Jason D; Cheng, Jerome Y; Toner, Mehmet; Tompkins, Ronald G; Balis, Ulysses J

    2011-02-26

    HISTORICALLY, EFFECTIVE CLINICAL UTILIZATION OF IMAGE ANALYSIS AND PATTERN RECOGNITION ALGORITHMS IN PATHOLOGY HAS BEEN HAMPERED BY TWO CRITICAL LIMITATIONS: 1) the availability of digital whole slide imagery data sets and 2) a relative domain knowledge deficit in terms of application of such algorithms, on the part of practicing pathologists. With the advent of the recent and rapid adoption of whole slide imaging solutions, the former limitation has been largely resolved. However, with the expectation that it is unlikely for the general cohort of contemporary pathologists to gain advanced image analysis skills in the short term, the latter problem remains, thus underscoring the need for a class of algorithm that has the concurrent properties of image domain (or organ system) independence and extreme ease of use, without the need for specialized training or expertise. In this report, we present a novel, general case pattern recognition algorithm, Spatially Invariant Vector Quantization (SIVQ), that overcomes the aforementioned knowledge deficit. Fundamentally based on conventional Vector Quantization (VQ) pattern recognition approaches, SIVQ gains its superior performance and essentially zero-training workflow model from its use of ring vectors, which exhibit continuous symmetry, as opposed to square or rectangular vectors, which do not. By use of the stochastic matching properties inherent in continuous symmetry, a single ring vector can exhibit as much as a millionfold improvement in matching possibilities, as opposed to conventional VQ vectors. SIVQ was utilized to demonstrate rapid and highly precise pattern recognition capability in a broad range of gross and microscopic use-case settings. With the performance of SIVQ observed thus far, we find evidence that indeed there exist classes of image analysis/pattern recognition algorithms suitable for deployment in settings where pathologists alone can effectively incorporate their use into clinical workflow, as a turnkey solution. We anticipate that SIVQ, and other related class-independent pattern recognition algorithms, will become part of the overall armamentarium of digital image analysis approaches that are immediately available to practicing pathologists, without the need for the immediate availability of an image analysis expert.

  15. Neuronal correlates of perception, imagery, and memory for familiar tunes.

    PubMed

    Herholz, Sibylle C; Halpern, Andrea R; Zatorre, Robert J

    2012-06-01

    We used fMRI to investigate the neuronal correlates of encoding and recognizing heard and imagined melodies. Ten participants were shown lyrics of familiar verbal tunes; they either heard the tune along with the lyrics, or they had to imagine it. In a subsequent surprise recognition test, they had to identify the titles of tunes that they had heard or imagined earlier. The functional data showed substantial overlap during melody perception and imagery, including secondary auditory areas. During imagery compared with perception, an extended network including pFC, SMA, intraparietal sulcus, and cerebellum showed increased activity, in line with the increased processing demands of imagery. Functional connectivity of anterior right temporal cortex with frontal areas was increased during imagery compared with perception, indicating that these areas form an imagery-related network. Activity in right superior temporal gyrus and pFC was correlated with the subjective rating of imagery vividness. Similar to the encoding phase, the recognition task recruited overlapping areas, including inferior frontal cortex associated with memory retrieval, as well as left middle temporal gyrus. The results present new evidence for the cortical network underlying goal-directed auditory imagery, with a prominent role of the right pFC both for the subjective impression of imagery vividness and for on-line mental monitoring of imagery-related activity in auditory areas.

  16. Hand gesture recognition in confined spaces with partial observability and occultation constraints

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2016-05-01

    Human activity detection and recognition capabilities have broad applications for military and homeland security. These tasks are very complicated, however, especially when multiple persons are performing concurrent activities in confined spaces that impose significant obstruction, occultation, and observability uncertainty. In this paper, our primary contribution is to present a dedicated taxonomy and kinematic ontology that are developed for in-vehicle group human activities (IVGA). Secondly, we describe a set of hand-observable patterns that represents certain IVGA examples. Thirdly, we propose two classifiers for hand gesture recognition and compare their performance individually and jointly. Finally, we present a variant of Hidden Markov Model for Bayesian tracking, recognition, and annotation of hand motions, which enables spatiotemporal inference to human group activity perception and understanding. To validate our approach, synthetic (graphical data from virtual environment) and real physical environment video imagery are employed to verify the performance of these hand gesture classifiers, while measuring their efficiency and effectiveness based on the proposed Hidden Markov Model for tracking and interpreting dynamic spatiotemporal IVGA scenarios.

  17. Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification

    NASA Astrophysics Data System (ADS)

    Anwer, Rao Muhammad; Khan, Fahad Shahbaz; van de Weijer, Joost; Molinier, Matthieu; Laaksonen, Jorma

    2018-04-01

    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene classification.

  18. Infrared Cephalic-Vein to Assist Blood Extraction Tasks: Automatic Projection and Recognition

    NASA Astrophysics Data System (ADS)

    Lagüela, S.; Gesto, M.; Riveiro, B.; González-Aguilera, D.

    2017-05-01

    Thermal infrared band is not commonly used in photogrammetric and computer vision algorithms, mainly due to the low spatial resolution of this type of imagery. However, this band captures sub-superficial information, increasing the capabilities of visible bands regarding applications. This fact is especially important in biomedicine and biometrics, allowing the geometric characterization of interior organs and pathologies with photogrammetric principles, as well as the automatic identification and labelling using computer vision algorithms. This paper presents advances of close-range photogrammetry and computer vision applied to thermal infrared imagery, with the final application of Augmented Reality in order to widen its application in the biomedical field. In this case, the thermal infrared image of the arm is acquired and simultaneously projected on the arm, together with the identification label of the cephalic-vein. This way, blood analysts are assisted in finding the vein for blood extraction, especially in those cases where the identification by the human eye is a complex task. Vein recognition is performed based on the Gaussian temperature distribution in the area of the vein, while the calibration between projector and thermographic camera is developed through feature extraction and pattern recognition. The method is validated through its application to a set of volunteers, with different ages and genres, in such way that different conditions of body temperature and vein depth are covered for the applicability and reproducibility of the method.

  19. Stream network analysis from orbital and suborbital imagery, Colorado River Basin, Texas

    NASA Technical Reports Server (NTRS)

    Baker, V. R. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Orbital SL-2 imagery (earth terrain camera S-190B), received September 5, 1973, was subjected to quantitative network analysis and compared to 7.5 minute topographic mapping (scale: 1/24,000) and U.S.D.A. conventional black and white aerial photography (scale: 1/22,200). Results can only be considered suggestive because detail on the SL-2 imagery was badly obscured by heavy cloud cover. The upper Bee Creek basin was chosen for analysis because it appeared in a relatively cloud-free portion of the orbital imagery. Drainage maps were drawn from the three sources digitized into a computer-compatible format, and analyzed by the WATER system computer program. Even at its small scale (1/172,000) and with bad haze the orbital photo showed much drainage detail. The contour-like character of the Glen Rose Formation's resistant limestone units allowed channel definition. The errors in pattern recognition can be attributed to local areas of dense vegetation and to other areas of very high albedo caused by surficial exposure of caliche. The latter effect caused particular difficulty in the determination of drainage divides.

  20. Comparison Analysis of Recognition Algorithms of Forest-Cover Objects on Hyperspectral Air-Borne and Space-Borne Images

    NASA Astrophysics Data System (ADS)

    Kozoderov, V. V.; Kondranin, T. V.; Dmitriev, E. V.

    2017-12-01

    The basic model for the recognition of natural and anthropogenic objects using their spectral and textural features is described in the problem of hyperspectral air-borne and space-borne imagery processing. The model is based on improvements of the Bayesian classifier that is a computational procedure of statistical decision making in machine-learning methods of pattern recognition. The principal component method is implemented to decompose the hyperspectral measurements on the basis of empirical orthogonal functions. Application examples are shown of various modifications of the Bayesian classifier and Support Vector Machine method. Examples are provided of comparing these classifiers and a metrical classifier that operates on finding the minimal Euclidean distance between different points and sets in the multidimensional feature space. A comparison is also carried out with the " K-weighted neighbors" method that is close to the nonparametric Bayesian classifier.

  1. Less impairment in face imagery than face perception in early prosopagnosia.

    PubMed

    Michelon, Pascale; Biederman, Irving

    2003-01-01

    There have been a number of reports of preserved face imagery in prosopagnosia. We put this issue to experimental test by comparing the performance of MJH, a 34-year-old prosopagnosic since the age of 5, to controls on tasks where the participants had to judge faces of current celebrities, either in terms of overall similarity (Of Bette Midler, Hillary Clinton, and Diane Sawyer, whose face looks least like the other two?) or on individual features (Is Ronald Reagan's nose pointy?). For each task, a performance measure reflecting the degree of agreement of each participant with the average of the others (not including MJH) was calculated. On the imagery versions of these tasks, MJH was within the lower range of the controls for the agreement measure (though significantly below the mean of the controls). When the same tasks were performed from pictures, agreement among the controls markedly increased whereas MJH's performance was virtually unaffected, placing him well below the range of the controls. This pattern was also apparent with a test of facial features of emotion (Are the eyes wrinkled when someone is surprised?). On three non-face imagery tasks assessing color (What color is a football?), relative lengths of animal's tails (Is a bear's tail long in proportion to its body?), and mental size comparisons (What is bigger, a camel or a zebra?), MJH was within or close to the lower end of the normal range. As most of the celebrities became famous after the onset of MJH's prosopagnosia, our confirmation of the reports of less impaired face imagery in some prosopagnosics cannot be attributed to pre-lesion storage. We speculate that face recognition, in contrast to object recognition, relies more heavily on a representation that describes the initial spatial filter values so the metrics of the facial surface can be specified. If prosopagnosia is regarded as a form of simultanagnosia in which some of these filter values cannot be registered on any one encounter with a face, then multiple opportunities for repeated storage may partially compensate for the degraded representation on that single encounter. Imagery may allow access to this more complete representation.

  2. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  3. ATR applications of minimax entropy models of texture and shape

    NASA Astrophysics Data System (ADS)

    Zhu, Song-Chun; Yuille, Alan L.; Lanterman, Aaron D.

    2001-10-01

    Concepts from information theory have recently found favor in both the mainstream computer vision community and the military automatic target recognition community. In the computer vision literature, the principles of minimax entropy learning theory have been used to generate rich probabilitistic models of texture and shape. In addition, the method of types and large deviation theory has permitted the difficulty of various texture and shape recognition tasks to be characterized by 'order parameters' that determine how fundamentally vexing a task is, independent of the particular algorithm used. These information-theoretic techniques have been demonstrated using traditional visual imagery in applications such as simulating cheetah skin textures and such as finding roads in aerial imagery. We discuss their application to problems in the specific application domain of automatic target recognition using infrared imagery. We also review recent theoretical and algorithmic developments which permit learning minimax entropy texture models for infrared textures in reasonable timeframes.

  4. Analysis of ERTS-1 imagery and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.

    1973-01-01

    The author has identified the following significant results. A summary of the significant results of the studies completed during the July-August, 1973 period includes: (1) ERTS-1 image brightness contrasts can be related to important contrasts in rangeland and forest vegetation communities of the Laramie Basin. (2) Stereoscopic viewing is essential for correct structural interpretation in outcrop patterns in some areas. (3) Complex fracture patterns which may have exerted a controlling influence on intrusive activity in the Absaroka Mountains can be mapped from ERTS. (4) Volcanic lithologies of the Yellowstone region are often differentiated on the basis of their textures, and cannot be successfully mapped by photogeologic interpretation of ERTS-1 imagery. Ground spectral readings confirm a general lack of contrast between these lithologies in the four ERTS-1 MSS bands. (5) Major dune fields can be recognized and defined from ERTS-1 image interpretations and recognition of differences in stabilizing plant communities (some of which may be mappable from ERTS-1) yields information about migration history of the dune fields.

  5. Children's perceptions of advertisements for cigarettes.

    PubMed

    Aitken, P P; Leathar, D S; O'Hagan, F J

    1985-01-01

    Groups of children aged between 6 and 16 years discussed a series of advertisements, including those for cigarettes. Clear patterns emerged in their recognition of cigarette brand imagery. For example, in response to an advertisement for holidays which also presents the brand imagery of John Player Special cigarettes, 22% of primary school children and 91% of secondary school children said it advertises cigarettes. There were consistent trends in responses to the symbolism portrayed. Younger children were very much tied to what was specifically shown in the advertisements; older ones tended to perceive more complex imagery. For example, whereas 10-year-olds said people who like the advertisement for Kim cigarettes (which has symbols for drinking) would smoke and drink, some 12-year-olds and most 14- and 16-year-olds saw Kim as feminine, sociable, trendy and sporty. It seems that some 12-year-olds and most 14- and 16-year-olds perceive cigarette advertisements much in the way that young adults do; therefore advertising campaigns targeted at older teenagers and young adults are likely to present qualities which younger teenagers find attractive.

  6. Suspicious activity recognition in infrared imagery using Hidden Conditional Random Fields for outdoor perimeter surveillance

    NASA Astrophysics Data System (ADS)

    Rogotis, Savvas; Ioannidis, Dimosthenis; Tzovaras, Dimitrios; Likothanassis, Spiros

    2015-04-01

    The aim of this work is to present a novel approach for automatic recognition of suspicious activities in outdoor perimeter surveillance systems based on infrared video processing. Through the combination of size, speed and appearance based features, like the Center-Symmetric Local Binary Patterns, short-term actions are identified and serve as input, along with user location, for modeling target activities using the theory of Hidden Conditional Random Fields. HCRFs are used to directly link a set of observations to the most appropriate activity label and as such to discriminate high risk activities (e.g. trespassing) from zero risk activities (e.g loitering outside the perimeter). Experimental results demonstrate the effectiveness of our approach in identifying suspicious activities for video surveillance systems.

  7. A bio-inspired system for spatio-temporal recognition in static and video imagery

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Moore, Christopher K.; Chelian, Suhas

    2007-04-01

    This paper presents a bio-inspired method for spatio-temporal recognition in static and video imagery. It builds upon and extends our previous work on a bio-inspired Visual Attention and object Recognition System (VARS). The VARS approach locates and recognizes objects in a single frame. This work presents two extensions of VARS. The first extension is a Scene Recognition Engine (SCE) that learns to recognize spatial relationships between objects that compose a particular scene category in static imagery. This could be used for recognizing the category of a scene, e.g., office vs. kitchen scene. The second extension is the Event Recognition Engine (ERE) that recognizes spatio-temporal sequences or events in sequences. This extension uses a working memory model to recognize events and behaviors in video imagery by maintaining and recognizing ordered spatio-temporal sequences. The working memory model is based on an ARTSTORE1 neural network that combines an ART-based neural network with a cascade of sustained temporal order recurrent (STORE)1 neural networks. A series of Default ARTMAP classifiers ascribes event labels to these sequences. Our preliminary studies have shown that this extension is robust to variations in an object's motion profile. We evaluated the performance of the SCE and ERE on real datasets. The SCE module was tested on a visual scene classification task using the LabelMe2 dataset. The ERE was tested on real world video footage of vehicles and pedestrians in a street scene. Our system is able to recognize the events in this footage involving vehicles and pedestrians.

  8. Human Perceptual Performance With Nonliteral Imagery: Region Recognition and Texture-Based Segmentation

    ERIC Educational Resources Information Center

    Essock, Edward A.; Sinai, Michael J.; DeFord, Kevin; Hansen, Bruce C.; Srinivasan, Narayanan

    2004-01-01

    In this study the authors address the issue of how the perceptual usefulness of nonliteral imagery should be evaluated. Perceptual performance with nonliteral imagery of natural scenes obtained at night from infrared and image-intensified sensors and from multisensor fusion methods was assessed to relate performance on 2 basic perceptual tasks to…

  9. Applicability of ERTS-1 to Montana geology

    NASA Technical Reports Server (NTRS)

    Weidman, R. M. (Principal Investigator); Alt, D. D.; Berg, R. A.; Johns, W. M.; Flood, R. E.; Hawley, K. T.; Wackwitz, L. K.

    1973-01-01

    The author has identified the following significant results. A detailed band 7 ERTS-1 lineament map covering western Montana and northern Idaho has been prepared and is being evaluated by direct comparison with geologic maps, by statistical plots of lineaments and known faults, and by field checking. Lineament patterns apparent in the Idaho and Boulder batholiths do not correspond to any known geologic structures. A band 5 mosaic of Montana and adjacent areas has been laid and a lineament annotation prepared for comparison with the band 7 map. All work to date indicates that ERTS-1 imagery is very useful for revealing patterns of high-angle faults, though much less useful for mapping rock units and patterns of low-angle faults. Large-scale mosaics of U-2 photographs of three test sites have been prepared for annotation and comparison with ERTS-1 maps. Mapping of Quaternary deposits in the Glacial Lake Missoula basin using U-2 color infrared transparencies has been successful resulting in the discovery of some deposits not previously mapped. Detailed work has been done for Test Site 354 D using ERTS-1 imagery; criteria for recognition of several rock types have been found. Photogeologic mapping for southeastern Montana suggest Wasatch deposits where none shown of geologic map.

  10. Reduced effects of pictorial distinctiveness on false memory following dynamic visual noise.

    PubMed

    Parker, Andrew; Kember, Timothy; Dagnall, Neil

    2017-07-01

    High levels of false recognition for non-presented items typically occur following exposure to lists of associated words. These false recognition effects can be reduced by making the studied items more distinctive by the presentation of pictures during encoding. One explanation of this is that during recognition, participants expect or attempt to retrieve distinctive pictorial information in order to evaluate the study status of the test item. If this involves the retrieval and use of visual imagery, then interfering with imagery processing should reduce the effectiveness of pictorial information in false memory reduction. In the current experiment, visual-imagery processing was disrupted at retrieval by the use of dynamic visual noise (DVN). It was found that effects of DVN dissociated true from false memory. Memory for studied words was not influenced by the presence of an interfering noise field. However, false memory was increased and the effects of picture-induced distinctiveness was eliminated. DVN also increased false recollection and remember responses to unstudied items.

  11. Physical environment virtualization for human activities recognition

    NASA Astrophysics Data System (ADS)

    Poshtkar, Azin; Elangovan, Vinayak; Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2015-05-01

    Human activity recognition research relies heavily on extensive datasets to verify and validate performance of activity recognition algorithms. However, obtaining real datasets are expensive and highly time consuming. A physics-based virtual simulation can accelerate the development of context based human activity recognition algorithms and techniques by generating relevant training and testing videos simulating diverse operational scenarios. In this paper, we discuss in detail the requisite capabilities of a virtual environment to aid as a test bed for evaluating and enhancing activity recognition algorithms. To demonstrate the numerous advantages of virtual environment development, a newly developed virtual environment simulation modeling (VESM) environment is presented here to generate calibrated multisource imagery datasets suitable for development and testing of recognition algorithms for context-based human activities. The VESM environment serves as a versatile test bed to generate a vast amount of realistic data for training and testing of sensor processing algorithms. To demonstrate the effectiveness of VESM environment, we present various simulated scenarios and processed results to infer proper semantic annotations from the high fidelity imagery data for human-vehicle activity recognition under different operational contexts.

  12. Mental Imagery for Musical Changes in Loudness

    PubMed Central

    Bailes, Freya; Bishop, Laura; Stevens, Catherine J.; Dean, Roger T.

    2012-01-01

    Musicians imagine music during mental rehearsal, when reading from a score, and while composing. An important characteristic of music is its temporality. Among the parameters that vary through time is sound intensity, perceived as patterns of loudness. Studies of mental imagery for melodies (i.e., pitch and rhythm) show interference from concurrent musical pitch and verbal tasks, but how we represent musical changes in loudness is unclear. Theories suggest that our perceptions of loudness change relate to our perceptions of force or effort, implying a motor representation. An experiment was conducted to investigate the modalities that contribute to imagery for loudness change. Musicians performed a within-subjects loudness change recall task, comprising 48 trials. First, participants heard a musical scale played with varying patterns of loudness, which they were asked to remember. There followed an empty interval of 8 s (nil distractor control), or the presentation of a series of four sine tones, or four visual letters or three conductor gestures, also to be remembered. Participants then saw an unfolding score of the notes of the scale, during which they were to imagine the corresponding scale in their mind while adjusting a slider to indicate the imagined changes in loudness. Finally, participants performed a recognition task of the tone, letter, or gesture sequence. Based on the motor hypothesis, we predicted that observing and remembering conductor gestures would impair loudness change scale recall, while observing and remembering tone or letter string stimuli would not. Results support this prediction, with loudness change recalled less accurately in the gestures condition than in the control condition. An effect of musical training suggests that auditory and motor imagery ability may be closely related to domain expertise. PMID:23227014

  13. Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms

    PubMed Central

    Zhang, Zhiwen; Duan, Feng; Zhou, Xin; Meng, Zixuan

    2017-01-01

    Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the K-nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance. PMID:28874909

  14. Low-Rank Linear Dynamical Systems for Motor Imagery EEG.

    PubMed

    Zhang, Wenchang; Sun, Fuchun; Tan, Chuanqi; Liu, Shaobo

    2016-01-01

    The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from "BCI Competition III Dataset IVa" and "BCI Competition IV Database 2a." The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP.

  15. Development of a Novel Motor Imagery Control Technique and Application in a Gaming Environment.

    PubMed

    Li, Ting; Zhang, Jinhua; Xue, Tao; Wang, Baozeng

    2017-01-01

    We present a methodology for a hybrid brain-computer interface (BCI) system, with the recognition of motor imagery (MI) based on EEG and blink EOG signals. We tested the BCI system in a 3D Tetris and an analogous 2D game playing environment. To enhance player's BCI control ability, the study focused on feature extraction from EEG and control strategy supporting Game-BCI system operation. We compared the numerical differences between spatial features extracted with common spatial pattern (CSP) and the proposed multifeature extraction. To demonstrate the effectiveness of 3D game environment at enhancing player's event-related desynchronization (ERD) and event-related synchronization (ERS) production ability, we set the 2D Screen Game as the comparison experiment. According to a series of statistical results, the group performing MI in the 3D Tetris environment showed more significant improvements in generating MI-associated ERD/ERS. Analysis results of game-score indicated that the players' scores presented an obvious uptrend in 3D Tetris environment but did not show an obvious downward trend in 2D Screen Game. It suggested that the immersive and rich-control environment for MI would improve the associated mental imagery and enhance MI-based BCI skills.

  16. Multispectral image analysis for object recognition and classification

    NASA Astrophysics Data System (ADS)

    Viau, C. R.; Payeur, P.; Cretu, A.-M.

    2016-05-01

    Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.

  17. Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Timothy; Steinmaus, Karen L.

    2005-02-01

    New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.

  18. Motion Imagery Processing and Exploitation (MIPE)

    DTIC Science & Technology

    2013-01-01

    facial recognition —i.e., the identification of a specific person.37 Object detection is often (but not always) considered a prerequisite for instance...The goal of segmentation is to distinguish objects and identify boundaries in images. Some of the earliest approaches to facial recognition involved...methods of instance recognition are at varying levels of maturity. Facial recognition methods are arguably the most mature; the technology is well

  19. Cognitive aspects of haptic form recognition by blind and sighted subjects.

    PubMed

    Bailes, S M; Lambert, R M

    1986-11-01

    Studies using haptic form recognition tasks have generally concluded that the adventitiously blind perform better than the congenitally blind, implicating the importance of early visual experience in improved spatial functioning. The hypothesis was tested that the adventitiously blind have retained some ability to encode successive information obtained haptically in terms of a global visual representation, while the congenitally blind use a coding system based on successive inputs. Eighteen blind (adventitiously and congenitally) and 18 sighted (blindfolded and performing with vision) subjects were tested on their recognition of raised line patterns when the standard was presented in segments: in immediate succession, or with unfilled intersegmental delays of 5, 10, or 15 seconds. The results did not support the above hypothesis. Three main findings were obtained: normally sighted subjects were both faster and more accurate than the other groups; all groups improved in accuracy of recognition as a function of length of interstimulus interval; sighted subjects tended to report using strategies with a strong verbal component while the blind tended to rely on imagery coding. These results are explained in terms of information-processing theory consistent with dual encoding systems in working memory.

  20. Multiple template-based image matching using alpha-rooted quaternion phase correlation

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen

    2010-04-01

    In computer vision applications, image matching performed on quality-degraded imagery is difficult due to image content distortion and noise effects. State-of-the art keypoint based matchers, such as SURF and SIFT, work very well on clean imagery. However, performance can degrade significantly in the presence of high noise and clutter levels. Noise and clutter cause the formation of false features which can degrade recognition performance. To address this problem, previously we developed an extension to the classical amplitude and phase correlation forms, which provides improved robustness and tolerance to image geometric misalignments and noise. This extension, called Alpha-Rooted Phase Correlation (ARPC), combines Fourier domain-based alpha-rooting enhancement with classical phase correlation. ARPC provides tunable parameters to control the alpha-rooting enhancement. These parameter values can be optimized to tradeoff between high narrow correlation peaks, and more robust wider, but smaller peaks. Previously, we applied ARPC in the radon transform domain for logo image recognition in the presence of rotational image misalignments. In this paper, we extend ARPC to incorporate quaternion Fourier transforms, thereby creating Alpha-Rooted Quaternion Phase Correlation (ARQPC). We apply ARQPC to the logo image recognition problem. We use ARQPC to perform multiple-reference logo template matching by representing multiple same-class reference templates as quaternion-valued images. We generate recognition performance results on publicly-available logo imagery, and compare recognition results to results generated from standard approaches. We show that small deviations in reference templates of sameclass logos can lead to improved recognition performance using the joint matching inherent in ARQPC.

  1. Storage and retrieval properties of dual codes for pictures and words in recognition memory.

    PubMed

    Snodgrass, J G; McClure, P

    1975-09-01

    Storage and retrieval properties of pictures and words were studied within a recognition memory paradigm. Storage was manipulated by instructing subjects either to image or to verbalize to both picture and word stimuli during the study sequence. Retrieval was manipulated by representing a proportion of the old picture and word items in their opposite form during the recognition test (i.e., some old pictures were tested with their corresponding words and vice versa). Recognition performance for pictures was identical under the two instructional conditions, whereas recognition performance for words was markedly superior under the imagery instruction condition. It was suggested that subjects may engage in dual coding of simple pictures naturally, regardless of instructions, whereas dual coding of words may occur only under imagery instructions. The form of the test item had no effect on recognition performance for either type of stimulus and under either instructional condition. However, change of form of the test item markedly reduced item-by-item correlations between the two instructional conditions. It is tentatively proposed that retrieval is required in recognition, but that the effect of a form change is simply to make the retrieval process less consistent, not less efficient.

  2. fMRI-based Multivariate Pattern Analyses Reveal Imagery Modality and Imagery Content Specific Representations in Primary Somatosensory, Motor and Auditory Cortices.

    PubMed

    de Borst, Aline W; de Gelder, Beatrice

    2017-08-01

    Previous studies have shown that the early visual cortex contains content-specific representations of stimuli during visual imagery, and that these representational patterns of imagery content have a perceptual basis. To date, there is little evidence for the presence of a similar organization in the auditory and tactile domains. Using fMRI-based multivariate pattern analyses we showed that primary somatosensory, auditory, motor, and visual cortices are discriminative for imagery of touch versus sound. In the somatosensory, motor and visual cortices the imagery modality discriminative patterns were similar to perception modality discriminative patterns, suggesting that top-down modulations in these regions rely on similar neural representations as bottom-up perceptual processes. Moreover, we found evidence for content-specific representations of the stimuli during auditory imagery in the primary somatosensory and primary motor cortices. Both the imagined emotions and the imagined identities of the auditory stimuli could be successfully classified in these regions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. "Like the palm of my hands": Motor imagery enhances implicit and explicit visual recognition of one's own hands.

    PubMed

    Conson, Massimiliano; Volpicella, Francesco; De Bellis, Francesco; Orefice, Agnese; Trojano, Luigi

    2017-10-01

    A key point in motor imagery literature is that judging hands in palm view recruits sensory-motor information to a higher extent than judging hands in back view, due to the greater biomechanical complexity implied in rotating hands depicted from palm than from back. We took advantage from this solid evidence to test the nature of a phenomenon known as self-advantage, i.e. the advantage in implicitly recognizing self vs. others' hand images. The self-advantage has been actually found when implicitly but not explicitly judging self-hands, likely due to dissociation between implicit and explicit body representations. However, such a finding might be related to the extent to which motor imagery is recruited during implicit and explicit processing of hand images. We tested this hypothesis in two behavioural experiments. In Experiment 1, right-handed participants judged laterality of either self or others' hands, whereas in Experiment 2, an explicit recognition of one's own hands was required. Crucially, in both experiments participants were randomly presented with hand images viewed from back or from palm. The main result of both experiments was the self-advantage when participants judged hands from palm view. This novel finding demonstrate that increasing the "motor imagery load" during processing of self vs. others' hands can elicit a self-advantage in explicit recognition tasks as well. Future studies testing the possible dissociation between implicit and explicit visual body representations should take into account the modulatory effect of motor imagery load on self-hand processing. Copyright © 2017. Published by Elsevier B.V.

  4. Multistage, Multiband and sequential imagery to identify and quantify non-forest vegetation resources

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.

    1971-01-01

    Analysis and recognition processing of multispectral scanner imagery for plant community classification and interpretations of various film-filter-scale aerial photographs are reported. Data analyses and manuscript preparation of research on microdensitometry for plant community and component identification and remote estimates of biomass are included.

  5. Noise tolerant dendritic lattice associative memories

    NASA Astrophysics Data System (ADS)

    Ritter, Gerhard X.; Schmalz, Mark S.; Hayden, Eric; Tucker, Marc

    2011-09-01

    Linear classifiers based on computation over the real numbers R (e.g., with operations of addition and multiplication) denoted by (R, +, x), have been represented extensively in the literature of pattern recognition. However, a different approach to pattern classification involves the use of addition, maximum, and minimum operations over the reals in the algebra (R, +, maximum, minimum) These pattern classifiers, based on lattice algebra, have been shown to exhibit superior information storage capacity, fast training and short convergence times, high pattern classification accuracy, and low computational cost. Such attributes are not always found, for example, in classical neural nets based on the linear inner product. In a special type of lattice associative memory (LAM), called a dendritic LAM or DLAM, it is possible to achieve noise-tolerant pattern classification by varying the design of noise or error acceptance bounds. This paper presents theory and algorithmic approaches for the computation of noise-tolerant lattice associative memories (LAMs) under a variety of input constraints. Of particular interest are the classification of nonergodic data in noise regimes with time-varying statistics. DLAMs, which are a specialization of LAMs derived from concepts of biological neural networks, have successfully been applied to pattern classification from hyperspectral remote sensing data, as well as spatial object recognition from digital imagery. The authors' recent research in the development of DLAMs is overviewed, with experimental results that show utility for a wide variety of pattern classification applications. Performance results are presented in terms of measured computational cost, noise tolerance, classification accuracy, and throughput for a variety of input data and noise levels.

  6. Automated thematic mapping and change detection of ERTS-A images. [digital interpretation of Arizona imagery

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. For the recognition of terrain types, spatial signatures are developed from the diffraction patterns of small areas of ERTS-1 images. This knowledge is exploited for the measurements of a small number of meaningful spatial features from the digital Fourier transforms of ERTS-1 image cells containing 32 x 32 picture elements. Using these spatial features and a heuristic algorithm, the terrain types in the vicinity of Phoenix, Arizona were recognized by the computer with a high accuracy. Then, the spatial features were combined with spectral features and using the maximum likelihood criterion the recognition accuracy of terrain types increased substantially. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. Nonlinear transformations of the feature vectors are required so that the terrain class statistics become approximately Gaussian. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month but vary substantially between seasons.

  7. An Underwater Target Detection System for Electro-Optical Imagery Data

    DTIC Science & Technology

    2010-06-01

    detection and segmentation of underwater mine-like objects in the EO images captured with a CCD-based image sensor. The main focus of this research is to...develop a robust detection algorithm that can be used to detect low contrast and partial underwater objects from the EO imagery with low false alarm rate...underwater target detection I. INTRODUCTION Automatic detection and recognition of underwater objects from EO imagery poses a serious challenge due to poor

  8. The analysis of polar clouds from AVHRR satellite data using pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Smith, William L.; Ebert, Elizabeth

    1990-01-01

    The cloud cover in a set of summertime and wintertime AVHRR data from the Arctic and Antarctic regions was analyzed using a pattern recognition algorithm. The data were collected by the NOAA-7 satellite on 6 to 13 Jan. and 1 to 7 Jul. 1984 between 60 deg and 90 deg north and south latitude in 5 spectral channels, at the Global Area Coverage (GAC) resolution of approximately 4 km. This data embodied a Polar Cloud Pilot Data Set which was analyzed by a number of research groups as part of a polar cloud algorithm intercomparison study. This study was intended to determine whether the additional information contained in the AVHRR channels (beyond the standard visible and infrared bands on geostationary satellites) could be effectively utilized in cloud algorithms to resolve some of the cloud detection problems caused by low visible and thermal contrasts in the polar regions. The analysis described makes use of a pattern recognition algorithm which estimates the surface and cloud classification, cloud fraction, and surface and cloudy visible (channel 1) albedo and infrared (channel 4) brightness temperatures on a 2.5 x 2.5 deg latitude-longitude grid. In each grid box several spectral and textural features were computed from the calibrated pixel values in the multispectral imagery, then used to classify the region into one of eighteen surface and/or cloud types using the maximum likelihood decision rule. A slightly different version of the algorithm was used for each season and hemisphere because of differences in categories and because of the lack of visible imagery during winter. The classification of the scene is used to specify the optimal AVHRR channel for separating clear and cloudy pixels using a hybrid histogram-spatial coherence method. This method estimates values for cloud fraction, clear and cloudy albedos and brightness temperatures in each grid box. The choice of a class-dependent AVHRR channel allows for better separation of clear and cloudy pixels than does a global choice of a visible and/or infrared threshold. The classification also prevents erroneous estimates of large fractional cloudiness in areas of cloudfree snow and sea ice. The hybrid histogram-spatial coherence technique and the advantages of first classifying a scene in the polar regions are detailed. The complete Polar Cloud Pilot Data Set was analyzed and the results are presented and discussed.

  9. Integrated Remote Sensing Modalities for Classification at a Legacy Test Site

    NASA Astrophysics Data System (ADS)

    Lee, D. J.; Anderson, D.; Craven, J.

    2016-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.

  10. Recognition of the geologic framework of porphyry deposits on ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Wilson, J. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Photointerpretation methods have been most successfully applied in the less vegetated test sites where several previously unknown geologic features have been recognized and known ones extended. Northwest mid-Tertiary faults in the ELY, Nevada area are observed to offset north-trending ranges and abruptly terminate older Mesozoic structures. In the Ray, Arizona area the observed patterns of fault and fracture systems appear to be related to the locations of known porphyry copper deposits. In the Tanacross, Alaska area a number of regional circular features observed may represent near surface intrusions and, therefore, permissive environments for copper porphyries.

  11. Thermal mapping, geothermal source location, natural effluents and plant stress in the Mediterranean coast of Spain

    NASA Technical Reports Server (NTRS)

    Delascuevas, R. N. (Principal Investigator); Dearagon, A. M.

    1981-01-01

    Data obtained by HCMM satellite over a complex area in eastern Spain were evaluated and found to be most useful in studying macrostructures in geology and in analyzing marine currents, layers, and areas (although other satellites provide more data). The upper scale to work with HCMM data appears to be 1:2.000.000. Techniques used in preprocessing, processing, and analyzing imagery are discussed as well as methods for pattern recognition. Surface temperatures obtained for soils, farmlands, forests, geological structures, and coastal waters are discussed. Suggestions are included for improvements needed to achieve better results in geographic areas similar to the study area.

  12. Robust Feature Matching in Terrestrial Image Sequences

    NASA Astrophysics Data System (ADS)

    Abbas, A.; Ghuffar, S.

    2018-04-01

    From the last decade, the feature detection, description and matching techniques are most commonly exploited in various photogrammetric and computer vision applications, which includes: 3D reconstruction of scenes, image stitching for panoramic creation, image classification, or object recognition etc. However, in terrestrial imagery of urban scenes contains various issues, which include duplicate and identical structures (i.e. repeated windows and doors) that cause the problem in feature matching phase and ultimately lead to failure of results specially in case of camera pose and scene structure estimation. In this paper, we will address the issue related to ambiguous feature matching in urban environment due to repeating patterns.

  13. The Impact of Stereoscopic Imagery and Motion on Anatomical Structure Recognition and Visual Attention Performance

    ERIC Educational Resources Information Center

    Remmele, Martin; Schmidt, Elena; Lingenfelder, Melissa; Martens, Andreas

    2018-01-01

    Gross anatomy is located in a three-dimensional space. Visualizing aspects of structures in gross anatomy education should aim to provide information that best resembles their original spatial proportions. Stereoscopic three-dimensional imagery might offer possibilities to implement this aim, though some research has revealed potential impairments…

  14. Frequency Interference in Children' Recognition of Sentence Information

    ERIC Educational Resources Information Center

    Levin, Joel R.; And Others

    1978-01-01

    Children listened to sentences under two instructional sets (imagery or repetition) and answered multiple choice alternatives--either identical or similar in meaning to correct information in the sentences; and including or not including previously presented irrelevant information. The sources of interference predicted from recognition memory…

  15. Learning target masks in infrared linescan imagery

    NASA Astrophysics Data System (ADS)

    Fechner, Thomas; Rockinger, Oliver; Vogler, Axel; Knappe, Peter

    1997-04-01

    In this paper we propose a neural network based method for the automatic detection of ground targets in airborne infrared linescan imagery. Instead of using a dedicated feature extraction stage followed by a classification procedure, we propose the following three step scheme: In the first step of the recognition process, the input image is decomposed into its pyramid representation, thus obtaining a multiresolution signal representation. At the lowest three levels of the Laplacian pyramid a neural network filter of moderate size is trained to indicate the target location. The last step consists of a fusion process of the several neural network filters to obtain the final result. To perform this fusion we use a belief network to combine the various filter outputs in a statistical meaningful way. In addition, the belief network allows the integration of further knowledge about the image domain. By applying this multiresolution recognition scheme, we obtain a nearly scale- and rotational invariant target recognition with a significantly decreased false alarm rate compared with a single resolution target recognition scheme.

  16. Language comprehenders retain implied shape and orientation of objects.

    PubMed

    Pecher, Diane; van Dantzig, Saskia; Zwaan, Rolf A; Zeelenberg, René

    2009-06-01

    According to theories of embodied cognition, language comprehenders simulate sensorimotor experiences to represent the meaning of what they read. Previous studies have shown that picture recognition is better if the object in the picture matches the orientation or shape implied by a preceding sentence. In order to test whether strategic imagery may explain previous findings, language comprehenders first read a list of sentences in which objects were mentioned. Only once the complete list had been read was recognition memory tested with pictures. Recognition performance was better if the orientation or shape of the object matched that implied by the sentence, both immediately after reading the complete list of sentences and after a 45-min delay. These results suggest that previously found match effects were not due to strategic imagery and show that details of sensorimotor simulations are retained over longer periods.

  17. Development of a Novel Motor Imagery Control Technique and Application in a Gaming Environment

    PubMed Central

    Xue, Tao

    2017-01-01

    We present a methodology for a hybrid brain-computer interface (BCI) system, with the recognition of motor imagery (MI) based on EEG and blink EOG signals. We tested the BCI system in a 3D Tetris and an analogous 2D game playing environment. To enhance player's BCI control ability, the study focused on feature extraction from EEG and control strategy supporting Game-BCI system operation. We compared the numerical differences between spatial features extracted with common spatial pattern (CSP) and the proposed multifeature extraction. To demonstrate the effectiveness of 3D game environment at enhancing player's event-related desynchronization (ERD) and event-related synchronization (ERS) production ability, we set the 2D Screen Game as the comparison experiment. According to a series of statistical results, the group performing MI in the 3D Tetris environment showed more significant improvements in generating MI-associated ERD/ERS. Analysis results of game-score indicated that the players' scores presented an obvious uptrend in 3D Tetris environment but did not show an obvious downward trend in 2D Screen Game. It suggested that the immersive and rich-control environment for MI would improve the associated mental imagery and enhance MI-based BCI skills. PMID:28572817

  18. SIR-A imagery in geologic studies of the Sierra Madre Oriental, northeastern Mexico. Part 1 (Regional stratigraphy): The use of morphostratigraphic units in remote sensing mapping

    NASA Technical Reports Server (NTRS)

    Longoria, J. F.; Jimenez, O. H.

    1985-01-01

    SIR-A imaging was used in geological studies of sedimentary terrains in the Sierra Madre Oriental, northeastern Mexico. Geological features such as regional strike and dip, bedding, folding and faulting were readily detected on the image. The recognition of morphostructural units in the imagery, coupled with field verification, enabled geological mapping of the region at the scale of 1:250 000. Structural profiling lead to the elaboration of a morphostructural map allowing the recognition of an echelon folds and field trends which were used to postulate the ectonic setting of the region.

  19. Exploiting range imagery: techniques and applications

    NASA Astrophysics Data System (ADS)

    Armbruster, Walter

    2009-07-01

    Practically no applications exist for which automatic processing of 2D intensity imagery can equal human visual perception. This is not the case for range imagery. The paper gives examples of 3D laser radar applications, for which automatic data processing can exceed human visual cognition capabilities and describes basic processing techniques for attaining these results. The examples are drawn from the fields of helicopter obstacle avoidance, object detection in surveillance applications, object recognition at high range, multi-object-tracking, and object re-identification in range image sequences. Processing times and recognition performances are summarized. The techniques used exploit the bijective continuity of the imaging process as well as its independence of object reflectivity, emissivity and illumination. This allows precise formulations of the probability distributions involved in figure-ground segmentation, feature-based object classification and model based object recognition. The probabilistic approach guarantees optimal solutions for single images and enables Bayesian learning in range image sequences. Finally, due to recent results in 3D-surface completion, no prior model libraries are required for recognizing and re-identifying objects of quite general object categories, opening the way to unsupervised learning and fully autonomous cognitive systems.

  20. Artificial neural network classification using a minimal training set - Comparison to conventional supervised classification

    NASA Technical Reports Server (NTRS)

    Hepner, George F.; Logan, Thomas; Ritter, Niles; Bryant, Nevin

    1990-01-01

    Recent research has shown an artificial neural network (ANN) to be capable of pattern recognition and the classification of image data. This paper examines the potential for the application of neural network computing to satellite image processing. A second objective is to provide a preliminary comparison and ANN classification. An artificial neural network can be trained to do land-cover classification of satellite imagery using selected sites representative of each class in a manner similar to conventional supervised classification. One of the major problems associated with recognition and classifications of pattern from remotely sensed data is the time and cost of developing a set of training sites. This reseach compares the use of an ANN back propagation classification procedure with a conventional supervised maximum likelihood classification procedure using a minimal training set. When using a minimal training set, the neural network is able to provide a land-cover classification superior to the classification derived from the conventional classification procedure. This research is the foundation for developing application parameters for further prototyping of software and hardware implementations for artificial neural networks in satellite image and geographic information processing.

  1. Vessel and oil spill early detection using COSMO satellite imagery

    NASA Astrophysics Data System (ADS)

    Revollo, Natalia V.; Delrieux, Claudio A.

    2017-10-01

    Oil spillage is one of the most common sources of environmental damage in places where coastal wild life is found in natural reservoirs. This is especially the case in the Patagonian coast, with a littoral more than 5000 km long and a surface above a million and half square km. In addition, furtive fishery activities in Argentine waters are depleting the food supplies of several species, altering the ecological equilibrium. For this reason, early oil spills and vessel detection is an imperative surveillance task for environmental and governmental authorities. However, given the huge geographical extension, human assisted monitoring is unfeasible, and therefore real time remote sensing technologies are the only operative and economically feasible solution. In this work we describe the theoretical foundations and implementation details of a system specifically designed to take advantage of the SAR imagery delivered by two satellite constellations (the SAOCOM mission, developed by the Argentine Space Agency, and the COSMO mission, developed by the Italian Space Agency), to provide real-time detection of vessels and oil spills. The core of the system is based on pattern recognition over a statistical characterization of the texture patterns arising in the positive and negative conditions (i.e., vessel, oil, or plain sea surfaces). Training patterns were collected from a large number of previously reported contacts tagged by experts in the National Commission on Space Activities (CONAE). The resulting system performs well above the sensitivity and specificity of other avalilable systems.

  2. Gabor Jets for Clutter Rejection in Infrared Imagery

    DTIC Science & Technology

    2004-12-01

    application of a suitable model like Gabor Jets in facial recognition is well motivated by the observation that some low level, spatial-frequency...set. This is a simplified form of the Gabor Jet procedure and will not require any elastic graph matching procedures used in facial recognition . Another...motivation for employing Gabor jets as a post processing clutter rejecter is attributed to the great deal of research in facial recognition , invariant

  3. An observational study of implicit motor imagery using laterality recognition of the hand after stroke.

    PubMed

    Amesz, Sarah; Tessari, Alessia; Ottoboni, Giovanni; Marsden, Jon

    2016-01-01

    To explore the relationship between laterality recognition after stroke and impairments in attention, 3D object rotation and functional ability. Observational cross-sectional study. Acute care teaching hospital. Thirty-two acute and sub-acute people with stroke and 36 healthy, age-matched controls. Laterality recognition, attention and mental rotation of objects. Within the stroke group, the relationship between laterality recognition and functional ability, neglect, hemianopia and dyspraxia were further explored. People with stroke were significantly less accurate (69% vs 80%) and showed delayed reaction times (3.0 vs 1.9 seconds) when determining the laterality of a pictured hand. Deficits either in accuracy or reaction times were seen in 53% of people with stroke. The accuracy of laterality recognition was associated with reduced functional ability (R(2) = 0.21), less accurate mental rotation of objects (R(2) = 0.20) and dyspraxia (p = 0.03). Implicit motor imagery is affected in a significant number of patients after stroke with these deficits related to lesions to the motor networks as well as other deficits seen after stroke. This research provides new insights into how laterality recognition is related to a number of other deficits after stroke, including the mental rotation of 3D objects, attention and dyspraxia. Further research is required to determine if treatment programmes can improve deficits in laterality recognition and impact functional outcomes after stroke.

  4. Determination of turbidity patterns in Lake Chicot from LANDSAT MSS imagery

    NASA Technical Reports Server (NTRS)

    Lecroy, S. R. (Principal Investigator)

    1982-01-01

    A historical analysis of all the applicable LANDSAT imagery was conducted on the turbidity patterns of Lake Chicot, located in the southeastern corner of Arkansas. By examining the seasonal and regional turbidity patterns, a record of sediment dynamics and possible disposition can be obtained. Sketches were generated from the suitable imagery, displaying different intensities of brightness observed in bands 5 and 7 of LANDSAT's multispectral scanner data. Differences in and between bands 5 and 7 indicate variances in the levels of surface sediment concentrations. High sediment loads are revealed when distinct patterns appear in the band 7 imagery. Additionally, the upwelled signal is exponential in nature and saturates in band 5 at low wavelengths for large concentrations of suspended solids.

  5. Fracture trends identified by ERTS-1 imagery in Utah and Nevada

    NASA Technical Reports Server (NTRS)

    Jensen, M. L. (Principal Investigator); Erickson, M. P.; Smith, M. R.

    1973-01-01

    The author has identified the following significant results. In the Utah-Nevada area, linear structural trends recorded on ERTS-1 imagery conform in part to previously recognized structures. In addition, the ERTS-1 imagery reveals cryptic structures not previously identified and not readily apparent in other imagery. These structures are illustrated by prominent east-west trending structures which appear to be concentrated in pre-volcanic rocks. This suggests that the structures are older than many of those with other trends which are equally prominent in volcanic and non-volcanic terrain. Since the older east-west structures may have controlled early Tertiary emplacement of magma or the ascent of mineralizing fluids, their recognition is important in minerial exploration. Soil-gas sampling and analysis for mercury content is being continued over structures, and projected trends of buried structures which appear, from studies of ERTS-1 imagery, to be favorable to mineralization. Comparison of ERTS-1 and Skylab imagery indicated that ERTS-1 imagery records more previously unrecognized linear structures than the Skylab imagery. In differentiating and identifying different rock types, the Skylab imagery appears to be more effective.

  6. Interactive object recognition assistance: an approach to recognition starting from target objects

    NASA Astrophysics Data System (ADS)

    Geisler, Juergen; Littfass, Michael

    1999-07-01

    Recognition of target objects in remotely sensed imagery required detailed knowledge about the target object domain as well as about mapping properties of the sensing system. The art of object recognition is to combine both worlds appropriately and to provide models of target appearance with respect to sensor characteristics. Common approaches to support interactive object recognition are either driven from the sensor point of view and address the problem of displaying images in a manner adequate to the sensing system. Or they focus on target objects and provide exhaustive encyclopedic information about this domain. Our paper discusses an approach to assist interactive object recognition based on knowledge about target objects and taking into account the significance of object features with respect to characteristics of the sensed imagery, e.g. spatial and spectral resolution. An `interactive recognition assistant' takes the image analyst through the interpretation process by indicating step-by-step the respectively most significant features of objects in an actual set of candidates. The significance of object features is expressed by pregenerated trees of significance, and by the dynamic computation of decision relevance for every feature at each step of the recognition process. In the context of this approach we discuss the question of modeling and storing the multisensorial/multispectral appearances of target objects and object classes as well as the problem of an adequate dynamic human-machine-interface that takes into account various mental models of human image interpretation.

  7. Determine precipitation rates from visible and infrared satellite images of clouds by pattern recognition technique. Progress Report, 1 Jul. 1985 - 31 Mar. 1987 Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Weinman, James A.; Garan, Louis

    1987-01-01

    A more advanced cloud pattern analysis algorithm was subsequently developed to take the shape and brightness of the various clouds into account in a manner that is more consistent with the human analyst's perception of GOES cloud imagery. The results of that classification scheme were compared with precipitation probabilities observed from ships of opportunity off the U.S. east coast to derive empirical regressions between cloud types and precipitation probability. The cloud morphology was then quantitatively and objectively used to map precipitation probabilities during two winter months during which severe cold air outbreaks were observed over the northwest Atlantic. Precipitation probabilities associated with various cloud types are summarized. Maps of precipitation probability derived from the cloud morphology analysis program for two months and the precipitation probability derived from thirty years of ship observation were observed.

  8. Source misattributions and false recognition errors: examining the role of perceptual resemblance and imagery generation processes.

    PubMed

    Foley, Mary Ann; Bays, Rebecca Brooke; Foy, Jeffrey; Woodfield, Mila

    2015-01-01

    In three experiments, we examine the extent to which participants' memory errors are affected by the perceptual features of an encoding series and imagery generation processes. Perceptual features were examined by manipulating the features associated with individual items as well as the relationships among items. An encoding instruction manipulation was included to examine the effects of explicit requests to generate images. In all three experiments, participants falsely claimed to have seen pictures of items presented as words, committing picture misattribution errors. These misattribution errors were exaggerated when the perceptual resemblance between pictures and images was relatively high (Experiment 1) and when explicit requests to generate images were omitted from encoding instructions (Experiments 1 and 2). When perceptual cues made the thematic relationships among items salient, the level and pattern of misattribution errors were also affected (Experiments 2 and 3). Results address alternative views about the nature of internal representations resulting in misattribution errors and refute the idea that these errors reflect only participants' general impressions or beliefs about what was seen.

  9. Collaborative encoding and memory accuracy: examining the effects of interactive components of co-construction processes.

    PubMed

    Foley, Mary Ann; Fried, Adina Rachel; Cowan, Emily; Bays, Rebecca Brooke

    2014-01-01

    In 2 experiments, the effect of collaborative encoding on memory was examined by testing 2 interactive components of co-construction processes. One component focused on the nature of the interactive exchange between collaborators: As the partners worked together to create descriptions about ways to interact with familiar objects, constraints were imposed on the interactions by requiring them to take turns (Experiment 1) or to interact without constraints (Experiment 2). The nature of the relationship between partners was manipulated as well by including 2 pair types, friends or unfamiliar peers (Experiments 1 and 2). Interactive component effects were found to influence spontaneous activations through content analyses of participants' descriptions, the patterns of false recognition errors, and the relationship between content and errors. The findings highlight the value of examining the content of participants' collaborative efforts when assessing the effects of collaborative encoding on memory and point to mechanisms mediating collaboration's effects. Because the interactions occurred within the context of an imagery generation task, the findings are also intriguing because of their implications for the use of guided imagery techniques that incorporate co-construction processes.

  10. The 3D Recognition, Generation, Fusion, Update and Refinement (RG4) Concept

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Cheeseman, Peter; Smelyanskyi, Vadim N.; Kuehnel, Frank; Morris, Robin D.; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an active (real time) recognition strategy whereby information is inferred iteratively across several viewpoints in descent imagery. We will show how we use inverse theory within the context of parametric model generation, namely height and spectral reflection functions, to generate model assertions. Using this strategy in an active context implies that, from every viewpoint, the proposed system must refine its hypotheses taking into account the image and the effect of uncertainties as well. The proposed system employs probabilistic solutions to the problem of iteratively merging information (images) from several viewpoints. This involves feeding the posterior distribution from all previous images as a prior for the next view. Novel approaches will be developed to accelerate the inversion search using novel statistic implementations and reducing the model complexity using foveated vision. Foveated vision refers to imagery where the resolution varies across the image. In this paper, we allow the model to be foveated where the highest resolution region is called the foveation region. Typically, the images will have dynamic control of the location of the foveation region. For descent imagery in the Entry, Descent, and Landing (EDL) process, it is possible to have more than one foveation region. This research initiative is directed towards descent imagery in connection with NASA's EDL applications. Three-Dimensional Model Recognition, Generation, Fusion, Update, and Refinement (RGFUR or RG4) for height and the spectral reflection characteristics are in focus for various reasons, one of which is the prospect that their interpretation will provide for real time active vision for automated EDL.

  11. ERTS-B imagery interpretation techniques in the Tennessee Valley

    NASA Technical Reports Server (NTRS)

    Gonzalez, R. C. (Principal Investigator)

    1973-01-01

    There are no author-identified significant results in this report. The proposed investigation is a continuation of an ERTS-1 project. The principal missions are to serve as the principal supporter on computer and image processing problems for the multidisciplinary ERTS effort of the University of Tennessee, and to carry out research in improved methods for the computer processing, enhancement, and recognition of ERTS imagery.

  12. Brain-based decoding of mentally imagined film clips and sounds reveals experience-based information patterns in film professionals.

    PubMed

    de Borst, Aline W; Valente, Giancarlo; Jääskeläinen, Iiro P; Tikka, Pia

    2016-04-01

    In the perceptual domain, it has been shown that the human brain is strongly shaped through experience, leading to expertise in highly-skilled professionals. What has remained unclear is whether specialization also shapes brain networks underlying mental imagery. In our fMRI study, we aimed to uncover modality-specific mental imagery specialization of film experts. Using multi-voxel pattern analysis we decoded from brain activity of professional cinematographers and sound designers whether they were imagining sounds or images of particular film clips. In each expert group distinct multi-voxel patterns, specific for the modality of their expertise, were found during classification of imagery modality. These patterns were mainly localized in the occipito-temporal and parietal cortex for cinematographers and in the auditory cortex for sound designers. We also found generalized patterns across perception and imagery that were distinct for the two expert groups: they involved frontal cortex for the cinematographers and temporal cortex for the sound designers. Notably, the mental representations of film clips and sounds of cinematographers contained information that went beyond modality-specificity. We were able to successfully decode the implicit presence of film genre from brain activity during mental imagery in cinematographers. The results extend existing neuroimaging literature on expertise into the domain of mental imagery and show that experience in visual versus auditory imagery can alter the representation of information in modality-specific association cortices. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Using Deep Learning for Tropical Cyclone Intensity Estimation

    NASA Astrophysics Data System (ADS)

    Miller, J.; Maskey, M.; Berendes, T.

    2017-12-01

    Satellite-based techniques are the primary approach to estimating tropical cyclone (TC) intensity. Tropical cyclone warning centers worldwide still apply variants of the Dvorak technique for such estimations that include visual inspection of the satellite images. The National Hurricane Center (NHC) estimates about 10-20% uncertainty in its post analyses when only satellite-based estimates are available. The success of the Dvorak technique proves that spatial patterns in infrared (IR) imagery strongly relate to TC intensity. With the ever-increasing quality and quantity of satellite observations of TCs, deep learning techniques designed to excel at pattern recognition have become more relevant in this area of study. In our current study, we aim to provide a fully objective approach to TC intensity estimation by utilizing deep learning in the form of a convolutional neural network trained to predict TC intensity (maximum sustained wind speed) using IR satellite imagery. Large amounts of training data are needed to train a convolutional neural network, so we use GOES IR images from historical tropical storms from the Atlantic and Pacific basins spanning years 2000 to 2015. Images are labeled using a special subset of the HURDAT2 dataset restricted to time periods with airborne reconnaissance data available in order to improve the quality of the HURDAT2 data. Results and the advantages of this technique are to be discussed.

  14. Recognition and Mental Manipulation of Body Parts Dissociate in Locked-In Syndrome

    ERIC Educational Resources Information Center

    Conson, Massimiliano; Pistoia, Francesca; Sara, Marco; Grossi, Dario; Trojano, Luigi

    2010-01-01

    Several lines of evidence demonstrate that the motor system is involved in motor simulation of actions, but some uncertainty exists about the consequences of lesions of descending motor pathways on mental imagery tasks. Moreover, recent findings suggest that the motor system could also have a role in recognition of body parts. To address these…

  15. A comparison of digital multi-spectral imagery versus conventional photography for mapping seagrass in Indian River Lagoon, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virnstein, R.; Tepera, M.; Beazley, L.

    1997-06-01

    A pilot study is very briefly summarized in the article. The study tested the potential of multi-spectral digital imagery for discrimination of seagrass densities and species, algae, and bottom types. Imagery was obtained with the Compact Airborne Spectral Imager (casi) and two flight lines flown with hyper-spectral mode. The photogrammetric method used allowed interpretation of the highest quality product, eliminating limitations caused by outdated or poor quality base maps and the errors associated with transfer of polygons. Initial image analysis indicates that the multi-spectral imagery has several advantages, including sophisticated spectral signature recognition and classification, ease of geo-referencing, and rapidmore » mosaicking.« less

  16. Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr. (Compiler)

    1973-01-01

    The author has identified the following significant results. Geologic interpretation of ERTS-1 imagery is dependent on recognition of the distribution, continuity, trend, and geometry of key surface features. In the examination of ERTS-1 imagery, lithology must be interpreted largely from the geomorphic expression of the terrain. ERTS-1 imagery is extremely useful in detecting local structures. Most mapped structures are topographically-expressed. Consequently, ERTS-1 imagery acquired during mid-winter, when the solar illumination angle is low, provides the largest amount of structural information. Stereoscopic analyses of ERTS-1 images significantly aid geologic interpretation. Positive transparencies of ERTS-1 images (1:1,000,000) commonly contain more geologic information than can be adequately annotated during geologic interpretation.

  17. Biocybernetic factors in human perception and memory

    NASA Technical Reports Server (NTRS)

    Lai, D. C.

    1975-01-01

    The objective of this research is to develop biocybernetic techniques for use in the analysis and development of skills required for the enhancement of concrete images of the 'eidetic' type. The scan patterns of the eye during inspection of scenes are treated as indicators of the brain's strategy for the intake of visual information. The authors determine the features that differentiate visual scan patterns associated with superior imagery from scan patterns associated with inferior imagery, and simultaneously differentiate the EEG features correlated with superior imagery from those correlated with inferior imagery. A closely-coupled man-machine system has been designed to generate image enhancement and to train the individual to exert greater voluntary control over his own imagery. The models for EEG signals and saccadic eye movement in the man-machine system have been completed. The report describes the details of these models and discusses their usefulness.

  18. The impact of left and right intracranial tumors on picture and word recognition memory.

    PubMed

    Goldstein, Bram; Armstrong, Carol L; Modestino, Edward; Ledakis, George; John, Cameron; Hunter, Jill V

    2004-02-01

    This study investigated the effects of left and right intracranial tumors on picture and word recognition memory. We hypothesized that left hemispheric (LH) patients would exhibit greater word recognition memory impairment than right hemispheric (RH) patients, with no significant hemispheric group picture recognition memory differences. The LH patient group obtained a significantly slower mean picture recognition reaction time than the RH group. The LH group had a higher proportion of tumors extending into the temporal lobes, possibly accounting for their greater pictorial processing impairments. Dual coding and enhanced visual imagery may have contributed to the patient groups' similar performance on the remainder of the measures.

  19. A study of image quality for radar image processing. [synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    King, R. W.; Kaupp, V. H.; Waite, W. P.; Macdonald, H. C.

    1982-01-01

    Methods developed for image quality metrics are reviewed with focus on basic interpretation or recognition elements including: tone or color; shape; pattern; size; shadow; texture; site; association or context; and resolution. Seven metrics are believed to show promise as a way of characterizing the quality of an image: (1) the dynamic range of intensities in the displayed image; (2) the system signal-to-noise ratio; (3) the system spatial bandwidth or bandpass; (4) the system resolution or acutance; (5) the normalized-mean-square-error as a measure of geometric fidelity; (6) the perceptual mean square error; and (7) the radar threshold quality factor. Selective levels of degradation are being applied to simulated synthetic radar images to test the validity of these metrics.

  20. Imagery encoding and false recognition errors: Examining the role of imagery process and imagery content on source misattributions.

    PubMed

    Foley, Mary Ann; Foy, Jeffrey; Schlemmer, Emily; Belser-Ehrlich, Janna

    2010-11-01

    Imagery encoding effects on source-monitoring errors were explored using the Deese-Roediger-McDermott paradigm in two experiments. While viewing thematically related lists embedded in mixed picture/word presentations, participants were asked to generate images of objects or words (Experiment 1) or to simply name the items (Experiment 2). An encoding task intended to induce spontaneous images served as a control for the explicit imagery instruction conditions (Experiment 1). On the picture/word source-monitoring tests, participants were much more likely to report "seeing" a picture of an item presented as a word than the converse particularly when images were induced spontaneously. However, this picture misattribution error was reversed after generating images of words (Experiment 1) and was eliminated after simply labelling the items (Experiment 2). Thus source misattributions were sensitive to the processes giving rise to imagery experiences (spontaneous vs deliberate), the kinds of images generated (object vs word images), and the ways in which materials were presented (as pictures vs words).

  1. Imagery as an aid to retrieval for Korsakoff patients.

    PubMed

    Cermak, L S

    1975-06-01

    Six Korsakoff patients and six alcoholic controls learned a five item P-A task under each of the following three learning conditions; Rote, Imagery, and Cued learning. Under all conditions the Korsakoff patients took more trials to learn than did the control patients. However, both imagery learning and cued learning were easier than rote learning for the Korsakoff patients when recall was used as the learning index. When a recognition measure was used instead of the recall, imagery learning proved easiest with no difference existing between cued and rote learning. In a second experiment, the patients were given the cue (a mediating link) during presentation, but not during retrieval. Under this condition the Korsakoff patients learned no more rapidly than they did by rote regardless which response measure was required. It was concluded that imagery can aid both storage and retrieval of verbal information for Korsakoff patients, while cuing aids only the retrieval process.

  2. Syntax-directed content analysis of videotext: application to a map detection recognition system

    NASA Astrophysics Data System (ADS)

    Aradhye, Hrishikesh; Herson, James A.; Myers, Gregory

    2003-01-01

    Video is an increasingly important and ever-growing source of information to the intelligence and homeland defense analyst. A capability to automatically identify the contents of video imagery would enable the analyst to index relevant foreign and domestic news videos in a convenient and meaningful way. To this end, the proposed system aims to help determine the geographic focus of a news story directly from video imagery by detecting and geographically localizing political maps from news broadcasts, using the results of videotext recognition in lieu of a computationally expensive, scale-independent shape recognizer. Our novel method for the geographic localization of a map is based on the premise that the relative placement of text superimposed on a map roughly corresponds to the geographic coordinates of the locations the text represents. Our scheme extracts and recognizes videotext, and iteratively identifies the geographic area, while allowing for OCR errors and artistic freedom. The fast and reliable recognition of such maps by our system may provide valuable context and supporting evidence for other sources, such as speech recognition transcripts. The concepts of syntax-directed content analysis of videotext presented here can be extended to other content analysis systems.

  3. Virtual DRI dataset development

    NASA Astrophysics Data System (ADS)

    Hixson, Jonathan G.; Teaney, Brian P.; May, Christopher; Maurer, Tana; Nelson, Michael B.; Pham, Justin R.

    2017-05-01

    The U.S. Army RDECOM CERDEC NVESD MSD's target acquisition models have been used for many years by the military analysis community for sensor design, trade studies, and field performance prediction. This paper analyzes the results of perception tests performed to compare the results of a field DRI (Detection, Recognition, and Identification Test) performed in 2009 to current Soldier performance viewing the same imagery in a laboratory environment and simulated imagery of the same data set. The purpose of the experiment is to build a robust data set for use in the virtual prototyping of infrared sensors. This data set will provide a strong foundation relating, model predictions, field DRI results and simulated imagery.

  4. Automated night/day standoff detection, tracking, and identification of personnel for installation protection

    NASA Astrophysics Data System (ADS)

    Lemoff, Brian E.; Martin, Robert B.; Sluch, Mikhail; Kafka, Kristopher M.; McCormick, William; Ice, Robert

    2013-06-01

    The capability to positively and covertly identify people at a safe distance, 24-hours per day, could provide a valuable advantage in protecting installations, both domestically and in an asymmetric warfare environment. This capability would enable installation security officers to identify known bad actors from a safe distance, even if they are approaching under cover of darkness. We will describe an active-SWIR imaging system being developed to automatically detect, track, and identify people at long range using computer face recognition. The system illuminates the target with an eye-safe and invisible SWIR laser beam, to provide consistent high-resolution imagery night and day. SWIR facial imagery produced by the system is matched against a watch-list of mug shots using computer face recognition algorithms. The current system relies on an operator to point the camera and to review and interpret the face recognition results. Automation software is being developed that will allow the system to be cued to a location by an external system, automatically detect a person, track the person as they move, zoom in on the face, select good facial images, and process the face recognition results, producing alarms and sharing data with other systems when people are detected and identified. Progress on the automation of this system will be presented along with experimental night-time face recognition results at distance.

  5. Mapping and monitoring Mt. Graham Red Squirrel habitat with GIS and thematic mapper imagery

    USGS Publications Warehouse

    Hatten, James R.; Koprowski, John L.; Sanderson, H. Reed; Koprowski, John L.

    2009-01-01

    To estimate the Mt. Graham red squirrel (MGRS) population, personnel visit a proportion of middens each year to determine their occupancy (Snow in this vol.). The method results in very tight confidence intervals (high precision), but the accuracy of the population estimate is dependent upon knowing where all the middens are located. I hypothesized that there might be areas outside the survey boundary that contained Mt. Graham red squirrel middens, but the ruggedness of the Pinaleno Mountains made mountain-wide surveys difficult. Therefore, I started exploring development of a spatially explicit (geographic information system [GIS]-based) habitat model in 1998 that could identify MGRS habitat remotely with satellite imagery and a GIS. A GIS-based model would also allow us to assess changes in MGRS habitat between two time periods because Landsat passes over the same location every 16 days, imaging the earth in 185 km swaths (Aronoff 1989). Specifically, the objectives of this analysis were to (1) develop a pattern recognition model for MGRS habitat, (2) map potential (predicted/modeled) MGRS habitat, (3) identify changes in potential MGRS habitat between 1993 and 2003, and (4) evaluate the current location of the MGRS survey boundary.

  6. Interpretation, compilation and field verification procedures in the CARETS project

    USGS Publications Warehouse

    Alexander, Robert H.; De Forth, Peter W.; Fitzpatrick, Katherine A.; Lins, Harry F.; McGinty, Herbert K.

    1975-01-01

    The production of the CARETS map data base involved the development of a series of procedures for interpreting, compiling, and verifying data obtained from remote sensor sources. Level II land use mapping from high-altitude aircraft photography at a scale of 1:100,000 required production of a photomosaic mapping base for each of the 48, 50 x 50 km sheets, and the interpretation and coding of land use polygons on drafting film overlays. CARETS researchers also produced a series of 1970 to 1972 land use change overlays, using the 1970 land use maps and 1972 high-altitude aircraft photography. To enhance the value of the land use sheets, researchers compiled series of overlays showing cultural features, county boundaries and census tracts, surface geology, and drainage basins. In producing Level I land use maps from Landsat imagery, at a scale of 1:250,000, interpreters overlaid drafting film directly on Landsat color composite transparencies and interpreted on the film. They found that such interpretation involves pattern and spectral signature recognition. In studies using Landsat imagery, interpreters identified numerous areas of change but also identified extensive areas of "false change," where Landsat spectral signatures but not land use had changed.

  7. Is having similar eye movement patterns during face learning and recognition beneficial for recognition performance? Evidence from hidden Markov modeling.

    PubMed

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2017-12-01

    The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. What Do Eye Gaze Metrics Tell Us about Motor Imagery?

    PubMed

    Poiroux, Elodie; Cavaro-Ménard, Christine; Leruez, Stéphanie; Lemée, Jean Michel; Richard, Isabelle; Dinomais, Mickael

    2015-01-01

    Many of the brain structures involved in performing real movements also have increased activity during imagined movements or during motor observation, and this could be the neural substrate underlying the effects of motor imagery in motor learning or motor rehabilitation. In the absence of any objective physiological method of measurement, it is currently impossible to be sure that the patient is indeed performing the task as instructed. Eye gaze recording during a motor imagery task could be a possible way to "spy" on the activity an individual is really engaged in. The aim of the present study was to compare the pattern of eye movement metrics during motor observation, visual and kinesthetic motor imagery (VI, KI), target fixation, and mental calculation. Twenty-two healthy subjects (16 females and 6 males), were required to perform tests in five conditions using imagery in the Box and Block Test tasks following the procedure described by Liepert et al. Eye movements were analysed by a non-invasive oculometric measure (SMI RED250 system). Two parameters describing gaze pattern were calculated: the index of ocular mobility (saccade duration over saccade + fixation duration) and the number of midline crossings (i.e. the number of times the subjects gaze crossed the midline of the screen when performing the different tasks). Both parameters were significantly different between visual imagery and kinesthesic imagery, visual imagery and mental calculation, and visual imagery and target fixation. For the first time we were able to show that eye movement patterns are different during VI and KI tasks. Our results suggest gaze metric parameters could be used as an objective unobtrusive approach to assess engagement in a motor imagery task. Further studies should define how oculomotor parameters could be used as an indicator of the rehabilitation task a patient is engaged in.

  9. Application of ecological, geological and oceanographic ERTS-1 imagery to Delaware's coastal resources planning

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Communities containing five different coastal vegetation species, developed marshlands, and fresh water impoundments have been identified in ERTS-1 images. Suspended sediment and circulation patterns in imagery from five ERTS-1 passes over Delaware Bay have been enhanced and correlated with predicted current patterns. Conclusions reached are: (1) ERTS-1 is suitable platform for observing suspended sediment patterns and water masses synoptically over large areas. (2) Suspended sediment acts as a natural tracer allowing photointerpreters to deduce gross current circulation patterns from ERTS-1 imagery. (3) Under atmospheric conditions encountered along the East Coast of the United States MSS band 5 seems to give the best representation of sediment load in upper one meter of water column. (4) In the ERTS-1 imagery the sediment patterns are delineated by three to four neighboring shades of grey. (5) Negative transparencies of the ERTS-1 images give better contrast whenever the suspended sediment tones fall within the first few steps of the grey scale. (6) Color density slicing helps delineate the suspended sediment patterns more clearly and differentiate turbidity levels.

  10. Determination of circulation and turbidity patterns in Kerr Lake from LANDSAT MSS imagery. [Kerr Lake, Virginia, North Carolina

    NASA Technical Reports Server (NTRS)

    Lecroy, S. R. (Principal Investigator)

    1981-01-01

    The LANDSAT imagery was historically analyzed to determine the circulation and turbidity patterns of Kerr Lake, located on the Virginia-North Carolina border. By examining the seasonal and regional turbidity and circulation patterns, a record of sediment transport and possible disposition can be obtained. Sketches were generated, displaying different intensities of brightness observed in bands 5 and 7 of LANDSAT's multispectral scanner data. Differences in and between bands 5 and 7 indicate variances in the levels of surface sediment concentrations. High sediment loads are revealed when distinct patterns appear in the band 7 imagery. The upwelled signal is exponential in nature and saturates in band 5 at low wavelengths for large concentrations of suspended solids.

  11. Ship recognition for improved persistent tracking with descriptor localization and compact representations

    NASA Astrophysics Data System (ADS)

    van den Broek, Sebastiaan P.; Bouma, Henri; den Hollander, Richard J. M.; Veerman, Henny E. T.; Benoist, Koen W.; Schwering, Piet B. W.

    2014-10-01

    For maritime situational awareness, it is important to identify currently observed ships as earlier encounters. For example, past location and behavior analysis are useful to determine whether a ship is of interest in case of piracy and smuggling. It is beneficial to verify this with cameras at a distance, to avoid the costs of bringing an own asset closer to the ship. The focus of this paper is on ship recognition from electro-optical imagery. The main contribution is an analysis of the effect of using the combination of descriptor localization and compact representations. An evaluation is performed to assess the usefulness in persistent tracking, especially for larger intervals (i.e. re-identification of ships). From the evaluation on recordings of imagery, it is estimated how well the system discriminates between different ships.

  12. Interlobate comparison of glacial-depositional style as evidenced by small-relief glacial landscape features in Illinois, Indiana, and Ohio, utilizing SIR-B

    NASA Technical Reports Server (NTRS)

    Johnson, W. H.; Bleuer, N. K.; Fraser, G. S.; Totten, S. M.

    1984-01-01

    The objectives and expected results of an investigation of the use of the Shuttle Imaging Radar-B (SIR-B) as a basic tool in the recognition and mapping of glacial landforms are discussed. The main goals are: (1) to evaluate the ability of SIR-B to delineate varying sizes, shapes, and relief of surface forms; (2) to compare and contrast SIR-B imagery with selected Seasat SAR imagery; (3) to utilize SIR-B imagery synergistically with available SEASAT SAR, LANDSAT RBV, and other imagery sources to identify and map suites of glacial landforms; and (4) eventually to interpret the suites in terms of ice dynamics and conditions of deglaciation, to relate them to the stratigraphic record, and to evaluate interactions of the major lobes and sublobes.

  13. An evaluation of the suitability of ERTS data for the purposes of petroleum exploration

    NASA Technical Reports Server (NTRS)

    Collins, R. J., Jr. (Principal Investigator); Mccown, F. P.; Stonis, L. P.; Petzel, G.

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery seems to be good to excellent for reconnaissance level investigations of large sedimentary basins such as the Anadarko Basin. Many lithologic boundaries, and geomorphic features, and linear features inferred to be indicative of geologic structure are visible in the imagery. This imagery in conjunction with high altitude photography seems to be useful as a tool for intermediate level geologic exploration. Several types of crudely circular anomalous features, such as geomorphic/structural anomalies, hazy areas and tonal anomalies, are identifiable in the imagery. There seems to be a strong correlation between the geomorphic/structural and hazy anomalies and known structurally controlled oil and gas fields. The features recognizable on ERTS-1 imagery and their ease of recognition vary from area to area even in imagery acquired at the same time under essentially uniform atmospheric conditions. Repeated coverage is exceedingly valuable in geologic applications. One time complete coverage even for the various seasons does not reveal all the features that ERTS-1 can reveal.

  14. Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  15. Structural lineament and pattern analysis of Missouri, using LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Martin, J. A.; Kisvarsanyi, G. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Major linear, circular, and arcuate traces were observed on LANDSAT imagery of Missouri. Lineaments plotted within the state boundaries range from 20 to nearly 500 km in length. Several extend into adjoining states. Lineaments plots indicate a distinct pattern and in general reflect structural features of the Precambrian basement of the platform. Coincidence of lineaments traced from the imagery and known structural features in Missouri is high, thus supporting a causative relation between them. The lineament pattern apparently reveals a fundamental style of the deformation of the intracontinental craton. Dozens of heretofore unknown linear features related to epirogenic movements and deformation of this segment of the continental crust were delineated. Lineaments and mineralization are interrelated in a geometrically classifiable pattern.

  16. Disentangling visual imagery and perception of real-world objects

    PubMed Central

    Lee, Sue-Hyun; Kravitz, Dwight J.; Baker, Chris I.

    2011-01-01

    During mental imagery, visual representations can be evoked in the absence of “bottom-up” sensory input. Prior studies have reported similar neural substrates for imagery and perception, but studies of brain-damaged patients have revealed a double dissociation with some patients showing preserved imagery in spite of impaired perception and others vice versa. Here, we used fMRI and multi-voxel pattern analysis to investigate the specificity, distribution, and similarity of information for individual seen and imagined objects to try and resolve this apparent contradiction. In an event-related design, participants either viewed or imagined individual named object images on which they had been trained prior to the scan. We found that the identity of both seen and imagined objects could be decoded from the pattern of activity throughout the ventral visual processing stream. Further, there was enough correspondence between imagery and perception to allow discrimination of individual imagined objects based on the response during perception. However, the distribution of object information across visual areas was strikingly different during imagery and perception. While there was an obvious posterior-anterior gradient along the ventral visual stream for seen objects, there was an opposite gradient for imagined objects. Moreover, the structure of representations (i.e. the pattern of similarity between responses to all objects) was more similar during imagery than perception in all regions along the visual stream. These results suggest that while imagery and perception have similar neural substrates, they involve different network dynamics, resolving the tension between previous imaging and neuropsychological studies. PMID:22040738

  17. Enhanced facial recognition for thermal imagery using polarimetric imaging.

    PubMed

    Gurton, Kristan P; Yuffa, Alex J; Videen, Gorden W

    2014-07-01

    We present a series of long-wave-infrared (LWIR) polarimetric-based thermal images of facial profiles in which polarization-state information of the image-forming radiance is retained and displayed. The resultant polarimetric images show enhanced facial features, additional texture, and details that are not present in corresponding conventional thermal imagery. It has been generally thought that conventional thermal imagery (MidIR or LWIR) could not produce the detailed spatial information required for reliable human identification due to the so-called "ghosting" effect often seen in thermal imagery of human subjects. By using polarimetric information, we are able to extract subtle surface features of the human face, thus improving subject identification. Polarimetric image sets considered include the conventional thermal intensity image, S0, the two Stokes images, S1 and S2, and a Stokes image product called the degree-of-linear-polarization image.

  18. Visible and thermal spectrum synthetic image generation with DIRSIG and MuSES for ground vehicle identification training

    NASA Astrophysics Data System (ADS)

    May, Christopher M.; Maurer, Tana O.; Sanders, Jeffrey S.

    2017-05-01

    There is a ubiquitous and never ending need in the US armed forces for training materials that provide the warfighter with the skills needed to differentiate between friendly and enemy forces on the battlefield. The current state of the art in battlefield identification training is the Recognition of Combat Vehicles (ROCV) tool created and maintained by the Communications - Electronics Research, Development and Engineering Center Night Vision and Electronic Sensors Directorate (CERDEC NVESD). The ROC-V training package utilizes measured visual and thermal imagery to train soldiers about the critical visual and thermal cues needed to accurately identify modern military vehicles and combatants. This paper presents an approach that has been developed to augment the existing ROC-V imagery database with synthetically generated multi-spectral imagery that will allow NVESD to provide improved training imagery at significantly lower costs.

  19. Evaluation of ERTS-1 imagery in mapping and managing soil and range resources in the Sand Hills Region of Nebraska

    NASA Technical Reports Server (NTRS)

    Seevers, P. M.; Drew, J. V. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Collection of ground truth data provided ground cover percent and the components of ground cover makeup. Percent bare soil appears to have greatest influence on imagery density of sites studied. Forage density estimates can be made on band 5 of MSS, provided site category identification is known. Additional data are provided concerning forage density and vegetation-soil relationship by color composites of MSS imagery. Reflectance differences shown on MSS bands 6 and 7 by Sand Hills lakes are related to water quality and possibly more specifically to total dissolved ions present in the water. Winter imagery with snow cover and low sun angle shows a marked enhancement of topography are associated with differences in forage density. High altitude color infrared photography appears to be a usable tool for recognition, measurement, and evaluation of go-back land.

  20. Remote sensing of physiographic soil units of Bennett County, South Dakota

    NASA Technical Reports Server (NTRS)

    Frazee, C. J.; Gropper, J. L.; Westin, F. C.

    1973-01-01

    A study was conducted in Bennett County, South Dakota, to establish a rangeland test site for evaluating the usefulness of ERTS data for mapping soil resources in rangeland areas. Photographic imagery obtained in October, 1970, was analyzed to determine which type of imagery is best for mapping drainage and land use patterns. Imagery of scales ranging from 1:1,000,000 to 1.20,000 was used to delineate soil-vegetative physiographic units. The photo characteristics used to define physiographic units were texture, drainage pattern, tone pattern, land use pattern and tone. These units will be used as test data for evaluating ERTS data. The physiographic units were categorized into a land classification system. The various categories which were delineated at the different scales of imagery were designed to be useful for different levels of land use planning. The land systems are adequate only for planning of large areas for general uses. The lowest category separated was the facet. The facets have a definite soil composition and represent different soil landscapes. These units are thought to be useful for providing natural resource information needed for local planning.

  1. Cross spectral, active and passive approach to face recognition for improved performance

    NASA Astrophysics Data System (ADS)

    Grudzien, A.; Kowalski, M.; Szustakowski, M.

    2017-08-01

    Biometrics is a technique for automatic recognition of a person based on physiological or behavior characteristics. Since the characteristics used are unique, biometrics can create a direct link between a person and identity, based on variety of characteristics. The human face is one of the most important biometric modalities for automatic authentication. The most popular method of face recognition which relies on processing of visual information seems to be imperfect. Thermal infrared imagery may be a promising alternative or complement to visible range imaging due to its several reasons. This paper presents an approach of combining both methods.

  2. Use of Biometrics within Sub-Saharan Refugee Communities

    DTIC Science & Technology

    2013-12-01

    fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity. Biometrics creates and...Biometrics typically comprises fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity...authentication because it identifies an individual based on mathematical analysis of the random pattern visible within the iris. Facial recognition is

  3. Rotation-invariant neural pattern recognition system with application to coin recognition.

    PubMed

    Fukumi, M; Omatu, S; Takeda, F; Kosaka, T

    1992-01-01

    In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.

  4. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.

    PubMed

    Huang, Huasheng; Deng, Jizhong; Lan, Yubin; Yang, Aqing; Deng, Xiaoling; Zhang, Lei

    2018-01-01

    Appropriate Site Specific Weed Management (SSWM) is crucial to ensure the crop yields. Within SSWM of large-scale area, remote sensing is a key technology to provide accurate weed distribution information. Compared with satellite and piloted aircraft remote sensing, unmanned aerial vehicle (UAV) is capable of capturing high spatial resolution imagery, which will provide more detailed information for weed mapping. The objective of this paper is to generate an accurate weed cover map based on UAV imagery. The UAV RGB imagery was collected in 2017 October over the rice field located in South China. The Fully Convolutional Network (FCN) method was proposed for weed mapping of the collected imagery. Transfer learning was used to improve generalization capability, and skip architecture was applied to increase the prediction accuracy. After that, the performance of FCN architecture was compared with Patch_based CNN algorithm and Pixel_based CNN method. Experimental results showed that our FCN method outperformed others, both in terms of accuracy and efficiency. The overall accuracy of the FCN approach was up to 0.935 and the accuracy for weed recognition was 0.883, which means that this algorithm is capable of generating accurate weed cover maps for the evaluated UAV imagery.

  5. Quantifying Novice and Expert Differences in Visual Diagnostic Reasoning in Veterinary Pathology Using Eye-Tracking Technology.

    PubMed

    Warren, Amy L; Donnon, Tyrone L; Wagg, Catherine R; Priest, Heather; Fernandez, Nicole J

    2018-01-18

    Visual diagnostic reasoning is the cognitive process by which pathologists reach a diagnosis based on visual stimuli (cytologic, histopathologic, or gross imagery). Currently, there is little to no literature examining visual reasoning in veterinary pathology. The objective of the study was to use eye tracking to establish baseline quantitative and qualitative differences between the visual reasoning processes of novice and expert veterinary pathologists viewing cytology specimens. Novice and expert participants were each shown 10 cytology images and asked to formulate a diagnosis while wearing eye-tracking equipment (10 slides) and while concurrently verbalizing their thought processes using the think-aloud protocol (5 slides). Compared to novices, experts demonstrated significantly higher diagnostic accuracy (p<.017), shorter time to diagnosis (p<.017), and a higher percentage of time spent viewing areas of diagnostic interest (p<.017). Experts elicited more key diagnostic features in the think-aloud protocol and had more efficient patterns of eye movement. These findings suggest that experts' fast time to diagnosis, efficient eye-movement patterns, and preference for viewing areas of interest supports system 1 (pattern-recognition) reasoning and script-inductive knowledge structures with system 2 (analytic) reasoning to verify their diagnosis.

  6. Image Registration Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline (Editor)

    1997-01-01

    Automatic image registration has often been considered as a preliminary step for higher-level processing, such as object recognition or data fusion. But with the unprecedented amounts of data which are being and will continue to be generated by newly developed sensors, the very topic of automatic image registration has become and important research topic. This workshop presents a collection of very high quality work which has been grouped in four main areas: (1) theoretical aspects of image registration; (2) applications to satellite imagery; (3) applications to medical imagery; and (4) image registration for computer vision research.

  7. Relation of ERTS-1 detected geologic structure to known economic ore deposits

    NASA Technical Reports Server (NTRS)

    Rich, E. I.

    1973-01-01

    A preliminary analysis of ERTS-1 imagery of the Northern Coast Ranges and Sacramento Valley, California, has disclosed a potentially important fracture system which may be one of the controlling factors in the location of known mercury deposits in the Coast Ranges and which appears to be associated with some of the oil and gas fields within the Sacramento Valley. Recognition of this fracture system may prove to be an extremely useful exploration tool, hence careful analysis of subsequent ERTS imagery might delineate areas for field evaluation.

  8. Arctic and subarctic environmental analyses utilizing ERTS-1 imagery. [permafrost sediment transport, snow cover, ice conditions, and water runoff in Alaska

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Mckim, H. L.; Haugen, R. K.; Gatto, L. W.; Slaughter, C. W.; Marlar, T. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Physiognomic landscape features were used as geologic and vegetative indicators in preparation of a surficial geology, vegetation, and permafrost map at a scale of 1:1 million using ERTS-1 band 7 imagery. The detail from this map compared favorably with USGS maps at 1:250,000 scale. Physical boundaries mapped from ERTS-1 imagery in combination with ground truth obtained from existing small maps and other sources resulted in improved and more detailed maps of permafrost terrain and vegetation for the same area. ERTS-1 imagery provides for the first time, a means of monitoring the following regional estuarine processes: daily and periodic surface water circulation patterns; changes in the relative sediment load of rivers discharging into the inlet; and, several local patterns not recognized before, such as a clockwise back eddy offshore from Clam Gulch and a counterclockwise current north of the Forelands. Comparison of ERTS-1 and Mariner imagery has revealed that the thermokarst depressions found on the Alaskan North Slope and polygonal patterns on the Yukon River Delta are possible analogs to some Martian terrain features.

  9. The effect of visual and interaction fidelity on spatial cognition in immersive virtual environments.

    PubMed

    Mania, Katerina; Wooldridge, Dave; Coxon, Matthew; Robinson, Andrew

    2006-01-01

    Accuracy of memory performance per se is an imperfect reflection of the cognitive activity (awareness states) that underlies performance in memory tasks. The aim of this research is to investigate the effect of varied visual and interaction fidelity of immersive virtual environments on memory awareness states. A between groups experiment was carried out to explore the effect of rendering quality on location-based recognition memory for objects and associated states of awareness. The experimental space, consisting of two interconnected rooms, was rendered either flat-shaded or using radiosity rendering. The computer graphics simulations were displayed on a stereo head-tracked Head Mounted Display. Participants completed a recognition memory task after exposure to the experimental space and reported one of four states of awareness following object recognition. These reflected the level of visual mental imagery involved during retrieval, the familiarity of the recollection, and also included guesses. Experimental results revealed variations in the distribution of participants' awareness states across conditions while memory performance failed to reveal any. Interestingly, results revealed a higher proportion of recollections associated with mental imagery in the flat-shaded condition. These findings comply with similar effects revealed in two earlier studies summarized here, which demonstrated that the less "naturalistic" interaction interface or interface of low interaction fidelity provoked a higher proportion of recognitions based on visual mental images.

  10. Novel wavelength diversity technique for high-speed atmospheric turbulence compensation

    NASA Astrophysics Data System (ADS)

    Arrasmith, William W.; Sullivan, Sean F.

    2010-04-01

    The defense, intelligence, and homeland security communities are driving a need for software dominant, real-time or near-real time atmospheric turbulence compensated imagery. The development of parallel processing capabilities are finding application in diverse areas including image processing, target tracking, pattern recognition, and image fusion to name a few. A novel approach to the computationally intensive case of software dominant optical and near infrared imaging through atmospheric turbulence is addressed in this paper. Previously, the somewhat conventional wavelength diversity method has been used to compensate for atmospheric turbulence with great success. We apply a new correlation based approach to the wavelength diversity methodology using a parallel processing architecture enabling high speed atmospheric turbulence compensation. Methods for optical imaging through distributed turbulence are discussed, simulation results are presented, and computational and performance assessments are provided.

  11. Discrimination of rock classes and alteration products in southwestern Saudi Arabia with computer-enhanced LANDSAT data

    NASA Technical Reports Server (NTRS)

    Blodget, H. W.; Gunther, F. J.; Podwysocki, M. H.

    1978-01-01

    Digital LANDSAT MSS data for an area in the southwestern Arabian Shield were computer-enhanced to improve discrimination of rock classes, and recognition of gossans associated with massive sulphide deposits. The test area is underlain by metamorphic rocks that are locally intruded by granites; these are partly overlain by sandstones. The test area further includes the Wadi Wassat and Wadi Qatan massive sulphide deposits, which are commonly capped by gossans of ferric oxides, silica, and carbonates. Color patterns and boundaries on contrast-stretched ratio color composite imagery, and on complementary images constructed using principal component and canonical analyses transformations, correspond exceptionally well to 1:100,000 scale field maps. A qualitative visual comparison of information content showed that the ratio enhancement provided the best overall image for identification of rock type and alteration products.

  12. Polluted and turbid water masses in Osaka Bay and its vicinity revealed with ERTS-A imageries

    NASA Technical Reports Server (NTRS)

    Watanabe, K.

    1973-01-01

    ERTS-1 took very valuable MSS imageries of Osaka Bay and its vicinity on October 24, 1972. In the MSS-4 and MSS-5 imageries a complex grey pattern of water masses can be seen. Though some of grey colored patterns seen in black and white prints of the MSS-4 and MSS-5 imageries are easily identified from their shapes as cloud covers or polluted water masses characterized by their color tone in longer wavelengths in the visible region, any correct distribution pattern of polluted or turbid water masses can be hardly detected separately from thin cloud covers in a quick look analysis. In the present investigation, a simple photographic technique was applied using the fact that reflected sun light from cloud including smog and inclined water surfaces of wave have a certain component in the near infrared region, that MSS-7, whereas the light scattered from fine materials suspended in the sea water has nearly no component sensible in MSS-4 and MSS-5 channels.

  13. A review and analysis of neural networks for classification of remotely sensed multispectral imagery

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1993-01-01

    A literature survey and analysis of the use of neural networks for the classification of remotely sensed multispectral imagery is presented. As part of a brief mathematical review, the backpropagation algorithm, which is the most common method of training multi-layer networks, is discussed with an emphasis on its application to pattern recognition. The analysis is divided into five aspects of neural network classification: (1) input data preprocessing, structure, and encoding; (2) output encoding and extraction of classes; (3) network architecture, (4) training algorithms; and (5) comparisons to conventional classifiers. The advantages of the neural network method over traditional classifiers are its non-parametric nature, arbitrary decision boundary capabilities, easy adaptation to different types of data and input structures, fuzzy output values that can enhance classification, and good generalization for use with multiple images. The disadvantages of the method are slow training time, inconsistent results due to random initial weights, and the requirement of obscure initialization values (e.g., learning rate and hidden layer size). Possible techniques for ameliorating these problems are discussed. It is concluded that, although the neural network method has several unique capabilities, it will become a useful tool in remote sensing only if it is made faster, more predictable, and easier to use.

  14. Remote sensing in Iowa agriculture: Identification and classification of Iowa's crops, soils and forestry resources using ERTS-1 and complimentary underflight imagery

    NASA Technical Reports Server (NTRS)

    Mahlstede, J. P. (Principal Investigator); Carlson, R. E.; Fenton, T. E.; Thomson, G. W.

    1974-01-01

    The author has identified the following significant results. Springtime ERTS-1 imagery covering pre-selected test sites in Iowa showed considerable detail with respect to broad soil and land use patterns. Additional imagery has been incorporated into a state mosaic. The mosaic was used as a base for soil association lines transferred from an existing map. The regions of greatest contrast are between the Clarion-Nicollet-Webster soil association area and adjacent areas. Landscape characteristics in this area result in land use patterns with a high percentage of pasture, hay, and timber. The soil association areas of the state that have patterns interpreted to be associated with intensive row crop production are: Moody, Galva-Primghar-Sac, Clarion-Nicollet-Webter, Tama-Muscatine, Dinsdale-Tama, Cresco-Lourdes, Clyde, Kenyon-Floyd-Clyde, and the Luton-Onawa-Salix area on the Missouri River floodplain. Forestland estimates have been attained for an area in central Iowa using wintertime ERTS-1 imagery. Visual analysis of multispectral, temporal imagery indicates that temporal analysis for cropland identification and acreage analyses procedures may be a very useful tool. Combinations of wintertime, springtime, and summertime ERTS-1 imagery separate most vegetation types. Timing can be critical depending upon crop development and harvesting times because of the dynamic nature of agricultural production.

  15. Challenging ocular image recognition

    NASA Astrophysics Data System (ADS)

    Pauca, V. Paúl; Forkin, Michael; Xu, Xiao; Plemmons, Robert; Ross, Arun A.

    2011-06-01

    Ocular recognition is a new area of biometric investigation targeted at overcoming the limitations of iris recognition performance in the presence of non-ideal data. There are several advantages for increasing the area beyond the iris, yet there are also key issues that must be addressed such as size of the ocular region, factors affecting performance, and appropriate corpora to study these factors in isolation. In this paper, we explore and identify some of these issues with the goal of better defining parameters for ocular recognition. An empirical study is performed where iris recognition methods are contrasted with texture and point operators on existing iris and face datasets. The experimental results show a dramatic recognition performance gain when additional features are considered in the presence of poor quality iris data, offering strong evidence for extending interest beyond the iris. The experiments also highlight the need for the direct collection of additional ocular imagery.

  16. Computer mapping of turbidity and circulation patterns in Saginaw Bay, Michigan from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Reed, L. E.; Smith, V. E.

    1975-01-01

    The author has identified the following significant results. LANDSAT was used as a basis for producing geometrically-corrected, color-coded imagery of turbidity and circulation patterns in Saginaw Bay, Michigan (Lake Huron). This imagery shows nine discrete categories of turbidity, as indicated by nine Secchi depths between 0.3 and 3.3 meters. The categorized imagery provided an economical basis for extrapolating water quality parameters from point samples to unsample areas. LANDSAT furnished a synoptic view of water mass boundaries that no amount of ground sampling or monitoring could provide.

  17. Proposal to evaluate the use of ERTS-A imagery in mapping and managing soil and range resources in the Sand Hills Region of Nebraska

    NASA Technical Reports Server (NTRS)

    Drew, J. V. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Visual examination of RB-57F color infrared imagery of range sites within Test Site 313 indicates that early season imagery will show significant differences in appearance of sub-irrigated sites as compared to dry valley sites. Differences appear to be significant also when comparing the previous two sites to sands sites. Comparison of existing soil map soils delineations with vegetative growth patterns shows reasonably good agreement between the two patterns over rather broad areas. Visual examination of ERTS-1 imagery has also shown that rangeland burned by prairie fire within the last six months can be distinguished. Three confirmed fire areas have been shown on the imagery. Since only broad estimates of burned acres are available, more accurate acreage measurements will be attempted. Known acreage of burned areas will be of value to those agencies responsible for deferred grazing payments to land owners. The relative speed with which this acreage information would become available to these agencies through ERTS-1 imagery would be of much benefit.

  18. Pictures, images, and recollective experience.

    PubMed

    Dewhurst, S A; Conway, M A

    1994-09-01

    Five experiments investigated the influence of picture processing on recollective experience in recognition memory. Subjects studied items that differed in visual or imaginal detail, such as pictures versus words and high-imageability versus low-imageability words, and performed orienting tasks that directed processing either toward a stimulus as a word or toward a stimulus as a picture or image. Standard effects of imageability (e.g., the picture superiority effect and memory advantages following imagery) were obtained only in recognition judgments that featured recollective experience and were eliminated or reversed when recognition was not accompanied by recollective experience. It is proposed that conscious recollective experience in recognition memory is cued by attributes of retrieved memories such as sensory-perceptual attributes and records of cognitive operations performed at encoding.

  19. An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain computer interface

    NASA Astrophysics Data System (ADS)

    Wang, Tao; He, Bin

    2004-03-01

    The recognition of mental states during motor imagery tasks is crucial for EEG-based brain computer interface research. We have developed a new algorithm by means of frequency decomposition and weighting synthesis strategy for recognizing imagined right- and left-hand movements. A frequency range from 5 to 25 Hz was divided into 20 band bins for each trial, and the corresponding envelopes of filtered EEG signals for each trial were extracted as a measure of instantaneous power at each frequency band. The dimensionality of the feature space was reduced from 200 (corresponding to 2 s) to 3 by down-sampling of envelopes of the feature signals, and subsequently applying principal component analysis. The linear discriminate analysis algorithm was then used to classify the features, due to its generalization capability. Each frequency band bin was weighted by a function determined according to the classification accuracy during the training process. The present classification algorithm was applied to a dataset of nine human subjects, and achieved a success rate of classification of 90% in training and 77% in testing. The present promising results suggest that the present classification algorithm can be used in initiating a general-purpose mental state recognition based on motor imagery tasks.

  20. Geographic techniques and recent applications of remote sensing to landscape-water quality studies

    USGS Publications Warehouse

    Griffith, J.A.

    2002-01-01

    This article overviews recent advances in studies of landscape-water quality relationships using remote sensing techniques. With the increasing feasibility of using remotely-sensed data, landscape-water quality studies can now be more easily performed on regional, multi-state scales. The traditional method of relating land use and land cover to water quality has been extended to include landscape pattern and other landscape information derived from satellite data. Three items are focused on in this article: 1) the increasing recognition of the importance of larger-scale studies of regional water quality that require a landscape perspective; 2) the increasing importance of remotely sensed data, such as the imagery-derived normalized difference vegetation index (NDVI) and vegetation phenological metrics derived from time-series NDVI data; and 3) landscape pattern. In some studies, using landscape pattern metrics explained some of the variation in water quality not explained by land use/cover. However, in some other studies, the NDVI metrics were even more highly correlated to certain water quality parameters than either landscape pattern metrics or land use/cover proportions. Although studies relating landscape pattern metrics to water quality have had mixed results, this recent body of work applying these landscape measures and satellite-derived metrics to water quality analysis has demonstrated their potential usefulness in monitoring watershed conditions across large regions.

  1. Neuronal correlate of visual associative long-term memory in the primate temporal cortex

    NASA Astrophysics Data System (ADS)

    Miyashita, Yasushi

    1988-10-01

    In human long-term memory, ideas and concepts become associated in the learning process1. No neuronal correlate for this cognitive function has so far been described, except that memory traces are thought to be localized in the cerebral cortex; the temporal lobe has been assigned as the site for visual experience because electric stimulation of this area results in imagery recall,2 and lesions produce deficits in visual recognition of objects3-9. We previously reported that in the anterior ventral temporal cortex of monkeys, individual neurons have a sustained activity that is highly selective for a few of the 100 coloured fractal patterns used in a visual working-memory task10. Here I report the development of this selectivity through repeated trials involving the working memory. The few patterns for which a neuron was conjointly selective were frequently related to each other through stimulus-stimulus association imposed during training. The results indicate that the selectivity acquired by these cells represents a neuronal correlate of the associative long-term memory of pictures.

  2. Neural networks application to divergence-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1992-01-01

    The purpose of this report is to summarize the state of knowledge and outline the planned work in divergence-based/neural networks approach to the problem of passive ranging derived from optical flow. Work in this and closely related areas is reviewed in order to provide the necessary background for further developments. New ideas about devising a monocular passive-ranging system are then introduced. It is shown that image-plan divergence is independent of image-plan location with respect to the focus of expansion and of camera maneuvers because it directly measures the object's expansion which, in turn, is related to the time-to-collision. Thus, a divergence-based method has the potential of providing a reliable range complementing other monocular passive-ranging methods which encounter difficulties in image areas close to the focus of expansion. Image-plan divergence can be thought of as some spatial/temporal pattern. A neural network realization was chosen for this task because neural networks have generally performed well in various other pattern recognition applications. The main goal of this work is to teach a neural network to derive the divergence from the imagery.

  3. Retinotopically specific reorganization of visual cortex for tactile pattern recognition

    PubMed Central

    Cheung, Sing-Hang; Fang, Fang; He, Sheng; Legge, Gordon E.

    2009-01-01

    Although previous studies have shown that Braille reading and other tactile-discrimination tasks activate the visual cortex of blind and sighted people [1–5], it is not known whether this kind of cross-modal reorganization is influenced by retinotopic organization. We have addressed this question by studying S, a visually impaired adult with the rare ability to read print visually and Braille by touch. S had normal visual development until age six years, and thereafter severe acuity reduction due to corneal opacification, but no evidence of visual-field loss. Functional magnetic resonance imaging (fMRI) revealed that, in S’s early visual areas, tactile information processing activated what would be the foveal representation for normally-sighted individuals, and visual information processing activated what would be the peripheral representation. Control experiments showed that this activation pattern was not due to visual imagery. S’s high-level visual areas which correspond to shape- and object-selective areas in normally-sighted individuals were activated by both visual and tactile stimuli. The retinotopically specific reorganization in early visual areas suggests an efficient redistribution of neural resources in the visual cortex. PMID:19361999

  4. A Psychosynthesis Approach to the Use of Mental Imagery with Adult Survivors of Childhood Sexual Abuse.

    ERIC Educational Resources Information Center

    Brown, Michael H.

    1997-01-01

    States that the techniques of mental imagery can help adult survivors of childhood sexual abuse access the inner wisdom necessary to identify, understand, and creatively address issues from the past and develop new and healthier patterns of thinking and behaving. Documents the innovative ways psychosynthesis uses mental imagery with this client…

  5. Utilization of EREP data in geological evaluation, regional planning, forest management, and water management in North Carolina. [emphasizing Davidson and Durham Counties

    NASA Technical Reports Server (NTRS)

    Welby, C. W. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Skylab imagery was evaluated, compiling vegetational and land use information in conjunction with a potential state park site fin along the Eno River in Durham County. Preliminary evaluation indicates that accuracy of identification was at the 90% level. Attempts at distinguishing between rock types in the Piedmont have proved generally unsuccessful, and recognition of linear features seems the best geologic use which the imagery can be put. The study concentrated on the High Rock Lake area of Davidson County. A study evaluating Skylab photographs for land use mapping in urban and rural areas of Piedmont North Carolina shows that S190A and S190B as well as U-2 imagery have almost the same accuracy when the interpretations are assessed with the square grid sampling method, even though the S190B imagery basically has a greater resolution.

  6. A reconnaissance space sensing investigation of crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C. (Principal Investigator); Liggett, M. L.; Childs, J. F.

    1973-01-01

    There are no author-identified significant results in this report. Research progress in applications of ERTS-1 MSS imagery in study of Basin-Range tectonics is summarized. Field reconnaissance of ERTS-1 image anomalies has resulted in recognition of previously unreported fault zones and regional structural control of volcanic and plutonic activity. NIMBUS, Apollo 9, X-15, U-2, and SLAR imagery are discussed with specific applications, and methods of image enhancement and analysis employed in the research are summarized. Areas studied and methods employed in geologic field work are outlined.

  7. A reconnaissance space sensing investigation of crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau

    NASA Technical Reports Server (NTRS)

    Liggett, M. A.; Childs, J. F.

    1973-01-01

    The author has identified the following significant results. Research progress in applications of ERTS-1 MSS imagery to study of Basin-Range tectonics is summarized. Field reconnaissance of ERTS-1 image anomalies has resulted in recognition of previously unreported fault zones and regional structural control of volcanic and plutonic activity. Nimbus, Apollo 9, X-15, U-2, and SIAR imagery are discussed with specific applications, and methods of image enhancement and analysis employed in the research are summarized. Field areas studied and methods employed in geologic field work are outlined.

  8. Thailand national programme of the Earth Resources Technology Satellite

    NASA Technical Reports Server (NTRS)

    Cheosakul, P. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 data has been used to delineate floating rice regions with a clear distinction between irrigated and nonirrigated areas and recognition of orchard and horitcultural crops. Alluvial fans marking the ancient river outlets in the northwestern portion of the Central Plain of Thailand and the shape and size of the flood plains in the central region have been identified and outlined. A new forestry map was constructed using band 5 and band 7 imagery combined with ground observations. A geologic map of Thailand has been constructed from ERTS imagery.

  9. Land utilization and ecological aspects in the Sylhet-Mymensingh Haor Region of Bangladesh: An analysis of LANDSAT data

    NASA Technical Reports Server (NTRS)

    Chowdhury, M. I.; Elahi, K. M.

    1977-01-01

    The use of remote sensing data from LANDSAT (ERTS) imageries in identifying, evaluating and mapping land use patterns of the Haor area in Bangladesh was investigated. Selected cloud free imageries of the area for the period 1972-75 were studied. Imageries in bands 4, 5 and 7 were mostly used. The method of analysis involved utilization of both human and computer services of information from ground, aerial photographs taken during this period and space imageries.

  10. Interpretation of geographic patterns in simulated orbital television imagery of earth resources

    NASA Technical Reports Server (NTRS)

    Latham, J. P.; Cross, C. I.; Kuyper, W. H.; Witmer, R. E.

    1972-01-01

    In order to better determine the effects of the television imagery characteristics upon the interpretation of geographic patterns obtainable from orbital television sensors, and in order to better evaluate the influences of alternative sensor system parameters such as changes in orbital altitudes or scan line rates, a team of three professional interpreters independently mapped thematically the selected geographic phenomena that they could detect in orbital television imagery produced on a fourteen inch monitor and recorded photographically for analysis. Three thematic maps were compiled by each interpreter. The maps were: (1) transportation patterns; (2) other land use; and (3) physical regions. The results from the three interpreters are compared, agreements noted, and differences analyzed for cause such as disagreement on identification of phenomenon, visual acuity, differences in interpretation techniques, and differing professional backgrounds.

  11. Training Visual Imagery: Improvements of Metacognition, but not Imagery Strength

    PubMed Central

    Rademaker, Rosanne L.; Pearson, Joel

    2012-01-01

    Visual imagery has been closely linked to brain mechanisms involved in perception. Can visual imagery, like visual perception, improve by means of training? Previous research has demonstrated that people can reliably evaluate the vividness of single episodes of imagination – might the metacognition of imagery also improve over the course of training? We had participants imagine colored Gabor patterns for an hour a day, over the course of five consecutive days, and again 2 weeks after training. Participants rated the subjective vividness and effort of their mental imagery on each trial. The influence of imagery on subsequent binocular rivalry dominance was taken as our measure of imagery strength. We found no overall effect of training on imagery strength. Training did, however, improve participant’s metacognition of imagery. Trial-by-trial ratings of vividness gained predictive power on subsequent rivalry dominance as a function of training. These data suggest that, while imagery strength might be immune to training in the current context, people’s metacognitive understanding of mental imagery can improve with practice. PMID:22787452

  12. Globally scalable generation of high-resolution land cover from multispectral imagery

    NASA Astrophysics Data System (ADS)

    Stutts, S. Craig; Raskob, Benjamin L.; Wenger, Eric J.

    2017-05-01

    We present an automated method of generating high resolution ( 2 meter) land cover using a pattern recognition neural network trained on spatial and spectral features obtained from over 9000 WorldView multispectral images (MSI) in six distinct world regions. At this resolution, the network can classify small-scale objects such as individual buildings, roads, and irrigation ponds. This paper focuses on three key areas. First, we describe our land cover generation process, which involves the co-registration and aggregation of multiple spatially overlapping MSI, post-aggregation processing, and the registration of land cover to OpenStreetMap (OSM) road vectors using feature correspondence. Second, we discuss the generation of land cover derivative products and their impact in the areas of region reduction and object detection. Finally, we discuss the process of globally scaling land cover generation using cloud computing via Amazon Web Services (AWS).

  13. Documentation of procedures for textural/spatial pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Bryant, W. F.

    1976-01-01

    A C-130 aircraft was flown over the Sam Houston National Forest on March 21, 1973 at 10,000 feet altitude to collect multispectral scanner (MSS) data. Existing textural and spatial automatic processing techniques were used to classify the MSS imagery into specified timber categories. Several classification experiments were performed on this data using features selected from the spectral bands and a textural transform band. The results indicate that (1) spatial post-processing a classified image can cut the classification error to 1/2 or 1/3 of its initial value, (2) spatial post-processing the classified image using combined spectral and textural features produces a resulting image with less error than post-processing a classified image using only spectral features and (3) classification without spatial post processing using the combined spectral textural features tends to produce about the same error rate as a classification without spatial post processing using only spectral features.

  14. Text Detection, Tracking and Recognition in Video: A Comprehensive Survey.

    PubMed

    Yin, Xu-Cheng; Zuo, Ze-Yu; Tian, Shu; Liu, Cheng-Lin

    2016-04-14

    Intelligent analysis of video data is currently in wide demand because video is a major source of sensory data in our lives. Text is a prominent and direct source of information in video, while recent surveys of text detection and recognition in imagery [1], [2] focus mainly on text extraction from scene images. Here, this paper presents a comprehensive survey of text detection, tracking and recognition in video with three major contributions. First, a generic framework is proposed for video text extraction that uniformly describes detection, tracking, recognition, and their relations and interactions. Second, within this framework, a variety of methods, systems and evaluation protocols of video text extraction are summarized, compared, and analyzed. Existing text tracking techniques, tracking based detection and recognition techniques are specifically highlighted. Third, related applications, prominent challenges, and future directions for video text extraction (especially from scene videos and web videos) are also thoroughly discussed.

  15. Thermal-to-visible face recognition using partial least squares.

    PubMed

    Hu, Shuowen; Choi, Jonghyun; Chan, Alex L; Schwartz, William Robson

    2015-03-01

    Although visible face recognition has been an active area of research for several decades, cross-modal face recognition has only been explored by the biometrics community relatively recently. Thermal-to-visible face recognition is one of the most difficult cross-modal face recognition challenges, because of the difference in phenomenology between the thermal and visible imaging modalities. We address the cross-modal recognition problem using a partial least squares (PLS) regression-based approach consisting of preprocessing, feature extraction, and PLS model building. The preprocessing and feature extraction stages are designed to reduce the modality gap between the thermal and visible facial signatures, and facilitate the subsequent one-vs-all PLS-based model building. We incorporate multi-modal information into the PLS model building stage to enhance cross-modal recognition. The performance of the proposed recognition algorithm is evaluated on three challenging datasets containing visible and thermal imagery acquired under different experimental scenarios: time-lapse, physical tasks, mental tasks, and subject-to-camera range. These scenarios represent difficult challenges relevant to real-world applications. We demonstrate that the proposed method performs robustly for the examined scenarios.

  16. Research on recognition of the geologic framework of porphyry copper deposits on ERTS-1 imagery. [New Guinea, Alaska, and Colorado

    NASA Technical Reports Server (NTRS)

    Wilson, J. C. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Many new linear and circular features were found. These features prompted novel tectonic classification and analysis especially in the Ray and Ely areas. Tectonic analyses of the Ok Tedi, Tanacross, and Silvertone areas follow conventional interpretations. Circular features are mapped in many cases and are interpreted as exposed or covered intrusive centers. The small circular features reported in the Ok Tedi test area are valid and useful correlations with tertiary intrusion and volcanism in this remote part of New Guinea. Several major faults of regional dimensions, such as the Denali fault in Alaska and the Colorado mineral belt structures in Colorado are detected in the imagery. Many more faults and regional structures are found in the imagery than exist on present maps.

  17. Yoga practice is associated with superior motor imagery performance.

    PubMed

    Hartnoll, Susannah H; Punt, T David

    2017-11-01

    Yoga is an activity that aims to integrate physical, mental and spiritual elements and is an increasingly popular approach to enhancing physical fitness. The integration of imagery within yoga practice is considered an important component and may be critical in contributing to the benefits of yoga that have been reported. In this study, we tested whether individuals who practice yoga demonstrate superior performance on an objective measure of implicit motor imagery. Thirty-six participants (18 yoga, 18 non-yoga) matched for age, sex and handedness, undertook the hand laterality recognition task; an objective measure of implicit motor imagery performance. Accuracy and response times were gathered and analysed to determine any group differences as well as any differences relating to the typical hallmarks of imagery (i.e. dominance and awkwardness effects) on the task. Response Times (RTs) in the yoga group were significantly faster than controls (p < 0.05) and there was also a trend towards greater accuracy for the Yoga group (p = 0.073). Dominance effects (faster responses to images corresponding with the dominant limb) and Awkwardness effects (faster responses to images corresponding with natural compared with awkward postures) were evident across groups, supporting the participants' use of motor imagery in undertaking the task. Additionally, a Group × Awkwardness interaction (p < 0.05) revealed that the enhanced imagery performance for the yoga group was most pronounced for awkward postures. This is the first study to show that yoga practice is associated with superior motor imagery performance; an association that may be important in explaining the established rehabilitative value of yoga for chronic pain.

  18. Yoga practice is associated with superior motor imagery performance.

    PubMed

    Hartnoll, Susannah H; Punt, T David

    2017-08-02

    Yoga is an activity that aims to integrate physical, mental and spiritual elements and is an increasingly popular approach to enhancing physical fitness. The integration of imagery within yoga practice is considered an important component and may be critical in contributing to the benefits of yoga that have been reported. In this study, we tested whether individuals who practice yoga demonstrate superior performance on an objective measure of implicit motor imagery. Thirty-six participants (18 yoga, 18 nonyoga) matched for age, sex and handedness, undertook the hand laterality recognition task; an objective measure of implicit motor imagery performance. Accuracy and response times were gathered and analysed to determine any group differences as well as any differences relating to the typical hallmarks of imagery (i.e. dominance and awkwardness effects) on the task. Response Times (RTs) in the yoga group were significantly faster than controls (p < 0.05) and there was also a trend towards greater accuracy for the Yoga group (p = 0.073). Dominance effects (faster responses to images corresponding with the dominant limb) and Awkwardness effects (faster responses to images corresponding with natural compared with awkward postures) were evident across groups, supporting the participants' use of motor imagery in undertaking the task. Additionally, a Group × Awkwardness interaction (p < 0.05) revealed that the enhanced imagery performance for the yoga group was most pronounced for awkward postures. This is the first study to show that yoga practice is associated with superior motor imagery performance; an association that may be important in explaining the established rehabilitative value of yoga for chronic pain.

  19. Mental Imagery: Functional Mechanisms and Clinical Applications

    PubMed Central

    Pearson, Joel; Naselaris, Thomas; Holmes, Emily A.; Kosslyn, Stephen M.

    2015-01-01

    Mental imagery research has weathered both disbelief of the phenomenon and inherent methodological limitations. Here we review recent behavioral, brain imaging, and clinical research that has reshaped our understanding of mental imagery. Research supports the claim that visual mental imagery is a depictive internal representation that functions like a weak form of perception. Brain imaging work has demonstrated that neural representations of mental and perceptual images resemble one another as early as the primary visual cortex (V1). Activity patterns in V1 encode mental images and perceptual images via a common set of low-level depictive visual features. Recent translational and clinical research reveals the pivotal role that imagery plays in many mental disorders and suggests how clinicians can utilize imagery in treatment. PMID:26412097

  20. Geomorphic analyses from space imagery

    NASA Technical Reports Server (NTRS)

    Morisawa, M.

    1985-01-01

    One of the most obvious applications of space imagery to geomorphological analyses is in the study of drainage patterns and channel networks. LANDSAT, high altitude photography and other types of remote sensing imagery are excellent for depicting stream networks on a regional scale because of their broad coverage in a single image. They offer a valuable tool for comparing and analyzing drainage patterns and channel networks all over the world. Three aspects considered in this geomorphological study are: (1) the origin, evolution and rates of development of drainage systems; (2) the topological studies of network and channel arrangements; and (3) the adjustment of streams to tectonic events and geologic structure (i.e., the mode and rate of adjustment).

  1. Application of ERTS imagery to environmental studies of Lake Champlain

    NASA Technical Reports Server (NTRS)

    Lind, A. O.

    1974-01-01

    ERTS Imagery has provided data relating to a number of environmental and limnological concerns such as water quality, lake flooding and lake ice formation. Pollution plume data provided by ERTS was recently used in the Supreme Court case involving the States of Vermont and New York and a paper company. Flooding of lowland tracts has been a major concern due to a repetitive pattern of high lake levels over the past three years, and ERTS imagery is being used to construct the first series of flood maps of the affected areas. Lake ice development and turbidity patterns have also been studied from ERTS, since these have significance for shore erosion studies.

  2. Face recognition system and method using face pattern words and face pattern bytes

    DOEpatents

    Zheng, Yufeng

    2014-12-23

    The present invention provides a novel system and method for identifying individuals and for face recognition utilizing facial features for face identification. The system and method of the invention comprise creating facial features or face patterns called face pattern words and face pattern bytes for face identification. The invention also provides for pattern recognitions for identification other than face recognition. The invention further provides a means for identifying individuals based on visible and/or thermal images of those individuals by utilizing computer software implemented by instructions on a computer or computer system and a computer readable medium containing instructions on a computer system for face recognition and identification.

  3. APPLYING SATELLITE IMAGERY TO TRIAGE ASSESSMENT OF ECOSYSTEM HEALTH

    EPA Science Inventory

    Considerable evidence documents that certain changes in vegetation and soils result in irreversibly degraded rangeland ecosystems. We used Advanced Very High Resolution Radiometer (AVHRR)imagery to develop calibration patterns of change in the Normalized Difference Vegetation Ind...

  4. Water color and circulation southern Chesapeake Bay, part 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. M.; Gordon, H. H.

    1975-01-01

    Satellite imagery from two EREP passes over the Rappahannock Estuary of the Chesapeake region is analyzed to chart colored water types, to delineate color boundaries and define circulatory patterns. Surface observations from boats and helicopters concurrent with Skylab overpass define the distributions of suspended sediment, transparency, temperature, salinity, phytoplankton, color of suspended material and optical ratio. Important features recorded by the imagery are a large-scale turbidity maximum and massive red tide blooms. Water movement is revealed by small-scale mixing patterns and tidal plumes of apparent sediment-laden water. The color patterns broadly reflect the bottom topography and the seaward gradient of suspended material between the river and the bay. Analyses of red, green and natural color photos by microdensitometry demonstrate the utility of charting water color types of potential use for managing estuarine water quality. The Skylab imagery is superior to aerial photography and surface observations for charting water color.

  5. Forestry, geology and hydrological investigations from ERTS-1 imagery in two areas of Ecuador, South America

    NASA Technical Reports Server (NTRS)

    Moreno, N. V. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. In the Oriente area, well-drained forests containing commercially valuable hardwoods can be recognized confidently and delineated quickly on the ERTS imagery. In the tropical rainforest, ERTS can provide an abundance of inferential information about large scale geologic structures. ERTS imagery is better than normal aerial photography for recognizing linears. The imagery is particularly useful for updating maps of the distributary system of the Guagas River Basin and of any other river with a similarly rapid changing channel pattern.

  6. Application of ERTS-1 imagery in the Vermont-New York dispute over pollution of Lake Champlain

    NASA Technical Reports Server (NTRS)

    Lind, A. O. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery and a composite map derived from ERTS-1 imagery were presented as evidence in a U.S. Supreme Court case involving the pollution of an interstate water body (Lake Champlain). A pollution problem generated by a large paper mill forms the basis of the suit (Vermont vs. International Paper Co. and State of New York) and ERTS-1 imagery shows the effluent pattern on the lake surface as extending into Vermont during three different times.

  7. Kansas environmental and resource study: A Great Plains model. [land use, image enhancement, winter wheat, agriculture, water resources, and pattern recognition

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L.; Ulaby, F. T.; Davis, J. C. (Principal Investigator); Bosley, R. J.; Williams, D. L.; Mccauley, J. R.; Mcnaughton, J. L.

    1973-01-01

    The author has identified the following significant results. Improvement in the land use classification accuracy of ERTS-1 MSS multi-images over Kansas can be made using two distances between neighboring grey tone N-tuples instead of one distance. Much more information is contained texturally than spectrally on the Kansas image. Ground truth measurements indicate that reflectance ratios of the 545 and 655 nm wavebands provide an index of plant development and possibly physiological stress. Preliminary analysis of MSS 4 and 5 channels substantiate the ground truth interpretation. Results of the land use mapping experiment indicate that ERTS-1 imagery has major potential in regionalization. The ways in which land is utilized within these regions may then be studied more effectively than if no adequate regionalization is available. A model for estimating wheat yield per acre has been applied to acreage estimates derived from ERTS-1 imagery to project the 1973 wheat yields for a ten county area in southwest Kansas. The results are within 3% of the preharvest estimates for the same area prepared by the USDA. Visual identification of winter wheat is readily achieved by using a temporal sequence of images. Identification can be improve by stratifying the project area into subregions having more or less homogeneous agricultural practices and crop mixes.

  8. The man who mistook his neuropsychologist for a popstar: when configural processing fails in acquired prosopagnosia

    PubMed Central

    Jansari, Ashok; Miller, Scott; Pearce, Laura; Cobb, Stephanie; Sagiv, Noam; Williams, Adrian L.; Tree, Jeremy J.; Hanley, J. Richard

    2015-01-01

    We report the case of an individual with acquired prosopagnosia who experiences extreme difficulties in recognizing familiar faces in everyday life despite excellent object recognition skills. Formal testing indicates that he is also severely impaired at remembering pre-experimentally unfamiliar faces and that he takes an extremely long time to identify famous faces and to match unfamiliar faces. Nevertheless, he performs as accurately and quickly as controls at identifying inverted familiar and unfamiliar faces and can recognize famous faces from their external features. He also performs as accurately as controls at recognizing famous faces when fracturing conceals the configural information in the face. He shows evidence of impaired global processing but normal local processing of Navon figures. This case appears to reflect the clearest example yet of an acquired prosopagnosic patient whose familiar face recognition deficit is caused by a severe configural processing deficit in the absence of any problems in featural processing. These preserved featural skills together with apparently intact visual imagery for faces allow him to identify a surprisingly large number of famous faces when unlimited time is available. The theoretical implications of this pattern of performance for understanding the nature of acquired prosopagnosia are discussed. PMID:26236212

  9. Physiology-based face recognition in the thermal infrared spectrum.

    PubMed

    Buddharaju, Pradeep; Pavlidis, Ioannis T; Tsiamyrtzis, Panagiotis; Bazakos, Mike

    2007-04-01

    The current dominant approaches to face recognition rely on facial characteristics that are on or over the skin. Some of these characteristics have low permanency can be altered, and their phenomenology varies significantly with environmental factors (e.g., lighting). Many methodologies have been developed to address these problems to various degrees. However, the current framework of face recognition research has a potential weakness due to its very nature. We present a novel framework for face recognition based on physiological information. The motivation behind this effort is to capitalize on the permanency of innate characteristics that are under the skin. To establish feasibility, we propose a specific methodology to capture facial physiological patterns using the bioheat information contained in thermal imagery. First, the algorithm delineates the human face from the background using the Bayesian framework. Then, it localizes the superficial blood vessel network using image morphology. The extracted vascular network produces contour shapes that are characteristic to each individual. The branching points of the skeletonized vascular network are referred to as Thermal Minutia Points (TMPs) and constitute the feature database. To render the method robust to facial pose variations, we collect for each subject to be stored in the database five different pose images (center, midleft profile, left profile, midright profile, and right profile). During the classification stage, the algorithm first estimates the pose of the test image. Then, it matches the local and global TMP structures extracted from the test image with those of the corresponding pose images in the database. We have conducted experiments on a multipose database of thermal facial images collected in our laboratory, as well as on the time-gap database of the University of Notre Dame. The good experimental results show that the proposed methodology has merit, especially with respect to the problem of low permanence over time. More importantly, the results demonstrate the feasibility of the physiological framework in face recognition and open the way for further methodological and experimental research in the area.

  10. ERTS-1 imagery use in reconnaissance prospecting: Evaluation of commercial utility of ERTS-1 imagery in structural reconnaissance for minerals and petroleum

    NASA Technical Reports Server (NTRS)

    Saunders, D. F.; Thomas, G. E. (Principal Investigator); Kinsman, F. E.; Beatty, D. F.

    1973-01-01

    The author has identified the following significant results. This study was performed to investigate applications of ERTS-1 imagery in commercial reconnaissance for mineral and hydrocarbon resources. ERTS-1 imagery collected over five areas in North America (Montana; Colorado; New Mexico-West Texas; Superior Province, Canada; and North Slope, Alaska) has been analyzed for data content including linears, lineaments, and curvilinear anomalies. Locations of these features were mapped and compared with known locations of mineral and hydrocarbon accumulations. Results were analyzed in the context of a simple-shear, block-coupling model. Data analyses have resulted in detection of new lineaments, some of which may be continental in extent, detection of many curvilinear patterns not generally seen on aerial photos, strong evidence of continental regmatic fracture patterns, and realization that geological features can be explained in terms of a simple-shear, block-coupling model. The conculsions are that ERTS-1 imagery is of great value in photogeologic/geomorphic interpretations of regional features, and the simple-shear, block-coupling model provides a means of relating data from ERTS imagery to structures that have controlled emplacement of ore deposits and hydrocarbon accumulations, thus providing a basis for a new approach for reconnaissance for mineral, uranium, gas, and oil deposits and structures.

  11. Pattern Recognition Using Artificial Neural Network: A Review

    NASA Astrophysics Data System (ADS)

    Kim, Tai-Hoon

    Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, artificial neural network techniques theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system using ANN and identify research topics and applications which are at the forefront of this exciting and challenging field.

  12. Management of natural resources through automatic cartographic inventory. [France

    NASA Technical Reports Server (NTRS)

    Rey, P.; Gourinard, Y.; Cambou, F. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. (1) Accurate recognition of previously known ground features from ERTS-1 imagery has been confirmed and a probable detection range for the major signatures can be given. (2) Unidentified elements, however, must be decoded by means of the equal densitometric value zone method. (3) Determination of these zonings involves an analogical treatment of images using the color equidensity methods (pseudo-color), color composites and especially temporal color composite (repetitive superposition). (4) After this analogical preparation, the digital equidensities can be processed by computer in the four MSS bands, according to a series of transfer operations from imagery and automatic cartography.

  13. Recognition of the geologic framework of porphyry deposits on ERTS-1 imagery. [copper/molybdenum porphyrys

    NASA Technical Reports Server (NTRS)

    Wilson, J. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Three major tectonic provinces have been mapped by geologic photointerpretation of ERTS-1 imagery over the Ok Tedi test site. These areas can be characterized as follows: (1) A broad area of low relief and mature topography suggesting a history of relative tectonic stability. (2) A narrow belt of moderate to high relief, broad open folds and prominent linear features. The Mount Fubilan-type porphyry copper deposits and recent volcanic effusive centers occur in this province. (3) A heterogeneous zone of high relief and high drainage density suggestive of relative structural complexity.

  14. LANDSAT-1 data, its use in a soil survey program

    NASA Technical Reports Server (NTRS)

    Westin, F. C.; Frazee, C. J.

    1975-01-01

    The following applications of LANDSAT imagery were investigated: assistance in recognizing soil survey boundaries, low intensity soil surveys, and preparation of a base map for publishing thematic soils maps. The following characteristics of LANDSAT imagery were tested as they apply to the recognition of soil boundaries in South Dakota and western Minnesota: synoptic views due to the large areas covered, near-orthography and lack of distortion, flexibility of selecting the proper season, data recording in four parts of the spectrum, and the use of computer compatible tapes. A low intensity soil survey of Pennington County, South Dakota was completed in 1974. Low intensity inexpensive soil surveys can provide the data needed to evaluate agricultural land for the remaining counties until detailed soil surveys are completed. In using LANDSAT imagery as a base map for publishing thematic soil maps, the first step was to prepare a mosaic with 20 LANDSAT scenes from several late spring passes in 1973.

  15. Auditory Pattern Recognition and Brief Tone Discrimination of Children with Reading Disorders

    ERIC Educational Resources Information Center

    Walker, Marianna M.; Givens, Gregg D.; Cranford, Jerry L.; Holbert, Don; Walker, Letitia

    2006-01-01

    Auditory pattern recognition skills in children with reading disorders were investigated using perceptual tests involving discrimination of frequency and duration tonal patterns. A behavioral test battery involving recognition of the pattern of presentation of tone triads was used in which individual components differed in either frequency or…

  16. Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface.

    PubMed

    Zhang, Shen; Zheng, Yanchun; Wang, Daifa; Wang, Ling; Ma, Jianai; Zhang, Jing; Xu, Weihao; Li, Deyu; Zhang, Dan

    2017-08-10

    Motor imagery is one of the most investigated paradigms in the field of brain-computer interfaces (BCIs). The present study explored the feasibility of applying a common spatial pattern (CSP)-based algorithm for a functional near-infrared spectroscopy (fNIRS)-based motor imagery BCI. Ten participants performed kinesthetic imagery of their left- and right-hand movements while 20-channel fNIRS signals were recorded over the motor cortex. The CSP method was implemented to obtain the spatial filters specific for both imagery tasks. The mean, slope, and variance of the CSP filtered signals were taken as features for BCI classification. Results showed that the CSP-based algorithm outperformed two representative channel-wise methods for classifying the two imagery statuses using either data from all channels or averaged data from imagery responsive channels only (oxygenated hemoglobin: CSP-based: 75.3±13.1%; all-channel: 52.3±5.3%; averaged: 64.8±13.2%; deoxygenated hemoglobin: CSP-based: 72.3±13.0%; all-channel: 48.8±8.2%; averaged: 63.3±13.3%). Furthermore, the effectiveness of the CSP method was also observed for the motor execution data to a lesser extent. A partial correlation analysis revealed significant independent contributions from all three types of features, including the often-ignored variance feature. To our knowledge, this is the first study demonstrating the effectiveness of the CSP method for fNIRS-based motor imagery BCIs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Image pattern recognition supporting interactive analysis and graphical visualization

    NASA Technical Reports Server (NTRS)

    Coggins, James M.

    1992-01-01

    Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.

  18. Understanding eye movements in face recognition using hidden Markov models.

    PubMed

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2014-09-16

    We use a hidden Markov model (HMM) based approach to analyze eye movement data in face recognition. HMMs are statistical models that are specialized in handling time-series data. We conducted a face recognition task with Asian participants, and model each participant's eye movement pattern with an HMM, which summarized the participant's scan paths in face recognition with both regions of interest and the transition probabilities among them. By clustering these HMMs, we showed that participants' eye movements could be categorized into holistic or analytic patterns, demonstrating significant individual differences even within the same culture. Participants with the analytic pattern had longer response times, but did not differ significantly in recognition accuracy from those with the holistic pattern. We also found that correct and wrong recognitions were associated with distinctive eye movement patterns; the difference between the two patterns lies in the transitions rather than locations of the fixations alone. © 2014 ARVO.

  19. Does touch inhibit visual imagery? A case study on acquired blindness.

    PubMed

    von Trott Zu Solz, Jana; Paolini, Marco; Silveira, Sarita

    2017-06-01

    In a single-case study of acquired blindness, differential brain activation patterns for visual imagery of familiar objects with and without tactile exploration as well as of tactilely explored unfamiliar objects were observed. Results provide new insight into retrieval of visual images from episodic memory and point toward a potential tactile inhibition of visual imagery. © 2017 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  20. Fault pattern at the northern end of the Death Valley - Furnace Creek fault zone, California and Nevada

    NASA Technical Reports Server (NTRS)

    Liggett, M. A. (Principal Investigator); Childs, J. F.

    1974-01-01

    The author has identified the following significant results. The pattern of faulting associated with the termination of the Death Valley-Furnace Creek Fault Zone in northern Fish Lake Valley, Nevada was studied in ERTS-1 MSS color composite imagery and color IR U-2 photography. Imagery analysis was supported by field reconnaissance and low altitude aerial photography. The northwest-trending right-lateral Death Valley-Furnace Creek Fault Zone changes northward to a complex pattern of discontinuous dip slip and strike slip faults. This fault pattern terminates to the north against an east-northeast trending zone herein called the Montgomery Fault Zone. No evidence for continuation of the Death Valley-Furnace Creek Fault Zone is recognized north of the Montgomery Fault Zone. Penecontemporaneous displacement in the Death Valley-Furnace Creek Fault Zone, the complex transitional zone, and the Montgomery Fault Zone suggests that the systems are genetically related. Mercury mineralization appears to have been localized along faults recognizable in ERTS-1 imagery within the transitional zone and the Montgomery Fault Zone.

  1. Visual Hemispheric Specialization: A Computational Theory. Technical Report #7.

    ERIC Educational Resources Information Center

    Kosslyn, Stephen M.

    Visual recognition, navigation, tracking, and imagery are posited to involve some of the same types of representations and processes. The first part of this paper develops a theory of some of the shared types of representations and processing modules. The theory is developed in light of neurophysiological and neuroanatomical data from non-human…

  2. Log Defect Recognition Using CT-images and Neural Net Classifiers

    Treesearch

    Daniel L. Schmoldt; Pei Li; A. Lynn Abbott

    1995-01-01

    Although several approaches have been introduced to automatically identify internal log defects using computed tomography (CT) imagery, most of these have been feasibility efforts and consequently have had several limitations: (1) reports of classification accuracy are largely subjective, not statistical, (2) there has been no attempt to achieve real-time operation,...

  3. Automatic Target Recognition for Hyperspectral Imagery

    DTIC Science & Technology

    2012-03-01

    representation, b) NDVI representation .... 13 Figure 6. Vegetation Reflectance Spectra, taken directly from (Eismann, 2011) ........... 15 Figure 7...46 Figure 22. Example NDVI Mean and Shade Spectrum Signatures ................................. 47 Figure 23. Example Average...locate vegetation within an image normalized-difference vegetation index ( NDVI ) is applied. NDVI was first introduced by Rouse et al. while monitoring

  4. Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders

    NASA Astrophysics Data System (ADS)

    Sousa, Teresa; Amaral, Carlos; Andrade, João; Pires, Gabriel; Nunes, Urbano J.; Castelo-Branco, Miguel

    2017-08-01

    Objective. The achievement of multiple instances of control with the same type of mental strategy represents a way to improve flexibility of brain-computer interface (BCI) systems. Here we test the hypothesis that pure visual motion imagery of an external actuator can be used as a tool to achieve three classes of electroencephalographic (EEG) based control, which might be useful in attention disorders. Approach. We hypothesize that different numbers of imagined motion alternations lead to distinctive signals, as predicted by distinct motion patterns. Accordingly, a distinct number of alternating sensory/perceptual signals would lead to distinct neural responses as previously demonstrated using functional magnetic resonance imaging (fMRI). We anticipate that differential modulations should also be observed in the EEG domain. EEG recordings were obtained from twelve participants using three imagery tasks: imagery of a static dot, imagery of a dot with two opposing motions in the vertical axis (two motion directions) and imagery of a dot with four opposing motions in vertical or horizontal axes (four directions). The data were analysed offline. Main results. An increase of alpha-band power was found in frontal and central channels as a result of visual motion imagery tasks when compared with static dot imagery, in contrast with the expected posterior alpha decreases found during simple visual stimulation. The successful classification and discrimination between the three imagery tasks confirmed that three different classes of control based on visual motion imagery can be achieved. The classification approach was based on a support vector machine (SVM) and on the alpha-band relative spectral power of a small group of six frontal and central channels. Patterns of alpha activity, as captured by single-trial SVM closely reflected imagery properties, in particular the number of imagined motion alternations. Significance. We found a new mental task based on visual motion imagery with potential for the implementation of multiclass (3) BCIs. Our results are consistent with the notion that frontal alpha synchronization is related with high internal processing demands, changing with the number of alternation levels during imagery. Together, these findings suggest the feasibility of pure visual motion imagery tasks as a strategy to achieve multiclass control systems with potential for BCI and in particular, neurofeedback applications in non-motor (attentional) disorders.

  5. Combined use of remote sensing and seismic observations to infer geologically recent crustal deformation, active faulting, and stress fields. [California and Pennsylvania

    NASA Technical Reports Server (NTRS)

    Alexander, S. S. (Principal Investigator)

    1982-01-01

    Characteristic traits for earthquakes associated with strike-slip motion in Central California and the Salton Sea area, as revealed in ground based studies and LANDSAT imagery, were compared. The mapped lineaments are found to be oriented in several dominant directions. One direction is the same as the trend of the San Andreas fault. The other directions differ from area to area and may reflect the stresses of earlier geologic processes. The pattern of lineament orientations is significantly LANDSAT MSS data, SEASAT synthetic aperture radar data, and magnetic field data from the South Mountain area west of Gettysburg, Pennsylvania were registered to match each other in spatial position and merged. Pattern recognition techniques were applied to the composite data set to determine its utility in recognizing different rock types and structures in vegetated terrain around South Mountain. With the use of a texture algorithm to enhance geologic features, a classification of the entire area was made. A test of the correlation between SAR tone and texture, LANDSAT tone and texture, and magnetic field data revealed no tone or texture measures linking any two of the original data sets.

  6. Pattern activation/recognition theory of mind

    PubMed Central

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a “Pattern Recognition Theory of Mind” that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call “Pattern Activation/Recognition Theory of Mind.” While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation. PMID:26236228

  7. Pattern activation/recognition theory of mind.

    PubMed

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.

  8. Analysis of GOES imagery and digitized data for the SEV-UPS period, August 1979

    NASA Technical Reports Server (NTRS)

    Bowley, C. J.; Burke, H. H. K.; Barnes, J. C.

    1981-01-01

    In support of the Southeastern Virginia Urban Plume Study (SEV-UPS), GOES satellite imagery was analyzed for the month of August 1979. The analyzed GOES images provide an additional source of meteorological input useful in the evaluation of air quality data collected during the month long period of the SEV-UPS experiment. In addition to the imagery analysis, GOES digitized data were analyzed for the period of August 6 to 11, during which a regional haze pattern was detectable in the imagery. The results of the study indicate that the observed haze patterns correspond closely with areas shown in surface based measurements to have reduced visibilities and elevated pollution levels. Moreover, the results of the analysis of digitized data indicate that digital reflectance counts can be directly related to haze intensity both over land and ocean. The model results agree closely with the observed GOES digital reflectance counts, providing further indication that satellite remote sensing can be a useful tool for monitoring regional elevated pollution episodes.

  9. Detection, mapping and estimation of rate of spread of grass fires from southern African ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Wightman, J. M.

    1973-01-01

    Sequential band-6 imagery of the Zambesi Basin of southern Africa recorded substantial changes in burn patterns resulting from late dry season grass fires. One example from northern Botswana, indicates that a fire consumed approximately 70 square miles of grassland over a 24-hour period. Another example from western Zambia indicates increased fire activity over a 19-day period. Other examples clearly define the area of widespread grass fires in Angola, Botswana, Rhodesia and Zambia. From the fire patterns visible on the sequential portions of the imagery, and the time intervals involved, the rates of spread of the fires are estimated and compared with estimates derived from experimental burning plots in Zambia and Canada. It is concluded that sequential ERTS-1 imagery, of the quality studied, clearly provides the information needed to detect and map grass fires and to monitor their rates of spread in this region during the late dry season.

  10. Utilization of LANDSAT orbital imagery in the soil survey processes at Rio Grande do Norte state

    NASA Technical Reports Server (NTRS)

    Formaggio, A. R. (Principal Investigator)

    1984-01-01

    Pedologic photointerpretative criteria adapted to LANDSAT orbital imagery were used: drainage (pattern, integration degree, density and uniformity degree); relief (pattern, dissection degree and crest lines); photographic texture, photographic tonnality, and the land use (type, glebas size and intensity of use). The performance of the imagery as an auxiliar tool in the soil survey processes, at Rio Grande do Norte State was evaluated. The drainage and relief elements were easily extracted from the imagery and also ones that provided the greatest deductive possibility about pedologic boundaries. Other analyzed criteria were considered only auxiliaries, corroborating some soil limits in the evidences convergence phase. The principal pedologic dominions of the 30,000 sq km are covered by the same LANDSAT image (WRS 359/16) were delimited with good precision: (1) fluvial plains, beaches, dunes and coastal mangroves; (2) North Coast line Plateau; (3) Acu Sandstone Zone; (4) residual plateaus of the Tertiary; and (6) plains of the embasement.

  11. Comparative evaluation of ERTS imagery for resource inventory in land use planning

    NASA Technical Reports Server (NTRS)

    Simonson, G. H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Numerous previously unmapped faults in central Oregon have been distinguished on ERTS-1 imagery. Tectonic mapping of fault-controlled linears demonstrates the utility of ERTS-1 imagery as a mean of illustrating and studying the regional tectonics of the state. Soil colors observed on ERTS-1 frame 1075-18150-5 at the eastern end of the Columbia basin correlate very well with those from descriptions of soils from that area. Digital output from frame 1021-18151 has shown the enhanced ability to interpret such features as joint patterns, shadowed landslide blocks, bottomlands, and drainage patterns. Widespread use of wheat-fallow rotation in northern Umatilla County, Oregon, insures that nearly one-half of the cultivated soil is devoid of vegetation much of the time. On ERTS-1 imagery, fallow fields are only slightly darker than fields of wheat stubble at the western end of the transect. Similar climate-related contrasts in soil color are visible on ERTS-1 Imagery from several other portions of the Columbia Basin. Absence of steep topography in the area mentioned, however, minimizes the disturbing effect caused by shadows.

  12. Linear high-boost fusion of Stokes vector imagery for effective discrimination and recognition of real targets in the presence of multiple identical decoys

    NASA Astrophysics Data System (ADS)

    El-Saba, Aed; Sakla, Wesam A.

    2010-04-01

    Recently, the use of imaging polarimetry has received considerable attention for use in automatic target recognition (ATR) applications. In military remote sensing applications, there is a great demand for sensors that are capable of discriminating between real targets and decoys. Accurate discrimination of decoys from real targets is a challenging task and often requires the fusion of various sensor modalities that operate simultaneously. In this paper, we use a simple linear fusion technique known as the high-boost fusion method for effective discrimination of real targets in the presence of multiple decoys. The HBF assigns more weight to the polarization-based imagery in forming the final fused image that is used for detection. We have captured both intensity and polarization-based imagery from an experimental laboratory arrangement containing a mixture of sand/dirt, rocks, vegetation, and other objects for the purpose of simulating scenery that would be acquired in a remote sensing military application. A target object and three decoys that are identical in physical appearance (shape, surface structure and color) and different in material composition have also been placed in the scene. We use the wavelet-filter joint transform correlation (WFJTC) technique to perform detection between input scenery and the target object. Our results show that use of the HBF method increases the correlation performance metrics associated with the WFJTC-based detection process when compared to using either the traditional intensity or polarization-based images.

  13. Learning the names of people: the role of image mediators.

    PubMed

    Groninger, L D; Groninger, D H; Stiens, J

    1995-06-01

    Four experiments are reported involving the effects of bizarre and common imagery mediation techniques on the learning and 1-week retention of surnames, given videotaped faces as cues. The videotapes contained 24 undergraduates who were photographed from about the chest up, and who introduced themselves at a 20-second rate. Experiment 1 showed that for both concrete and abstract names, immediate recall of the list was better under imagery mediation instructions than under control instructions. Experiment 2 studied the same conditions using immediate recognition memory of the list as a retrieval measure for the names, and found, despite ceiling effects, that bizarre imagery instructions facilitated recognition for concrete names. Experiment 3 showed that immediate recall could be improved if subjects were given an image mediator for every face-name pair as opposed to generating their own image mediators. Experiment 4 yielded three important findings: (a) 84% of the variance in the 1-week retention of initially recalled names was explained by the presence of absence of the original mediator during 1-week recall; (b) instructions to form image mediators facilitate recall not because image mediators are more effective than other types of mediators, but because they increase the likelihood that a mediator will be formed; (c) 1-week retention could be enhanced with an increased focus during encoding on the points where the mediation process is most likely to fail. The results of these studies are discussed within the context of mediation model wherein recall can fail at any of four stages.

  14. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  15. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    PubMed Central

    Swartz, R. Andrew

    2013-01-01

    This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136

  16. California coastal processes study: Skylab. [San Pablo and San Francisco Bays

    NASA Technical Reports Server (NTRS)

    Pirie, D. M.; Steller, D. D. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. In San Pablo Bay, the patterns of dredged sediment discharges were plotted over a three month period. It was found that lithogenous particles, kept in suspension by the fresh water from the Sacramento-San Joaquin, were transported downstream to the estuarine area at varying rates depending on the river discharge level. Skylab collected California coastal imagery at limited times and not at constant intervals. Resolution, however, helped compensate for lack of coverage. Increased spatial and spectral resolution provided details not possible utilizing Landsat imagery. The S-192 data was reformatted; band by band image density stretching was utilized to enhance sediment discharge patterns entrainment, boundaries, and eddys. The 26 January 1974 Skylab 4 imagery of San Francisco Bay was taken during an exceptionally high fresh water and suspended sediment discharge period. A three pronged surface sediment pattern was visible where the Sacramento-San Joaquin Rivers entered San Pablo Bay through Carquinez Strait.

  17. Face recognition in the thermal infrared domain

    NASA Astrophysics Data System (ADS)

    Kowalski, M.; Grudzień, A.; Palka, N.; Szustakowski, M.

    2017-10-01

    Biometrics refers to unique human characteristics. Each unique characteristic may be used to label and describe individuals and for automatic recognition of a person based on physiological or behavioural properties. One of the most natural and the most popular biometric trait is a face. The most common research methods on face recognition are based on visible light. State-of-the-art face recognition systems operating in the visible light spectrum achieve very high level of recognition accuracy under controlled environmental conditions. Thermal infrared imagery seems to be a promising alternative or complement to visible range imaging due to its relatively high resistance to illumination changes. A thermal infrared image of the human face presents its unique heat-signature and can be used for recognition. The characteristics of thermal images maintain advantages over visible light images, and can be used to improve algorithms of human face recognition in several aspects. Mid-wavelength or far-wavelength infrared also referred to as thermal infrared seems to be promising alternatives. We present the study on 1:1 recognition in thermal infrared domain. The two approaches we are considering are stand-off face verification of non-moving person as well as stop-less face verification on-the-move. The paper presents methodology of our studies and challenges for face recognition systems in the thermal infrared domain.

  18. Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter

    NASA Astrophysics Data System (ADS)

    Millán, María S.

    2012-10-01

    On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.

  19. Analysis of Impact of Tropical Cyclone Blance on Rainfall at Kupang Region Based on Atmospheric Condition and Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Roguna, S.; Saragih, I. J. A.; Siregar, P. S.; Julius, A. M.

    2018-04-01

    The Tropical Depression previously identified on March 3, 2017, at Arafuru Sea has grown to Tropical Cyclone Blance on March 5, 2017. The existence of Tropical Cyclone Blance gave impacts like increasing rainfall for some regions in Indonesia until March 7, 2017, such as Kupang. The increase of rainfall cannot be separated from the atmospheric dynamics related to convection processes and the formation of clouds. Analysis of weather parameters is made such as vorticity to observe vertical motion over the study area, vertical velocity to see the speed of lift force in the atmosphere, wind to see patterns of air mass distribution and rainfall to see the increase of rainfall compared to several days before the cyclone. Analysis of satellite imagery data is used as supporting analysis to see clouds imagery and movement direction of the cyclone. The results of weather parameters analysis show strong vorticity and lift force of air mass support the growth of Cumulonimbus clouds, cyclonic patterns on wind streamline and significant increase of rainfall compared to previous days. The results of satellite imagery analysis show the convective clouds over Kupang and surrounding areas when this phenomena and cyclone pattern moved down from Arafuru Sea towards the western part of Australia.

  20. Engineering analysis of ERTS data for rice in the Philippines

    NASA Technical Reports Server (NTRS)

    Mcnair, A. J. (Principal Investigator); Heydt, H. L.

    1973-01-01

    The author has identified the following significant results. Rice is an important food worldwide. Worthwhile goals, particularly for developing nations, are the capability to recognize from satellite imagery: (1) areas where rice is grown, and (2) growth status (irrigation, vigor, yield). A two-step procedure to achieve this is being investigated. Ground truth, and ERTS-1 imagery (four passes) covering 80% of a rice growth cycle for some Philippine sites, have been analyzed. One-D and three-D signature extraction, and synthesis of an initial site recognition/status algorithm have been performed. Results are encouraging. but additional passes and sites must be analyzed. Good position information for extracted data is a must.

  1. The use of ERTS/LANDSAT imagery in relation to airborne remote sensing for terrain analysis in western Queensland, Australia

    NASA Technical Reports Server (NTRS)

    Cole, M. M.; Wen-Jones, S. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Series of linears were identified on the March imagery of Lady Annie-Mt. Gordon fault zone area. The series with a WSW-ENE orientation which is normal to the major structural units and also several linears with NNW-SSE orientation appears to be particularly important. Copper mineralization is known at several localities where these linears are intersected by faults. Automated outputs using supervised methods involving the selection of training sets selected by visual recognition of spectral signatures on the color composites obtained from combinations of MSS bands 4, 5 and 7 projected through appropriate filters, were generated.

  2. Robust autoassociative memory with coupled networks of Kuramoto-type oscillators

    NASA Astrophysics Data System (ADS)

    Heger, Daniel; Krischer, Katharina

    2016-08-01

    Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.

  3. Activation of Imaginal Information on True and False Memories

    ERIC Educational Resources Information Center

    Chang, Sau Hou; Pierce, Benton H.

    2009-01-01

    The present study examined the activation of imaginal information on true and false memories. Participants studied a series of concrete objects in pictures or words. The imagery group (n = 96) was instructed to form images and the control group (n = 96) was not instructed to do so. Both groups were then given a standard recognition memory test and…

  4. Evaluation of Available Software for Reconstruction of a Structure from its Imagery

    DTIC Science & Technology

    2017-04-01

    Math . 2, 164–168. Lowe, D. G. (1999) Object recognition from local scale-invariant features, in Proc. Int. Conf. Computer Vision, Vol. 2, pp. 1150–1157...Marquardt, D. (1963) An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math . 11(2), 431–441. UNCLASSIFIED 11 DST-Group–TR

  5. Target Recognition in Ultra-Wideband SAR Imagery

    DTIC Science & Technology

    1994-08-01

    Poles in a Transfer Function for Real Frequency Informa- tion," Lawrence Livermore Laboratory, UCRL -52050 (April 1974). 24. V. K Jain, T. K. Sarker, and...0.777 Gaussian 0.849 1 5,265 0.978 93 Distribution Adrnnstr ARPAJASTO Defris Techi Info Ctr Attn T DePersia Attn DTIC-DDA (2 copies) 3701 N Fairfax Dr

  6. Education and the Living Image: Reflections on Imagery, Fantasy, and the Art of Recognition.

    ERIC Educational Resources Information Center

    Abbs, Peter

    1981-01-01

    The educational role of the artist is close to that of the dreamer in the sense that they are active collaborators in the extraordinary process through which instinct and bodily function are converted into image and fantasy. The development of an image can release powerful flows of intellectual energy. (JN)

  7. Bandwidth compression of multispectral satellite imagery

    NASA Technical Reports Server (NTRS)

    Habibi, A.

    1978-01-01

    The results of two studies aimed at developing efficient adaptive and nonadaptive techniques for compressing the bandwidth of multispectral images are summarized. These techniques are evaluated and compared using various optimality criteria including MSE, SNR, and recognition accuracy of the bandwidth compressed images. As an example of future requirements, the bandwidth requirements for the proposed Landsat-D Thematic Mapper are considered.

  8. Evaluation of SIR-B imagery for geologic and geomorphic mapping, hydrology, and oceanography in Australia

    NASA Technical Reports Server (NTRS)

    Honey, F. R.; Simpson, C. J.; Huntington, J.; Horwitz, R.; Byrne, G.; Nilsson, C.

    1984-01-01

    The objectives of a study to evaluate the potential of Shuttle Imaging Radar-B (SIR-B) imagery for various applications are outlined. Specific goals include: the development of techniques for registration multiple acquisition, varied illumination, and incidence-angle SIR-B imagery, and a model for estimation of the relative contributions to the backscattered radiation of topography, surface roughness, and dielectric and conductivity components; (2) the evaluation of SIR-B imagery for delineation of agricultural lands affected by secondary salinity in the southwest and southeast agricultural regions of Australia; (3) the development of techniques for application of SIR-B imagery for geologic, geomorphologic and soils mapping and mineral exploration; and (4) the evaluation of the use of SIR-B imagery in determining ocean currents, current shear patterns, internal waves and bottom features for specific locations off the Australian coast.

  9. Potential value of satellite cloud pictures in weather modification projects

    NASA Technical Reports Server (NTRS)

    Biswas, K. R.

    1972-01-01

    Satellite imagery for one project season of cloud seeding programs in the northern Great Plains has been surveyed for its probable usefulness in weather modification programs. The research projects and the meteorological information available are described. A few illustrative examples of satellite imagery analysis are cited and discussed, along with local observations of weather and the seeding decisions made in the research program. This analysis indicates a definite correlation between satellite-observed cloud patterns and the types of cloud seeding activity undertaken, and suggests a high probability of better and/or earlier decisions if the imagery is available in real time. Infrared imagery provides better estimates of cloud height which can be useful in assessing the possibility of a hail threat. The satellite imagery appears to be of more value to area-seeding projects than to single-cloud seeding experiments where the imagery is of little value except as an aid in local forecasting and analysis.

  10. Some approaches to optimal cluster labeling of aerospace imagery

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1980-01-01

    Some approaches are presented to the problem of labeling clusters using information from a given set of labeled and unlabeled aerospace imagery patterns. The assignment of class labels to the clusters is formulated as the determination of the best assignment over all possible ones with respect to some criterion. Cluster labeling is also viewed as the probability of correct labeling with a maximization of likelihood function. Results of the application of these techniques in the processing of remotely sensed multispectral scanner imagery data are presented.

  11. Investigation of Skylab imagery for regional planning. [New York, New Jersey, and Connecticut

    NASA Technical Reports Server (NTRS)

    Harting, W. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. It is feasible to use earth terrain camera imagery to detect four land uses (vacant land, developed land, streets, and water) for general regional planning purposes. Multispectral imagery is suitable for detecting, mapping, and measuring water bodies as small as two acres. Sufficient information can be extracted to prepare graphic and pictorial representations of the general growth and development patterns, but cannot be incorporated into an inventory file for predictive models.

  12. Mineral resources, geologic structure, and landform surveys

    NASA Technical Reports Server (NTRS)

    Lattman, L. H.

    1973-01-01

    The use of ERTS-1 imagery for mineral resources, geologic structure, and landform surveys is discussed. Four categories of ERTS imagery application are defined and explained. The types of information obtained by the various multispectral band scanners are analyzed. Samples of land use maps and tectoning and metallogenic models are developed. It is stated that the most striking features visible on ERTS imagery are regional lineaments, or linear patterns in the topography, which reflect major fracture zones extending upward from the basement of the earth.

  13. Functional Connectivity During Exposure to Favorite-Food, Stress, and Neutral-Relaxing Imagery Differs Between Smokers and Nonsmokers.

    PubMed

    Garrison, Kathleen A; Sinha, Rajita; Lacadie, Cheryl M; Scheinost, Dustin; Jastreboff, Ania M; Constable, R Todd; Potenza, Marc N

    2016-09-01

    Tobacco-use disorder is a complex condition involving multiple brain networks and presenting with multiple behavioral correlates including changes in diet and stress. In a previous functional magnetic resonance imaging (fMRI) study of neural responses to favorite-food, stress, and neutral-relaxing imagery, smokers versus nonsmokers demonstrated blunted corticostriatal-limbic responses to favorite-food cues. Based on other recent reports of alterations in functional brain networks in smokers, the current study examined functional connectivity during exposure to favorite-food, stress, and neutral-relaxing imagery in smokers and nonsmokers, using the same dataset. The intrinsic connectivity distribution was measured to identify brain regions that differed in degree of functional connectivity between groups during each imagery condition. Resulting clusters were evaluated for seed-to-voxel connectivity to identify the specific connections that differed between groups during each imagery condition. During exposure to favorite-food imagery, smokers versus nonsmokers showed lower connectivity in the supramarginal gyrus, and differences in connectivity between the supramarginal gyrus and the corticostriatal-limbic system. During exposure to neutral-relaxing imagery, smokers versus nonsmokers showed greater connectivity in the precuneus, and greater connectivity between the precuneus and the posterior insula and rolandic operculum. During exposure to stress imagery, smokers versus nonsmokers showed lower connectivity in the cerebellum. These findings provide data-driven insights into smoking-related alterations in brain functional connectivity patterns related to appetitive, relaxing, and stressful states. This study uses a data-driven approach to demonstrate that smokers and nonsmokers show differential patterns of functional connectivity during guided imagery related to personalized favorite-food, stress, and neutral-relaxing cues, in brain regions implicated in attention, reward-related, emotional, and motivational processes. For smokers, these differences in connectivity may impact appetite, stress, and relaxation, and may interfere with smoking cessation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Functional Connectivity During Exposure to Favorite-Food, Stress, and Neutral-Relaxing Imagery Differs Between Smokers and Nonsmokers

    PubMed Central

    Sinha, Rajita; Lacadie, Cheryl M.; Scheinost, Dustin; Jastreboff, Ania M.; Constable, R. Todd; Potenza, Marc N.

    2016-01-01

    Introduction: Tobacco-use disorder is a complex condition involving multiple brain networks and presenting with multiple behavioral correlates including changes in diet and stress. In a previous functional magnetic resonance imaging (fMRI) study of neural responses to favorite-food, stress, and neutral-relaxing imagery, smokers versus nonsmokers demonstrated blunted corticostriatal-limbic responses to favorite-food cues. Based on other recent reports of alterations in functional brain networks in smokers, the current study examined functional connectivity during exposure to favorite-food, stress, and neutral-relaxing imagery in smokers and nonsmokers, using the same dataset. Methods: The intrinsic connectivity distribution was measured to identify brain regions that differed in degree of functional connectivity between groups during each imagery condition. Resulting clusters were evaluated for seed-to-voxel connectivity to identify the specific connections that differed between groups during each imagery condition. Results: During exposure to favorite-food imagery, smokers versus nonsmokers showed lower connectivity in the supramarginal gyrus, and differences in connectivity between the supramarginal gyrus and the corticostriatal-limbic system. During exposure to neutral-relaxing imagery, smokers versus nonsmokers showed greater connectivity in the precuneus, and greater connectivity between the precuneus and the posterior insula and rolandic operculum. During exposure to stress imagery, smokers versus nonsmokers showed lower connectivity in the cerebellum. Conclusions: These findings provide data-driven insights into smoking-related alterations in brain functional connectivity patterns related to appetitive, relaxing, and stressful states. Implications: This study uses a data-driven approach to demonstrate that smokers and nonsmokers show differential patterns of functional connectivity during guided imagery related to personalized favorite-food, stress, and neutral-relaxing cues, in brain regions implicated in attention, reward-related, emotional, and motivational processes. For smokers, these differences in connectivity may impact appetite, stress, and relaxation, and may interfere with smoking cessation. PMID:26995796

  15. A subject-independent pattern-based Brain-Computer Interface

    PubMed Central

    Ray, Andreas M.; Sitaram, Ranganatha; Rana, Mohit; Pasqualotto, Emanuele; Buyukturkoglu, Korhan; Guan, Cuntai; Ang, Kai-Keng; Tejos, Cristián; Zamorano, Francisco; Aboitiz, Francisco; Birbaumer, Niels; Ruiz, Sergio

    2015-01-01

    While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e., happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to “match” their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders. PMID:26539089

  16. People with chronic facial pain perform worse than controls at a facial emotion recognition task, but it is not all about the emotion.

    PubMed

    von Piekartz, H; Wallwork, S B; Mohr, G; Butler, D S; Moseley, G L

    2015-04-01

    Alexithymia, or a lack of emotional awareness, is prevalent in some chronic pain conditions and has been linked to poor recognition of others' emotions. Recognising others' emotions from their facial expression involves both emotional and motor processing, but the possible contribution of motor disruption has not been considered. It is possible that poor performance on emotional recognition tasks could reflect problems with emotional processing, motor processing or both. We hypothesised that people with chronic facial pain would be less accurate in recognising others' emotions from facial expressions, would be less accurate in a motor imagery task involving the face, and that performance on both tasks would be positively related. A convenience sample of 19 people (15 females) with chronic facial pain and 19 gender-matched controls participated. They undertook two tasks; in the first task, they identified the facial emotion presented in a photograph. In the second, they identified whether the person in the image had a facial feature pointed towards their left or right side, a well-recognised paradigm to induce implicit motor imagery. People with chronic facial pain performed worse than controls at both tasks (Facially Expressed Emotion Labelling (FEEL) task P < 0·001; left/right judgment task P < 0·001). Participants who were more accurate at one task were also more accurate at the other, regardless of group (P < 0·001, r(2)  = 0·523). Participants with chronic facial pain were worse than controls at both the FEEL emotion recognition task and the left/right facial expression task and performance covaried within participants. We propose that disrupted motor processing may underpin or at least contribute to the difficulty that facial pain patients have in emotion recognition and that further research that tests this proposal is warranted. © 2014 John Wiley & Sons Ltd.

  17. Using multi-spectral imagery to detect and map stress induced by Russian wheat aphid

    NASA Astrophysics Data System (ADS)

    Backoulou, Georges Ferdinand

    Scope and Method of Study. The rationale of this study was to assess the stress in wheat field induced by the Russian wheat aphid using multispectral imagery. The study was conducted to (a) determine the relationship between RWA and edaphic and topographic factors; (b) identify and quantify the spatial pattern of RWA infestation within wheat fields; (c) differentiate the stress induced by RWA from other stress causing factors. Data used for the analysis included RWA population density from the wheat field in, Texas, Colorado, Wyoming, and Nebraska, Digital Elevation Model from the Unites States Geological Survey (USGS), soil data from the Soil Survey Geographic database (SSURGO), and multispectral imagery acquired in the panhandle of Oklahoma. Findings and Conclusions. The study revealed that the population density of the Russian wheat aphid was related to topographic and edaphic factors. Slope and sand were predictor variables that were positively related to the density of RWA at the field level. The study has also demonstrated that stress induced by the RWA has a specific spatial pattern that can be distinguished from other stress causing factors using a combination of landscape metrics and topographic and edaphic characteristics of wheat fields. Further field-based studies using multispectral imagery and spatial pattern analysis are suggested. The suggestions require acquiring biweekly multispectral imagery and collecting RWA, topographic and edaphic data at the sampling points during the phonological growth development of wheat plants. This is an approach that may pretend to have great potential for site specific technique for the integrated pest management.

  18. Using Satellite Imagery to Assess Large-Scale Habitat Characteristics of Adirondack Park, New York, USA

    NASA Astrophysics Data System (ADS)

    McClain, Bobbi J.; Porter, William F.

    2000-11-01

    Satellite imagery is a useful tool for large-scale habitat analysis; however, its limitations need to be tested. We tested these limitations by varying the methods of a habitat evaluation for white-tailed deer ( Odocoileus virginianus) in the Adirondack Park, New York, USA, utilizing harvest data to create and validate the assessment models. We used two classified images, one with a large minimum mapping unit but high accuracy and one with no minimum mapping unit but slightly lower accuracy, to test the sensitivity of the evaluation to these differences. We tested the utility of two methods of assessment, habitat suitability index modeling, and pattern recognition modeling. We varied the scale at which the models were applied by using five separate sizes of analysis windows. Results showed that the presence of a large minimum mapping unit eliminates important details of the habitat. Window size is relatively unimportant if the data are averaged to a large resolution (i.e., township), but if the data are used at the smaller resolution, then the window size is an important consideration. In the Adirondacks, the proportion of hardwood and softwood in an area is most important to the spatial dynamics of deer populations. The low occurrence of open area in all parts of the park either limits the effect of this cover type on the population or limits our ability to detect the effect. The arrangement and interspersion of cover types were not significant to deer populations.

  19. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2018-01-01

    The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.

  20. Visual texture for automated characterisation of geological features in borehole televiewer imagery

    NASA Astrophysics Data System (ADS)

    Al-Sit, Waleed; Al-Nuaimy, Waleed; Marelli, Matteo; Al-Ataby, Ali

    2015-08-01

    Detailed characterisation of the structure of subsurface fractures is greatly facilitated by digital borehole logging instruments, the interpretation of which is typically time-consuming and labour-intensive. Despite recent advances towards autonomy and automation, the final interpretation remains heavily dependent on the skill, experience, alertness and consistency of a human operator. Existing computational tools fail to detect layers between rocks that do not exhibit distinct fracture boundaries, and often struggle characterising cross-cutting layers and partial fractures. This paper presents a novel approach to the characterisation of planar rock discontinuities from digital images of borehole logs. Multi-resolution texture segmentation and pattern recognition techniques utilising Gabor filters are combined with an iterative adaptation of the Hough transform to enable non-distinct, partial, distorted and steep fractures and layers to be accurately identified and characterised in a fully automated fashion. This approach has successfully detected fractures and layers with high detection accuracy and at a relatively low computational cost.

  1. NASA Tech Briefs, March 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: WRATS Integrated Data Acquisition System; Breadboard Signal Processor for Arraying DSN Antennas; Digital Receiver Phase Meter; Split-Block Waveguide Polarization Twist for 220 to 325 GHz; Nano-Multiplication-Region Avalanche Photodiodes and Arrays; Tailored Asymmetry for Enhanced Coupling to WGM Resonators; Disabling CNT Electronic Devices by Use of Electron Beams; Conical Bearingless Motor/Generators; Integrated Force Method for Indeterminate Structures; Carbon-Nanotube-Based Electrodes for Biomedical Applications; Compact Directional Microwave Antenna for Localized Heating; Using Hyperspectral Imagery to Identify Turfgrass Stresses; Shaping Diffraction-Grating Grooves to Optimize Efficiency; Low-Light-Shift Cesium Fountain without Mechanical Shutters; Magnetic Compensation for Second-Order Doppler Shift in LITS; Nanostructures Exploit Hybrid-Polariton Resonances; Microfluidics, Chromatography, and Atomic-Force Microscopy; Model of Image Artifacts from Dust Particles; Pattern-Recognition System for Approaching a Known Target; Orchestrator Telemetry Processing Pipeline; Scheme for Quantum Computing Immune to Decoherence; Spin-Stabilized Microsatellites with Solar Concentrators; Phase Calibration of Antenna Arrays Aimed at Spacecraft; Ring Bus Architecture for a Solid-State Recorder; and Image Compression Algorithm Altered to Improve Stereo Ranging.

  2. The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors

    NASA Astrophysics Data System (ADS)

    Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.; MicroBooNE Collaboration

    2017-09-01

    The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.

  3. Real Time Large Memory Optical Pattern Recognition.

    DTIC Science & Technology

    1984-06-01

    AD-Ri58 023 REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION(U) - h ARMY MISSILE COMMAND REDSTONE ARSENAL AL RESEARCH DIRECTORATE D A GREGORY JUN...TECHNICAL REPORT RR-84-9 Ln REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION Don A. Gregory Research Directorate US Army Missile Laboratory JUNE 1984 L...RR-84-9 , ___/_ _ __ _ __ _ __ _ __"__ _ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Real Time Large Memory Optical Pattern Technical

  4. Classification and machine recognition of severe weather patterns

    NASA Technical Reports Server (NTRS)

    Wang, P. P.; Burns, R. C.

    1976-01-01

    Forecasting and warning of severe weather conditions are treated from the vantage point of pattern recognition by machine. Pictorial patterns and waveform patterns are distinguished. Time series data on sferics are dealt with by considering waveform patterns. A severe storm patterns recognition machine is described, along with schemes for detection via cross-correlation of time series (same channel or different channels). Syntactic and decision-theoretic approaches to feature extraction are discussed. Active and decayed tornados and thunderstorms, lightning discharges, and funnels and their related time series data are studied.

  5. A scheme for the uniform mapping and monitoring of earth resources and environmental complexes using ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Poulton, C. E. (Principal Investigator); Welch, R. I.

    1973-01-01

    There are no author-identified significant results in this report. Progress on plans for the development and testing of a practical procedure and system for the uniform mapping and monitoring of natural ecosystems and environmental complexes from space-acquired imagery is discussed. With primary emphasis on ERTS-1 imagery, but supported by appropriate aircraft photography as necessary, the objectives are to accomplish the following: (1) Develop and test in a few selected sites and areas of the western United States a standard format for an ecological and land use legend for making natural resource inventories on a simulated global basis. (2) Based on these same limited geographic areas, identify the potentialities and limitations of the legend concept for the recognition and annotation of ecological analogs and environmental complexes. An additional objective is to determine the optimum combination of space photography, aerial photography, ground data, human data analysis, and automatic data analysis for estimating crop yield in the rice growing areas of California and Louisiana.

  6. Fuzzy Logic-Based Audio Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Malcangi, M.

    2008-11-01

    Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.

  7. New Optical Transforms For Statistical Image Recognition

    NASA Astrophysics Data System (ADS)

    Lee, Sing H.

    1983-12-01

    In optical implementation of statistical image recognition, new optical transforms on large images for real-time recognition are of special interest. Several important linear transformations frequently used in statistical pattern recognition have now been optically implemented, including the Karhunen-Loeve transform (KLT), the Fukunaga-Koontz transform (FKT) and the least-squares linear mapping technique (LSLMT).1-3 The KLT performs principle components analysis on one class of patterns for feature extraction. The FKT performs feature extraction for separating two classes of patterns. The LSLMT separates multiple classes of patterns by maximizing the interclass differences and minimizing the intraclass variations.

  8. Optimal pattern synthesis for speech recognition based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Korsun, O. N.; Poliyev, A. V.

    2018-02-01

    The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.

  9. Remote sensing of soils, land forms, and land use in the northern Great Plains in preparation for ERTS applications

    NASA Technical Reports Server (NTRS)

    Frazee, C. J.; Westin, F. C.; Gropper, J.; Myers, V. I.

    1972-01-01

    Research to determine the optimum time or season for obtaining imagery to identify and map soil limitations was conducted in the proposed Oahe irrigation project area in South Dakota. The optimum time for securing photographs or imagery is when the soil surface patterns are most apparent. For cultivated areas similar to the study area, May is the optimum time. The density slicing analysis of the May image provided additional and more accurate information than did the existing soil map. The soil boundaries were more accurately located. The use of a density analysis system for an operational soil survey has not been tested, but is obviously dependent upon securing excellent photographs for interpretation. The colors or densities of photographs will have to be corrected for sun angle effects, vignetting effects, and processing to have maximum effectiveness for mapping soil limitations. Rangeland sites were established in Bennett County, South Dakota to determine the usefulness of ERTS imagery. Imagery from these areas was interpreted for land use and drainage patterns.

  10. Thermal anomaly mapping from night MODIS imagery of USA, a tool for environmental assessment.

    PubMed

    Miliaresis, George Ch

    2013-02-01

    A method is presented for elevation, latitude and longitude decorrelation stretch of multi-temporal MODIS MYD11C3 imagery (monthly average night land surface temperature (LST) across USA and Mexico). Multiple linear regression analysis of principal components images (PCAs) quantifies the variance explained by elevation (H), latitude (LAT), and longitude (LON). The multi-temporal LST imagery is reconstructed from the residual images and selected PCAs by taking into account the portion of variance that is not related to H, LAT, LON. The reconstructed imagery presents the magnitude the standardized LST value per pixel deviates from the H, LAT, LON predicted. LST anomaly is defined as a region that presents either positive or negative reconstructed LST value. The environmental assessment of USA indicated that only for the 25 % of the study area (Mississippi drainage basin), the LST is predicted by the H, LAT, LON. Regions with milled climatic pattern were identified in the West Coast while the coldest climatic pattern is observed for Mid USA. Positive season invariant LST anomalies are identified in SW (Arizona, Sierra Nevada, etc.) and NE USA.

  11. Searching for patterns in remote sensing image databases using neural networks

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1995-01-01

    We have investigated a method, based on a successful neural network multispectral image classification system, of searching for single patterns in remote sensing databases. While defining the pattern to search for and the feature to be used for that search (spectral, spatial, temporal, etc.) is challenging, a more difficult task is selecting competing patterns to train against the desired pattern. Schemes for competing pattern selection, including random selection and human interpreted selection, are discussed in the context of an example detection of dense urban areas in Landsat Thematic Mapper imagery. When applying the search to multiple images, a simple normalization method can alleviate the problem of inconsistent image calibration. Another potential problem, that of highly compressed data, was found to have a minimal effect on the ability to detect the desired pattern. The neural network algorithm has been implemented using the PVM (Parallel Virtual Machine) library and nearly-optimal speedups have been obtained that help alleviate the long process of searching through imagery.

  12. The Need for Careful Data Collection for Pattern Recognition in Digital Pathology.

    PubMed

    Marée, Raphaël

    2017-01-01

    Effective pattern recognition requires carefully designed ground-truth datasets. In this technical note, we first summarize potential data collection issues in digital pathology and then propose guidelines to build more realistic ground-truth datasets and to control their quality. We hope our comments will foster the effective application of pattern recognition approaches in digital pathology.

  13. Pattern recognition: A basis for remote sensing data analysis

    NASA Technical Reports Server (NTRS)

    Swain, P. H.

    1973-01-01

    The theoretical basis for the pattern-recognition-oriented algorithms used in the multispectral data analysis software system is discussed. A model of a general pattern recognition system is presented. The receptor or sensor is usually a multispectral scanner. For each ground resolution element the receptor produces n numbers or measurements corresponding to the n channels of the scanner.

  14. Optical Pattern Recognition With Self-Amplification

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1994-01-01

    In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.

  15. Vegetation cover in relation to socioeconomic factors in a tropical city assessed from sub-meter resolution imagery.

    PubMed

    Martinuzzi, Sebastián; Ramos-González, Olga M; Muñoz-Erickson, Tischa A; Locke, Dexter H; Lugo, Ariel E; Radeloff, Volker C

    2018-04-01

    Fine-scale information about urban vegetation and social-ecological relationships is crucial to inform both urban planning and ecological research, and high spatial resolution imagery is a valuable tool for assessing urban areas. However, urban ecology and remote sensing have largely focused on cities in temperate zones. Our goal was to characterize urban vegetation cover with sub-meter (<1 m) resolution aerial imagery, and identify social-ecological relationships of urban vegetation patterns in a tropical city, the San Juan Metropolitan Area, Puerto Rico. Our specific objectives were to (1) map vegetation cover using sub-meter spatial resolution (0.3-m) imagery, (2) quantify the amount of residential and non-residential vegetation, and (3) investigate the relationship between patterns of urban vegetation vs. socioeconomic and environmental factors. We found that 61% of the San Juan Metropolitan Area was green and that our combination of high spatial resolution imagery and object-based classification was highly successful for extracting vegetation cover in a moist tropical city (97% accuracy). In addition, simple spatial pattern analysis allowed us to separate residential from non-residential vegetation with 76% accuracy, and patterns of residential and non-residential vegetation varied greatly across the city. Both socioeconomic (e.g., population density, building age, detached homes) and environmental variables (e.g., topography) were important in explaining variations in vegetation cover in our spatial regression models. However, important socioeconomic drivers found in cities in temperate zones, such as income and home value, were not important in San Juan. Climatic and cultural differences between tropical and temperate cities may result in different social-ecological relationships. Our study provides novel information for local land use planners, highlights the value of high spatial resolution remote sensing data to advance ecological research and urban planning in tropical cities, and emphasizes the need for more studies in tropical cities. © 2017 by the Ecological Society of America.

  16. Model-based vision using geometric hashing

    NASA Astrophysics Data System (ADS)

    Akerman, Alexander, III; Patton, Ronald

    1991-04-01

    The Geometric Hashing technique developed by the NYU Courant Institute has been applied to various automatic target recognition applications. In particular, I-MATH has extended the hashing algorithm to perform automatic target recognition ofsynthetic aperture radar (SAR) imagery. For this application, the hashing is performed upon the geometric locations of dominant scatterers. In addition to being a robust model-based matching algorithm -- invariant under translation, scale, and 3D rotations of the target -- hashing is of particular utility because it can still perform effective matching when the target is partially obscured. Moreover, hashing is very amenable to a SIMD parallel processing architecture, and thus potentially realtime implementable.

  17. Snow Pattern Delineation, Scaling, Fidelity, and Landscape Factors

    NASA Astrophysics Data System (ADS)

    Hiemstra, C. A.; Wagner, A. M.; Deeb, E. J.; Morriss, B. F.; Sturm, M.

    2014-12-01

    In many snow-covered landscapes, snow tends to be shallow or deep in the same locations year after year. As snowmelt progresses in spring, areas of shallow snow become snow-free earlier than areas with deep snow. This pattern (Sturm and Wagner 2010) could likely be used to inform or improve modeled snow depth estimates where ground measurements are not collected; however, we must be certain of their utility before ingesting them into model calculations. Do patterns, as we detect them, have a relationship with earlier measured snow distributions? Second, are certain areas on the landscape likely to yield patterns that are influenced too highly by melting to be useful? Our Imnavait Creek Study Area (11 by 19 km) is on Alaska's North Slope, where we have examined a vast library of spring satellite imagery (ranging from mostly snow-covered to mostly snow-free). Landsat TM Imagery has been collected from the early 1980s-present, and the temporal and spatial resolution is roughly two weeks and 30 m, respectively. High resolution satellite imagery (WorldView 1, WorldView 2, IKONOS) has been obtained from 2010-2013 for the same area with almost daily- to monthly-temporal and at 2.5 m spatial resolutions, respectively. We found that there is a striking similarity among patterns from year to year across the span of decades and resolutions. However, the relationship of pattern with observed snow depths was strong in some areas and less clear in others. Overall, we suspect spatial scaling, spatial mismatch, sampling errors, and melt patterns explain most of the areas of pattern and depth disparity.

  18. Utilization of ERTS-1 data in North Carolina

    NASA Technical Reports Server (NTRS)

    Welby, C. W. (Principal Investigator); Lammi, J. O.; Carson, R. J., III

    1973-01-01

    The author has identified the following significant results. A wide range of potential uses for ERTS-1 imagery is described. Special emphasis has been placed upon studies in the Coastal Plain of North Carolina. Soil groups, water quality, and suspended sediment patterns in estuaries and offshore have been studied. A phytoplankton bloom has possibly been detected. The usefulness of the imagery in coastal landform surveys has been demonstrated as has its usefulness in monitoring developmental activity in the forests. Planners appear hesitant to use the imagery because of its small scale, but it is felt that as they become familiar with the imagery they will find it useful and time-saving for many purposes.

  19. Applicability of ERTS-1 imagery to the study of suspended sediment and aquatic fronts

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Srna, R.; Treasure, W.; Otley, M.

    1973-01-01

    Imagery from three successful ERTS-1 passes over the Delaware Bay and Atlantic Coastal Region have been evaluated to determine visibility of aquatic features. Data gathered from ground truth teams before and during the overflights, in conjunction with aerial photographs taken at various altitudes, were used to interpret the imagery. The overpasses took place on August 16, October 10, 1972, and January 26, 1973, with cloud cover ranging from about zero to twenty percent. (I.D. Nos. 1024-15073, 1079-15133, and 1187-15140). Visual inspection, density slicing and multispectral analysis of the imagery revealed strong suspended sediment patterns and several distinct types of aquatic interfaces or frontal systems.

  20. Influence of Word Class Proportion on Cerebral Asymmetries for High- And Low-Imagery Words

    ERIC Educational Resources Information Center

    Chiarello, C.; Shears, C.; Liu, S.; Kacinik, N.A.

    2005-01-01

    It has been claimed that the typical RVF/LH advantage for word recognition is reduced or eliminated for imageable, as compared to nonimageable, nouns. To determine whether such word-class effects vary depending on the stimulus list context in which the words are presented, we varied the proportion of high- and low-image words presented in a…

  1. Apparent Frequency of Words and Pictures as a Function of Pronunciation and Imagery. Technical Report No. 238.

    ERIC Educational Resources Information Center

    Ghatala, Elizabeth S.; And Others

    This study applied a frequency theory to measure the superiority of pictures over words in both discrimination learning and recognition memory tasks. Three groups of sixth grade students were given separate instructions before viewing slides of either common objects or words. The first group (control) was asked to study the items shown, the second…

  2. Detection of facilities in satellite imagery using semi-supervised image classification and auxiliary contextual observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Neal R; Ruggiero, Christy E; Pawley, Norma H

    2009-01-01

    Detecting complex targets, such as facilities, in commercially available satellite imagery is a difficult problem that human analysts try to solve by applying world knowledge. Often there are known observables that can be extracted by pixel-level feature detectors that can assist in the facility detection process. Individually, each of these observables is not sufficient for an accurate and reliable detection, but in combination, these auxiliary observables may provide sufficient context for detection by a machine learning algorithm. We describe an approach for automatic detection of facilities that uses an automated feature extraction algorithm to extract auxiliary observables, and a semi-supervisedmore » assisted target recognition algorithm to then identify facilities of interest. We illustrate the approach using an example of finding schools in Quickbird image data of Albuquerque, New Mexico. We use Los Alamos National Laboratory's Genie Pro automated feature extraction algorithm to find a set of auxiliary features that should be useful in the search for schools, such as parking lots, large buildings, sports fields and residential areas and then combine these features using Genie Pro's assisted target recognition algorithm to learn a classifier that finds schools in the image data.« less

  3. Recognition of ships for long-term tracking

    NASA Astrophysics Data System (ADS)

    van den Broek, Sebastiaan P.; Bouma, Henri; Veerman, Henny E. T.; Benoist, Koen W.; den Hollander, Richard J. M.; Schwering, Piet B. W.

    2014-06-01

    Long-term tracking is important for maritime situational awareness to identify currently observed ships as earlier encounters. In cases of, for example, piracy and smuggling, past location and behavior analysis are useful to determine whether a ship is of interest. Furthermore, it is beneficial to make this assessment with sensors (such as cameras) at a distance, to avoid costs of bringing an own asset closer to the ship for verification. The emphasis of the research presented in this paper, is on the use of several feature extraction and matching methods for recognizing ships from electro-optical imagery within different categories of vessels. We compared central moments, SIFT with localization and SIFT with Fisher Vectors. From the evaluation on imagery of ships, an indication of discriminative power is obtained between and within different categories of ships. This is used to assess the usefulness in persistent tracking, from short intervals (track improvement) to larger intervals (re-identifying ships). The result of this assessment on real data is used in a simulation environment to determine how track continuity is improved. The simulations showed that even limited recognition will improve tracking, connecting both tracks at short intervals as well as over several days.

  4. Learning through hand- or typewriting influences visual recognition of new graphic shapes: behavioral and functional imaging evidence.

    PubMed

    Longcamp, Marieke; Boucard, Céline; Gilhodes, Jean-Claude; Anton, Jean-Luc; Roth, Muriel; Nazarian, Bruno; Velay, Jean-Luc

    2008-05-01

    Fast and accurate visual recognition of single characters is crucial for efficient reading. We explored the possible contribution of writing memory to character recognition processes. We evaluated the ability of adults to discriminate new characters from their mirror images after being taught how to produce the characters either by traditional pen-and-paper writing or with a computer keyboard. After training, we found stronger and longer lasting (several weeks) facilitation in recognizing the orientation of characters that had been written by hand compared to those typed. Functional magnetic resonance imaging recordings indicated that the response mode during learning is associated with distinct pathways during recognition of graphic shapes. Greater activity related to handwriting learning and normal letter identification was observed in several brain regions known to be involved in the execution, imagery, and observation of actions, in particular, the left Broca's area and bilateral inferior parietal lobules. Taken together, these results provide strong arguments in favor of the view that the specific movements memorized when learning how to write participate in the visual recognition of graphic shapes and letters.

  5. Detection of buried objects by fusing dual-band infrared images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.

    1993-11-01

    We have conducted experiments to demonstrate the enhanced detectability of buried land mines using sensor fusion techniques. Multiple sensors, including visible imagery, infrared imagery, and ground penetrating radar (GPR), have been used to acquire data on a number of buried mines and mine surrogates. Because the visible wavelength and GPR data are currently incomplete. This paper focuses on the fusion of two-band infrared images. We use feature-level fusion and supervised learning with the probabilistic neural network (PNN) to evaluate detection performance. The novelty of the work lies in the application of advanced target recognition algorithms, the fusion of dual-band infraredmore » images and evaluation of the techniques using two real data sets.« less

  6. Exploration for fossil and nuclear fuels from orbital altitudes

    NASA Technical Reports Server (NTRS)

    Short, N. M.; Tiedemann, H. A.

    1975-01-01

    Studies of LANDSAT and Skylab-EREP data have defined both the advantages and limitations of space platforms as a new 'tool' in mineral exploration. One LANDSAT investigation in the Anadarko Basin of Oklahoma has demonstrated a correlation between several types of anomalies recognized in the imagery and the locations of known oil and gas fields. In addition to supporting several LANDSAT follow-on investigations in petroleum exploration, NASA has approved a broad in-house study at Goddard Space Flight Center designed to verify the general applicability of the initial Anadarko Basin results. Using both conventional photogeologic methods and special computer processing, imagery taken over oil-producing areas is being subjected to detailed analysis in search of definitive recognition criteria.

  7. Integrated approach for automatic target recognition using a network of collaborative sensors.

    PubMed

    Mahalanobis, Abhijit; Van Nevel, Alan

    2006-10-01

    We introduce what is believed to be a novel concept by which several sensors with automatic target recognition (ATR) capability collaborate to recognize objects. Such an approach would be suitable for netted systems in which the sensors and platforms can coordinate to optimize end-to-end performance. We use correlation filtering techniques to facilitate the development of the concept, although other ATR algorithms may be easily substituted. Essentially, a self-configuring geometry of netted platforms is proposed that positions the sensors optimally with respect to each other, and takes into account the interactions among the sensor, the recognition algorithms, and the classes of the objects to be recognized. We show how such a paradigm optimizes overall performance, and illustrate the collaborative ATR scheme for recognizing targets in synthetic aperture radar imagery by using viewing position as a sensor parameter.

  8. Patterning of pain and power with guided imagery.

    PubMed

    Lewandowski, Wendy A

    2004-07-01

    Using Martha Rogers' science of unitary human beings, changes in pain and power among 42 patients were examined in relation to the use of a guided imagery modality. Participants were randomly assigned to treatment and control groups and repeated measures MANCOVA was used to detect differences in pain and power over a 4-day period of time. The treatment group's pain decreased during the last 2 days of the study. No differences in power emerged. Guided imagery appeared to have potential as a useful nursing modality for chronic pain sufferers.

  9. Chaotic terrain of Mars - A tectonic interpretation from Mariner 6 imagery

    NASA Technical Reports Server (NTRS)

    Wilson, R. C.; Harp, E. L.; Picard, M. D.; Ward, S. H.

    1973-01-01

    Sharp et al. (1971) define chaotic terrain as an irregular jumble of topographic forms covering a certain area within Pyrrhae Regio and adjacent regions centered at about 10 deg S., 35 deg W. This area is covered by Mariner 6 television imagery. An analysis of fracture patterns in the Martian surface from high-resolution Mariner 6 imagery suggests that the lineaments observed in both the chaotic terrain and the cratered plateau areas in Pyrrhae Regio are tectonic fractures resulting from stresses within the Martian crust.

  10. Sonar Recognition Training: An Investigation of Whole VS. Part and Analytic VS. Synthetic Procedures.

    ERIC Educational Resources Information Center

    Annett, John

    An experienced person, in such tasks as sonar detection and recognition, has a considerable superiority over a machine recognition system in auditory pattern recognition. However, people require extensive exposure to auditory patterns before achieving a high level of performance. In an attempt to discover a method of training people to recognize…

  11. Degraded character recognition based on gradient pattern

    NASA Astrophysics Data System (ADS)

    Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash

    2010-02-01

    Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.

  12. Automatic Target Recognition Based on Cross-Plot

    PubMed Central

    Wong, Kelvin Kian Loong; Abbott, Derek

    2011-01-01

    Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository. PMID:21980508

  13. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  14. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2018-01-29

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  15. Mechanisms and neural basis of object and pattern recognition: a study with chess experts.

    PubMed

    Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-11-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception.

  16. Investigation of the Fractal Geometry of Tundra Lake Patterns using Historical Topographic Maps and Satellite Imagery.

    NASA Astrophysics Data System (ADS)

    Kariyawasam, T.; Essa, A.; Gong, M.; Sudakov, I.

    2017-12-01

    Greenhouse gas emissions from tundra lakes are a significant positive feedback to the atmosphere in a changing climate as a pronounced growth of the numbers of tundra lake patterns has been observed in the Arctic region. Detailed knowledge of spatial dynamics of lake patterns in a changing arctic tundra landscape and their geometrical properties is therefore potentially valuable, in order to understand and accurately model the sources of greenhouse gas emissions from boreal permafrost. Our goal is to use a collection of historical topographic maps and satellite imagery of tundra lakes to conduct computational image analyses for examining spatial dynamics of Tundra lake patterns. Our approach is based upon analyzing area-perimeter data of thousands of tundra lakes to compute the fractal dimension to study the tundra lake pattern geometry, which have been used to classify pollen grains by textual patterning (Mander, 2016), vegetation in dryland ecosystems (Mander, 2017) and melt pond patterns (Hohenegger, 2012). By analyzing area - perimeter data for over 900 lakes we find that for both historical topographic maps and current satellite imagery, the fractal dimension D is stable at 1.6 for Tundra lakes with area less than about 100km2. For Tundra lake sizes bigger than 100 km2 fractal dimension takes values close to 2 and less than one indicative of structural changes in Tundra lake pattern geometry. Furthermore the current study did not reveal any percolation transition above some critical threshold in Tundra lake evolution. The results of the study will provide scientists with new data on these aspects of tundra lakes to help characterize the geomorphology of spatial patterns in arctic tundra lakes.

  17. Finger Vein Recognition Based on Local Directional Code

    PubMed Central

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-01-01

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194

  18. Finger vein recognition based on local directional code.

    PubMed

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-11-05

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.

  19. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  20. Age-Related Differences in Recognition Memory for Items and Associations: Contribution of Individual Differences in Working Memory and Metamemory

    PubMed Central

    Bender, Andrew R.; Raz, Naftali

    2012-01-01

    Ability to form new associations between unrelated items is particularly sensitive to aging, but the reasons for such differential vulnerability are unclear. In this study, we examined the role of objective and subjective factors (working memory and beliefs about memory strategies) on differential relations of age with recognition of items and associations. Healthy adults (N = 100, age 21 to 79) studied word pairs, completed item and association recognition tests, and rated the effectiveness of shallow (e.g., repetition) and deep (e.g., imagery or sentence generation) encoding strategies. Advanced age was associated with reduced working memory (WM) capacity and poorer associative recognition. In addition, reduced WM capacity, beliefs in the utility of ineffective encoding strategies, and lack of endorsement of effective ones were independently associated with impaired associative memory. Thus, maladaptive beliefs about memory in conjunction with reduced cognitive resources account in part for differences in associative memory commonly attributed to aging. PMID:22251381

  1. Towards Efficient Decoding of Multiple Classes of Motor Imagery Limb Movements Based on EEG Spectral and Time Domain Descriptors.

    PubMed

    Samuel, Oluwarotimi Williams; Geng, Yanjuan; Li, Xiangxin; Li, Guanglin

    2017-10-28

    To control multiple degrees of freedom (MDoF) upper limb prostheses, pattern recognition (PR) of electromyogram (EMG) signals has been successfully applied. This technique requires amputees to provide sufficient EMG signals to decode their limb movement intentions (LMIs). However, amputees with neuromuscular disorder/high level amputation often cannot provide sufficient EMG control signals, and thus the applicability of the EMG-PR technique is limited especially to this category of amputees. As an alternative approach, electroencephalograph (EEG) signals recorded non-invasively from the brain have been utilized to decode the LMIs of humans. However, most of the existing EEG based limb movement decoding methods primarily focus on identifying limited classes of upper limb movements. In addition, investigation on EEG feature extraction methods for the decoding of multiple classes of LMIs has rarely been considered. Therefore, 32 EEG feature extraction methods (including 12 spectral domain descriptors (SDDs) and 20 time domain descriptors (TDDs)) were used to decode multiple classes of motor imagery patterns associated with different upper limb movements based on 64-channel EEG recordings. From the obtained experimental results, the best individual TDD achieved an accuracy of 67.05 ± 3.12% as against 87.03 ± 2.26% for the best SDD. By applying a linear feature combination technique, an optimal set of combined TDDs recorded an average accuracy of 90.68% while that of the SDDs achieved an accuracy of 99.55% which were significantly higher than those of the individual TDD and SDD at p < 0.05. Our findings suggest that optimal feature set combination would yield a relatively high decoding accuracy that may improve the clinical robustness of MDoF neuroprosthesis. The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077.

  2. An Analysis of Air Photo and Radar Imagery of Barro Colorado Island, Panama

    DTIC Science & Technology

    1989-07-01

    changes (flats, hills, mountains , etc.), they cannot provide the shape information that can be obtained from stereo imagery. Referring to figure 14, one...field patterns. These are shown in figure 20. Figure 21 shows a portion of a 1979 Landsat MSS color composite scene of this alea . It has a continuous red

  3. Water Literacy in College Freshmen: Could a Cognitive Imagery Strategy Improve Understanding?

    ERIC Educational Resources Information Center

    Ewing, Margaret S.; Mills, Terence J.

    1994-01-01

    Presents a study designed to determine whether levels of water literacy differed between (n=83) college freshman nonscience majors having one versus two years of high school science coursework, visual imagery exercises could improve understanding of the water cycle, and patterns exist in the concept of the water cycle. (Contains 23 references.)…

  4. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Influence of Blurred Ways on Pattern Recognition of a Scale-Free Hopfield Neural Network

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Li

    2010-01-01

    We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.

  5. What do the data show? Fostering physical intuition with ClimateBits and NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Schollaert Uz, S.; Ward, K.

    2017-12-01

    Through data visualizations using global satellite imagery available in NASA Earth Observations (NEO), we explain Earth science concepts (e.g. albedo, urban heat island effect, phytoplankton). We also provide examples of ways to explore the satellite data in NEO within a new blog series. This is an ideal tool for scientists and non-scientists alike who want to quickly check satellite imagery for large scale features or patterns. NEO analysis requires no software or plug-ins; only a browser and an internet connection. You can even check imagery and perform simple analyses from your smart phone. NEO can be used to create graphics for presentations and papers or as a first step before acquiring data for more rigorous analysis. NEO has potential application to easily explore large scale environmental and climate patterns that impact operations and infrastructure. This is something we are currently exploring with end user groups.

  6. The recognition of graphical patterns invariant to geometrical transformation of the models

    NASA Astrophysics Data System (ADS)

    Ileană, Ioan; Rotar, Corina; Muntean, Maria; Ceuca, Emilian

    2010-11-01

    In case that a pattern recognition system is used for images recognition (in robot vision, handwritten recognition etc.), the system must have the capacity to identify an object indifferently of its size or position in the image. The problem of the invariance of recognition can be approached in some fundamental modes. One may apply the similarity criterion used in associative recall. The original pattern is replaced by a mathematical transform that assures some invariance (e.g. the value of two-dimensional Fourier transformation is translation invariant, the value of Mellin transformation is scale invariant). In a different approach the original pattern is represented through a set of features, each of them being coded indifferently of the position, orientation or position of the pattern. Generally speaking, it is easy to obtain invariance in relation with one transformation group, but is difficult to obtain simultaneous invariance at rotation, translation and scale. In this paper we analyze some methods to achieve invariant recognition of images, particularly for digit images. A great number of experiments are due and the conclusions are underplayed in the paper.

  7. Pattern recognition technique

    NASA Technical Reports Server (NTRS)

    Hong, J. P.

    1971-01-01

    Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.

  8. Correlation of coastal water turbidity and current circulation with ERTS-1 and Skylab imagery

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Otley, M.; Philpot, W.; Wethe, C.; Rogers, R.; Shah, N.

    1974-01-01

    The article reviews investigations of current circulation patterns, suspended sediment concentration, coastal frontal systems, and waste disposal plumes based on visual interpretation and digital analysis of ERTS-1 and Skylab/EREP imagery. Data on conditions in the Delaware Bay area were obtained from 10 ERTS-1 passes and one Skylab pass, with simultaneous surface and airborne sensing. The current patterns and sediments observed by ERTS-1 correlated well with ground-based observations. Methods are suggested which would make it possible to identify certain pollutants and sediment types from multispectral scanner data.

  9. Dream content of Canadian males from adolescence to old age: An exploration of ontogenetic patterns.

    PubMed

    Dale, Allyson; Lafrenière, Alexandre; De Koninck, Joseph

    2017-03-01

    The present study was a first look at the ontogenetic pattern of dream content across the lifespan for men. The participants included 50 Canadian men in each of 5 age groups, from adolescence to old age including 12-17, 18-24, 25-39, 40-64, and 65-85. The last age group included 31 participants, totaling 231 males. One dream per participant was scored by two independent judges using content analysis. Trend analysis was used to determine the lifespan-developmental pattern of the dream content categories. Results demonstrated a predominance of aggressive dream imagery in the adolescent age group in line with social-developmental research. These patterns of dream imagery reflect the waking developmental patterns as proposed by social theories and recognized features of aging. Limitations and suggestions for future research, including the examining of the developmental pattern of gender differences across the lifespan, are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements

    PubMed Central

    2014-01-01

    Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the ability to control multiple DOFs simultaneously, they choose to perform tasks that utilize multiple DOFs with simultaneous movements. Additionally, they were able to perform these tasks with higher performance (faster speed, lower length error and higher completion rates) without losing substantial performance in 1 DOF tasks. PMID:24410948

  11. PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.

    2004-11-01

    Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

  12. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science

    NASA Technical Reports Server (NTRS)

    Steele, Colleen (Editor); Steele, Colleen; Ryan, William F.

    1995-01-01

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level course of the project and activities developed by the teachers. The publication was developed to provide teachers with a comprehensive approach to using satellite imagery to enhance science education. The teacher's guide is divided into topical chapters and enables teachers to expand their knowledge of the atmosphere, common weather patterns, and remote sensing. Topics include: weather systems and satellite imagery including mid-latitude weather systems; wave motion and the general circulation; cyclonic disturbances and baroclinic instability; clouds; additional common weather patterns; satellite images and the internet; environmental satellites; orbits; and ground station set-up. Activities are listed by suggested grade level and include the following topics: using weather symbols; forecasting the weather; cloud families and identification; classification of cloud types through infrared Automatic Picture Transmission (APT) imagery; comparison of visible and infrared imagery; cold fronts; to ski or not to ski (imagery as a decision making tool), infrared and visible satellite images; thunderstorms; looping satellite images; hurricanes; intertropical convergence zone; and using weather satellite images to enhance a study of the Chesapeake Bay. A list of resources is also included.

  13. Assessment of Southern California environment from ERTS-1

    NASA Technical Reports Server (NTRS)

    Bowden, L. W.; Viellenave, J. H.

    1973-01-01

    ERTS-1 imagery is a useful source of data for evaluation of earth resources in Southern California. The improving quality of ERTS-1 imagery, and our increasing ability to enhance the imagery has resulted in studies of a variety of phenomena in several Southern California environments. These investigations have produced several significant results of varying detail. They include the detection and identification of macro-scale tectonic and vegetational patterns, as well as detailed analysis of urban and agricultural processes. The sequential nature of ERTS-1 imagery has allowed these studies to monitor significant changes in the environment. In addiation, some preliminary work has begun directed toward assessing the impact of expanding recreation, agriculture and urbanization into the fragile desert environment. Refinement of enhancement and mapping techniques and more intensive analysis of ERTS-1 imagery should lead to a greater capability to extract detailed information for more precise evaluations and more accurate monitoring of earth resources in Southern California.

  14. Thermal study of the Missouri River in North Dakota using infrared imagery

    NASA Technical Reports Server (NTRS)

    Crosby, O. A.

    1971-01-01

    Studies of infrared imagery obtained from aircraft at 305- to 1,524-meter altitudes indicate the feasibility of monitoring thermal changes attributable to the operation of thermal electric plants and storage reservoirs, as well as natural phenomena such as tributary inflow and ground water seeps in large rivers. No identifiable sources of ground water inflow below the surface of the river could be found in the imagery. The thermal patterns from the generating plants and the major tributary inflow are readily apparent in imagery obtained from an altitude of 305 meters. Portions of the tape-recorded imagery were processed in a color-coded quantization to enhance the displays and to attach quantitative significance to the data. The study indicates a marked decrease in water temperature in the Missouri River prior to early fall and a moderate increase in temperature in late fall because of the Lake Sakakawea impoundment.

  15. On Assisting a Visual-Facial Affect Recognition System with Keyboard-Stroke Pattern Information

    NASA Astrophysics Data System (ADS)

    Stathopoulou, I.-O.; Alepis, E.; Tsihrintzis, G. A.; Virvou, M.

    Towards realizing a multimodal affect recognition system, we are considering the advantages of assisting a visual-facial expression recognition system with keyboard-stroke pattern information. Our work is based on the assumption that the visual-facial and keyboard modalities are complementary to each other and that their combination can significantly improve the accuracy in affective user models. Specifically, we present and discuss the development and evaluation process of two corresponding affect recognition subsystems, with emphasis on the recognition of 6 basic emotional states, namely happiness, sadness, surprise, anger and disgust as well as the emotion-less state which we refer to as neutral. We find that emotion recognition by the visual-facial modality can be aided greatly by keyboard-stroke pattern information and the combination of the two modalities can lead to better results towards building a multimodal affect recognition system.

  16. Basics of identification measurement technology

    NASA Astrophysics Data System (ADS)

    Klikushin, Yu N.; Kobenko, V. Yu; Stepanov, P. P.

    2018-01-01

    All available algorithms and suitable for pattern recognition do not give 100% guarantee, therefore there is a field of scientific night activity in this direction, studies are relevant. It is proposed to develop existing technologies for pattern recognition in the form of application of identification measurements. The purpose of the study is to identify the possibility of recognizing images using identification measurement technologies. In solving problems of pattern recognition, neural networks and hidden Markov models are mainly used. A fundamentally new approach to the solution of problems of pattern recognition based on the technology of identification signal measurements (IIS) is proposed. The essence of IIS technology is the quantitative evaluation of the shape of images using special tools and algorithms.

  17. A RESEARCH PLAN FOR THE USE OF THERMAL AVHRR IMAGERY TO STUDY ANNUAL AND SEASONAL MEAN SURFACE TEMPERATURES FOR LARGE LAKES IN NORTH AMERICA

    EPA Science Inventory

    Surface and vertical temperature data will be obtained from several large lakes With surface areas large enough to be effectively sampled with AVHRR imagery. Yearly and seasonal patterns of surface and whole water column thermal values will be compared to estimates of surface tem...

  18. Utilizing ERTS imagery to detect plant diseases and nutrient deficiencies, soil types and soil moisture levels

    NASA Technical Reports Server (NTRS)

    Parks, W. L. (Principal Investigator); Sewell, J. I.; Hilty, J. W.; Rennie, J. C.

    1973-01-01

    The author has identified the following significant results. The delineation of soil associations and detection of drainage patterns, erosion and sedimentation through the use of ERTS-1 imagery are shown. Corn blight and corn virus could not be detected from ERTS-1 and detection of forest composition was at a very low probability.

  19. Using the spatial and spectral precision of satellite imagery to predict wildlife occurrence patterns.

    Treesearch

    Edward J. Laurent; Haijin Shi; Demetrios Gatziolis; Joseph P. LeBouton; Michael B. Walters; Jianguo Liu

    2005-01-01

    We investigated the potential of using unclassified spectral data for predicting the distribution of three bird species over a -400,000 ha region of Michigan's Upper Peninsula using Landsat ETM+ imagery and 433 locations sampled for birds through point count surveys. These species, Black-throated Green Warbler, Nashville Warbler, and Ovenbird. were known to be...

  20. ERTS imagery applied to Alaskan coastal problems. [surface water circulation

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burbank, D. C.; Burns, J. J.

    1974-01-01

    Along the Alaska coast, surface water circulation is relatively easy to study with ERTS imagery. Highly turbid river water, sea ice, and fluvial ice have proven to be excellent tracers of the surface waters. Sea truth studies in the Gulf of Alaska, Cook Inlet, Bristol Bay, and the Bering Strait area have established the reliability of these tracers. ERTS imagery in the MSS 4 and 5 bands is particularly useful for observing lower concentrations of suspended sediment, while MSS 6 data is best for the most concentrated plumes. Ice features are most clearly seen on MSS 7 imagery; fracture patterns and the movement of specific floes can be used to map circulation in the winter when runoff is restricted, if appropriate allowance is made for wind influence. Current patterns interpreted from satellite data are only two-dimensional, but since most biological activity and pollution are concentrated near the surface, the information developed can be of direct utility. Details of Alaska inshore circulation of importance to coastal engineering, navigation, pollution studies, and fisheries development have been clarified with satellite data. ERTS has made possible the analysis of circulation in many parts of the Alaskan coast.

  1. Pattern recognition neural-net by spatial mapping of biology visual field

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  2. 33 CFR 106.215 - Company or OCS facility personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...

  3. 33 CFR 106.215 - Company or OCS facility personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...

  4. Facial expression recognition based on improved local ternary pattern and stacked auto-encoder

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Qiu, Weigen

    2017-08-01

    In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.

  5. Structure constrained semi-nonnegative matrix factorization for EEG-based motor imagery classification.

    PubMed

    Lu, Na; Li, Tengfei; Pan, Jinjin; Ren, Xiaodong; Feng, Zuren; Miao, Hongyu

    2015-05-01

    Electroencephalogram (EEG) provides a non-invasive approach to measure the electrical activities of brain neurons and has long been employed for the development of brain-computer interface (BCI). For this purpose, various patterns/features of EEG data need to be extracted and associated with specific events like cue-paced motor imagery. However, this is a challenging task since EEG data are usually non-stationary time series with a low signal-to-noise ratio. In this study, we propose a novel method, called structure constrained semi-nonnegative matrix factorization (SCS-NMF), to extract the key patterns of EEG data in time domain by imposing the mean envelopes of event-related potentials (ERPs) as constraints on the semi-NMF procedure. The proposed method is applicable to general EEG time series, and the extracted temporal features by SCS-NMF can also be combined with other features in frequency domain to improve the performance of motor imagery classification. Real data experiments have been performed using the SCS-NMF approach for motor imagery classification, and the results clearly suggest the superiority of the proposed method. Comparison experiments have also been conducted. The compared methods include ICA, PCA, Semi-NMF, Wavelets, EMD and CSP, which further verified the effectivity of SCS-NMF. The SCS-NMF method could obtain better or competitive performance over the state of the art methods, which provides a novel solution for brain pattern analysis from the perspective of structure constraint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A multi-scale analysis of landscape statistics

    Treesearch

    Douglas H. Cain; Kurt H. Riitters; Kenneth Orvis

    1997-01-01

    It is now feasible to monitor some aspects of landscape ecological condition nationwide using remotely- sensed imagery and indicators of land cover pattern. Previous research showed redundancies among many reported pattern indicators and identified six unique dimensions of land cover pattern. This study tested the stability of those dimensions and representative...

  7. Automated detection of slum area change in Hyderabad, India using multitemporal satellite imagery

    NASA Astrophysics Data System (ADS)

    Kit, Oleksandr; Lüdeke, Matthias

    2013-09-01

    This paper presents an approach to automated identification of slum area change patterns in Hyderabad, India, using multi-year and multi-sensor very high resolution satellite imagery. It relies upon a lacunarity-based slum detection algorithm, combined with Canny- and LSD-based imagery pre-processing routines. This method outputs plausible and spatially explicit slum locations for the whole urban agglomeration of Hyderabad in years 2003 and 2010. The results indicate a considerable growth of area occupied by slums between these years and allow identification of trends in slum development in this urban agglomeration.

  8. Radar systems for the water resources mission, volume 2

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources was examined. The function of spaceborne radar is to provide maps and map imagery to be used for earth resource and oceanographic applications. Spaceborne radar has the capability of mapping the entire United States regardless of inclement weather; however, the imagery must have a high degree of resolution to be meaningful. Attaining this resolution is possible with the SAR system. Imagery of the required quality must first meet mission parameters in the following areas: antenna patterns, azimuth and range ambiguities, coverage, and angle of incidence.

  9. ESARR: enhanced situational awareness via road sign recognition

    NASA Astrophysics Data System (ADS)

    Perlin, V. E.; Johnson, D. B.; Rohde, M. M.; Lupa, R. M.; Fiorani, G.; Mohammad, S.

    2010-04-01

    The enhanced situational awareness via road sign recognition (ESARR) system provides vehicle position estimates in the absence of GPS signal via automated processing of roadway fiducials (primarily directional road signs). Sign images are detected and extracted from vehicle-mounted camera system, and preprocessed and read via a custom optical character recognition (OCR) system specifically designed to cope with low quality input imagery. Vehicle motion and 3D scene geometry estimation enables efficient and robust sign detection with low false alarm rates. Multi-level text processing coupled with GIS database validation enables effective interpretation even of extremely low resolution low contrast sign images. In this paper, ESARR development progress will be reported on, including the design and architecture, image processing framework, localization methodologies, and results to date. Highlights of the real-time vehicle-based directional road-sign detection and interpretation system will be described along with the challenges and progress in overcoming them.

  10. Door recognition in cluttered building interiors using imagery and lidar data

    NASA Astrophysics Data System (ADS)

    Díaz-Vilariño, L.; Martínez-Sánchez, J.; Lagüela, S.; Armesto, J.; Khoshelham, K.

    2014-06-01

    Building indoors reconstruction is an active research topic due to the importance of the wide range of applications to which they can be subjected, from architecture and furniture design, to movies and video games editing, or even crime scene investigation. Among the constructive elements defining the inside of a building, doors are important entities in applications like routing and navigation, and their automated recognition is advantageous e.g. in case of large multi-storey buildings with many office rooms. The inherent complexity of the automation of the recognition process is increased by the presence of clutter and occlusions, difficult to avoid in indoor scenes. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors using information acquired in the form of point clouds and images. The methodology goes in depth with door detection and labelling as either opened, closed or furniture (false positive)

  11. Patterns recognition of electric brain activity using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  12. Theoretical Aspects of the Patterns Recognition Statistical Theory Used for Developing the Diagnosis Algorithms for Complicated Technical Systems

    NASA Astrophysics Data System (ADS)

    Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.

    2017-01-01

    In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.

  13. Stereotypes influence false memories for imagined events.

    PubMed

    Kleider, Heather M; Goldinger, Stephen D; Knuycky, Leslie

    2008-02-01

    Two experiments tested the influences of vivid imagery and person schemata on eyewitness accuracy. Participants watched an event sequence including actors performing stereotype-consistent and inconsistent actions. Additionally, participants either read descriptions of actions (Experiment 1) or vividly imagined actions (Experiment 2). After either 30 minutes or 2 days, recognition memory, source memory, and remember/know judgements were made. After 2 days, false alarms to imagined events increased, relative to the 30-minute test; those false alarms were more often misattributed to stereotype-consistent actors, relative to the same actions in the reading condition. In addition, the accompanying remember judgements were higher for false alarms to imagined events, relative to read events, regardless of stereotype consistency. Overall the results suggest that, over time, vivid imagery reinforces schema activation, increasing stereotype-consistent false memories.

  14. Motion-seeded object-based attention for dynamic visual imagery

    NASA Astrophysics Data System (ADS)

    Huber, David J.; Khosla, Deepak; Kim, Kyungnam

    2017-05-01

    This paper† describes a novel system that finds and segments "objects of interest" from dynamic imagery (video) that (1) processes each frame using an advanced motion algorithm that pulls out regions that exhibit anomalous motion, and (2) extracts the boundary of each object of interest using a biologically-inspired segmentation algorithm based on feature contours. The system uses a series of modular, parallel algorithms, which allows many complicated operations to be carried out by the system in a very short time, and can be used as a front-end to a larger system that includes object recognition and scene understanding modules. Using this method, we show 90% accuracy with fewer than 0.1 false positives per frame of video, which represents a significant improvement over detection using a baseline attention algorithm.

  15. ICPR-2016 - International Conference on Pattern Recognition

    Science.gov Websites

    Learning for Scene Understanding" Speakers ICPR2016 PAPER AWARDS Best Piero Zamperoni Student Paper -Paced Dictionary Learning for Cross-Domain Retrieval and Recognition Xu, Dan; Song, Jingkuan; Alameda discussions on recent advances in the fields of Pattern Recognition, Machine Learning and Computer Vision, and

  16. Dissociating early- and late-selection processes in recall: the mixed blessing of categorized study lists.

    PubMed

    Guzel, Mehmet A; Higham, Philip A

    2013-07-01

    Two experiments are reported in which we used type-2 signal detection theory to separate the effects of semantic categorization on early- and late-selection processes in free and cued recall. In Experiment 1, participants studied cue-target pairs for which the targets belonged to two, six, or 24 semantic categories, and later the participants were required to recall the targets either with (cued recall) or without (free recall) the studied cues. A confidence rating and a report decision were also required, so that we could compute both forced-report quantity and metacognitive resolution (type-2 discrimination), which served as our estimates of early- and late-selection processes, respectively. Consistent with prior research, having fewer categories enhanced the early-selection process (in performance, two > six > 24 categories). However, in contrast, the late-selection process was impaired (24 > six = two categories). In Experiment 2, encoding of paired associates, for which the targets belonged to either two or 20 semantic categories, was manipulated by having participants either form interactive images or engage in rote repetition. Having fewer categories again was associated with enhanced early selection (two > 20 categories); this effect was greater for rote repetition than for interactive imagery, and greater for free recall than for cued recall. However, late selection again showed the opposite pattern (20 > two categories), even with interactive-imagery encoding, which formed distinctive, individuated memory traces. The results are discussed in terms of early- and late-selection processes in retrieval, as well as overt versus covert recognition.

  17. From Ground Truth to Space: Surface, Subsurface and Remote Observations Associated with Nuclear Test Detection

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.

    2016-12-01

    Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.

  18. The Spatial Vision Tree: A Generic Pattern Recognition Engine- Scientific Foundations, Design Principles, and Preliminary Tree Design

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2010-01-01

    New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.

  19. The functional impact of mental imagery on conscious perception

    PubMed Central

    Pearson, Joel; Clifford, Colin; Tong, Frank

    2008-01-01

    Summary Mental imagery has been proposed to contribute to a variety of high-level cognitive functions, including memory encoding and retrieval, navigation and spatial planning, and even social communication and language comprehension [1–5]. However, it is debated whether mental imagery relies on the same sensory representations as perception [1, 6–10], and if so, what functional consequences such an overlap might have on perception itself. We report novel evidence that single instances of imagery can have a pronounced facilitatory influence on subsequent conscious perception. Either seeing or imagining a specific pattern could strongly bias which of two competing stimuli reach awareness during binocular rivalry. Effects of imagery and perception were location- and orientation-specific, accumulated in strength over time, and survived an intervening visual task lasting several seconds prior to presentation of the rivalry display. Interestingly, effects of imagery differed from those of feature-based attention. The results demonstrate that imagery, in the absence of any incoming visual signals, leads to the formation of a short-term sensory trace that can bias future perception, suggesting a means by which high-level processes that support imagination and memory retrieval may shape low-level sensory representations. PMID:18583132

  20. Hopfield's Model of Patterns Recognition and Laws of Artistic Perception

    NASA Astrophysics Data System (ADS)

    Yevin, Igor; Koblyakov, Alexander

    The model of patterns recognition or attractor network model of associative memory, offered by J.Hopfield 1982, is the most known model in theoretical neuroscience. This paper aims to show, that such well-known laws of art perception as the Wundt curve, perception of visual ambiguity in art, and also the model perception of musical tonalities are nothing else than special cases of the Hopfield’s model of patterns recognition.

  1. Computer discrimination procedures applicable to aerial and ERTS multispectral data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Torline, R. J.; Allen, W. A.

    1970-01-01

    Two statistical models are compared in the classification of crops recorded on color aerial photographs. A theory of error ellipses is applied to the pattern recognition problem. An elliptical boundary condition classification model (EBC), useful for recognition of candidate patterns, evolves out of error ellipse theory. The EBC model is compared with the minimum distance to the mean (MDM) classification model in terms of pattern recognition ability. The pattern recognition results of both models are interpreted graphically using scatter diagrams to represent measurement space. Measurement space, for this report, is determined by optical density measurements collected from Kodak Ektachrome Infrared Aero Film 8443 (EIR). The EBC model is shown to be a significant improvement over the MDM model.

  2. Sub-pattern based multi-manifold discriminant analysis for face recognition

    NASA Astrophysics Data System (ADS)

    Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen

    2018-04-01

    In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.

  3. Cortico-subcortical activation patterns for itch and pain imagery.

    PubMed

    Mochizuki, Hideki; Baumgärtner, Ulf; Kamping, Sandra; Ruttorf, Michaela; Schad, Lothar R; Flor, Herta; Kakigi, Ryusuke; Treede, Rolf-Detlef

    2013-10-01

    The imagery of itch and pain evokes emotional responses and covert motor responses (scratching to itch and withdrawal to pain). This suggests some similarity in cerebral mechanisms. However, itch is more socially contagious than pain, as evidenced by the fact that scratching behaviors can be easily initiated by watching itch-inducing situations, whereas withdrawal is less easily initiated by watching painful situations. Thus, we assumed that the cerebral mechanisms of itch imagery partly differ from those of pain imagery in particular with respect to motor regions. We addressed this issue in 18 healthy subjects using functional magnetic resonance imaging. The subjects were instructed to imagine itch and pain sensations in their own bodies while viewing pictures depicting stimuli associated with these sensations. Itch and pain imagery activated the anterior insular cortex (aIC) and motor-related regions such as supplementary motor area, basal ganglia, thalamus, and cerebellum. Activity in these regions was not significantly different between itch and pain imagery. However, functional connectivity between motor-related regions and the aIC showed marked differences between itch and pain imagery. Connectivity with the aIC was stronger in the primary motor and premotor cortices during pain imagery and stronger in the globus pallidus during itch imagery. These findings indicate that brain regions associated with imagery of itch are the same as those involved in imagery of pain, but their functional networks differ. These differences in brain networks may explain why motor responses to itch are more socially contagious than those related to pain. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  4. Recognition of the geologic framework of porphyry deposits on ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Wilson, J. C. (Principal Investigator); Camp, L. W.

    1973-01-01

    The author has identified the following significant results. Preliminary analysis of a mosaic composing 20 individual ERTS-1 frames that covers most of Nevada and western Utah reveals both new and old structural features. Three separate provinces, the Basin and Range, the southern extension of the Columbia River Plateau volcanics, and the western edge of the Colorado Plateau are easily distinguishable. A west-northwest cross or transverse structural trend, the Las Vegas Shear zone, is present in the region running from the Sierra Nevada to Lake Mead. The Sevier, Hurricane and Grand Wash faults that define the Wasateh-Jerome structural zone, can be traced further on the ERTS-1 imagery than on existing tectonic maps. By use of a stereo viewer on the side-lap coverage of ERTS-1 imagery, it is possible in some instances to determine the direction of sedimentary beds, enabling anticlines and synclines to be mapped. Other geologic features, faults, direction of throw on faults, recent basalt flow contacts with older rhyolitic tuffs, volcanic cones, and subsidences can also be mapped.

  5. Application of Geostatistical Simulation to Enhance Satellite Image Products

    NASA Technical Reports Server (NTRS)

    Hlavka, Christine A.; Dungan, Jennifer L.; Thirulanambi, Rajkumar; Roy, David

    2004-01-01

    With the deployment of Earth Observing System (EOS) satellites that provide daily, global imagery, there is increasing interest in defining the limitations of the data and derived products due to its coarse spatial resolution. Much of the detail, i.e. small fragments and notches in boundaries, is lost with coarse resolution imagery such as the EOS MODerate-Resolution Imaging Spectroradiometer (MODIS) data. Higher spatial resolution data such as the EOS Advanced Spaceborn Thermal Emission and Reflection Radiometer (ASTER), Landsat and airborne sensor imagery provide more detailed information but are less frequently available. There are, however, both theoretical and analytical evidence that burn scars and other fragmented types of land covers form self-similar or self-affine patterns, that is, patterns that look similar when viewed at widely differing spatial scales. Therefore small features of the patterns should be predictable, at least in a statistical sense, with knowledge about the large features. Recent developments in fractal modeling for characterizing the spatial distribution of undiscovered petroleum deposits are thus applicable to generating simulations of finer resolution satellite image products. We will present example EOS products, analysis to investigate self-similarity, and simulation results.

  6. Research on the feature extraction and pattern recognition of the distributed optical fiber sensing signal

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan

    2014-09-01

    In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.

  7. Accuracy of lineaments mapping from space

    NASA Technical Reports Server (NTRS)

    Short, Nicholas M.

    1989-01-01

    The use of Landsat and other space imaging systems for lineaments detection is analyzed in terms of their effectiveness in recognizing and mapping fractures and faults, and the results of several studies providing a quantitative assessment of lineaments mapping accuracies are discussed. The cases under investigation include a Landsat image of the surface overlying a part of the Anadarko Basin of Oklahoma, the Landsat images and selected radar imagery of major lineaments systems distributed over much of Canadian Shield, and space imagery covering a part of the East African Rift in Kenya. It is demonstrated that space imagery can detect a significant portion of a region's fracture pattern, however, significant fractions of faults and fractures recorded on a field-produced geological map are missing from the imagery as it is evident in the Kenya case.

  8. Choosing a DIVA: a comparison of emerging digital imagery vegetation analysis techniques

    USGS Publications Warehouse

    Jorgensen, Christopher F.; Stutzman, Ryan J.; Anderson, Lars C.; Decker, Suzanne E.; Powell, Larkin A.; Schacht, Walter H.; Fontaine, Joseph J.

    2013-01-01

    Question: What is the precision of five methods of measuring vegetation structure using ground-based digital imagery and processing techniques? Location: Lincoln, Nebraska, USA Methods: Vertical herbaceous cover was recorded using digital imagery techniques at two distinct locations in a mixed-grass prairie. The precision of five ground-based digital imagery vegetation analysis (DIVA) methods for measuring vegetation structure was tested using a split-split plot analysis of covariance. Variability within each DIVA technique was estimated using coefficient of variation of mean percentage cover. Results: Vertical herbaceous cover estimates differed among DIVA techniques. Additionally, environmental conditions affected the vertical vegetation obstruction estimates for certain digital imagery methods, while other techniques were more adept at handling various conditions. Overall, percentage vegetation cover values differed among techniques, but the precision of four of the five techniques was consistently high. Conclusions: DIVA procedures are sufficient for measuring various heights and densities of standing herbaceous cover. Moreover, digital imagery techniques can reduce measurement error associated with multiple observers' standing herbaceous cover estimates, allowing greater opportunity to detect patterns associated with vegetation structure.

  9. Caffeine cravings impair memory and metacognition.

    PubMed

    Palmer, Matthew A; Sauer, James D; Ling, Angus; Riza, Joshua

    2017-10-01

    Cravings for food and other substances can impair cognition. We extended previous research by testing the effects of caffeine cravings on cued-recall and recognition memory tasks, and on the accuracy of judgements of learning (JOLs; predicted future recall) and feeling-of-knowing (FOK; predicted future recognition for items that cannot be recalled). Participants (N = 55) studied word pairs (POND-BOOK) and completed a cued-recall test and a recognition test. Participants made JOLs prior to the cued-recall test and FOK judgements prior to the recognition test. Participants were randomly allocated to a craving or control condition; we manipulated caffeine cravings via a combination of abstinence, cue exposure, and imagery. Cravings impaired memory performance on the cued-recall and recognition tasks. Cravings also impaired resolution (the ability to distinguish items that would be remembered from those that would not) for FOK judgements but not JOLs, and reduced calibration (correspondence between predicted and actual accuracy) for JOLs but not FOK judgements. Additional analysis of the cued-recall data suggested that cravings also reduced participants' ability to monitor the likely accuracy of answers during the cued-recall test. These findings add to prior research demonstrating that memory strength manipulations have systematically different effects on different types of metacognitive judgements.

  10. Pattern association--a key to recognition of shark attacks.

    PubMed

    Cirillo, G; James, H

    2004-12-01

    Investigation of a number of shark attacks in South Australian waters has lead to recognition of pattern similarities on equipment recovered from the scene of such attacks. Six cases are presented in which a common pattern of striations has been noted.

  11. Electro-Optic Identification (EOID) Research Program

    DTIC Science & Technology

    2002-09-30

    The goal of this research is to provide computer-assisted identification of underwater mines in electro - optic imagery. Identification algorithms will...greatly reduce the time and risk to reacquire mine-like-objects for positive classification and identification. The objectives are to collect electro ... optic data under a wide range of operating and environmental conditions and develop precise algorithms that can provide accurate target recognition on this data for all possible conditions.

  12. Practice makes imperfect: Working memory training can harm recognition memory performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzen, Laura E.; Trumbo, Michael C.; Haass, Michael J.

    There is a great deal of debate concerning the benefits of working memory (WM) training and whether that training can transfer to other tasks. Although a consistent finding is that WM training programs elicit a short-term near-transfer effect (i.e., improvement in WM skills), results are inconsistent when considering persistence of such improvement and far transfer effects. In this study, we compared three groups of participants: a group that received WM training, a group that received training on how to use a mental imagery memory strategy, and a control group that received no training. Although the WM training group improved onmore » the trained task, their posttraining performance on nontrained WM tasks did not differ from that of the other two groups. In addition, although the imagery training group’s performance on a recognition memory task increased after training, the WM training group’s performance on the task decreased after training. Participants’ descriptions of the strategies they used to remember the studied items indicated that WM training may lead people to adopt memory strategies that are less effective for other types of memory tasks. Our results indicate that WM training may have unintended consequences for other types of memory performance.« less

  13. Real-time road detection in infrared imagery

    NASA Astrophysics Data System (ADS)

    Andre, Haritini E.; McCoy, Keith

    1990-09-01

    Automatic road detection is an important part in many scene recognition applications. The extraction of roads provides a means of navigation and position update for remotely piloted vehicles or autonomous vehicles. Roads supply strong contextual information which can be used to improve the performance of automatic target recognition (ATh) systems by directing the search for targets and adjusting target classification confidences. This paper will describe algorithmic techniques for labeling roads in high-resolution infrared imagery. In addition, realtime implementation of this structural approach using a processor array based on the Martin Marietta Geometric Arithmetic Parallel Processor (GAPPTh) chip will be addressed. The algorithm described is based on the hypothesis that a road consists of pairs of line segments separated by a distance "d" with opposite gradient directions (antiparallel). The general nature of the algorithm, in addition to its parallel implementation in a single instruction, multiple data (SIMD) machine, are improvements to existing work. The algorithm seeks to identify line segments meeting the road hypothesis in a manner that performs well, even when the side of the road is fragmented due to occlusion or intersections. The use of geometrical relationships between line segments is a powerful yet flexible method of road classification which is independent of orientation. In addition, this approach can be used to nominate other types of objects with minor parametric changes.

  14. Recognition vs Reverse Engineering in Boolean Concepts Learning

    ERIC Educational Resources Information Center

    Shafat, Gabriel; Levin, Ilya

    2012-01-01

    This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…

  15. Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.

    PubMed

    Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre

    2017-06-01

    We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.

  16. Finger vein recognition based on personalized weight maps.

    PubMed

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-09-10

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition.

  17. Finger Vein Recognition Based on Personalized Weight Maps

    PubMed Central

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-01-01

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition. PMID:24025556

  18. [Galaxy/quasar classification based on nearest neighbor method].

    PubMed

    Li, Xiang-Ru; Lu, Yu; Zhou, Jian-Ming; Wang, Yong-Jun

    2011-09-01

    With the wide application of high-quality CCD in celestial spectrum imagery and the implementation of many large sky survey programs (e. g., Sloan Digital Sky Survey (SDSS), Two-degree-Field Galaxy Redshift Survey (2dF), Spectroscopic Survey Telescope (SST), Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) program and Large Synoptic Survey Telescope (LSST) program, etc.), celestial observational data are coming into the world like torrential rain. Therefore, to utilize them effectively and fully, research on automated processing methods for celestial data is imperative. In the present work, we investigated how to recognizing galaxies and quasars from spectra based on nearest neighbor method. Galaxies and quasars are extragalactic objects, they are far away from earth, and their spectra are usually contaminated by various noise. Therefore, it is a typical problem to recognize these two types of spectra in automatic spectra classification. Furthermore, the utilized method, nearest neighbor, is one of the most typical, classic, mature algorithms in pattern recognition and data mining, and often is used as a benchmark in developing novel algorithm. For applicability in practice, it is shown that the recognition ratio of nearest neighbor method (NN) is comparable to the best results reported in the literature based on more complicated methods, and the superiority of NN is that this method does not need to be trained, which is useful in incremental learning and parallel computation in mass spectral data processing. In conclusion, the results in this work are helpful for studying galaxies and quasars spectra classification.

  19. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.

    PubMed

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-22

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  20. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    PubMed Central

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-01-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024

  1. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    NASA Astrophysics Data System (ADS)

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  2. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    USDA-ARS?s Scientific Manuscript database

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  3. Analysis and use of VAS satellite data

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.; Andrews, Mark J.; Beven, John L., II; Moore, Steven R.; Muller, Bradley M.

    1989-01-01

    Four interrelated investigations have examined the analysis and use of VAS satellite data. A case study of VAS-derived mesoscale stability parameters suggested that they would have been a useful supplement to conventional data in the forecasting of thunderstorms on the day of interest. A second investigation examined the roles of first guess and VAS radiometric data in producing sounding retrievals. Broad-scale patterns of the first guess, radiances, and retrievals frequently were similar, whereas small-scale retrieval features, especially in the dew points, were often of uncertain origin. Two research tasks considered 6.7 micron middle tropospheric water vapor imagery. The first utilized radiosonde data to examine causes for two areas of warm brightness temperature. Subsidence associated with a translating jet streak was important. The second task involving water vapor imagery investigated simulated imagery created from LAMPS output and a radiative transfer algorithm. Simulated image patterns were found to compare favorably with those actually observed by VAS. Furthermore, the mass/momentum fields from LAMPS were powerful tools for understanding causes for the image configurations.

  4. 33 CFR 104.210 - Company Security Officer (CSO).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...

  5. 33 CFR 104.210 - Company Security Officer (CSO).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...

  6. Infrared face recognition based on LBP histogram and KW feature selection

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2014-07-01

    The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).

  7. 2D DOST based local phase pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.

  8. Word attributes and lateralization revisited: implications for dual coding and discrete versus continuous processing.

    PubMed

    Boles, D B

    1989-01-01

    Three attributes of words are their imageability, concreteness, and familiarity. From a literature review and several experiments, I previously concluded (Boles, 1983a) that only familiarity affects the overall near-threshold recognition of words, and that none of the attributes affects right-visual-field superiority for word recognition. Here these conclusions are modified by two experiments demonstrating a critical mediating influence of intentional versus incidental memory instructions. In Experiment 1, subjects were instructed to remember the words they were shown, for subsequent recall. The results showed effects of both imageability and familiarity on overall recognition, as well as an effect of imageability on lateralization. In Experiment 2, word-memory instructions were deleted and the results essentially reinstated the findings of Boles (1983a). It is concluded that right-hemisphere imagery processes can participate in word recognition under intentional memory instructions. Within the dual coding theory (Paivio, 1971), the results argue that both discrete and continuous processing modes are available, that the modes can be used strategically, and that continuous processing can occur prior to response stages.

  9. A multidisciplinary study of earth resources imagery of Australia, Antarctica and Papua, New Guinea

    NASA Technical Reports Server (NTRS)

    Fisher, N. H. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. A thirteen category recognition map was prepared, showing forest, water, grassland, and exposed rock types. Preliminary assessment of classification accuracies showed that water, forest, meadow, and Niobrara shale were the most accurately mapped classes. Unsatisfactory results, were obtained in an attempt to discrimate sparse forest cover over different substrates. As base elevation varied from 7,000 to 13,000 ft, with an atmospheric visibility of 48 km, no changes in water and forest recognition were observed. Granodiorite recognition accuracy decreased monotonically as base elevation increased, even though the training set location was at 10,000 ft elevation. For snow varying in base elevation from 9400 to 8420 ft, recognition decreases from 99% at the 9400 ft training set elevation to 88% at 8420 ft. Calculations of expected radiance at the ERTS sensor from snow reflectance measured at the site and from Turner model calculations of irradiance, transmission and path radiance, reveal that snow signals should not be clipped, assuming that calculations and ERTS calibration constants were correct.

  10. A Novel Optical/digital Processing System for Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Boone, Bradley G.; Shukla, Oodaye B.

    1993-01-01

    This paper describes two processing algorithms that can be implemented optically: the Radon transform and angular correlation. These two algorithms can be combined in one optical processor to extract all the basic geometric and amplitude features from objects embedded in video imagery. We show that the internal amplitude structure of objects is recovered by the Radon transform, which is a well-known result, but, in addition, we show simulation results that calculate angular correlation, a simple but unique algorithm that extracts object boundaries from suitably threshold images from which length, width, area, aspect ratio, and orientation can be derived. In addition to circumventing scale and rotation distortions, these simulations indicate that the features derived from the angular correlation algorithm are relatively insensitive to tracking shifts and image noise. Some optical architecture concepts, including one based on micro-optical lenslet arrays, have been developed to implement these algorithms. Simulation test and evaluation using simple synthetic object data will be described, including results of a study that uses object boundaries (derivable from angular correlation) to classify simple objects using a neural network.

  11. Cloud cover analysis associated to cut-off low-pressure systems over Europe using Meteosat Imagery

    NASA Astrophysics Data System (ADS)

    Delgado, G.; Redaño, A.; Lorente, J.; Nieto, R.; Gimeno, L.; Ribera, P.; Barriopedro, D.; García-Herrera, R.; Serrano, A.

    2007-04-01

    This paper reports a cloud cover analysis of cut-off low pressure systems (COL) using a pattern recognition method applied to IR and VIS bispectral histograms. 35 COL occurrences were studied over five years (1994-1998). Five cloud types were identified in COLs, of which high clouds (HCC) and deep convective clouds (DCC) were found to be the most relevant to characterize COL systems, though not the most numerous. Cloud cover in a COL is highly dependent on its stage of development, but a higher percentage of cloud cover is always present in the frontal zone, attributable due to higher amounts of high and deep convective clouds. These general characteristics are most marked during the first stage (when the amplitude of the geopotencial wave increases) and second stage (characterized by the development of a cold upper level low), closed cyclonic circulation minimizing differences between rearward and frontal zones during the third stage. The probability of heavy rains during this stage decreases considerably. The centres of mass of high and deep convective clouds move towards the COL-axis centre during COL evolution.

  12. Optical Pattern Recognition for Missile Guidance.

    DTIC Science & Technology

    1982-11-15

    directed to novel pattern recognition algo- rithms (that allow pattern recognition and object classification in the face of various geometrical and...I wats EF5 = 50) p.j/t’ni 2 (for btith image pat tern recognitio itas a preproicessing oiperatiton. Ini devices). TIhe rt’ad light intensity (0.33t mW...electrodes on its large faces . This Priz light modulator and the motivation for its devel- SLM is known as the Prom (Pockels real-time optical opment. In Sec

  13. HCMM and LANDSAT imagery for geological mapping in northwest Queensland. [Australia

    NASA Technical Reports Server (NTRS)

    Cole, M. M.; Edmiston, D. J. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Photographic prints made from negatives of day-visible and day-IR cover of selected areas were compared with enhanced color composites generated from LANDSAT computer compatible tapes and films. For geological mapping purposes, HCMM imagery is of limited value. While large scale features like the Mikadoodi anticlinorium, contrasting lithological units, and major structures may be distinguished on day-visible and day-IR cover, the spectral bands are too broad and the resolution too coarse even for regional mapping purposes. The imagery appears to be most useful for drainage studies. Where drainage is seasonal, sequential imagery permits monitoring of broad scale water movement while the day-IR imagery yields valuable information on former channels. In plains areas subject to periodic change of stream courses, comparable IR cover at a larger scale would offer considerable potential for reconstruction of former drainage patterns essential for the correct interpretation of geochemical data relative to mineral exploration.

  14. Recognition as Support for Reasoning about Horizontal Motion: A Further Resource for School Science?

    ERIC Educational Resources Information Center

    Howe, Christine; Taylor Tavares, Joana; Devine, Amy

    2016-01-01

    Background: Even infants can recognize whether patterns of motion are or are not natural, yet an acknowledged challenge for science education is to promote adequate reasoning about such patterns. Since research indicates linkage between the conceptual bases of recognition and reasoning, it seems possible that recognition can be engaged to support…

  15. High-resolution satellite imagery is an important yet underutilized resource in conservation biology.

    PubMed

    Boyle, Sarah A; Kennedy, Christina M; Torres, Julio; Colman, Karen; Pérez-Estigarribia, Pastor E; de la Sancha, Noé U

    2014-01-01

    Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making.

  16. Analysis of optical imagery reveals regionally coherent slowdown in High Mountain Asia in response to glacier thinning

    NASA Astrophysics Data System (ADS)

    Dehecq, A.; Gardner, A. S.; Gourmelen, N.

    2016-12-01

    High Mountain Asia (HMA) glaciers play a key role in the hydrology of the region, impacting water resources. Studies focusing on HMA glaciers reveal contrasting patterns of change with rapid rates of retreat in Himalayas and near balance condition in the Karakorum, Pamir and Kunlun. Glaciers dynamics is a key variable to understand their future evolution and sensitivity to changes in atmospheric forcing. Several studies based on field measurements and remote sensing data have shown consistent slow-down of land terminating glaciers in response to ice thinning. While highly insightful, these studies have relied on the analysis of glacier velocities over small regions and/or a limited number of glaciers. Here we analyze changes in ice velocities for thousands of glaciers in HMA from optical satellite images. Applying feature-tracking algorithms to the entire Landsat 7 (SLC-ON) and 8 archives, we generated surface velocity fields over 90% of the HMA with an uncertainty of the order of 4 m/yr. The change in velocities over the last 15 years will be analyzed with reference to regional glacier elevation changes and topographic characteristics. We show that the first-order temporal evolution of glacier flow mirrors the pattern of glacier elevation changes. We observe a general decrease of ice velocity in regions of known ice mass loss, and a more complex patterns consisting of mixed acceleration and decrease of ice velocity in regions that are experiencing near-equilibrium conditions and exhibit surging behavior. To provide long-term context we analyze Landsat 4/5 to construct sparse historic velocities and Hexagon KH-9 mapping camera imagery to reconstruct historic elevations dating back as early as the 1970'. However, the older imagery is sparse due to limited downlink locations and bandwidth. In addition, sensor geometry and pointing knowledge are crude in comparison to modern imagery, imagery is often saturated (featureless) over bright snow and ice surface, and many images suffer from banding artifacts.

  17. 33 CFR 105.210 - Facility personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...

  18. 33 CFR 105.210 - Facility personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...

  19. Utilization of ERTS-1 data in North Carolina. [forested wetlands, water management, and land use

    NASA Technical Reports Server (NTRS)

    Welby, C. W. (Principal Investigator); Lammi, J. O.; Carson, R. J., III

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery has been used to study forested wetlands, dynamic processes off Coastal North Carolina, and land use patterns in the Wilmington, North Carolina area. The thrust of the investigation is still involvement of state and regional agencies in the use of ERTS-1 imagery in solving some of their day-to-day problems.

  20. Decoding the direction of imagined visual motion using 7 T ultra-high field fMRI

    PubMed Central

    Emmerling, Thomas C.; Zimmermann, Jan; Sorger, Bettina; Frost, Martin A.; Goebel, Rainer

    2016-01-01

    There is a long-standing debate about the neurocognitive implementation of mental imagery. One form of mental imagery is the imagery of visual motion, which is of interest due to its naturalistic and dynamic character. However, so far only the mere occurrence rather than the specific content of motion imagery was shown to be detectable. In the current study, the application of multi-voxel pattern analysis to high-resolution functional data of 12 subjects acquired with ultra-high field 7 T functional magnetic resonance imaging allowed us to show that imagery of visual motion can indeed activate the earliest levels of the visual hierarchy, but the extent thereof varies highly between subjects. Our approach enabled classification not only of complex imagery, but also of its actual contents, in that the direction of imagined motion out of four options was successfully identified in two thirds of the subjects and with accuracies of up to 91.3% in individual subjects. A searchlight analysis confirmed the local origin of decodable information in striate and extra-striate cortex. These high-accuracy findings not only shed new light on a central question in vision science on the constituents of mental imagery, but also show for the first time that the specific sub-categorical content of visual motion imagery is reliably decodable from brain imaging data on a single-subject level. PMID:26481673

  1. From The Cover: Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments

    NASA Astrophysics Data System (ADS)

    Sato, Ayuko; Iwasaki, Akiko

    2004-11-01

    Pattern recognition by Toll-like receptors (TLRs) is known to be important for the induction of dendritic cell (DC) maturation. DCs, in turn, are critically important in the initiation of T cell responses. However, most viruses do not infect DCs. This recognition system poses a biological problem in ensuring that most viral infections be detected by pattern recognition receptors. Furthermore, it is unknown what, if any, is the contribution of TLRs expressed by cells that are infected by a virus, versus TLRs expressed by DCs, in the initiation of antiviral adaptive immunity. Here we address these issues using a physiologically relevant model of mucosal infection with herpes simplex virus type 2. We demonstrate that innate immune recognition of viral infection occurs in two distinct stages, one at the level of the infected epithelial cells and the other at the level of the noninfected DCs. Importantly, both TLR-mediated recognition events are required for the induction of effector T cells. Our results demonstrate that virally infected tissues instruct DCs to initiate the appropriate class of effector T cell responses and reveal the critical importance of the stromal cells in detecting infectious agents through their own pattern recognition receptors. mucosal immunity | pattern recognition | viral infection

  2. [Mental Imagery: Neurophysiology and Implications in Psychiatry].

    PubMed

    Martínez, Nathalie Tamayo

    2014-03-01

    To provide an explanation about what mental imagery is and some implications in psychiatry. This article is a narrative literature review. There are many terms in which imagery representations are described in different fields of research. They are defined as perceptions in the absence of an external stimulus, and can be created in any sensory modality. Their neurophysiological substrate is almost the same as the one activated during sensory perception. There is no unified theory about its function, but it is possibly the way that our brain uses and manipulates the information to respond to the environment. Mental imagery is an everyday phenomenon, and when it occurs in specific patterns it can be a sign of mental disorders. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  3. Environmental study of ERTS-1 imagery Lake Champlain Basin and Vermont

    NASA Technical Reports Server (NTRS)

    Lind, A. O. (Principal Investigator)

    1972-01-01

    The author has idenfified the following significant results. A first approximation land-type map using three categories of classification was generated for the Burlington area. The identification and mapping of a major turbidity front separating turbid waters of the southern arm of Lake Champlain from the clearer main water mass was reported on RBV 1 and 2 imagery and on subsequent MSS bands 4 and 5. Significant industrial pollution of Lake Champlain has degraded environmental quality in certain sections of the lake. Wetlands were detected and recognized using a combination of RBV bands 2 and 3. Using first-look RBV band 2 imagery, major ice marginal features were identified by using tonal patterns associated with vegetative cover. Major rivers were detected and recognized through the use of RBV band 3 imagery and MSS bands 6 and 7.

  4. Vegetation changes caused by fire in the Florida flatwoods as observed by remote sensing

    NASA Technical Reports Server (NTRS)

    Mealor, W. T., Jr.; Prunty, M. C., Jr.

    1969-01-01

    The nature of the flatwoods and the role that ground fires have played in maintaining them are discussed. Emphasis is placed on the areal and temporal extent of burns as recorded uniformly by remote sensors. Thermal infrared, color infrared, and Ektachrome imagery were obtained from sensors flown by a NASA aircraft at 15,000 feet over a test site in Osceola County, Florida, in March 1968. The overall pattern of burning can be sequenced and mapped uniformly from the imagery. By comparing the various imagery, areal and temporal extent of burned areas can be determined. It was concluded that remote sensed imagery provides more accurate and areally comprehensive media for assessing the impact of ground fires on the landscape of the flatwoods region than are available from any other data source.

  5. A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines.

    PubMed

    Lu, Na; Li, Tengfei; Ren, Xiaodong; Miao, Hongyu

    2017-06-01

    Motor imagery classification is an important topic in brain-computer interface (BCI) research that enables the recognition of a subject's intension to, e.g., implement prosthesis control. The brain dynamics of motor imagery are usually measured by electroencephalography (EEG) as nonstationary time series of low signal-to-noise ratio. Although a variety of methods have been previously developed to learn EEG signal features, the deep learning idea has rarely been explored to generate new representation of EEG features and achieve further performance improvement for motor imagery classification. In this study, a novel deep learning scheme based on restricted Boltzmann machine (RBM) is proposed. Specifically, frequency domain representations of EEG signals obtained via fast Fourier transform (FFT) and wavelet package decomposition (WPD) are obtained to train three RBMs. These RBMs are then stacked up with an extra output layer to form a four-layer neural network, which is named the frequential deep belief network (FDBN). The output layer employs the softmax regression to accomplish the classification task. Also, the conjugate gradient method and backpropagation are used to fine tune the FDBN. Extensive and systematic experiments have been performed on public benchmark datasets, and the results show that the performance improvement of FDBN over other selected state-of-the-art methods is statistically significant. Also, several findings that may be of significant interest to the BCI community are presented in this article.

  6. System transfer modelling for automatic target recognizer evaluations

    NASA Astrophysics Data System (ADS)

    Clark, Lloyd G.

    1991-11-01

    Image processing to accomplish automatic recognition of military vehicles has promised increased weapons systems effectiveness and reduced timelines for a number of Department of Defense missions. Automatic Target Recognizers (ATR) are often claimed to be able to recognize many different ground vehicles as possible targets in military air-to- surface targeting applications. The targeting scenario conditions include different vehicle poses and histories as well as a variety of imaging geometries, intervening atmospheres, and background environments. Testing these ATR subsystems in most cases has been limited to a handful of the scenario conditions of interest, as is represented by imagery collected with the desired imaging sensor. The question naturally arises as to how robust the performance of the ATR is for all scenario conditions of interest, not just for the set of imagery upon which an algorithm was trained.

  7. Student Visual Communication of Evolution

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.; Cook, Kristin

    2017-06-01

    Despite growing recognition of the importance of visual representations to science education, previous research has given attention mostly to verbal modalities of evolution instruction. Visual aspects of classroom learning of evolution are yet to be systematically examined by science educators. The present study attends to this issue by exploring the types of evolutionary imagery deployed by secondary students. Our visual design analysis revealed that students resorted to two larger categories of images when visually communicating evolution: spatial metaphors (images that provided a spatio-temporal account of human evolution as a metaphorical "walk" across time and space) and symbolic representations ("icons of evolution" such as personal portraits of Charles Darwin that simply evoked evolutionary theory rather than metaphorically conveying its conceptual contents). It is argued that students need opportunities to collaboratively critique evolutionary imagery and to extend their visual perception of evolution beyond dominant images.

  8. Landsat applied to landslide mapping

    NASA Technical Reports Server (NTRS)

    Sauchyn, D. J.; Trench, N. R.

    1978-01-01

    A variety of features characteristic of rotational landslides may be identified on Landsat imagery. These include tonal mottling, tonal banding, major and secondary scarps, and ponds. Pseudostereoscopic viewing of 9 by 9 in. transparencies was useful for the detailed identification of landslides, whereas 1:250,000 prints enlarged from 70 mm negatives were most suitable for regional analysis. Band 7 is the most useful band for landslide recognition, due to accentuation of ponds and shadows. Examination of both bands 7 and 5, including vegetation information, was found to be most suitable. Although, given optimum terrain conditions, some landslides in Colorado may be recognized, many smaller landslides are not identifiable. Consequently, Landsat is not recommended for detailed regional mapping, or for use in areas similar to Colorado, where alternative (aircraft) imagery is available. However, Landsat may prove useful for preliminary landslide mapping in relatively unknown areas.

  9. Utilization of volume correlation filters for underwater mine identification in LIDAR imagery

    NASA Astrophysics Data System (ADS)

    Walls, Bradley

    2008-04-01

    Underwater mine identification persists as a critical technology pursued aggressively by the Navy for fleet protection. As such, new and improved techniques must continue to be developed in order to provide measurable increases in mine identification performance and noticeable reductions in false alarm rates. In this paper we show how recent advances in the Volume Correlation Filter (VCF) developed for ground based LIDAR systems can be adapted to identify targets in underwater LIDAR imagery. Current automated target recognition (ATR) algorithms for underwater mine identification employ spatial based three-dimensional (3D) shape fitting of models to LIDAR data to identify common mine shapes consisting of the box, cylinder, hemisphere, truncated cone, wedge, and annulus. VCFs provide a promising alternative to these spatial techniques by correlating 3D models against the 3D rendered LIDAR data.

  10. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  11. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    PubMed

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  12. Repetition and lag effects in movement recognition.

    PubMed

    Hall, C R; Buckolz, E

    1982-03-01

    Whether repetition and lag improve the recognition of movement patterns was investigated. Recognition memory was tested for one repetition, two-repetitions massed, and two-repetitions distributed with movement patterns at lags of 3, 5, 7, and 13. Recognition performance was examined both immediately afterwards and following a 48 hour delay. Both repetition and lag effects failed to be demonstrated, providing some support for the claim that memory is unaffected by repetition at a constant level of processing (Craik & Lockhart, 1972). There was, as expected, a significant decrease in recognition memory following the retention interval, but this appeared unrelated to repetition or lag.

  13. Dentate gyrus supports slope recognition memory, shades of grey-context pattern separation and recognition memory, and CA3 supports pattern completion for object memory.

    PubMed

    Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D

    2016-03-01

    In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats displayed a significant interaction between the two groups and the number of available objects suggesting impairment in a pattern completion function for object cues. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Imagining sex and adapting to it: different aftereffects after perceiving versus imagining faces.

    PubMed

    D'Ascenzo, Stefania; Tommasi, Luca; Laeng, Bruno

    2014-03-01

    A prolonged exposure (i.e., perceptual adaptation) to a male or a female face can produce changes (i.e., aftereffects) in the subsequent gender attribution of a neutral or average face, so that it appears respectively more female or more male. Studies using imagery adaptation and its aftereffects have yielded conflicting results. In the present study we used an adaptation paradigm with both imagined and perceived faces as adaptors, and assessed the aftereffects in judged masculinity/femininity when viewing an androgynous test face. We monitored eye movements and pupillary responses as a way to confirm whether participants did actively engage in visual imagery. The results indicated that both perceptual and imagery adaptation produce aftereffects, but that they run in opposite directions: a contrast effect with perception (e.g., after visual exposure to a female face, the androgynous appears as more male) and an assimilation effect with imagery (e.g., after imaginative exposure to a female face, the androgynous face appears as more female). The pupillary responses revealed dilations consistent with increased cognitive effort during the imagery phase, suggesting that the assimilation aftereffect occurred in the presence of an active and effortful mental imagery process, as also witnessed by the pattern of eye movements recorded during the imagery adaptation phase. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    PubMed Central

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-01-01

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. PMID:29172273

  16. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    PubMed

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-11-26

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. Creative Commons Attribution License

  17. Relating Change Patterns to Anthropogenic Processes to Assess Sustainability: A Case Study in Amazonia

    Treesearch

    Libia Patricia Peralta Agudelo

    2006-01-01

    This work focuses on identifying deforestation patterns and relating these to social processes in an extractive reserve of Acre (western Amazonia). Using multitemporal satellite imagery deforestation is observed as a series of distinctive patches against the background of forest cover. The study of patterns emphasizes the important relationships existing between...

  18. Characterizing Feature Matching Performance Over Long Time Periods (Author’s Manuscript)

    DTIC Science & Technology

    2015-01-05

    older imagery. These applications, including approaches to geo-location, geo- orientation [13], geo-tagging [16], landmark recognition [23], image... orientation between features is less than 10 degrees. We calculate the percent of features from the reference image that fit into each of these three...always because the key point detection algorithm did not find feature points at the same locations and orientation . 5. Conclusions In this paper, we offer

  19. Solution NMR studies provide structural basis for endotoxin pattern recognition by the innate immune receptor CD14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, Seth; Chen Bin; Holbrook, Kristen

    CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a {sup 15}N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern ofmore » residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site.« less

  20. Joint object and action recognition via fusion of partially observable surveillance imagery data

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Chan, Alex L.

    2017-05-01

    Partially observable group activities (POGA) occurring in confined spaces are epitomized by their limited observability of the objects and actions involved. In many POGA scenarios, different objects are being used by human operators for the conduct of various operations. In this paper, we describe the ontology of such as POGA in the context of In-Vehicle Group Activity (IVGA) recognition. Initially, we describe the virtue of ontology modeling in the context of IVGA and show how such an ontology and a priori knowledge about the classes of in-vehicle activities can be fused for inference of human actions that consequentially leads to understanding of human activity inside the confined space of a vehicle. In this paper, we treat the problem of "action-object" as a duality problem. We postulate a correlation between observed human actions and the object that is being utilized within those actions, and conversely, if an object being handled is recognized, we may be able to expect a number of actions that are likely to be performed on that object. In this study, we use partially observable human postural sequences to recognition actions. Inspired by convolutional neural networks (CNNs) learning capability, we present an architecture design using a new CNN model to learn "action-object" perception from surveillance videos. In this study, we apply a sequential Deep Hidden Markov Model (DHMM) as a post-processor to CNN to decode realized observations into recognized actions and activities. To generate the needed imagery data set for the training and testing of these new methods, we use the IRIS virtual simulation software to generate high-fidelity and dynamic animated scenarios that depict in-vehicle group activities under different operational contexts. The results of our comparative investigation are discussed and presented in detail.

  1. Forecasting of hourly load by pattern recognition in a small area power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehdashti-Shahrokh, A.

    1982-01-01

    An intuitive, logical, simple and efficient method of forecasting hourly load in a small area power system is presented. A pattern recognition approach is used in developing the forecasting model. Pattern recognition techniques are powerful tools in the field of artificial intelligence (cybernetics) and simulate the way the human brain operates to make decisions. Pattern recognition is generally used in analysis of processes where the total physical nature behind the process variation is unkown but specific kinds of measurements explain their behavior. In this research basic multivariate analyses, in conjunction with pattern recognition techniques, are used to develop a linearmore » deterministic model to forecast hourly load. This method assumes that load patterns in the same geographical area are direct results of climatological changes (weather sensitive load), and have occurred in the past as a result of similar climatic conditions. The algorithm described in here searches for the best possible pattern from a seasonal library of load and weather data in forecasting hourly load. To accommodate the unpredictability of weather and the resulting load, the basic twenty-four load pattern was divided into eight three-hour intervals. This division was made to make the model adaptive to sudden climatic changes. The proposed method offers flexible lead times of one to twenty-four hours. The results of actual data testing had indicated that this proposed method is computationally efficient, highly adaptive, with acceptable data storage size and accuracy that is comparable to many other existing methods.« less

  2. Optical character recognition based on nonredundant correlation measurements.

    PubMed

    Braunecker, B; Hauck, R; Lohmann, A W

    1979-08-15

    The essence of character recognition is a comparison between the unknown character and a set of reference patterns. Usually, these reference patterns are all possible characters themselves, the whole alphabet in the case of letter characters. Obviously, N analog measurements are highly redundant, since only K = log(2)N binary decisions are enough to identify one out of N characters. Therefore, we devised K reference patterns accordingly. These patterns, called principal components, are found by digital image processing, but used in an optical analog computer. We will explain the concept of principal components, and we will describe experiments with several optical character recognition systems, based on this concept.

  3. Self-organizing neural network models for visual pattern recognition.

    PubMed

    Fukushima, K

    1987-01-01

    Two neural network models for visual pattern recognition are discussed. The first model, called a "neocognitron", is a hierarchical multilayered network which has only afferent synaptic connections. It can acquire the ability to recognize patterns by "learning-without-a-teacher": the repeated presentation of a set of training patterns is sufficient, and no information about the categories of the patterns is necessary. The cells of the highest stage eventually become "gnostic cells", whose response shows the final result of the pattern-recognition of the network. Pattern recognition is performed on the basis of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in the position of the stimulus pattern. The second model has not only afferent but also efferent synaptic connections, and is endowed with the function of selective attention. The afferent and the efferent signals interact with each other in the hierarchical network: the efferent signals, that is, the signals for selective attention, have a facilitating effect on the afferent signals, and at the same time, the afferent signals gate efferent signal flow. When a complex figure, consisting of two patterns or more, is presented to the model, it is segmented into individual patterns, and each pattern is recognized separately. Even if one of the patterns to which the models is paying selective attention is affected by noise or defects, the model can "recall" the complete pattern from which the noise has been eliminated and the defects corrected.

  4. Progressively expanded neural network for automatic material identification in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Paheding, Sidike

    The science of hyperspectral remote sensing focuses on the exploitation of the spectral signatures of various materials to enhance capabilities including object detection, recognition, and material characterization. Hyperspectral imagery (HSI) has been extensively used for object detection and identification applications since it provides plenty of spectral information to uniquely identify materials by their reflectance spectra. HSI-based object detection algorithms can be generally classified into stochastic and deterministic approaches. Deterministic approaches are comparatively simple to apply since it is usually based on direct spectral similarity such as spectral angles or spectral correlation. In contrast, stochastic algorithms require statistical modeling and estimation for target class and non-target class. Over the decades, many single class object detection methods have been proposed in the literature, however, deterministic multiclass object detection in HSI has not been explored. In this work, we propose a deterministic multiclass object detection scheme, named class-associative spectral fringe-adjusted joint transform correlation. Human brain is capable of simultaneously processing high volumes of multi-modal data received every second of the day. In contrast, a machine sees input data simply as random binary numbers. Although machines are computationally efficient, they are inferior when comes to data abstraction and interpretation. Thus, mimicking the learning strength of human brain has been current trend in artificial intelligence. In this work, we present a biological inspired neural network, named progressively expanded neural network (PEN Net), based on nonlinear transformation of input neurons to a feature space for better pattern differentiation. In PEN Net, discrete fixed excitations are disassembled and scattered in the feature space as a nonlinear line. Each disassembled element on the line corresponds to a pattern with similar features. Unlike the conventional neural network where hidden neurons need to be iteratively adjusted to achieve better accuracy, our proposed PEN Net does not require hidden neurons tuning which achieves better computational efficiency, and it has also shown superior performance in HSI classification tasks compared to the state-of-the-arts. Spectral-spatial features based HSI classification framework has shown stronger strength compared to spectral-only based methods. In our lastly proposed technique, PEN Net is incorporated with multiscale spatial features (i.e., multiscale complete local binary pattern) to perform a spectral-spatial classification of HSI. Several experiments demonstrate excellent performance of our proposed technique compared to the more recent developed approaches.

  5. Temporal coding of brain patterns for direct limb control in humans.

    PubMed

    Müller-Putz, Gernot R; Scherer, Reinhold; Pfurtscheller, Gert; Neuper, Christa

    2010-01-01

    For individuals with a high spinal cord injury (SCI) not only the lower limbs, but also the upper extremities are paralyzed. A neuroprosthesis can be used to restore the lost hand and arm function in those tetraplegics. The main problem for this group of individuals, however, is the reduced ability to voluntarily operate device controllers. A brain-computer interface provides a non-manual alternative to conventional input devices by translating brain activity patterns into control commands. We show that the temporal coding of individual mental imagery pattern can be used to control two independent degrees of freedom - grasp and elbow function - of an artificial robotic arm by utilizing a minimum number of EEG scalp electrodes. We describe the procedure from the initial screening to the final application. From eight naïve subjects participating online feedback experiments, four were able to voluntarily control an artificial arm by inducing one motor imagery pattern derived from one EEG derivation only.

  6. California coast nearshore processes study. [nearshore currents, sediment transport, estuaries, and river discharge

    NASA Technical Reports Server (NTRS)

    Pirie, D. M.; Steller, D. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Large scale sediment plumes from intermittent streams and rivers form detectable seasonal patterns on ERTS-1 imagery. The ocean current systems, as plotted from three California coast ERTS mosaics, were identified. Offshore patterns of sediment in areas such as the Santa Barbara Channel are traceable. These patterns extend offshore to heretofore unanticipated ranges as shown on the ERTS-1 imagery. Flying spot scanner enhancements of NASA tapes resulted in details of subtle and often invisible (to the eye) nearshore features. The suspended sediments off San Francisco and in Monterey Bay are emphasized in detail. These are areas of extremely changeable offshore sediment transport patterns. Computer generated contouring of radiance levels resulted in maps that can be used in determining surface and nearsurface suspended sediment distribution. Tentative calibrations of ERTS-1 spectral brightness against sediment load have been made using shipboard measurements. Information from the combined enhancement and interpretation techniques is applicable to operational coastal engineering programs.

  7. Effect of physical workload and modality of information presentation on pattern recognition and navigation task performance by high-fit young males.

    PubMed

    Zahabi, Maryam; Zhang, Wenjuan; Pankok, Carl; Lau, Mei Ying; Shirley, James; Kaber, David

    2017-11-01

    Many occupations require both physical exertion and cognitive task performance. Knowledge of any interaction between physical demands and modalities of cognitive task information presentation can provide a basis for optimising performance. This study examined the effect of physical exertion and modality of information presentation on pattern recognition and navigation-related information processing. Results indicated males of equivalent high fitness, between the ages of 18 and 34, rely more on visual cues vs auditory or haptic for pattern recognition when exertion level is high. We found that navigation response time was shorter under low and medium exertion levels as compared to high intensity. Navigation accuracy was lower under high level exertion compared to medium and low levels. In general, findings indicated that use of the haptic modality for cognitive task cueing decreased accuracy in pattern recognition responses. Practitioner Summary: An examination was conducted on the effect of physical exertion and information presentation modality in pattern recognition and navigation. In occupations requiring information presentation to workers, who are simultaneously performing a physical task, the visual modality appears most effective under high level exertion while haptic cueing degrades performance.

  8. A strip chart recorder pattern recognition tool kit for Shuttle operations

    NASA Technical Reports Server (NTRS)

    Hammen, David G.; Moebes, Travis A.; Shelton, Robert O.; Savely, Robert T.

    1993-01-01

    During Space Shuttle operations, Mission Control personnel monitor numerous mission-critical systems such as electrical power; guidance, navigation, and control; and propulsion by means of paper strip chart recorders. For example, electrical power controllers monitor strip chart recorder pen traces to identify onboard electrical equipment activations and deactivations. Recent developments in pattern recognition technologies coupled with new capabilities that distribute real-time Shuttle telemetry data to engineering workstations make it possible to develop computer applications that perform some of the low-level monitoring now performed by controllers. The number of opportunities for such applications suggests a need to build a pattern recognition tool kit to reduce software development effort through software reuse. We are building pattern recognition applications while keeping such a tool kit in mind. We demonstrated the initial prototype application, which identifies electrical equipment activations, during three recent Shuttle flights. This prototype was developed to test the viability of the basic system architecture, to evaluate the performance of several pattern recognition techniques including those based on cross-correlation, neural networks, and statistical methods, to understand the interplay between an advanced automation application and human controllers to enhance utility, and to identify capabilities needed in a more general-purpose tool kit.

  9. Automatic Association of Chats and Video Tracks for Activity Learning and Recognition in Aerial Video Surveillance

    PubMed Central

    Hammoud, Riad I.; Sahin, Cem S.; Blasch, Erik P.; Rhodes, Bradley J.; Wang, Tao

    2014-01-01

    We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA) and multi-media indexing and explorer (MINER). VIVA utilizes analyst call-outs (ACOs) in the form of chat messages (voice-to-text) to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1) a fusion of graphical track and text data using probabilistic methods; (2) an activity pattern learning framework to support querying an index of activities of interest (AOIs) and targets of interest (TOIs) by movement type and geolocation; and (3) a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV). VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports. PMID:25340453

  10. Automatic association of chats and video tracks for activity learning and recognition in aerial video surveillance.

    PubMed

    Hammoud, Riad I; Sahin, Cem S; Blasch, Erik P; Rhodes, Bradley J; Wang, Tao

    2014-10-22

    We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA) and multi-media indexing and explorer (MINER). VIVA utilizes analyst call-outs (ACOs) in the form of chat messages (voice-to-text) to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1) a fusion of graphical track and text data using probabilistic methods; (2) an activity pattern learning framework to support querying an index of activities of interest (AOIs) and targets of interest (TOIs) by movement type and geolocation; and (3) a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV). VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat Sensors 2014, 14 19844 messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports.

  11. A dynamical pattern recognition model of gamma activity in auditory cortex

    PubMed Central

    Zavaglia, M.; Canolty, R.T.; Schofield, T.M.; Leff, A.P.; Ursino, M.; Knight, R.T.; Penny, W.D.

    2012-01-01

    This paper describes a dynamical process which serves both as a model of temporal pattern recognition in the brain and as a forward model of neuroimaging data. This process is considered at two separate levels of analysis: the algorithmic and implementation levels. At an algorithmic level, recognition is based on the use of Occurrence Time features. Using a speech digit database we show that for noisy recognition environments, these features rival standard cepstral coefficient features. At an implementation level, the model is defined using a Weakly Coupled Oscillator (WCO) framework and uses a transient synchronization mechanism to signal a recognition event. In a second set of experiments, we use the strength of the synchronization event to predict the high gamma (75–150 Hz) activity produced by the brain in response to word versus non-word stimuli. Quantitative model fits allow us to make inferences about parameters governing pattern recognition dynamics in the brain. PMID:22327049

  12. Visual cluster analysis and pattern recognition methods

    DOEpatents

    Osbourn, Gordon Cecil; Martinez, Rubel Francisco

    2001-01-01

    A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.

  13. Proceedings of the NASA/MPRIA Workshop: Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1983-01-01

    Outlines of talks presented at the workshop conducted at Texas A & M University on February 3 and 4, 1983 are presented. Emphasis was given to the application of Mathematics to image processing and pattern recognition.

  14. Using pattern recognition as a method for predicting extreme events in natural and socio-economic systems

    NASA Astrophysics Data System (ADS)

    Intriligator, M.

    2011-12-01

    Vladimir (Volodya) Keilis-Borok has pioneered the use of pattern recognition as a technique for analyzing and forecasting developments in natural as well as socio-economic systems. Keilis-Borok's work on predicting earthquakes and landslides using this technique as a leading geophysicist has been recognized around the world. Keilis-Borok has also been a world leader in the application of pattern recognition techniques to the analysis and prediction of socio-economic systems. He worked with Allan Lichtman of American University in using such techniques to predict presidential elections in the U.S. Keilis-Borok and I have worked together with others on the use of pattern recognition techniques to analyze and to predict socio-economic systems. We have used this technique to study the pattern of macroeconomic indicators that would predict the end of an economic recession in the U.S. We have also worked with officers in the Los Angeles Police Department to use this technique to predict surges of homicides in Los Angeles.

  15. Running Improves Pattern Separation during Novel Object Recognition.

    PubMed

    Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef

    2015-10-09

    Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.

  16. A Compact Prototype of an Optical Pattern Recognition System

    NASA Technical Reports Server (NTRS)

    Jin, Y.; Liu, H. K.; Marzwell, N. I.

    1996-01-01

    In the Technology 2006 Case Studies/Success Stories presentation, we will describe and demonstrate a prototype of a compact optical pattern recognition system as an example of a successful technology transfer and continuuing development of state-of-the-art know-how by the close collaboration among government, academia, and small business via the NASA SBIR program. The prototype consists of a complete set of optical pattern recognition hardware with multi-channel storage and retrieval capability that is compactly configured inside a portable 1'X 2'X 3' aluminum case.

  17. Structural geology of the African rift system: Summary of new data from ERTS-1 imagery. [Precambrian influence

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.

    1974-01-01

    ERTS imagery reveals for the first time the structural pattern of the African rift system as a whole. The strong influence of Precambrian structures on this pattern is clearly evident, especially along zones of cataclastic deformation, but the rift pattern is seen to be ultimately independent in origin and nature from Precambrian tectonism. Continuity of rift structures from one swell to another is noted. The widening of the Gregory rift as its northern end reflects an underlying Precambrian structural divergence, and is not a consequence of reaching the swell margin. Although the Western Rift is now proven to terminate at the Aswa Mylonite Zone, in southern Sudan, lineaments extend northeastwards from Lake Albert to the Eastern Rift at Lake Stefanie. The importance of en-echelon structures in the African rifts is seen to have been exaggerated.

  18. Visual cluster analysis and pattern recognition template and methods

    DOEpatents

    Osbourn, Gordon Cecil; Martinez, Rubel Francisco

    1999-01-01

    A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.

  19. Photonic correlator pattern recognition: Application to autonomous docking

    NASA Technical Reports Server (NTRS)

    Sjolander, Gary W.

    1991-01-01

    Optical correlators for real-time automatic pattern recognition applications have recently become feasible due to advances in high speed devices and filter formulation concepts. The devices are discussed in the context of their use in autonomous docking.

  20. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  1. Trial-by-trial adaptation of movements during mental practice under force field.

    PubMed

    Anwar, Muhammad Nabeel; Khan, Salman Hameed

    2013-01-01

    Human nervous system tries to minimize the effect of any external perturbing force by bringing modifications in the internal model. These modifications affect the subsequent motor commands generated by the nervous system. Adaptive compensation along with the appropriate modifications of internal model helps in reducing human movement errors. In the current study, we studied how motor imagery influences trial-to-trial learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent force field. The results show that reaching movements performed with motor imagery have relatively a more focused generalization pattern and a higher learning rate in training direction.

  2. Application of EREP imagery to fracture-related mine safety hazards in coal mining and mining-environmental problems in Indiana. [Indiana and Illinois

    NASA Technical Reports Server (NTRS)

    Wier, C. E. (Principal Investigator); Powell, R. L.; Amato, R. V.; Russell, O. R.; Martin, K. R.

    1975-01-01

    The author has identified the following significant results. This investigation evaluated the applicability of a variety of sensor types, formats, and resolution capabilities to the study of both fuel and nonfuel mined lands. The image reinforcement provided by stereo viewing of the EREP images proved useful for identifying lineaments and for mined lands mapping. Skylab S190B color and color infrared transparencies were the most useful EREP imagery. New information on lineament and fracture patterns in the bedrock of Indiana and Illinois extracted from analysis of the Skylab imagery has contributed to furthering the geological understanding of this portion of the Illinois basin.

  3. A summary of selected early results from the ERTS-1 menhaden experiment

    NASA Technical Reports Server (NTRS)

    Stevenson, W. H. (Principal Investigator); Kemmerer, A. J.; Benigno, J. A.; Reese, G. B.; Minkler, F. C.

    1973-01-01

    The author has identified the following significant results. Imagery from ERTS-1 satellite was used in conjunction with aerial photographically-sensed menhaden distribution information, sea truth oceanographic measurements, and commercial fishing information from a 8685 square kilometer study area in the north-central portion of the Gulf of Mexico to demonstrate relationships between selected oceanographic parameters and menhaden distribution, ERTS-1 imagery and menhaden distribution, and ERTS-1 imagery and oceanographic parameters. ERTS-1, MSS band 5 imagery density levels correlated with photographically detected menhaden distribution patterns and could be explained based on sea truth Secchi disc transparency and water depth measurements. These two parameters, together with surface salinity, Forel-Ule color, and chlorophyll-a also were found to correlate significantly with menhaden distribution. Eight empirical models were developed which provided menhaden distribution predictions for the study area on combinations of Secchi disc transparency, water depth, surface salinity, and Forel-Ule color measurements.

  4. Analysis of EEG signals related to artists and nonartists during visual perception, mental imagery, and rest using approximate entropy.

    PubMed

    Shourie, Nasrin; Firoozabadi, Mohammad; Badie, Kambiz

    2014-01-01

    In this paper, differences between multichannel EEG signals of artists and nonartists were analyzed during visual perception and mental imagery of some paintings and at resting condition using approximate entropy (ApEn). It was found that ApEn is significantly higher for artists during the visual perception and the mental imagery in the frontal lobe, suggesting that artists process more information during these conditions. It was also observed that ApEn decreases for the two groups during the visual perception due to increasing mental load; however, their variation patterns are different. This difference may be used for measuring progress in novice artists. In addition, it was found that ApEn is significantly lower during the visual perception than the mental imagery in some of the channels, suggesting that visual perception task requires more cerebral efforts.

  5. The application of airborne imaging radars (L and X-band) to earth resources problems

    NASA Technical Reports Server (NTRS)

    Drake, B.; Shuchman, R. A.; Bryan, M. L.; Larson, R. W.; Liskow, C. L.; Rendleman, R. A.

    1974-01-01

    A multiplexed synthetic aperture Side-Looking Airborne Radar (SLAR) that simultaneously images the terrain with X-band (3.2 cm) and L-band (23.0 cm) radar wavelengths was developed. The Feasibility of using multiplexed SLAR to obtain useful information for earth resources purposes. The SLAR imagery, aerial photographs, and infrared imagery are examined to determine the qualitative tone and texture of many rural land-use features imaged. The results show that: (1) Neither X- nor L-band SLAR at moderate and low depression angles can directly or indirectly detect pools of water under standing vegetation. (2) Many of the urban and rural land-use categories present in the test areas can be identified and mapped on the multiplexed SLAR imagery. (3) Water resources management can be done using multiplexed SLAR. (4) Drainage patterns can be determined on both the X- and L-band imagery.

  6. A neuromorphic approach to satellite image understanding

    NASA Astrophysics Data System (ADS)

    Partsinevelos, Panagiotis; Perakakis, Manolis

    2014-05-01

    Remote sensing satellite imagery provides high altitude, top viewing aspects of large geographic regions and as such the depicted features are not always easily recognizable. Nevertheless, geoscientists familiar to remote sensing data, gradually gain experience and enhance their satellite image interpretation skills. The aim of this study is to devise a novel computational neuro-centered classification approach for feature extraction and image understanding. Object recognition through image processing practices is related to a series of known image/feature based attributes including size, shape, association, texture, etc. The objective of the study is to weight these attribute values towards the enhancement of feature recognition. The key cognitive experimentation concern is to define the point when a user recognizes a feature as it varies in terms of the above mentioned attributes and relate it with their corresponding values. Towards this end, we have set up an experimentation methodology that utilizes cognitive data from brain signals (EEG) and eye gaze data (eye tracking) of subjects watching satellite images of varying attributes; this allows the collection of rich real-time data that will be used for designing the image classifier. Since the data are already labeled by users (using an input device) a first step is to compare the performance of various machine-learning algorithms on the collected data. On the long-run, the aim of this work would be to investigate the automatic classification of unlabeled images (unsupervised learning) based purely on image attributes. The outcome of this innovative process is twofold: First, in an abundance of remote sensing image datasets we may define the essential image specifications in order to collect the appropriate data for each application and improve processing and resource efficiency. E.g. for a fault extraction application in a given scale a medium resolution 4-band image, may be more effective than costly, multispectral, very high resolution imagery. Second, we attempt to relate the experienced against the non-experienced user understanding in order to indirectly assess the possible limits of purely computational systems. In other words, obtain the conceptual limits of computation vs human cognition concerning feature recognition from satellite imagery. Preliminary results of this pilot study show relations between collected data and differentiation of the image attributes which indicates that our methodology can lead to important results.

  7. Finger Vein Recognition Based on a Personalized Best Bit Map

    PubMed Central

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735

  8. Finger vein recognition based on a personalized best bit map.

    PubMed

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition.

  9. Large-memory real-time multichannel multiplexed pattern recognition

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Liu, H. K.

    1984-01-01

    The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.

  10. Transition from lab to flight demo for model-based FLIR ATR and SAR-FLIR fusion

    NASA Astrophysics Data System (ADS)

    Childs, Martin B.; Carlson, Karen M.; Pujara, Neeraj

    2000-08-01

    Model-based automatic target recognition (ATR) using forward- looking infrared (FLIR) imagery, and using FLIR imagery combined with cues from a synthetic aperture radar (SAR) system, has been successfully demonstrated in the laboratory. For the laboratory demonstration, FLIR images, platform location, sensor data, and SAR cues were read in from files stored on computer disk. This ATR system, however, was intended to ultimately be flown in a fighter aircraft. We discuss the transition from laboratory demonstration to flight demonstration for this system. The obvious changes required were in the interfaces: the flight system must get live FLIR imagery from a sensor; it must get platform location, sensor data, and controls from the avionics computer in the aircraft via 1553 bus; and it must get SAR cues from the on-board SAR system, also via 1553 bus. Other changes included the transition to rugged hardware that would withstand the fighter aircraft environment, and the need for the system to be compact and self-contained. Unexpected as well as expected challenges were encountered. We discuss some of these challenges, how they were met, and the performance of the flight-demonstration system.

  11. Digital imaging and remote sensing image generator (DIRSIG) as applied to NVESD sensor performance modeling

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly E.; Choi, Hee-sue S.; Kaur, Balvinder; Olson, Jeffrey T.; Hill, Clayton F.; Hutchinson, James A.

    2016-05-01

    The US Army's Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (referred to as NVESD) is developing a virtual detection, recognition, and identification (DRI) testing methodology using simulated imagery as a means of augmenting the field testing component of sensor performance evaluation, which is expensive, resource intensive, time consuming, and limited to the available target(s) and existing atmospheric visibility and environmental conditions at the time of testing. Existing simulation capabilities such as the Digital Imaging Remote Sensing Image Generator (DIRSIG) and NVESD's Integrated Performance Model Image Generator (NVIPM-IG) can be combined with existing detection algorithms to reduce cost/time, minimize testing risk, and allow virtual/simulated testing using full spectral and thermal object signatures, as well as those collected in the field. NVESD has developed an end-to-end capability to demonstrate the feasibility of this approach. Simple detection algorithms have been used on the degraded images generated by NVIPM-IG to determine the relative performance of the algorithms on both DIRSIG-simulated and collected images. Evaluating the degree to which the algorithm performance agrees between simulated versus field collected imagery is the first step in validating the simulated imagery procedure.

  12. A signature correlation study of ground target VHF/UHF ISAR imagery

    NASA Astrophysics Data System (ADS)

    Gatesman, Andrew J.; Beaudoin, Christopher J.; Giles, Robert H.; Kersey, William T.; Waldman, Jerry; Carter, Steve; Nixon, William E.

    2003-09-01

    VV and HH-polarized radar signatures of several ground targets were acquired in the VHF/UHF band (171-342 MHz) by using 1/35th scale models and an indoor radar range operating from 6 to 12 GHz. Data were processed into medianized radar cross sections as well as focused, ISAR imagery. Measurement validation was confirmed by comparing the radar cross section of a test object with a method of moments radar cross section prediction code. The signatures of several vehicles from three vehicle classes (tanks, trunks, and TELs) were measured and a signature cross-correlation study was performed. The VHF/UHF band is currently being exploited for its foliage penetration ability, however, the coarse image resolution which results from the relatively long radar wavelengths suggests a more challenging target recognition problem. One of the study's goals was to determine the amount of unique signature content in VHF/UHF ISAR imagery of military ground vehicles. Open-field signatures are compared with each other as well as with simplified shapes of similar size. Signatures were also acquired on one vehicle in a variety of configurations to determine the impact of monitor target variations on the signature content at these frequencies.

  13. Memory for images intense enough to draw an administration's attention: television and the "war on terror".

    PubMed

    Hutchinson, David; Bradley, Samuel D

    2009-03-01

    In the recent United States-led "war on terror," including ongoing engagements in Iraq and Afghanistan, news organizations have been accused of showing a negative view of developments on the ground. In particular, news depictions of casualties have brought accusations of anti-Americanism and aiding and abetting the terrorists' cause. In this study, video footage of war from television news stories was manipulated to investigate the effects of negative compelling images on cognitive resource allocation, physiological arousal, and recognition memory. Results of a within-subjects experiment indicate that negatively valenced depictions of casualties and destruction elicit greater attention and physiological arousal than positive and low-intensity images. Recognition memory for visual information in the graphic negative news condition was highest, whereas audio recognition for this condition was lowest. The results suggest that negative, high-intensity video imagery diverts cognitive resources away from the encoding of verbal information in the newscast, positioning visual images and not the spoken narrative as a primary channel of viewer learning.

  14. Sensor agnostic object recognition using a map seeking circuit

    NASA Astrophysics Data System (ADS)

    Overman, Timothy L.; Hart, Michael

    2012-05-01

    Automatic object recognition capabilities are traditionally tuned to exploit the specific sensing modality they were designed to. Their successes (and shortcomings) are tied to object segmentation from the background, they typically require highly skilled personnel to train them, and they become cumbersome with the introduction of new objects. In this paper we describe a sensor independent algorithm based on the biologically inspired technology of map seeking circuits (MSC) which overcomes many of these obstacles. In particular, the MSC concept offers transparency in object recognition from a common interface to all sensor types, analogous to a USB device. It also provides a common core framework that is independent of the sensor and expandable to support high dimensionality decision spaces. Ease in training is assured by using commercially available 3D models from the video game community. The search time remains linear no matter how many objects are introduced, ensuring rapid object recognition. Here, we report results of an MSC algorithm applied to object recognition and pose estimation from high range resolution radar (1D), electrooptical imagery (2D), and LIDAR point clouds (3D) separately. By abstracting the sensor phenomenology from the underlying a prior knowledge base, MSC shows promise as an easily adaptable tool for incorporating additional sensor inputs.

  15. Comparison between wavelet transform and moving average as filter method of MODIS imagery to recognize paddy cropping pattern in West Java

    NASA Astrophysics Data System (ADS)

    Dwi Nugroho, Kreshna; Pebrianto, Singgih; Arif Fatoni, Muhammad; Fatikhunnada, Alvin; Liyantono; Setiawan, Yudi

    2017-01-01

    Information on the area and spatial distribution of paddy field are needed to support sustainable agricultural and food security program. Mapping or distribution of cropping pattern paddy field is important to obtain sustainability paddy field area. It can be done by direct observation and remote sensing method. This paper discusses remote sensing for paddy field monitoring based on MODIS time series data. In time series MODIS data, difficult to direct classified of data, because of temporal noise. Therefore wavelet transform and moving average are needed as filter methods. The Objective of this study is to recognize paddy cropping pattern with wavelet transform and moving average in West Java using MODIS imagery (MOD13Q1) from 2001 to 2015 then compared between both of methods. The result showed the spatial distribution almost have the same cropping pattern. The accuracy of wavelet transform (75.5%) is higher than moving average (70.5%). Both methods showed that the majority of the cropping pattern in West Java have pattern paddy-fallow-paddy-fallow with various time planting. The difference of the planting schedule was occurs caused by the availability of irrigation water.

  16. Listening for Recollection: A Multi-Voxel Pattern Analysis of Recognition Memory Retrieval Strategies

    PubMed Central

    Quamme, Joel R.; Weiss, David J.; Norman, Kenneth A.

    2010-01-01

    Recent studies of recognition memory indicate that subjects can strategically vary how much they rely on recollection of specific details vs. feelings of familiarity when making recognition judgments. One possible explanation of these results is that subjects can establish an internally directed attentional state (“listening for recollection”) that enhances retrieval of studied details; fluctuations in this attentional state over time should be associated with fluctuations in subjects’ recognition behavior. In this study, we used multi-voxel pattern analysis of fMRI data to identify brain regions that are involved in listening for recollection. We looked for brain regions that met the following criteria: (1) Distinct neural patterns should be present when subjects are instructed to rely on recollection vs. familiarity, and (2) fluctuations in these neural patterns should be related to recognition behavior in the manner predicted by dual-process theories of recognition: Specifically, the presence of the recollection pattern during the pre-stimulus interval (indicating that subjects are “listening for recollection” at that moment) should be associated with a selective decrease in false alarms to related lures. We found that pre-stimulus activity in the right supramarginal gyrus met all of these criteria, suggesting that this region proactively establishes an internally directed attentional state that fosters recollection. We also found other regions (e.g., left middle temporal gyrus) where the pattern of neural activity was related to subjects’ responding to related lures after stimulus onset (but not before), suggesting that these regions implement processes that are engaged in a reactive fashion to boost recollection. PMID:20740073

  17. Auditory orientation in crickets: Pattern recognition controls reactive steering

    NASA Astrophysics Data System (ADS)

    Poulet, James F. A.; Hedwig, Berthold

    2005-10-01

    Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis

  18. Receptor-like cytoplasmic kinases are pivotal components in pattern recognition receptor-mediated signaling in plant immunity.

    PubMed

    Yamaguchi, Koji; Yamada, Kenta; Kawasaki, Tsutomu

    2013-10-01

    Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand-activated PRRs and initiate pattern-triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.

  19. Students' Dichotomous Experiences of the Illuminating and Illusionary Nature of Pattern Recognition in Mathematics

    ERIC Educational Resources Information Center

    Mhlolo, Michael Kainose

    2016-01-01

    The concept of pattern recognition lies at the heart of numerous deliberations concerned with new mathematics curricula, because it is strongly linked to improved generalised thinking. However none of these discussions has made the deceptive nature of patterns an object of exploration and understanding. Yet there is evidence showing that pattern…

  20. The Acquisition and Retention of Visual Aircraft Recognition Skills

    DTIC Science & Technology

    1976-11-01

    instructed with a printcd version of the GOAR imagery. Students were given multi-view cards and flashcards of each aircraft. The *multi-view cards had the...on the other. Each flashcard presetsted one aspect of an aircraft on the front with its nomenclature on the back. The training system designed for...included the five-image, multi-view cards and single-ima.- Flashcards . These materials were produced for 80 aircraft, which were grouped into 4 blocks

  1. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Measurement and errors of crater statistics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Planetary imagery techniques, errors in measurement or degradation assignment, and statistical formulas are presented with respect to cratering data. Base map photograph preparation, measurement of crater diameters and sampled area, and instruments used are discussed. Possible uncertainties, such as Sun angle, scale factors, degradation classification, and biases in crater recognition are discussed. The mathematical formulas used in crater statistics are presented.

  2. Variation in the Mississippi River Plume from Data Synthesis of Model Outputs and MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, C.; Kolker, A.; Chu, P. Y.

    2017-12-01

    Understanding the Mississippi River (MR) plume's interaction with the open ocean is crucial for understanding many processes in the Gulf of Mexico. Though the Mississippi River and its delta and plume have been studied extensively, recent archives of model products and satellite imagery have allowed us to highlight patterns in plume behavior over the last two decades through large scale data synthesis. Using 8 years of USGS discharge data and Landsat imagery, we identified the spatial extent, geographic patterns, depth, and freshwater concentration of the MR plume across seasons and years. Using 20 years of HYCOM (HYbrid Coordinate Ocean Model) analysis and reanalysis model output, and several years of NGOFS FVCOM model outputs, we mapped the minimum and maximum spatial area of the MR plume, and its varied extent east and west. From the synthesis and analysis of these data, the statistical probability of the MR plume's spatial area and geographical extent were computed. Measurements of the MR plume and its response to river discharge may predict future behavior and provide a path forward to understanding MR plume influence on nearby ecosystems.

  3. Evaluation of commercial utility of ERTS-A imagery in structural reconnaissance for minerals and petroleum

    NASA Technical Reports Server (NTRS)

    Saunders, D. F.; Thomas, G. E.

    1973-01-01

    Five areas in North America (North Slope-Alaska, Superior Province-Canada, Williston Basin-Montana, Colorado and New Mexico-West Texas) are being studied for discernibility of geological evidence on ERTS-1 imagery, Evidence mapped is compared with known mineral/hydrocarbon accumulations to determine the value of the imagery in commercial exploration programs. Evaluation has proceeded in the New Mexico-West Texas area while awaiting imagery in the other areas. To date, results have been better than expected. Clearly discernible structural lineaments in New Mexico-West Texas are evident on the photographs. Comparison of this evidence with known major mining localities in New Mexico indicates a clear pattern of coincidence between the lineaments and mining localities. In West Texas, lineament and geomorphological evidence obtainable from the photographs define the petroleum-productive Central Basin Platform. Based on evaluation results in the New Mexico-West Texas area and on cursory results in the other four areas of North America, ERTS-1 imagery will be extremely valuable in defining the regional and local structure in any commercial exploration program.

  4. Kansas environmental and resource study: A Great Plains model, tasks 1-6

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L. (Principal Investigator); Ulaby, F. T.; Shanmugam, K. S.; Williams, D. L.; Mccauley, J. R.; Mcnaughton, J. L.

    1972-01-01

    There are no author identified significant results in this report. Environmental and resources investigations in Kansas utilizing ERTS-1 imagery are summarized for the following areas: (1) use of feature extraction techniqued for texture context information in ERTS imagery; (2) interpretation and automatic image enhancement; (3) water use, production, and disease detection and predictions for wheat; (4) ERTS-1 agricultural statistics; (5) monitoring fresh water resources; and (6) ground pattern analysis in the Great Plains.

  5. Integrating visual learning within a model-based ATR system

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark; Nebrich, Mark

    2017-05-01

    Automatic target recognition (ATR) systems, like human photo-interpreters, rely on a variety of visual information for detecting, classifying, and identifying manmade objects in aerial imagery. We describe the integration of a visual learning component into the Image Data Conditioner (IDC) for target/clutter and other visual classification tasks. The component is based on an implementation of a model of the visual cortex developed by Serre, Wolf, and Poggio. Visual learning in an ATR context requires the ability to recognize objects independent of location, scale, and rotation. Our method uses IDC to extract, rotate, and scale image chips at candidate target locations. A bootstrap learning method effectively extends the operation of the classifier beyond the training set and provides a measure of confidence. We show how the classifier can be used to learn other features that are difficult to compute from imagery such as target direction, and to assess the performance of the visual learning process itself.

  6. Application of quantum-behaved particle swarm optimization to motor imagery EEG classification.

    PubMed

    Hsu, Wei-Yen

    2013-12-01

    In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications.

  7. Airborne ladar man-in-the-loop operations in tactical environments

    NASA Astrophysics Data System (ADS)

    Grobmyer, Joseph E., Jr.; Lum, Tommy; Morris, Robert E.; Hard, Sarah J.; Pratt, H. L.; Florence, Tom; Peddycoart, Ed

    2004-09-01

    The U.S. Army Research, Development and Engineering Command (RDECOM) is developing approaches and processes that will exploit the characteristics of current and future Laser Radar (LADAR) sensor systems for critical man-in-the-loop tactical processes. The importance of timely and accurate target detection, classification, identification, and engagement for future combat systems has been documented and is viewed as a critical enabling factor for FCS survivability and lethality. Recent work has demonstrated the feasibility of using low cost but relatively capable personal computer class systems to exploit the information available in Ladar sensor frames to present the war fighter or analyst with compelling and usable imagery for use in the target identification and engagement processes in near real time. The advantages of LADAR imagery are significant in environments presenting cover for targets and the associated difficulty for automated target recognition (ATR) technologies.

  8. Applicability of ERTS-1 to Montana geology

    NASA Technical Reports Server (NTRS)

    Weidman, R. M. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Geologic maps of four test sites were compiled at 1/250,000. Band 7 prints enlarged to 1/500,000 scale are the best for the purpose, and negative prints provide a valuable supplement. More than 100 mapped lineaments represent most of the major faults of the area and a large number of suspected faults, including many of northeast trend. Under ideal conditions dip slopes may be recognized, laccoliths outlined, and axial traces drawn for narrow, plunging folds. Use of ERTS-1 imagery will greatly facilitate construction of a needed tectonic map of Montana. From ERTS-1 imagery alone, it was possible to identify up-turned undivided Paleozoic and Mesozoic strata and to map the boundaries of mountain glaciation, intermontane basins, a volcanic field, and an area of granitic rocks. It was also possible to outline clay pans associated with bentonite. However, widespread recognition of gross rock types will be difficult.

  9. Passive millimeter-wave concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sinclair, Gordon N.; Anderton, Rupert N.; Appleby, Roger

    2001-02-01

    A method of detecting weapons concealed under clothing using passive millimeter wave imaging is described. The optical properties of clothing are discussed and examples given of the spectral reflectivity and transmission. The transmission tends to be constant from 60 to 150 GHz above which it decreases for some clothing materials. The transmission of a cotton T-shirt is typically 95% and of a leather jacket up to 85% at lower frequencies. A model is presented for calculating the contrast of a metallic concealed weapon when hidden under clothing and it indicates contrasts as large as 200 K can be realized outdoors. The advantages of real time over static frame imagery are discussed. It is concluded that real time imagery offers considerable advantages as weapons can be very varied in size, position and orientation and movement offers vital clues to the human observer which aid the recognition process.

  10. Processing of SeaMARC swath sonar imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratson, L.; Malinverno, A.; Edwards, M.

    1990-05-01

    Side-scan swath sonar systems have become an increasingly important means of mapping the sea floor. Two such systems are the deep-towed, high-resolution SeaMARC I sonar, which has a variable swath width of up to 5 km, and the shallow-towed, lower-resolution SeaMARC II sonar, which has a swath width of 10 km. The sea-floor imagery of acoustic backscatter output by the SeaMARC sonars is analogous to aerial photographs and airborne side-looking radar images of continental topography. Geologic interpretation of the sea-floor imagery is greatly facilitated by image processing. Image processing of the digital backscatter data involves removal of noise by medianmore » filtering, spatial filtering to remove sonar scans of anomalous intensity, across-track corrections to remove beam patterns caused by nonuniform response of the sonar transducers to changes in incident angle, and contrast enhancement by histogram equalization to maximize the available dynamic range. Correct geologic interpretation requires submarine structural fabrics to be displayed in their proper locations and orientations. Geographic projection of sea-floor imagery is achieved by merging the enhanced imagery with the sonar vehicle navigation and correcting for vehicle attitude. Co-registration of bathymetry with sonar imagery introduces sea-floor relief and permits the imagery to be displayed in three-dimensional perspectives, furthering the ability of the marine geologist to infer the processes shaping formerly hidden subsea terrains.« less

  11. Virtual and Actual Humanoid Robot Control with Four-Class Motor-Imagery-Based Optical Brain-Computer Interface

    PubMed Central

    Kim, Youngmoo E.

    2017-01-01

    Motor-imagery tasks are a popular input method for controlling brain-computer interfaces (BCIs), partially due to their similarities to naturally produced motor signals. The use of functional near-infrared spectroscopy (fNIRS) in BCIs is still emerging and has shown potential as a supplement or replacement for electroencephalography. However, studies often use only two or three motor-imagery tasks, limiting the number of available commands. In this work, we present the results of the first four-class motor-imagery-based online fNIRS-BCI for robot control. Thirteen participants utilized upper- and lower-limb motor-imagery tasks (left hand, right hand, left foot, and right foot) that were mapped to four high-level commands (turn left, turn right, move forward, and move backward) to control the navigation of a simulated or real robot. A significant improvement in classification accuracy was found between the virtual-robot-based BCI (control of a virtual robot) and the physical-robot BCI (control of the DARwIn-OP humanoid robot). Differences were also found in the oxygenated hemoglobin activation patterns of the four tasks between the first and second BCI. These results corroborate previous findings that motor imagery can be improved with feedback and imply that a four-class motor-imagery-based fNIRS-BCI could be feasible with sufficient subject training. PMID:28804712

  12. The influence of smoking imagery on the smoking intentions of young people: testing a media interpretation model.

    PubMed

    McCool, Judith P; Cameron, Linda D; Petrie, Keith J

    2005-06-01

    To assess a theoretical model of adolescents' exposure to films, perceptions of smoking imagery in film, and smoking intentions. A structured questionnaire was completed by 3041 Year 8 (aged 12 years) and Year 12 (aged 16 years) students from 25 schools in Auckland, New Zealand. The survey assessed the relationships among exposure to films, attitudes about smoking imagery, perceptions of smoking prevalence and its acceptability, and expectations of smoking in the future. Measures included exposure to films, perceived pervasiveness of, and nonchalant attitudes about smoking imagery, identification of positive smoker stereotypes in films, perceived smoking prevalence, judgment of smoking acceptability, and smoking expectations. Path analytic techniques, using multiple regression analyses, were used to test the pattern of associations identified by the media interpretation model. Hierarchical regression analyses revealed that film exposure predicted higher levels of perceived smoking prevalence, perceived imagery pervasiveness, and nonchalant attitudes about smoking imagery. Nonchalant attitudes, identification of positive smoker stereotypes, and perceived smoking prevalence predicted judgments of smoking acceptability. Acceptability judgments, identification of positive stereotypes, and perceived smoking prevalence were all positively associated with smoking expectations. The media interpretation model accounted for 24% of the variance in smoking expectations within the total sample. Smoking imagery in film may play a role in the development of smoking intentions through inflating the perception of smoking prevalence and presenting socially attractive images.

  13. Virtual and Actual Humanoid Robot Control with Four-Class Motor-Imagery-Based Optical Brain-Computer Interface.

    PubMed

    Batula, Alyssa M; Kim, Youngmoo E; Ayaz, Hasan

    2017-01-01

    Motor-imagery tasks are a popular input method for controlling brain-computer interfaces (BCIs), partially due to their similarities to naturally produced motor signals. The use of functional near-infrared spectroscopy (fNIRS) in BCIs is still emerging and has shown potential as a supplement or replacement for electroencephalography. However, studies often use only two or three motor-imagery tasks, limiting the number of available commands. In this work, we present the results of the first four-class motor-imagery-based online fNIRS-BCI for robot control. Thirteen participants utilized upper- and lower-limb motor-imagery tasks (left hand, right hand, left foot, and right foot) that were mapped to four high-level commands (turn left, turn right, move forward, and move backward) to control the navigation of a simulated or real robot. A significant improvement in classification accuracy was found between the virtual-robot-based BCI (control of a virtual robot) and the physical-robot BCI (control of the DARwIn-OP humanoid robot). Differences were also found in the oxygenated hemoglobin activation patterns of the four tasks between the first and second BCI. These results corroborate previous findings that motor imagery can be improved with feedback and imply that a four-class motor-imagery-based fNIRS-BCI could be feasible with sufficient subject training.

  14. Methods and means of diagnostics of oncological diseases on the basis of pattern recognition: intelligent morphological systems - problems and solutions

    NASA Astrophysics Data System (ADS)

    Nikitaev, V. G.

    2017-01-01

    The development of methods of pattern recognition in modern intelligent systems of clinical cancer diagnosis are discussed. The histological (morphological) diagnosis - primary diagnosis for medical setting with cancer are investigated. There are proposed: interactive methods of recognition and structure of intellectual morphological complexes based on expert training-diagnostic and telemedicine systems. The proposed approach successfully implemented in clinical practice.

  15. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models

    PubMed Central

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner’s faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals. PMID:27191162

  16. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models.

    PubMed

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner's faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals.

  17. Postprocessing for character recognition using pattern features and linguistic information

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Takatoshi; Okamoto, Masayosi; Horii, Hiroshi

    1993-04-01

    We propose a new method of post-processing for character recognition using pattern features and linguistic information. This method corrects errors in the recognition of handwritten Japanese sentences containing Kanji characters. This post-process method is characterized by having two types of character recognition. Improving the accuracy of the character recognition rate of Japanese characters is made difficult by the large number of characters, and the existence of characters with similar patterns. Therefore, it is not practical for a character recognition system to recognize all characters in detail. First, this post-processing method generates a candidate character table by recognizing the simplest features of characters. Then, it selects words corresponding to the character from the candidate character table by referring to a word and grammar dictionary before selecting suitable words. If the correct character is included in the candidate character table, this process can correct an error, however, if the character is not included, it cannot correct an error. Therefore, if this method can presume a character does not exist in a candidate character table by using linguistic information (word and grammar dictionary). It then can verify a presumed character by character recognition using complex features. When this method is applied to an online character recognition system, the accuracy of character recognition improves 93.5% to 94.7%. This proved to be the case when it was used for the editorials of a Japanese newspaper (Asahi Shinbun).

  18. Spatially quantitative seafloor habitat mapping: Example from the northern South Carolina inner continental shelf

    USGS Publications Warehouse

    Ojeda, G.Y.; Gayes, P.T.; Van Dolah, R. F.; Schwab, W.C.

    2004-01-01

    Naturally occurring hard bottom areas provide the geological substrate that can support diverse assemblages of sessile benthic organisms, which in turn, attract many reef-dwelling fish species. Alternatively, defining the location and extent of bottom sand bodies is relevant for potential nourishment projects as well as to ensure that transient sediment does not affect reef habitats, particularly in sediment-starved continental margins. Furthermore, defining sediment transport pathways documents the effects these mobile bedforms have on proximal reef habitats. Thematic mapping of these substrates is therefore crucial in safeguarding critical habitats and offshore resources of coastal nations. This study presents the results of a spatially quantitative mapping approach based on classification of sidescan-sonar imagery. By using bottom video for image-to-ground control, digital image textural features for pattern recognition, and an artificial neural network for rapid, quantitative, multivariable decision-making, this approach resulted in recognition rates of hard bottom as high as 87%. The recognition of sand bottom was less successful (31%). This approach was applied to a large (686 km2), high-quality, 2-m resolution sidescan-sonar mosaic of the northern South Carolina inner continental shelf. Results of this analysis indicate that both surficial sand and hard bottoms of variable extent are present over the study area. In total, 59% of the imaged area was covered by hard bottom, while 41% was covered by sand. Qualitative spatial correlation between bottom type and bathymetry appears possible from comparison of our interpretive map and available bathymetry. Hard bottom areas tend to be located on flat, low-lying areas, and sandy bottoms tend to reside on areas of positive relief. Published bio-erosion rates were used to calculate the potential sediment input from the mapped hard bottom areas rendering sediment volumes that may be as high as 0.8 million m3/yr for this portion of the South Carolina coast. ?? 2003 Elsevier Ltd. All rights reserved.

  19. Facial emotion recognition in patients with focal and diffuse axonal injury.

    PubMed

    Yassin, Walid; Callahan, Brandy L; Ubukata, Shiho; Sugihara, Genichi; Murai, Toshiya; Ueda, Keita

    2017-01-01

    Facial emotion recognition impairment has been well documented in patients with traumatic brain injury. Studies exploring the neural substrates involved in such deficits have implicated specific grey matter structures (e.g. orbitofrontal regions), as well as diffuse white matter damage. Our study aims to clarify whether different types of injuries (i.e. focal vs. diffuse) will lead to different types of impairments on facial emotion recognition tasks, as no study has directly compared these patients. The present study examined performance and response patterns on a facial emotion recognition task in 14 participants with diffuse axonal injury (DAI), 14 with focal injury (FI) and 22 healthy controls. We found that, overall, participants with FI and DAI performed more poorly than controls on the facial emotion recognition task. Further, we observed comparable emotion recognition performance in participants with FI and DAI, despite differences in the nature and distribution of their lesions. However, the rating response pattern between the patient groups was different. This is the first study to show that pure DAI, without gross focal lesions, can independently lead to facial emotion recognition deficits and that rating patterns differ depending on the type and location of trauma.

  20. 33 CFR 106.205 - Company Security Officer (CSO).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...

  1. 33 CFR 106.205 - Company Security Officer (CSO).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...

  2. Visual cluster analysis and pattern recognition template and methods

    DOEpatents

    Osbourn, G.C.; Martinez, R.F.

    1999-05-04

    A method of clustering using a novel template to define a region of influence is disclosed. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques. 30 figs.

  3. Multiple degree of freedom optical pattern recognition

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1987-01-01

    Three general optical approaches to multiple degree of freedom object pattern recognition (where no stable object rest position exists) are advanced. These techniques include: feature extraction, correlation, and artificial intelligence. The details of the various processors are advanced together with initial results.

  4. Ultrasonography of ovarian masses using a pattern recognition approach

    PubMed Central

    Jung, Sung Il

    2015-01-01

    As a primary imaging modality, ultrasonography (US) can provide diagnostic information for evaluating ovarian masses. Using a pattern recognition approach through gray-scale transvaginal US, ovarian masses can be diagnosed with high specificity and sensitivity. Doppler US may allow ovarian masses to be diagnosed as benign or malignant with even greater confidence. In order to differentiate benign and malignant ovarian masses, it is necessary to categorize ovarian masses into unilocular cyst, unilocular solid cyst, multilocular cyst, multilocular solid cyst, and solid tumor, and then to detect typical US features that demonstrate malignancy based on pattern recognition approach. PMID:25797108

  5. Application of pattern recognition techniques to crime analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, C.F.; Cox, L.A. Jr.; Chappell, G.A.

    1976-08-15

    The initial goal was to evaluate the capabilities of current pattern recognition techniques when applied to existing computerized crime data. Performance was to be evaluated both in terms of the system's capability to predict crimes and to optimize police manpower allocation. A relation was sought to predict the crime's susceptibility to solution, based on knowledge of the crime type, location, time, etc. The preliminary results of this work are discussed. They indicate that automatic crime analysis involving pattern recognition techniques is feasible, and that efforts to determine optimum variables and techniques are warranted. 47 figures (RWR)

  6. DESIGN OF A PATTERN RECOGNITION DIGITAL COMPUTER WITH APPLICATION TO THE AUTOMATIC SCANNING OF BUBBLE CHAMBER NEGATIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, B.H.; Narasimhan, R.

    1963-01-01

    The overall computer system contains three main parts: an input device, a pattern recognition unit (PRU), and a control computer. The bubble chamber picture is divided into a grid of st run. Concent 1-mm squares on the film. It is then processed in parallel in a two-dimensional array of 1024 identical processing modules (stalactites) of the PRU. The array can function as a two- dimensional shift register in which results of successive shifting operations can be accumulated. The pattern recognition process is generally controlled by a conventional arithmetic computer. (A.G.W.)

  7. Directing an appropriate immune response: the role of defense collagens and other soluble pattern recognition molecules.

    PubMed

    Fraser, D A; Tenner, A J

    2008-02-01

    Defense collagens and other soluble pattern recognition receptors contain the ability to recognize and bind molecular patterns associated with pathogens (PAMPs) or apoptotic cells (ACAMPs) and signal appropriate effector-function responses. PAMP recognition by defense collagens C1q, MBL and ficolins leads to rapid containment of infection via complement activation. However, in the absence of danger, such as during the clearance of apoptotic cells, defense collagens such as C1q, MBL, ficolins, SP-A, SP-D and even adiponectin have all been shown to facilitate enhanced phagocytosis and modulate induction of cytokines towards an anti-inflammatory profile. In this way, cellular debris can be removed without provoking an inflammatory immune response which may be important in the prevention of autoimmunity and/or resolving inflammation. Indeed, deficiencies and/or knock-out mouse studies have highlighted critical roles for soluble pattern recognition receptors in the clearance of apoptotic bodies and protection from autoimmune diseases along with mediating protection from specific infections. Understanding the mechanisms involved in defense collagen and other soluble pattern recognition receptor modulation of the immune response may provide important novel insights into therapeutic targets for infectious and/or autoimmune diseases and additionally may identify avenues for more effective vaccine design.

  8. Visual scanning behavior is related to recognition performance for own- and other-age faces

    PubMed Central

    Proietti, Valentina; Macchi Cassia, Viola; dell’Amore, Francesca; Conte, Stefania; Bricolo, Emanuela

    2015-01-01

    It is well-established that our recognition ability is enhanced for faces belonging to familiar categories, such as own-race faces and own-age faces. Recent evidence suggests that, for race, the recognition bias is also accompanied by different visual scanning strategies for own- compared to other-race faces. Here, we tested the hypothesis that these differences in visual scanning patterns extend also to the comparison between own and other-age faces and contribute to the own-age recognition advantage. Participants (young adults with limited experience with infants) were tested in an old/new recognition memory task where they encoded and subsequently recognized a series of adult and infant faces while their eye movements were recorded. Consistent with findings on the other-race bias, we found evidence of an own-age bias in recognition which was accompanied by differential scanning patterns, and consequently differential encoding strategies, for own-compared to other-age faces. Gaze patterns for own-age faces involved a more dynamic sampling of the internal features and longer viewing time on the eye region compared to the other regions of the face. This latter strategy was extensively employed during learning (vs. recognition) and was positively correlated to discriminability. These results suggest that deeply encoding the eye region is functional for recognition and that the own-age bias is evident not only in differential recognition performance, but also in the employment of different sampling strategies found to be effective for accurate recognition. PMID:26579056

  9. Landscape pattern and car use: Linking household data with satellite imagery

    NASA Astrophysics Data System (ADS)

    Keller, R.; Vance, C.

    2013-12-01

    Landscape pattern has long been hypothesized to influence automobile dependency. Because choices about land development tend to have long-lasting impacts that span over decades, understanding the magnitude of this influence is critical to the design of policies to reduce emissions and other negative externalities associated with car use. Combining household survey data from Germany with satellite imagery and other geo-referenced data sources, we undertake an econometric analysis of the relation between landscape pattern and automobile dependency. Specifically, we employ a two-part model to investigate two dimensions of car use, the discrete decision to own a car and, conditional upon ownership, the continuous decision of how far to drive. Results indicate that landscape pattern, as captured by measures of both land cover (e.g. the extent of open space and landscape diversity) and land use (e.g. the density of regional businesses) are important predictors of car ownership and use. Other policy-relevant variables, such as fuel prices and public transit infrastructure, are also identified as correlates. Based on the magnitude of our estimates, we conclude that carefully considered land development and zoning measures - ones that encourage dense development, diverse land cover and mixed land use - can have beneficial impacts in reducing car dependency that extend far into the future. Key terms: Landscape pattern, Satellite imagery, Germany, Two-part model Figure 1. Distribution of Elasticities of Landscape and Social Effects on German Household Weekly Car Use Results from Two Part Model N = 13,089 (probit) N = 10,987 (OLS)Robust standard errors in parentheses***, **, and *, denotes significance at the 0.01, 0.05, and 0.1 levels

  10. CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Qu, Zhiyi; Hao, Kun

    2017-07-01

    Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.

  11. HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Shuhang; Wang, Jian; Wang, Tong

    2017-09-01

    Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.

  12. Emotional Faces in Context: Age Differences in Recognition Accuracy and Scanning Patterns

    PubMed Central

    Noh, Soo Rim; Isaacowitz, Derek M.

    2014-01-01

    While age-related declines in facial expression recognition are well documented, previous research relied mostly on isolated faces devoid of context. We investigated the effects of context on age differences in recognition of facial emotions and in visual scanning patterns of emotional faces. While their eye movements were monitored, younger and older participants viewed facial expressions (i.e., anger, disgust) in contexts that were emotionally congruent, incongruent, or neutral to the facial expression to be identified. Both age groups had highest recognition rates of facial expressions in the congruent context, followed by the neutral context, and recognition rates in the incongruent context were worst. These context effects were more pronounced for older adults. Compared to younger adults, older adults exhibited a greater benefit from congruent contextual information, regardless of facial expression. Context also influenced the pattern of visual scanning characteristics of emotional faces in a similar manner across age groups. In addition, older adults initially attended more to context overall. Our data highlight the importance of considering the role of context in understanding emotion recognition in adulthood. PMID:23163713

  13. Comparing the visual spans for faces and letters

    PubMed Central

    He, Yingchen; Scholz, Jennifer M.; Gage, Rachel; Kallie, Christopher S.; Liu, Tingting; Legge, Gordon E.

    2015-01-01

    The visual span—the number of adjacent text letters that can be reliably recognized on one fixation—has been proposed as a sensory bottleneck that limits reading speed (Legge, Mansfield, & Chung, 2001). Like reading, searching for a face is an important daily task that involves pattern recognition. Is there a similar limitation on the number of faces that can be recognized in a single fixation? Here we report on a study in which we measured and compared the visual-span profiles for letter and face recognition. A serial two-stage model for pattern recognition was developed to interpret the data. The first stage is characterized by factors limiting recognition of isolated letters or faces, and the second stage represents the interfering effect of nearby stimuli on recognition. Our findings show that the visual span for faces is smaller than that for letters. Surprisingly, however, when differences in first-stage processing for letters and faces are accounted for, the two visual spans become nearly identical. These results suggest that the concept of visual span may describe a common sensory bottleneck that underlies different types of pattern recognition. PMID:26129858

  14. Training Strategies for Mitigating the Effect of Proportional Control on Classification in Pattern Recognition Based Myoelectric Control

    PubMed Central

    Scheme, Erik; Englehart, Kevin

    2013-01-01

    The performance of pattern recognition based myoelectric control has seen significant interest in the research community for many years. Due to a recent surge in the development of dexterous prosthetic devices, determining the clinical viability of multifunction myoelectric control has become paramount. Several factors contribute to differences between offline classification accuracy and clinical usability, but the overriding theme is that the variability of the elicited patterns increases greatly during functional use. Proportional control has been shown to greatly improve the usability of conventional myoelectric control systems. Typically, a measure of the amplitude of the electromyogram (a rectified and smoothed version) is used to dictate the velocity of control of a device. The discriminatory power of myoelectric pattern classifiers, however, is also largely based on amplitude features of the electromyogram. This work presents an introductory look at the effect of contraction strength and proportional control on pattern recognition based control. These effects are investigated using typical pattern recognition data collection methods as well as a real-time position tracking test. Training with dynamically force varying contractions and appropriate gain selection is shown to significantly improve (p<0.001) the classifier’s performance and tolerance to proportional control. PMID:23894224

  15. GeoInformation studies of soil and vegetation patterns along Climatic Gradients: A Review

    NASA Astrophysics Data System (ADS)

    Shoshany, M.

    2009-04-01

    Global evidence regarding magnitudes of desertification processes and recognition in their societal, ecological and climatological consequences had lead the international community to establish the United Nations Convention to Combat Desertification (UNCCD). Within the framework of this convention it is perceived that Desertification is a complex poorly understood phenomena which is " first and foremost, the result of resource management failures". Scientific research within this context have three primary roles: monitoring the situation, developing the understanding of relationships between factors promoting desertification and finally providing the international community with efficient recommendations regarding actions which may slow down these processes. Study of desertification processes in regions of sharp climatic gradients is of special importance within this framework since they represent areas where the processes are most intensive and where most deserts actually expand. The detection of threshold zones coupling sever land degradation with loss of resilience in their eco-geomophic systems is fundamental for the efficient combating of global desertification. Application of geoinformation tools and techniques is instrumental for this purpose: mapping biological, chemical and physical surface properties using remote sensing techniques, mapping historical patch-pattern changes using air-photographs, analysis of spatio-temporal variations in pattern properties and analysis of informational relationships between these surface properties and patterns with climatoloical, topographic, lithological and human factors. Numerous Remote Sensing studies had been undertaken during the last four decades in monitoring desertification through the provision of maps describing spatial distributions of biophysical surface parameters at resolutions between few meters to few kilometers and temporal resolutions between hours and weeks. These studies utilized radar backscattering , spectral reflectance at the visible, NIR and SWIR ranges and emissions in the thermal spectrum. However, despite the magnitude of these projects very few of the methods were proved to be operational yet. The main shortcomings of exiting methods are: - They are highly dependent on accurate calibration which for large region is impractical. - Most of the methods are semi-empirical: case dependent rather than representing robust physical indicators. - There is no one imagery source which is good for all mapping purposes, most of the methods use single imagery source and there is relatively little synergy (fusion) between imagery sources. - Data continuity for long time periods exits mainly for low resolution sources which are limited in supporting modeling of processes. - Difficulties in scaling-up results and methods from the local to the broad-regional scales Within the scope of interest here the most important shortcoming concern the fact that relatively little work treated explicitly regions of high climatic gradient partly due to their high spatio-temporal heterogeneity. Three areas of recent advancements in studying explicitly transition zones between humid and arid regions : - Mapping bio-physical properties of vegetation forms (herbaceous, dwarf-shrubs and shrubs): cover proportions, biomass, primary productivity using synergy between optical (phonologies) and SAR imagery. - Mapping chemical and physical soil properties and estimating their erodibility using hyper and multi spectral methods, and SAR backscattering. - Mapping soil and vegetation patch patterns and their changes within the last decades using historical air-photographs. These advancement s lead to the detection of threshold zones between regions along these gradients according to following indicators: - Life-forms compositions, biomass and primary productivity. Analysis of relationships between biomass and rainfall allow differentiation between cases were vegetation compositions and properties which follow 'expected' successional sequences and those which represent harsh land degradation with productivity significantly less than would be expected according to their average annual precipitation. - Soil chemical compositions referring mainly to organic carbon, inorganic carbon and ferrum. These mapping allowed the detection of 'tipping points' in the high transition zones. Analysis of historical patch-patterns ' evolution modes using air-photographs and GIS techniques allowed insight into soil and vegetation pattern dynamics. Recent results had revealed that in some areas of low biomass there is maintained similar pattern fragmentation as in areas of higher rainfall. This signifies the functioning of self-organization and consequently the potential resilience of some areas of relatively low primary productivity located at desert margins. In conclusion, current geoinformation tools and techniques on one hand had shown their potential contribution to the modeling and understanding of desertification processes in general and the formation of thresholds through the functioning of 'tipping' mechanisms and 'catastrophic shifts'. However, these tools and techniques are not yet operational at the wide regional scale. Better synergy of remote sensing sources and availability of longer time series of surface properties will facilitate the combat of desertification with both better understanding of the processes and predictions of expected spatial change in different warming and human disturbance scenarios.

  16. Kinesthetic perception based on integration of motor imagery and afferent inputs from antagonistic muscles with tendon vibration.

    PubMed

    Shibata, E; Kaneko, F

    2013-04-29

    The perceptual integration of afferent inputs from two antagonistic muscles, or the perceptual integration of afferent input and motor imagery are related to the generation of a kinesthetic sensation. However, it has not been clarified how, or indeed whether, a kinesthetic perception would be generated by motor imagery if afferent inputs from two antagonistic muscles were simultaneously induced by tendon vibration. The purpose of this study was to investigate how a kinesthetic perception would be generated by motor imagery during co-vibration of the two antagonistic muscles at the same frequency. Healthy subjects participated in this experiment. Illusory movement was evoked by tendon vibration. Next, the subjects imaged wrist flexion movement simultaneously with tendon vibration. Wrist flexor and extensor muscles were vibrated according to 4 patterns such that the difference between the two vibration frequencies was zero. After each trial, the perceived movement sensations were quantified on the basis of the velocity and direction of the ipsilateral hand-tracking movements. When the difference in frequency applied to the wrist flexor and the extensor was 0Hz, no subjects perceived movements without motor imagery. However, during motor imagery, the flexion velocity of the perceived movement was higher than the flexion velocity without motor imagery. This study clarified that the afferent inputs from the muscle spindle interact with motor imagery, to evoke a kinesthetic perception, even when the difference in frequency applied to the wrist flexor and extensor was 0Hz. Furthermore, the kinesthetic perception resulting from integrations of vibration and motor imagery increased depending on the vibration frequency to the two antagonistic muscles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery

    NASA Astrophysics Data System (ADS)

    Toppi, J.; Risetti, M.; Quitadamo, L. R.; Petti, M.; Bianchi, L.; Salinari, S.; Babiloni, F.; Cincotti, F.; Mattia, D.; Astolfi, L.

    2014-06-01

    Objective. It is well known that to acquire sensorimotor (SMR)-based brain-computer interface (BCI) control requires a training period before users can achieve their best possible performances. Nevertheless, the effect of this training procedure on the cortical activity related to the mental imagery ability still requires investigation to be fully elucidated. The aim of this study was to gain insights into the effects of SMR-based BCI training on the cortical spectral activity associated with the performance of different mental imagery tasks. Approach. Linear cortical estimation and statistical brain mapping techniques were applied on high-density EEG data acquired from 18 healthy participants performing three different mental imagery tasks. Subjects were divided in two groups, one of BCI trained subjects, according to their previous exposure (at least six months before this study) to motor imagery-based BCI training, and one of subjects who were naive to any BCI paradigms. Main results. Cortical activation maps obtained for trained and naive subjects indicated different spectral and spatial activity patterns in response to the mental imagery tasks. Long-term effects of the previous SMR-based BCI training were observed on the motor cortical spectral activity specific to the BCI trained motor imagery task (simple hand movements) and partially generalized to more complex motor imagery task (playing tennis). Differently, mental imagery with spatial attention and memory content could elicit recognizable cortical spectral activity even in subjects completely naive to (BCI) training. Significance. The present findings contribute to our understanding of BCI technology usage and might be of relevance in those clinical conditions when training to master a BCI application is challenging or even not possible.

  18. Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery.

    PubMed

    Toppi, J; Risetti, M; Quitadamo, L R; Petti, M; Bianchi, L; Salinari, S; Babiloni, F; Cincotti, F; Mattia, D; Astolfi, L

    2014-06-01

    It is well known that to acquire sensorimotor (SMR)-based brain-computer interface (BCI) control requires a training period before users can achieve their best possible performances. Nevertheless, the effect of this training procedure on the cortical activity related to the mental imagery ability still requires investigation to be fully elucidated. The aim of this study was to gain insights into the effects of SMR-based BCI training on the cortical spectral activity associated with the performance of different mental imagery tasks. Linear cortical estimation and statistical brain mapping techniques were applied on high-density EEG data acquired from 18 healthy participants performing three different mental imagery tasks. Subjects were divided in two groups, one of BCI trained subjects, according to their previous exposure (at least six months before this study) to motor imagery-based BCI training, and one of subjects who were naive to any BCI paradigms. Cortical activation maps obtained for trained and naive subjects indicated different spectral and spatial activity patterns in response to the mental imagery tasks. Long-term effects of the previous SMR-based BCI training were observed on the motor cortical spectral activity specific to the BCI trained motor imagery task (simple hand movements) and partially generalized to more complex motor imagery task (playing tennis). Differently, mental imagery with spatial attention and memory content could elicit recognizable cortical spectral activity even in subjects completely naive to (BCI) training. The present findings contribute to our understanding of BCI technology usage and might be of relevance in those clinical conditions when training to master a BCI application is challenging or even not possible.

  19. Addressing the issue of insufficient information in data-based bridge health monitoring : final report.

    DOT National Transportation Integrated Search

    2015-11-01

    One of the most efficient ways to solve the damage detection problem using the statistical pattern recognition : approach is that of exploiting the methods of outlier analysis. Cast within the pattern recognition framework, : damage detection assesse...

  20. Parabolic dune reactivation and migration at Napeague, NY, USA: Insights from aerial and GPR imagery

    NASA Astrophysics Data System (ADS)

    Girardi, James D.; Davis, Dan M.

    2010-02-01

    Observations from mapping since the 19th century and aerial imagery since 1930 have been used to study changes in the aeolian geomorphology of coastal parabolic dunes over the last ~ 170 years in the Walking Dune Field, Napeague, NY. The five large parabolic dunes of the Walking Dune Field have all migrated across, or are presently interacting with, a variably forested area that has affected their migration, stabilization and morphology. This study has concentrated on a dune with a particularly complex history of stabilization, reactivation and migration. We have correlated that dune's surface evolution, as revealed by aerial imagery, with its internal structures imaged using 200 MHz and 500 MHz Ground Penetrating Radar (GPR) surveys. Both 2D (transect) and high-resolution 3D GPR imagery image downwind dipping bedding planes which can be grouped by apparent dip angle into several discrete packages of beds that reflect distinct decadal-scale episodes of dune reactivation and growth. From aerial and high resolution GPR imagery, we document a unique mode of reactivation and migration linked to upwind dune formation and parabolic dune interactions with forest trees. This study documents how dune-dune and dune-vegetation interactions have influenced a unique mode of blowout deposition that has alternated on a decadal scale between opposite sides of a parabolic dune during reactivation and migration. The pattern of recent parabolic dune reactivation and migration in the Walking Dune Field appears to be somewhat more complex, and perhaps more sensitive to subtle environmental pressures, than an idealized growth model with uniform deposition and purely on-axis migration. This pattern, believed to be prevalent among other parabolic dunes in the Walking Dune Field, may occur also in many other places where similar observational constraints are unavailable.

  1. Detection Of Tornado Damage Tracks With EOS Data

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Nair, Udaysankar; Haines, Stephanie L.

    2005-01-01

    The damage surveys conducted by the NWS in the aftermath of a reported tornadic event are used to document the location of the tornado ground damage track (path length and width) and an estimation of the tornado intensity. This study explored the possibility of using near real-time medium and high-resolution satellite imagery from the NASA EOS satellites to provide additional information for the surveys. MODIS and ASTER data were used to study the damage tracks from three tornadic storms; the La Plata, Maryland storm of 28 April 2002 and the Carter-Butler Counties and Madison County Missouri storms of 24 April 2002. These storms varied in intensity (from F0-F4) and occurred over regions with different land use. It was found that, depending on the nature of land use, tornado damage tracks from intense storms (F2 or greater) may be evident in both ASTER and MODIS satellite imagery. In areas of dense vegetation the scar patterns show up very clearly, while in areas of grassland and regions with few trees, scar patterns are not at all obvious in the satellite imagery. The detection of previously unidentified segments of a damage track caused by the 24 April 2004 Madison County, Missouri tornado demonstrates the utility of satellite imagery for damage surveys. However, the capability to detect tornado tracks in satellite imagery appears to be as much dependent on the nature of the underlying surface and land use as on the severity of the tornadic storm. The imaging sensors on the NPOESS operational satellites to be launched in 2006 will continue the unique observing capabilities of the EOS instruments.

  2. Mental steps: Differential activation of internal pacemakers in motor imagery and in mental imitation of gait.

    PubMed

    Sacheli, Lucia Maria; Zapparoli, Laura; De Santis, Carlo; Preti, Matteo; Pelosi, Catia; Ursino, Nicola; Zerbi, Alberto; Banfi, Giuseppe; Paulesu, Eraldo

    2017-10-01

    Gait imagery and gait observation can boost the recovery of locomotion dysfunctions; yet, a neurologically justified rationale for their clinical application is lacking as much as a direct comparison of their neural correlates. Using functional magnetic resonance imaging, we measured the neural correlates of explicit motor imagery of gait during observation of in-motion videos shot in a park with a steady cam (Virtual Walking task). In a 2 × 2 factorial design, we assessed the modulatory effect of gait observation and of foot movement execution on the neural correlates of the Virtual Walking task: in half of the trials, the participants were asked to mentally imitate a human model shown while walking along the same route (mental imitation condition); moreover, for half of all the trials, the participants also performed rhythmic ankle dorsiflexion as a proxy for stepping movements. We found that, beyond the areas associated with the execution of lower limb movements (the paracentral lobule, the supplementary motor area, and the cerebellum), gait imagery also recruited dorsal premotor and posterior parietal areas known to contribute to the adaptation of walking patterns to environmental cues. When compared with mental imitation, motor imagery recruited a more extensive network, including a brainstem area compatible with the human mesencephalic locomotor region (MLR). Reduced activation of the MLR in mental imitation indicates that this more visually guided task poses less demand on subcortical structures crucial for internally generated gait patterns. This finding may explain why patients with subcortical degeneration benefit from rehabilitation protocols based on gait observation. Hum Brain Mapp 38:5195-5216, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Detection of Storm Damage Tracks with EOS Data

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Nair, Udaysankar; Haines, Stephanie L.

    2006-01-01

    The damage surveys conducted by the NWS in the aftermath of a reported tornadic event are used to document the location of the tornado ground damage track (pathlength and width) and an estimation of the tornado intensity. This study explores the possibility of using near-real-time medium and high spatial resolution satellite imagery from the NASA Earth Observing System satellites to provide additional information for the surveys. Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were used to study the damage tracks from three tornadic storms: the La Plata, Maryland, storm of 28 April 2002 and the Ellsinore and Marquand, Missouri, storms of 24 April 2002. These storms varied in intensity and occurred over regions with significantly different land cover. It was found that, depending on the nature of the land cover, tornado damage tracks from intense storms (F1 or greater) and hail storms may be evident in ASTER, Landsat, and MODIS satellite imagery. In areas where the land cover is dominated by forests, the scar patterns can show up very clearly, while in areas of grassland and regions with few trees, scar patterns are not as obvious or cannot be seen at all in the satellite imagery. The detection of previously unidentified segments of a damage track caused by the 24 April 2002 Marquand, Missouri, tornado demonstrates the utility of satellite imagery for damage surveys. However, the capability to detect tornado tracks in satellite imagery depends on the ability to observe the ground without obstruction from space and appears to be as much dependent on the nature of the underlying surface and land cover as on the severity of the tornadic storm.

  4. Dissecting hemisphere-specific contributions to visual spatial imagery using parametric brain mapping.

    PubMed

    Bien, Nina; Sack, Alexander T

    2014-07-01

    In the current study we aimed to empirically test previously proposed accounts of a division of labour between the left and right posterior parietal cortices during visuospatial mental imagery. The representation of mental images in the brain has been a topic of debate for several decades. Although the posterior parietal cortex is involved bilaterally, previous studies have postulated that hemispheric specialisation might result in a division of labour between the left and right parietal cortices. In the current fMRI study, we used an elaborated version of a behaviourally-controlled spatial imagery paradigm, the mental clock task, which involves mental image generation and a subsequent spatial comparison between two angles. By systematically varying the difference between the two angles that are mentally compared, we induced a symbolic distance effect: smaller differences between the two angles result in higher task difficulty. We employed parametrically weighed brain imaging to reveal brain areas showing a graded activation pattern in accordance with the induced distance effect. The parametric difficulty manipulation influenced behavioural data and brain activation patterns in a similar matter. Moreover, since this difficulty manipulation only starts to play a role from the angle comparison phase onwards, it allows for a top-down dissociation between the initial mental image formation, and the subsequent angle comparison phase of the spatial imagery task. Employing parametrically weighed fMRI analysis enabled us to top-down disentangle brain activation related to mental image formation, and activation reflecting spatial angle comparison. The results provide first empirical evidence for the repeatedly proposed division of labour between the left and right posterior parietal cortices during spatial imagery. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Fast traffic sign recognition with a rotation invariant binary pattern based feature.

    PubMed

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-19

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  6. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    PubMed Central

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-01

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217

  7. Unique digital imagery interface between a silicon graphics computer and the kinetic kill vehicle hardware-in-the-loop simulator (KHILS) wideband infrared scene projector (WISP)

    NASA Astrophysics Data System (ADS)

    Erickson, Ricky A.; Moren, Stephen E.; Skalka, Marion S.

    1998-07-01

    Providing a flexible and reliable source of IR target imagery is absolutely essential for operation of an IR Scene Projector in a hardware-in-the-loop simulation environment. The Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) at Eglin AFB provides the capability, and requisite interfaces, to supply target IR imagery to its Wideband IR Scene Projector (WISP) from three separate sources at frame rates ranging from 30 - 120 Hz. Video can be input from a VCR source at the conventional 30 Hz frame rate. Pre-canned digital imagery and test patterns can be downloaded into stored memory from the host processor and played back as individual still frames or movie sequences up to a 120 Hz frame rate. Dynamic real-time imagery to the KHILS WISP projector system, at a 120 Hz frame rate, can be provided from a Silicon Graphics Onyx computer system normally used for generation of digital IR imagery through a custom CSA-built interface which is available for either the SGI/DVP or SGI/DD02 interface port. The primary focus of this paper is to describe our technical approach and experience in the development of this unique SGI computer and WISP projector interface.

  8. Effect of biased feedback on motor imagery learning in BCI-teleoperation system.

    PubMed

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2014-01-01

    Feedback design is an important issue in motor imagery BCI systems. Regardless, to date it has not been reported how feedback presentation can optimize co-adaptation between a human brain and such systems. This paper assesses the effect of realistic visual feedback on users' BCI performance and motor imagery skills. We previously developed a tele-operation system for a pair of humanlike robotic hands and showed that BCI control of such hands along with first-person perspective visual feedback of movements can arouse a sense of embodiment in the operators. In the first stage of this study, we found that the intensity of this ownership illusion was associated with feedback presentation and subjects' performance during BCI motion control. In the second stage, we probed the effect of positive and negative feedback bias on subjects' BCI performance and motor imagery skills. Although the subject specific classifier, which was set up at the beginning of experiment, detected no significant change in the subjects' online performance, evaluation of brain activity patterns revealed that subjects' self-regulation of motor imagery features improved due to a positive bias of feedback and a possible occurrence of ownership illusion. Our findings suggest that in general training protocols for BCIs, manipulation of feedback can play an important role in the optimization of subjects' motor imagery skills.

  9. Iris recognition based on key image feature extraction.

    PubMed

    Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y

    2008-01-01

    In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.

  10. Quantum pattern recognition with multi-neuron interactions

    NASA Astrophysics Data System (ADS)

    Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.

    2018-03-01

    We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.

  11. Seismically active structural lineaments in south-central Alaska as seen on ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Gedney, L. (Principal Investigator); Vanwormer, J. D.

    1973-01-01

    The author has identified the following significant results. A mosaic of south-central Alaska composed of 19 ERTS-1 images, when compared with the seismicity pattern of the area, reveals that the larger earthquakes tend to fall on lineaments which are easily recognizable on the imagery. In most cases, these lineaments have not been mapped as faults. One particular lineament, which was the scene of three earthquakes of magnitude 4 or greater during 1972, passes very close to Anchorage.

  12. Investigations using data from LANDSAT-2

    NASA Technical Reports Server (NTRS)

    Hossain, A. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. LANDSAT imageries of Mirpur area of Dacca district were used in connection with surveys for black plastic clay. The imageries showed the broad pattern of small valleys cutting into Madhupur clay. Land use maps of Haor areas of Sylhet and Mymensingh districts were prepared. As a test case, two thana areas, namely Nickley and Astogram, were classified in different categories such as crop, settlement, and water. It does not show much agreement with the Agriculture Dept.'s statistics.

  13. Applications of satellite image processing to the analysis of Amazonian cultural ecology

    NASA Technical Reports Server (NTRS)

    Behrens, Clifford A.

    1991-01-01

    This paper examines the application of satellite image processing towards identifying and comparing resource exploitation among indigenous Amazonian peoples. The use of statistical and heuristic procedures for developing land cover/land use classifications from Thematic Mapper satellite imagery will be discussed along with actual results from studies of relatively small (100 - 200 people) settlements. Preliminary research indicates that analysis of satellite imagery holds great potential for measuring agricultural intensification, comparing rates of tropical deforestation, and detecting changes in resource utilization patterns over time.

  14. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  15. Incoherent optical generalized Hough transform: pattern recognition and feature extraction applications

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Ferrari, José A.

    2017-05-01

    Pattern recognition and feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital-only methods. We explore an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a pupil mask implemented on a high-contrast spatial light modulator for orientation/shape variation of the template. Real-time can also be achieved. In addition, by thresholding of the GHT and optically inverse transforming, the previously detected features of interest can be extracted.

  16. 33 CFR 104.220 - Company or vessel personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...

  17. 33 CFR 104.220 - Company or vessel personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...

  18. Genetic dissection of the maize (Zea mays L.) MAMP response

    USDA-ARS?s Scientific Manuscript database

    Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors (PRRs). Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and ex...

  19. The Functional Architecture of Visual Object Recognition

    DTIC Science & Technology

    1991-07-01

    different forms of agnosia can provide clues to the representations underlying normal object recognition (Farah, 1990). For example, the pair-wise...patterns of deficit and sparing occur. In a review of 99 published cases of agnosia , the observed patterns of co- occurrence implicated two underlying

  20. Utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information

    DOT National Transportation Integrated Search

    2009-01-01

    This report describes a study conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information. The study gathered data from a large number of pilots who conduct all type...

  1. Spatial pattern recognition of seismic events in South West Colombia

    NASA Astrophysics Data System (ADS)

    Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber

    2013-09-01

    Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.

  2. Multivariate pattern recognition for diagnosis and prognosis in clinical neuroimaging: state of the art, current challenges and future trends.

    PubMed

    Haller, Sven; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon; Van De Ville, Dimitri

    2014-05-01

    Many diseases are associated with systematic modifications in brain morphometry and function. These alterations may be subtle, in particular at early stages of the disease progress, and thus not evident by visual inspection alone. Group-level statistical comparisons have dominated neuroimaging studies for many years, proving fascinating insight into brain regions involved in various diseases. However, such group-level results do not warrant diagnostic value for individual patients. Recently, pattern recognition approaches have led to a fundamental shift in paradigm, bringing multivariate analysis and predictive results, notably for the early diagnosis of individual patients. We review the state-of-the-art fundamentals of pattern recognition including feature selection, cross-validation and classification techniques, as well as limitations including inter-individual variation in normal brain anatomy and neurocognitive reserve. We conclude with the discussion of future trends including multi-modal pattern recognition, multi-center approaches with data-sharing and cloud-computing.

  3. COPPER Students - ELaNa IV

    NASA Image and Video Library

    2013-07-11

    The Close Orbiting Propellant Plume Elemental Recognition (COPPER) was developed by students from St. Louis University as a technology demonstration mission whose objective is to test the suitability of a commercially-available compact uncooled microbolometer (tiny infrared camera) array for scientific imagery of Earth in the long-wave infrared range (LWIR, 7-13 microns). Launched by NASA’s CubeSat Launch Initiative on the ELaNa IV mission as an auxiliary payload aboard the U.S. Air Force-led Operationally Responsive Space (ORS-3) Mission on November 19, 2013.

  4. Atmospheric water distribution in a midlatitude cyclone observed by the Seasat Scanning Multichannel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Mcmurdie, L. A.; Katsaros, K. B.

    1985-01-01

    Patterns in the horizontal distribution of integrated water vapor, integrated liquid water and rainfall rate derived from the Seasat Scanning Multichannel Microwave Radiometer (SMMR) during a September 10-12, 1978 North Pacific cyclone are studied. These patterns are compared with surface analyses, ship reports, radiosonde data, and GOES-West infrared satellite imagery. The SMMR data give a unique view of the large mesoscale structure of a midlatitude cyclone. The water vapor distribution is found to have characteristic patterns related to the location of the surface fronts throughout the development of the cyclone. An example is given to illustrate that SMMR data could significantly improve frontal analysis over data-sparse oceanic regions. The distribution of integrated liquid water agrees qualitatively well with corresponding cloud patterns in satellite imagery and appears to provide a means to distinguish where liquid water clouds exist under a cirrus shield. Ship reports of rainfall intensity agree qualitatively very well with SMMR-derived rainrates. Areas of mesoscale rainfall, on the order of 50 km x 50 km or greater are detected using SMMR derived rainrates.

  5. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-11-30

    Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Computer Vision for Artificially Intelligent Robotic Systems

    NASA Astrophysics Data System (ADS)

    Ma, Chialo; Ma, Yung-Lung

    1987-04-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Model, we use a narrow beam transducer and it's input voltage is 50V p-p. A RobOt equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.

  7. Improved Performance Characteristics For Indium Antimonide Photovoltaic Detector Arrays Using A FET-Switched Multiplexing Technique

    NASA Astrophysics Data System (ADS)

    Ma, Yung-Lung; Ma, Chialo

    1987-03-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts _ position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed by the main control unit. In Pulse-Echo Signal Process Unit, we utilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by p law coding method, and this data together with delay time T, angle information eH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Models, we use a narrow beam transducer and it's input voltage is 50V p-p. A Robot equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.

  8. Study and response time for the visual recognition of 'similarity' and identity

    NASA Technical Reports Server (NTRS)

    Derks, P. L.; Bauer, T. M.

    1974-01-01

    Four subjects compared successively presented pairs of line patterns for a match between any lines in the pattern (similarity) and for a match between all lines (identity). The encoding or study times for pattern recognition from immediate memory and the latency in responses to comparison stimuli were examined. Qualitative differences within and between subjects were most evident in study times.

  9. Hypothesis Support Mechanism for Mid-Level Visual Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Amador, Jose J (Inventor)

    2007-01-01

    A method of mid-level pattern recognition provides for a pose invariant Hough Transform by parametrizing pairs of points in a pattern with respect to at least two reference points, thereby providing a parameter table that is scale- or rotation-invariant. A corresponding inverse transform may be applied to test hypothesized matches in an image and a distance transform utilized to quantify the level of match.

  10. The chemical structure of DNA sequence signals for RNA transcription

    NASA Technical Reports Server (NTRS)

    George, D. G.; Dayhoff, M. O.

    1982-01-01

    The proposed recognition sites for RNA transcription for E. coli NRA polymerase, bacteriophage T7 RNA polymerase, and eukaryotic RNA polymerase Pol II are evaluated in the light of the requirements for efficient recognition. It is shown that although there is good experimental evidence that specific nucleic acid sequence patterns are involved in transcriptional regulation in bacteria and bacterial viruses, among the sequences now available, only in the case of the promoters recognized by bacteriophage T7 polymerase does it seem likely that the pattern is sufficient. It is concluded that the eukaryotic pattern that is investigated is not restrictive enough to serve as a recognition site.

  11. An Efficient and Robust Singular Value Method for Star Pattern Recognition and Attitude Determination

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Kim, Hye-Young; Junkins, John L.

    2003-01-01

    A new star pattern recognition method is developed using singular value decomposition of a measured unit column vector matrix in a measurement frame and the corresponding cataloged vector matrix in a reference frame. It is shown that singular values and right singular vectors are invariant with respect to coordinate transformation and robust under uncertainty. One advantage of singular value comparison is that a pairing process for individual measured and cataloged stars is not necessary, and the attitude estimation and pattern recognition process are not separated. An associated method for mission catalog design is introduced and simulation results are presented.

  12. Fourier transform magnitudes are unique pattern recognition templates.

    PubMed

    Gardenier, P H; McCallum, B C; Bates, R H

    1986-01-01

    Fourier transform magnitudes are commonly used in the generation of templates in pattern recognition applications. We report on recent advances in Fourier phase retrieval which are relevant to pattern recognition. We emphasise in particular that the intrinsic form of a finite, positive image is, in general, uniquely related to the magnitude of its Fourier transform. We state conditions under which the Fourier phase can be reconstructed from samples of the Fourier magnitude, and describe a method of achieving this. Computational examples of restoration of Fourier phase (and hence, by Fourier transformation, the intrinsic form of the image) from samples of the Fourier magnitude are also presented.

  13. Detection and recognition of analytes based on their crystallization patterns

    DOEpatents

    Morozov, Victor [Manassas, VA; Bailey, Charles L [Cross Junction, VA; Vsevolodov, Nikolai N [Kensington, MD; Elliott, Adam [Manassas, VA

    2008-05-06

    The invention contemplates a method for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization pattern") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. It has been shown that changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. It was also found that both the character of changer in the crystallization patter and the fact of such changes can be used as recognition elements in analysis of protein molecules.

  14. Recognition of neural brain activity patterns correlated with complex motor activity

    NASA Astrophysics Data System (ADS)

    Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.

    2018-04-01

    In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.

  15. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline

    PubMed Central

    Trdá, Lucie; Boutrot, Freddy; Claverie, Justine; Brulé, Daphnée; Dorey, Stephan; Poinssot, Benoit

    2015-01-01

    Plants are continuously monitoring the presence of microorganisms to establish an adapted response. Plants commonly use pattern recognition receptors (PRRs) to perceive microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) which are microorganism molecular signatures. Located at the plant plasma membrane, the PRRs are generally receptor-like kinases (RLKs) or receptor-like proteins (RLPs). MAMP detection will lead to the establishment of a plant defense program called MAMP-triggered immunity (MTI). In this review, we overview the RLKs and RLPs that assure early recognition and control of pathogenic or beneficial bacteria. We also highlight the crucial function of PRRs during plant-microbe interactions, with a special emphasis on the receptors of the bacterial flagellin and peptidoglycan. In addition, we discuss the multiple strategies used by bacteria to evade PRR-mediated recognition. PMID:25904927

  16. Peptidoglycan recognition proteins in Drosophila immunity.

    PubMed

    Kurata, Shoichiro

    2014-01-01

    Innate immunity is the front line of self-defense against infectious non-self in vertebrates and invertebrates. The innate immune system is mediated by germ-line encoding pattern recognition molecules (pathogen sensors) that recognize conserved molecular patterns present in the pathogens but absent in the host. Peptidoglycans (PGN) are essential cell wall components of almost all bacteria, except mycoplasma lacking a cell wall, which provides the host immune system an advantage for detecting invading bacteria. Several families of pattern recognition molecules that detect PGN and PGN-derived compounds have been indentified, and the role of PGRP family members in host defense is relatively well-characterized in Drosophila. This review focuses on the role of PGRP family members in the recognition of invading bacteria and the activation and modulation of immune responses in Drosophila. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Automatic micropropagation of plants--the vision-system: graph rewriting as pattern recognition

    NASA Astrophysics Data System (ADS)

    Schwanke, Joerg; Megnet, Roland; Jensch, Peter F.

    1993-03-01

    The automation of plant-micropropagation is necessary to produce high amounts of biomass. Plants have to be dissected on particular cutting-points. A vision-system is needed for the recognition of the cutting-points on the plants. With this background, this contribution is directed to the underlying formalism to determine cutting-points on abstract-plant models. We show the usefulness of pattern recognition by graph-rewriting along with some examples in this context.

  18. Age-related increases in false recognition: the role of perceptual and conceptual similarity.

    PubMed

    Pidgeon, Laura M; Morcom, Alexa M

    2014-01-01

    Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499-510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.'s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous "old/new" responses at test, while in Experiment 2 participants were also asked to judge lures as "similar," to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.'s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation.

  19. Age-related increases in false recognition: the role of perceptual and conceptual similarity

    PubMed Central

    Pidgeon, Laura M.; Morcom, Alexa M.

    2014-01-01

    Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499–510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.’s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous “old/new” responses at test, while in Experiment 2 participants were also asked to judge lures as “similar,” to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.’s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation. PMID:25368576

  20. Image-based automatic recognition of larvae

    NASA Astrophysics Data System (ADS)

    Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai

    2010-08-01

    As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.

Top