Design Principles of Nanoparticles as Contrast Agents for Magnetic Resonance Imaging
NASA Astrophysics Data System (ADS)
Shan, Liang; Gu, Xinbin; Wang, Paul
2013-09-01
Molecular imaging is an emerging field that introduces molecular agents into traditional imaging techniques, enabling visualization, characterization and measurement of biological processes at the molecular and cellular levels in humans and other living systems. The promise of molecular imaging lies in its potential for selective potency by targeting biomarkers or molecular targets and the imaging agents serve as reporters for the selectivity of targeting. Development of an efficient molecular imaging agent depends on well-controlled high-quality experiment design involving target selection, agent synthesis, in vitro characterization, and in vivo animal characterization before it is applied in humans. According to the analysis from the Molecular Imaging and Contrast Agent Database (MICAD,
Chemopreventive Agent Development | Division of Cancer Prevention
[[{"fid":"174","view_mode":"default","fields":{"format":"default","field_file_image_alt_text[und][0][value]":"Chemoprevenentive Agent Development Research Group Homepage Logo","field_file_image_title_text[und][0][value]":"Chemoprevenentive Agent Development Research Group Homepage
NASA Astrophysics Data System (ADS)
Cachard, Christian; Basset, Olivier
While the use of contrast agents in other imaging modalities (X ray, MRI, PET, …) has been routinely accepted for many years, the development and commercialization of contrast agents designed specifically for ultrasound imaging has occurred only very recently. As in the other imaging modalities, the injection of contrast agents during an ultrasound examination is intended to facilitate the detection and diagnosis of specific pathologies. Contrast agents efficiency is based on the backscattering of ultrasound by microbubbles. These microparticules are intravenously injected in the blood flow. After an introduction and generalities on ultrasound contrast agents (UCA) the microbubble physics in an acoustic field will be developed. Second, physics characteristics of contrast agents will be compared (bubbles with or without shell, gas nature, size distribution). Influence of acoustic pressure on the behaviour of the microparticules (linear, non linear and destruction) will be discussed. Finally, a review of specific imaging adapted to contrast agent properties as harmonic imaging, pulse inversion imaging will be presented.
2018-01-01
During the last decade, the utilization of 68Ga for the development of imaging agents has increased considerably with the leading position in the oncology. The imaging of infection and inflammation is lagging despite strong unmet medical needs. This review presents the potential routes for the development of 68Ga-based agents for the imaging and quantification of infection and inflammation in various diseases and connection of the diagnosis to the treatment for the individualized patient management. PMID:29531507
PEGylated Peptide-Based Imaging Agents for Targeted Molecular Imaging.
Wu, Huizi; Huang, Jiaguo
2016-01-01
Molecular imaging is able to directly visualize targets and characterize cellular pathways with a high signal/background ratio, which requires a sufficient amount of agents to uptake and accumulate in the imaging area. The design and development of peptide based agents for imaging and diagnosis as a hot and promising research topic that is booming in the field of molecular imaging. To date, selected peptides have been increasingly developed as agents by coupling with different imaging moieties (such as radiometals and fluorophore) with the help of sophisticated chemical techniques. Although a few successes have been achieved, most of them have failed mainly caused by their fast renal clearance and therefore low tumor uptakes, which may limit the effectively tumor retention effect. Besides, several peptide agents based on nanoparticles have also been developed for medical diagnostics. However, a great majority of those agents shown long circulation times and accumulation over time into the reticuloendothelial system (RES; including spleen, liver, lymph nodes and bone marrow) after systematic administration, such long-term severe accumulation probably results in the possible likelihood of toxicity and potentially induces health hazards. Recently reported design criteria have been proposed not only to enhance binding affinity in tumor region with long retention, but also to improve clearance from the body in a reasonable amount of time. PEGylation has been considered as one of the most successful modification methods to prolong tumor retention and improve the pharmacokinetic and pharmacodynamic properties for peptide-based imaging agents. This review summarizes an overview of PEGylated peptides imaging agents based on different imaging moieties including radioisotopes, fluorophores, and nanoparticles. The unique concepts and applications of various PEGylated peptide-based imaging agents are introduced for each of several imaging moieties. Effects of PEGylation on their target capability, clearance kinetics and metabolic stability are depicted. Problems and issues relating to the pharmacokinetic and optimization design of peptide-based imaging agents are also discussed.
Magnetomotive Molecular Nanoprobes
John, Renu; Boppart, Stephen A.
2012-01-01
Tremendous developments in the field of biomedical imaging in the past two decades have resulted in the transformation of anatomical imaging to molecular-specific imaging. The main approaches towards imaging at a molecular level are the development of high resolution imaging modalities with high penetration depths and increased sensitivity, and the development of molecular probes with high specificity. The development of novel molecular contrast agents and their success in molecular optical imaging modalities have lead to the emergence of molecular optical imaging as a more versatile and capable technique for providing morphological, spatial, and functional information at the molecular level with high sensitivity and precision, compared to other imaging modalities. In this review, we discuss a new class of dynamic contrast agents called magnetomotive molecular nanoprobes for molecular-specific imaging. Magnetomotive agents are superparamagnetic nanoparticles, typically iron-oxide, that are physically displaced by the application of a small modulating external magnetic field. Dynamic phase-sensitive position measurements are performed using any high resolution imaging modality, including optical coherence tomography (OCT), ultrasonography, or magnetic resonance imaging (MRI). The dynamics of the magnetomotive agents can be used to extract the biomechanical tissue properties in which the nanoparticles are bound, and the agents can be used to deliver therapy via magnetomotive displacements to modulate or disrupt cell function, or hyperthermia to kill cells. These agents can be targeted via conjugation to antibodies, and in vivo targeted imaging has been shown in a carcinogen-induced rat mammary tumor model. The iron-oxide nanoparticles also exhibit negative T2 contrast in MRI, and modulations can produce ultrasound imaging contrast for multimodal imaging applications. PMID:21517766
Functional mesoporous silica nanoparticles for bio-imaging applications.
Cha, Bong Geun; Kim, Jaeyun
2018-03-22
Biomedical investigations using mesoporous silica nanoparticles (MSNs) have received significant attention because of their unique properties including controllable mesoporous structure, high specific surface area, large pore volume, and tunable particle size. These unique features make MSNs suitable for simultaneous diagnosis and therapy with unique advantages to encapsulate and load a variety of therapeutic agents, deliver these agents to the desired location, and release the drugs in a controlled manner. Among various clinical areas, nanomaterials-based bio-imaging techniques have advanced rapidly with the development of diverse functional nanoparticles. Due to the unique features of MSNs, an imaging agent supported by MSNs can be a promising system for developing targeted bio-imaging contrast agents with high structural stability and enhanced functionality that enable imaging of various modalities. Here, we review the recent achievements on the development of functional MSNs for bio-imaging applications, including optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and multimodal imaging for early diagnosis. With further improvement in noninvasive bio-imaging techniques, the MSN-supported imaging agent systems are expected to contribute to clinical applications in the future. This article is categorized under: Diagnostic Tools > In vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.
Gadolinium-Based Contrast Agents for MR Cancer Imaging
Zhou, Zhuxian; Lu, Zheng-Rong
2013-01-01
Magnetic resonance imaging (MRI) is a clinical imaging modality effective for anatomical and functional imaging of diseased soft tissues, including solid tumors. MRI contrast agents have been routinely used for detecting tumor at an early stage. Gadolinium based contrast agents are the most commonly used contrast agents in clinical MRI. There have been significant efforts to design and develop novel Gd(III) contrast agents with high relaxivity, low toxicity and specific tumor binding. The relaxivity of the Gd(III) contrast agents can be increased by proper chemical modification. The toxicity of Gd(III) contrast agents can be reduced by increasing the agents’ thermodynamic and kinetic stability, as well as optimizing their pharmacokinetic properties. The increasing knowledge in the field of cancer genomics and biology provides an opportunity for designing tumor-specific contrast agents. Various new Gd(III) chelates have been designed and evaluated in animal models for more effective cancer MRI. This review outlines the design and development, physicochemical properties, and in vivo properties of several classes of Gd(III)-based MR contrast agents for tumor imaging. PMID:23047730
A New F-18 Labeled PET Agent For Imaging Alzheimer's Plaques
NASA Astrophysics Data System (ADS)
Kulkarni, Padmakar V.; Vasdev, Neil; Hao, Guiyang; Arora, Veera; Long, Michael; Slavine, Nikolai; Chiguru, Srinivas; Qu, Bao Xi; Sun, Xiankai; Bennett, Michael; Antich, Peter P.; Bonte, Frederick J.
2011-06-01
Amyloid plaques and neurofibrillary tangles are hallmarks of Alzheimer's disease (AD). Advances in development of imaging agents have focused on targeting amyloid plaques. Notable success has been the development of C-11 labeled PIB (Pittsburgh Compound) and a number of studies have demonstrated the utility of this agent. However, the short half life of C-11 (t1/2: 20 min), is a limitation, thus has prompted the development of F-18 labeled agents. Most of these agents are derivatives of amyloid binding dyes; Congo red and Thioflavin. Some of these agents are in clinical trials with encouraging results. We have been exploring new class of agents based on 8-hydroxy quinoline, a weak metal chelator, targeting elevated levels of metals in plaques. Iodine-123 labeled clioquinol showed affinity for amyloid plaques however, it had limited brain uptake and was not successful in imaging in intact animals and humans. We have been successful in synthesizing F-18 labeled 8-hydroxy quinoline. Small animal PET/CT imaging studies with this agent showed high (7-10% ID/g), rapid brain uptake and fast washout of the agent from normal mice brains and delayed washout from transgenic Alzheimer's mice. These promising results encouraged us in further evaluation of this class of compounds for imaging AD plaques.
Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection
Sinharay, Sanhita; Pagel, Mark D.
2016-01-01
Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630
Boronic acids for fluorescence imaging of carbohydrates.
Sun, Xiaolong; Zhai, Wenlei; Fossey, John S; James, Tony D
2016-02-28
"Fluorescence imaging" is a particularly exciting and rapidly developing area of research; the annual number of publications in the area has increased ten-fold over the last decade. The rapid increase of interest in fluorescence imaging will necessitate the development of an increasing number of molecular receptors and binding agents in order to meet the demand in this rapidly expanding area. Carbohydrate biomarkers are particularly important targets for fluorescence imaging given their pivotal role in numerous important biological events, including the development and progression of many diseases. Therefore, the development of new fluorescent receptors and binding agents for carbohydrates is and will be increasing in demand. This review highlights the development of fluorescence imaging agents based on boronic acids a particularly promising class of receptors given their strong and selective binding with carbohydrates in aqueous media.
Phage display and molecular imaging: expanding fields of vision in living subjects.
Cochran, R; Cochran, Frank
2010-01-01
In vivo molecular imaging enables non-invasive visualization of biological processes within living subjects, and holds great promise for diagnosis and monitoring of disease. The ability to create new agents that bind to molecular targets and deliver imaging probes to desired locations in the body is critically important to further advance this field. To address this need, phage display, an established technology for the discovery and development of novel binding agents, is increasingly becoming a key component of many molecular imaging research programs. This review discusses the expanding role played by phage display in the field of molecular imaging with a focus on in vivo applications. Furthermore, new methodological advances in phage display that can be directly applied to the discovery and development of molecular imaging agents are described. Various phage library selection strategies are summarized and compared, including selections against purified target, intact cells, and ex vivo tissue, plus in vivo homing strategies. An outline of the process for converting polypeptides obtained from phage display library selections into successful in vivo imaging agents is provided, including strategies to optimize in vivo performance. Additionally, the use of phage particles as imaging agents is also described. In the latter part of the review, a survey of phage-derived in vivo imaging agents is presented, and important recent examples are highlighted. Other imaging applications are also discussed, such as the development of peptide tags for site-specific protein labeling and the use of phage as delivery agents for reporter genes. The review concludes with a discussion of how phage display technology will continue to impact both basic science and clinical applications in the field of molecular imaging.
Direct visualization of gastrointestinal tract with lanthanide-doped BaYbF5 upconversion nanoprobes.
Liu, Zhen; Ju, Enguo; Liu, Jianhua; Du, Yingda; Li, Zhengqiang; Yuan, Qinghai; Ren, Jinsong; Qu, Xiaogang
2013-10-01
Nanoparticulate contrast agents have attracted a great deal of attention along with the rapid development of modern medicine. Here, a binary contrast agent based on PAA modified BaYbF5:Tm nanoparticles for direct visualization of gastrointestinal (GI) tract has been designed and developed via a one-pot solvothermal route. By taking advantages of excellent colloidal stability, low cytotoxicity, and neglectable hemolysis of these well-designed nanoparticles, their feasibility as a multi-modal contrast agent for GI tract was intensively investigated. Significant enhancement of contrast efficacy relative to clinical barium meal and iodine-based contrast agent was evaluated via X-ray imaging and CT imaging in vivo. By doping Tm(3+) ions into these nanoprobes, in vivo NIR-NIR imaging was then demonstrated. Unlike some invasive imaging modalities, non-invasive imaging strategy including X-ray imaging, CT imaging, and UCL imaging for GI tract could extremely reduce the painlessness to patients, effectively facilitate imaging procedure, as well as rationality economize diagnostic time. Critical to clinical applications, long-term toxicity of our contrast agent was additionally investigated in detail, indicating their overall safety. Based on our results, PAA-BaYbF5:Tm nanoparticles were the excellent multi-modal contrast agent to integrate X-ray imaging, CT imaging, and UCL imaging for direct visualization of GI tract with low systemic toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aptamer-Targeted Gold Nanoparticles As Molecular-Specific Contrast Agents for Reflectance Imaging
2008-01-01
Targeted metallic nanoparticles have shown potential as a platform for development of molecular-specific contrast agents. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In this study, we investigated the development of aptamer-based gold nanoparticles as contrast agents, using aptamers as targeting agents and gold nanoparticles as imaging agents. We devised a novel conjugation approach using an extended aptamer design where the extension is complementary to an oligonucleotide sequence attached to the surface of the gold nanoparticles. The chemical and optical properties of the aptamer−gold conjugates were characterized using size measurements and oligonucleotide quantitation assays. We demonstrate this conjugation approach to create a contrast agent designed for detection of prostate-specific membrane antigen (PSMA), obtaining reflectance images of PSMA(+) and PSMA(−) cell lines treated with the anti-PSMA aptamer−gold conjugates. This design strategy can easily be modified to incorporate multifunctional agents as part of a multimodal platform for reflectance imaging applications. PMID:18512972
Intelligent Design of Nano-Scale Molecular Imaging Agents
Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki
2012-01-01
Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents. PMID:23235326
Intelligent design of nano-scale molecular imaging agents.
Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki
2012-12-12
Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on-off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Padmakar V.; Hao Guiyang; Arora, Veera
Amyloid plaques and neurofibrillary tangles are hallmarks of Alzheimer's disease (AD). Advances in development of imaging agents have focused on targeting amyloid plaques. Notable success has been the development of C-11 labeled PIB (Pittsburgh Compound) and a number of studies have demonstrated the utility of this agent. However, the short half life of C-11 (t1/2: 20 min), is a limitation, thus has prompted the development of F-18 labeled agents. Most of these agents are derivatives of amyloid binding dyes; Congo red and Thioflavin. Some of these agents are in clinical trials with encouraging results. We have been exploring new classmore » of agents based on 8-hydroxy quinoline, a weak metal chelator, targeting elevated levels of metals in plaques. Iodine-123 labeled clioquinol showed affinity for amyloid plaques however, it had limited brain uptake and was not successful in imaging in intact animals and humans. We have been successful in synthesizing F-18 labeled 8-hydroxy quinoline. Small animal PET/CT imaging studies with this agent showed high (7-10% ID/g), rapid brain uptake and fast washout of the agent from normal mice brains and delayed washout from transgenic Alzheimer's mice. These promising results encouraged us in further evaluation of this class of compounds for imaging AD plaques.« less
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka; Hama, Yukihiro; Koyama, Yoshinori; Barrett, Tristan; Urano, Yasuteru; Choyke, Peter L.
2007-02-01
Target-specific contrast agents are being developed for the molecular imaging of cancer. Optically detectable target-specific agents are promising for clinical applications because of their high sensitivity and specificity. Pre clinical testing is needed, however, to validate the actual sensitivity and specificity of these agents in animal models, and involves both conventional histology and immunohistochemistry, which requires large numbers of animals and samples with costly handling. However, a superior validation tool takes advantage of genetic engineering technology whereby cell lines are transfected with genes that induce the target cell to produce fluorescent proteins with characteristic emission spectra thus, identifying them as cancer cells. Multicolor fluorescence imaging of these genetically engineered probes can provide rapid validation of newly developed exogenous probes that fluoresce at different wavelengths. For example, the plasmid containing the gene encoding red fluorescent protein (RFP) was transfected into cell lines previously developed to either express or not-express specific cell surface receptors. Various antibody-based or receptor ligand-based optical contrast agents with either green or near infrared fluorophores were developed to concurrently target and validate cancer cells and their positive and negative controls, such as β-D-galactose receptor, HER1 and HER2 in a single animal/organ. Spectrally resolved fluorescence multicolor imaging was used to detect separate fluorescent emission spectra from the exogenous agents and RFP. Therefore, using this in vivo imaging technique, we were able to demonstrate the sensitivity and specificity of the target-specific optical contrast agents, thus reducing the number of animals needed to conduct these experiments.
Nano-sized Contrast Agents to Non-Invasively Detect Renal Inflammation by Magnetic Resonance Imaging
Thurman, Joshua M.; Serkova, Natalie J.
2013-01-01
Several molecular imaging methods have been developed that employ nano-sized contrast agents to detect markers of inflammation within tissues. Renal inflammation contributes to disease progression in a wide range of autoimmune and inflammatory diseases, and a biopsy is currently the only method of definitively diagnosing active renal inflammation. However, the development of new molecular imaging methods that employ contrast agents capable of detecting particular immune cells or protein biomarkers will allow clinicians to evaluate inflammation throughout the kidneys, and to assess a patient's response to immunomodulatory drugs. These imaging tools will improve our ability to validate new therapies and to optimize the treatment of individual patients with existing therapies. This review describes the clinical need for new methods of monitoring renal inflammation, and recent advances in the development of nano-sized contrast agents for detection of inflammatory markers of renal disease. PMID:24206601
Corot, Claire; Warlin, David
2013-01-01
Superparamagnetic iron oxide (SPIO) nanoparticles are a relatively large class of contrast agents for magnetic resonance imaging. According to their biodistribution, distinct classes of SPIO nanoparticles have been investigated for clinical applications either as macrophage imaging agents or blood pool agents. Contrast agents which are pharmaceutics followed the same development rules as therapeutic drugs. Several drawbacks such as clinical development difficulties, organization of market access and imaging technological developments have limited the widespread use of these products. SPIO nanoparticles that are composed of thousands iron atoms providing large T2* effects are particularly suitable for theranostic. Stem cell migration and immune cell trafficking, as well as targeted SPIO nanoparticles for molecular imaging studies are mainly at the stage of proof of concept. A major economic challenge in the development of molecular imaging associated with a therapeutic treatment/procedure is to define innovative business models compatible with the needs of all players taking into account that theranostic solutions are promising to optimize resource allocation and ensure that expensive treatments are prescribed to responding patients. © 2013 Wiley Periodicals, Inc.
The evolution of gadolinium based contrast agents: from single-modality to multi-modality
NASA Astrophysics Data System (ADS)
Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.
2016-05-01
Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.
Development and Applications of Photo-triggered Theranostic Agents
Rai, Prakash; Mallidi, Srivallesha; Zheng, Xiang; Rahmanzadeh, Ramtin; Mir, Youssef; Elrington, Stefan; Khurshid, Ahmat; Hasan, Tayyaba
2010-01-01
Theranostics, the fusion of therapy and diagnostics for optimizing efficacy and safety of therapeutic regimes, is a growing field that is paving the way towards the goal of personalized medicine for the benefit of patients. The use of light as a remote-activation mechanism for drug delivery has received increased attention due to its advantages in highly specific spatial and temporal control of compound release. Photo-triggered theranostic constructs could facilitate an entirely new category of clinical solutions which permit early recognition of the disease by enhancing contrast in various imaging modalities followed by the tailored guidance of therapy. Finally, such theranostic agents could aid imaging modalities in monitoring response to therapy. This article reviews recent developments in the use of light-triggered theranostic agents for simultaneous imaging and photoactivation of therapeutic agents. Specifically, we discuss recent developments in the use of theranostic agents for photodynamic-, photothermal- or photo-triggered chemo-therapy for several diseases. PMID:20858520
Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Machado, Sergio A; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S
2015-07-01
Tumor-associated neoangiogenesis (TAN) is an early event in ovarian cancer (OVCA) development. Increased expression of vascular endothelial growth factor receptor 2 (VEGFR2) by TAN vessels presents a potential target for early detection by ultrasound imaging. The goal of this study was to examine the suitability of VEGFR2-targeted ultrasound contrast agents in detecting spontaneous OVCA in laying hens. Effects of VEGFR2-targeted contrast agents in enhancing the intensity of ultrasound imaging from spontaneous ovarian tumors in hens were examined in a cross-sectional study. Enhancement in the intensity of ultrasound imaging was determined before and after injection of VEGFR2-targeted contrast agents. All ultrasound images were digitally stored and analyzed off-line. Following scanning, ovarian tissues were collected and processed for histology and detection of VEGFR2-expressing microvessels. Enhancement in visualization of ovarian morphology was detected by gray-scale imaging following injection of VEGFR2-targeted contrast agents. Compared with pre-contrast, contrast imaging enhanced the intensities of ultrasound imaging significantly (p < 0.0001) irrespective of the pathological status of ovaries. In contrast to normal hens, the intensity of ultrasound imaging was significantly (p < 0.0001) higher in hens with early stage OVCA and increased further in hens with late stage OVCA. Higher intensities of ultrasound imaging in hens with OVCA were positively correlated with increased (p < 0.0001) frequencies of VEGFR2-expressing microvessels. The results of this study suggest that VEGFR2-targeted contrast agents enhance the visualization of spontaneous ovarian tumors in hens at early and late stages of OVCA. The laying hen may be a suitable model to test new imaging agents and develop targeted therapeutics. © The Author(s) 2014.
Gold nanoparticles for photoacoustic imaging
Li, Wanwan; Chen, Xiaoyuan
2015-01-01
Photoacoustic (PA) imaging is a biomedical imaging modality that provides functional information regarding the cellular and molecular signatures of tissue by using endogenous and exogenous contrast agents. There has been tremendous effort devoted to the development of PA imaging agents, and gold nanoparticles as exogenous contrast agents have great potential for PA imaging due to their inherent and geometrically induced optical properties. The gold-based nanoparticles that are most commonly employed for PA imaging include spheres, rods, shells, prisms, cages, stars and vesicles. This article provides an overview of the current state of research in utilizing these gold nanomaterials for PA imaging of cancer, atherosclerotic plaques, brain function and image-guided therapy. PMID:25600972
Gustafsson, Björn; Youens, Susan; Louie, Angelique Y.
2008-01-01
Atherosclerosis is a leading cause of death in the U.S. Because there is a potential to prevent coronary and arterial diseases through early diagnosis, there is a need for methods to image arteries in the sub-clinical stage as well as clinical stage using various non-invasive techniques, including Magnetic Resonance Imaging (MRI). We describe a development of a novel MRI contrast agent targeted to plaques that will allow imaging of lesion formation. The contrast agent is directed to macrophages, one of the earliest components of developing plaques. Macrophages are labeled through the macrophage scavenger receptor A, a macrophage specific cell surface protein, using an MRI contrast agent derived from scavenger receptor ligands. We have synthesized and characterized these contrast agents with a range of relaxivities. In vitro studies show that the targeted contrast agent accumulates in macrophages and solution studies indicate that micromolar concentrations are sufficient to produce contrast in an MR image. Cell toxicity and initial biodistribution studies indicate low toxicity, no detectable retention in normal blood vessels, and rapid clearance from blood. The promising performance of this contrast agent targeted towards vascular inflammation opens doors to tracking of other inflammatory diseases such as tumor immunotherapy and transplant acceptance using MRI. PMID:16536488
Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics
NASA Astrophysics Data System (ADS)
Liu, Yang; Chang, Zheng; Yuan, Hsiangkuo; Fales, Andrew M.; Vo-Dinh, Tuan
2013-11-01
A unique quintuple-modality theranostic nanoprobe (QMT) is developed with gold nanostars for surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI), computed tomography (CT), two-photon luminescence (TPL) imaging and photothermal therapy (PTT). The synthesized gold nanostars were tagged with a SERS reporter and linked with an MRI contrast agent Gd3+. In vitro experiments demonstrated the developed QMT nanoprobe to be a potential theranostic agent for future biomedical applications.A unique quintuple-modality theranostic nanoprobe (QMT) is developed with gold nanostars for surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI), computed tomography (CT), two-photon luminescence (TPL) imaging and photothermal therapy (PTT). The synthesized gold nanostars were tagged with a SERS reporter and linked with an MRI contrast agent Gd3+. In vitro experiments demonstrated the developed QMT nanoprobe to be a potential theranostic agent for future biomedical applications. Electronic supplementary information (ESI) available: Details of experimental section, characterization details and relaxivity curve of developed QMT nanoprobe in water at 1.5 T magnetic filed strength. See DOI: 10.1039/c3nr03762b
Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer
Sivasubramanian, Maharajan; Hsia, Yu; Lo, Leu-Wei
2014-01-01
Cancer detection in its early stages is imperative for effective cancer treatment and patient survival. In recent years, biomedical imaging techniques, such as magnetic resonance imaging, computed tomography and ultrasound have been greatly developed and have served pivotal roles in clinical cancer management. Molecular imaging (MI) is a non-invasive imaging technique that monitors biological processes at the cellular and sub-cellular levels. To achieve these goals, MI uses targeted imaging agents that can bind targets of interest with high specificity and report on associated abnormalities, a task that cannot be performed by conventional imaging techniques. In this respect, MI holds great promise as a potential therapeutic tool for the early diagnosis of cancer. Nevertheless, the clinical applications of targeted imaging agents are limited due to their inability to overcome biological barriers inside the body. The use of nanoparticles has made it possible to overcome these limitations. Hence, nanoparticles have been the subject of a great deal of recent studies. Therefore, developing nanoparticle-based imaging agents that can target tumors via active or passive targeting mechanisms is desirable. This review focuses on the applications of various functionalized nanoparticle-based imaging agents used in MI for the early detection of cancer. PMID:25988156
Molecular Imaging of Pancreatic Cancer with Antibodies
2015-01-01
Development of novel imaging probes for cancer diagnostics remains critical for early detection of disease, yet most imaging agents are hindered by suboptimal tumor accumulation. To overcome these limitations, researchers have adapted antibodies for imaging purposes. As cancerous malignancies express atypical patterns of cell surface proteins in comparison to noncancerous tissues, novel antibody-based imaging agents can be constructed to target individual cancer cells or surrounding vasculature. Using molecular imaging techniques, these agents may be utilized for detection of malignancies and monitoring of therapeutic response. Currently, there are several imaging modalities commonly employed for molecular imaging. These imaging modalities include positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance (MR) imaging, optical imaging (fluorescence and bioluminescence), and photoacoustic (PA) imaging. While antibody-based imaging agents may be employed for a broad range of diseases, this review focuses on the molecular imaging of pancreatic cancer, as there are limited resources for imaging and treatment of pancreatic malignancies. Additionally, pancreatic cancer remains the most lethal cancer with an overall 5-year survival rate of approximately 7%, despite significant advances in the imaging and treatment of many other cancers. In this review, we discuss recent advances in molecular imaging of pancreatic cancer using antibody-based imaging agents. This task is accomplished by summarizing the current progress in each type of molecular imaging modality described above. Also, several considerations for designing and synthesizing novel antibody-based imaging agents are discussed. Lastly, the future directions of antibody-based imaging agents are discussed, emphasizing the potential applications for personalized medicine. PMID:26620581
NASA Astrophysics Data System (ADS)
Li, Chengyue; Xu, Xiaochun; Basheer, Yusairah; He, Yusheng; Sattar, Husain A.; Brankov, Jovan G.; Tichauer, Kenneth M.
2018-02-01
Sentinel lymph node status is a critical prognostic factor in breast cancer treatment and is essential to guide future adjuvant treatment. The estimation that 20-60% of micrometastases are missed by conventional pathology has created a demand for the development of more accurate approaches. Here, a paired-agent imaging approach is presented that employs a control imaging agent to allow rapid, quantitative mapping of microscopic populations of tumor cells in lymph nodes to guide pathology sectioning. To test the feasibility of this approach to identify micrometastases, healthy pig lymph nodes were stained with targeted and control imaging agent solution to evaluate the potential for the agents to diffuse into and out of intact nodes. Aby-029, an anti-EGFR affibody was labeled with IRDye 800CW (LICOR) as targeted agent and IRDye 700DX was hydrolyzed as a control agent. Lymph nodes were stained and rinsed by directly injecting the agents into the lymph nodes after immobilization in agarose gel. Subsequently, lymph nodes were frozen-sectioned and imaged under an 80-um resolution fluorescence imaging system (Pearl, LICOR) to confirm equivalence of spatial distribution of both agents in the entire node. The binding potentials were acquired by a pixel-by-pixel calculation and was found to be 0.02 +/- 0.06 along the lymph node in the absence of binding. The results demonstrate this approach's potential to enhance the sensitivity of lymph node pathology by detecting fewer than 1000 cell in a whole human lymph node.
Mukherjee, Archana; Wickstrom, Eric
2009-01-01
This review briefly outlines the importance of molecular imaging, particularly imaging of endogenous gene expression for noninvasive genetic analysis of radiographic masses. The concept of antisense imaging agents and the advantages and challenges in the development of hybridization probes for in vivo imaging are described. An overview of the investigations on oncogene expression imaging is given. Finally, the need for further improvement in antisense-based imaging agents and directions to improve oncogene mRNA targeting is stated. PMID:19264436
Dual-Frequency Piezoelectric Transducers for Contrast Enhanced Ultrasound Imaging
Martin, K. Heath; Lindsey, Brooks D.; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F. Stuart; Jiang, Xiaoning; Dayton, Paul A.
2014-01-01
For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed. PMID:25375755
Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging.
Martin, K Heath; Lindsey, Brooks D; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F Stuart; Jiang, Xiaoning; Dayton, Paul A
2014-11-04
For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed.
Advanced Contrast Agents for Multimodal Biomedical Imaging Based on Nanotechnology.
Calle, Daniel; Ballesteros, Paloma; Cerdán, Sebastián
2018-01-01
Clinical imaging modalities have reached a prominent role in medical diagnosis and patient management in the last decades. Different image methodologies as Positron Emission Tomography, Single Photon Emission Tomography, X-Rays, or Magnetic Resonance Imaging are in continuous evolution to satisfy the increasing demands of current medical diagnosis. Progress in these methodologies has been favored by the parallel development of increasingly more powerful contrast agents. These are molecules that enhance the intrinsic contrast of the images in the tissues where they accumulate, revealing noninvasively the presence of characteristic molecular targets or differential physiopathological microenvironments. The contrast agent field is currently moving to improve the performance of these molecules by incorporating the advantages that modern nanotechnology offers. These include, mainly, the possibilities to combine imaging and therapeutic capabilities over the same theranostic platform or improve the targeting efficiency in vivo by molecular engineering of the nanostructures. In this review, we provide an introduction to multimodal imaging methods in biomedicine, the sub-nanometric imaging agents previously used and the development of advanced multimodal and theranostic imaging agents based in nanotechnology. We conclude providing some illustrative examples from our own laboratories, including recent progress in theranostic formulations of magnetoliposomes containing ω-3 poly-unsaturated fatty acids to treat inflammatory diseases, or the use of stealth liposomes engineered with a pH-sensitive nanovalve to release their cargo specifically in the acidic extracellular pH microenvironment of tumors.
Superparamagnetic nanoparticles for enhanced magnetic resonance and multimodal imaging
NASA Astrophysics Data System (ADS)
Sikma, Elise Ann Schultz
Magnetic resonance imaging (MRI) is a powerful tool for noninvasive tomographic imaging of biological systems with high spatial and temporal resolution. Superparamagnetic (SPM) nanoparticles have emerged as highly effective MR contrast agents due to their biocompatibility, ease of surface modification and magnetic properties. Conventional nanoparticle contrast agents suffer from difficult synthetic reproducibility, polydisperse sizes and weak magnetism. Numerous synthetic techniques and nanoparticle formulations have been developed to overcome these barriers. However, there are still major limitations in the development of new nanoparticle-based probes for MR and multimodal imaging including low signal amplification and absence of biochemical reporters. To address these issues, a set of multimodal (T2/optical) and dual contrast (T1/T2) nanoparticle probes has been developed. Their unique magnetic properties and imaging capabilities were thoroughly explored. An enzyme-activatable contrast agent is currently being developed as an innovative means for early in vivo detection of cancer at the cellular level. Multimodal probes function by combining the strengths of multiple imaging techniques into a single agent. Co-registration of data obtained by multiple imaging modalities validates the data, enhancing its quality and reliability. A series of T2/optical probes were successfully synthesized by attachment of a fluorescent dye to the surface of different types of nanoparticles. The multimodal nanoparticles generated sufficient MR and fluorescence signal to image transplanted islets in vivo. Dual contrast T1/T2 imaging probes were designed to overcome disadvantages inherent in the individual T1 and T2 components. A class of T1/T2 agents was developed consisting of a gadolinium (III) complex (DTPA chelate or DO3A macrocycle) conjugated to a biocompatible silica-coated metal oxide nanoparticle through a disulfide linker. The disulfide linker has the ability to be reduced in vivo by glutathione, releasing large payloads of signal-enhancing T1 probes into the surrounding environment. Optimization of the agent occurred over three sequential generations, with each generation addressing a new challenge. The result was a T2 nanoparticle containing high levels of conjugated T1 complex demonstrating enhanced MR relaxation properties. The probes created here have the potential to play a key role in the advancement of nanoparticle-based agents in biomedical MRI applications.
Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Adur, Malavika K; Utterback, Chet W; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S
2015-01-01
Limited resolution of transvaginal ultrasound (TVUS) scanning is a significant barrier to early detection of ovarian cancer (OVCA). Contrast agents have been suggested to improve the resolution of TVUS scanning. Emerging evidence suggests that expression of interleukin 16 (IL-16) by the tumor epithelium and microvessels increases in association with OVCA development and offers a potential target for early OVCA detection. The goal of this study was to examine the feasibility of IL-16-targeted contrast agents in enhancing the intensity of ultrasound imaging from ovarian tumors in hens, a model of spontaneous OVCA. Contrast agents were developed by conjugating biotinylated anti-IL-16 antibodies with streptavidin coated microbubbles. Enhancement of ultrasound signal intensity was determined before and after injection of contrast agents. Following scanning, ovarian tissues were processed for the detection of IL-16 expressing cells and microvessels. Compared with precontrast, contrast imaging enhanced ultrasound signal intensity significantly in OVCA hens at early (P < 0.05) and late stages (P < 0.001). Higher intensities of ultrasound signals in OVCA hens were associated with increased frequencies of IL-16 expressing cells and microvessels. These results suggest that IL-16-targeted contrast agents improve the visualization of ovarian tumors. The laying hen may be a suitable model to test new imaging agents and develop targeted anti-OVCA therapeutics.
Nanodiamond-Manganese dual mode MRI contrast agents for enhanced liver tumor detection.
Hou, Weixin; Toh, Tan Boon; Abdullah, Lissa Nurrul; Yvonne, Tay Wei Zheng; Lee, Kuan J; Guenther, Ilonka; Chow, Edward Kai-Hua
2017-04-01
Contrast agent-enhanced magnetic resonance (MR) imaging is critical for the diagnosis and monitoring of a number of diseases, including cancer. Certain clinical applications, including the detection of liver tumors, rely on both T1 and T2-weighted images even though contrast agent-enhanced MR imaging is not always reliable. Thus, there is a need for improved dual mode contrast agents with enhanced sensitivity. We report the development of a nanodiamond-manganese dual mode contrast agent that enhanced both T1 and T2-weighted MR imaging. Conjugation of manganese to nanodiamonds resulted in improved longitudinal and transverse relaxivity efficacy over unmodified MnCl 2 as well as clinical contrast agents. Following intravenous administration, nanodiamond-manganese complexes outperformed current clinical contrast agents in an orthotopic liver cancer mouse model while also reducing blood serum concentration of toxic free Mn 2+ ions. Thus, nanodiamond-manganese complexes may serve as more effective dual mode MRI contrast agent, particularly in cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G
2015-08-19
Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early stage cancer diagnosis. Gadolinium (Gd)(III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high X-ray attenuation coefficient, is an ideal contrast agent candidate for X-ray-based CT imaging. Gd metal-organic framework (MOF) nanoparticles with tunable size, high Gd(III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multimodal imaging probes.
Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.
2015-01-01
Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906
Clinical development of BLZ-100 for real-time optical imaging of tumors during resection
NASA Astrophysics Data System (ADS)
Franklin, Heather L.; Miller, Dennis M.; Hedges, Teresa; Perry, Jeff; Parrish-Novak, Julia
2016-03-01
Complete initial resection can give cancer patients the best opportunity for long-term survival. There is unmet need in surgical oncology for optical imaging that enables simple and precise visualization of tumors and consistent contrast with surrounding normal tissues. Near-infrared (NIR) contrast agents and camera systems that can detect them represent an area of active research and development. The investigational Tumor Paint agent BLZ-100 is a conjugate of a chlorotoxin peptide and the NIR dye indocyanine green (ICG) that has been shown to specifically bind to a broad range of solid tumors. Clinical efficacy studies with BLZ-100 are in progress, a necessary step in bringing the product into clinical practice. To ensure a product that will be useful for and accepted by surgeons, the early clinical development of BLZ- 100 incorporates multiple tumor types and imaging devices so that surgeon feedback covers the range of anticipated clinical uses. Key contrast agent characteristics include safety, specificity, flexibility in timing between dose and surgery, and breadth of tumor types recognized. Imaging devices should use wavelengths that are optimal for the contrast agent, be sensitive enough that contrast agent dosing can be adjusted for optimal contrast, include real-time video display of fluorescence and white light image, and be simple for surgeons to use with minimal disruption of surgical flow. Rapid entry into clinical studies provides the best opportunity for early surgeon feedback, enabling development of agents and devices that will gain broad acceptance and provide information that helps surgeons achieve more complete and precise resections.
Khantasup, Kannika; Saiviroonporn, Pairash; Jarussophon, Suwatchai; Chantima, Warangkana; Dharakul, Tararaj
2018-05-08
The development of targeted contrast agents for magnetic resonance imaging (MRI) facilitates enhanced cancer imaging and more accurate diagnosis. In the present study, a novel contrast agent was developed by conjugating anti-EpCAM humanized scFv with gadolinium chelate to achieve target specificity. The material design strategy involved site-specific conjugation of the chelating agent to scFv. The scFv monomer was linked to maleimide-DTPA via unpaired cysteine at the scFv C-terminus, followed by chelation with gadolinium (Gd). Successful scFv-DTPA conjugation was achieved at 1:10 molar ratio of scFv to maleimide-DTPA at pH 6.5. The developed anti-EpCAM-Gd-DTPA MRI contrast agent was evaluated for cell targeting ability, in vitro serum stability, cell cytotoxicity, relaxivity, and MR contrast enhancement. A high level of targeting efficacy of anti-EpCAM-Gd-DTPA to an EpCAM-overexpressing HT29 colorectal cell was demonstrated by confocal microscopy. Good stability of the contrast agent was obtained and no cytotoxicity was observed in HT29 cells after 48 h incubation with 25-100 µM of Gd. Favorable imaging was obtained using anti-EpCAM-Gd-DTPA, including 1.8-fold enhanced relaxivity compared with Gd-DTPA, and MR contrast enhancement observed after binding to HT29. The potential benefit of this contrast agent for in vivo MR imaging of colorectal cancer, as well as other EpCAM positive cancers, is suggested and warrants further investigation.
Extremely High-Frequency Holographic Radar Imaging of Personnel and Mail
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMakin, Douglas L.; Sheen, David M.; Griffin, Jeffrey W.
2006-08-01
The awareness of terrorists covertly transporting chemical warfare (CW) and biological warfare (BW) agents into government, military, and civilian facilities to harm the occupants has increased dramatically since the attacks of 9/11. Government and civilian security personnel have a need for innovative surveillance technology that can rapidly detect these lethal agents, even when they are hidden away in sealed containers and concealed either under clothing or in hand-carried items such as mailed packages or handbags. Sensor technology that detects BW and CW agents in mail or sealed containers carried under the clothing are under development. One promising sensor technology presentlymore » under development to defeat these threats is active millimeter-wave holographic radar imaging, which can readily image concealed items behind paper, cardboard, and clothing. Feasibility imaging studies at frequencies greater than 40 GHz have been conducted to determine whether simulated biological or chemical agents concealed in mail packages or under clothing could be detected using this extremely high-frequency imaging technique. The results of this imaging study will be presented in this paper.« less
An Agent Based Collaborative Simplification of 3D Mesh Model
NASA Astrophysics Data System (ADS)
Wang, Li-Rong; Yu, Bo; Hagiwara, Ichiro
Large-volume mesh model faces the challenge in fast rendering and transmission by Internet. The current mesh models obtained by using three-dimensional (3D) scanning technology are usually very large in data volume. This paper develops a mobile agent based collaborative environment on the development platform of mobile-C. Communication among distributed agents includes grasping image of visualized mesh model, annotation to grasped image and instant message. Remote and collaborative simplification can be efficiently conducted by Internet.
Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.
Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M
2016-05-05
Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.
Paul, Shirshendu; Nahire, Rahul; Mallik, Sanku; Sarkar, Kausik
2014-01-01
Micron- to nanometer-sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes, are being developed for diagnostic imaging and ultrasound mediated drug/gene delivery. This review provides an overview of the current state of the art of the mathematical models of the acoustic behavior of ultrasound contrast microbubbles. We also present a review of the in vitro experimental characterization of the acoustic properties of microbubble based contrast agents undertaken in our laboratory. The hierarchical two-pronged approach of modeling contrast agents we developed is demonstrated for a lipid coated (Sonazoid™) and a polymer shelled (poly D-L-lactic acid) contrast microbubbles. The acoustic and drug release properties of the newly developed echogenic liposomes are discussed for their use as simultaneous imaging and drug/gene delivery agents. Although echogenicity is conclusively demonstrated in experiments, its physical mechanisms remain uncertain. Addressing questions raised here will accelerate further development and eventual clinical approval of these novel technologies. PMID:26097272
A theranostic dental pulp capping agent with improved MRI and CT contrast and biological properties.
Mastrogiacomo, S; Güvener, N; Dou, W; Alghamdi, H S; Camargo, W A; Cremers, J G O; Borm, P J A; Heerschap, A; Oosterwijk, E; Jansen, J A; Walboomers, X F
2017-10-15
Different materials have been used for vital dental pulp treatment. Preferably a pulp capping agent should show appropriate biological performance, excellent handling properties, and a good imaging contrast. These features can be delivered into a single material through the combination of therapeutic and diagnostic agents (i.e. theranostic). Calcium phosphate based composites (CPCs) are potentially ideal candidate for pulp treatment, although poor imaging contrast and poor dentino-inductive properties are limiting their clinical use. In this study, a theranostic dental pulp capping agent was developed. First, imaging properties of the CPC were improved by using a core-shell structured dual contrast agent (csDCA) consisting of superparamagnetic iron oxide (SPIO) and colloidal gold, as MRI and CT contrast agent respectively. Second, biological properties were implemented by using a dentinogenic factor (i.e. bone morphogenetic protein 2, BMP-2). The obtained CPC/csDCA/BMP-2 composite was tested in vivo, as direct pulp capping agent, in a male Habsi goat incisor model. Our outcomes showed no relevant alteration of the handling and mechanical properties (e.g. setting time, injectability, and compressive strength) by the incorporation of csDCA particles. In vivo results proved MRI contrast enhancement up to 7weeks. Incisors treated with BMP-2 showed improved tertiary dentin deposition as well as faster cement degradation as measured by µCT assessment. In conclusion, the presented theranostic agent matches the imaging and regenerative requirements for pulp capping applications. In this study, we combined diagnostic and therapeutic agents in order to developed a theranostic pulp capping agent with enhanced MRI and CT contrast and improved dentin regeneration ability. In our study we cover all the steps from material preparation, mechanical and in vitro characterization, to in vivo study in a goat dental model. To the best of our knowledge, this is the first time that a theranostic pulp capping material have been developed and tested in an in vivo animal model. Our promising results in term of imaging contrast enhancement and of induction of new dentin formation, open a new scenario in the development of innovative dental materials. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Recent development of nanoparticles for molecular imaging
NASA Astrophysics Data System (ADS)
Kim, Jonghoon; Lee, Nohyun; Hyeon, Taeghwan
2017-10-01
Molecular imaging enables us to non-invasively visualize cellular functions and biological processes in living subjects, allowing accurate diagnosis of diseases at early stages. For successful molecular imaging, a suitable contrast agent with high sensitivity is required. To date, various nanoparticles have been developed as contrast agents for medical imaging modalities. In comparison with conventional probes, nanoparticles offer several advantages, including controllable physical properties, facile surface modification and long circulation time. In addition, they can be integrated with various combinations for multimodal imaging and therapy. In this opinion piece, we highlight recent advances and future perspectives of nanomaterials for molecular imaging. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
NASA Astrophysics Data System (ADS)
Tavakoli, Behnoosh; Chen, Ying; Guo, Xiaoyu; Kang, Hyun Jae; Pomper, Martin; Boctor, Emad M.
2015-03-01
Targeted contrast agents can improve the sensitivity of imaging systems for cancer detection and monitoring the treatment. In order to accurately detect contrast agent concentration from photoacoustic images, we developed a decomposition algorithm to separate photoacoustic absorption spectrum into components from individual absorbers. In this study, we evaluated novel prostate-specific membrane antigen (PSMA) targeted agents for imaging prostate cancer. Three agents were synthesized through conjugating PSMA-targeting urea with optical dyes ICG, IRDye800CW and ATTO740 respectively. In our preliminary PA study, dyes were injected in a thin wall plastic tube embedded in water tank. The tube was illuminated with pulsed laser light using a tunable Q-switch ND-YAG laser. PA signal along with the B-mode ultrasound images were detected with a diagnostic ultrasound probe in orthogonal mode. PA spectrums of each dye at 0.5 to 20 μM concentrations were estimated using the maximum PA signal extracted from images which are obtained at illumination wavelengths of 700nm-850nm. Subsequently, we developed nonnegative linear least square optimization method along with localized regularization to solve the spectral unmixing. The algorithm was tested by imaging mixture of those dyes. The concentration of each dye was estimated with about 20% error on average from almost all mixtures albeit the small separation between dyes spectrums.
Echographic imaging of tumoral cells through novel nanosystems for image diagnosis
Di Paola, Marco; Chiriacò, Fernanda; Soloperto, Giulia; Conversano, Francesco; Casciaro, Sergio
2014-01-01
Since the recognition of disease molecular basis, it has become clear that the keystone moments of medical practice, namely early diagnosis, appropriate therapeutic treatment and patient follow-up, must be approached at a molecular level. These objectives will be in the near future more effectively achievable thanks to the impressive developments in nanotechnologies and their applications to the biomedical field, starting-up the nanomedicine era. The continuous advances in the development of biocompatible smart nanomaterials, in particular, will be crucial in several aspects of medicine. In fact, the possibility of manufacturing nanoparticle contrast agents that can be selectively targeted to specific pathological cells has extended molecular imaging applications to non-ionizing techniques and, at the same time, has made reachable the perspective of combining highly accurate diagnoses and personalized therapies in a single theranostic intervention. Main developing applications of nanosized theranostic agents include targeted molecular imaging, controlled drug release, therapeutic monitoring, guidance of radiation-based treatments and surgical interventions. Here we will review the most recent findings in nanoparticles contrast agents and their applications in the field of cancer molecular imaging employing non-ionizing techniques and disease-specific contrast agents, with special focus on recent findings on those nanomaterials particularly promising for ultrasound molecular imaging and simultaneous treatment of cancer. PMID:25071886
Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications.
Longo, Dario Livio; Stefania, Rachele; Aime, Silvio; Oraevsky, Alexander
2017-08-07
Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents.
Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications
Longo, Dario Livio; Aime, Silvio
2017-01-01
Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents. PMID:28783106
Nanoparticles for cancer imaging: The good, the bad, and the promise
Chapman, Sandra; Dobrovolskaia, Marina; Farahani, Keyvan; Goodwin, Andrew; Joshi, Amit; Lee, Hakho; Meade, Thomas; Pomper, Martin; Ptak, Krzysztof; Rao, Jianghong; Singh, Ravi; Sridhar, Srinivas; Stern, Stephan; Wang, Andrew; Weaver, John B.; Woloschak, Gayle; Yang, Lily
2014-01-01
Summary Recent advances in molecular imaging and nanotechnology are providing new opportunities for biomedical imaging with great promise for the development of novel imaging agents. The unique optical, magnetic, and chemical properties of materials at the scale of nanometers allow the creation of imaging probes with better contrast enhancement, increased sensitivity, controlled biodistribution, better spatial and temporal information, multi-functionality and multi-modal imaging across MRI, PET, SPECT, and ultrasound. These features could ultimately translate to clinical advantages such as earlier detection, real time assessment of disease progression and personalized medicine. However, several years of investigation into the application of these materials to cancer research has revealed challenges that have delayed the successful application of these agents to the field of biomedical imaging. Understanding these challenges is critical to take full advantage of the benefits offered by nano-sized imaging agents. Therefore, this article presents the lessons learned and challenges encountered by a group of leading researchers in this field, and suggests ways forward to develop nanoparticle probes for cancer imaging. Published by Elsevier Ltd. PMID:25419228
Development and Application of Multifunctional Lanthanide-Doped Nanoparticles in Medical Imaging
NASA Astrophysics Data System (ADS)
Pedraza, Francisco J., III
Medical imaging has become one of the most important tools of modern medicine soon after it was developed. Presently, several imaging modalities are available to clinicians for the detection of skeletal fractures and functional abnormalities of organs and tissues; and also an excellent tool during surgical procedures. Unfortunately, each imaging technique possesses its own strengths and inherent limitations which can be mitigated via the use of multiple imaging modalities and imaging probes. Through the use of multiple imaging modalities, it is possible to gather complementary information for a more reliable diagnosis. Each imaging technique requires its own imaging probes, providing selectivity and improved contrast. However, conventional contrast agents are incapable of providing what the new generation of multifunctional nanomaterials offer. In addition to improved selectivity and contrast, multifunctional materials possess therapeutic capabilities such as photo-thermal therapy and controlled drug delivery. Lanthanide-based nanomaterials are viable candidates for multimodal imaging agents due to possessing multifunctional capabilities, optical and chemical stability, and an intense tunable emission. This doctoral dissertation will delve into the development of lanthanide-based nanoparticles by proposing a novel multifunctional contrast agent for Near Infrared Fluorescence Imaging and Magnetic Resonance Imaging. Furthermore, the study of surface modification effects on upconversion emission and nanoparticle-cell interactions was performed. Results presented will confirm the potential application of multifunctional lanthanide-based nanomaterials as multimodal imaging probes.
Development of a platform for co-registered ultrasound and MR contrast imaging in vivo
NASA Astrophysics Data System (ADS)
Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv
2011-02-01
Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 ± 0.2 and 0.3 ± 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm ±0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.
NASA Astrophysics Data System (ADS)
Hu, Philip; Mingozzi, Marco; Higgins, Laura M.; Ganapathy, Vidya; Zevon, Margot; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.
2015-03-01
We report the design, calibration, and testing of a pre-clinical small animal imaging platform for use with short-wave infrared (SWIR) emitting contrast agents. Unlike materials emitting at visible or near-infrared wavelengths, SWIR-emitting agents require detection systems with sensitivity in the 1-2 μm wavelength region, beyond the range of commercially available small animal imagers. We used a collimated 980 nm laser beam to excite rare-earth-doped NaYF4:Er,Yb nanocomposites, as an example of a SWIR emitting material under development for biomedical imaging applications. This beam was raster scanned across the animal, with fluorescence in the 1550 nm wavelength region detected by an InGaAs area camera. Background adjustment and intensity non-uniformity corrections were applied in software. The final SWIR fluorescence image was overlaid onto a standard white-light image for registration of contrast agent uptake with respect to anatomical features.
Nanoparticle Contrast Agents for Computed Tomography: A Focus on Micelles
Cormode, David P.; Naha, Pratap C.; Fayad, Zahi A.
2014-01-01
Computed tomography (CT) is an X-ray based whole body imaging technique that is widely used in medicine. Clinically approved contrast agents for CT are iodinated small molecules or barium suspensions. Over the past seven years there has been a great increase in the development of nanoparticles as CT contrast agents. Nanoparticles have several advantages over small molecule CT contrast agents, such as long blood-pool residence times, and the potential for cell tracking and targeted imaging applications. Furthermore, there is a need for novel CT contrast agents, due to the growing population of renally impaired patients and patients hypersensitive to iodinated contrast. Micelles and lipoproteins, a micelle-related class of nanoparticle, have notably been adapted as CT contrast agents. In this review we discuss the principles of CT image formation and the generation of CT contrast. We discuss the progress in developing non-targeted, targeted and cell tracking nanoparticle CT contrast agents. We feature agents based on micelles and used in conjunction with spectral CT. The large contrast agent doses needed will necessitate careful toxicology studies prior to clinical translation. However, the field has seen tremendous advances in the past decade and we expect many more advances to come in the next decade. PMID:24470293
IMAGE: A Design Integration Framework Applied to the High Speed Civil Transport
NASA Technical Reports Server (NTRS)
Hale, Mark A.; Craig, James I.
1993-01-01
Effective design of the High Speed Civil Transport requires the systematic application of design resources throughout a product's life-cycle. Information obtained from the use of these resources is used for the decision-making processes of Concurrent Engineering. Integrated computing environments facilitate the acquisition, organization, and use of required information. State-of-the-art computing technologies provide the basis for the Intelligent Multi-disciplinary Aircraft Generation Environment (IMAGE) described in this paper. IMAGE builds upon existing agent technologies by adding a new component called a model. With the addition of a model, the agent can provide accountable resource utilization in the presence of increasing design fidelity. The development of a zeroth-order agent is used to illustrate agent fundamentals. Using a CATIA(TM)-based agent from previous work, a High Speed Civil Transport visualization system linking CATIA, FLOPS, and ASTROS will be shown. These examples illustrate the important role of the agent technologies used to implement IMAGE, and together they demonstrate that IMAGE can provide an integrated computing environment for the design of the High Speed Civil Transport.
Dual-mode imaging with radiolabeled gold nanorods
NASA Astrophysics Data System (ADS)
Agarwal, Ashish; Shao, Xia; Rajian, Justin R.; Zhang, Huanan; Chamberland, David L.; Kotov, Nicholas A.; Wang, Xueding
2011-05-01
Many nanoparticle contrast agents have difficulties with deep tissue and near-bone imaging due to limited penetration of visible photons in the body and mineralized tissues. We are looking into the possibility of mediating this problem while retaining the capabilities of the high spatial resolution associated with optical imaging. As such, the potential combination of emerging photoacoustic imaging and nuclear imaging in monitoring of antirheumatic drug delivery by using a newly developed dual-modality contrast agent is investigated. The contrast agent is composed of gold nanorods (GNRs) conjugated to the tumor necrosis factor (TNF-α) antibody and is subsequently radiolabeled by 125I. ELISA experiments designed to test TNF-α binding are performed to prove the specificity and biological activity of the radiolabeled conjugated contrast agent. Photoacoustic and nuclear imaging are performed to visualize the distribution of GNRs in articular tissues of the rat tail joints in situ. Findings from the two imaging modalities correspond well with each other in all experiments. Our system can image GNRs down to a concentration of 10 pM in biological tissues and with a radioactive label of 5 μCi. This study demonstrates the potential of combining photoacoustic and nuclear imaging modalities through one targeted contrast agent for noninvasive monitoring of drug delivery as well as deep and mineralized tissue imaging.
NASA Astrophysics Data System (ADS)
Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca
2018-06-01
Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets.
Canuto, Holly C; McLachlan, Charles; Kettunen, Mikko I; Velic, Marko; Krishnan, Anant S; Neves, Andre' A; de Backer, Maaike; Hu, D-E; Hobson, Michael P; Brindle, Kevin M
2009-05-01
A targeted Gd(3+)-based contrast agent has been developed that detects tumor cell death by binding to the phosphatidylserine (PS) exposed on the plasma membrane of dying cells. Although this agent has been used to detect tumor cell death in vivo, the differences in signal intensity between treated and untreated tumors was relatively small. As cell death is often spatially heterogeneous within tumors, we investigated whether an image analysis technique that parameterizes heterogeneity could be used to increase the sensitivity of detection of this targeted contrast agent. Two-dimensional (2D) Minkowski functionals (MFs) provided an automated and reliable method for parameterization of image heterogeneity, which does not require prior assumptions about the number of regions or features in the image, and were shown to increase the sensitivity of detection of the contrast agent as compared to simple signal intensity analysis. (c) 2009 Wiley-Liss, Inc.
Self-assembled nanomaterials for photoacoustic imaging
NASA Astrophysics Data System (ADS)
Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao
2016-01-01
In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.
Self-assembled nanomaterials for photoacoustic imaging.
Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao
2016-02-07
In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.
Sajja, Hari Krishna; East, Michael P.; Mao, Hui; Wang, Andrew Y.; Nie, Shuming; Yang, Lily
2011-01-01
Nanotechnology is a multidisciplinary scientific field undergoing explosive development. Nanometer-sized particles offer novel structural, optical and electronic properties that are not attainable with individual molecules or bulk solids. Advances in nanomedicine can be made by engineering biodegradable nanoparticles such as magnetic iron oxide nanoparticles, polymers, dendrimers and liposomes that are capable of targeted delivery of both imaging agents and anticancer drugs. This leads toward the concept and possibility of personalized medicine for the potential of early detection of cancer lesions, determination of molecular signatures of the tumor by non-invasive imaging and, most importantly, molecular targeted cancer therapy. Increasing evidence suggests that the nanoparticles, whose surface contains a targeting molecule that binds to receptors highly expressed in tumor cells, can serve as cancer image contrast agents to increase sensitivity and specificity in tumor detection. In comparison with other small molecule contrast agents, the advantage of using nanoparticles is their large surface area and the possibility of surface modifications for further conjugation or encapsulation of large amounts of therapeutic agents. Targeted nanoparticles ferry large doses of therapeutic agents into malignant cells while sparing the normal healthy cells. Such multifunctional nanodevices hold the promise of significant improvement of current clinical management of cancer patients. This review explores the development of nanoparticles for enabling and improving the targeted delivery of therapeutic agents, the potential of nanomedicine, and the development of novel and more effective diagnostic and screening techniques to extend the limits of molecular diagnostics providing point-of-care diagnosis and more personalized medicine. PMID:19275541
Pulse sequences for uniform perfluorocarbon droplet vaporization and ultrasound imaging.
Puett, C; Sheeran, P S; Rojas, J D; Dayton, P A
2014-09-01
Phase-change contrast agents (PCCAs) consist of liquid perfluorocarbon droplets that can be vaporized into gas-filled microbubbles by pulsed ultrasound waves at diagnostic pressures and frequencies. These activatable contrast agents provide benefits of longer circulating times and smaller sizes relative to conventional microbubble contrast agents. However, optimizing ultrasound-induced activation of these agents requires coordinated pulse sequences not found on current clinical systems, in order to both initiate droplet vaporization and image the resulting microbubble population. Specifically, the activation process must provide a spatially uniform distribution of microbubbles and needs to occur quickly enough to image the vaporized agents before they migrate out of the imaging field of view. The development and evaluation of protocols for PCCA-enhanced ultrasound imaging using a commercial array transducer are described. The developed pulse sequences consist of three states: (1) initial imaging at sub-activation pressures, (2) activating droplets within a selected region of interest, and (3) imaging the resulting microbubbles. Bubble clouds produced by the vaporization of decafluorobutane and octafluoropropane droplets were characterized as a function of focused pulse parameters and acoustic field location. Pulse sequences were designed to manipulate the geometries of discrete microbubble clouds using electronic steering, and cloud spacing was tailored to build a uniform vaporization field. The complete pulse sequence was demonstrated in the water bath and then in vivo in a rodent kidney. The resulting contrast provided a significant increase (>15 dB) in signal intensity. Copyright © 2014 Elsevier B.V. All rights reserved.
Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents
Estelrich, Joan; Sánchez-Martín, María Jesús; Busquets, Maria Antònia
2015-01-01
Magnetic resonance imaging (MRI) has become one of the most widely used and powerful tools for noninvasive clinical diagnosis owing to its high degree of soft tissue contrast, spatial resolution, and depth of penetration. MRI signal intensity is related to the relaxation times (T1, spin–lattice relaxation and T2, spin–spin relaxation) of in vivo water protons. To increase contrast, various inorganic nanoparticles and complexes (the so-called contrast agents) are administered prior to the scanning. Shortening T1 and T2 increases the corresponding relaxation rates, 1/T1 and 1/T2, producing hyperintense and hypointense signals respectively in shorter times. Moreover, the signal-to-noise ratio can be improved with the acquisition of a large number of measurements. The contrast agents used are generally based on either iron oxide nanoparticles or ferrites, providing negative contrast in T2-weighted images; or complexes of lanthanide metals (mostly containing gadolinium ions), providing positive contrast in T1-weighted images. Recently, lanthanide complexes have been immobilized in nanostructured materials in order to develop a new class of contrast agents with functions including blood-pool and organ (or tumor) targeting. Meanwhile, to overcome the limitations of individual imaging modalities, multimodal imaging techniques have been developed. An important challenge is to design all-in-one contrast agents that can be detected by multimodal techniques. Magnetoliposomes are efficient multimodal contrast agents. They can simultaneously bear both kinds of contrast and can, furthermore, incorporate targeting ligands and chains of polyethylene glycol to enhance the accumulation of nanoparticles at the site of interest and the bioavailability, respectively. Here, we review the most important characteristics of the nanoparticles or complexes used as MRI contrast agents. PMID:25834422
Liu, Zan; Qian, Junchao; Liu, Binmei; Wang, Qi; Ni, Xiaoyu; Dong, Yaling; Zhong, Kai; Wu, Yuejin
2014-01-01
Although paramagnetic contrast agents have a wide range of applications in medical studies involving magnetic resonance imaging (MRI), these agents are seldom used to enhance MRI images of plant root systems. To extend the application of MRI contrast agents to plant research and to develop related techniques to study root systems, we examined the applicability of the MRI contrast agent Gd-DTPA to the imaging of rice roots. Specifically, we examined the biological effects of various concentrations of Gd-DTPA on rice growth and MRI images. Analysis of electrical conductivity and plant height demonstrated that 5 mmol Gd-DTPA had little impact on rice in the short-term. The results of signal intensity and spin-lattice relaxation time (T1) analysis suggested that 5 mmol Gd-DTPA was the appropriate concentration for enhancing MRI signals. In addition, examination of the long-term effects of Gd-DTPA on plant height showed that levels of this compound up to 5 mmol had little impact on rice growth and (to some extent) increased the biomass of rice.
Tree, Julia A; Flick-Smith, Helen; Elmore, Michael J; Rowland, Caroline A
2014-01-01
Understanding the interactions between host and pathogen is important for the development and assessment of medical countermeasures to infectious agents, including potential biodefence pathogens such as Bacillus anthracis, Ebola virus, and Francisella tularensis. This review focuses on technological advances which allow this interaction to be studied in much greater detail. Namely, the use of "omic" technologies (next generation sequencing, DNA, and protein microarrays) for dissecting the underlying host response to infection at the molecular level; optical imaging techniques (flow cytometry and fluorescence microscopy) for assessing cellular responses to infection; and biophotonic imaging for visualising the infectious disease process. All of these technologies hold great promise for important breakthroughs in the rational development of vaccines and therapeutics for biodefence agents.
2016-10-01
small-molecule peptidomimetic imaging agents labeled with positron emitting fluorine- 18 . These data will enable the filing of an exploratory IND...outcome. 15. SUBJECT TERMS Prostate Cancer, Prostate Specific Membrane Antigen (PSMA), Fluorine- 18 , Molecular Imaging, Radiotracer, Automated...Synthesis, Phosphoramidate, Inhibitor, Peptide Mimic, Peptidomimetic 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a
Contrast agents in dynamic contrast-enhanced magnetic resonance imaging
Yan, Yuling; Sun, Xilin; Shen, Baozhong
2017-01-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive method to assess angiogenesis, which is widely used in clinical applications including diagnosis, monitoring therapy response and prognosis estimation in cancer patients. Contrast agents play a crucial role in DCE-MRI and should be carefully selected in order to improve accuracy in DCE-MRI examination. Over the past decades, there was much progress in the development of optimal contrast agents in DCE-MRI. In this review, we describe the recent research advances in this field and discuss properties of contrast agents, as well as their advantages and disadvantages. Finally, we discuss the research perspectives for improving this promising imaging method. PMID:28415647
Multifunctional agents for concurrent imaging and therapy in cardiovascular disease
McCarthy, Jason R.
2010-01-01
The development of agents for the simultaneous detection and treatment of disease has recently gained significant attention. These multifunctional theranostic agents posses a number of advantages over their monofunctional counterparts, as they potentially allow for the concomitant determination of agent localization, release, and efficacy. Whereas the development of these agents for use in cancers has received the majority of the attention, their use in cardiovascular disease is steadily increasing. As such, this review summarized some of the most poignant recent advances in the development of theranostic agents for the treatment of this class of diseases. PMID:20654664
A review of NIR dyes in cancer targeting and imaging.
Luo, Shenglin; Zhang, Erlong; Su, Yongping; Cheng, Tianmin; Shi, Chunmeng
2011-10-01
The development of multifunctional agents for simultaneous tumor targeting and near infrared (NIR) fluorescence imaging is expected to have significant impact on future personalized oncology owing to the very low tissue autofluorescence and high tissue penetration depth in the NIR spectrum window. Cancer NIR molecular imaging relies greatly on the development of stable, highly specific and sensitive molecular probes. Organic dyes have shown promising clinical implications as non-targeting agents for optical imaging in which indocyanine green has long been implemented in clinical use. Recently, significant progress has been made on the development of unique NIR dyes with tumor targeting properties. Current ongoing design strategies have overcome some of the limitations of conventional NIR organic dyes, such as poor hydrophilicity and photostability, low quantum yield, insufficient stability in biological system, low detection sensitivity, etc. This potential is further realized with the use of these NIR dyes or NIR dye-encapsulated nanoparticles by conjugation with tumor specific ligands (such as small molecules, peptides, proteins and antibodies) for tumor targeted imaging. Very recently, natively multifunctional NIR dyes that can preferentially accumulate in tumor cells without the need of chemical conjugation to tumor targeting ligands have been developed and these dyes have shown unique optical and pharmaceutical properties for biomedical imaging with superior signal-to-background contrast index. The main focus of this article is to provide a concise overview of newly developed NIR dyes and their potential applications in cancer targeting and imaging. The development of future multifunctional agents by combining targeting, imaging and even therapeutic routes will also be discussed. We believe these newly developed multifunctional NIR dyes will broaden current concept of tumor targeted imaging and hold promise to make an important contribution to the diagnosis and therapeutics for the treatment of cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.
In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy
NASA Astrophysics Data System (ADS)
Laufer, Jan; Johnson, Peter; Zhang, Edward; Treeby, Bradley; Cox, Ben; Pedley, Barbara; Beard, Paul
2012-05-01
The use of a novel all-optical photoacoustic scanner for imaging the development of tumor vasculature and its response to a therapeutic vascular disrupting agent is described. The scanner employs a Fabry-Perot polymer film ultrasound sensor for mapping the photoacoustic waves and an image reconstruction algorithm based upon attenuation-compensated acoustic time reversal. The system was used to noninvasively image human colorectal tumor xenografts implanted subcutaneously in mice. Label-free three-dimensional in vivo images of whole tumors to depths of almost 10 mm with sub-100-micron spatial resolution were acquired in a longitudinal manner. This enabled the development of tumor-related vascular features, such as vessel tortuosity, feeding vessel recruitment, and necrosis to be visualized over time. The system was also used to study the temporal evolution of the response of the tumor vasculature following the administration of a therapeutic vascular disrupting agent (OXi4503). This revealed the well-known destruction and recovery phases associated with this agent. These studies illustrate the broader potential of this technology as an imaging tool for the preclinical and clinical study of tumors and other pathologies characterized by changes in the vasculature.
Recent Trends in Soft Tissue Infection Imaging
Petruzzi, Nicholas; Shanthly, Nylla; Thakur, Mathew
2009-01-01
This article discusses the current techniques and future directions of infection imaging with particular attention to respiratory, CNS, abdominal, and postoperative infections. The agents currently in use localize to areas of infection and inflammation. An infection specific imaging agent would greatly improve the utility of scintigraphy in imaging occult infections. The superior spatial resolution of 18F-FDG PET and its lack of reliance on a functional immune system, gives this agent certain advantages over the other radiopharmaceuticals. In respiratory infection imaging, an important advancement would be the ability to quantitatively delineate lung inflammation, allowing one to monitor the therapeutic response in a variety of conditions. Current studies suggest PET should be considered the most accurate quantitative method. Scintigraphy has much to offer in localizing abdominal infection as well as inflammation. We may begin to see a gradual increase in the usage of FDG PET in detecting occult abdominal infections. Commonly used modalities for imaging inflammatory bowel disease are scintigraphy with 111In-oxine/99mTc-HMPAO labeled autologous white blood cells. The literature on CNS infection imaging is relatively scarce. Few clinical studies have been performed and numerous new agents have been developed for this use with varying results. Further studies are needed to more clearly delineate the future direction of this field. In evaluating the post-operative spine, 99mTc-ciprofloxacin SPECT was reported to be >80% sensitive in patients more than 6 months post-surgery. FDG PET has also been suggested for this purpose and may play a larger role than originally thought. It appears PET/CT is gaining support, especially in imaging those with fever of unknown origin or nonfunctional immune systems. While an infection specific agent is lacking, the development of one would greatly advance our ability to detect, localize, and quantify infections. Overall, imaging such an agent via SPECT/CT or PET/CT will pave the way for greater clinical reliability in the localization of infection. PMID:19187804
Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca
2018-06-15
Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets. Copyright © 2018 Elsevier B.V. All rights reserved.
Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography
NASA Astrophysics Data System (ADS)
Zhang, Q.; Iwakuma, N.; Sharma, P.; Moudgil, B. M.; Wu, C.; McNeill, J.; Jiang, H.; Grobmyer, S. R.
2009-09-01
Photoacoustic tomography (PAT) is a rapidly emerging non-invasive imaging technology that integrates the merits of high optical contrast with high ultrasound resolution. The ability to quantitatively and non-invasively image nanoparticles has important implications for the development of nanoparticles as in vivo cancer diagnostic and therapeutic agents. In this study, the ability of systemically administered poly(ethylene glycol)-coated (PEGylated) gold nanoparticles as a contrast agent for in vivo tumor imaging with PAT has been evaluated. We demonstrate that gold nanoparticles (20 and 50 nm) have high photoacoustic contrast as compared to mouse tissue ex vivo. Gold nanoparticles can be visualized in mice in vivo following subcutaneous administration using PAT. Following intravenous administration of PEGylated gold nanoparticles to tumor-bearing mice, accumulation of gold nanoparticles in tumors can be effectively imaged with PAT. With gold nanoparticles as a contrast agent, PAT has important potential applications in the image guided therapy of superficial tumors such as breast cancer, melanoma and Merkel cell carcinoma.
Multimodal nanoparticle imaging agents: design and applications
NASA Astrophysics Data System (ADS)
Burke, Benjamin P.; Cawthorne, Christopher; Archibald, Stephen J.
2017-10-01
Molecular imaging, where the location of molecules or nanoscale constructs can be tracked in the body to report on disease or biochemical processes, is rapidly expanding to include combined modality or multimodal imaging. No single imaging technique can offer the optimum combination of properties (e.g. resolution, sensitivity, cost, availability). The rapid technological advances in hardware to scan patients, and software to process and fuse images, are pushing the boundaries of novel medical imaging approaches, and hand-in-hand with this is the requirement for advanced and specific multimodal imaging agents. These agents can be detected using a selection from radioisotope, magnetic resonance and optical imaging, among others. Nanoparticles offer great scope in this area as they lend themselves, via facile modification procedures, to act as multifunctional constructs. They have relevance as therapeutics and drug delivery agents that can be tracked by molecular imaging techniques with the particular development of applications in optically guided surgery and as radiosensitizers. There has been a huge amount of research work to produce nanoconstructs for imaging, and the parameters for successful clinical translation and validation of therapeutic applications are now becoming much better understood. It is an exciting time of progress for these agents as their potential is closer to being realized with translation into the clinic. The coming 5-10 years will be critical, as we will see if the predicted improvement in clinical outcomes becomes a reality. Some of the latest advances in combination modality agents are selected and the progression pathway to clinical trials analysed. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
Fluorescent and Lanthanide Labeling for Ligand Screens, Assays, and Imaging
Josan, Jatinder S.; De Silva, Channa R.; Yoo, Byunghee; Lynch, Ronald M.; Pagel, Mark D.; Vagner, Josef; Hruby, Victor J.
2012-01-01
The use of fluorescent (or luminescent) and metal contrast agents in high-throughput screens, in vitro assays, and molecular imaging procedures has rapidly expanded in recent years. Here we describe the development and utility of high-affinity ligands for cancer theranostics and other in vitro screening studies. In this context, we also illustrate the syntheses and use of heteromultivalent ligands as targeted imaging agents. PMID:21318902
Researchers at the National Cancer Institute (NCI) RNA Biology Laboratory have developed nanoparticles that can deliver an agent (i.e., therapeutic or imaging) and release the agent upon targeted photoactivation allowing for controlled temporal and localized release of the agent.
Kuo, Yu-Ting; Chen, Chiao-Yun; Liu, Gin-Chung; Wang, Yun-Ming
2016-01-01
Liver tumors are common and imaging methods, particularly magnetic resonance imaging (MRI), play an important role in their non-invasive diagnosis. Previous studies have shown that detection of liver tumors can be improved by injection of two different MR contrast agents. Here, we developed a new contrast agent, Gd-manganese-doped magnetism-engineered iron oxide (Gd-MnMEIO), with enhancement effects on both T1- and T2-weighted MR images of the liver. A 3.0T clinical MR scanner equipped with transmit/receiver coil for mouse was used to obtain both T1-weighted spoiled gradient-echo and T2-weighted fast spin-echo axial images of the liver before and after intravenous contrast agent injection into Balb/c mice with and without tumors. After pre-contrast scanning, six mice per group were intravenously injected with 0.1 mmol/kg Gd-MnMEIO, or the control agents, i.e., Gd-DTPA or SPIO. The scanning time points for T1-weighted images were 0.5, 5, 10, 15, 20, 25, and 30 min after contrast administration. The post-enhanced T2-weighted images were then acquired immediately after T1-weighted acquisition. We found that T1-weighted images were positively enhanced by both Gd-DTPA and Gd-MnMEIO and negatively enhanced by SPIO. The enhancement by both Gd-DTPA and Gd-MnMEIO peaked at 0.5 min and gradually declined thereafter. Gd-MnMEIO (like Gd-DTPA) enhanced T1-weighted images and (like SPIO) T2-weighted images. Marked vascular enhancement was clearly visible on dynamic T1-weighted images with Gd-MnMEIO. In addition, the T2 signal was significantly decreased at 30 min after administration of Gd-MnMEIO. Whereas the effects of Gd-MnMEIO and SPIO on T2-weighted images were similar (p = 0.5824), those of Gd-MnMEIO and Gd-DTPA differed, with Gd-MnMEIO having a significant T2 contrast effect (p = 0.0086). Our study confirms the feasibility of synthesizing an MR contrast agent with both T1 and T2 shortening effects and using such an agent in vivo. This agent enables tumor detection and characterization in single liver MRI sections.
Bandara, Nilantha; Sharma, Anuj K; Krieger, Stephanie; Schultz, Jason W; Han, Byung Hee; Rogers, Buck E; Mirica, Liviu M
2017-09-13
Positron emission tomography (PET) imaging agents that detect amyloid plaques containing amyloid beta (Aβ) peptide aggregates in the brain of Alzheimer's disease (AD) patients have been successfully developed and recently approved by the FDA for clinical use. However, the short half-lives of the currently used radionuclides 11 C (20.4 min) and 18 F (109.8 min) may limit the widespread use of these imaging agents. Therefore, we have begun to evaluate novel AD diagnostic agents that can be radiolabeled with 64 Cu, a radionuclide with a half-life of 12.7 h, ideal for PET imaging. Described herein are a series of bifunctional chelators (BFCs), L 1 -L 5 , that were designed to tightly bind 64 Cu and shown to interact with Aβ aggregates both in vitro and in transgenic AD mouse brain sections. Importantly, biodistribution studies show that these compounds exhibit promising brain uptake and rapid clearance in wild-type mice, and initial microPET imaging studies of transgenic AD mice suggest that these compounds could serve as lead compounds for the development of improved diagnostic agents for AD.
Molecular Contrast Optical Coherence Tomography: A Review¶
Yang, Changhuei
2005-01-01
This article reviews the current state of research on the use of molecular contrast agents in optical coherence tomography (OCT) imaging techniques. After a brief discussion of the basic principle of OCT and the importance of incorporating molecular contrast agent usage into this imaging modality, we shall present an overview of the different molecular contrast OCT (MCOCT) methods that have been developed thus far. We will then discuss several important practical issues that define the possible range of contrast agent choice, the design criteria for engineered molecular contrast agent and the implementability of a given MCOCT method for clinical or biological applications. We will conclude by outlining a few areas of pursuit that deserve a greater degree of research and development. PMID:15588122
Nanomaterials incorporated ultrasound contrast agents for cancer theranostics
Fu, Lei; Ke, Heng-Te
2016-01-01
Nanotechnology provides various nanomaterials with tremendous functionalities for cancer diagnostics and therapeutics. Recently, theranostics has been developed as an alternative strategy for efficient cancer treatment through combination of imaging diagnosis and therapeutic interventions under the guidance of diagnostic results. Ultrasound (US) imaging shows unique advantages with excellent features of real-time imaging, low cost, high safety and portability, making US contrast agents (UCAs) an ideal platform for construction of cancer theranostic agents. This review focuses on the development of nanomaterials incorporated multifunctional UCAs serving as theranostic agents for cancer diagnostics and therapeutics, via conjugation of superparamagnetic iron oxide nanoparticles (SPIOs), CuS nanoparticles, DNA, siRNA, gold nanoparticles (GNPs), gold nanorods (GNRs), gold nanoshell (GNS), graphene oxides (GOs), polypyrrole (PPy) nanocapsules, Prussian blue (PB) nanoparticles and so on to different types of UCAs. The cancer treatment could be more effectively and accurately carried out under the guidance and monitoring with the help of the achieved theranostic agents. Furthermore, nanomaterials incorporated theranostic agents based on UCAs can be designed and constructed by demand for personalized and accurate treatment of cancer, demonstrating their great potential to address the challenges of cancer heterogeneity and adaptation, which can provide alternative strategies for cancer diagnosis and therapeutics. PMID:27807499
Magnetic nanoparticles as contrast agents for molecular imaging in medicine
NASA Astrophysics Data System (ADS)
O'Donnell, Matthew
2018-05-01
For over twenty years, superparamagnetic nanoparticles have been developed for a number of medical applications ranging from bioseparations, magnetic drug targeting, hyperthermia and imaging. Recent studies have shown that they can be functionalized for in vivo biological targeting, potentially enabling nanoagents for molecular imaging and site-localized drug delivery. Here we review several imaging technologies developed using functionalized superparamagnetic iron oxide nanoparticles (SPIONs) as targeted molecular agents. Several imaging modalities have exploited the large induced magnetic moment of SPIONs to create local mechanical force. Magnetic force microscopy can probe nanoparticle uptake in single cells. For in vivo applications, magnetomotive modulation of primary images in ultrasound (US), photoacoustics (PA), and optical coherence tomography (OCT) can help identify very small concentrations of nanoagents while simultaneously suppressing intrinsic background signals from tissue.
Wei, Kuo-Chen; Lin, Feng-Wei; Huang, Chiung-Yin; Ma, Chen-Chi M; Chen, Ju-Yu; Feng, Li-Ying; Yang, Hung-Wei
To date, knowing how to identify the location of chemotherapeutic agents in the human body after injection is still a challenge. Therefore, it is urgent to develop a drug delivery system with molecular imaging tracking ability to accurately understand the distribution, location, and concentration of a drug in living organisms. In this study, we developed bovine serum albumin (BSA)-based nanoparticles (NPs) with dual magnetic resonance (MR) and fluorescence imaging modalities (fluorescein isothiocyanate [FITC]-BSA-Gd/1,3-bis(2-chloroethyl)-1-nitrosourea [BCNU] NPs) to deliver BCNU for inhibition of brain tumor cells (MBR 261-2). These BSA-based NPs are water dispersible, stable, and biocompatible as confirmed by XTT cell viability assay. In vitro phantoms and in vivo MR and fluorescence imaging experiments show that the developed FITC-BSA-Gd/BCNU NPs enable dual MR and fluorescence imaging for monitoring cellular uptake and distribution in tumors. The T1 relaxivity (R1) of FITC-BSA-Gd/BCNU NPs was 3.25 mM(-1) s(-1), which was similar to that of the commercial T1 contrast agent (R1 =3.36 mM(-1) s(-1)). The results indicate that this multifunctional drug delivery system has potential bioimaging tracking of chemotherapeutic agents ability in vitro and in vivo for cancer therapy.
Surface impact on nanoparticle-based magnetic resonance imaging contrast agents
Zhang, Weizhong; Liu, Lin; Chen, Hongmin; Hu, Kai; Delahunty, Ian; Gao, Shi; Xie, Jin
2018-01-01
Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact. PMID:29721097
Structural and functional photoacoustic molecular tomography aided by emerging contrast agents
Nie, Liming
2015-01-01
Photoacoustic tomography (PAT) can offer structural, functional and molecular contrasts at scalable observation level. By ultrasonically overcoming the strong optical scattering, this imaging technology can reach centimeters penetration depth while retaining high spatial resolution in biological tissue. Recent extensive research has been focused on developing new contrast agents to improve the imaging sensitivity, specificity and efficiency. These emerging materials have substantially accelerated PAT applications in signal sensing, functional imaging, biomarker labeling and therapy monitoring etc. Here, the potentials of different optical probes as PAT contrast agents were elucidated. We first describe the instrumental embodiments and the measured functional parameters, then focus on emerging contrast agent-based PAT applications, and finally discuss the challenges and prospects. PMID:24967718
[Gadolinium-based contrast agents for magnetic resonance imaging].
Carrasco Muñoz, S; Calles Blanco, C; Marcin, Javier; Fernández Álvarez, C; Lafuente Martínez, J
2014-06-01
Gadolinium-based contrast agents are increasingly being used in magnetic resonance imaging. These agents can improve the contrast in images and provide information about function and metabolism, increasing both sensitivity and specificity. We describe the gadolinium-based contrast agents that have been approved for clinical use, detailing their main characteristics based on their chemical structure, stability, and safety. In general terms, these compounds are safe. Nevertheless, adverse reactions, the possibility of nephrotoxicity from these compounds, and the possibility of developing nephrogenic systemic fibrosis will be covered in this article. Lastly, the article will discuss the current guidelines, recommendations, and contraindications for their clinical use, including the management of pregnant and breast-feeding patients. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Wáng, Yì Xiáng J.; Idée, Jean-Marc; Corot, Claire
2015-10-01
Designing of theranostics and dual or multi-modality contrast agents are currently two of the hottest topics in biotechnology and biomaterials science. However, for single entity theranostics, a right ratio of their diagnostic component and their therapeutic component may not always be realized in a composite suitable for clinical application. For dual/multiple modality molecular imaging agents, after in vivo administration, there is an optimal time window for imaging, when an agent is imaged by one modality, the pharmacokinetics of this agent may not allow imaging by another modality. Due to reticuloendothelial system clearance, efficient in vivo delivery of nanoparticles to the lesion site is sometimes difficult. The toxicity of these entities also remains poorly understood. While the medical need of theranostics is admitted, the business model remains to be established. There is an urgent need for a global and internationally harmonized re-evaluation of the approval and marketing processes of theranostics. However, a reasonable expectation exists that, in the near future, the current obstacles will be removed, thus allowing the wide use of these very promising agents.
In vivo small animal micro-CT using nanoparticle contrast agents
Ashton, Jeffrey R.; West, Jennifer L.; Badea, Cristian T.
2015-01-01
Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research. PMID:26581654
Liu, Yuxin; Li, Luoyuan; Guo, Quanwei; Wang, Lu; Liu, Dongdong; Wei, Ziwei; Zhou, Jing
2016-01-01
Lanthanide-based contrast agents have attracted increasing attention for their unique properties and potential applications in cancer theranostics. To date, many of these agents have been studied extensively in cells and small animal models. However, performance of these theranostic nanoparticles requires further improvement. In this study, a novel CsLu2F7:Yb,Er,Tm-based visual therapeutic platform was developed for imaging-guided synergistic cancer therapy. Due to the presence of the heavy alkali metal Cesium (Cs) in host lattice, the nanoplatform can provide a higher resolution X-ray CT imaging than many other reported lanthanide-based CT contrast agents. Furthermore, by using the targeted RGD motif, chemotherapy drug alpha-tocopheryl succinate (α-TOS), and photothermal coupling agent ICG, this nanoplatform simultaneously provides multifunctional imaging and targeted synergistic therapy. To demonstrate the theranostic performance of this novel nanoplatform in vivo, visual diagnosis in the small animal model was realized by UCL/CT imaging which was further integrated with targeted chemo-photothermal synergistic therapy. These results provided evidence for the successful construction of a novel lanthanide-based nanoplatform coupled with multimodal imaging diagnosis and potential application in synergistic cancer theranostics.
NASA Astrophysics Data System (ADS)
Samkoe, Kimberley S.; Schultz, Emily; Park, Yeonjae; Fischer, Dawn; Pogue, Brian W.; Smith, Kerrington; Tichauer, Kenneth M.; Gibbs, Summer L.
2017-02-01
Pancreatic ductal adenocarcinomas (PDAC) are notoriously difficult to treat and in general, molecular targeted therapies have failed even when the targeted protein is overexpressed in the tumor tissue. Genetic mutations in extracellular receptors and downstream signaling proteins (i.e., RAS signaling pathway) and convoluted intracellular cross-talk between cell signaling pathways are likely reasons that these promising therapies fail. Monitoring the complex relationship between intracellular protein signaling is difficult and to-date, standard techniques that are used (Western blot, flow cytometry, immunohistochemistry, etc.) are invasive, static and do not accurately represent in vivo structure-function relationships. Here, we describe the development of an in ovo avatar using patient derived tumors grown on the chicken chorioallantoic membrane (CAM) and the novel fluorescence-based Quantitative Protein Expression Tracking (QUIET) methodology to bridge the gap between oncology, genomics and patient outcomes. Previously developed paired-agent imaging, was extended to a three-compartment model system in QUIET, which utilizes three types of imaging agents: novel fluorophore conjugated cell permeable targeted and untargeted small molecule paired-agents, in addition to a tumor perfusion agent that is not cell membrane permeable. We have demonstrated the ability to quantify the intracellular binding domain of a trans-membrane protein in vitro using cell permeable fluorescent agents (erlotinib-TRITC and control isotype-BODIPY FL). In addition, we have demonstrated imaging protocols to simultaneously image up to 6 spectrally distinct organic fluorophores in in ovo avatars using the Nuance EX (Perkin Elmer) and established proof-of-principle intracellular and extracellular protein concentrations of epidermal growth factor receptor using QUIET and traditional paired-agent imaging.
NASA Astrophysics Data System (ADS)
Lee, Youngjin; Lee, Amy Candy; Kim, Hee-Joung
2016-09-01
Recently, significant effort has been spent on the development of photons counting detector (PCD) based on a CdTe for applications in X-ray imaging system. The motivation of developing PCDs is higher image quality. Especially, the K-edge subtraction (KES) imaging technique using a PCD is able to improve image quality and useful for increasing the contrast resolution of a target material by utilizing contrast agent. Based on above-mentioned technique, we presented an idea for an improved K-edge log-subtraction (KELS) imaging technique. The KELS imaging technique based on the PCDs can be realized by using different subtraction energy width of the energy window. In this study, the effects of the KELS imaging technique and subtraction energy width of the energy window was investigated with respect to the contrast, standard deviation, and CNR with a Monte Carlo simulation. We simulated the PCD X-ray imaging system based on a CdTe and polymethylmethacrylate (PMMA) phantom which consists of the various iodine contrast agents. To acquired KELS images, images of the phantom using above and below the iodine contrast agent K-edge absorption energy (33.2 keV) have been acquired at different energy range. According to the results, the contrast and standard deviation were decreased, when subtraction energy width of the energy window is increased. Also, the CNR using a KELS imaging technique is higher than that of the images acquired by using whole energy range. Especially, the maximum differences of CNR between whole energy range and KELS images using a 1, 2, and 3 mm diameter iodine contrast agent were acquired 11.33, 8.73, and 8.29 times, respectively. Additionally, the optimum subtraction energy width of the energy window can be acquired at 5, 4, and 3 keV for the 1, 2, and 3 mm diameter iodine contrast agent, respectively. In conclusion, we successfully established an improved KELS imaging technique and optimized subtraction energy width of the energy window, and based on our results, we recommend using this technique for high image quality.
NASA Astrophysics Data System (ADS)
Wang, Jianxin Steven
The long-term objective is to develop magnetic resonance (MR) contrast agents that actively and passively target tumors for diagnosis and therapy. Many diagnostic imaging techniques for cancer lack specificity. A dendrimer based magnetic resonance imaging contrast agent has been developed with large proton relaxation enhancements and high molecular relaxivities. A new type of linear dendrimer based MRI contrast agent that is built from the polypropyleneimine and polyamidoamine dendrimers in which free amines have been conjugated to the chelate DTPA, which further formed the complex with Gadolinium (Gd) was studied. The specific research goals were to test the hypothesis that a linear chelate with macromolecular agents can be used in vitro and in vivo. This work successfully examined the adequacy and viability of the application for this agent in vitro and in vivo. A small animal whole body counter was designed and constructed to allow us to monitor biodistribution and kinetic mechanisms using a radioisotope labeled complex. The procedures of metal labeling, separation and purification have been established from this work. A biodistribution study has been performed using radioisotope induced organ/tissue counting and gamma camera imaging. The ratio of percentage of injected dose per gram organ/tissue for kidney and liver is 3.71 from whole body counter and 3.77 from the gamma camera. The results suggested that retention of Gd (III) is too high and a more kinetically stable chelate should be developed. The pharmacokinetic was evaluated in the whole animal model with the whole body clearance, and a kinetics model was developed. The pharmacokinetic results showed a bi-exponential decay in the animal model with two component excretion constants 1.43e(-5) and 0.0038511, which give half-lives of 3 hours and 33.6 days, respectively. Magnetic resonance imaging of this complex resulted in a 52% contrast enhancement in the rat kidney following the agents' administration in vivo.
A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging
Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong
2016-01-01
The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane–modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. PMID:26874280
Engineering Gd-loaded nanoparticles to enhance MRI sensitivity via T1 shortening
NASA Astrophysics Data System (ADS)
Bruckman, Michael A.; Yu, Xin; Steinmetz, Nicole F.
2013-11-01
Magnetic resonance imaging (MRI) is a noninvasive imaging technique capable of obtaining high-resolution anatomical images of the body. Major drawbacks of MRI are the low contrast agent sensitivity and inability to distinguish healthy tissue from diseased tissue, making early detection challenging. To address this technological hurdle, paramagnetic contrast agents have been developed to increase the longitudinal relaxivity, leading to an increased signal-to-noise ratio. This review focuses on methods and principles that enabled the design and engineering of nanoparticles to deliver contrast agents with enhanced ionic relaxivities. Different engineering strategies and nanoparticle platforms will be compared in terms of their manufacturability, biocompatibility properties, and their overall potential to make an impact in clinical MR imaging.
NASA Astrophysics Data System (ADS)
Shi, Changhong; Wu, Jason Boyang; Pan, Dongfeng
2016-05-01
A class of near-infrared fluorescence (NIRF) heptamethine cyanine dyes that are taken up and accumulated specifically in cancer cells without chemical conjugation have recently emerged as promising tools for tumor imaging and targeting. In addition to their fluorescence and nuclear imaging-based tumor-imaging properties, these dyes can be developed as drug carriers to safely deliver chemotherapy drugs to tumors. They can also be used as effective agents for photodynamic therapy with remarkable tumoricidal activity via photodependent cytotoxic activity. The preferential uptake of dyes into cancer but not normal cells is co-operatively mediated by the prevailing activation of a group of organic anion-transporting polypeptides on cancer cell membranes, as well as tumor hypoxia and increased mitochondrial membrane potential in cancer cells. Such mechanistic explorations have greatly advanced the current application and future development of NIRF dyes and their derivatives as anticancer theranostic agents. This review summarizes current knowledge and emerging advances in NIRF dyes, including molecular characterization, photophysical properties, multimodal development and uptake mechanisms, and their growing potential for preclinical and clinical use.
Vasquez, Kristine O.; Casavant, Chelsea; Peterson, Jeffrey D.
2011-01-01
When small molecules or proteins are injected into live animals, their physical and chemical properties will significantly affect pharmacokinetics, tissue penetration, and the ultimate routes of metabolism and clearance. Fluorescence molecular tomography (FMT) offers the ability to non-invasively image and quantify temporal changes in fluorescence throughout the major organ systems of living animals, in a manner analogous to traditional approaches with radiolabeled agents. This approach is best used with biotherapeutics (therapeutic antibodies, or other large proteins) or large-scaffold drug-delivery vectors, that are minimally affected by low-level fluorophore conjugation. Application to small molecule drugs should take into account the significant impact of fluorophore labeling on size and physicochemical properties, however, the presents studies show that this technique is readily applied to small molecule agents developed for far-red (FR) or near infrared (NIR) imaging. Quantification by non-invasive FMT correlated well with both fluorescence from tissue homogenates as well as with planar (2D) fluorescence reflectance imaging of excised intact organs (r2 = 0.996 and 0.969, respectively). Dynamic FMT imaging (multiple times from 0 to 24 h) performed in live mice after the injection of four different FR/NIR-labeled agents, including immunoglobulin, 20–50 nm nanoparticles, a large vascular imaging agent, and a small molecule integrin antagonist, showed clear differences in the percentage of injected dose per gram of tissue (%ID/g) in liver, kidney, and bladder signal. Nanoparticles and IgG1 favored liver over kidney signal, the small molecule integrin-binding agent favored rapid kidney and bladder clearance, and the vascular agent, showed both liver and kidney clearance. Further assessment of the volume of distribution of these agents by fluorescent volume added information regarding their biodistribution and highlighted the relatively poor extravasation into tissue by IgG1. These studies demonstrate the ability of quantitative FMT imaging of FR/NIR agents to non-invasively visualize and quantify the biodistribution of different agents over time. PMID:21731618
NASA Astrophysics Data System (ADS)
Nakagawa, Tomohiko; Gonda, Kohsuke; Kamei, Takashi; Cong, Liman; Hamada, Yoh; Kitamura, Narufumi; Tada, Hiroshi; Ishida, Takanori; Aimiya, Takuji; Furusawa, Naoko; Nakano, Yasushi; Ohuchi, Noriaki
2016-01-01
Contrast agents are often used to enhance the contrast of X-ray computed tomography (CT) imaging of tumors to improve diagnostic accuracy. However, because the iodine-based contrast agents currently used in hospitals are of low molecular weight, the agent is rapidly excreted from the kidney or moves to extravascular tissues through the capillary vessels, depending on its concentration gradient. This leads to nonspecific enhancement of contrast images for tissues. Here, we created gold (Au) nanoparticles as a new contrast agent to specifically image tumors with CT using an enhanced permeability and retention (EPR) effect. Au has a higher X-ray absorption coefficient than does iodine. Au nanoparticles were supported with polyethylene glycol (PEG) chains on their surface to increase the blood retention and were conjugated with a cancer-specific antibody via terminal PEG chains. The developed Au nanoparticles were injected into tumor-bearing mice, and the distribution of Au was examined with CT imaging, transmission electron microscopy, and elemental analysis using inductively coupled plasma optical emission spectrometry. The results show that specific localization of the developed Au nanoparticles in the tumor is affected by a slight difference in particle size and enhanced by the conjugation of a specific antibody against the tumor.
Hyperspectral fluorescence imaging with multi wavelength LED excitation
NASA Astrophysics Data System (ADS)
Luthman, A. Siri; Dumitru, Sebastian; Quirós-Gonzalez, Isabel; Bohndiek, Sarah E.
2016-04-01
Hyperspectral imaging (HSI) can combine morphological and molecular information, yielding potential for real-time and high throughput multiplexed fluorescent contrast agent imaging. Multiplexed readout from targets, such as cell surface receptors overexpressed in cancer cells, could improve both sensitivity and specificity of tumor identification. There remains, however, a need for compact and cost effective implementations of the technology. We have implemented a low-cost wide-field multiplexed fluorescence imaging system, which combines LED excitation at 590, 655 and 740 nm with a compact commercial solid state HSI system operating in the range 600 - 1000 nm. A key challenge for using reflectance-based HSI is the separation of contrast agent fluorescence from the reflectance of the excitation light. Here, we illustrate how it is possible to address this challenge in software, using two offline reflectance removal methods, prior to least-squares spectral unmixing. We made a quantitative comparison of the methods using data acquired from dilutions of contrast agents prepared in well-plates. We then established the capability of our HSI system for non-invasive in vivo fluorescence imaging in small animals using the optimal reflectance removal method. The HSI presented here enables quantitative unmixing of at least four fluorescent contrast agents (Alexa Fluor 610, 647, 700 and 750) simultaneously in living mice. A successful unmixing of the four fluorescent contrast agents was possible both using the pure contrast agents and with mixtures. The system could in principle also be applied to imaging of ex vivo tissue or intraoperative imaging in a clinical setting. These data suggest a promising approach for developing clinical applications of HSI based on multiplexed fluorescence contrast agent imaging.
Blood-pool contrast agent for pre-clinical computed tomography
NASA Astrophysics Data System (ADS)
Cruje, Charmainne; Tse, Justin J.; Holdsworth, David W.; Gillies, Elizabeth R.; Drangova, Maria
2017-03-01
Advances in nanotechnology have led to the development of blood-pool contrast agents for micro-computed tomography (micro-CT). Although long-circulating nanoparticle-based agents exist for micro-CT, they are predominantly based on iodine, which has a low atomic number. Micro-CT contrast increases when using elements with higher atomic numbers (i.e. lanthanides), particularly at higher energies. The purpose of our work was to develop and evaluate a lanthanide-based blood-pool contrast agent that is suitable for in vivo micro-CT. We synthesized a contrast agent in the form of polymer-encapsulated Gd nanoparticles and evaluated its stability in vitro. The synthesized nanoparticles were shown to have an average diameter of 127 +/- 6 nm, with good size dispersity. Particle size distribution - evaluated by dynamic light scattering over the period of two days - demonstrated no change in size of the contrast agent in water and saline. Additionally, our contrast agent was stable in a mouse serum mimic for up to 30 minutes. CT images of the synthesized contrast agent (containing 27 mg/mL of Gd) demonstrated an attenuation of over 1000 Hounsfield Units. This approach to synthesizing a Gd-based blood-pool contrast agent promises to enhance the capabilities of micro-CT imaging.
NASA Astrophysics Data System (ADS)
Mohd Janib, Siti Najila
The two main problems currently stalling the efficient treatment of cancer has been detecting cancer early enough in the disease process for successful treatment, and treating cancer cells while avoiding excessive toxicity to normal tissues. Arguably the most important factor in the fight against cancer, besides prevention is early detection because the cancer will be easier to treat and less likely to have drug resistance. The work highlighted in this thesis attempts to address the issues related to the effective treatment and management of cancer. The objective of this work is to develop new materials and methods for co-assembly of drugs and imaging agents that permit quantitative imaging of drug delivery and disease progression. By using molecular imaging technique to non-invasively study and detect various molecular markers of diseases can allow for much earlier diagnosis, earlier treatment, and better prognosis that will eventually lead to personalized medicine. Exploration of particulates and polymeric carriers is gaining momentum in diagnostic imaging, initiated by successful therapies using long circulating liposomes. However, liposomes are challenging pharmaceuticals, which include many chemical components, require complex drug encapsulation strategies, and must be physically sheared to control their particle diameter and polydispersity. Polymeric nanocarriers have emerged as an alternative to liposomes as carriers of drugs and imaging agents. Co-inclusion of therapeutic and imaging agents, into these carriers might be advantageous because they increase solubility of hydrophobic agents, may enhance permeability across physiological barriers, alter drug biodistribution, increase local bioavailability and reduce of side effects.
Dawn of Advanced Molecular Medicine: Nanotechnological Advancements in Cancer Imaging and Therapy
Kaittanis, Charalambos; Shaffer, Travis M.; Thorek, Daniel L. J.; Grimm, Jan
2014-01-01
Nanotechnology plays an increasingly important role not only in our everyday life (with all its benefits and dangers) but also in medicine. Nanoparticles are to date the most intriguing option to deliver high concentrations of agents specifically and directly to cancer cells; therefore, a wide variety of these nanomaterials has been developed and explored. These span the range from simple nanoagents to sophisticated smart devices for drug delivery or imaging. Nanomaterials usually provide a large surface area, allowing for decoration with a large amount of moieties on the surface for either additional functionalities or targeting. Besides using particles solely for imaging purposes, they can also carry as a payload a therapeutic agent. If both are combined within the same particle, a theranostic agent is created. The sophistication of highly developed nanotechnology targeting approaches provides a promising means for many clinical implementations and can provide improved applications for otherwise suboptimal formulations. In this review we will explore nanotechnology both for imaging and therapy to provide a general overview of the field and its impact on cancer imaging and therapy. PMID:25271430
Functional Nanoparticles for Magnetic Resonance Imaging
Mao, Xinpei; Xu, Jiadi; Cui, Honggang
2016-01-01
Nanoparticle-based magnetic resonance imaging (MRI) contrast agents have received much attention over the past decade. By virtue of a high payload of magnetic moieties, enhanced accumulation at disease sites, and a large surface area for additional modification with targeting ligands, nanoparticle-based contrast agents offer promising new platforms to further enhance the high resolution and sensitivity of MRI for various biomedical applications. T2* superparamagnetic iron oxide nanoparticles (SPIONs) first demonstrated superior improvement on MRI sensitivity. The prevailing SPION attracted growing interest in the development of refined nanoscale versions of MRI contrast agents. Afterwards, T1-based contrast agents were developed, and became the most studied subject in MRI due to the positive contrast they provide that avoids the susceptibility associated with MRI signal reduction. Recently, chemical exchange saturation transfer (CEST) contrast agents have emerged and rapidly gained popularity. The unique aspect of CEST contrast agents is that their contrast can be selectively turned “on” and “off” by radiofrequency (RF) saturation. Their performance can be further enhanced by incorporating a large number of exchangeable protons into well-defined nanostructure. Besides activatable CEST contrast agents, there is growing interest in developing nanoparticle-based activatable MRI contrast agents responsive to stimuli (pH, enzyme, etc.), which improves sensitivity and specificity. In this review, we summarize the recent development of various types of nanoparticle-based MRI contrast agents, and have focused our discussions on the key advantages of introducing nanoparticles in MRI. PMID:27040463
Recent trends in soft-tissue infection imaging.
Petruzzi, Nicholas; Shanthly, Nylla; Thakur, Mathew
2009-03-01
This article discusses the current techniques and future directions of infection imaging with particular attention to respiratory, central nervous system, abdominal, and postoperative infections. The agents currently in use localize to areas of infection and inflammation. An infection-specific imaging agent would greatly improve the utility of scintigraphy in imaging occult infections. The superior spatial resolution of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET) and its lack of reliance on a functional immune system, gives this agent certain advantages over the other radiopharmaceuticals. In respiratory tract infection imaging, an important advancement would be the ability to quantitatively delineate lung inflammation, allowing one to monitor the therapeutic response in a variety of conditions. Current studies suggest PET should be considered the most accurate quantitative method. Scintigraphy has much to offer in localizing abdominal infection as well as inflammation. We may begin to see a gradual increase in the usage of (18)F-FDG-PET in detecting occult abdominal infections. Commonly used modalities for imaging inflammatory bowel disease are scintigraphy with (111)In-oxine/(99m)Tc-HMPAO labeled autologous white blood cells. The literature on central nervous system infection imaging is relatively scarce. Few clinical studies have been performed and numerous new agents have been developed for this use with varying results. Further studies are needed to more clearly delineate the future direction of this field. In evaluating the postoperative spine, (99m)Tc-ciprofloxacin single-photon emission computed tomography (SPECT) was reported to be >80% sensitive in patients more than 6 months after surgery. FDG-PET has also been suggested for this purpose and may play a larger role than originally thought. It appears PET/computed tomography (CT) is gaining support, especially in imaging those with fever of unknown origin or nonfunctional immune systems. Although an infection-specific agent is lacking, the development of one would greatly advance our ability to detect, localize, and quantify infections. Overall, imaging such an agent via SPECT/CT or PET/CT will pave the way for greater clinical reliability in the localization of infection.
Xue, Shenghui; Qiao, Jingjuan; Pu, Fan; Cameron, Mathew; Yang, Jenny J.
2014-01-01
Magnetic resonance imaging (MRI) of disease biomarkers, especially cancer biomarkers, could potentially improve our understanding of the disease and drug activity during preclinical and clinical drug treatment and patient stratification. MRI contrast agents with high relaxivity and targeting capability to tumor biomarkers are highly required. Extensive work has been done to develop MRI contrast agents. However, only a few limited literatures report that protein residues can function as ligands to bind Gd3+ with high binding affinity, selectivity, and relaxivity. In this paper, we focus on reporting our current progress on designing a novel class of protein-based Gd3+ MRI contrast agents (ProCAs) equipped with several desirable capabilities for in vivo application of MRI of tumor biomarkers. We will first discuss our strategy for improving the relaxivity by a novel protein-based design. We then discuss the effect of increased relaxivity of ProCAs on improving the detection limits for MRI contrast agent, especially for in vivo application. We will further report our efforts to improve in vivo imaging capability and our achievement in molecular imaging of cancer biomarkers with potential preclinical and clinical applications. PMID:23335551
Nanoparticles in Higher-Order Multimodal Imaging
NASA Astrophysics Data System (ADS)
Rieffel, James Ki
Imaging procedures are a cornerstone in our current medical infrastructure. In everything from screening, diagnostics, and treatment, medical imaging is perhaps our greatest tool in evaluating individual health. Recently, there has been tremendous increase in the development of multimodal systems that combine the strengths of complimentary imaging technologies to overcome their independent weaknesses. Clinically, this has manifested in the virtually universal manufacture of combined PET-CT scanners. With this push toward more integrated imaging, new contrast agents with multimodal functionality are needed. Nanoparticle-based systems are ideal candidates based on their unique size, properties, and diversity. In chapter 1, an extensive background on recent multimodal imaging agents capable of enhancing signal or contrast in three or more modalities is presented. Chapter 2 discusses the development and characterization of a nanoparticulate probe with hexamodal imaging functionality. It is my hope that the information contained in this thesis will demonstrate the many benefits of nanoparticles in multimodal imaging, and provide insight into the potential of fully integrated imaging.
Machine learning for a Toolkit for Image Mining
NASA Technical Reports Server (NTRS)
Delanoy, Richard L.
1995-01-01
A prototype user environment is described that enables a user with very limited computer skills to collaborate with a computer algorithm to develop search tools (agents) that can be used for image analysis, creating metadata for tagging images, searching for images in an image database on the basis of image content, or as a component of computer vision algorithms. Agents are learned in an ongoing, two-way dialogue between the user and the algorithm. The user points to mistakes made in classification. The algorithm, in response, attempts to discover which image attributes are discriminating between objects of interest and clutter. It then builds a candidate agent and applies it to an input image, producing an 'interest' image highlighting features that are consistent with the set of objects and clutter indicated by the user. The dialogue repeats until the user is satisfied. The prototype environment, called the Toolkit for Image Mining (TIM) is currently capable of learning spectral and textural patterns. Learning exhibits rapid convergence to reasonable levels of performance and, when thoroughly trained, Fo appears to be competitive in discrimination accuracy with other classification techniques.
NASA Astrophysics Data System (ADS)
Torres, Veronica C.; Wilson, Todd; Staneviciute, Austeja; Byrne, Richard W.; Tichauer, Kenneth M.
2018-03-01
Skull base tumors are particularly difficult to visualize and access for surgeons because of the crowded environment and close proximity of vital structures, such as cranial nerves. As a result, accidental nerve damage is a significant concern and the likelihood of tumor recurrence is increased because of more conservative resections that attempt to avoid injuring these structures. In this study, a paired-agent imaging method with direct administration of fluorophores is applied to enhance cranial nerve identification. Here, a control imaging agent (ICG) accounts for non-specific uptake of the nerve-targeting agent (Oxazine 4), and ratiometric data analysis is employed to approximate binding potential (BP, a surrogate of targeted biomolecule concentration). For clinical relevance, animal experiments and simulations were conducted to identify parameters for an optimized stain and rinse protocol using the developed paired-agent method. Numerical methods were used to model the diffusive and kinetic behavior of the imaging agents in tissue, and simulation results revealed that there are various combinations of stain time and rinse number that provide improved contrast of cranial nerves, as suggested by optimal measures of BP and contrast-to-noise ratio.
Development and characterization of resveratrol nanoemulsions carrying dual-imaging agents
Herneisey, Michele; Williams, Jonathan; Mirtic, Janja; Liu, Lu; Potdar, Sneha; Bagia, Christina; Cavanaugh, Jane E; Janjic, Jelena M
2016-01-01
Aim: Delivery of the natural anti-inflammatory compound resveratrol with nanoemulsions can dramatically improve its tissue targeting, bioavailability and efficacy. Current assessment of resveratrol delivery efficacy is limited to indirect pharmacological measures. Molecular imaging solves this problem. Results/methodology: Nanoemulsions containing two complementary imaging agents, near-infrared dye and perfluoropolyether (PFPE), were developed and evaluated. Nanoemulsion effects on macrophage uptake, toxicity and NO production were also evaluated. The presence of PFPE did not affect nanoemulsion size, zeta potential, colloidal stability, drug loading or drug release. Conclusion: PFPE nanoemulsions can be used in future studies to evaluate nanoemulsion biodistribution without interfering with resveratrol delivery and pharmacological outcomes. Developed nanoemulsions show promise as a versatile treatment strategy for cancer and other inflammatory diseases. Graphical abstract PMID:27834615
NASA Astrophysics Data System (ADS)
Laoui, Samir
Photoacoustic tomography is a hybrid imaging modality that takes advantage of the high contrast of pure optical imaging and the high intrinsic resolution of ultrasound without the necessity of ionizing radiation. Photoacoustic imaging (PM) is neither purely optical nor purely acoustical in nature, but a combination of the two. It is fundamentally based on light excitation and ultrasonic detection. Photoacoustic imaging has been successful without the introduction of exogenous contrast agents; however, to image deeper regions of biological tissue, a contrast agent is necessary. Several types of photoacoustic contrast agents have been made available for diagnostic purposes; however, the majority of literature has focused on gold nanoparticle systems for which the surface-plasmon resonance effect is important. The only option currently available for molecular PM contrast agents is to choose an existing near infrared absorbing fluorescent probes with the hope that they may generate a substantial photoacoustic (PA) response. However, these dyes have been designed with an optimized fluorescence emission response and are not anticipated to generate an adequate photoacoustic response. This dissertation addresses this lack of precedence in the literature for understanding the mechanism of a photoacoustic signal generation from strongly absorbing dye molecules including BODIPY, cyanine and curcumin systems. This work represents preliminary efforts in bringing novel molecular photoacoustic contrast agents (MPACs) into the photoacoustic imaging arena. To this end, photoacoustic and optical Z-scan experiments, and quenching studies were employed to demonstrate correlation of photoacoustic emission enhancement with excited state absorption mechanisms. To investigate further the photoacoustic emission in a practical imaging setting, MPACs were imaged using a recently developed photoacoustic imaging tomography system which was constructed exclusively for the purpose of this study.
Functional Imaging of the Lungs with Gas Agents
Kruger, Stanley J.; Nagle, Scott K.; Couch, Marcus J.; Ohno, Yoshiharu; Albert, Mitchell; Fain, Sean B.
2015-01-01
This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI) – hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas – and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multi-detector computed tomography (CT). However, MRI also offers capabilities for fast multi-spectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultra-short echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. Relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF) in both adults and children. PMID:26218920
NASA Astrophysics Data System (ADS)
Xu, Xiaochun; Kang, Soyoung; Navarro-Comes, Eric; Wang, Yu; Liu, Jonathan T. C.; Tichauer, Kenneth M.
2018-03-01
Intraoperative tumor/surgical margin assessment is required to achieve higher tumor resection rate in breast-conserving surgery. Though current histology provides incomparable accuracy in margin assessment, thin tissue sectioning and the limited field of view of microscopy makes histology too time-consuming for intraoperative applications. If thick tissue, wide-field imaging can provide an acceptable assessment of tumor cells at the surface of resected tissues, an intraoperative protocol can be developed to guide the surgery and provide immediate feedback for surgeons. Topical staining of margins with cancer-targeted molecular imaging agents has the potential to provide the sensitivity needed to see microscopic cancer on a wide-field image; however, diffusion and nonspecific retention of imaging agents in thick tissue can significantly diminish tumor contrast with conventional methods. Here, we present a mathematical model to accurately simulate nonspecific retention, binding, and diffusion of imaging agents in thick tissue topical staining to guide and optimize future thick tissue staining and imaging protocol. In order to verify the accuracy and applicability of the model, diffusion profiles of cancer targeted and untargeted (control) nanoparticles at different staining times in A431 tumor xenografts were acquired for model comparison and tuning. The initial findings suggest the existence of nonspecific retention in the tissue, especially at the tissue surface. The simulator can be used to compare the effect of nonspecific retention, receptor binding and diffusion under various conditions (tissue type, imaging agent) and provides optimal staining and imaging protocols for targeted and control imaging agent.
Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong
2016-04-01
The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane-modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.
Basic MR relaxation mechanisms and contrast agent design.
De León-Rodríguez, Luis M; Martins, André F; Pinho, Marco C; Rofsky, Neil M; Sherry, A Dean
2015-09-01
The diagnostic capabilities of magnetic resonance imaging (MRI) have undergone continuous and substantial evolution by virtue of hardware and software innovations and the development and implementation of exogenous contrast media. Thirty years since the first MRI contrast agent was approved for clinical use, a reliance on MR contrast media persists, largely to improve image quality with higher contrast resolution and to provide additional functional characterization of normal and abnormal tissues. Further development of MR contrast media is an important component in the quest for continued augmentation of diagnostic capabilities. In this review we detail the many important considerations when pursuing the design and use of MR contrast media. We offer a perspective on the importance of chemical stability, particularly kinetic stability, and how this influences one's thinking about the safety of metal-ligand-based contrast agents. We discuss the mechanisms involved in MR relaxation in the context of probe design strategies. A brief description of currently available contrast agents is accompanied by an in-depth discussion that highlights promising MRI contrast agents in the development of future clinical and research applications. Our intention is to give a diverse audience an improved understanding of the factors involved in developing new types of safe and highly efficient MR contrast agents and, at the same time, provide an appreciation of the insights into physiology and disease that newer types of responsive agents can provide. © 2015 Wiley Periodicals, Inc.
"Basic MR Relaxation Mechanisms & Contrast Agent Design"
De León-Rodríguez, Luis M.; Martins, André F.; Pinho, Marco; Rofsky, Neil; Sherry, A. Dean
2015-01-01
The diagnostic capabilities of magnetic resonance imaging (MRI) have undergone continuous and substantial evolution by virtue of hardware and software innovations and the development and implementation of exogenous contrast media. Thirty years since the first MRI contrast agent was approved for clinical use, a reliance on MR contrast media persists largely to improve image quality with higher contrast resolution and to provide additional functional characterization of normal and abnormal tissues. Further development of MR contrast media is an important component in the quest for continued augmentation of diagnostic capabilities. In this review we will detail the many important considerations when pursuing the design and use of MR contrast media. We will offer a perspective on the importance of chemical stability, particularly kinetic stability, and how this influences one's thinking about the safety of metal-ligand based contrast agents. We will discuss the mechanisms involved in magnetic resonance relaxation in the context of probe design strategies. A brief description of currently available contrast agents will be accompanied by an in-depth discussion that highlights promising MRI contrast agents in development for future clinical and research applications. Our intention is to give a diverse audience an improved understanding of the factors involved in developing new types of safe and highly efficient MR contrast agents and, at the same time, provide an appreciation of the insights into physiology and disease that newer types of responsive agents can provide. PMID:25975847
Using Nanoparticles in Medicine for Liver Cancer Imaging.
Moghadam, Farideh Farokhi
2017-07-01
One of the most important types of liver cancer is hepatocellular carcinoma (HCC). HCC is the fifth most common cancer, and its correct diagnosis is very important. For the quick diagnosis of HCC, the use of nanoparticles is helpful. The major applications of nanoparticles are in medicine for organ imaging. Two methods of liver imaging are X-ray computed tomography (CT) and magnetic resonance imaging (MRI). In this review, we attempt to summarize some of the contrast agents used in imaging such as superparamagnetic iron oxide nanoparticles (SPIONs) and iron oxide nanoparticles (IONPs), various types of enhanced MRI for the liver, and nanoparticles like gold (AuNPs), which is used to develop novel CT imaging agents.
NASA Astrophysics Data System (ADS)
Dogra, Vikram; Chinni, Bhargava; Singh, Shalini; Schmitthenner, Hans; Rao, Navalgund; Krolewski, John J.; Nastiuk, Kent L.
2016-06-01
There is an urgent need for sensitive and specific tools to accurately image early stage, organ-confined human prostate cancers to facilitate active surveillance and reduce unnecessary treatment. Recently, we developed an acoustic lens that enhances the sensitivity of photoacoustic imaging. Here, we report the use of this device in conjunction with two molecular imaging agents that specifically target the prostate-specific membrane antigen (PSMA) expressed on the tumor cell surface of most prostate cancers. We demonstrate successful imaging of phantoms containing cancer cells labeled with either of two different PSMA-targeting agents, the ribonucleic acid aptamer A10-3.2 and a urea-based peptidomimetic inhibitor, each linked to the near-infrared dye IRDye800CW. By specifically targeting cells with these agents linked to a dye chosen for optimal signal, we are able to discriminate prostate cancer cells that express PSMA.
2018-01-01
Molecular imaging is advantageous for screening diseases such as breast cancer by providing precise spatial information on disease-associated biomarkers, something neither blood tests nor anatomical imaging can achieve. However, the high cost and risks of ionizing radiation for several molecular imaging modalities have prevented a feasible and scalable approach for screening. Clinical studies have demonstrated the ability to detect breast tumors using nonspecific probes such as indocyanine green, but the lack of molecular information and required intravenous contrast agent does not provide a significant benefit over current noninvasive imaging techniques. Here we demonstrate that negatively charged sulfate groups, commonly used to improve solubility of near-infrared fluorophores, enable sufficient oral absorption and targeting of fluorescent molecular imaging agents for completely noninvasive detection of diseased tissue such as breast cancer. These functional groups improve the pharmacokinetic properties of affinity ligands to achieve targeting efficiencies compatible with clinical imaging devices using safe, nonionizing radiation (near-infrared light). Together, this enables development of a “disease screening pill” capable of oral absorption and systemic availability, target binding, background clearance, and imaging at clinically relevant depths for breast cancer screening. This approach should be adaptable to other molecular targets and diseases for use as a new class of screening agents. PMID:29696981
Bhatnagar, Sumit; Verma, Kirti Dhingra; Hu, Yongjun; Khera, Eshita; Priluck, Aaron; Smith, David E; Thurber, Greg M
2018-05-07
Molecular imaging is advantageous for screening diseases such as breast cancer by providing precise spatial information on disease-associated biomarkers, something neither blood tests nor anatomical imaging can achieve. However, the high cost and risks of ionizing radiation for several molecular imaging modalities have prevented a feasible and scalable approach for screening. Clinical studies have demonstrated the ability to detect breast tumors using nonspecific probes such as indocyanine green, but the lack of molecular information and required intravenous contrast agent does not provide a significant benefit over current noninvasive imaging techniques. Here we demonstrate that negatively charged sulfate groups, commonly used to improve solubility of near-infrared fluorophores, enable sufficient oral absorption and targeting of fluorescent molecular imaging agents for completely noninvasive detection of diseased tissue such as breast cancer. These functional groups improve the pharmacokinetic properties of affinity ligands to achieve targeting efficiencies compatible with clinical imaging devices using safe, nonionizing radiation (near-infrared light). Together, this enables development of a "disease screening pill" capable of oral absorption and systemic availability, target binding, background clearance, and imaging at clinically relevant depths for breast cancer screening. This approach should be adaptable to other molecular targets and diseases for use as a new class of screening agents.
Aime, Silvio; Castelli, Daniela Delli; Crich, Simonetta Geninatti; Gianolio, Eliana; Terreno, Enzo
2009-07-21
Contrast in magnetic resonance imaging (MRI) arises from changes in the intensity of the proton signal of water between voxels (essentially, the 3D counterpart of pixels). Differences in intervoxel intensity can be significantly enhanced with chemicals that alter the nuclear magnetic resonance (NMR) intensity of the imaged spins; this alteration can occur by various mechanisms. Paramagnetic lanthanide(III) complexes are used in two major classes of MRI contrast agent: the well-established class of Gd-based agents and the emerging class of chemical exchange saturation transfer (CEST) agents. A Gd-based complex increases water signal by enhancing the longitudinal relaxation rate of water protons, whereas CEST agents decrease water signal as a consequence of the transfer of saturated magnetization from the exchangeable protons of the agent. In this Account, we survey recent progress in both areas, focusing on how MRI is becoming a more competitive choice among the various molecular imaging methods. Compared with other imaging modalities, MRI is set apart by its superb anatomical resolution; however, its success in molecular imaging suffers because of its intrinsic insensitivity. A relatively high concentration of molecular agents (0.01-0.1 mM) is necessary to produce a local alteration in the water signal intensity. Unfortunately, the most desirable molecules for visualization in molecular imaging are present at much lower concentrations, in the nano- or picomolar range. Therefore, augmenting the sensitivity of MRI agents is key to the development of MR-based molecular imaging applications. In principle, this task can be tackled either by increasing the sensitivity of the reporting units, through the optimization of their structural and dynamic properties, or by setting up proper amplification strategies that allow the accumulation of a huge number of imaging reporters at the site of interest. For Gd-based agents, high sensitivities can be attained by exploiting a range of nanosized carriers (micelles, liposomes, microemulsions, and the like, as well as biological structures such as apoferritin and lipoproteins) properly loaded with Gd-based chelates. Furthermore, the sensitivity of Gd-based agents can be markedly affected either by their interactions with biological structures or by their cellular localization. For CEST agents, a huge sensitivity enhancement has been obtained by using the water molecules contained in the inner cavity of liposomes as the exchangeable source of protons for magnetization transfer. Several "tricks" (for example, the use of multimeric lanthanide(III) shift reagents, changes in the shape of the liposome container, and so forth) have been devised to improve the chemical shift separation between the intraliposomal water and the "bulk" water resonances. Overall, excellent sensitivity enhancements have been obtained for both classes of agents, enabling their use in MR molecular imaging applications.
Software for Partly Automated Recognition of Targets
NASA Technical Reports Server (NTRS)
Opitz, David; Blundell, Stuart; Bain, William; Morris, Matthew; Carlson, Ian; Mangrich, Mark; Selinsky, T.
2002-01-01
The Feature Analyst is a computer program for assisted (partially automated) recognition of targets in images. This program was developed to accelerate the processing of high-resolution satellite image data for incorporation into geographic information systems (GIS). This program creates an advanced user interface that embeds proprietary machine-learning algorithms in commercial image-processing and GIS software. A human analyst provides samples of target features from multiple sets of data, then the software develops a data-fusion model that automatically extracts the remaining features from selected sets of data. The program thus leverages the natural ability of humans to recognize objects in complex scenes, without requiring the user to explain the human visual recognition process by means of lengthy software. Two major subprograms are the reactive agent and the thinking agent. The reactive agent strives to quickly learn the user's tendencies while the user is selecting targets and to increase the user's productivity by immediately suggesting the next set of pixels that the user may wish to select. The thinking agent utilizes all available resources, taking as much time as needed, to produce the most accurate autonomous feature-extraction model possible.
Contrast-enhanced photoacoustic tomography of human joints
NASA Astrophysics Data System (ADS)
Tian, Chao; Keswani, Rahul K.; Gandikota, Girish; Rosania, Gus R.; Wang, Xueding
2016-03-01
Photoacoustic tomography (PAT) provides a unique tool to diagnose inflammatory arthritis. However, the specificity and sensitivity of PAT based on endogenous contrasts is limited. The development of contrast enhanced PAT imaging modalities in combination with small molecule contrast agents could lead to improvements in diagnosis and treatment of joint disease. Accordingly, we adapted and tested a PAT clinical imaging system for imaging the human joints, in combination with a novel PAT contrast agent derived from an FDA-approved small molecule drug. Imaging results based on a photoacoustic and ultrasound (PA/US) dual-modality system revealed that this contrast-enhanced PAT imaging system may offer additional information beyond single-modality PA or US imaging system, for the imaging, diagnosis and assessment of inflammatory arthritis.
Real-time landmark-based unrestrained animal tracking system for motion-corrected PET/SPECT imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.S. Goddard; S.S. Gleason; M.J. Paulus
2003-08-01
Oak Ridge National Laboratory (ORNL) and Jefferson Lab and are collaborating to develop a new high-resolution single photon emission tomography (SPECT) instrument to image unrestrained laboratory animals. This technology development will allow functional imaging studies to be performed on the animals without the use of anesthetic agents. This technology development could have eventual clinical applications for performing functional imaging studies on patients that cannot remain still (Parkinson's patients, Alzheimer's patients, small children, etc.) during a PET or SPECT scan. A key component of this new device is the position tracking apparatus. The tracking apparatus is an integral part of themore » gantry and designed to measure the spatial position of the animal at a rate of 10-15 frames per second with sub-millimeter accuracy. Initial work focuses on brain studies where anesthetic agents or physical restraint can significantly impact physiologic processes.« less
Longmire, Michelle; Choyke, Peter L.; Kobayashi, Hisataka
2009-01-01
Summary Nanoparticles possess enormous potential as diagnostic imaging agents and hold promise for the development of multimodality agents with both imaging and therapeutic capabilities. Yet, some of the most promising nanoparticles demonstrate prolonged tissue retention and contain heavy metals. This presents serious concerns for toxicity. The creation of nanoparticles with optimal clearance characteristics will minimize toxicity risks by reducing the duration of exposure to these agents. Given that many nanoparticles possess easily modifiable surface and interior chemistry, if nanoparticle characteristics associated with optimal clearance from the body were well established, it would be feasible to design and create agents with more favorable clearance properties. This paper presents a thorough discussion of the physiologic aspects of nanoparticle clearance, focusing on renal mechanisms, as well as provides an overview of current research investigating clearance of specific types of nanoparticles and nano-sized macromolecules, including dendrimers, quantum dots, liposomes and carbon, gold, and silica-based nanoparticles. PMID:18817471
Combination of Fluorescence-Guided Surgery With Photodynamic Therapy for the Treatment of Cancer
He, Jun; Yang, Leping; Yi, Wenjun; Fan, Wentao; Wen, Yu; Miao, Xiongying; Xiong, Li
2017-01-01
Specific visualization of body parts is needed during surgery. Fluorescence-guided surgery (FGS) uses a fluorescence contrast agent for in vivo tumor imaging to detect and identify both malignant and normal tissues. There are several advantages and clinical benefits of FGS over other conventional medical imaging modalities, such as its safety, effectiveness, and suitability for real-time imaging in the operating room. Recent advancements in contrast agents and intraoperative fluorescence imaging devices have led to a greater potential for intraoperative fluorescence imaging in clinical applications. Photodynamic therapy (PDT) is an alternative modality to treat tumors, which uses a light-sensitive drug (photosensitizers) and special light to destroy the targeted tissues. In this review, we discuss the fluorescent contrast agents, some newly developed imaging devices, and the successful clinical application of FGS. Additionally, we present the combined strategy of FGS with PDT to further improve the therapeutic effect for patients with cancer. Taken together, this review provides a unique perspective and summarization of FGS. PMID:28849712
New generation ICG-based contrast agents for ultrasound-switchable fluorescence imaging
Yu, Shuai; Cheng, Bingbing; Yao, Tingfeng; Xu, Cancan; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong
2016-01-01
Recently, we developed a new technology, ultrasound-switchable fluorescence (USF), for high-resolution imaging in centimeter-deep tissues via fluorescence contrast. The success of USF imaging highly relies on excellent contrast agents. ICG-encapsulated poly(N-isopropylacrylamide) nanoparticles (ICG-NPs) are one of the families of the most successful near-infrared (NIR) USF contrast agents. However, the first-generation ICG-NPs have a short shelf life (<1 month). This work significantly increases the shelf life of the new-generation ICG-NPs (>6 months). In addition, we have conjugated hydroxyl or carboxyl function groups on the ICG-NPs for future molecular targeting. Finally, we have demonstrated the effect of temperature-switching threshold (Tth) and the background temperature (TBG) on the quality of USF images. We estimated that the Tth of the ICG-NPs should be controlled at ~38–40 °C (slightly above the body temperature of 37 °C) for future in vivo USF imaging. Addressing these challenges further reduces the application barriers of USF imaging. PMID:27775014
Macromolecular and Dendrimer Based Magnetic Resonance Contrast Agents
Bumb, Ambika; Brechbiel, Martin W.; Choyke, Peter
2010-01-01
Magnetic resonance imaging (MRI) is a powerful imaging modality that can provide an assessment of function or molecular expression in tandem with anatomic detail. Over the last 20–25 years, a number of gadolinium based MR contrast agents have been developed to enhance signal by altering proton relaxation properties. This review explores a range of these agents from small molecule chelates, such as Gd-DTPA and Gd-DOTA, to macromolecular structures composed of albumin, polylysine, polysaccharides (dextran, inulin, starch), poly(ethylene glycol), copolymers of cystamine and cystine with GD-DTPA, and various dendritic structures based on polyamidoamine and polylysine (Gadomers). The synthesis, structure, biodistribution and targeting of dendrimer-based MR contrast agents are also discussed. PMID:20590365
Pan, Dipanjan; Caruthers, Shelton D; Hu, Grace; Senpan, Angana; Scott, Mike J; Gaffney, Patrick J; Wickline, Samuel A; Lanza, Gregory M
2008-07-23
Although gadolinium has been the dominant paramagnetic metal for MR paramagnetic contrast agents, the recent association of this lanthanide with nephrogenic systemic fibrosis, an untreatable disease, has spawned renewed interest in alternative metals for MR molecular imaging. We have developed a self-assembled, manganese(III)-labeled nanobialys (1), a toroidal-shaped MR theranostic nanoparticle. In this report, Mn(III) nanobialys are characterized as MR molecular imaging agents for targeted detection of fibrin, a major biochemical feature of thrombus. A complementary ability of nanobialys to incorporate chemotherapeutic compounds with greater than 98% efficiency and to retain more than 80% of these drugs after infinite sink dissolution, point to the theranostic potential of this platform technology.
Semiconducting polymer dot as a highly effective contrast agent for photoacoustic imaging
NASA Astrophysics Data System (ADS)
Yuan, Zhen; Zhang, Jian
2018-02-01
In this study, we developed a novel PIID-DTBT based semiconducting polymer dots (Pdots) that have broad and strong optical absorption in the visible-light region (500 nm - 700 nm). Gold nanoparticles (GNPs) and gold nanorods (GNRs) that have been verified as an excellent photoacoustic contrast agent were compared with Pdots based on photoacoustic imaging method. Both ex vivo and in vivo experiment demonstrated Pdots have a better photoacoustic conversion efficiency at 532 nm than GNPs and similar photoacoustic performance with GNRs at 700 nm at the same mass concentration. Our work demonstrates the great potential of Pdots as a highly effective contrast agent for precise localization of lesions relative to the blood vessels based on photoacoustic tomography imaging.
Molecular imaging of photodynamic therapy
NASA Astrophysics Data System (ADS)
Chang, Sung K.; Errabelli, Divya; Rizvi, Imran; Solban, Nicolas; O'Riordan, Katherine; Hasan, Tayyaba
2006-02-01
Recent advances in light sources, detectors and other optical imaging technologies coupled with the development of novel optical contrast agents have enabled real-time, high resolution, in vivo monitoring of molecular targets. Noninvasive monitoring of molecular targets is particularly relevant to photodynamic therapy (PDT), including the delivery of photosensitizer in the treatment site and monitoring of molecular and physiological changes following treatment. Our lab has developed optical imaging technologies to investigate these various aspects of photodynamic therapy (PDT). We used a laser scanning confocal microscope to monitor the pharmacokinetics of various photosensitizers in in vitro as well as ex vivo samples, and developed an intravital fluorescence microscope to monitor photosensitizer delivery in vivo in small animals. A molecular specific contrast agent that targets the vascular endothelial growth factor (VEGF) was developed to monitor the changes in the protein expression following PDT. We were then able to study the physiological changes due to post-treatment VEGF upregulation by quantifying vascular permeability with in vivo imaging.
Development of a QDots 800 based fluorescent solid phantom for validation of NIRF imaging platforms
NASA Astrophysics Data System (ADS)
Zhu, Banghe; Sevick-Muraca, Eva M.
2013-02-01
Over the past decade, we developed near-infrared fluorescence (NIRF) devices for non-invasive lymphatic imaging using microdosages of ICG in humans and for detection of lymph node metastasis in animal models mimicking metastatic human prostate cancer. To validate imaging, a NIST traceable phantom is needed so that developed "first-inhumans" drugs may be used with different luorescent imaging platforms. In this work, we developed a QDots 800 based fluorescent solid phantom for installation and operational qualification of clinical and preclinical, NIRF imaging devices. Due to its optical clearance, polyurethane was chosen as the base material. Titanium dioxide was used as the scattering agent because of its miscibility in polyurethane. QDots 800 was chosen owing to its stability and NIR emission spectra. A first phantom was constructed for evaluation of the noise floor arising from excitation light leakage, a phenomenon that can be minimized during engineering and design of fluorescent imaging systems. A second set of phantoms were constructed to enable quantification of device sensitivity associated with our preclinical and clinical devices. The phantoms have been successfully applied for installation and operational qualification of our preclinical and clinical devices. Assessment of excitation light leakage provides a figure of merit for "noise floor" and imaging sensitivity can be used to benchmark devices for specific imaging agents.
Daryaei, Iman; Pagel, Mark D
2015-01-01
Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a "double-agent" approach to molecular imaging. Exogenous T 2 -exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T 1 and T 2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as "secret agents" in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging.
Santiesteban, Daniela Y; Kubelick, Kelsey; Dhada, Kabir S; Dumani, Diego; Suggs, Laura; Emelianov, Stanislav
2016-03-01
The past three decades have seen numerous advances in tissue engineering and regenerative medicine (TERM) therapies. However, despite the successes there is still much to be done before TERM therapies become commonplace in clinic. One of the main obstacles is the lack of knowledge regarding complex tissue engineering processes. Imaging strategies, in conjunction with exogenous contrast agents, can aid in this endeavor by assessing in vivo therapeutic progress. The ability to uncover real-time treatment progress will help shed light on the complex tissue engineering processes and lead to development of improved, adaptive treatments. More importantly, the utilized exogenous contrast agents can double as therapeutic agents. Proper use of these Monitoring/Imaging and Regenerative Agents (MIRAs) can help increase TERM therapy successes and allow for clinical translation. While other fields have exploited similar particles for combining diagnostics and therapy, MIRA research is still in its beginning stages with much of the current research being focused on imaging or therapeutic applications, separately. Advancing MIRA research will have numerous impacts on achieving clinical translations of TERM therapies. Therefore, it is our goal to highlight current MIRA progress and suggest future research that can lead to effective TERM treatments.
NASA Astrophysics Data System (ADS)
Sadeghipour, N.; Davis, S. C.; Tichauer, K. M.
2017-01-01
New precision medicine drugs oftentimes act through binding to specific cell-surface cancer receptors, and thus their efficacy is highly dependent on the availability of those receptors and the receptor concentration per cell. Paired-agent molecular imaging can provide quantitative information on receptor status in vivo, especially in tumor tissue; however, to date, published approaches to paired-agent quantitative imaging require that only ‘trace’ levels of imaging agent exist compared to receptor concentration. This strict requirement may limit applicability, particularly in drug binding studies, which seek to report on a biological effect in response to saturating receptors with a drug moiety. To extend the regime over which paired-agent imaging may be used, this work presents a generalized simplified reference tissue model (GSRTM) for paired-agent imaging developed to approximate receptor concentration in both non-receptor-saturated and receptor-saturated conditions. Extensive simulation studies show that tumor receptor concentration estimates recovered using the GSRTM are more accurate in receptor-saturation conditions than the standard simple reference tissue model (SRTM) (% error (mean ± sd): GSRTM 0 ± 1 and SRTM 50 ± 1) and match the SRTM accuracy in non-saturated conditions (% error (mean ± sd): GSRTM 5 ± 5 and SRTM 0 ± 5). To further test the approach, GSRTM-estimated receptor concentration was compared to SRTM-estimated values extracted from tumor xenograft in vivo mouse model data. The GSRTM estimates were observed to deviate from the SRTM in tumors with low receptor saturation (which are likely in a saturated regime). Finally, a general ‘rule-of-thumb’ algorithm is presented to estimate the expected level of receptor saturation that would be achieved in a given tissue provided dose and pharmacokinetic information about the drug or imaging agent being used, and physiological information about the tissue. These studies suggest that the GSRTM is necessary when receptor saturation exceeds 20% and highlight the potential for GSRTM to accurately measure receptor concentrations under saturation conditions, such as might be required during high dose drug studies, or for imaging applications where high concentrations of imaging agent are required to optimize signal-to-noise conditions. This model can also be applied to PET and SPECT imaging studies that tend to suffer from noisier data, but require one less parameter to fit if images are converted to imaging agent concentration (quantitative PET/SPECT).
Contrast-enhanced endoscopic ultrasonography: advance and current status
2014-01-01
Endoscopic ultrasonography (EUS) technology has undergone a great deal of progress along with the color and power Doppler imaging, three-dimensional imaging, electronic scanning, tissue harmonic imaging, and elastography, and one of the most important developments is the ability to acquire contrast-enhanced images. The blood flow in small vessels and the parenchymal microvasculature of the target lesion can be observed non-invasively by contrast-enhanced EUS (CE-EUS). Through a hemodynamic analysis, CE-EUS permits the diagnosis of various gastrointestinal diseases and differential diagnoses between benign and malignant tumors. Recently, mechanical innovations and the development of contrast agents have increased the use of CE-EUS in the diagnostic field, as well as for the assessment of the efficacy of therapeutic agents. The advances in and the current status of CE-EUS are discussed in this review. PMID:25038805
Liu, Zhi-jun; Song, Xiao-xia; Tang, Qun
2013-06-07
Magnetic nanoparticles consisting of manganese-based T1-weighted contrast agents have rapidly achieved clinical application, however low proton relaxivity impedes further development. In this report, by analyzing nanoparticles' surface oxidation states we propose the possible reason for the low r1 relaxivity of common MnO nanoparticles and develop PEGylated fluoroperovskite KMnF3 nanoparticles as new T1-weighted contrast agents, which exhibit the highest longitudinal relaxivity (r1 = 23.15 mM(-1) s(-1)) among all the reported manganese-based T1-weighted contrast agents. We, for the first time, illustrate a typical example showing that the surface oxidation states of metal ions exposed on the nanoparticles' surfaces are able to influence not only the optical, magnetic, electronic or catalytic properties but also water proton longitudinal relaxivity when applied as an MRI contrast agent. Cytotoxicity tests demonstrate that the PEGylated KMnF3 nanoparticles are free from toxicity. Further in vivo MRI experiments distinctively depict fine anatomical features in brain imaging at a low dose of 5 mg of Mn per kg and possible removal from the kidneys due to their small size and biocompatibility.
Investigation of fluorocarbon blowing agents in insulating polymer foams by 19F NMR imaging.
Fyfe, C A; Mei, Z; Grondey, H
1996-01-01
Currently, there is no reliable and readily accessible technique with which the distribution and diffusion of blowing agents in rigid insulating foams can be detected and monitored. In this paper, we demonstrate that 19F NMR microscopic imaging together with 19F solid-state MAS NMR spectroscopy is ideally suited for such measurements and yield quantitatively reliable information that will be critical to the development and fabrication of optimized insulating materials with alternative blowing agents. Polystyrene (PS) and polyurethane (PU) foam samples were investigated with the objective of determining quantitatively the amount of blowing agents in the gaseous phase and dissolved in the polymer phase, and to determine and monitor the distribution of the blowing agents in aged foams as a function of time and temperature. The concentrations of the gaseous blowing agents in the cells and dissolved in the solid were simultaneously and quantitatively measured by 19F MAS NMR spectroscopy. An unfaced 1-yr-old PS foam filled with CH3CF2Cl has about 13% of total HCFCs dissolved in the solid; while there is about 24% of HCFCs in the solid of a faced 3-mos-old PU foam filled with CH3CCl2F. The data from 19F NMR imaging demonstrate that the distributions of the blowing agents in an aged foam are quite uniform around the center part (2 cm away from any edge) of a foam board; however, a gradient in blowing agent concentration was found as a function of distance from the initial factory cut edge. The effective diffusion coefficients of the blowing agents can be directly calculated from the imaging data. Quantitative diffusion constants and activation barriers were determined. Additionally, a foam treated with a second blowing agent was monitored with chemical shift selective imaging and the diffusion of the second gas into the foam and the out-diffusion of the original gas were determined.
Daryaei, Iman; Pagel, Mark D
2016-01-01
Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a “double-agent” approach to molecular imaging. Exogenous T2-exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T1 and T2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as “secret agents” in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging. PMID:27747191
A versatile clearing agent for multi-modal brain imaging
Costantini, Irene; Ghobril, Jean-Pierre; Di Giovanna, Antonino Paolo; Mascaro, Anna Letizia Allegra; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Onofri, Leonardo; Conti, Valerio; Vanzi, Francesco; Sacconi, Leonardo; Guerrini, Renzo; Markram, Henry; Iannello, Giulio; Pavone, Francesco Saverio
2015-01-01
Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus limiting comprehensive neuroanatomical exploration by multi-modal optical techniques. Here, we introduce a versatile brain clearing agent (2,2′-thiodiethanol; TDE) suitable for various applications and imaging techniques. TDE is cost-efficient, water-soluble and low-viscous and, more importantly, it preserves fluorescence, is compatible with immunostaining and does not cause deformations at sub-cellular level. We demonstrate the effectiveness of this method in different applications: in fixed samples by imaging a whole mouse hippocampus with serial two-photon tomography; in combination with CLARITY by reconstructing an entire mouse brain with light sheet microscopy and in translational research by imaging immunostained human dysplastic brain tissue. PMID:25950610
Multimodality and nanoparticles in medical imaging
Huang, Wen-Yen; Davis, Jason J.
2015-01-01
A number of medical imaging techniques are used heavily in the provision of spatially resolved information on disease and physiological status and accordingly play a critical role in clinical diagnostics and subsequent treatment. Though, for most imaging modes, contrast is potentially enhanced through the use of contrast agents or improved hardware or imaging protocols, no single methodology provides, in isolation, a detailed mapping of anatomy, disease markers or physiological status. In recent years, the concept of complementing the strengths of one imaging modality with those of another has come to the fore and been further bolstered by the development of fused instruments such as PET/CT and PET/MRI stations. Coupled with the continual development in imaging hardware has been a surge in reports of contrast agents bearing multiple functionality, potentially providing not only a powerful and highly sensitised means of co-localising physiological/disease status and anatomy, but also the tracking and delineation of multiple markers and indeed subsequent or simultaneous highly localized therapy (“theragnostics”). PMID:21409202
NASA Astrophysics Data System (ADS)
Torres, Veronica C.; Vuong, Victoria D.; Wilson, Todd; Wewel, Joshua; Byrne, Richard W.; Tichauer, Kenneth M.
2017-09-01
Nerve preservation during surgery is critical because damage can result in significant morbidity. This remains a challenge especially for skull base surgeries where cranial nerves (CNs) are involved because visualization and access are particularly poor in that location. We present a paired-agent imaging method to enhance identification of CNs using nerve-specific fluorophores. Two myelin-targeting imaging agents were evaluated, Oxazine 4 and Rhodamine 800, and coadministered with a control agent, indocyanine green, either intravenously or topically in rats. Fluorescence imaging was performed on excised brains ex vivo, and nerve contrast was evaluated via paired-agent ratiometric data analysis. Although contrast was improved among all experimental groups using paired-agent imaging compared to conventional, solely targeted imaging, Oxazine 4 applied directly exhibited the greatest enhancement, with a minimum 3 times improvement in CNs delineation. This work highlights the importance of accounting for nonspecific signal of targeted agents, and demonstrates that paired-agent imaging is one method capable of doing so. Although staining, rinsing, and imaging protocols need to be optimized, these findings serve as a demonstration for the potential use of paired-agent imaging to improve contrast of CNs, and consequently, surgical outcome.
NASA Astrophysics Data System (ADS)
Poulose, Aby Cheruvathoor; Veeranarayanan, Srivani; Mohamed, M. Sheikh; Nagaoka, Yutaka; Romero Aburto, Rebeca; Mitcham, Trevor; Ajayan, Pulickel M.; Bouchard, Richard R.; Sakamoto, Yasushi; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.
2015-04-01
A size and shape tuned, multifunctional metal chalcogenide, Cu2S-based nanotheranostic agent is developed for trimodal imaging and multimodal therapeutics against brain cancer cells. This theranostic agent was highly efficient in optical, photoacoustic and X-ray contrast imaging systems. The folate targeted NIR-responsive photothermal ablation in synergism with the chemotherapeutic action of doxorubicin proved to be a rapid precision guided cancer-killing module. The multi-stimuli, i.e., pH-, thermo- and photo-responsive drug release behavior of the nanoconjugates opens up a wider corridor for on-demand triggered drug administration. The simple synthesis protocol, combined with the multitudes of interesting features packed into a single nanoformulation, clearly demonstrates the competing role of this Cu2S nanosystem in future cancer treatment strategies.A size and shape tuned, multifunctional metal chalcogenide, Cu2S-based nanotheranostic agent is developed for trimodal imaging and multimodal therapeutics against brain cancer cells. This theranostic agent was highly efficient in optical, photoacoustic and X-ray contrast imaging systems. The folate targeted NIR-responsive photothermal ablation in synergism with the chemotherapeutic action of doxorubicin proved to be a rapid precision guided cancer-killing module. The multi-stimuli, i.e., pH-, thermo- and photo-responsive drug release behavior of the nanoconjugates opens up a wider corridor for on-demand triggered drug administration. The simple synthesis protocol, combined with the multitudes of interesting features packed into a single nanoformulation, clearly demonstrates the competing role of this Cu2S nanosystem in future cancer treatment strategies. Electronic supplementary information (ESI) available: Methodology and additional experimental results. See DOI: 10.1039/c4nr07139e
Forensic 3D Scene Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3Dmore » measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.« less
Recent Trends in Antibody-based Oncologic Imaging
Kaur, Sukhwinder; Venktaraman, Ganesh; Jain, Maneesh; Senapati, Shantibhusan; Garg, Pradeep K.; Batra, Surinder K.
2011-01-01
Antibodies, with their unmatched ability for selective binding to any target, are considered as potentially the most specific probes for imaging. Their clinical utility, however, has been limited chiefly due to their slow clearance from the circulation, longer retention in non-targeted tissues and the extensive optimization required for each antibody-tracer. The development of newer contrast agents, combined with improved conjugation strategies and novel engineered forms of antibodies (diabodies, minibodies, single chain variable fragments, and nanobodies), have triggered a new wave of antibody-based imaging approaches. Apart from their conventional use with nuclear imaging probes, antibodies and their modified forms are increasingly being employed with non-radioisotopic contrast agents (MRI and ultrasound) as well as newer imaging modalities, such as quantum dots, near infra red (NIR) probes, nanoshells and surface enhanced Raman spectroscopy (SERS). The review article provides new developments in the usage of antibodies and their modified forms in conjunction with probes of various imaging modalities such as nuclear imaging, optical imaging, ultrasound, MRI, SERS and nanoshells in preclinical and clinical studies on the diagnosis, prognosis and therapeutic responses of cancer. PMID:22104729
Chemically engineered persistent luminescence nanoprobes for bioimaging
Lécuyer, Thomas; Teston, Eliott; Ramirez-Garcia, Gonzalo; Maldiney, Thomas; Viana, Bruno; Seguin, Johanne; Mignet, Nathalie; Scherman, Daniel; Richard, Cyrille
2016-01-01
Imaging nanoprobes are a group of nanosized agents developed for providing improved contrast for bioimaging. Among various imaging probes, optical sensors capable of following biological events or progresses at the cellular and molecular levels are actually actively developed for early detection, accurate diagnosis, and monitoring of the treatment of diseases. The optical activities of nanoprobes can be tuned on demand by chemists by engineering their composition, size and surface nature. This review will focus on researches devoted to the conception of nanoprobes with particular optical properties, called persistent luminescence, and their use as new powerful bioimaging agents in preclinical assays. PMID:27877248
Liu, Zhi-jun; Song, Xiao-xia; Xu, Xian-zhu; Tang, Qun
2014-04-18
Nanoparticular MRI contrast agents are rapidly becoming suitable for use in clinical diagnosis. An ideal nanoparticular contrast agent should be endowed with high relaxivity, biocompatibility, proper plasma retention time, and tissue-specific or tumor-targeting imaging. Herein we introduce PEGylated KMnF3 nanoparticles as a new type of T1 contrast agent. Studies showed that the nanoparticular contrast agent revealed high bio-stability with bovine serum albumin in PBS buffer solution, and presented excellent biocompatibility (low cytotoxicity, undetectable hemolysis and hemagglutination). Meanwhile the new contrast agent possessed proper plasma retention time (circulation half-life t1/2 is approximately 2 h) in the body of the administrated mice. It can be delivered into brain vessels and maintained there for hours, and is mostly cleared from the body within 48 h, as demonstrated by time-resolved MRI and Mn-biodistribution analysis. Those distinguishing features make it suitable to obtain contrast-enhanced brain magnetic resonance angiography. Moreover, through the process of passive targeting delivery, the T1 contrast agent clearly illuminates a brain tumor (glioma) with high contrast image and defined shape. This study demonstrates that PEGylated KMnF3 nanoparticles represent a promising biocompatible vascular contrast agent for magnetic resonance angiography and can potentially be further developed into an active targeted tumor MRI contrast agent.
Software for Partly Automated Recognition of Targets
NASA Technical Reports Server (NTRS)
Opitz, David; Blundell, Stuart; Bain, William; Morris, Matthew; Carlson, Ian; Mangrich, Mark
2003-01-01
The Feature Analyst is a computer program for assisted (partially automated) recognition of targets in images. This program was developed to accelerate the processing of high-resolution satellite image data for incorporation into geographic information systems (GIS). This program creates an advanced user interface that embeds proprietary machine-learning algorithms in commercial image-processing and GIS software. A human analyst provides samples of target features from multiple sets of data, then the software develops a data-fusion model that automatically extracts the remaining features from selected sets of data. The program thus leverages the natural ability of humans to recognize objects in complex scenes, without requiring the user to explain the human visual recognition process by means of lengthy software. Two major subprograms are the reactive agent and the thinking agent. The reactive agent strives to quickly learn the user s tendencies while the user is selecting targets and to increase the user s productivity by immediately suggesting the next set of pixels that the user may wish to select. The thinking agent utilizes all available resources, taking as much time as needed, to produce the most accurate autonomous feature-extraction model possible.
[Clinical applications of molecular imaging methods for patients with ischemic stroke].
Yamauchi, Hiroshi; Fukuyama, Hidenao
2007-02-01
Several molecular imaging methods have been developed to visualize pathophysiology of cerebral ischemia in humans in vivo. PET and SPECT with specific ligands have been mainly used as diagnostic tools for the clinical usage of molecular imaging in patients with ischemic stroke. Recently, cellular MR imaging with specific contrast agents has been developed to visualize targeted cells in human stroke patients. This article reviews the current status in the clinical applications of those molecular imaging methods for patients with ischemic stroke.
Chen, Yun-Sheng; Frey, Wolfgang; Kim, Seungsoo; Homan, Kimberly; Kruizinga, Pieter; Sokolov, Konstantin; Emelianov, Stanislav
2010-04-26
Photothermal stability and, therefore, consistency of both optical absorption and photoacoustic response of the plasmonic nanoabsorbers is critical for successful photoacoustic image-guided photothermal therapy. In this study, silica-coated gold nanorods were developed as a multifunctional molecular imaging and therapeutic agent suitable for image-guided photothermal therapy. The optical properties and photothermal stability of silica-coated gold nanorods under intense irradiation with nanosecond laser pulses were investigated by UV-Vis spectroscopy and transmission electron microscopy. Silica-coated gold nanorods showed increased photothermal stability and retained their superior optical properties under much higher fluences. The changes in photoacoustic response of PEGylated and silica-coated nanorods under laser pulses of various fluences were compared. The silica-coated gold nanorods provide a stable photoacoustic signal, which implies better imaging capabilities and make silica-coated gold nanorods a promising imaging and therapeutic nano-agent for photoacoustic imaging and image-guided photothermal therapy.
Chen, Yun-Sheng; Frey, Wolfgang; Kim, Seungsoo; Homan, Kimberly; Kruizinga, Pieter; Sokolov, Konstantin; Emelianov, Stanislav
2010-01-01
Photothermal stability and, therefore, consistency of both optical absorption and photoacoustic response of the plasmonic nanoabsorbers is critical for successful photoacoustic image-guided photothermal therapy. In this study, silica-coated gold nanorods were developed as a multifunctional molecular imaging and therapeutic agent suitable for image-guided photothermal therapy. The optical properties and photothermal stability of silica-coated gold nanorods under intense irradiation with nanosecond laser pulses were investigated by UV-Vis spectroscopy and transmission electron microscopy. Silica-coated gold nanorods showed increased photothermal stability and retained their superior optical properties under much higher fluences. The changes in photoacoustic response of PEGylated and silica-coated nanorods under laser pulses of various fluences were compared. The silica-coated gold nanorods provide a stable photoacoustic signal, which implies better imaging capabilities and make silica-coated gold nanorods a promising imaging and therapeutic nano-agent for photoacoustic imaging and image-guided photothermal therapy. PMID:20588732
A targeted molecular probe for colorectal cancer imaging
NASA Astrophysics Data System (ADS)
Attramadal, T.; Bjerke, R.; Indrevoll, B.; Moestue, S.; Rogstad, A.; Bendiksen, R.; Healey, A.; Johannesen, E.
2008-02-01
Colorectal cancer is a major cause of cancer death. Morbidity, mortality and healthcare costs can be reduced if the disease can be detected at an early stage. Screening is a viable approach as there is a clear link to risk factors such as age. We have developed a fluorescent contrast agent for use during colonoscopy. The agent is administered intravenously and is targeted to an early stage molecular marker for colorectal cancer. The agent consists of a targeting section comprising a peptide, and a fluorescent reporter molecule. Clinical imaging of the agent is to be performed with a far red fluorescence imaging channel (635 nm excitation/660-700 nm emission) as an adjunct to white light colonoscopy. Preclinical proof of mechanism results are presented. The compound has a K d of ~3nM. Two human xenograft tumour models were used. Tumour cells were implanted and grown subcutaneously in nude mice. Imaging using a fluorescence reflectance imaging system and quantitative biodistribution studies were performed. Substances tested include the targeted agent, and a scrambled sequence of the peptide (no binding) used as a negative control. Competition studies were also performed by co-administration of 180 times excess unlabelled peptide. Positive imaging contrast was shown in the tumours, with a clear relationship to expression levels (confirmed with quantitative biodistribution data). There was a significant difference between the positive and negative control substances, and a significant reduction in contrast in the competition experiment.
FitzGerald, Paul F.; Butts, Matthew D.; Roberts, Jeannette C.; Colborn, Robert E.; Torres, Andrew S.; Lee, Brian D.; Yeh, Benjamin M.; Bonitatibus, Peter J.
2016-01-01
Objectives To produce and evaluate a proposed computed tomography (CT) contrast agent based on carboxybetaine zwitterionic (CZ) coated soluble tantalum oxide nanoparticles (CZ-TaO NPs). We chose tantalum to provide superior imaging performance compared to current iodine-based clinical CT contrast agents. We developed the CZ coating to provide biological and physical performance similar to that of current iodinated contrast agents. The aim of this study was to evaluate the imaging, biological, and physicochemical performance of this proposed contrast agent compared to clinically-used iodinated agents. Materials and Methods We evaluated CT imaging performance of our CZ-TaO NPs compared to an iodinated agent in live rats, imaged centrally-located within a tissue-equivalent plastic phantom that simulated a large patient. To evaluate vascular contrast enhancement, we scanned the rats’ great vessels at high temporal resolution during and following contrast agent injection. We performed several in vivo CZ-TaO NP studies in healthy rats to evaluate tolerability. These studies included injecting the agent at the anticipated clinical dose (ACD) and at 3 times and 6 times the ACD, followed by longitudinal hematology to assess impact to blood cells and organ function (from 4 hours to 1 week). Kidney histological analysis was performed 48 hours after injection at 3 times the ACD. We measured the elimination half-life of CZ-TaO NPs from blood, and we monitored acute kidney injury biomarkers with a kidney injury assay using urine collected from 4 hours to 1 week. We measured tantalum retention in individual organs and in the whole carcass 48 hours after injection at ACD. CZ-TaO NPs were synthesized and analyzed in detail. We used multi-dimensional nuclear magnetic resonance (NMR) to determine surface functionality of the nanoparticles. We measured nanoparticle size and solution properties (osmolality and viscosity) of the agent over a range of tantalum concentrations, including the high concentrations required for standard clinical CT imaging. Results CT imaging studies demonstrated image contrast improvement of approximately 40–50% using CZ-TaO NPs compared with an iodinated agent injected at the same mass concentration. Blood and organ analyses showed no adverse effects following injection in healthy naïve rats at 3 times the ACD. Retention of tantalum at 48 hours after injection was less than 2% of the injected dose in the whole carcass, which very closely matched the reported retention of existing commercial iodine-based contrast agents. Urine analysis of sensitive markers for acute kidney injury showed no responses at 1 week following injection at 3 times the ACD; however, a moderate response in the neutrophil gelatinase-associated lipocalin (NGAL) biomarker was measured at 24 and 48 hours. Compared to other tantalum oxide nanoparticles reported in the literature, CZ-TaO NPs had relatively low osmolality and viscosity at concentrations >200 mg Ta/mL, and were similar in these physical properties to dimeric iodine-based contrast agents. Conclusions We found that a CZ-TaO NP-based contrast agent is potentially viable for general-purpose clinical CT imaging. Our results suggest that such an agent can be formulated with clinically-viable physicochemical properties, can be biologically safe and cleared rapidly in urine, and can provide substantially improved image contrast at CT compared to current iodinated agents. PMID:27115702
FitzGerald, Paul F; Butts, Matthew D; Roberts, Jeannette C; Colborn, Robert E; Torres, Andrew S; Lee, Brian D; Yeh, Benjamin M; Bonitatibus, Peter J
2016-12-01
The aim of this study was to produce and evaluate a proposed computed tomography (CT) contrast agent based on carboxybetaine zwitterionic (CZ)-coated soluble tantalum oxide (TaO) nanoparticles (NPs). We chose tantalum to provide superior imaging performance compared with current iodine-based clinical CT contrast agents. We developed the CZ coating to provide biological and physical performance similar to that of current iodinated contrast agents. In addition, the aim of this study was to evaluate the imaging, biological, and physicochemical performance of this proposed contrast agent compared with clinically used iodinated agents. We evaluated CT imaging performance of our CZ-TaO NPs compared with that of an iodinated agent in live rats, imaged centrally located within a tissue-equivalent plastic phantom that simulated a large patient. To evaluate vascular contrast enhancement, we scanned the rats' great vessels at high temporal resolution during and after contrast agent injection. We performed several in vivo CZ-TaO NP studies in healthy rats to evaluate tolerability. These studies included injecting the agent at the anticipated clinical dose (ACD) and at 3 times and 6 times the ACD, followed by longitudinal hematology to assess impact to blood cells and organ function (from 4 hours to 1 week). Kidney histological analysis was performed 48 hours after injection at 3 times the ACD. We measured the elimination half-life of CZ-TaO NPs from blood, and we monitored acute kidney injury biomarkers with a kidney injury assay using urine collected from 4 hours to 1 week. We measured tantalum retention in individual organs and in the whole carcass 48 hours after injection at ACD. Carboxybetaine zwitterionic TaO NPs were synthesized and analyzed in detail. We used multidimensional nuclear magnetic resonance to determine surface functionality of the NPs. We measured NP size and solution properties (osmolality and viscosity) of the agent over a range of tantalum concentrations, including the high concentrations required for standard clinical CT imaging. Computed tomography imaging studies demonstrated image contrast improvement of approximately 40% to 50% using CZ-TaO NPs compared with an iodinated agent injected at the same mass concentration. Blood and organ analyses showed no adverse effects after injection in healthy naive rats at 3 times the ACD. Retention of tantalum at 48 hours after injection was less than 2% of the injected dose in the whole carcass, which very closely matched the reported retention of existing commercial iodine-based contrast agents. Urine analysis of sensitive markers for acute kidney injury showed no responses at 1 week after injection at 3 times the ACD; however, a moderate response in the neutrophil gelatinase-associated lipocalin biomarker was measured at 24 and 48 hours. Compared with other TaO NPs reported in the literature, CZ-TaO NPs had relatively low osmolality and viscosity at concentrations greater than 200 mg Ta/mL and were similar in these physical properties to dimeric iodine-based contrast agents. We found that a CZ-TaO NP-based contrast agent is potentially viable for general-purpose clinical CT imaging. Our results suggest that such an agent can be formulated with clinically viable physicochemical properties, can be biologically safe and cleared rapidly in urine, and can provide substantially improved image contrast at CT compared with current iodinated agents.
Tan, Mingqian; Lu, Zheng-Rong
2011-01-01
Magnetic resonance imaging (MRI) is a powerful medical diagnostic imaging modality for integrin targeted imaging, which uses the magnetic resonance of tissue water protons to display tissue anatomic structures with high spatial resolution. Contrast agents are often used in MRI to highlight specific regions of the body and make them easier to visualize. There are four main classes of MRI contrast agents based on their different contrast mechanisms, including T1, T2, chemical exchange saturation transfer (CEST) agents, and heteronuclear contrast agents. Integrins are an important family of heterodimeric transmembrane glycoproteins that function as mediators of cell-cell and cell-extracellular matrix interactions. The overexpressed integrins can be used as the molecular targets for designing suitable integrin targeted contrast agents for MR molecular imaging. Integrin targeted contrast agent includes a targeting agent specific to a target integrin, a paramagnetic agent and a linker connecting the targeting agent with the paramagnetic agent. Proper selection of targeting agents is critical for targeted MRI contrast agents to effectively bind to integrins for in vivo imaging. An ideal integrin targeted MR contrast agent should be non-toxic, provide strong contrast enhancement at the target sites and can be completely excreted from the body after MR imaging. An overview of integrin targeted MR contrast agents based on small molecular and macromolecular Gd(III) complexes, lipid nanoparticles and superparamagnetic nanoparticles is provided for MR molecular imaging. By using proper delivery systems for loading sufficient Gd(III) chelates or superparamagnetic nanoparticles, effective molecular imaging of integrins with MRI has been demonstrated in animal models. PMID:21547154
Polymeric contrast agents for medical imaging.
Torchilin, V P
2000-09-01
Synthetic polymers and co-polymers are described, to be used as carriers of reporter groups for gamma-, magnetic resonance (MR), and computed tomography (CT) imaging. Those compounds include polychelating and amphiphilic polymers and serve as key components of various contrast agents. Single terminus-activated polychelating polymers were synthesized using poly-L-lysine (PLL) as a main chain and chelating moieties (such as diethylene triamine pentaacetic acid or DTPA) as side groups. These polymers were used for the modification of diagnostic monoclonal antibodies to increase their load with reporter metal atoms. As a result, better images within shorter time intervals were obtained in animal experiments. The application of liposomes and micelles as carriers for diagnostic imaging agents in experimental and clinical medicine is considered. The load of liposomes and micelles with contrast agents for gamma- and MR imaging (MRI) was sharply increased by using polychelating polymers additionally modified on one end with a hydrophobic phospholipid residue to give amphiphilic polymers. Such polymers easily incorporate the liposome membrane or micelle core and provide better loading of liposomes and micelles with reporter metals and, consequently, better and faster imaging of various physiological compartments, such as lymphatic and vascular systems. A block-copolymer of methoxy-poly(ethylene glycol) (MPEG) and iodine-substituted PLL was synthesized to prepare long-circulating contrast agent for CT imaging of the blood pool. In the aqueous solution, this copolymer forms stable and heavily loaded with iodine (up to 30% of iodine by weight) micelles. These micelle were successfully used for CT visualization of the vascular network in experimental animals. General trends in developing contrast polymers are discussed.
Lee, Jangwook; Min, Hyun-Su; You, Dong Gil; Kim, Kwangmeyung; Kwon, Ick Chan; Rhim, Taiyoun; Lee, Kuen Yong
2016-02-10
The development of safe and efficient diagnostic/therapeutic agents for treating cancer in clinics remains challenging due to the potential toxicity of conventional agents. Although the annual incidence of neuroblastoma is not that high, the disease mainly occurs in children, a population vulnerable to toxic contrast agents and therapeutics. We demonstrate here that cancer-targeting, gas-generating polymeric nanoparticles are useful as a theranostic tool for ultrasound (US) imaging and treating neuroblastoma. We encapsulated calcium carbonate using poly(d,l-lactide-co-glycolide) and created gas-generating polymer nanoparticles (GNPs). These nanoparticles release carbon dioxide bubbles under acidic conditions and enhance US signals. When GNPs are modified using rabies virus glycoprotein (RVG) peptide, a targeting moiety to neuroblastoma, RVG-GNPs effectively accumulate at the tumor site and substantially enhance US signals in a tumor-bearing mouse model. Intravenous administration of RVG-GNPs also reduces tumor growth in the mouse model without the use of conventional therapeutic agents. This approach to developing theranostic agents with disease-targeting ability may provide useful strategy for the detection and treatment of cancers, allowing safe and efficient clinical applications with fewer side effects than may occur with conventional agents. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Paul, Shirshendu
Micron- to nanometer - sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes (ELIPs), are being actively developed for possible clinical implementations in diagnostic imaging and ultrasound mediated drug/gene delivery. The primary objective of this thesis is to characterize the acoustic behavior of and the ultrasound-mediated contents release from these contrast agents for developing multi-functional ultrasound contrast agents. Subharmonic imaging using contrast microbubbles can improve image quality by providing a higher signal to noise ratio. However, the design and development of contrast microbubbles with favorable subharmonic behavior requires accurate mathematical models capable of predicting their nonlinear dynamics. To this goal, 'strain-softening' viscoelastic interfacial models of the encapsulation were developed and subsequently utilized to simulate the dynamics of encapsulated microbubbles. A hierarchical two-pronged approach of modeling --- a model is applied to one set of experimental data to obtain the model parameters (material characterization), and then the model is validated against a second independent experiment --- is demonstrated in this thesis for two lipid coated (SonazoidRTM and DefinityRTM) and a few polymer (polylactide) encapsulated microbubbles. The proposed models were successful in predicting several experimentally observed behaviors e.g., low subharmonic thresholds and "compression-only" radial oscillations. Results indicate that neglecting the polydisperse size distribution of contrast agent suspensions, a common practice in the literature, can lead to inaccurate results. In vitro experimental investigation of the dependence of subharmonic response from these microbubbles on the ambient pressure is also in conformity with the recent numerical investigations, showing both increase or decrease under appropriate excitation conditions. Experimental characterization of the ELIPs and polymersomes was performed with the goal of demonstrating their potential as ultrasound agents with simultaneous imaging and drug/gene delivery applications --- 'dual-purpose' contrast agents. Both in vitro acoustic studies and ultrasound imaging (performed in NDSU by our collaborators) showed the echogenicity of the various formulations studied. We believe that this echogenicity results from the larger diameter liposomes present in the polydisperse suspension obtained after reconstitution of the lyophilized powders. Although, ultrasound excitation (< 5 MHz) alone was incapable of causing optimal release of contents, a dual-triggering strategy (with enzymes or redox) proved successful, resulting in a total release of up to 80-90%. Considering these experimental results, it can be concluded that these novel formulations hold the potential of providing powerful treatment strategies for many diseases, including cardiovascular ones and various cancers.
Ferrimagnetic susceptibility contrast agents.
Bach-Gansmo, T
1993-01-01
Contrast agents based on superparamagnetic particles have been in clinical development for more than 5 years, and the complexity of their effects is still not elucidated. The relaxivities are frequently used to give an idea of their efficacy, but these parameters can only be used if they are concentration independent. For large superparamagnetic systems, the evolution of the transverse magnetization is biexponential, after an initial loss of magnetization. Both these characteristics of large superparamagnetic systems should lead to prudence in using the relaxivities as indicators of contrast medium efficacy. Susceptibility induced artefacts have been associated with the use of superparamagnetic contrast agents since the first imaging evaluation took place. The range of concentrations where good contrast effect was achieved without inducing artefacts, as well as blurring and metal artefacts were evaluated. The influence of motion on the induction of artefacts was studied, and compared to the artefacts induced by a paramagnetic agent subject to motion. With a suitable concentration of a negative contrast agent, a signal void could be achieved in the region prone to motion, and no artefacts were induced. If the concentration was too high, a displacement of the region close to the contrast agent was observed. The artefacts occurred in a volume surrounding the contrast agent, i.e., also outside the imaging plane. In comparison a positive, paramagnetic contrast agent induced heavy artefacts in the phase encoding direction, appearing as both high intensity regions and black holes, in a mosaic pattern. Clinical trials of the oral contrast agent OMP for abdominal MR imaging showed this agent to be safe and efficacious. OMP increased the diagnostic efficacy of abdominal MR imaging in 2 of 3 cases examined, with a significant decrease in motion artefacts. Susceptibility contrast agents may also be of use in the evaluation of small lesions in the liver. Particulate material injected i.v. will be targeted to the liver and spleen by way of the mononuclear phagocyte system (MPS). Small particles, without specific receptor affinities were targeted to the hepatocytes and the MPS. The distribution correlated with a high efficiency as a contrast agent, whereas no correlation to in vitro relaxation rates and relaxivities could be found. Superparamagnetic particles have important possibilities as contrast agents. The identification of in vitro properties of these agents may help the comparison of various agents before in vivo imaging.
Nanomaterials for miRNA delivery and non-invasive imaging in cardiovascular regeneration
NASA Astrophysics Data System (ADS)
Gomes, Renata Sofia Mota
The development of noninvasive platforms to assess cell fate after transplantation is of utmost importance in the context of Regenerative Medicine. Magnetic Resonance Imaging (MRI) is a powerful non-invasive imaging platform, heavily relying on the use of contrast agents, mostly nanoparticles (NPs). Gadolinium (Gd) and Superparamagnetic Iron Oxide (SPIO) NPs are contrast agents in clinical use, however these agents may cause liver toxicity, give rise to image artifacts in MRI, and typically have not been used as a drug delivery system. In this work, we developed a novel NP formulation containing fluorine to overcome the previous limitations. The NPs are based on poly(lactic-co-glycolic acid) (PLGA) which is a biocompatible and versatile polymer approved for human use . PLGA NPs containing fluorine were developed to label and track cells overtime and as vectors for microRNA (miR) delivery, which improves cell survival in hypoxic conditions. Herein we show that the fluorine-based NPs are a reliable approach to track non-invasively cells with clinical relevance (endothelial cells and cord-blood derived mononuclear cells) and simultaneously control the intracellular delivery of pro-survival and pro-angiogenic miRs. Also systems for in vitro and in vivo imaging via MRI of fluorine are developed and here explained. Furthermore in vivo studies are performed which show the therapeutic uses of such system. Additionally we also address the optimization of protocols for stem cell culture which may enhance proliferation and promote pluripotency in cardiac stem cells (CSCs) so as we can fully explore the potential of these cells in vivo using out novel theranostic NPs platform. We are the first authors developing and relating these novel developments.
2010-01-01
for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist. Update 8(6), 381–402 (2005). 89 Smith BR, Cheng Z...component can be realized. Select examples from the literature have already demonstrated the feasibility of generating hybrid NP–peptide constructs in...peptide-mediated delivery of NP-based imaging agents (fluorescence and magnetic resonance), drug-delivery vehicles, therapeutic proteins and nucleic
Ahrens, Bradley J; Li, Lin; Ciminera, Alexandra K; Chea, Junie; Poku, Erasmus; Bading, James R; Weist, Michael R; Miller, Marcia M; Colcher, David M; Shively, John E
2017-09-01
The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64 Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64 Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64 Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague-Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64 Cu-DOTA-alendronate. Results: 64 Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64 Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64 Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64 Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64 Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as well as the differentiation of malignant versus benign tumors based on absolute labeling uptake. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Ultrasound imaging beyond the vasculature with new generation contrast agents.
Perera, Reshani H; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan; Exner, Agata A
2015-01-01
Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 µm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. © 2015 Wiley Periodicals, Inc.
Ultrasound Imaging Beyond the Vasculature with New Generation Contrast Agents
Perera, Reshani H.; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan
2015-01-01
Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 μm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. PMID:25580914
Kokkonen, H T; Chin, H C; Töyräs, J; Jurvelin, J S; Quinn, T M
2017-04-01
Solute transport through the extracellular matrix (ECM) is crucial to chondrocyte metabolism. Cartilage injury affects solute transport in cartilage due to alterations in ECM structure and solute-matrix interactions. Therefore, cartilage injury may be detected by using contrast agent-based clinical imaging. In the present study, effects of mechanical injury on transport of negatively charged contrast agents in cartilage were characterized. Using cartilage plugs injured by mechanical compression protocol, effective partition coefficients and diffusion fluxes of iodine- and gadolinium-based contrast agents were measured using high resolution microCT imaging. For all contrast agents studied, effective diffusion fluxes increased significantly, particularly at early times during the diffusion process (38 and 33% increase after 4 min, P < 0.05 for iodine and Gd-DTPA; and 76% increase after 10 min for diatrizoate, P < 0.05). Effective partition coefficients were unaffected in mechanically injured cartilage. Mechanical injury reduced PG content and collagen integrity in cartilage superficial zone. This study suggests that alterations in contrast agent diffusion flux, a non-equilibrium transport parameter, provides a more sensitive indicator for assessment of cartilage matrix integrity than partition coefficient and the equilibrium distribution of solute. These findings may help in developing clinical methods of contrast agent-based imaging to detect cartilage injury.
Analysis of image heterogeneity using 2D Minkowski functionals detects tumor responses to treatment.
Larkin, Timothy J; Canuto, Holly C; Kettunen, Mikko I; Booth, Thomas C; Hu, De-En; Krishnan, Anant S; Bohndiek, Sarah E; Neves, André A; McLachlan, Charles; Hobson, Michael P; Brindle, Kevin M
2014-01-01
The acquisition of ever increasing volumes of high resolution magnetic resonance imaging (MRI) data has created an urgent need to develop automated and objective image analysis algorithms that can assist in determining tumor margins, diagnosing tumor stage, and detecting treatment response. We have shown previously that Minkowski functionals, which are precise morphological and structural descriptors of image heterogeneity, can be used to enhance the detection, in T1 -weighted images, of a targeted Gd(3+) -chelate-based contrast agent for detecting tumor cell death. We have used Minkowski functionals here to characterize heterogeneity in T2 -weighted images acquired before and after drug treatment, and obtained without contrast agent administration. We show that Minkowski functionals can be used to characterize the changes in image heterogeneity that accompany treatment of tumors with a vascular disrupting agent, combretastatin A4-phosphate, and with a cytotoxic drug, etoposide. Parameterizing changes in the heterogeneity of T2 -weighted images can be used to detect early responses of tumors to drug treatment, even when there is no change in tumor size. The approach provides a quantitative and therefore objective assessment of treatment response that could be used with other types of MR image and also with other imaging modalities. Copyright © 2013 Wiley Periodicals, Inc.
[Medical imaging in tumor precision medicine: opportunities and challenges].
Xu, Jingjing; Tan, Yanbin; Zhang, Minming
2017-05-25
Tumor precision medicine is an emerging approach for tumor diagnosis, treatment and prevention, which takes account of individual variability of environment, lifestyle and genetic information. Tumor precision medicine is built up on the medical imaging innovations developed during the past decades, including the new hardware, new imaging agents, standardized protocols, image analysis and multimodal imaging fusion technology. Also the development of automated and reproducible analysis algorithm has extracted large amount of information from image-based features. With the continuous development and mining of tumor clinical and imaging databases, the radiogenomics, radiomics and artificial intelligence have been flourishing. Therefore, these new technological advances bring new opportunities and challenges to the application of imaging in tumor precision medicine.
The Role of Play in the Accultural Process.
ERIC Educational Resources Information Center
Cooper, Renatta M.
Play, possibly the dominant socializing agent for children's social competence and identity development, is heavily influenced by media-defined images. It is important for media images of minority cultures to be filtered by parents' reactions and comments in order to counter prevalent negative images. Children's interaction with the media is…
Radioiodinated glucose analogues for use as imaging agents
Goodman, Mark M.; Knapp, Jr., Furn F.
1988-01-01
A radioiodinated branched carbohydrate for tissue imaging. Iodine-123 is stabilized in the compound by attaching it to a vinyl functional group that is on the carbohydrate. The compound exhibits good uptake and retention and is promising in the development of radiopharmaceuticals for brain, heart and tumor imaging.
NASA Astrophysics Data System (ADS)
Samkoe, Kimberley S.; Tichauer, Kenneth M.; Chen, Eunice; Gunn, Jason R.; Hoopes, P. Jack; Wells, Wendy A.; Hasan, Tayyaba; Pogue, Brian W.
2016-03-01
Ninety percent of patients with head and neck squamous cell carcinomas (HNSCC) have overexpression of epidermal growth factor receptor (EGFR), which is correlated with poor prognosis. Complete surgical resection of HNSCC tumors has a large impact on patient survival, where detection of tumor at or close to surgical margins increases the risk of death at 5-years by 90%. In addition, large surgical margins can greatly increase the morbidity experienced by the patient due to functional and cosmetic damage of oral and facial structures. Single fluorescence targeting agents are often used for tumor detection in in vivo pre-clinical imaging; however, the arising signal is qualitative at best because it is a complex mixture of vascular perfusion, vascular leakage, inhibited lymphatic clearance, and receptor binding. In vivo ratiometric receptor concentration imaging (RCI) allows quantification of receptor expression (hence identification of cancerous tissue) by utilizing co-administered paired-agents consisting of a targeted agent and non-targeted perfusion agent to reference the plasma delivery and leakage. A panel of HNSCC tumors with varying levels of EGFR expression (SCC-15 >SCC-25 > SCC-09) have been imaged using ABY-029, a clinically relevant anti-EGFR affibody labeled with IRDye 800CW, and affibody control imaging agent labeled with IRDye 680RD. RCI maps of in vivo tissue have been created and are spatially correlated with EGFR and CD31 immunohistochemistry and basic H and E staining. The RCI threshold parameters for distinguishing tumor from normal tissues (skin and muscle) and the accuracy of margin detection in these tumors will be presented. RCI surgical resection will be further developed using a novel multi-channel, gated fluorescence-guided surgery (FGS) imaging system that is capable of performing RCI in normal room light.
Gold nanoparticle contrast agents in advanced X-ray imaging technologies.
Ahn, Sungsook; Jung, Sung Yong; Lee, Sang Joon
2013-05-17
Recently, there has been significant progress in the field of soft- and hard-X-ray imaging for a wide range of applications, both technically and scientifically, via developments in sources, optics and imaging methodologies. While one community is pursuing extensive applications of available X-ray tools, others are investigating improvements in techniques, including new optics, higher spatial resolutions and brighter compact sources. For increased image quality and more exquisite investigation on characteristic biological phenomena, contrast agents have been employed extensively in imaging technologies. Heavy metal nanoparticles are excellent absorbers of X-rays and can offer excellent improvements in medical diagnosis and X-ray imaging. In this context, the role of gold (Au) is important for advanced X-ray imaging applications. Au has a long-history in a wide range of medical applications and exhibits characteristic interactions with X-rays. Therefore, Au can offer a particular advantage as a tracer and a contrast enhancer in X-ray imaging technologies by sensing the variation in X-ray attenuation in a given sample volume. This review summarizes basic understanding on X-ray imaging from device set-up to technologies. Then this review covers recent studies in the development of X-ray imaging techniques utilizing gold nanoparticles (AuNPs) and their relevant applications, including two- and three-dimensional biological imaging, dynamical processes in a living system, single cell-based imaging and quantitative analysis of circulatory systems and so on. In addition to conventional medical applications, various novel research areas have been developed and are expected to be further developed through AuNP-based X-ray imaging technologies.
Rasheed, Rashid; Naqvi, Syed Ali Raza; Gillani, Syed Jawad Hussain; Zahoor, Ameer Fawad; Jielani, Asif; Saeed, Nidda
2017-05-15
The radiolabeled drug 99m Tc-tazobactam ( 99m Tc-TZB) was developed and assessed as an infection imaging agent in Pseudomonas aeruginosa and Salmonella enterica infection-induced animal models by comparing with inflammation induced animal models. Radiosynthesis of 99m Tc-TZB was assessed while changing ligand concentration, reducing agent concentration, pH, and reaction time while keeping radioactivity constant (~370 MBq). Percent labeling of the resulting complex was measured using paper chromatography and instant thin layer chromatography. The analysis of the 99m Tc-TZB complex indicated >95% labeling yield and electrophoresis revealed complex is neutral in nature. The biodistribution study also showed predominantly renal excretion; however liver, stomach, and intestine also showed slight tracer agent uptake. The agent significantly accumulated in Pseudomonas aeruginosa and Salmonella enterica infection induced tissues 3.58 ± 0.26% and 2.43 ± 0.42% respectively at 1 hour postinjection. The inflamed tissue failed to uptake noticeable activity at 1 hour time point. The scintigraphic study results were found in accordance with biodistribution pattern. On the basis of our preliminary results, the newly developed 99m Tc-TZB can be used to diagnose bacterial infection and to discriminate between infected and inflamed tissues. Copyright © 2017 John Wiley & Sons, Ltd.
Nuts and Bolts of CEST MR imaging
Liu, Guanshu; Song, Xiaolei; Chan, Kannie W.Y.
2013-01-01
Chemical Exchange Saturation Transfer (CEST) has emerged as a novel MRI contrast mechanism that is well suited for molecular imaging studies. This new mechanism can be used to detect small amounts of contrast agent through saturation of rapidly exchanging protons on these agents, allowing a wide range of applications. CEST technology has a number of indispensable features, such as the possibility of simultaneous detection of multiple “colors” of agents and detecting changes in their environment (e.g. pH, metabolites, etc) through MR contrast. Currently a large number of new imaging schemes and techniques have been developed to improve the temporal resolution and specificity and to correct the influence of B0 and B1 inhomogeneities. In this review, the techniques developed over the last decade have been summarized with the different imaging strategies and post-processing methods discussed from a practical point of view including describing their relative merits for detecting CEST agents. The goal of the present work is to provide the reader with a fundamental understanding of the techniques developed, and to provide guidance to help refine future applications of this technology. This review is organized into three main sections: Basics of CEST Contrast, Implementation, Post-Processing, and also includes a brief Introduction section and Summary. The Basics of CEST Contrast section contains a description of the relevant background theory for saturation transfer and frequency labeled transfer, and a brief discussion of methods to determine exchange rates. The Implementation section contains a description of the practical considerations in conducting CEST MRI studies, including choice of magnetic field, pulse sequence, saturation pulse, imaging scheme, and strategies to separate MT and CEST. The Post-Processing section contains a description of the typical image processing employed for B0/B1 correction, Z-spectral interpolation, frequency selective detection, and improving CEST contrast maps. PMID:23303716
Kim, Dokyoon; Lee, Nohyun; Park, Yong Il; Hyeon, Taeghwan
2017-01-18
Several types of nanoparticle-based imaging probes have been developed to replace conventional luminescent probes. For luminescence imaging, near-infrared (NIR) probes are useful in that they allow deep tissue penetration and high spatial resolution as a result of reduced light absorption/scattering and negligible autofluorescence in biological media. They rely on either an anti-Stokes or a Stokes shift process to generate luminescence. For example, transition metal-doped semiconductor nanoparticles and lanthanide-doped inorganic nanoparticles have been demonstrated as anti-Stokes shift-based agents that absorb NIR light through two- or three-photon absorption process and upconversion process, respectively. On the other hand, quantum dots (QDs) and lanthanide-doped nanoparticles that emit in NIR-II range (∼1000 to ∼1350 nm) were suggested as promising Stokes shift-based imaging agents. In this topical review, we summarize and discuss the recent progress in the development of inorganic nanoparticle-based luminescence imaging probes working in NIR range.
Contrast echocardiography: new agents.
Miller, Andrew P; Nanda, Navin C
2004-04-01
In this report, we review the history, rationale, current status and future directions of contrast agents in echocardiography. First, we discuss the historic development of contrast agents through a review of important physical principles of microbubbles in ultrasonography. Second, we identify attributes of an ideal contrast agent and review those that are currently available or in the "pipeline" for clinical use. Third, we review indications for contrast echocardiography, including endocardial border detection, perfusion quantification and reperfusion assessment, and validate these observations by comparisons with other imaging modalities. Then, we briefly review different methodologies of performing a contrast study, including interrupted, real-time and a hybrid modality. Finally, we identify novel future applications of the newest contrast agents. These newer concepts in contrast echocardiography should form a foundation for nearly limitless application of echocardiography in improved anatomical assessment, perfusion imaging and even special applications, such as detection of vascular inflammation and site-specific drug delivery.
Small animal optoacoustic tomography system for molecular imaging of contrast agents
NASA Astrophysics Data System (ADS)
Su, Richard; Liopo, Anton; Ermilov, Sergey A.; Oraevsky, Alexander A.
2016-03-01
We developed a new and improved Laser Optoacoustic Imaging System, LOIS-3D for preclinical research applications in small animal models. The advancements include (i) a new stabilized imaging module with a more homogeneous illumination of the mouse yielding a better spatial resolution (<0.2 mm) and (ii) a new low noise amplifier incorporated into the ultrasonic probe and providing the noise equivalent pressure around 2 Pa resulting in increased signal-to-noise ratio and the optical absorption sensitivity of about 0.15 cm-1. We also improved scan time and the image reconstruction times. This prototype has been commercialized for a number of biomedical research applications, such as imaging vascularization and measuring hemoglobin / oxyhemoglobin distribution in the organs as well as imaging exogenous or endogenous optoacoustic contrast agents. As examples, we present in vivo experiments using phantoms and mice with and without tumor injected with contrast agents with indocyanine green (ICG). LOIS-3D was capable of detecting ~1-2 pmole of the ICG, in tissues with relatively low blood content. With its high sensitivity and excellent spatial resolution LOIS-3D is an advanced alternative to fluorescence and bioluminescence based modalities for molecular imaging in live mice.
NASA Astrophysics Data System (ADS)
Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph
2015-10-01
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.
Colombo, Ilaria; Overchuk, Marta; Chen, Juan; Reilly, Raymond M; Zheng, Gang; Lheureux, Stephanie
2017-11-01
Despite the significant advancement achieved in understanding the molecular mechanisms responsible for cancer transformation and aberrant proliferation, leading to novel targeted cancer therapies, significant effort is still needed to "personalize" cancer treatment. Molecular imaging is an emerging field that has shown the ability to characterize in vivo the molecular pathways present at the cancer cell level, enabling diagnosis and personalized treatment of malignancies. These technologies, particularly SPECT and PET also permit the development of novel radiotheranostic probes, which provide capabilities for diagnosis and treatment with the same agent. The small therapeutic index of most anticancer agents is a limitation in the drug development process. Incorporation of molecular imaging in clinical research may help in overcoming this limitation and favouring selection of patient populations most likely to achieve benefit from targeted therapy. This review will focus on two of the most advanced theranostic approaches with promising potential for application in the clinic: 1) therapeutic monoclonal antibodies which may be linked to a radionuclide for SPECT or PET imaging to guide cancer diagnosis, staging, molecular characterization, and assessment of the response to treatment and 2) multifunctional nanotechnology that allows image guided drug delivery through encapsulation of multiple therapeutic, targeting and imaging agents into a single nanoparticle. Porphysome, a liposome-like nanoparticle, is an example of a novel and promising application of nanotechnology for cancer diagnosis and treatment. These technologies have proven to be effective in preclinical models, warranting further clinical investigation to advance their application for the benefit of cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.
DNA as Sensors and Imaging Agents for Metal Ions
Xiang, Yu
2014-01-01
Increasing interests in detecting metal ions in many chemical and biomedical fields have created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal ion-dependent DNAzymes and metal ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attaching these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detections. These sensors are highly sensitive (with detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of “dipstick tests”, portable fluorometers, computer-readable discs, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state, and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal ion sensing and imaging in many fields of applications. PMID:24359450
In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent.
Glaus, Charles; Rossin, Raffaella; Welch, Michael J; Bao, Gang
2010-04-21
A novel nanoparticle-based dual-modality positron emission tomograph/magnetic resonance imaging (PET/MRI) contrast agent was developed. The probe consisted of a superparamagnetic iron oxide (SPIO) core coated with PEGylated phospholipids. The chelator 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to PEG termini to allow labeling with positron-emitting (64)Cu. Radiolabeling with (64)Cu at high yield and high purity was readily achieved. The (64)Cu-SPIO probes produced strong MR and PET signals and were stable in mouse serum for 24 h at 37 degrees C. Biodistribution and in vivo PET/CT imaging studies of the probes showed a circulation half-life of 143 min and high initial blood retention with moderate liver uptake, making them an attractive contrast agent for disease studies.
Thioesters for the in vitro evaluation of agents to image brain cholinesterases.
Macdonald, Ian R; Jollymore, Courtney T; Reid, G Andrew; Pottie, Ian R; Martin, Earl; Darvesh, Sultan
2013-06-01
Cholinesterases are associated with pathology characteristic of conditions such as Alzheimer's disease and are therefore, considered targets for neuroimaging. Ester derivatives of N-methylpiperidinol are promising potential imaging agents; however, methodology is lacking for evaluating these compounds in vitro. Here, we report the synthesis and evaluation of a series of N-methylpiperidinyl thioesters, possessing comparable properties to their corresponding esters, which can be directly evaluated for cholinesterase kinetics and histochemical distribution in human brain tissue. N-methylpiperidinyl esters and thioesters were synthesized and they demonstrated comparable cholinesterase kinetics. Furthermore, thioesters were capable, using histochemical method, to visualize cholinesterase activity in human brain tissue. N-methylpiperidinyl thioesters can be rapidly evaluated for cholinesterase kinetics and visualization of enzyme distribution in brain tissue which may facilitate development of cholinesterase imaging agents for application to conditions such as Alzheimer's disease.
Ahrens, Bradley J.; Li, Lin; Ciminera, Alexandra K.; Chea, Junie; Poku, Erasmus; Bading, James R.; Weist, Michael R.; Miller, Marcia M.; Colcher, David M.
2017-01-01
The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague–Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64Cu-DOTA-alendronate. Results: 64Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as well as the differentiation of malignant versus benign tumors based on absolute labeling uptake. PMID:28450564
2015-01-01
Epigenetic enzymes are now targeted to treat the underlying gene expression dysregulation that contribute to disease pathogenesis. Histone deacetylases (HDACs) have shown broad potential in treatments against cancer and emerging data supports their targeting in the context of cardiovascular disease and central nervous system dysfunction. Development of a molecular agent for non-invasive imaging to elucidate the distribution and functional roles of HDACs in humans will accelerate medical research and drug discovery in this domain. Herein, we describe the synthesis and validation of an HDAC imaging agent, [11C]6. Our imaging results demonstrate that this probe has high specificity, good selectivity, and appropriate kinetics and distribution for imaging HDACs in the brain, heart, kidney, pancreas, and spleen. Our findings support the translational potential for [11C]6 for human epigenetic imaging. PMID:25203558
Sigward, Estelle; Corvis, Yohann; Doan, Bich-Thuy; Kindsiko, Kadri; Seguin, Johanne; Scherman, Daniel; Brossard, Denis; Mignet, Nathalie; Espeau, Philippe; Crauste-Manciet, Sylvie
2015-09-01
The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.
Hybrid nanotrimers for dual T 1 and T 2-weighted magnetic resonance imaging
Cheng, Kai; Yang, Meng; Zhang, Ruiping; ...
2014-10-04
Development of multifunctional nanoparticle-based probes for dual T 1- and T 2-weighted magnetic resonance imaging (MRI) could allow us to image and diagnose the tumors or other abnormalities in an exceptionally accurate and reliable manner. In this study, by fusing distinct nanocrystals via solid-state interfaces, we built hybrid heteronanostructures to combine both T 1 and T 2- weighted contrast agents together for MRI with high accuracy and reliability. The resultant hybrid heterotrimers showed high stability in physiological conditions and could induce both simultaneous positive and negative contrast enhancements in MR images. Small animal positron emission tomography imaging study revealed thatmore » the hybrid heterostructures displayed favorable biodistribution and were suitable for in vivo imaging. Furthermore, their potential as dual contrast agents for T 1 and T 2-weighted MRI was further demonstrated by in vitro and in vivo imaging and relaxivity measurements.« less
NASA Astrophysics Data System (ADS)
Wang, Guannan; Gao, Wei; Zhang, Xuanjun; Mei, Xifan
2016-06-01
Diagnostic approaches based on multimodal imaging of clinical noninvasive imaging (eg. MRI/CT scanner) are highly developed in recent years for accurate selection of the therapeutic regimens in critical diseases. Therefore, it is highly demanded in the development of appropriate all-in-one multimodal contrast agents (MCAs) for the MRI/CT multimodal imaging. Here a novel ideal MCAs (F-AuNC@Fe3O4) were engineered by assemble Au nanocages (Au NC) and ultra-small iron oxide nanoparticles (Fe3O4) for simultaneous T1-T2dual MRI and CT contrast imaging. In this system, the Au nanocages offer facile thiol modification and strong X-ray attenuation property for CT imaging. The ultra-small Fe3O4 nanoparticles, as excellent contrast agent, is able to provide great enhanced signal of T1- and T2-weighted MRI (r1 = 6.263 mM-1 s-1, r2 = 28.117 mM-1 s-1) due to their ultra-refined size. After functionalization, the present MCAs nanoparticles exhibited small average size, low aggregation and excellent biocompatible. In vitro and In vivo studies revealed that the MCAs show long-term circulation time, renal clearance properties and outstanding capability of selective accumulation in tumor tissues for simultaneous CT imaging and T1- and T2-weighted MRI. Taken together, these results show that as-prepared MCAs are excellent candidates as MRI/CT multimodal imaging contrast agents.
Optical coherence tomography imaging of colonic crypts in a mouse model of colorectal cancer
NASA Astrophysics Data System (ADS)
Welge, Weston A.; Barton, Jennifer K.
2016-03-01
Aberrant crypt foci (ACF) are abnormal epithelial lesions that precede development of colonic polyps. As the earliest morphological change in the development of colorectal cancer, ACF is a highly studied phenomenon. The most common method of imaging ACF is chromoendoscopy using methylene blue as a contrast agent. Narrow- band imaging is a contrast-agent-free modality for imaging the colonic crypts. Optical coherence tomography (OCT) is an attractive alternative to chromoendoscopy and narrow-band imaging because it can resolve the crypt structure at sufficiently high sampling while simultaneously providing depth-resolved data. We imaged in vivo the distal 15 mm of colon in the azoxymethane (AOM) mouse model of colorectal cancer using a commercial swept-source OCT system and a miniature endoscope designed and built in-house. We present en face images of the colonic crypts and demonstrate that different patterns in healthy and adenoma tissue can be seen. These patterns correspond to those reported in the literature. We have previously demonstrated early detection of colon adenoma using OCT by detecting minute thickening of the mucosa. By combining mucosal thickness measurement with imaging of the crypt structure, OCT can be used to correlate ACF and adenoma development in space and time. These results suggest that OCT may be a superior imaging modality for studying the connection between ACF and colorectal cancer.
Dual-contrast agent photon-counting computed tomography of the heart: initial experience.
Symons, Rolf; Cork, Tyler E; Lakshmanan, Manu N; Evers, Robert; Davies-Venn, Cynthia; Rice, Kelly A; Thomas, Marvin L; Liu, Chia-Ying; Kappler, Steffen; Ulzheimer, Stefan; Sandfort, Veit; Bluemke, David A; Pourmorteza, Amir
2017-08-01
To determine the feasibility of dual-contrast agent imaging of the heart using photon-counting detector (PCD) computed tomography (CT) to simultaneously assess both first-pass and late enhancement of the myocardium. An occlusion-reperfusion canine model of myocardial infarction was used. Gadolinium-based contrast was injected 10 min prior to PCD CT. Iodinated contrast was infused immediately prior to PCD CT, thus capturing late gadolinium enhancement as well as first-pass iodine enhancement. Gadolinium and iodine maps were calculated using a linear material decomposition technique and compared to single-energy (conventional) images. PCD images were compared to in vivo and ex vivo magnetic resonance imaging (MRI) and histology. For infarct versus remote myocardium, contrast-to-noise ratio (CNR) was maximal on late enhancement gadolinium maps (CNR 9.0 ± 0.8, 6.6 ± 0.7, and 0.4 ± 0.4, p < 0.001 for gadolinium maps, single-energy images, and iodine maps, respectively). For infarct versus blood pool, CNR was maximum for iodine maps (CNR 11.8 ± 1.3, 3.8 ± 1.0, and 1.3 ± 0.4, p < 0.001 for iodine maps, gadolinium maps, and single-energy images, respectively). Combined first-pass iodine and late gadolinium maps allowed quantitative separation of blood pool, scar, and remote myocardium. MRI and histology analysis confirmed accurate PCD CT delineation of scar. Simultaneous multi-contrast agent cardiac imaging is feasible with photon-counting detector CT. These initial proof-of-concept results may provide incentives to develop new k-edge contrast agents, to investigate possible interactions between multiple simultaneously administered contrast agents, and to ultimately bring them to clinical practice.
Multispectral photoacoustic tomography for detection of small tumors inside biological tissues
NASA Astrophysics Data System (ADS)
Hirasawa, Takeshi; Okawa, Shinpei; Tsujita, Kazuhiro; Kushibiki, Toshihiro; Fujita, Masanori; Urano, Yasuteru; Ishihara, Miya
2018-02-01
Visualization of small tumors inside biological tissue is important in cancer treatment because that promotes accurate surgical resection and enables therapeutic effect monitoring. For sensitive detection of tumor, we have been developing photoacoustic (PA) imaging technique to visualize tumor-specific contrast agents, and have already succeeded to image a subcutaneous tumor of a mouse using the contrast agents. To image tumors inside biological tissues, extension of imaging depth and improvement of sensitivity were required. In this study, to extend imaging depth, we developed a PA tomography (PAT) system that can image entire cross section of mice. To improve sensitivity, we discussed the use of the P(VDF-TrFE) linear array acoustic sensor that can detect PA signals with wide ranges of frequencies. Because PA signals produced from low absorbance optical absorbers shifts to low frequency, we hypothesized that the detection of low frequency PA signals improves sensitivity to low absorbance optical absorbers. We developed a PAT system with both a PZT linear array acoustic sensor and the P(VDF-TrFE) sensor, and performed experiment using tissue-mimicking phantoms to evaluate lower detection limits of absorbance. As a result, PAT images calculated from low frequency components of PA signals detected by the P(VDF-TrFE) sensor could visualize optical absorbers with lower absorbance.
Gadolinium-based magnetic resonance imaging contrast agents in interventional radiology.
Atar, Eli
2004-07-01
Gadolinium-based agents are widely used in magnetic resonance imaging as contrast agents. These agents are radio-opaque enough for diagnostic imaging of the vascular tree by using digitally subtracted images as well as for imaging of the biliary system and the urinary tract. The recommended doses for gadolinium do not impair renal function or cause adverse reactions in patients with iodine sensitivity; thus patients with such conditions can safely undergo diagnostic angiography, either by MRI angiography or by catheterization using gadolinium as contrast agent, for diagnostic and therapeutic purposes.
Ultrasound Biomicroscopy in Small Animal Research: Applications in Molecular and Preclinical Imaging
Greco, A.; Mancini, M.; Gargiulo, S.; Gramanzini, M.; Claudio, P. P.; Brunetti, A.; Salvatore, M.
2012-01-01
Ultrasound biomicroscopy (UBM) is a noninvasive multimodality technique that allows high-resolution imaging in mice. It is affordable, widely available, and portable. When it is coupled to Doppler ultrasound with color and power Doppler, it can be used to quantify blood flow and to image microcirculation as well as the response of tumor blood supply to cancer therapy. Target contrast ultrasound combines ultrasound with novel molecular targeted contrast agent to assess biological processes at molecular level. UBM is useful to investigate the growth and differentiation of tumors as well as to detect early molecular expression of cancer-related biomarkers in vivo and to monitor the effects of cancer therapies. It can be also used to visualize the embryological development of mice in uterus or to examine their cardiovascular development. The availability of real-time imaging of mice anatomy allows performing aspiration procedures under ultrasound guidance as well as the microinjection of cells, viruses, or other agents into precise locations. This paper will describe some basic principles of high-resolution imaging equipment, and the most important applications in molecular and preclinical imaging in small animal research. PMID:22163379
Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T1 contrast ability
NASA Astrophysics Data System (ADS)
Ni, Kaiyuan; Zhao, Zhenghuan; Zhang, Zongjun; Zhou, Zijian; Yang, Li; Wang, Lirong; Ai, Hua; Gao, Jinhao
2016-02-01
High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM-1 s-1. Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy provides new guidance for developing various high-performance T1 contrast agents for sensitive imaging and disease diagnosis.High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM-1 s-1. Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy provides new guidance for developing various high-performance T1 contrast agents for sensitive imaging and disease diagnosis. Electronic supplementary information (ESI) available: Supplementary Fig. S1-S6. See DOI: 10.1039/c5nr08402d
Single cell imaging of Bruton's Tyrosine Kinase using an irreversible inhibitor
NASA Astrophysics Data System (ADS)
Turetsky, Anna; Kim, Eunha; Kohler, Rainer H.; Miller, Miles A.; Weissleder, Ralph
2014-04-01
A number of Bruton's tyrosine kinase (BTK) inhibitors are currently in development, yet it has been difficult to visualize BTK expression and pharmacological inhibition in vivo in real time. We synthesized a fluorescent, irreversible BTK binder based on the drug Ibrutinib and characterized its behavior in cells and in vivo. We show a 200 nM affinity of the imaging agent, high selectivity, and irreversible binding to its target following initial washout, resulting in surprisingly high target-to-background ratios. In vivo, the imaging agent rapidly distributed to BTK expressing tumor cells, but also to BTK-positive tumor-associated host cells.
Examining multi-component DNA-templated nanostructures as imaging agents
NASA Astrophysics Data System (ADS)
Jaganathan, Hamsa
2011-12-01
Magnetic resonance imaging (MRI) is the leading non-invasive tool for disease imaging and diagnosis. Although MRI exhibits high spatial resolution for anatomical features, the contrast resolution is low. Imaging agents serve as an aid to distinguish different types of tissues within images. Gadolinium chelates, which are considered first generation designs, can be toxic to health, while ultra-small, superparamagnetic nanoparticles (NPs) have low tissue-targeting efficiency and rapid bio-distribution, resulting to an inadequate detection of the MRI signal and enhancement of image contrast. In order to improve the utility of MRI agents, the challenge in composition and structure needs to be addressed. One-dimensional (1D), superparamagnetic nanostructures have been reported to enhance magnetic and in vivo properties and therefore has a potential to improve contrast enhancement in MRI images. In this dissertation, the structure of 1D, multi-component NP chains, scaffolded on DNA, were pre-clinically examined as potential MRI agents. First, research was focused on characterizing and understanding the mechanism of proton relaxation for DNA-templated NP chains using nuclear magnetic resonance (NMR) spectrometry. Proton relaxation and transverse relaxivity were higher in multi-component NP chains compared to disperse NPs, indicating the arrangement of NPs on a 1D structure improved proton relaxation sensitivity. Second, in vitro evaluation for potential issues in toxicity and contrast efficiency in tissue environments using a 3 Tesla clinical MRI scanner was performed. Cell uptake of DNA-templated NP chains was enhanced after encapsulating the nanostructure with layers of polyelectrolytes and targeting ligands. Compared to dispersed NPs, DNA-templated NP chains improved MRI contrast in both the epithelial basement membrane and colon cancer tumors scaffolds. The last part of the project was focused on developing a novel MRI agent that detects changes in DNA methylation levels. The findings from this dissertation suggest that the structural arrangement of NPs on DNA significantly influenced their function and utility as MRI agents.
Clinically Approved Nanoparticle Imaging Agents
Thakor, Avnesh S.; Jokerst, Jesse V.; Ghanouni, Pejman; Campbell, Jos L.; Mittra, Erik
2016-01-01
Nanoparticles are a new class of imaging agent used for both anatomic and molecular imaging. Nanoparticle-based imaging exploits the signal intensity, stability, and biodistribution behavior of submicron-diameter molecular imaging agents. This review focuses on nanoparticles used in human medical imaging, with an emphasis on radionuclide imaging and MRI. Newer nanoparticle platforms are also discussed in relation to theranostic and multimodal uses. PMID:27738007
Chen, Chun-Jen; Bando, Kazunori; Ashino, Hiroki; Taguchi, Kazumi; Shiraishi, Hideaki; Fujimoto, Osuke; Kitamura, Chiemi; Matsushima, Satoshi; Fujinaga, Masayuki; Zhang, Ming-Rong; Kasahara, Hiroyuki; Minamizawa, Takao; Jiang, Cheng; Ono, Maiko; Higuchi, Makoto; Suhara, Tetsuya; Yamada, Kazutaka; Ji, Bin
2014-08-01
Non-invasive detection for amyloid-β peptide (Aβ) deposition has important significance for the early diagnosis and medical intervention for Alzheimer's disease (AD). In this study, we developed a series of imidazopyridine derivatives as potential imaging agents for single-photon emission computed tomography (SPECT). Two of them, compounds DRK092 and DRM106, showed higher affinity for synthetic human Aβ 1-40 fibrils than did the well-known amyloid-imaging agent IMPY. A metabolite analysis revealed brain-permeable radioactive metabolites of (125)I-labeled DRK092 and IMPY; no radioactive metabolites from (125)I-labeled DRM106 ([(125)I]DRM106) were detected. In addition, in vitro autoradiography clearly demonstrated specific binding of [(125)I]DRM106 in the hippocampal region of AD enriched with Aβ plaques. Thus, our results strongly suggested that compound DRM106 can be used as an imaging agent for SPECT to detect Aβ deposition in AD brain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Targeted Nanodiamonds as Phenotype Specific Photoacoustic Contrast Agents for Breast Cancer
Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Cheng, Kun; Yang, Xinmai; Chang, Huan-Cheng; Forrest, M. Laird
2015-01-01
Aim The aim is to develop irradiated nanodiamonds (INDs) as a molecularly-targeted contrast agent for high resolution and phenotype-specific detection of breast cancer with photoacoustic (PA) imaging. Materials & Methods The surface of acid treated radiation-damaged nanodiamonds was grafted with polyethylene glycol (PEG) to improve its stability and circulation time in blood, followed by conjugation to an anti-Human epidermal growth factor receptor-2 (HER2) peptide (KCCYSL) with a final nanoparticle size of ca. 92 nm. Immunocompetent mice bearing orthotopic HER2 positive or negative tumors were administered INDs and PA imaged using an 820-nm near infrared laser. Results PA images demonstrated that INDs accumulate in tumors and completely delineated the entire tumor within 10 hours. HER2 targeting significantly enhanced imaging of HER2-positive tumors. Pathological examination demonstrated INDs are non-toxic. Conclusions PA technology is adaptable to low-cost bedside medicine, and with new contrast agents described herein, PA can achieve high resolution (sub-mm) and phenotype specific monitoring of cancer growth. PMID:25723091
Choi, Jin-Young; Lee, Jeong-Min
2014-01-01
Computed tomography (CT) and magnetic resonance (MR) imaging play critical roles in the diagnosis and staging of hepatocellular carcinoma (HCC). The first article of this two-part review discusses key concepts of HCC development, growth, and spread, emphasizing those features with imaging correlates and hence most relevant to radiologists; state-of-the-art CT and MR imaging technique with extracellular and hepatobiliary contrast agents; and the imaging appearance of precursor nodules that eventually may transform into overt HCC. © RSNA, 2014 PMID:25153274
Huynh, Amanda Shanks; Estrella, Veronica; Stark, Valerie E; Cohen, Allison S; Chen, Tingan; Casagni, Todd J; Josan, Jatinder S; Lloyd, Mark C; Johnson, Joseph; Kim, Jongphil; Hruby, Victor J; Vagner, Josef; Morse, David L
2016-02-01
Fluorescence molecular imaging can be employed for the development of novel cancer targeting agents. Herein, we investigated the pharmacokinetics (PK) and cellular uptake of Dmt-Tic-Cy5, a delta-opioid receptor (δOR) antagonist-fluorescent dye conjugate, as a tumor-targeting molecular imaging agent. δOR expression is observed normally in the CNS, and pathologically in some tumors, including lung liver and breast cancers. In vitro, in vivo, and ex vivo experiments were conducted to image and quantify the fluorescence signal associated with Dmt-Tic-Cy5 over time using in vitro and intravital fluorescence microscopy and small animal fluorescence imaging of tumor-bearing mice. We observed specific retention of Dmt-Tic-Cy5 in tumors with maximum uptake in δOR-expressing positive tumors at 3 h and observable persistence for >96 h; clearance from δOR nonexpressing negative tumors by 6 h; and systemic clearance from normal organs by 24 h. Live-cell and intravital fluorescence microscopy demonstrated that Dmt-Tic-Cy5 had sustained cell-surface binding lasting at least 24 h with gradual internalization over the initial 6 h following administration. Dmt-Tic-Cy5 is a δOR-targeted agent that exhibits long-lasting and specific signal in δOR-expressing tumors, is rapidly cleared from systemic circulation, and is not retained in non-δOR-expressing tissues. Hence, Dmt-Tic-Cy5 has potential as a fluorescent tumor imaging agent.
Wu, Jason Boyang; Shao, Chen; Li, Xiangyan; Shi, Changhong; Li, Qinlong; Hu, Peizhen; Chen, Yi-Ting; Dou, Xiaoliang; Sahu, Divya; Li, Wei; Harada, Hiroshi; Zhang, Yi; Wang, Ruoxiang; Zhau, Haiyen E.; Chung, Leland W.K.
2014-01-01
Near-infrared fluorescence (NIRF) imaging agents are promising tools for noninvasive cancer imaging. Here, we explored the mechanistic properties of a specific group of NIR heptamethine carbocyanines including MHI-148 dye we identified and synthesized, and demonstrated these dyes to achieve cancer-specific imaging and targeting via a hypoxia-mediated mechanism. We found that cancer cells and tumor xenografts exhibited hypoxia-dependent MHI-148 dye uptake in vitro and in vivo, which was directly mediated by hypoxia-inducible factor 1α (HIF1α). Microarray analysis and dye uptake assay further revealed a group of hypoxia-inducible organic anion-transporting polypeptides (OATPs) responsible for dye uptake, and the correlation between OATPs and HIF1α was manifested in progressive clinical cancer specimens. Finally, we demonstrated increased uptake of MHI-148 dye in situ in perfused clinical tumor samples with activated HIF1α/OATPs signaling. Our results establish these NIRF dyes as potential tumor hypoxia-dependent cancer-targeting agents and provide a mechanistic rationale for continued development of NIRF imaging agents for improved cancer detection, prognosis and therapy. PMID:24957295
Non-invasive imaging of barriers to drug delivery in tumors.
Hassid, Yaron; Eyal, Erez; Margalit, Raanan; Furman-Haran, Edna; Degani, Hadassa
2008-08-01
Solid tumors often develop high interstitial fluid pressure (IFP) as a result of increased water leakage and impaired lymphatic drainage, as well as changes in the extracellular matrix composition and elasticity. This high fluid pressure forms a barrier to drug delivery and hence, resistance to therapy. We have developed techniques based on contrast enhanced magnetic resonance imaging for mapping in tumors the vascular and transport parameters determining the delivery efficiency of blood borne substances. Sequential images are recorded during continuous infusion of a Gd-based contrast agent and analyzed according to a new physiological model, yielding maps of microvascular transfer constants, as well as outward convective interstitial transfer constants and steady state interstitial contrast agent concentrations both reflecting IFP distribution. We further demonstrated in non small cell human lung cancer xenografts the capability of our techniques to monitor in vivo collagenase induced increase in contrast agent delivery as a result of decreased IFP. These techniques can be applied to test drugs that affect angiogenesis and modulate interstitial fluid pressure and has the potential to be extended to cancer patients for assessing resistance to drug delivery.
Non-Invasive Imaging of Barriers to Drug Delivery in Tumors
Hassid, Yaron; Eyal, Erez; Margalit, Raanan; Furman-Haran, Edna; Degani, Hadassa
2011-01-01
Solid tumors often develop high interstitial fluid pressure (IFP) as a result of increased water leakage and impaired lymphatic drainage, as well as changes in the extracellular matrix composition and elasticity. This high fluid pressure forms a barrier to drug delivery and hence, resistance to therapy. We have developed techniques based on contrast enhanced magnetic resonance imaging for mapping in tumors the vascular and transport parameters determining the delivery efficiency of blood borne substances. Sequential images are recorded during continuous infusion of a Gd-based contrast agent and analyzed according to a new physiological model, yielding maps of microvascular transfer constants, as well as outward convective interstitial transfer constants and steady state interstitial contrast agent concentrations both reflecting IFP distribution. We further demonstrated in non small cell human lung cancer xenografts the capability of our techniques to monitor in vivo collagenase induced increase in contrast agent delivery as a result of decreased IFP. These techniques can be applied to test drugs that affect angiogenesis and modulate interstitial fluid pressure and has the potential to be extended to cancer patients for assessing resistance to drug delivery. PMID:18638494
Sani Usman, Muhammad; Hussein, Mohd Zobir; Fakurazi, Sharida; Masarudin, Mas Jaffri; Ahmad Saad, Fathinul Fikri
2017-08-31
We have developed gadolinium-based theranostic nanoparticles for co-delivery of drug and magnetic resonance imaging (MRI) contrast agent using Zn/Al-layered double hydroxide as the nanocarrier platform, a naturally occurring phenolic compound, gallic acid (GA) as therapeutic agent, and Gd(NO₃)₃ as diagnostic agent. Gold nanoparticles (AuNPs) were grown on the system to support the contrast for MRI imaging. The nanoparticles were characterized using techniques such as Hi-TEM, XRD, ICP-ES. Kinetic release study of the GA from the nanoparticles showed about 70% of GA was released over a period of 72 h. The in vitro cell viability test for the nanoparticles showed relatively low toxicity to human cell lines (3T3) and improved toxicity on cancerous cell lines (HepG2). A preliminary contrast property test of the nanoparticles, tested on a 3 Tesla MRI machine at various concentrations of GAGZAu and water (as a reference) indicates that the nanoparticles have a promising dual diagnostic and therapeutic features to further develop a better future for clinical remedy for cancer treatment.
Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors
Dumont, Matthieu F; Yadavilli, Sridevi; Sze, Raymond W; Nazarian, Javad; Fernandes, Rohan
2014-01-01
Pediatric brain tumors (PBTs) are a leading cause of death in children. For an improved prognosis in patients with PBTs, there is a critical need to develop molecularly-specific imaging agents to monitor disease progression and response to treatment. In this paper, we describe manganese-containing Prussian blue nanoparticles as agents for molecular magnetic resonance imaging (MRI) and fluorescence-based imaging of PBTs. Our core-shell nanoparticles consist of a core lattice structure that incorporates and retains paramagnetic Mn2+ ions, and generates MRI contrast (both negative and positive). The biofunctionalized shell is comprised of fluorescent avidin, which serves the dual purpose of enabling fluorescence imaging and functioning as a platform for the attachment of biotinylated ligands that target PBTs. The surfaces of our nanoparticles are modified with biotinylated antibodies targeting neuron-glial antigen 2 or biotinylated transferrin. Both neuron-glial antigen 2 and the transferrin receptor are protein markers overexpressed in PBTs. We describe the synthesis, biofunctionalization, and characterization of these multimodal nanoparticles. Further, we demonstrate the MRI and fluorescence imaging capabilities of manganese-containing Prussian blue nanoparticles in vitro. Finally, we demonstrate the potential of these nanoparticles as PBT imaging agents by measuring their organ and brain biodistribution in an orthotopic mouse model of PBTs using ex vivo fluorescence imaging. PMID:24920896
Stendahl, John C; Sinusas, Albert J
2015-10-01
Imaging agents made from nanoparticles are functionally versatile and have unique properties that may translate to clinical utility in several key cardiovascular imaging niches. Nanoparticles exhibit size-based circulation, biodistribution, and elimination properties different from those of small molecules and microparticles. In addition, nanoparticles provide versatile platforms that can be engineered to create both multimodal and multifunctional imaging agents with tunable properties. With these features, nanoparticulate imaging agents can facilitate fusion of high-sensitivity and high-resolution imaging modalities and selectively bind tissues for targeted molecular imaging and therapeutic delivery. Despite their intriguing attributes, nanoparticulate imaging agents have thus far achieved only limited clinical use. The reasons for this restricted advancement include an evolving scope of applications, the simplicity and effectiveness of existing small-molecule agents, pharmacokinetic limitations, safety concerns, and a complex regulatory environment. This review describes general features of nanoparticulate imaging agents and therapeutics and discusses challenges associated with clinical translation. A second, related review to appear in a subsequent issue of JNM highlights nuclear-based nanoparticulate probes in preclinical cardiovascular imaging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Image-Guided Surgery using Invisible Near-Infrared Light: Fundamentals of Clinical Translation
Gioux, Sylvain; Choi, Hak Soo; Frangioni, John V.
2011-01-01
The field of biomedical optics has matured rapidly over the last decade and is poised to make a significant impact on patient care. In particular, wide-field (typically > 5 cm), planar, near-infrared (NIR) fluorescence imaging has the potential to revolutionize human surgery by providing real-time image guidance to surgeons for tissue that needs to be resected, such as tumors, and tissue that needs to be avoided, such as blood vessels and nerves. However, to become a clinical reality, optimized imaging systems and NIR fluorescent contrast agents will be needed. In this review, we introduce the principles of NIR fluorescence imaging, analyze existing NIR fluorescence imaging systems, and discuss the key parameters that guide contrast agent development. We also introduce the complexities surrounding clinical translation using our experience with the Fluorescence-Assisted Resection and Exploration (FLARE™) imaging system as an example. Finally, we introduce state-of-the-art optical imaging techniques that might someday improve image-guided surgery even further. PMID:20868625
Molecular Imaging: Current Status and Emerging Strategies
Pysz, Marybeth A.; Gambhir, Sanjiv S.; Willmann, Jürgen K.
2011-01-01
In vivo molecular imaging has a great potential to impact medicine by detecting diseases in early stages (screening), identifying extent of disease, selecting disease- and patient-specific therapeutic treatment (personalized medicine), applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current clinical molecular imaging approaches primarily use PET- or SPECT-based techniques. In ongoing preclinical research novel molecular targets of different diseases are identified and, sophisticated and multifunctional contrast agents for imaging these molecular targets are developed along with new technologies and instrumentation for multimodality molecular imaging. Contrast-enhanced molecular ultrasound with molecularly-targeted contrast microbubbles is explored as a clinically translatable molecular imaging strategy for screening, diagnosing, and monitoring diseases at the molecular level. Optical imaging with fluorescent molecular probes and ultrasound imaging with molecularly-targeted microbubbles are attractive strategies since they provide real-time imaging, are relatively inexpensive, produce images with high spatial resolution, and do not involve exposure to ionizing irradiation. Raman spectroscopy/microscopy has emerged as a molecular optical imaging strategy for ultrasensitive detection of multiple biomolecules/biochemicals with both in vivo and ex vivo versatility. Photoacoustic imaging is a hybrid of optical and ultrasound modalities involving optically-excitable molecularly-targeted contrast agents and quantitative detection of resulting oscillatory contrast agent movement with ultrasound. Current preclinical findings and advances in instrumentation such as endoscopes and microcatheters suggest that these molecular imaging modalities have numerous clinical applications and will be translated into clinical use in the near future. PMID:20541650
NASA Astrophysics Data System (ADS)
Sadeghipour, Negar; Davis, Scott C.; Tichauer, Kenneth M.
2018-02-01
Dynamic fluorescence imaging approaches can be used to estimate the concentration of cell surface receptors in vivo. Kinetic models are used to generate the final estimation by taking the targeted imaging agent concentration as a function of time. However, tissue absorption and scattering properties cause the final readout signal to be on a different scale than the real fluorescent agent concentration. In paired-agent imaging approaches, simultaneous injection of a suitable control imaging agent with a targeted one can account for non-specific uptake and retention of the targeted agent. Additionally, the signal from the control agent can be a normalizing factor to correct for tissue optical property differences. In this study, the kinetic model used for paired-agent imaging analysis (i.e., simplified reference tissue model) is modified and tested in simulation and experimental data in a way that accounts for the scaling correction within the kinetic model fit to the data to ultimately extract an estimate of the targeted biomarker concentration.
NASA Astrophysics Data System (ADS)
Liu, Zhi-Jun; Song, Xiao-Xia; Tang, Qun
2013-05-01
Magnetic nanoparticles consisting of manganese-based T1-weighted contrast agents have rapidly achieved clinical application, however low proton relaxivity impedes further development. In this report, by analyzing nanoparticles' surface oxidation states we propose the possible reason for the low r1 relaxivity of common MnO nanoparticles and develop PEGylated fluoroperovskite KMnF3 nanoparticles as new T1-weighted contrast agents, which exhibit the highest longitudinal relaxivity (r1 = 23.15 mM-1 s-1) among all the reported manganese-based T1-weighted contrast agents. We, for the first time, illustrate a typical example showing that the surface oxidation states of metal ions exposed on the nanoparticles' surfaces are able to influence not only the optical, magnetic, electronic or catalytic properties but also water proton longitudinal relaxivity when applied as an MRI contrast agent. Cytotoxicity tests demonstrate that the PEGylated KMnF3 nanoparticles are free from toxicity. Further in vivo MRI experiments distinctively depict fine anatomical features in brain imaging at a low dose of 5 mg of Mn per kg and possible removal from the kidneys due to their small size and biocompatibility.Magnetic nanoparticles consisting of manganese-based T1-weighted contrast agents have rapidly achieved clinical application, however low proton relaxivity impedes further development. In this report, by analyzing nanoparticles' surface oxidation states we propose the possible reason for the low r1 relaxivity of common MnO nanoparticles and develop PEGylated fluoroperovskite KMnF3 nanoparticles as new T1-weighted contrast agents, which exhibit the highest longitudinal relaxivity (r1 = 23.15 mM-1 s-1) among all the reported manganese-based T1-weighted contrast agents. We, for the first time, illustrate a typical example showing that the surface oxidation states of metal ions exposed on the nanoparticles' surfaces are able to influence not only the optical, magnetic, electronic or catalytic properties but also water proton longitudinal relaxivity when applied as an MRI contrast agent. Cytotoxicity tests demonstrate that the PEGylated KMnF3 nanoparticles are free from toxicity. Further in vivo MRI experiments distinctively depict fine anatomical features in brain imaging at a low dose of 5 mg of Mn per kg and possible removal from the kidneys due to their small size and biocompatibility. Electronic supplementary information (ESI) available: Experimental procedure for two types of MnO nanoparticles, T1-weighted mapping. See DOI: 10.1039/c3nr00721a
Komljenovic, Dorde; Wiessler, Manfred; Waldeck, Waldemar; Ehemann, Volker; Pipkorn, Ruediger; Schrenk, Hans-Hermann; Debus, Jürgen; Braun, Klaus
2016-01-01
Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the Cy7 molecule whose indolenine-N residues were substituted with a propylene linker are described. Methylating agent temozolomide is functionalized with a tetrazine as a diene component whereas Cy7-cell penetrating peptide conjugate acts as a dienophilic reaction partner for the inverse Diels-Alder click chemistry-mediated ligation route yielding a theranostic conjugate, 3-mercapto-propionic-cyclohexenyl-Cy7-bis-temozolomide-bromide-cell penetrating peptide. Synthesis route described here may facilitate targeted delivery of the therapeutic compound to achieve sufficient local concentrations at the target site or tissue. Its versatility allows a choice of adequate imaging tags applicable in e.g. PET, SPECT, CT, near-infrared imaging, and therapeutic substances including cytotoxic agents. Imaging tags and therapeutics may be simultaneously bound to the conjugate applying click chemistry. Theranostic compound presented here offers a solid basis for a further improvement of cancer management in a precise, patient-specific manner.
Komljenovic, Dorde; Wiessler, Manfred; Waldeck, Waldemar; Ehemann, Volker; Pipkorn, Ruediger; Schrenk, Hans-Hermann; Debus, Jürgen; Braun, Klaus
2016-01-01
Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the Cy7 molecule whose indolenine-N residues were substituted with a propylene linker are described. Methylating agent temozolomide is functionalized with a tetrazine as a diene component whereas Cy7-cell penetrating peptide conjugate acts as a dienophilic reaction partner for the inverse Diels-Alder click chemistry-mediated ligation route yielding a theranostic conjugate, 3-mercapto-propionic-cyclohexenyl-Cy7-bis-temozolomide-bromide-cell penetrating peptide. Synthesis route described here may facilitate targeted delivery of the therapeutic compound to achieve sufficient local concentrations at the target site or tissue. Its versatility allows a choice of adequate imaging tags applicable in e.g. PET, SPECT, CT, near-infrared imaging, and therapeutic substances including cytotoxic agents. Imaging tags and therapeutics may be simultaneously bound to the conjugate applying click chemistry. Theranostic compound presented here offers a solid basis for a further improvement of cancer management in a precise, patient-specific manner. PMID:26722379
NASA Astrophysics Data System (ADS)
Tichauer, Kenneth M.
2016-03-01
One of the major complications with conventional imaging-agent-based molecular imaging, particularly for cancer imaging, is variability in agent delivery and nonspecific retention in biological tissue. Such factors can account to "swamp" the signal arising from specifically bound imaging agent, which is presumably indicative of the concentration of targeted biomolecule. In the 1950s, Pressman et al. proposed a method of accounting for these delivery and retention effects by normalizing targeted antibody retention to the retention of a co-administered "untargeted"/control imaging agent [1]. Our group resurrected the approach within the last 5 years, finding ways to utilize this so-called "paired-agent" imaging approach to directly quantify biomolecule concentration in tissue (in vitro, ex vivo, and in vivo) [2]. These novel paired-agent imaging approaches capable of quantifying biomolecule concentration provide enormous potential for being adapted to and optimizing molecular-guided surgery, which has a principle goal of identifying distinct biological tissues (tumor, nerves, etc…) based on their distinct molecular environment. This presentation will cover the principles and nuances of paired-agent imaging, as well as the current status of the field and future applications. [1] D. Pressman, E. D. Day, and M. Blau, "The use of paired labeling in the determination of tumor-localizing antibodies," Cancer Res, 17(9), 845-50 (1957). [2] K. M. Tichauer, Y. Wang, B. W. Pogue et al., "Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging," Phys Med Biol, 60(14), R239-69 (2015).
Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging.
Wang, Yi-Xiang J
2015-12-21
Five types of superparamagnetic iron oxide (SPIO), i.e. Ferumoxides (Feridex(®) IV, Berlex Laboratories), Ferucarbotran (Resovist(®), Bayer Healthcare), Ferumoxtran-10 (AMI-227 or Code-7227, Combidex(®), AMAG Pharma; Sinerem(®), Guerbet), NC100150 (Clariscan(®), Nycomed,) and (VSOP C184, Ferropharm) have been designed and clinically tested as magnetic resonance contrast agents. However, until now Resovist(®) is current available in only a few countries. The other four agents have been stopped for further development or withdrawn from the market. Another SPIO agent Ferumoxytol (Feraheme(®)) is approved for the treatment of iron deficiency in adult chronic kidney disease patients. Ferumoxytol is comprised of iron oxide particles surrounded by a carbohydrate coat, and it is being explored as a potential imaging approach for evaluating lymph nodes and certain liver tumors.
Contrast enhanced spectroscopic optical coherence tomography
NASA Technical Reports Server (NTRS)
Xu, Chenyang (Inventor); Boppart, Stephen A. (Inventor)
2010-01-01
A method of forming an image of a sample includes performing SOCT on a sample. The sample may include a contrast agent, which may include an absorbing agent and/or a scattering agent. A method of forming an image of tissue may include selecting a contrast agent, delivering the contrast agent to the tissue, acquiring SOCT data from the tissue, and converting the SOCT data into an image. The contributions to the SOCT data of an absorbing agent and a scattering agent in a sample may be quantified separately.
Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M
2015-02-18
Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel α-helix-stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enable this technique to potentially be used as a general method for labeling α helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents.
Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M.
2016-01-01
Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using the glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel alpha helix stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enables this technique to potentially be used as a general method for labeling alpha helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741
Anderson, Christian E; Donnola, Shannon B; Jiang, Yun; Batesole, Joshua; Darrah, Rebecca; Drumm, Mitchell L; Brady-Kalnay, Susann M; Steinmetz, Nicole F; Yu, Xin; Griswold, Mark A; Flask, Chris A
2017-08-16
Injectable Magnetic Resonance Imaging (MRI) contrast agents have been widely used to provide critical assessments of disease for both clinical and basic science imaging research studies. The scope of available MRI contrast agents has expanded over the years with the emergence of molecular imaging contrast agents specifically targeted to biological markers. Unfortunately, synergistic application of more than a single molecular contrast agent has been limited by MRI's ability to only dynamically measure a single agent at a time. In this study, a new Dual Contrast - Magnetic Resonance Fingerprinting (DC - MRF) methodology is described that can detect and independently quantify the local concentration of multiple MRI contrast agents following simultaneous administration. This "multi-color" MRI methodology provides the opportunity to monitor multiple molecular species simultaneously and provides a practical, quantitative imaging framework for the eventual clinical translation of molecular imaging contrast agents.
NASA Astrophysics Data System (ADS)
Pogue, Brian W.; Paulsen, Keith D.; Hull, Sally M.; Samkoe, Kimberley S.; Gunn, Jason; Hoopes, Jack; Roberts, David W.; Strong, Theresa V.; Draney, Daniel; Feldwisch, Joachim
2015-03-01
Molecular guided oncology surgery has the potential to transform the way decisions about resection are done, and can be critically important in areas such as neurosurgery where the margins of tumor relative to critical normal tissues are not readily apparent from visual or palpable guidance. Yet there are major financial barriers to advancing agents into clinical trials with commercial backing. We observe that development of these agents in the standard biological therapeutic paradigm is not viable, due to the high up front financial investment needed and the limitations in the revenue models of contrast agents for imaging. The hypothesized solution to this problem is to develop small molecular biologicals tagged with an established fluorescent reporter, through the chemical agent approval pathway, targeting a phase 0 trials initially, such that the initial startup phase can be completely funded by a single NIH grant. In this way, fast trials can be completed to de-risk the development pipeline, and advance the idea of fluorescence-guided surgery (FGS) reporters into human testing. As with biological therapies the potential successes of each agent are still moderate, but this process will allow the field to advance in a more stable and productive manner, rather than relying upon isolated molecules developed at high cost and risk. The pathway proposed and tested here uses peptide synthesis of an epidermal growth factor receptor (EGFR)-binding Affibody molecules, uniquely conjugated to IRDye 800CW, developed and tested in academic and industrial laboratories with well-established records for GMP production, fill and finish, toxicity testing, and early phase clinical trials with image guidance.
NASA Astrophysics Data System (ADS)
Moradi Khaniabadi, P.; S. A Majid, A. M.; Asif, M.; Moradi Khaniabadi, B.; Shahbazi-Gahrouei, D.; Jaafar, M. S.
2017-05-01
Effective and specific diagnostic imaging techniques are important in early-stage breast cancer treatment. The objective of this study was to develop a specific breast cancer contrast agent for magnetic resonance imaging (MRI). In so doing, superparamagnetic iron oxide nanoparticles (SPIONs) were conjugated to C595 monoclonal antibody using EDC chemistry to produce nanoprobe with high relaxivity and narrow size (87.4±0.7 nm). To test the developed nanoprobe in vitro, assessments including Cell toxicity, targeting efficacy, cellular binding, and MR imaging were carried out. The results indicated that after 6 hrs incubation with MCF-7 cells at 200 to 25 µg Fe/ml doses, 76% to 16% T2 reduction was obtained. The presence of iron localised in MCF-7 cells measured by atomic absorption spectroscopy (AAS) was about 9.95±0.09 ppm iron/cell at higher doses of nanoprobe. Moreover, a linear relationship between iron concentration of nontoxic SPION-C595 and T2 relaxation times was observed. This study also revealed that developed nanoprobe might be used as a specific negative contrast agent for detecting breast cancer.
Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Chang Guhn
2015-02-01
Asparagine-glycine-arginine (NGR)-containing peptides targeting aminopeptidase N (APN)/CD13 can be an excellent candidate for targeting ligands in molecular tumor imaging. In this study, we developed two NGR-containing hexapeptides, and evaluated the diagnostic performance of Tc-99m labeled hexapeptides as molecular imaging agents in an HT-1080 fibrosarcoma-bearing murine model. Peptides were synthesized using Fmoc solid-phase peptide synthesis. Radiochemical purity of Tc-99m was evaluated using instant thin-layer chromatography. The uptake of two NGR-containing hexapeptides within HT-1080 cells was evaluated in vitro. In HT-1080 fibrosarcoma tumor-bearing mice, gamma images were acquired. A biodistribution study was performed to calculate percentage of the injected dose per gram of tissue (%ID/g). Two hexapeptides, glutamic acid-cysteine-glycine (ECG)-NGR and NGR-ECG were successfully synthesized. After radiolabeling procedures with Tc-99m, the complexes Tc-99m hexapeptides were prepared in high yield. The uptake of Tc-99m ECG-NGR within the tumor cells had been assured by in vitro studies. The gamma camera imaging in the murine model showed that Tc-99m ECG-NGR was accumulated substantially in the subcutaneously engrafted tumor. However, Tc-99m NGR-ECG was accumulated minimally in the tumor. Two NGR-containing hexapeptides, ECG-NGR and NGR-ECG were developed as molecular imaging agents to target APN/CD13 in HT-1080 fibrosarcoma. Tc-99m ECG-NGR showed a significant uptake in the tumor, and it is a good candidate for tumor imaging. Copyright © 2015 John Wiley & Sons, Ltd.
Boll, Hanne; Nittka, Stefanie; Doyon, Fabian; Neumaier, Michael; Marx, Alexander; Kramer, Martin; Groden, Christoph; Brockmann, Marc A.
2011-01-01
Background Micro-CT imaging of liver disease in mice relies on high soft tissue contrast to detect small lesions like liver metastases. Purpose of this study was to characterize the localization and time course of contrast enhancement of a nanoparticular alkaline earth metal-based contrast agent (VISCOVER ExiTron nano) developed for small animal liver CT imaging. Methodology ExiTron nano 6000 and ExiTron nano 12000, formulated for liver/spleen imaging and angiography, respectively, were intravenously injected in C57BL/6J-mice. The distribution and time course of contrast enhancement were analysed by repeated micro-CT up to 6 months. Finally, mice developing liver metastases after intrasplenic injection of colon carcinoma cells underwent longitudinal micro-CT imaging after a single injection of ExiTron nano. Principal Findings After a single injection of ExiTron nano the contrast of liver and spleen peaked after 4–8 hours, lasted up to several months and was tolerated well by all mice. In addition, strong contrast enhancement of abdominal and mediastinal lymph nodes and the adrenal glands was observed. Within the first two hours after injection, particularly ExiTron nano 12000 provided pronounced contrast for imaging of vascular structures. ExiTron nano facilitated detection of liver metastases and provided sufficient contrast for longitudinal observation of tumor development over weeks. Conclusions The nanoparticulate contrast agents ExiTron nano 6000 and 12000 provide strong contrast of the liver, spleen, lymph nodes and adrenal glands up to weeks, hereby allowing longitudinal monitoring of pathological processes of these organs in small animals, with ExiTron nano 12000 being particularly optimized for angiography due to its very high initial vessel contrast. PMID:21984939
Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging
Herrmann, Kelsey; Johansen, Mette L.; Craig, Sonya E.; Vincent, Jason; Howell, Michael; Gao, Ying; Lu, Lan; Erokwu, Bernadette; Agnes, Richard S.; Lu, Zheng-Rong; Pokorski, Jonathan K.; Basilion, James; Gulani, Vikas; Griswold, Mark; Flask, Chris; Brady-Kalnay, Susann M.
2015-01-01
Magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM) with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA)3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA)3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA)3 agent, a scrambled-Tris-(Gd-DOTA)3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA)3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA)3 agent over time compared to the non-specific contrast agent currently in clinical use. PMID:26435847
Sreejith, Sivaramapanicker; Joseph, James; Lin, Manjing; Menon, Nishanth Venugopal; Borah, Parijat; Ng, Hao Jun; Loong, Yun Xian; Kang, Yuejun; Yu, Sidney Wing-Kwong; Zhao, Yanli
2015-06-23
Combined near-infrared (NIR) fluorescence and photoacoustic imaging techniques present promising capabilities for noninvasive visualization of biological structures. Development of bimodal noninvasive optical imaging approaches by combining NIR fluorescence and photoacoustic tomography demands suitable NIR-active exogenous contrast agents. If the aggregation and photobleaching are prevented, squaraine dyes are ideal candidates for fluorescence and photoacoustic imaging. Herein, we report rational selection, preparation, and micelle encapsulation of an NIR-absorbing squaraine dye (D1) for in vivo fluorescence and photoacoustic bimodal imaging. D1 was encapsulated inside micelles constructed from a biocompatible nonionic surfactant (Pluoronic F-127) to obtain D1-encapsulated micelles (D1(micelle)) in aqueous conditions. The micelle encapsulation retains both the photophysical features and chemical stability of D1. D1(micelle) exhibits high photostability and low cytotoxicity in biological conditions. Unique properties of D1(micelle) in the NIR window of 800-900 nm enable the development of a squaraine-based exogenous contrast agent for fluorescence and photoacoustic bimodal imaging above 820 nm. In vivo imaging using D1(micelle), as demonstrated by fluorescence and photoacoustic tomography experiments in live mice, shows contrast-enhanced deep tissue imaging capability. The usage of D1(micelle) proven by preclinical experiments in rodents reveals its excellent applicability for NIR fluorescence and photoacoustic bimodal imaging.
Electronic cleansing for CT colonography using spectral-driven iterative reconstruction
NASA Astrophysics Data System (ADS)
Nasirudin, Radin A.; Näppi, Janne J.; Hironaka, Toru; Tachibana, Rie; Yoshida, Hiroyuki
2017-03-01
Dual-energy computed tomography is used increasingly in CT colonography (CTC). The combination of computer-aided detection (CADe) and dual-energy CTC (DE-CTC) has high clinical value, because it can detect clinically significant colonic lesions automatically at higher accuracy than does conventional single-energy CTC. While CADe has demonstrated its ability to detect small polyps, its performance is highly dependent on several factors, including the quality of CTC images and electronic cleansing (EC) of the images. The presence of artifacts such as beam hardening and image noise in ultra-low-dose CTC can produce incorrectly cleansed colon images that severely degrade the detection performance of CTC for small polyps. Also, CADe methods are very dependent on the quality of input images and the information about different tissues in the colon. In this work, we developed a novel method to calculate EC images using spectral information from DE-CTC data. First, the ultra-low dose dual-energy projection data obtained from a CT scanner are decomposed into two materials, soft tissue and the orally administered fecal-tagging contrast agent, to detect the location and intensity of the contrast agent. Next, the images are iteratively reconstructed while gradually removing the presence of tagged materials from the images. Our preliminary qualitative results show that the method can cleanse the contrast agent and tagged materials correctly from DE-CTC images without affecting the appearance of surrounding tissue.
In vivo 3D PIXE-micron-CT imaging of Drosophila melanogaster using a contrast agent
NASA Astrophysics Data System (ADS)
Matsuyama, Shigeo; Hamada, Naoki; Ishii, Keizo; Nozawa, Yuichiro; Ohkura, Satoru; Terakawa, Atsuki; Hatori, Yoshinobu; Fujiki, Kota; Fujiwara, Mitsuhiro; Toyama, Sho
2015-04-01
In this study, we developed a three-dimensional (3D) computed tomography (CT) in vivo imaging system for imaging small insects with micrometer resolution. The 3D CT imaging system, referred to as 3D PIXE-micron-CT (PIXEμCT), uses characteristic X-rays produced by ion microbeam bombardment of a metal target. PIXEμCT was used to observe the body organs and internal structure of a living Drosophila melanogaster. Although the organs of the thorax were clearly imaged, the digestive organs in the abdominal cavity could not be clearly discerned initially, with the exception of the rectum and the Malpighian tubule. To enhance the abdominal images, a barium sulfate powder radiocontrast agent was added. For the first time, 3D images of the ventriculus of a living D. melanogaster were obtained. Our results showed that PIXEμCT can provide in vivo 3D-CT images that reflect correctly the structure of individual living organs, which is expected to be very useful in biological research.
Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field
Yi, Xiaomin; Wang, Fuli; Qin, Weijun; Yang, Xiaojian; Yuan, Jianlin
2014-01-01
Near-infrared fluorescence (NIRF) imaging is an attractive modality for early cancer detection with high sensitivity and multi-detection capability. Due to convenient modification by conjugating with moieties of interests, NIRF probes are ideal candidates for cancer targeted imaging. Additionally, the combinatory application of NIRF imaging and other imaging modalities that can delineate anatomical structures extends fluorometric determination of biomedical information. Moreover, nanoparticles loaded with NIRF dyes and anticancer agents contribute to the synergistic management of cancer, which integrates the advantage of imaging and therapeutic functions to achieve the ultimate goal of simultaneous diagnosis and treatment. Appropriate probe design with targeting moieties can retain the original properties of NIRF and pharmacokinetics. In recent years, great efforts have been made to develop new NIRF probes with better photostability and strong fluorescence emission, leading to the discovery of numerous novel NIRF probes with fine photophysical properties. Some of these probes exhibit tumoricidal activities upon light radiation, which holds great promise in photothermal therapy, photodynamic therapy, and photoimmunotherapy. This review aims to provide a timely and concise update on emerging NIRF dyes and multifunctional agents. Their potential uses as agents for cancer specific imaging, lymph node mapping, and therapeutics are included. Recent advances of NIRF dyes in clinical use are also summarized. PMID:24648733
Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field.
Yi, Xiaomin; Wang, Fuli; Qin, Weijun; Yang, Xiaojian; Yuan, Jianlin
2014-01-01
Near-infrared fluorescence (NIRF) imaging is an attractive modality for early cancer detection with high sensitivity and multi-detection capability. Due to convenient modification by conjugating with moieties of interests, NIRF probes are ideal candidates for cancer targeted imaging. Additionally, the combinatory application of NIRF imaging and other imaging modalities that can delineate anatomical structures extends fluorometric determination of biomedical information. Moreover, nanoparticles loaded with NIRF dyes and anticancer agents contribute to the synergistic management of cancer, which integrates the advantage of imaging and therapeutic functions to achieve the ultimate goal of simultaneous diagnosis and treatment. Appropriate probe design with targeting moieties can retain the original properties of NIRF and pharmacokinetics. In recent years, great efforts have been made to develop new NIRF probes with better photostability and strong fluorescence emission, leading to the discovery of numerous novel NIRF probes with fine photophysical properties. Some of these probes exhibit tumoricidal activities upon light radiation, which holds great promise in photothermal therapy, photodynamic therapy, and photoimmunotherapy. This review aims to provide a timely and concise update on emerging NIRF dyes and multifunctional agents. Their potential uses as agents for cancer specific imaging, lymph node mapping, and therapeutics are included. Recent advances of NIRF dyes in clinical use are also summarized.
Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; ...
2015-10-29
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form anmore » image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. As a result, the enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.« less
Molecular Innovations Toward Theranostics of Aggressive Prostate Cancer
2014-09-01
to develop dendrimer -based theranostic agent with prostate cancer specificity and positron emission tomography imaging capability that can prevent...laboratories to develop a new molecular medicine. The goal of this project is to construct dendrimer nanoconjuate containing a prostate specific...cell permeation peptide, peptide therapeutic(s) and bifunctional chelator for PET imaging. Dr. Simanek’s laboratory will make dendrimers that bear
Uthaman, Saji; Bom, Joon-suk; Kim, Hyeon Sik; John, Johnson V; Bom, Hee-Seung; Kim, Seon-Jong; Min, Jung-Joon; Kim, Il; Park, In-Kyu
2016-05-01
Photoacoustic imaging (PAI) is an emerging analytical modality that is under intense preclinical development for the early diagnosis of various medical conditions, including cancer. However, the lack of specific tumor targeting by various contrast agents used in PAI obstructs its clinical applications. In this study, we developed indocyanine green (ICG)-encapsulated micelles specific for the CD 44 receptor and used in near infrared and photoacoustic imaging of tumors. ICG was hydrophobically modified prior to loading into hyaluronic acid (HA)-based micelles utilized for CD 44 based-targeting. We investigated the physicochemical characteristics of prepared HA only and ICG-encapsulated HA micelles (HA-ICG micelles). After intravenous injection of tumor-bearing mice, the bio-distribution and in vivo photoacoustic images of ICG-encapsulated HA micelles accumulating in tumors were also investigated. Our study further encourages the application of this HA-ICG-based nano-platform as a tumor-specific contrast agent for PAI. © 2016 Wiley Periodicals, Inc.
Briley-Saebo, Karen; Yeang, Calvin; Witztum, Joseph L.; Tsimikas, Sotirios
2014-01-01
Oxidation-specific epitopes (OSE) within developing atherosclerotic lesions are key antigens that drive innate and adaptive immune responses in atherosclerosis, leading to chronic inflammation. Oxidized phospholipids and malondialdehyde-lysine epitopes are well-characterized OSE present in human atherosclerotic lesions, particularly in pathologically defined vulnerable plaques. Using murine and human OSE-specific antibodies as targeting agents, we have developed radionuclide and magnetic resonance based nanoparticles, containing gadolinium, manganese or lipid-coated ultrasmall superparamagnetic iron oxide, to noninvasively image OSE within experimental atherosclerotic lesions. These methods quantitate plaque burden, allow detection of lesion progression and regression, plaque stabilization, and accumulation of OSE within macrophage-rich areas of the artery wall, suggesting they detect the most active lesions. Future studies will focus on using “natural” antibodies, lipopeptides and mimotopes for imaging applications. These approaches should enhance the clinical translation of this technique to image, monitor, evaluate efficacy of novel therapeutic agents and guide optimal therapy of high-risk atherosclerotic lesions. PMID:25297940
Vandsburger, Moriel; Vandoorne, Katrien; Oren, Roni; Leftin, Avigdor; Mpofu, Senzeni; Delli Castelli, Daniela; Aime, Silvio; Neeman, Michal
2015-01-01
Application of emerging molecular MRI techniques, including chemical exchange saturation transfer (CEST)-MRI, to cardiac imaging is desirable; however, conventional methods are poorly suited for cardiac imaging, particularly in small animals with rapid heart rates. We developed a CEST-encoded steady state and retrospectively gated cardiac cine imaging sequence in which the presence of fibrosis or paraCEST contrast agents was directly encoded into the steady-state myocardial signal intensity (cardioCEST). Development of cardioCEST: A CEST-encoded cardiac cine MRI sequence was implemented on a 9.4T small animal scanner. CardioCEST of fibrosis was serially performed by acquisition of a series of CEST-encoded cine images at multiple offset frequencies in mice (n=7) after surgically induced myocardial infarction. Scar formation was quantified using a spectral modeling approach and confirmed with histological staining. Separately, circulatory redistribution kinetics of the paramagnetic CEST agent Eu-HPDO3A were probed in mice using cardioCEST imaging, revealing rapid myocardial redistribution, and washout within 30 minutes (n=6). Manipulation of vascular tone resulted in heightened peak CEST contrast in the heart, but did not alter redistribution kinetics (n=6). At 28 days after myocardial infarction (n=3), CEST contrast kinetics in infarct zone tissue were altered, demonstrating gradual accumulation of Eu-HPDO3A in the increased extracellular space. cardioCEST MRI enables in vivo imaging of myocardial fibrosis using endogenous contrast mechanisms, and of exogenously delivered paraCEST agents, and can enable multiplexed imaging of multiple molecular targets at high-resolution coupled with conventional cardiac MRI scans. © 2013 American Heart Association, Inc.
Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-13C]Pyruvate
Nelson, Sarah J.; Kurhanewicz, John; Vigneron, Daniel B.; Larson, Peder E. Z.; Harzstark, Andrea L.; Ferrone, Marcus; van Criekinge, Mark; Chang, Jose W.; Bok, Robert; Park, Ilwoo; Reed, Galen; Carvajal, Lucas; Small, Eric J.; Munster, Pamela; Weinberg, Vivian K.; Ardenkjaer-Larsen, Jan Henrik; Chen, Albert P.; Hurd, Ralph E.; Odegardstuen, Liv-Ingrid; Robb, Fraser J.; Tropp, James; Murray, Jonathan A.
2014-01-01
This first-in-man imaging study evaluated the safety and feasibility of hyperpolarized [1-13C]pyruvate as an agent for noninvasively characterizing alterations in tumor metabolism for patients with prostate cancer. Imaging living systems with hyperpolarized agents can result in more than 10,000-fold enhancement in signal relative to conventional magnetic resonance (MR) imaging. When combined with the rapid acquisition of in vivo 13C MR data, it is possible to evaluate the distribution of agents such as [1-13C]pyruvate and its metabolic products lactate, alanine, and bicarbonate in a matter of seconds. Preclinical studies in cancer models have detected elevated levels of hyperpolarized [1-13C]lactate in tumor, with the ratio of [1-13C]lactate/[1-13C]pyruvate being increased in high-grade tumors and decreased after successful treatment. Translation of this technology into humans was achieved by modifying the instrument that generates the hyperpolarized agent, constructing specialized radio frequency coils to detect 13C nuclei, and developing new pulse sequences to efficiently capture the signal. The study population comprised patients with biopsy-proven prostate cancer, with 31 subjects being injected with hyperpolarized [1-13C]pyruvate. The median time to deliver the agent was 66 s, and uptake was observed about 20 s after injection. No dose-limiting toxicities were observed, and the highest dose (0.43 ml/kg of 230 mM agent) gave the best signal-to-noise ratio for hyperpolarized [1-13C]pyruvate. The results were extremely promising in not only confirming the safety of the agent but also showing elevated [1-13C]lactate/[1-13C]pyruvate in regions of biopsy-proven cancer. These findings will be valuable for noninvasive cancer diagnosis and treatment monitoring in future clinical trials. PMID:23946197
Shiraishi, Kouichi; Wang, Zuojun; Kokuryo, Daisuke; Aoki, Ichio; Yokoyama, Masayuki
2017-05-10
Blood-brain barrier (BBB) opening is a key phenomenon for understanding ischemia-reperfusion injuries that are directly linked to hemorrhagic transformation. The recombinant human tissue-type plasminogen activator (rtPA) increases the risk of symptomatic intracranial hemorrhages. Recent imaging technologies have advanced our understanding of pathological BBB disorders; however, an ongoing challenge in the pre-"rtPA treatment" stage is the task of developing a rigorous method for hemorrhage-risk assessments. Therefore, we examined a novel method for assessment of rtPA-extravasation through a hyper-permeable BBB. To examine the image diagnosis of rtPA-extravasation for a rat transient occlusion-reperfusion model, in this study we used a polymeric micelle MRI contrast-agent (Gd-micelles). Specifically, we used two MRI contrast agents at 1h after reperfusion. Gd-micelles provided very clear contrast images in 15.5±10.3% of the ischemic hemisphere at 30min after i.v. injection, whereas a classic gadolinium chelate MRI contrast agent provided no satisfactorily clear images. The obtained images indicate both the hyper-permeable BBB area for macromolecules and the distribution area of macromolecules in the ischemic hemisphere. Owing to their large molecular weight, Gd-micelles remained in the ischemic hemisphere through the hyper-permeable BBB. Our results indicate the feasibility of a novel clinical diagnosis for evaluating rtPA-related hemorrhage risks. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nakamura, Takako; Ohana, Tsuguyori; Yabuno, Hajime; Kasai, Rumiko; Suzuki, Tetsuya; Hasebe, Terumitsu
2013-01-01
We have developed a simple and useful process for fabricating nanodiamond (ND) particles modified with an organogadolinium moiety by chemical modification for their use as a magnetic resonance imaging (MRI) contrast agent. The introduction of the organogadolinium moiety on the surface of the ND particles was performed by the condensation of ND and diethylenetriaminepentaacetic acid (DTPA) followed by treatment with GdCl3. The modified surfaces were evaluated by X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, mass spectroscopy, and inductively coupled plasma atomic emission spectroscopy analyses. MRI experiments on the Gd-DTPA-ND particles indicated their high signal intensity on T1-weighted images.
Nanoengineered multimodal contrast agent for medical image guidance
NASA Astrophysics Data System (ADS)
Perkins, Gregory J.; Zheng, Jinzi; Brock, Kristy; Allen, Christine; Jaffray, David A.
2005-04-01
Multimodality imaging has gained momentum in radiation therapy planning and image-guided treatment delivery. Specifically, computed tomography (CT) and magnetic resonance (MR) imaging are two complementary imaging modalities often utilized in radiation therapy for visualization of anatomical structures for tumour delineation and accurate registration of image data sets for volumetric dose calculation. The development of a multimodal contrast agent for CT and MR with prolonged in vivo residence time would provide long-lasting spatial and temporal correspondence of the anatomical features of interest, and therefore facilitate multimodal image registration, treatment planning and delivery. The multimodal contrast agent investigated consists of nano-sized stealth liposomes encapsulating conventional iodine and gadolinium-based contrast agents. The average loading achieved was 33.5 +/- 7.1 mg/mL of iodine for iohexol and 9.8 +/- 2.0 mg/mL of gadolinium for gadoteridol. The average liposome diameter was 46.2 +/- 13.5 nm. The system was found to be stable in physiological buffer over a 15-day period, releasing 11.9 +/- 1.1% and 11.2 +/- 0.9% of the total amounts of iohexol and gadoteridol loaded, respectively. 200 minutes following in vivo administration, the contrast agent maintained a relative contrast enhancement of 81.4 +/- 13.05 differential Hounsfield units (ΔHU) in CT (40% decrease from the peak signal value achieved 3 minutes post-injection) and 731.9 +/- 144.2 differential signal intensity (ΔSI) in MR (46% decrease from the peak signal value achieved 3 minutes post-injection) in the blood (aorta), a relative contrast enhancement of 38.0 +/- 5.1 ΔHU (42% decrease from the peak signal value achieved 3 minutes post-injection) and 178.6 +/- 41.4 ΔSI (62% decrease from the peak signal value achieved 3 minutes post-injection) in the liver (parenchyma), a relative contrast enhancement of 9.1 +/- 1.7 ΔHU (94% decrease from the peak signal value achieved 3 minutes post-injection) and 461.7 +/- 78.1 ΔSI (60% decrease from the peak signal value achieved 5 minutes post-injection) in the kidney (cortex) of a New Zealand white rabbit. This multimodal contrast agent, with prolonged in vivo residence time and imaging efficacy, has the potential to bring about improvements in the fields of medical imaging and radiation therapy, particularly for image registration and guidance.
[Microdose clinical trial--impact of PET molecular imaging].
Yano, Tsuneo; Watanabe, Yasuyoshi
2010-10-01
Microdose (MD) clinical trial and exploratory IND study including sub-therapeutic dose and therapeutic dose which are higher than microdoses are expected to bring about innovations in drug development. The outlines of guidances for microdose clinical trial and ICH-M3 (R2) issued by the MHLW in June, 2008, and February, 2010, are first explained, respectively, and some examples of their application to clinical developments of therapeutic drugs in the infection and cancer fields are introduced. Especially, thanks to the progress of molecular imaging research, a new field of drug development is explored by using imaging biomarkers for efficacy or safety evaluation which visualize biomarkers by PET imaging agents. Finally, the roadmap for drug development in infection and cancer fields utilizing PET molecular imaging is discussed.
Laser ablation of basal cell carcinomas guided by confocal microscopy
NASA Astrophysics Data System (ADS)
Sierra, Heidy; Cordova, Miguel; Nehal, Kishwer; Rossi, Anthony; Chen, Chih-Shan Jason; Rajadhyaksha, Milind
2016-02-01
Laser ablation offers precise and fast removal of superficial and early nodular types of basal cell carcinomas (BCCs). Nevertheless, the lack of histological confirmation has been a limitation. Reflectance confocal microscopy (RCM) imaging combined with a contrast agent can offer cellular-level histology-like feedback to detect the presence (or absence) of residual BCC directly on the patient. We conducted an ex vivo bench-top study to provide a set of effective ablation parameters (fluence, number of passes) to remove superficial BCCs while also controlling thermal coagulation post-ablation to allow uptake of contrast agent. The results for an Er:YAG laser (2.9 um and pulse duration 250us) show that with 6 passes of 25 J/cm2, thermal coagulation can be effectively controlled, to allow both the uptake of acetic acid (contrast agent) and detection of residual (or absence) BCCs. Confirmation was provided with histological examination. An initial in vivo study on 35 patients shows that the uptake of contrast agent aluminum chloride) and imaging quality is similar to that observed in the ex vivo study. The detection of the presence of residual tumor or complete clearance was confirmed in 10 wounds with (additional) histology and in 25 lesions with follow-up imaging. Our results indicate that resolution is sufficient but further development and use of appropriate contrast agent are necessary to improve sensitivity and specificity. Advances in RCM technology for imaging of lateral and deep margins directly on the patient may provide less invasive, faster and less expensive image-guided approaches for treatment of BCCs.
Biju, Silvanose; Gallo, Juan; Bañobre-López, M; Manshian, Bella B; Soenen, Stefaan J; Himmelreich, Uwe; Vander Elst, Luce; Parac-Vogt, Tatjana N
2018-05-23
A novel type of multimodal, magnetic resonance imaging/optical imaging (MRI/OI) contrast agent was developed, based on core-shell lanthanide fluoride nanoparticles composed of a β-NaHoF4 core plus a β-NaGdF4:Yb 3+ , Tm 3+ shell with an average size of ∼24 nm. The biocompatibility of the particles was ensured by a surface modification with poly acrylic acid (PAA) and further functionalization with an affinity ligand, folic acid (FA). When excited using 980 nm near infrared (NIR) radiation, the contrast agent (CA) shows intense emission at 802 nm with lifetime of 791±3 μs, due to the transition 3 H 4 → 3 H 6 of Tm 3+ . Proton nuclear magnetic relaxation dispersion ( 1 H-NMRD) studies and magnetic resonance (MR) phantom imaging showed that the newly synthesized nanoparticles, decorated with poly(acrylic acid) and folic acid on the surface (NP-PAA-FA), can act mainly as a T 1 -weighted contrast agent below 1.5 T, a T 1 /T 2 dual-weighted contrast agent at 3 T, and as highly efficient T 2 -weighted contrast agent at ultrahigh fields. In addition, NP-PAA-FA showed very low cytotoxicity and no detectable cellular damage up to a dose of 500 μg mL -1 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tsai, Ming-Rung; Lin, Chen-Yu; Liao, Yi-Hua; Sun, Chi-Kuang
2013-02-01
Third-harmonic generation (THG) microscopy has been reported to provide intrinsic contrast in elastic fibers, cytoplasmic membrane, nucleus, actin filaments, lipid bodies, hemoglobin, and melanin in human skin. For advanced molecular imaging, exogenous contrast agents are developed for a higher structural or molecular specificity. We demonstrate the potential of the commonly adopted tattoo dye as a THG contrast agent for in vivo optical biopsy of human skin. Spectroscopy and microscopy experiments were performed on cultured cells with tattoo dyes, in tattooed mouse skin, and in tattooed human skin to demonstrate the THG enhancement effect. Compared with other absorbing dyes or nanoparticles used as exogenous THG contrast agents, tattoo dyes are widely adopted in human skin so that future clinical biocompatibility evaluation is relatively achievable. Combined with the demonstrated THG enhancement effect, tattoo dyes show their promise for future clinical imaging applications.
Quantitative non-invasive intracellular imaging of Plasmodium falciparum infected human erythrocytes
NASA Astrophysics Data System (ADS)
Edward, Kert; Farahi, Faramarz
2014-05-01
Malaria is a virulent pathological condition which results in over a million annual deaths. The parasitic agent Plasmodium falciparum has been extensively studied in connection with this epidemic but much remains unknown about its development inside the red blood cell host. Optical and fluorescence imaging are among the two most common procedures for investigating infected erythrocytes but both require the introduction of exogenous contrast agents. In this letter, we present a procedure for the non-invasive in situ imaging of malaria infected red blood cells. The procedure is based on the utilization of simultaneously acquired quantitative phase and independent topography data to extract intracellular information. Our method allows for the identification of the developmental stages of the parasite and facilitates in situ analysis of the morphological changes associated with the progression of this disease. This information may assist in the development of efficacious treatment therapies for this condition.
Two decades of dendrimers as versatile MRI agents: a tale with and without metals.
McMahon, Michael T; Bulte, Jeff W M
2018-05-01
Dendrimers or dendritic polymers are a class of compounds with great potential for nanomedical use. Some of their properties, including their rigidity, low polydispersity and the ease with which their surfaces can be modified make them particularly well suited for use as MRI diagnostic or theranostic agents. For the past 20 years, researchers have recognized this potential and refined dendrimer formulations to optimize these nanocarriers for a host of MRI applications, including blood pool imaging agents, lymph node imaging agents, tumor-targeted theranostic agents and cell tracking agents. This review summarizes the various types of dendrimers according to the type of MR contrast they can provide. This includes the metallic T 1 , T 2 and paraCEST imaging agents, and the non-metallic diaCEST and fluorinated ( 19 F) heteronuclear imaging agents. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanomaterials and Implants. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Dutta, Dipa; Gupta, Jagriti; Thakur, Dinbandhu; Bahadur, Dhirendra
2017-12-01
Combining more than one imaging technique into a single system can outweigh the limitations of conventional imaging techniques. Pairing optically active quantum dots (QDs) with superparamagnetic MRI agent is an adorable way to develop probes for bimodal imaging. Tiny SnO2 quantum dot embedded iron oxide (IO) nanocomposite (SQD-IO) is synthesized. This combines the superparamagnetic property of IO nanoparticles (NPs) and special optical properties of SnO2 QDs, and is explored as a bimodal imaging agent. Morphological studies of the nanocomposite reveal that 3 nm tiny SnO2 QDs are embedded in ~30 nm γ-Fe2O3 NPs. The SQD-IO preserves the intrinsic superparamagnetic behaviour of its constituent IO NPs with a magnetization ~21.4 emu g-1 measured at an applied field of 20k Oe. The emission colour of the nanocomposite is tuned by simply varying the excitation wavelength. The centre of the emission band shifts from 570 to 600 nm as the excitation alters from 488 to 535 nm. The cytotoxicity assessment indicates that the nanocomposite is suitable for its in vitro use. Transverse proton relaxivity (141 mM-1 s-1) of the nanocomposite is higher than the widely used negative contrast agent Feridex (R2 = 98.3 mM-1 s-1). The confocal laser scanning microscope images give evidence of the cellular uptake behaviour of SQD-IO in HeLa cells and it is seen that QDs retain their optical properties within the intracellular environment. The high R2 value for MRI and the tunable florescence images of HeLa cells essentially establish SQD-IO as a potential probe for bimodal imaging.
Renard, Yohann; Hossu, Gabriela; Chen, Bailiang; Krebs, Marine; Labrousse, Marc; Perez, Manuela
2018-01-01
The objective of this study was to develop a simple and useful injection protocol for imaging cadaveric vascularization and dissection. Mixtures of contrast agent and cast product should provide adequate contrast for two types of ex vivo imaging (MRI and CT) and should harden to allow gross dissection of the injected structures. We tested the most popular contrast agents and cast products, and selected the optimal mixture composition based on their availability and ease of use. All mixtures were first tested in vitro to adjust dilution parameters of each contrast agent and to fine-tune MR imaging acquisition sequences. Mixtures were then injected in 24 pig livers and one human pancreas for MR and computed tomography (CT) imaging before anatomical dissection. Colorized latex, gadobutrol and barite mixture met the above objective. Mixtures composed of copper sulfate (CuSO 4 ) gadoxetic acid (for MRI) and iodine (for CT) gave an inhomogeneous signal or extravasation of the contrast agent. Agar did not harden sufficiently for gross dissection but appears useful for CT and magnetic resonance imaging (MRI) studies without dissection. Silicone was very hard to inject but achieved the goals of the study. Resin is particularly difficult to use but could replace latex as an alternative for corrosion instead of dissection. This injection protocol allows CT and MRI images to be obtained of cadaveric vascularization and anatomical casts in the same anatomic specimen. Post-imaging processing software allow easy 3D reconstruction of complex anatomical structures using this technique. Applications are numerous, e.g. surgical training, teaching methods, postmortem anatomic studies, pathologic studies, and forensic diagnoses. © 2017 Anatomical Society.
NMR Hyperpolarization Techniques for Biomedicine
Nikolaou, Panayiotis; Goodson, Boyd M.
2015-01-01
Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities—ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. PMID:25470566
Molecular Innovations Toward Theranostics of Aggressive Prostate Cancer
2013-09-01
objective is to develop dendrimer -based theranostic agent with prostate cancer specificity and positron emission tomography imaging capability that...The goal of this project is to construct dendrimer nanoconjuate containing a prostate specific cell permeation peptide, peptide therapeutic(s) and...bifunctional chelator for PET imaging. Dr. Simanek’s laboratory will make dendrimers that bear functional handles for conjugation with imaging
Molecular Imaging and Contrast Agent Database (MICAD): evolution and progress.
Chopra, Arvind; Shan, Liang; Eckelman, W C; Leung, Kam; Latterner, Martin; Bryant, Stephen H; Menkens, Anne
2012-02-01
The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov ) to students, researchers, and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, X-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1,000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4,250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration as well as a comma separated values file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, pre-clinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities, and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments, or suggestions for further improvement of the database by writing to the editors at micad@nlm.nih.gov.
Molecular Imaging and Contrast Agent Database (MICAD): Evolution and Progress
Chopra, Arvind; Shan, Liang; Eckelman, W. C.; Leung, Kam; Latterner, Martin; Bryant, Stephen H.; Menkens, Anne
2011-01-01
The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov) to students, researchers and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, x-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration (FDA) as well as a CSV file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, preclinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments or suggestions for further improvement of the database by writing to the editors at: micad@nlm.nih.gov PMID:21989943
Biocompatible astaxanthin as novel contrast agent for biomedical imaging.
Nguyen, Van Phuc; Park, Suhyun; Oh, Junghwan; Wook Kang, Hyun
2017-08-01
Photoacoustic imaging (PAI) is a hybrid imaging modality with high resolution and sensitivity that can be beneficial for cancer staging. Due to insufficient endogenous photoacoustic (PA) contrast, the development of exogenous agents is critical in targeting cancerous tumors. The current study demonstrates the feasibility of marine-oriented material, astaxanthin, as a biocompatible PA contrast agent. Both silicon tubing phantoms and ex vivo bladder tissues are tested at various concentrations (up to 5 mg/ml) of astaxanthin to quantitatively explore variations in PA responses. A Q-switched Nd : YAG laser (λ = 532 nm) in conjunction with a 5 MHz ultrasound transducer is employed to generate and acquire PA signals from the samples. The phantom results presented that the PA signal amplitudes increase linearly with the astaxanthin concentrations (threshold detection = 0.31 mg/ml). The tissue injected with astaxanthin yields up to 16-fold higher PA signals, compared with that with saline. Due to distribution of the injected astaxanthin, PAI can image the margin of astaxanthin boles as well as quantify their volume in 3D reconstruction. Further investigations on selective tumor targeting are required to validate astaxanthin as a potential biocompatible contrast agent for PAI-assisted bladder cancer detection. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging
NASA Astrophysics Data System (ADS)
Xing, Zhanwen; Wang, Jinrui; Ke, Hengte; Zhao, Bo; Yue, Xiuli; Dai, Zhifei; Liu, Jibin
2010-04-01
Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.
Development of New Contrast Agents for Imaging Function and Metabolism by Magnetic Resonance Imaging
Carvalho, Alexandra; Gonçalves, M Clara; Corvo, M Luísa; Martins, M Bárbara F
2017-01-01
Liposomes are interesting nanosystems with a wide range of medical application. One particular application is their ability to enhance contrast in magnetic resonance images; when properly loaded with magnetic/superparamagnetic nanoparticles, this means to act as contrast agents. The design of liposomes loaded with magnetic particles, magnetoliposomes, presents a large number of possibilities depending on the application from image function to metabolism. More interesting is its double function application as theranostics (diagnostics and therapy). The synthesis, characterization, and possible medical applications of two types of magnetoliposomes are reviewed. Their performance will be compared, in particular, their efficiency as contrast agents for magnetic resonance imaging, measured by their relaxivities r1 and r2 relating to their particular composition. One of the magnetoliposomes had 1,2-diacyl-sn-glycero-3-phosphocholine (soy) as the main phospholipid component, with and without cholesterol, varying its phospholipid to cholesterol molar ratios. The other formulation is a long-circulating liposome composed of 1,2-diacyl-sn-glycero-3-phosphocholine (egg), cholesterol, and 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]. Both nanosystems were loaded with superparamagnetic iron oxide nanoparticles with different sizes and coatings. PMID:28804244
Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy (abstract)
NASA Astrophysics Data System (ADS)
Lee, Dongkyu; Maeng, Inhee; Oh, Seung Jae; Kim, Taekhoon; Cho, Byung Kyu; Lee, Kwangyeol; Son, Joo-Hiuk
2009-04-01
The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRI technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd2O3) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.
Mouffouk, Fouzi; Simão, Teresa; Dornelles, Daniel F; Lopes, André D; Sau, Pablo; Martins, Jorge; Abu-Salah, Khalid M; Alrokayan, Salman A; Rosa da Costa, Ana M; dos Santos, Nuno R
2015-01-01
Early cancer detection is a major factor in the reduction of mortality and cancer management cost. Here we developed a smart and targeted micelle-based contrast agent for magnetic resonance imaging (MRI), able to turn on its imaging capability in the presence of acidic cancer tissues. This smart contrast agent consists of pH-sensitive polymeric micelles formed by self-assembly of a diblock copolymer (poly(ethyleneglycol-b-trimethylsilyl methacrylate)), loaded with a gadolinium hydrophobic complex ((t)BuBipyGd) and exploits the acidic pH in cancer tissues. In vitro MRI experiments showed that (t)BuBipyGd-loaded micelles were pH-sensitive, as they turned on their imaging capability only in an acidic microenvironment. The micelle-targeting ability toward cancer cells was enhanced by conjugation with an antibody against the MUC1 protein. The ability of our antibody-decorated micelles to be switched on in acidic microenvironments and to target cancer cells expressing specific antigens, together with its high Gd(III) content and its small size (35-40 nm) reveals their potential use for early cancer detection by MRI.
Sani Usman, Muhammad; Hussein, Mohd Zobir; Fakurazi, Sharida; Ahmad Saad, Fathinul Fikri
2017-01-01
We have developed gadolinium-based theranostic nanoparticles for co-delivery of drug and magnetic resonance imaging (MRI) contrast agent using Zn/Al-layered double hydroxide as the nanocarrier platform, a naturally occurring phenolic compound, gallic acid (GA) as therapeutic agent, and Gd(NO3)3 as diagnostic agent. Gold nanoparticles (AuNPs) were grown on the system to support the contrast for MRI imaging. The nanoparticles were characterized using techniques such as Hi-TEM, XRD, ICP-ES. Kinetic release study of the GA from the nanoparticles showed about 70% of GA was released over a period of 72 h. The in vitro cell viability test for the nanoparticles showed relatively low toxicity to human cell lines (3T3) and improved toxicity on cancerous cell lines (HepG2). A preliminary contrast property test of the nanoparticles, tested on a 3 Tesla MRI machine at various concentrations of GAGZAu and water (as a reference) indicates that the nanoparticles have a promising dual diagnostic and therapeutic features to further develop a better future for clinical remedy for cancer treatment. PMID:28858229
Wu, Shou-Cheng; Chen, Yu-Jen; Lin, Yi-Jan; Wu, Tung-Ho; Wang, Yun-Ming
2013-11-27
In search of a unique and reliable contrast agent targeting pancreatic adenocarcinoma, new multifunctional nanoparticles (MnMEIO-silane-NH2-(MUC4)-mPEG NPs) were successfully developed in this study. Mucin4-expression levels were determined through different imaging studies in a panel of pancreatic tumor cells (HPAC, BxPC-3, and Panc-1) both in vitro and in vivo studies. The in vitro T2-weighted MR imaging study in HPAC and Panc-1 tumor cells treated with NPs showed -89.1 ± 5.7% and -0.9 ± 0.2% contrast enhancement, whereas in in vivo study, it is found to be -81.5 ± 4.5% versus -19.6 ± 5.2% (24 h postinjection, 7.0 T), respectively. The T2-weighted MR and optical imaging studies revealed that the novel contrast agent can specifically and effectively target to mucin4-expressing tumors in nude mice. Hence, it is suggested that MnMEIO-silane-NH2-(MUC4)-mPEG NPs are able to provide an efficient and targeted delivery of MUC4 antibodies to mucin4-expressing pancreatic tumors.
Fabrication and characterization of polymer gel for MRI phantom with embedded lesion particles
NASA Astrophysics Data System (ADS)
In, Eunji; Naguib, Hani E.; Haider, Masoom
2012-04-01
Magnetic Resonance Imaging (MRI) is a medical imaging technique used in radiology to visualize the detailed internal structure and body soft tissues in complete 3D image. MRI performs best when optimal imaging parameters such as contrast, signal to noise ratio (SNR), spatial resolution and total scan time are utilized. However, due to a variety of imaging parameters that differ with the manufacturer, a calibration medium that allows the control of these parameters is necessary. Therefore, a phantom that behaves similar to human soft tissue is developed to replace a real human. Polymer gel is novel material that has great potential in the medical imaging. Since very few have focused on examining the behavior of polymer lesions, the motivation of this study is to develop a polymer gel phantom, especially for liver, with embedded lesions. Both the phantom and lesions should be capable of reflecting T1 and T2 relaxation values through various characterization processes. In this paper, phantom and lesion particles were fabricated with carrageenan as a gelling agent by physical aggregation. Agar was used as supplementary gelling agent and T2 modifier and Gd-DTPA as T1 modifier. The polymer gel samples were fabricated by varying the concentrations of the gelling agent, and T1 and T2 modifiers. The lesion particles were obtained by extracting molten polymer gel solution in chilled oil bath to obtain spherical shape. The polymer gel properties including density, elastic modulus, dielectric constant and optical properties were measured to compare with human tissue values for long period of time.
NASA Astrophysics Data System (ADS)
Harpel, Kaitlin; Leung, Sarah; Faith Rice, Photini; Jones, Mykella; Barton, Jennifer K.; Bommireddy, Ramireddy
2016-02-01
The development of colorectal cancer in the azoxymethane-induced mouse model can be observed by using a miniaturized optical coherence tomography (OCT) imaging system. This system is uniquely capable of tracking disease development over time, allowing for the monitoring of morphological changes in the distal colon due to tumor development and the presence of lymphoid aggregates. By using genetically engineered mouse models deficient in Interleukin 6 (IL-6) and Smad family member 3 (Smad3), the role of inflammation on tumor development and the immune system can be elucidated. Smad3 knockout mice develop inflammatory response, wasting, and colitis associated cancer while deficiency of proinflammatory cytokine IL-6 confers resistance to tumorigenesis. We present pilot data showing that the Smad3 knockout group had the highest tumor burden, highest spleen weight, and lowest thymus weight. The IL-6 deficiency in Smad3 knockout mice prevented tumor development, splenomegaly, and thymic atrophy. This finding suggests that agents that inhibit IL-6 (e.g. anti-IL-6 antibody, non-steroidal anti-inflammatory drugs [NSAIDs], etc.) could be used as novel therapeutic agents to prevent disease progression and increase the efficacy of anti-cancer agents. OCT can also be useful for initiating early therapy and assessing the benefit of combination therapy targeting inflammation.
New Mexico Center for Isotopes in Medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchiel, Scott W.
2012-12-13
The purpose of the New Mexico Center for Isotopes in Medicine (NMCIM) is to support research, education and service missions of the UNM College of Pharmacy Radiopharmaceutical Sciences Program (COP RSP) and the Cancer Research and Treatment Center (CRTC). NMCIM developed and coordinated unique translational research in cancer radioimaging and radiotherapy agents based on novel molecules developed at UNM and elsewhere. NMCIM was the primary interface for novel radioisotopes and radiochemistries developed at the Los Alamos National Laboratory (LANL) for SPECT/PET imaging and therapy. NMCIM coordinated the use of the small animal imaging facility with the CRTC provided support servicesmore » to assist investigators in their studies. NMCIM developed education and training programs that benefited professional, graduate, and postdoctoral students that utilized its unique facilities and technologies. UNM COP RSP has been active in writing research and training grants, as well as supporting contract research with industrial partners. The ultimate goal of NMCIM is to bring new radiopharmaceutical imaging and therapeutic agents into clinical trials that will benefit the health and well being of cancer and other patients in New Mexico and the U.S.« less
Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast
Srinivasan, Vivek J.; Radhakrishnan, Harsha; Jiang, James Y.; Barry, Scott; Cable, Alex E.
2012-01-01
In vivo optical microscopic imaging techniques have recently emerged as important tools for the study of neurobiological development and pathophysiology. In particular, two-photon microscopy has proved to be a robust and highly flexible method for in vivo imaging in highly scattering tissue. However, two-photon imaging typically requires extrinsic dyes or contrast agents, and imaging depths are limited to a few hundred microns. Here we demonstrate Optical Coherence Microscopy (OCM) for in vivo imaging of neuronal cell bodies and cortical myelination up to depths of ~1.3 mm in the rat neocortex. Imaging does not require the administration of exogenous dyes or contrast agents, and is achieved through intrinsic scattering contrast and image processing alone. Furthermore, using OCM we demonstrate in vivo, quantitative measurements of optical properties (index of refraction and attenuation coefficient) in the cortex, and correlate these properties with laminar cellular architecture determined from the images. Lastly, we show that OCM enables direct visualization of cellular changes during cell depolarization and may therefore provide novel optical markers of cell viability. PMID:22330462
The new frontiers of multimodality and multi-isotope imaging
NASA Astrophysics Data System (ADS)
Behnam Azad, Babak; Nimmagadda, Sridhar
2014-06-01
Technological advances in imaging systems and the development of target specific imaging tracers has been rapidly growing over the past two decades. Recent progress in "all-in-one" imaging systems that allow for automated image coregistration has significantly added to the growth of this field. These developments include ultra high resolution PET and SPECT scanners that can be integrated with CT or MR resulting in PET/CT, SPECT/CT, SPECT/PET and PET/MRI scanners for simultaneous high resolution high sensitivity anatomical and functional imaging. These technological developments have also resulted in drastic enhancements in image quality and acquisition time while eliminating cross compatibility issues between modalities. Furthermore, the most cutting edge technology, though mostly preclinical, also allows for simultaneous multimodality multi-isotope image acquisition and image reconstruction based on radioisotope decay characteristics. These scientific advances, in conjunction with the explosion in the development of highly specific multimodality molecular imaging agents, may aid in realizing simultaneous imaging of multiple biological processes and pave the way towards more efficient diagnosis and improved patient care.
NASA Astrophysics Data System (ADS)
Qin, Shengping; Caskey, Charles F.; Ferrara, Katherine W.
2009-03-01
Microbubble contrast agents and the associated imaging systems have developed over the past 25 years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved—given that their diameter is on the order of microns—nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium.
Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering
Qin, Shengping; Caskey, Charles F; Ferrara, Katherine W
2010-01-01
Microbubble contrast agents and the associated imaging systems have developed over the past twenty-five years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved—given that their diameter is on the order of microns—nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium. PMID:19229096
New oil-in-water magnetic emulsion as contrast agent for in vivo magnetic resonance imaging (MRI).
Ahmed, Naveed; Jaafar-Maalej, Chiraz; Eissa, Mohamed Mahmoud; Fessi, Hatem; Elaissari, Abdelhamid
2013-09-01
Nowadays, bio-imaging techniques are widely applied for the diagnosis of various diseased/tumoral tissues in the body using different contrast agents. Accordingly, the advancement in bionanotechnology research is enhanced in this regard. Among contrast agents used, superparamagnetic iron oxide nanoparticles were developed by many researchers and applied for in vive magnetic resonance imaging (MRI). In this study, a new oil-in-water magnetic emulsion was used as contrast agent in MRI, after being characterized in terms of particle size, iron oxide content, magnetic properties and colloidal stability using dynamic light scattering (DLS), thermal gravimetric analysis (TGA), vibrating sample magnetometer (VSM) and zeta potential measurement techniques, respectively. The hydrodynamic size and magnetic content of the magnetic colloidal particles were found to be 250 nm and 75 wt%, respectively. In addition, the used magnetic emulsion possesses superparamagentic properties and high colloidal stability in aqueous medium. Then, the magnetic emulsion was highly diluted and administered intravenously to the Sprague dawley rats to be tested as contrast agent for in vivo MRI. In this preliminary study, MRI images showed significant enhancement in contrast, especially for T2 (relaxation time) contrast enhancement, indicating the distribution of magnetic colloidal nanoparticles within organs, like liver, spleen and kidneys of the Sprague dawley rats. In addition, it was found that 500 microL of the highly diluted magnetic emulsion (0.05 wt%) was found adequate for MRI analysis. This seems to be useful for further investigations especially in theranostic applications of magnetic emulsion.
Ye, Zhen; Zhou, Zhuxian; Ayat, Nadia; Wu, Xueming; Jin, Erlei; Shi, Xiaoyue; Lu, Zheng-Rong
2016-01-01
This work aims to develop safe and effective gadolinium (III)-based biodegradable macromolecular MRI contrast agents for blood pool and cancer imaging. A neutral polydisulfide containing macrocyclic Gd-DOTA monoamide (GOLS) was synthesized and characterized. In addition to studying the in vitro degradation of GOLS, its kinetic stability was also investigated in an in vivo model. The efficacy of GOLS for contrast-enhanced MRI was examined with female BALB/c mice bearing 4T1 breast cancer xenografts. The pharmacokinetics, biodistribution, and metabolism of GOLS were also determined in mice. GOLS has an apparent molecular weight of 23.0 kDa with T1 relaxivities of 7.20 mM(-1) s(-1) per Gd at 1.5 T, and 6.62 mM(-1) s(-1) at 7.0 T. GOLS had high kinetic inertness against transmetallation with Zn(2+) ions, and its polymer backbone was readily cleaved by L-cysteine. The agent showed improved efficacy for blood pool and tumor MR imaging. The structural effect on biodistribution and in vivo chelation stability was assessed by comparing GOLS with Gd(HP-DO3A), a negatively charged polydisulfide containing Gd-DOTA monoamide GODC, and a polydisulfide containing Gd-DTPA-bisamide (GDCC). GOLS showed high in vivo chelation stability and minimal tissue deposition of gadolinium. The biodegradable macromolecular contrast agent GOLS is a promising polymeric contrast agent for clinical MR cardiovascular imaging and cancer imaging. Copyright © 2015 John Wiley & Sons, Ltd.
Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance
Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So
2009-01-01
Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...
Imaging experimental intraabdominal abscesses with 99mTc-PEG liposomes and 99mTc-HYNIC IgG.
Dams, E T; Reijnen, M M; Oyen, W J; Boerman, O C; Laverman, P; Storm, G; van der Meer, J W; Corstens, F H; van Goor, H
1999-01-01
OBJECTIVE: To evaluate the accuracy of technetium-99m-labeled polyethylene glycol-coated liposomes (99mTc-PEG liposomes) and technetium-99m-labeled nonspecific human immunoglobulin G (99mTc-HYNIC IgG) for the scintigraphic detection of experimental intraabdominal abscesses in comparison with that of a standard agent, gallium-67 citrate. BACKGROUND: Scintigraphic imaging techniques can be very useful for the rapid and accurate localization of intraabdominal abscesses. Two newly developed radiolabeled agents, 99mTc-PEG liposomes and 99mTc-HYNIC IgG, have shown to be excellent agents for imaging experimental focal infection, but have not yet been studied in the detection of abdominal abscesses. METHODS: Intraabdominal abscesses were induced in 42 rats using the cecal ligation and puncture technique. Seven days later, randomized groups of rats received 99mTc-PEG liposomes, 99mTc-HYNIC IgG, or 67Ga citrate intravenously. The rats were imaged up to 24 hours after the injection. The biodistribution of the radiolabel was determined by counting dissected tissues ex vivo. Macroscopic intraabdominal abnormalities and focal uptake on the images were independently scored on a semiquantitative scale. RESULTS: 99mTc-PEG liposomes provided the earliest scintigraphic visualization of the abscess (as soon as 2 hours after the injection vs. 4 hours for the other two agents). Liposomes, IgG, and gallium all showed similarly high absolute uptake in the abscess. Focal uptake of liposomes and gallium correlated best with the extent of the macroscopic abnormalities. CONCLUSIONS: 99mTc-PEG liposomes and 99mTc-HYNIC IgG performed at least as well as the standard agent, 67Ga citrate, in the detection of experimental intraabdominal abscesses, with obvious advantages such as lower radiation exposure and more favorable physical properties. Of the two technetium agents, the liposomes seemed to be superior, providing the earliest diagnostic image and the best correlation with the inflammatory abnormalities. In addition, the preferential localization of radiolabeled PEG liposomes holds promise for targeted delivery of liposome-encapsulated drugs. Images Figure 1. PMID:10203089
DOE Office of Scientific and Technical Information (OSTI.GOV)
George W. Kabalka
The research program was directed at the use of functionalized organometallic reagents that would rapidly react with radiolabeled agents generated by a medical cyclotron or reactor. The radioisotopes included fluorine-18, oxgygen-15, nitrogen-13, carbon-11 and iodine-123; all short lived nuclides of importantce in nuclear medicine imaging studies utilizing emission tomography techniques. The early studies led to the development of extensive new isotope incorporation chemistry. These studies validated the feasibility of using reactive intermediates, such as the organoboranes, and acted as a catalyst for others to investigate organometallic agents based on mercury, tin, and silicon. A large number of radiolabeling techniques andmore » radiopharmaceuticals were developed. These included agents for use in oncology, neurology, and metabolism. The research resulted in the generation of one hundred and one journal articles, eighty seven refereed published abstracts and forty one invited lectures. Thirteen postdoctoral students, fourteen graduate students, and twenty eight undergraduate students were trained in the scientific aspects of nuclear medicine imaging under the asupices of this grant.« less
NASA Astrophysics Data System (ADS)
Shalviri, Alireza
The use of polysaccharides as building blocks in the development of drugs and contrast agents delivery systems is rapidly growing. This can be attributed to the outstanding virtues of polysaccharides such as biocompatibility, biodegradability, upgradability, multiple reacting groups and low cost. The focus of this thesis was to develop and characterize novel starch based hydrogels and nanoparticles for delivery of drugs and imaging agents. To this end, two different systems were developed. The first system includes polymer and nanoparticles prepared by graft polymerization of polymethacrylic acid and polysorbate 80 onto starch. This starch based platform nanotechnology was developed using the design principles based on the pathophysiology of breast cancer, with applications in both medical imaging and breast cancer chemotherapy. The nanoparticles exhibited a high degree of doxorubicin loading as well as sustained pH dependent release of the drug. The drug loaded nanoparticles were significantly more effective against multidrug resistant human breast cancer cells compared to free doxorubicin. Systemic administration of the starch based nanoparticles co-loaded with doxorubicin and a near infrared fluorescent probe allowed for non-invasive real time monitoring of the nanoparticles biodistribution, tumor accumulation, and clearance. Systemic administration of the clinically relevant doses of the drug loaded particles to a mouse model of breast cancer significantly enhanced therapeutic efficacy while minimizing side effects compared to free doxorubicin. A novel, starch based magnetic resonance imaging (MRI) contrast agent with good in vitro and in vivo tolerability was formulated which exhibited superior signal enhancement in tumor and vasculature. The second system is a co-polymeric hydrogel of starch and xanthan gum with adjustable swelling and permeation properties. The hydrogels exhibited excellent film forming capability, and appeared to be particularly useful in controlled delivery applications of larger molecular size compounds. The starch based hydrogels, polymers and nanoparticles developed in this work have shown great potentials for controlled drug delivery and biomedical imaging applications.
Application of gold nanoparticles as contrast agents in confocal laser scanning microscopy
NASA Astrophysics Data System (ADS)
Lemelle, A.; Veksler, B.; Kozhevnikov, I. S.; Akchurin, G. G.; Piletsky, S. A.; Meglinski, I.
2009-01-01
Confocal laser scanning microscopy (CLSM) is a modern high-resolution optical technique providing detailed image of tissue structure with high (down to microns) spatial resolution. Aiming at a concurrent improvement of imaging depth and image quality the CLSM requires the use of contrast agents. Commonly employed fluorescent contrast agents, such as fluorescent dyes and proteins, suffer from toxicity, photo-bleaching and overlapping with the tissues autofluorescence. Gold nanoparticles are potentially highly attractive to be applied as a contrast agent since they are not subject to photo-bleaching and can target biochemical cells markers associated with the specific diseases. In current report we consider the applicability of gold nano-spheres as a contrast agent to enhance quality of CLSM images of skin tissues in vitro versus the application of optical clearing agent, such as glycerol. The enhancement of CLSM image contrast was observed with an application of gold nano-spheres diffused within the skin tissues. We show that optical clearing agents such as a glycerol provide better CLSM image contrast than gold nano-spheres.
NASA Astrophysics Data System (ADS)
Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.
2016-06-01
Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09071g
Harnessing the Power of Light to See and Treat Breast Cancer
2012-10-01
informed approach to study tumor biology and assay the effect of novel therapeutic agents in vivo. 15. SUBJECT TERMS optical spectroscopy, imaging , fiber...Statement of Work for 5 Years Aim 1: Optical imaging of margin morphology on breast lumpectomy specimens: To evaluate the role of wide-field imaging ...assessment of the tumor margin post-operatively (Timeframe: year 1-5). 1a. Development of one optical spectral imaging system that integrates sensing
Nuclear magnetic resonance contrast agents
Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.
1997-12-30
A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.
Nuclear magnetic resonance contrast agents
Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.
1997-01-01
A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.
Assessing the Potential of Metal-Assisted Imaging Mass Spectrometry in Cancer Research.
Dufresne, M; Patterson, N H; Lauzon, N; Chaurand, P
2017-01-01
In the last decade, imaging mass spectrometry (IMS) has been the primary tool for biomolecular imaging. While it is possible to map a wide range of biomolecules using matrix-assisted laser desorption/ionization IMS ranging from high-molecular-weight proteins to small metabolites, more often than not only the most abundant easily ionisable species are detected. To better understand complex diseases such as cancer more specific and sensitive methods need to be developed to enable the detection of lower abundance molecules but also molecules that have yet to be imaged by IMS. In recent years, a big shift has occurred in the imaging community from developing wide reaching methods to developing targeted ones which increases sensitivity through the use of more specific sample preparations. This has been primarily marked by the advent of solvent-free matrix deposition methods for polar lipids, chemical derivatization for hormones and metabolites, and the use of alternative ionization agents for neutral lipids. In this chapter, we discuss two of the latest sample preparations which exploit the use of alternative ionization agents to enable the detection of certain classes of neutral lipids along with free fatty acids by high-sensitivity IMS as demonstrated within our lab. © 2017 Elsevier Inc. All rights reserved.
Pomann, Gina-Maria; Sweeney, Elizabeth M; Reich, Daniel S; Staicu, Ana-Maria; Shinohara, Russell T
2015-09-10
Multiple sclerosis (MS) is an immune-mediated neurological disease that causes morbidity and disability. In patients with MS, the accumulation of lesions in the white matter of the brain is associated with disease progression and worse clinical outcomes. Breakdown of the blood-brain barrier in newer lesions is indicative of more active disease-related processes and is a primary outcome considered in clinical trials of treatments for MS. Such abnormalities in active MS lesions are evaluated in vivo using contrast-enhanced structural MRI, during which patients receive an intravenous infusion of a costly magnetic contrast agent. In some instances, the contrast agents can have toxic effects. Recently, local image regression techniques have been shown to have modest performance for assessing the integrity of the blood-brain barrier based on imaging without contrast agents. These models have centered on the problem of cross-sectional classification in which patients are imaged at a single study visit and pre-contrast images are used to predict post-contrast imaging. In this paper, we extend these methods to incorporate historical imaging information, and we find the proposed model to exhibit improved performance. We further develop scan-stratified case-control sampling techniques that reduce the computational burden of local image regression models, while respecting the low proportion of the brain that exhibits abnormal vascular permeability. Copyright © 2015 John Wiley & Sons, Ltd.
Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Ji-Ae, E-mail: jpark@kirams.re.kr; Lee, Yong Jin; Ko, In Ok
2014-12-12
Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyKmore » peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.« less
Matsunaga, Terry O.; Sheeran, Paul S.; Luois, Samantha; Streeter, Jason E.; Mullin, Lee B.; Banerjee, Bhaskar; Dayton, Paul A.
2012-01-01
Recent efforts using perfluorocarbon (PFC) nanoparticles in conjunction with acoustic droplet vaporization has introduced the possibility of expanding the diagnostic and therapeutic capability of ultrasound contrast agents to beyond the vascular space. Our laboratories have developed phase-change nanoparticles (PCNs) from the highly volatile PFCs decafluorobutane (DFB, bp =-2 °C) and octafluoropropane (OFP, bp =-37 °C ) for acoustic droplet vaporization. Studies with commonly used clinical ultrasound scanners have demonstrated the ability to vaporize PCN emulsions with frequencies and mechanical indices that may significantly decrease tissue bioeffects. In addition, these contrast agents can be formulated to be stable at physiological temperatures and the perfluorocarbons can be mixed to modulate the balance between sensitivity to ultrasound and general stability. We herein discuss our recent efforts to develop finely-tuned diagnostic/molecular imaging agents for tissue interrogation. We discuss studies currently under investigation as well as potential diagnostic and therapeutic paradigms that may emerge as a result of formulating PCNs with low boiling point PFCs. PMID:23382775
Napolitano, Roberta; Soesbe, Todd C; De León-Rodríguez, Luis M; Sherry, A Dean; Udugamasooriya, D Gomika
2011-08-24
The sensitivity of magnetic resonance imaging (MRI) contrast agents is highly dependent on the rate of water exchange between the inner sphere of a paramagnetic ion and bulk water. Normally, identifying a paramagnetic complex that has optimal water exchange kinetics is done by synthesizing and testing one compound at a time. We report here a rapid, economical on-bead combinatorial synthesis of a library of imaging agents. Eighty different 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA)-tetraamide peptoid derivatives were prepared on beads using a variety of charged, uncharged but polar, hydrophobic, and variably sized primary amines. A single chemical exchange saturation transfer image of the on-bead library easily distinguished those compounds having the most favorable water exchange kinetics. This combinatorial approach will allow rapid screening of libraries of imaging agents to identify the chemical characteristics of a ligand that yield the most sensitive imaging agents. This technique could be automated and readily adapted to other types of MRI or magnetic resonance/positron emission tomography agents as well.
Yi-Qun, Xu; Wei, Liu; Xin-Ye, Ni
2016-10-01
This study employs dual-source computed tomography single-spectrum imaging to evaluate the effects of contrast agent artifact removal and the computational accuracy of radiotherapy treatment planning improvement. The phantom, including the contrast agent, was used in all experiments. The amounts of iodine in the contrast agent were 30, 15, 7.5, and 0.75 g/100 mL. Two images with different energy values were scanned and captured using dual-source computed tomography (80 and 140 kV). To obtain a fused image, 2 groups of images were processed using single-energy spectrum imaging technology. The Pinnacle planning system was used to measure the computed tomography values of the contrast agent and the surrounding phantom tissue. The difference between radiotherapy treatment planning based on 80 kV, 140 kV, and energy spectrum image was analyzed. For the image with high iodine concentration, the quality of the energy spectrum-fused image was the highest, followed by that of the 140-kV image. That of the 80-kV image was the worst. The difference in the radiotherapy treatment results among the 3 models was significant. When the concentration of iodine was 30 g/100 mL and the distance from the contrast agent at the dose measurement point was 1 cm, the deviation values (P) were 5.95% and 2.20% when image treatment planning was based on 80 and 140 kV, respectively. When the concentration of iodine was 15 g/100 mL, deviation values (P) were -2.64% and -1.69%. Dual-source computed tomography single-energy spectral imaging technology can remove contrast agent artifacts to improve the calculated dose accuracy in radiotherapy treatment planning. © The Author(s) 2015.
Successful Translation of Fluorescence Navigation During Oncologic Surgery: A Consensus Report.
Rosenthal, Eben L; Warram, Jason M; de Boer, Esther; Basilion, James P; Biel, Merrill A; Bogyo, Matthew; Bouvet, Michael; Brigman, Brian E; Colson, Yolonda L; DeMeester, Steven R; Gurtner, Geoffrey C; Ishizawa, Takeaki; Jacobs, Paula M; Keereweer, Stijn; Liao, Joseph C; Nguyen, Quyen T; Olson, James M; Paulsen, Keith D; Rieves, Dwaine; Sumer, Baran D; Tweedle, Michael F; Vahrmeijer, Alexander L; Weichert, Jamey P; Wilson, Brian C; Zenn, Michael R; Zinn, Kurt R; van Dam, Gooitzen M
2016-01-01
Navigation with fluorescence guidance has emerged in the last decade as a promising strategy to improve the efficacy of oncologic surgery. To achieve routine clinical use, the onus is on the surgical community to objectively assess the value of this technique. This assessment may facilitate both Food and Drug Administration approval of new optical imaging agents and reimbursement for the imaging procedures. It is critical to characterize fluorescence-guided procedural benefits over existing practices and to elucidate both the costs and the safety risks. This report is the result of a meeting of the International Society of Image Guided Surgery (www.isigs.org) on February 6, 2015, in Miami, Florida, and reflects a consensus of the participants' opinions. Our objective was to critically evaluate the imaging platform technology and optical imaging agents and to make recommendations for successful clinical trial development of this highly promising approach in oncologic surgery. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Laeseke, Paul F.; Chen, Ru; Jeffrey, R. Brooke; Brentnall, Teresa A.
2015-01-01
Pancreatic ductal adenocarcinoma (PDAC) is the fourth-leading cause of cancer-related death in the United States and is associated with a dismal prognosis, particularly when diagnosed at an advanced stage. Overall survival is significantly improved if PDAC is detected at an early stage prior to the onset of symptoms. At present, there is no suitable screening strategy for the general population. Available diagnostic serum markers are not sensitive or specific enough, and clinically available imaging modalities are inadequate for visualizing early-stage lesions. In this article, the role of currently available blood biomarkers and imaging tests for the early detection of PDAC will be reviewed. Also, the emerging biomarkers and molecularly targeted imaging agents being developed to improve the specificity of current imaging modalities for PDAC will be discussed. A strategy incorporating blood biomarkers and molecularly targeted imaging agents could lead to improved screening and earlier detection of PDAC in the future. © RSNA, 2015 PMID:26599925
Long-term optical imaging of intrinsic signals in anesthetized and awake monkeys
NASA Astrophysics Data System (ADS)
Roe, Anna W.
2007-04-01
Some exciting new efforts to use intrinsic signal optical imaging methods for long-term studies in anesthetized and awake monkeys are reviewed. The development of such methodologies opens the door for studying behavioral states such as attention, motivation, memory, emotion, and other higher-order cognitive functions. Long-term imaging is also ideal for studying changes in the brain that accompany development, plasticity, and learning. Although intrinsic imaging lacks the temporal resolution offered by dyes, it is a high spatial resolution imaging method that does not require application of any external agents to the brain. The bulk of procedures described here have been developed in the monkey but can be applied to the study of surface structures in any in vivo preparation.
Target-specific contrast agents for magnetic resonance microscopy
Blackwell, Megan L.; Farrar, Christian T.; Fischl, Bruce; Rosen, Bruce R.
2009-01-01
High-resolution ex vivo magnetic resonance (MR) imaging can be used to delineate prominent architectonic features in the human brain, but increased contrast is required to visualize more subtle distinctions. To aid MR sensitivity to cell density and myelination, we have begun the development of target-specific paramagnetic contrast agents. This work details the first application of luxol fast blue (LFB), an optical stain for myelin, as a white matter-selective MR contrast agent for human ex vivo brain tissue. Formalin-fixed human visual cortex was imaged with an isotropic resolution between 80 and 150 μm at 4.7 and 14 T before and after en bloc staining with LFB. Longitudinal (R1) and transverse (R2) relaxation rates in LFB-stained tissue increased proportionally with myelination at both field strengths. Changes in R1 resulted in larger contrast-to-noise ratios (CNR), per unit time, on T1-weighted images between more myelinated cortical layers (IV–VI) and adjacent, superficial layers (I–III) at both field strengths. Specifically, CNR for LFB-treated samples increased by 229±13% at 4.7 T and 269±25% at 14 T when compared to controls. Also, additional cortical layers (IVca, IVd, and Va) were resolvable in 14T-MR images of LFB-treated samples but not in control samples. After imaging, samples were sliced in 40-micron sections, mounted, and photographed. Both the macroscopic and microscopic distributions of LFB were found to mimic those of traditional histological preparations. Our results suggest target-specific contrast agents will enable more detailed MR images with applications in imaging pathological ex vivo samples and constructing better MR atlases from ex vivo brains. PMID:19385012
Exchange-Mediated Contrast Agents for Spin-Lock Imaging
Cobb, Jared G.; Xie, Jingping; Li, Ke; Gochberg, Daniel F.; Gore, John C.
2011-01-01
Measurements of relaxation rates in the rotating frame with spin-locking (SL) techniques are sensitive to substances with exchanging protons with appropriate chemical shifts. We develop a novel approach to exchange rate selective imaging based on measured T1ρ dispersion with applied locking field strength, and demonstrate the method on samples containing the X-ray contrast agent Iohexol (IO) with and without cross-linked bovine serum albumin (BSA). T1ρ dispersion of water in the phantoms was measured with a Varian 9.4T magnet by an on-resonance SL pulse with fast spin-echo readout, and the results used to estimate exchange rates. The IO phantom alone gave a fitted exchange rate of ~1 kHz, BSA alone was ~11 kHz, and in combination gave rates in between. By using these estimated rates, we demonstrate how a novel SL imaging method may be used to enhance contrast due to the presence of a contrast agent whose protons have specific exchange rates. PMID:21954094
Kularatne, Sumith A; Wang, Kevin; Santhapuram, Hari-Krishna R; Low, Philip S
2009-01-01
Prostate cancer (PCa) is a major cause of mortality and morbidity in Western society today. Current methods for detecting PCa are limited, leaving most early malignancies undiagnosed and sites of metastasis in advanced disease undetected. Major deficiencies also exist in the treatment of PCa, especially metastatic disease. In an effort to improve both detection and therapy of PCa, we have developed a PSMA-targeted ligand that delivers attached imaging and therapeutic agents selectively to PCa cells without targeting normal cells. The PSMA-targeted radioimaging agent (DUPA-(99m)Tc) was found to bind PSMA-positive human PCa cells (LNCaP cell line) with nanomolar affinity (K(D) = 14 nM). Imaging and biodistribution studies revealed that DUPA-(99m)Tc localizes primarily to LNCaP cell tumor xenografts in nu/nu mice (% injected dose/gram = 11.3 at 4 h postinjection; tumor-to-muscle ratio = 75:1). Two PSMA-targeted optical imaging agents (DUPA-FITC and DUPA-rhodamine B) were also shown to efficiently label PCa cells and to internalize and traffic to intracellular endosomes. A PSMA-targeted chemotherapeutic agent (DUPA-TubH) was demonstrated to kill PSMA-positive LNCaP cells in culture (IC(50) = 3 nM) and to eliminate established tumor xenografts in nu/nu mice with no detectable weight loss. Blockade of tumor targeting upon administration of excess PSMA inhibitor (PMPA) and the absence of targeting to PSMA-negative tumors confirmed the specificity of each of the above targeted reagents for PSMA. Tandem use of the imaging and therapeutic agents targeted to the same receptor could allow detection, staging, monitoring, and treatment of PCa with improved accuracy and efficacy.
Gold-silver alloy nanoshells: a new candidate for nanotherapeutics and diagnostics
NASA Astrophysics Data System (ADS)
Gheorghe, Dana E.; Cui, Lili; Karmonik, Christof; Brazdeikis, Audrius; Penaloza, Jose M.; Young, Joseph K.; Drezek, Rebekah A.; Bikram, Malavosklish
2011-10-01
We have developed novel gold-silver alloy nanoshells as magnetic resonance imaging (MRI) dual T 1 (positive) and T 2 (negative) contrast agents as an alternative to typical gadolinium (Gd)-based contrast agents. Specifically, we have doped iron oxide nanoparticles with Gd ions and sequestered the ions within the core by coating the nanoparticles with an alloy of gold and silver. Thus, these nanoparticles are very innovative and have the potential to overcome toxicities related to renal clearance of contrast agents such as nephrogenic systemic fibrosis. The morphology of the attained nanoparticles was characterized by XRD which demonstrated the successful incorporation of Gd(III) ions into the structure of the magnetite, with no major alterations of the spinel structure, as well as the growth of the gold-silver alloy shells. This was supported by TEM, ICP-AES, and SEM/EDS data. The nanoshells showed a saturation magnetization of 38 emu/g because of the presence of Gd ions within the crystalline structure with r 1 and r 2 values of 0.0119 and 0.9229 mL mg-1 s-1, respectively (Au:Ag alloy = 1:1). T 1- and T 2-weighted images of the nanoshells showed that these agents can both increase the surrounding water proton signals in the T 1-weighted image and reduce the signal in T 2-weighted images. The as-synthesized nanoparticles exhibited strong absorption in the range of 600-800 nm, their optical properties being strongly dependent upon the thickness of the gold-silver alloy shell. Thus, these nanoshells have the potential to be utilized for tumor cell ablation because of their absorption as well as an imaging agent.
Fan, Quli; Cheng, Kai; Yang, Zhen; ...
2014-11-06
In order to promote preclinical and clinical applications of photoacoustic imaging, novel photoacoustic contrast agents are highly desired for molecular imaging of diseases, especially for deep tumor imaging. In this paper, perylene-3,4,9,10-tetracarboxylic diiimide-based near-infrared-absorptive organic nanoparticles are reported as an efficient agent for photoacoustic imaging of deep brain tumors in living mice with enhanced permeability and retention effect
Photoacoustic Imaging for Cancer Detection and Staging
Mehrmohammadi, Mohammad; Yoon, Soon Joon; Yeager, Douglas; Emelianov, Stanislav Y.
2013-01-01
Cancer is one of the leading causes of death in the world. Diagnosing a cancer at its early stages of development can decrease the mortality rate significantly and reduce healthcare costs. Over the past two decades, photoacoustic imaging has seen steady growth and has demonstrated notable capabilities to detect cancerous cells and stage cancer. Furthermore, photoacoustic imaging combined with ultrasound imaging and augmented with molecular targeted contrast agents is capable of imaging cancer at the cellular and molecular level, thus opening diverse opportunities to improve diagnosis of tumors, detect circulating tumor cells and identify metastatic lymph nodes. In this paper we introduce the principles of photoacoustic imaging, and review recent developments in photoacoustic imagingas an emerging imaging modality for cancer diagnosis and staging. PMID:24032095
Nanogels as imaging agents for modalities spanning the electromagnetic spectrum.
Chan, Minnie; Almutairi, Adah
2016-01-21
In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.
ERIC Educational Resources Information Center
Chapman, Michael
1987-01-01
Explores development of cognitive representation in 20 infants 12 to 24 months of age with regard to (l) their understanding of agency in symbolic play (agent use), (2) recognition of their own mirror image, and (3) object permanence. Results were generally consistent with developmental sequences predicted by Fischer's Skill Theory for agent use…
Use of agents to implement an integrated computing environment
NASA Technical Reports Server (NTRS)
Hale, Mark A.; Craig, James I.
1995-01-01
Integrated Product and Process Development (IPPD) embodies the simultaneous application to both system and quality engineering methods throughout an iterative design process. The use of IPPD results in the time-conscious, cost-saving development of engineering systems. To implement IPPD, a Decision-Based Design perspective is encapsulated in an approach that focuses on the role of the human designer in product development. The approach has two parts and is outlined in this paper. First, an architecture, called DREAMS, is being developed that facilitates design from a decision-based perspective. Second, a supporting computing infrastructure, called IMAGE, is being designed. Agents are used to implement the overall infrastructure on the computer. Successful agent utilization requires that they be made of three components: the resource, the model, and the wrap. Current work is focused on the development of generalized agent schemes and associated demonstration projects. When in place, the technology independent computing infrastructure will aid the designer in systematically generating knowledge used to facilitate decision-making.
Synthetic Ni3S2/Ni hybrid architectures as potential contrast agents in MRI
NASA Astrophysics Data System (ADS)
Ma, J.; Chen, K.
2016-04-01
Traditional magnetic resonance imaging (MRI) contrast agents mainly include superparamagnetic (SPM) iron oxide nanoparticle as T 2 contrast agent for liver and paramagnetic Gd (III)-chelate as T 1 contrast agent for all organs. In this work, weak ferromagnetic kale-like and SPM cabbage-like Ni3S2@Ni hybrid architectures were synthesized and evaluated as potential T 1 MRI contrast agents. Their relatively small r 2/r 1 ratios of 2.59 and 2.38, and high r 1 values of 11.27 and 4.89 mmol-1 L s-1 (for the kale-like and cabbage-like Ni3S2@Ni, respectively) will shed some light on the development of new-type MRI contrast agents.
Introduction to metallic nanoparticles
Mody, Vicky V.; Siwale, Rodney; Singh, Ajay; Mody, Hardik R.
2010-01-01
Metallic nanoparticles have fascinated scientist for over a century and are now heavily utilized in biomedical sciences and engineering. They are a focus of interest because of their huge potential in nanotechnology. Today these materials can be synthesized and modified with various chemical functional groups which allow them to be conjugated with antibodies, ligands, and drugs of interest and thus opening a wide range of potential applications in biotechnology, magnetic separation, and preconcentration of target analytes, targeted drug delivery, and vehicles for gene and drug delivery and more importantly diagnostic imaging. Moreover, various imaging modalities have been developed over the period of time such as MRI, CT, PET, ultrasound, SERS, and optical imaging as an aid to image various disease states. These imaging modalities differ in both techniques and instrumentation and more importantly require a contrast agent with unique physiochemical properties. This led to the invention of various nanoparticulated contrast agent such as magnetic nanoparticles (Fe3O4), gold, and silver nanoparticles for their application in these imaging modalities. In addition, to use various imaging techniques in tandem newer multifunctional nanoshells and nanocages have been developed. Thus in this review article, we aim to provide an introduction to magnetic nanoparticles (Fe3O4), gold nanoparticles, nanoshells and nanocages, and silver nanoparticles followed by their synthesis, physiochemical properties, and citing some recent applications in the diagnostic imaging and therapy of cancer. PMID:21180459
Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles✩
Phillips, William T.; Bao, Ande; Brenner, Andrew J.; Goins, Beth A.
2015-01-01
One of the major limitations of current cancer therapy is the inability to deliver tumoricidal agents throughout the entire tumor mass using traditional intravenous administration. Nanoparticles carrying beta-emitting therapeutic radionuclides that are delivered using advanced image-guidance have significant potential to improve solid tumor therapy. The use of image-guidance in combination with nanoparticle carriers can improve the delivery of localized radiation to tumors. Nanoparticles labeled with certain beta-emitting radionuclides are intrinsically theranostic agents that can provide information regarding distribution and regional dosimetry within the tumor and the body. Image-guided thermal therapy results in increased uptake of intravenous nanoparticles within tumors, improving therapy. In addition, nanoparticles are ideal carriers for direct intratumoral infusion of beta-emitting radionuclides by convection enhanced delivery, permitting the delivery of localized therapeutic radiation without the requirement of the radionuclide exiting from the nanoparticle. With this approach, very high doses of radiation can be delivered to solid tumors while sparing normal organs. Recent technological developments in image-guidance, convection enhanced delivery and newly developed nanoparticles carrying beta-emitting radionuclides will be reviewed. Examples will be shown describing how this new approach has promise for the treatment of brain, head and neck, and other types of solid tumors. PMID:25016083
Multi-Wavelength Photomagnetic Imaging for Oral Cancer
NASA Astrophysics Data System (ADS)
Marks, Michael
In this study, a multi-wavelength Photomagnetic Imaging (PMI) system is developed and evaluated with experimental studies.. PMI measures temperature increases in samples illuminated by near-infrared light sources using magnetic resonance thermometry. A multiphysics solver combining light and heat transfer models the spatiotemporal distribution of the temperature change. The PMI system develop in this work uses three lasers of varying wavelength (785 nm, 808 nm, 860 nm) to heat the sample. By using multiple wavelengths, we enable the PMI system to quantify the relative concentrations of optical contrast in turbid media and monitor their distribution, at a higher resolution than conventional diffuse optical imaging. The data collected from agarose phantoms with multiple embedded contrast agents designed to simulate the optical properties of oxy- and deoxy-hemoglobin is presented. The reconstructed images demonstrate that multi-wavelength PMI can resolve this complex inclusion structure with high resolution and recover the concentration of each contrast agent with high quantitative accuracy. The modified multi-wavelength PMI system operates under the maximum skin exposure limits defined by the American National Standards Institute, to enable future clinical applications.
Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing
2017-01-01
Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 ± 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 ± 0.1 × 10−22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM−1 s−1 and r2 of 37.9 mM−1 s−1 per Gd (55.2 and 75.8 mM−1 s−1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM−1 s−1 per Gd (188.0 mM−1 s−1 per molecule) and r1 of 18.6 mM−1 s−1 per Gd (37.2 mM−1 s−1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI. PMID:26961235
Assessment of mass detection performance in contrast enhanced digital mammography
NASA Astrophysics Data System (ADS)
Carton, Ann-Katherine; de Carvalho, Pablo M.; Li, Zhijin; Dromain, Clarisse; Muller, Serge
2015-03-01
We address the detectability of contrast-agent enhancing masses for contrast-agent enhanced spectral mammography (CESM), a dual-energy technique providing functional projection images of breast tissue perfusion and vascularity using simulated CESM images. First, the realism of simulated CESM images from anthropomorphic breast software phantoms generated with a software X-ray imaging platform was validated. Breast texture was characterized by power-law coefficients calculated in data sets of real clinical and simulated images. We also performed a 2-alternative forced choice (2-AFC) psychophysical experiment whereby simulated and real images were presented side-by-side to an experienced radiologist to test if real images could be distinguished from the simulated images. It was found that texture in our simulated CESM images has a fairly realistic appearance. Next, the relative performance of human readers and previously developed mathematical observers was assessed for the detection of iodine-enhancing mass lesions containing different contrast agent concentrations. A four alternative-forced-choice (4 AFC) task was designed; the task for the model and human observer was to detect which one of the four simulated DE recombined images contained an iodineenhancing mass. Our results showed that the NPW and NPWE models largely outperform human performance. After introduction of an internal noise component, both observers approached human performance. The CHO observer performs slightly worse than the average human observer. There is still work to be done in improving model observers as predictors of human-observer performance. Larger trials could also improve our test statistics. We hope that in the future, this framework of software breast phantoms, virtual image acquisition and processing, and mathematical observers can be beneficial to optimize CESM imaging techniques.
Testing chemicals for potential developmental neurotoxicity is an issue of regulatory concern. Developmental vulnerability is determined by pharmacokinetic and pharmacodynamic differences between developing and adult animals. These pharmacokinetic and pharmacodynamic factors dete...
MRI brain in monohalomethane toxic encephalopathy: A case report.
Deshmukh, Yogeshwari S; Atre, Ashish; Shah, Darshan; Kothari, Sudhir
2013-07-01
Monohalomethanes are alkylating agents that have been used as methylating agents, laboratory reagents, refrigerants, aerosol propellants, pesticides, fumigants, fire-extinguishing agents, anesthetics, degreasers, blowing agents for plastic foams, and chemical intermediates. Compounds in this group are methyl chloride, methyl bromide, methyl iodide (MI), and methyl fluoride. MI is a colorless volatile liquid used as a methylating agent to manufacture a few pharmaceuticals and is also used as a fumigative insecticide. It is a rare intoxicant. Neurotoxicity is known with both acute and chronic exposure to MI. We present the characteristic magnetic resonance imaging (MRI) brain findings in a patient who developed neuropsychiatric symptoms weeks after occupational exposure to excessive doses of MI.
NASA Astrophysics Data System (ADS)
Hill, Melissa L.; Gorelikov, Ivan; Niroui, Farnaz; Levitin, Ronald B.; Mainprize, James G.; Yaffe, Martin J.; Rowlands, J. A.; Matsuura, Naomi
2013-08-01
Contrast-enhanced digital mammography (CEDM) can provide improved breast cancer detection and characterization compared to conventional mammography by imaging the effects of tumour angiogenesis. Current small-molecule contrast agents used for CEDM are limited by a short plasma half-life and rapid extravasation into tissue interstitial space. To address these limitations, nanoscale agents that can remain intravascular except at sites of tumour angiogenesis can be used. For CEDM, this agent must be both biocompatible and strongly attenuate mammographic energy x-rays. Nanoscale perfluorooctylbromide (PFOB) droplets have good x-ray attenuation and have been used in patients for other applications. However, the macroscopic scale of x-ray imaging (50-100 µm) is inadequate for direct verification that PFOB droplets localize at sites of breast tumour angiogenesis. For efficient pre-clinical optimization for CEDM, we integrated an optical marker into PFOB droplets for microscopic assessment (≪50 µm). To develop PFOB droplets as a new nanoscale mammographic contrast agent, PFOB droplets were labelled with fluorescent quantum dots (QDs). The droplets had mean diameters of 160 nm, fluoresced at 635 nm and attenuated x-ray spectra at 30.5 keV mean energy with a relative attenuation of 5.6 ± 0.3 Hounsfield units (HU) mg-1 mL-1 QD-PFOB. With the agent loaded into tissue phantoms, good correlation between x-ray attenuation and optical fluorescence was found (R2 = 0.96), confirming co-localization of the QDs with PFOB for quantitative assessment using x-ray or optical methods. Furthermore, the QDs can be removed from the PFOB agent without affecting its x-ray attenuation or structural properties for expedited translation of optimized PFOB droplet formulations into patients.
Rapid PD-L1 detection in tumors with PET using a highly specific peptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Samit; Lesniak, Wojciech G.; Miller, Michelle S.
Molecular imaging can report on the status of the tumor immune microenvironment and guide immunotherapeutic strategies to enhance the efficacy of immune modulation therapies. Imaging agents that can rapidly report on targets of immunomodulatory therapies are few. The programmed death ligand 1 (PD-L1) is an immune checkpoint protein over-expressed in several cancers and contributes to tumor immune suppression. Tumor PD-L1 expression is indicative of tumor response to PD-1 and PD-L1 targeted therapies. Herein, we report a highly specific peptide-based positron emission tomography (PET) imaging agent for PD-L1. We assessed the binding modes of the peptide WL12 to PD-L1 by dockingmore » studies, developed a copper-64 labeled WL12 ([{sup 64}Cu]WL12), and performed its evaluation in vitro, and in vivo by PET imaging, biodistribution and blocking studies. Our results show that [{sup 64}Cu]WL12 can be used to detect tumor PD-L1 expression specifically and soon after injection of the radiotracer, to fit within the standard clinical workflow of imaging within 60 min of administration. - Highlights: • A highly specific PD-L1 binding peptide, WL12, was developed as a PET imaging agent. • [{sup 64}Cu]WL12 demonstrates specific binding to PD-L1 in vitro and in vivo. • [{sup 64}Cu]WL12-PET allows PD-L1 detection in cancers within 60 min of administration. • WL12 binding interactions with PD-L1 overlaps with that of PD-1.« less
Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang
2017-01-01
To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80 each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. • Automatic spectral imaging protocol selection provides appropriate scan protocols. • Abdominal CT is feasible using spectral imaging and 300 mgI/kg contrast agent. • 50-keV monochromatic images with 50 % ASIR provide optimal image quality.
NMR hyperpolarization techniques for biomedicine.
Nikolaou, Panayiotis; Goodson, Boyd M; Chekmenev, Eduard Y
2015-02-16
Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities, ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Keasberry, Natasha A.; Bañobre-López, Manuel; Wood, Christopher; Stasiuk, Graeme. J.; Gallo, Juan; Long, Nicholas. J.
2015-09-01
Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in each individual imaging mode acquisition. Recently, the combination of both T1 and T2 imaging capabilities into a single platform has emerged as a tool to reduce uncertainties in MR image analysis. To date, contradicting reports on the effect on the contrast of the coupling of a T1 and T2 agent have hampered the application of these specialised probes. Herein, we present a systematic experimental study on a range of gadolinium-labelled magnetite nanoparticles envisioned to bring some light into the mechanism of interaction between T1 and T2 components, and advance towards the design of efficient (dual) T1 and T2 MRI probes. Unexpected behaviours observed in some of the constructs will be discussed. In this study, we demonstrate that the relaxivity of such multimodal probes can be rationally tuned to obtain unmatched potentials in MR imaging, exemplified by preparation of the magnetite-based nanoparticle with the highest T2 relaxivity described to date.Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in each individual imaging mode acquisition. Recently, the combination of both T1 and T2 imaging capabilities into a single platform has emerged as a tool to reduce uncertainties in MR image analysis. To date, contradicting reports on the effect on the contrast of the coupling of a T1 and T2 agent have hampered the application of these specialised probes. Herein, we present a systematic experimental study on a range of gadolinium-labelled magnetite nanoparticles envisioned to bring some light into the mechanism of interaction between T1 and T2 components, and advance towards the design of efficient (dual) T1 and T2 MRI probes. Unexpected behaviours observed in some of the constructs will be discussed. In this study, we demonstrate that the relaxivity of such multimodal probes can be rationally tuned to obtain unmatched potentials in MR imaging, exemplified by preparation of the magnetite-based nanoparticle with the highest T2 relaxivity described to date. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04400f
NASA Astrophysics Data System (ADS)
Fu, Tingting; Chen, Yuyan; Hao, Jiali; Wang, Xiaoyong; Liu, Gang; Li, Yonggang; Liu, Zhuang; Cheng, Liang
2015-12-01
Recently, magnetic photothermal nanomaterials have emerged as a new class of bio-nanomaterials for application in cancer diagnosis and therapy. Hence, we developed a new kind of magnetic nanomaterials, iron diselenide (FeSe2) nanoparticles, for multimodal imaging-guided photothermal therapy (PTT) to improve the efficacy of cancer treatment. By controlling the reaction time and temperature, FeSe2 nanoparticles were synthesized by a simple solution-phase method. After modification with polyethylene glycol (PEG), the obtained FeSe2-PEG nanoparticles showed high stability under various physiological conditions. FeSe2-PEG could serve as a T2-weighted magnetic resonance (MR) imaging contrast agent because of its strong superparamagnetic properties, with its r2 relaxivity determined to be 133.38 mM-1 S-1, a value higher than that of the clinically used Feridex. On the other hand, with high absorbance in the near-infrared (NIR) region, FeSe2-PEG also appeared to be a useful contrast agent for photoacoustic imaging (PA) as well as an effective photothermal agent for PTT cancer treatment, as demonstrated in our animal tumor model experiments. Moreover, long-term toxicity tests have proven that FeSe2-PEG nanoparticles after systematic administration rendered no appreciable toxicity to the treated animals, and could be gradually excreted from the major organs of mice. Our work indicates that FeSe2-PEG nanoparticles would be a new class of theranostic agents promising for application in bioimaging and cancer therapy.Recently, magnetic photothermal nanomaterials have emerged as a new class of bio-nanomaterials for application in cancer diagnosis and therapy. Hence, we developed a new kind of magnetic nanomaterials, iron diselenide (FeSe2) nanoparticles, for multimodal imaging-guided photothermal therapy (PTT) to improve the efficacy of cancer treatment. By controlling the reaction time and temperature, FeSe2 nanoparticles were synthesized by a simple solution-phase method. After modification with polyethylene glycol (PEG), the obtained FeSe2-PEG nanoparticles showed high stability under various physiological conditions. FeSe2-PEG could serve as a T2-weighted magnetic resonance (MR) imaging contrast agent because of its strong superparamagnetic properties, with its r2 relaxivity determined to be 133.38 mM-1 S-1, a value higher than that of the clinically used Feridex. On the other hand, with high absorbance in the near-infrared (NIR) region, FeSe2-PEG also appeared to be a useful contrast agent for photoacoustic imaging (PA) as well as an effective photothermal agent for PTT cancer treatment, as demonstrated in our animal tumor model experiments. Moreover, long-term toxicity tests have proven that FeSe2-PEG nanoparticles after systematic administration rendered no appreciable toxicity to the treated animals, and could be gradually excreted from the major organs of mice. Our work indicates that FeSe2-PEG nanoparticles would be a new class of theranostic agents promising for application in bioimaging and cancer therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06840a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efrem Mebrahtu, Suzanne Lapi
2012-12-13
This application investigated a novel imaging approach to develop methods to incorporate multiple radionuclides into a single peptide at chemoselective sites for simultaneous monitoring of cell-bound protein targets as well as specific enzymatic activity, both of which are associated with enhanced tumor growth and metastasis. This imaging construct was synthesized in such a manner so that the PET radionuclide will remain associated with the tumor cells and the SPECT radionuclide was cleaved from the imaging agent. Measurement of the PET agent only will yield information about the tumor marker density while measurement of the amount of co-localization and mismatch ofmore » the two radionuclides will yield information about the enzymatic activity. This coincident measuring technique using both PET and SPECT agents allows us to draw correlations involving the interactions of enzymes (cathepsin, serine-protease urokinase (uPA) and matrix metalloproteases) and other cellular proteins which play a role in cancer growth and metastasis. This technique will allow for studies in xenograft or genetic models of cancer in the same animal at the same time, thus eliminating problems that may occur when trying to invoke comparisons across animals or timepoints. By using radionuclide imaging as opposed to other imaging modalities, this technique has the potential to be translatable and can exploit the high specific activity probes which can be generated with radiotracers. The proof of principle test of this system investigated simultaneous monitoring of matrix metalloprotease (MMP) activity in the extracellular matrix (ECM) as well as density of integrins on the cell surface, both of which can serve as tumor markers. The outcomes/deliverables of this project were as follows: 1. Peptides were synthesized dually labeled at chemospecific sites with PET and SPECT agents. 2. Stability (intrinsic and to radiolysis) and specific activity of these labeled compounds were determined. 3. The feasibility of using these agents for simultaneous monitoring of MMP-2 enzymatic activity and ²3 integrin density was demonstrated in several in vitro assays Radiotracers can be detected at concentrations up to 1000 fold lower than those labeled with non-radioactive markers (e.g. MRI contrast agents), thus using this technique has the advantage of very high sensitivity to measure these processes in vivo. Hence, the development of an efficient approach to the dual labeling of these molecular probes is embodied within this project, with the end result yielding a molecular imaging probe with the highest specific activity possible. An advantage to this dual labeling approach is the ability to measure two different biochemical processes at the same time, a benefit which is not possible in scans involving protocols utilizing two different radiolabeled agents injected sequentially. Another advantage to this technique is the ability to measure enzymatic activity in the form of substrate cleavage. This can only be achieved with a dually labeled compound as has been demonstrated in the case of FRET1. To our knowledge this is the first instance of a measurement of enzymatic substrate cleavage by a dually labeled PET/SPECT radionuclide imaging agent.« less
Contrast-enhanced peripheral MRA: technique and contrast agents.
Nielsen, Yousef W; Thomsen, Henrik S
2012-09-01
In the last decade contrast-enhanced magnetic resonance angiography (CE-MRA) has gained wide acceptance as a valuable tool in the diagnostic work-up of patients with peripheral arterial disease. This review presents current concepts in peripheral CE-MRA with emphasis on MRI technique and contrast agents. Peripheral CE-MRA is defined as an MR angiogram of the arteries from the aortic bifurcation to the feet. Advantages of CE-MRA include minimal invasiveness and lack of ionizing radiation. The basic technique employed for peripheral CE-MRA is the bolus-chase method. With this method a paramagnetic MRI contrast agent is injected intravenously and T1-weighted images are acquired in the subsequent arterial first-pass phase. In order to achieve high quality MR angiograms without interfering venous contamination or artifacts, a number of factors need to be taken into account. This includes magnetic field strength of the MRI system, receiver coil configuration, use of parallel imaging, contrast bolus timing technique, and k-space filling strategies. Furthermore, it is possible to optimize peripheral CE-MRA using venous compression techniques, hybrid scan protocols, time-resolved imaging, and steady-state MRA. Gadolinium(Gd)-based contrast agents are used for CE-MRA of the peripheral arteries. Extracellular Gd agents have a pharmacokinetic profile similar to iodinated contrast media. Accordingly, these agents are employed for first-pass MRA. Blood-pool Gd-based agents are characterized by prolonged intravascular stay, due to macromolecular structure or protein binding. These agents can be used for first-pass, as well as steady-state MRA. Some Gd-based contrast agents with low thermodynamic stability have been linked to development of nephrogenic systemic fibrosis in patients with severe renal insufficiency. Using optimized technique and a stable MRI contrast agent, peripheral CE-MRA is a safe procedure with diagnostic accuracy close to that of conventional catheter X-ray angiography.
Magnetic resonance imaging with hyperpolarized agents: methods and applications
NASA Astrophysics Data System (ADS)
Adamson, Erin B.; Ludwig, Kai D.; Mummy, David G.; Fain, Sean B.
2017-07-01
In the past decade, hyperpolarized (HP) contrast agents have been under active development for MRI applications to address the twin challenges of functional and quantitative imaging. Both HP helium (3He) and xenon (129Xe) gases have reached the stage where they are under study in clinical research. HP 129Xe, in particular, is poised for larger scale clinical research to investigate asthma, chronic obstructive pulmonary disease, and fibrotic lung diseases. With advances in polarizer technology and unique capabilities for imaging of 129Xe gas exchange into lung tissue and blood, HP 129Xe MRI is attracting new attention. In parallel, HP 13C and 15N MRI methods have steadily advanced in a wide range of pre-clinical research applications for imaging metabolism in various cancers and cardiac disease. The HP [1-13C] pyruvate MRI technique, in particular, has undergone phase I trials in prostate cancer and is poised for investigational new drug trials at multiple institutions in cancer and cardiac applications. This review treats the methodology behind both HP gases and HP 13C and 15N liquid state agents. Gas and liquid phase HP agents share similar technologies for achieving non-equilibrium polarization outside the field of the MRI scanner, strategies for image data acquisition, and translational challenges in moving from pre-clinical to clinical research. To cover the wide array of methods and applications, this review is organized by numerical section into (1) a brief introduction, (2) the physical and biological properties of the most common polarized agents with a brief summary of applications and methods of polarization, (3) methods for image acquisition and reconstruction specific to improving data acquisition efficiency for HP MRI, (4) the main physical properties that enable unique measures of physiology or metabolic pathways, followed by a more detailed review of the literature describing the use of HP agents to study: (5) metabolic pathways in cancer and cardiac disease and (6) lung function in both pre-clinical and clinical research studies, concluding with (7) some future directions and challenges, and (8) an overall summary.
Physical Chemistry of Nanomedicine: Understanding the Complex Behaviors of Nanoparticles in Vivo
NASA Astrophysics Data System (ADS)
Lane, Lucas A.; Qian, Ximei; Smith, Andrew M.; Nie, Shuming
2015-04-01
Nanomedicine is an interdisciplinary field of research at the interface of science, engineering, and medicine, with broad clinical applications ranging from molecular imaging to medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, there are still major fundamental and technical barriers that need to be understood and overcome. In particular, the complex behaviors of nanoparticles under physiological conditions are poorly understood, and detailed kinetic and thermodynamic principles are still not available to guide the rational design and development of nanoparticle agents. Here we discuss the interactions of nanoparticles with proteins, cells, tissues, and organs from a quantitative physical chemistry point of view. We also discuss insights and strategies on how to minimize nonspecific protein binding, how to design multistage and activatable nanostructures for improved drug delivery, and how to use the enhanced permeability and retention effect to deliver imaging agents for image-guided cancer surgery.
Photoacoustic imaging of vascular networks in transgenic mice
NASA Astrophysics Data System (ADS)
Laufer, J. G.; Cleary, J. O.; Zhang, E. Z.; Lythgoe, M. F.; Beard, P. C.
2010-02-01
The preferential absorption of near infrared light by blood makes photoacoustic imaging well suited to visualising vascular structures in soft tissue. In addition, the spectroscopic specificity of tissue chromophores can be exploited by acquiring images at multiple excitation wavelengths. This allows the quantification of endogenous chromophores, such as oxy- and deoxyhaemoglobin, and hence blood oxygenation, and the detection of exogenous chromophores, such as functionalised contrast agents. More importantly, this approach has the potential to visualise the spatial distribution of low concentrations of functionalised contrast agents against the strong background absorption of the endogenous chromophores. This has a large number of applications in the life sciences. One example is the structural and functional phenotyping of transgenic mice for the study of the genetic origins of vascular malformations, such as heart defects. In this study, photoacoustic images of mouse embryos have been acquired to study the development of the vasculature following specific genetic knockouts.
Current Advances in Polymer-Based Nanotheranostics for Cancer Treatment and Diagnosis
2015-01-01
Nanotheranostics is a relatively new, fast-growing field that combines the advantages of treatment and diagnosis via a single nanoscale carrier. The ability to bundle both therapeutic and diagnostic capabilities into one package offers exciting prospects for the development of novel nanomedicine. Nanotheranostics can deliver treatment while simultaneously monitoring therapy response in real-time, thereby decreasing the potential of over- or under-dosing patients. Polymer-based nanomaterials, in particular, have been used extensively as carriers for both therapeutic and bioimaging agents and thus hold great promise for the construction of multifunctional theranostic formulations. Herein, we review recent advances in polymer-based systems for nanotheranostics, with a particular focus on their applications in cancer research. We summarize the use of polymer nanomaterials for drug delivery, gene delivery, and photodynamic therapy, combined with imaging agents for magnetic resonance imaging, radionuclide imaging, and fluorescence imaging. PMID:25014486
In Search of the Optimal Heart Perfusion Ultrasound Imaging Platform.
Grishenkov, Dmitry; Gonon, Adrian; Janerot-Sjoberg, Birgitta
2015-09-01
Quantification of myocardial perfusion by contrast echocardiography remains a challenge. Existing imaging phantoms used to evaluate the performance of ultrasound scanners do not comply with perfusion basics in the myocardium, where perfusion and motion are inherently coupled. To contribute toward an improvement, we developed a contrast echocardiographic perfusion imaging platform based on an isolated rat heart coupled to an ultrasound scanner. Perfusion was assessed by using 3 different types of contrast agents: dextran-based Promiten (Meda AB, Solna, Sweden), phospholipid-shelled SonoVue (Bracco Diagnostics, Inc, Princeton, NJ), and polymer-shelled MB-pH5-RT, developed in-house. The myocardial video intensity was monitored over time from contrast agent administration to peak, and 2 characteristic constants were calculated by using an exponential fit: A, representing capillary volume; and β, representing inflow velocity. Acquired experimental evidence demonstrates that the application of all 3 contrast agents allows sonographic estimation of myocardial perfusion in the isolated rat heart. Video intensity maps show that an increase in contrast concentration increases the late-plateau values, A, mimicking increased capillary volume. Estimated values of the flow, proportional to A × β, increase when the pressure of the perfusate column increases from 80 to 110 cm of water. This finding is in agreement with the true values of the coronary flow increase measured by a flowmeter attached to the aortic cannula. The contrast echocardiographic perfusion imaging platform described holds promise for standardized evaluation and optimization of contrast perfusion ultrasound imaging in which real-time inflow curves at low acoustic power semiquantitatively reflect coronary flow. © 2015 by the American Institute of Ultrasound in Medicine.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
.../Biologicals/Radiopharmaceuticals/Radiologic Imaging Agents). 2. Wednesday, May 18, 2011, 9 a.m. to 5 p.m. e.d.t. (Drugs/ Biologicals/Radiopharmaceuticals/Radiologic Imaging Agents). 3. Tuesday, May 24, 2011, 9... not need the second day of Drugs/Biologicals/ Radiopharmaceuticals/Radiologic Imaging Agents Public...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
.../Biologicals/Radiopharmaceuticals/Radiologic Imaging Agents). 2. Wednesday, May 5, 2010, 9 a.m. to 5 p.m., e.d.t. (Drugs/ Biologicals/Radiopharmaceuticals/Radiologic Imaging Agents). 3. Tuesday, May 25, 2010, 9... not need the second day of Drugs/Biologicals/ Radiopharmaceuticals/Radiologic Imaging Agents Public...
Dual PET and Near-Infrared Fluorescence Imaging Probes as Tools for Imaging in Oncology
An, Fei-Fei; Chan, Mark; Kommidi, Harikrishna; Ting, Richard
2016-01-01
OBJECTIVE The purpose of this article is to summarize advances in PET fluorescence resolution, agent design, and preclinical imaging that make a growing case for clinical PET fluorescence imaging. CONCLUSION Existing SPECT, PET, fluorescence, and MRI contrast imaging techniques are already deeply integrated into the management of cancer, from initial diagnosis to the observation and management of metastases. Combined positron-emitting fluorescent contrast agents can convey new or substantial benefits that improve on these proven clinical contrast agents. PMID:27223168
Precursors to radiopharmaceutical agents for tissue imaging
Srivastava, Prem C.; Knapp, Jr., Furn F.
1988-01-01
A class of radiolabeled compounds to be used in tissue imaging that exhibits rapid brain uptake, good brain:blood radioactivity ratios, and long retention times. The imaging agents are more specifically radioiodinated aromatic amines attached to dihydropyridine carriers, that exhibit heart as well as brain specificity. In addition to the radiolabeled compounds, classes of compounds are also described that are used as precursors and intermediates in the preparation of the imaging agents.
Multi-Modality Phantom Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, Jennifer S.; Peng, Qiyu; Moses, William W.
2009-03-20
Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe bothmore » our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.« less
Passive microlesion detection and mapping for treatment of hypertrophic cardiomyopathy
NASA Astrophysics Data System (ADS)
Zhu, Yiying I.; Miller, Douglas L.; Dou, Chunyan; Kripfgans, Oliver D.
2017-03-01
Intermittent high intensity ultrasound pulses with circulating contrast agent microbubbles can induce scattered microlesions of potential value for myocardial reduction therapy. This paper presents an in vitro setup imitating the treatment for monitoring development. A preclinical imaging system with a single element transducer, synchronization and receive-only imaging transducer array has been implemented on a research platform. Contrast agent microbubbles pumped in a dialysis tubing setup were exposed to high intensity focused ultrasound at 1.0/3.5 MHz center frequencies. Polystyrene spheres were employed as linear scatterers compared to contrast agents for system transfer function equalization. A cavitation mapping technique was employed to spatially locate and depict microbubble activity during treatment. For high acoustic pressure amplitudes a 5 dB difference between contrast agent and solid spheres was observed and spatially mapped. The in-plane resolution was 4.5 mm for axial and 1.5 mm laterally. In the future, this cavitation detection scheme will be applied to monitor in vivo microlesioning in real-time.
Development of nanostars as a biocompatible tumor contrast agent: toward in vivo SERS imaging.
D'Hollander, Antoine; Mathieu, Evelien; Jans, Hilde; Vande Velde, Greetje; Stakenborg, Tim; Van Dorpe, Pol; Himmelreich, Uwe; Lagae, Liesbet
2016-01-01
The need for sensitive imaging techniques to detect tumor cells is an important issue in cancer diagnosis and therapy. Surface-enhanced Raman scattering (SERS), realized by chemisorption of compounds suitable for Raman spectroscopy onto gold nanoparticles, is a new method for detecting a tumor. As a proof of concept, we studied the use of biocompatible gold nanostars as sensitive SERS contrast agents targeting an ovarian cancer cell line (SKOV3). Due to a high intracellular uptake of gold nanostars after 6 hours of exposure, they could be detected and located with SERS. Using these nanostars for passive targeting after systemic injection in a xenograft mouse model, a detectable signal was measured in the tumor and liver in vivo. These signals were confirmed by ex vivo SERS measurements and darkfield microscopy. In this study, we established SERS nanostars as a highly sensitive contrast agent for tumor detection, which opens the potential for their use as a theranostic agent against cancer.
NASA Astrophysics Data System (ADS)
Ng, Thian C.
2012-06-01
It is known that one strength of MRI is its excellent soft tissue discrimination. It naturally provides sufficient contrast between the structural differences of normal and pathological tissues, their spatial extent and progression. However, to further extend its applications and enhance even more contrast for clinical studies, various Gadolinium (Gd)-based contrast agents have been developed for different organs (brain strokes, cancer, cardio-MRI, etc). These Gd-based contrast agents are paramagnetic compounds that have strong T1-effect for enhancing the contrast between tissue types. Gd-contrast can also enhance magnetic resonance angiography (CE-MRA) for studying stenosis and for measuring perfusion, vascular susceptibility, interstitial space, etc. Another class of contrast agents makes use of ferrite iron oxide nanoparticles (including Superparamagnetic Ion Oxide (SPIO) and Ultrasmall Superparamagnetic Iron Oxide (USPIO)). These nanoparticles have superior magnetic susceptibility effect and produce a drop in signal, namely in T2*-weighted images, useful for the determination of lymph nodes metastases, angiogenesis and arteriosclerosis plaques.
Poehlmann, Melanie; Grishenkov, Dmitry; Kothapalli, Satya V V N; Härmark, Johan; Hebert, Hans; Philipp, Alexandra; Hoeller, Roland; Seuss, Maximilian; Kuttner, Christian; Margheritelli, Silvia; Paradossi, Gaio; Fery, Andreas
2014-01-07
Polymer-shelled magnetic microbubbles have great potential as hybrid contrast agents for ultrasound and magnetic resonance imaging. In this work, we studied US/MRI contrast agents based on air-filled poly(vinyl alcohol)-shelled microbubbles combined with superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs are integrated either physically or chemically into the polymeric shell of the microbubbles (MBs). As a result, two different designs of a hybrid contrast agent are obtained. With the physical approach, SPIONs are embedded inside the polymeric shell and with the chemical approach SPIONs are covalently linked to the shell surface. The structural design of hybrid probes is important, because it strongly determines the contrast agent's response in the considered imaging methods. In particular, we were interested how structural differences affect the shell's mechanical properties, which play a key role for the MBs' US imaging performance. Therefore, we thoroughly characterized the MBs' geometric features and investigated low-frequency mechanics by using atomic force microscopy (AFM) and high-frequency mechanics by using acoustic tests. Thus, we were able to quantify the impact of the used SPIONs integration method on the shell's elastic modulus, shear modulus and shear viscosity. In summary, the suggested approach contributes to an improved understanding of structure-property relations in US-active hybrid contrast agents and thus provides the basis for their sustainable development and optimization.
Parkinsonism after glycine-derivate exposure.
Barbosa, E R; Leiros da Costa, M D; Bacheschi, L A; Scaff, M; Leite, C C
2001-05-01
This 54-year-old man accidentally sprayed himself with the chemical agent glyphosate, a herbicide derived from the amino acid glycine. He developed disseminated skin lesions 6 hours after the accident. One month later, he developed a symmetrical parkinsonian syndrome. Two years after the initial exposure to glyphosate, magnetic resonance imaging revealed hyperintense signal in the globus pallidus and substantia nigra, bilaterally, on T2-weighted images. Levodopa/benserazide 500/125 mg daily provided satisfactory clinical outcome.
Dual-energy contrast-enhanced spectral mammography (CESM).
Daniaux, Martin; De Zordo, Tobias; Santner, Wolfram; Amort, Birgit; Koppelstätter, Florian; Jaschke, Werner; Dromain, Clarisse; Oberaigner, Willi; Hubalek, Michael; Marth, Christian
2015-10-01
Dual-energy contrast-enhanced mammography is one of the latest developments in breast care. Imaging with contrast agents in breast cancer was already known from previous magnetic resonance imaging and computed tomography studies. However, high costs, limited availability-or high radiation dose-led to the development of contrast-enhanced spectral mammography (CESM). We reviewed the current literature, present our experience, discuss the advantages and drawbacks of CESM and look at the future of this innovative technique.
Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit
2018-02-01
Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.
Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Tan, Mingqian; Yin, Shouyu; Lu, Zheng-Rong
2011-01-01
Purpose To develop safe and effective manganese(II) based biodegradable macromolecular MRI contrast agents. Materials and Methods In this study, we synthesized and characterized two polydisulfide manganese(II) complexes, Mn-DTPA cystamine copolymers and Mn-EDTA cystamine copolymers, as new biodegradable macromolecular MRI contrast agents. The contrast enhancement of the two manganese based contrast agents were evaluated in mice bearing MDA-MB-231 human breast carcinoma xenografts, in comparison with MnCl2. Results The T1 and T2 relaxivities were 4.74 and 10.38 mM−1s−1 per manganese at 3T for Mn-DTPA cystamine copolymers (Mn=30.50 kDa) and 6.41 and 9.72 mM−1s−1 for Mn-EDTA cystamine copolymers (Mn= 61.80 kDa). Both polydisulfide Mn(II) complexes showed significant liver, myocardium and tumor enhancement. Conclusion The manganese based polydisulfide contrast agents have a potential to be developed as alternative non-gadolinium contrast agents for MR cancer and myocardium imaging. PMID:22031457
Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dongkyu; Maeng, Inhee; Son, Joo-Hiuk
2009-04-19
The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRImore » technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd{sub 2}O{sub 3}) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.« less
SU-E-I-81: Targeting of HER2-Expressing Tumors with Dual PET-MR Imaging Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, P; Peng, Y; Sun, M
2015-06-15
Purpose: The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Trastuzumab, effective in about 15 % of women with breast cancer, downregulates signalling through the Akt/PI3K and MAPK pathways.These pathways modulate metabolism which can be monitored by positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: The relationship between response of HER2 overexpressing tumours and changes in imaging PET or SPECT and MRI willmore » be examined by a integrated bimodal imaging probe.Small (7 kDa) high-affinity anti-HER2 Affibody molecules and KCCYSL targeting peptide may be suitable tracers for visualization of HER2-expressing tumors. Peptide-conjugated iron oxide nanoparticles (Fe3O4 NPs) as MRI imaging and CB-TE2A as PET imaging are integrated into a single synthetic molecule in the HER2 positive cancer. Results: One of targeted contrast bimodal imaging probe agents was synthesized and evaluated to target HER2-expressing tumors in a HER2 positive rat model. We will report the newest results regarding the development of bimodal imaging probes. Conclusion: The preliminary results of the bimodal imaging probe presents high correlation of MRI signal and PET imaging intensity in vivo. This unique feature can hardly be obtained by single model contrast agents. It is envisioned that this bimodal agents can hold great potential for accurate detection of HER2-expressing tumors which are critical for clinical management of the disease.« less
Film Recording of Digital Color Images
1975-05-28
equipped with ted, .reen and bloe filters, the proiected Uaqes of the three slides were overlayed in exact register. The ooality of the resultlno...black and white (monochrome) photographic emulsion is prepared by suspending a mixture of silver halides and sensitizing agents in gelatin, coating the...waveleugth, changes take place which renJer the grain more susceptible to chemical reduction by a developing agent . These invisible changes in the
Imaging-related medications: a class overview
2007-01-01
Imaging-related medications (contrast agents) are commonly utilized to improve visualization of radiographic, computed tomography (CT), and magnetic resonance (MR) images. While traditional medications are used specifically for their pharmacological actions, the ideal imaging agent provides enhanced contrast with little biological interaction. The radiopaque agents, barium sulfate and iodinated contrast agents, confer “contrast” to x-ray films by their physical ability to directly absorb x-rays. Gadolinium-based MR agents enhance visualization of tissues when exposed to a magnetic field. Ferrous-ferric oxide–based paramagnetic agents provide negative contrast for MR liver studies. This article provides an overview of clinically relevant information for the imaging-related medications commonly in use. It reviews the safety improvements in new generations of drugs; risk factors and precautions for the reduction of severe adverse reactions (i.e., extravasation, contrast-induced nephropathy, metformin-induced lactic acidosis, and nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis); and the significance of diligent patient screening before contrast exposure and appropriate monitoring after exposure. PMID:17948119
Spernyak, Joseph A; White, William H; Ethirajan, Manivannan; Patel, Nayan J; Goswami, Lalit; Chen, Yihui; Turowski, Steven; Missert, Joseph R; Batt, Carrie; Mazurchuk, Richard; Pandey, Ravindra K
2010-05-19
Conjugates of 3-(1'-hexyloxyethyl)-3-devinyl pyropheophorbide-a (HPPH) with multiple Gd(III)aminobenzyl diethylenetriamine pentacetic acid (ADTPA) moieties were evaluated for tumor imaging and photodynamic therapy (PDT). In vivo studies performed in both mice and rat tumor models resulted in a significant MR signal enhancement of tumors relative to surrounding tissues at 24 h postinjection. The water-soluble (pH: 7.4) HPPH-3Gd(III) ADTPA conjugate demonstrated high potential for tumor imaging by MR and fluorescence. This agent also produced long-term tumor cures via PDT. An in vivo biodistribution study with the corresponding (14)C-analogue also showed significant tumor uptake 24 h postinjection. Toxicological evaluations of HPHH-3Gd(III)ADTPA administered at and above imaging/therapeutic doses did not show any evidence of organ toxicity. Our present study illustrates a novel approach for the development of water-soluble "multifunctional agents", demonstrating efficacy for tumor imaging (MR and fluorescence) and phototherapy.
Novel medical imaging technologies for disease diagnosis and treatment
NASA Astrophysics Data System (ADS)
Olego, Diego
2009-03-01
New clinical approaches for disease diagnosis, treatment and monitoring will rely on the ability of simultaneously obtaining anatomical, functional and biological information. Medical imaging technologies in combination with targeted contrast agents play a key role in delivering with ever increasing temporal and spatial resolution structural and functional information about conditions and pathologies in cardiology, oncology and neurology fields among others. This presentation will review the clinical motivations and physics challenges in on-going developments of new medical imaging techniques and the associated contrast agents. Examples to be discussed are: *The enrichment of computer tomography with spectral sensitivity for the diagnosis of vulnerable sclerotic plaque. *Time of flight positron emission tomography for improved resolution in metabolic characterization of pathologies. *Magnetic particle imaging -a novel imaging modality based on in-vivo measurement of the local concentration of iron oxide nano-particles - for blood perfusion measurement with better sensitivity, spatial resolution and 3D real time acquisition. *Focused ultrasound for therapy delivery.
Hydroxypyridonate and hydroxypyrimidinone chelating agents
Raymond, Kenneth N.; Doble, Daniel M.; Sunderland, Christopher J.; Thompson, Marlon
2005-01-25
The present invention provides hydroxypyridinone and hydroxypyrimidone chelating agents. Also provides are Gd(III) complexes of these agents, which are useful as contrast enhancing agents for magnetic resonance imaging. The invention also provides methods of preparing the compounds of the invention, as well as methods of using the compounds in magnetic resonance imaging applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-06
... imaging devices for use with imaging contrast agents or radiopharmaceuticals. FDA intends this guidance to..., for medical imaging devices for use with imaging contrast agents or radiopharmaceuticals. Further, the...] Guidance for Industry on New Contrast Imaging Indication Considerations for Devices and Approved Drug and...
Biodegradable polymer based theranostic agents for photoacoustic imaging and cancer therapy
NASA Astrophysics Data System (ADS)
Wang, Yan J.; Strohm, Eric M.; Kolios, Michael C.
2016-03-01
In this study, multifunctional theranostic agents for photoacoustic (PA), ultrasound (US), fluorescent imaging, and for therapeutic drug delivery were developed and tested. These agents consisted of a shell made from a biodegradable Poly(lactide-co-glycolic acid) (PLGA) polymer, loaded with perfluorohexane (PFH) liquid and gold nanoparticles (GNPs) in the core, and lipophilic carbocyanines fluorescent dye DiD and therapeutic drug Paclitaxel (PAC) in the shell. Their multifunctional capacity was investigated in an in vitro study. The PLGA/PFH/DiD-GNPs particles were synthesized by a double emulsion technique. The average PLGA particle diameter was 560 nm, with 50 nm diameter silica-coated gold nano-spheres in the shell. MCF7 human breast cancer cells were incubated with PLGA/PFH/DiDGNPs for 24 hours. Fluorescent and PA images were recorded using a fluorescent/PA microscope using a 1000 MHz transducer and a 532 nm pulsed laser. For the particle vaporization and drug delivery test, MCF7 cells were incubated with the PLGA/PFH-GNPs-PAC or PLGA/PFH-GNPs particles for 6, 12 and 24 hours. The effects of particle vaporization and drug delivery inside the cells were examined by irradiating the cells with a laser fluence of 100 mJ/cm2, and cell viability quantified using the MTT assay. The PA images of MCF7 cells containing PLGA/PFH/DiD-GNPs were spatially coincident with the fluorescent images, and confirmed particle uptake. After exposure to the PLGA/PFHGNP- PAC for 6, 12 and 24 hours, the cell survival rate was 43%, 38%, and 36% respectively compared with the control group, confirming drug delivery and release inside the cells. Upon vaporization, cell viability decreased to 20%. The particles show potential as imaging agents and drug delivery vehicles.
Micro-CT of rodents: state-of-the-art and future perspectives
Clark, D. P.; Badea, C. T.
2014-01-01
Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g. measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality. PMID:24974176
Xu, Jeff S; Huang, Jiwei; Qin, Ruogu; Hinkle, George H; Povoski, Stephen P; Martin, Edward W; Xu, Ronald X
2010-03-01
Accurate assessment of tumor boundaries and recognition of occult disease are important oncologic principles in cancer surgeries. However, existing imaging modalities are not optimized for intraoperative cancer imaging applications. We developed a nanobubble (NB) contrast agent for cancer targeting and dual-mode imaging using optical and ultrasound (US) modalities. The contrast agent was fabricated by encapsulating the Texas Red dye in poly (lactic-co-glycolic acid) (PLGA) NBs and conjugating NBs with cancer-targeting ligands. Both one-step and three-step cancer-targeting strategies were tested on the LS174T human colon cancer cell line. For the one-step process, NBs were conjugated with the humanized HuCC49 Delta C(H)2 antibody to target the over-expressed TAG-72 antigen. For the three-step process, cancer cells were targeted by successive application of the biotinylated HuCC49 Delta C(H)2 antibody, streptavidin, and the biotinylated NBs. Both one-step and three-step processes successfully targeted the cancer cells with high binding affinity. NB-assisted dual-mode imaging was demonstrated on a gelatin phantom that embedded multiple tumor simulators at different NB concentrations. Simultaneous fluorescence and US images were acquired for these tumor simulators and linear correlations were observed between the fluorescence/US intensities and the NB concentrations. Our research demonstrated the technical feasibility of using the dual-mode NB contrast agent for cancer targeting and simultaneous fluorescence/US imaging. (c) 2009 Elsevier Ltd. All rights reserved.
X-space MPI: magnetic nanoparticles for safe medical imaging.
Goodwill, Patrick William; Saritas, Emine Ulku; Croft, Laura Rose; Kim, Tyson N; Krishnan, Kannan M; Schaffer, David V; Conolly, Steven M
2012-07-24
One quarter of all iodinated contrast X-ray clinical imaging studies are now performed on Chronic Kidney Disease (CKD) patients. Unfortunately, the iodine contrast agent used in X-ray is often toxic to CKD patients' weak kidneys, leading to significant morbidity and mortality. Hence, we are pioneering a new medical imaging method, called Magnetic Particle Imaging (MPI), to replace X-ray and CT iodinated angiography, especially for CKD patients. MPI uses magnetic nanoparticle contrast agents that are much safer than iodine for CKD patients. MPI already offers superb contrast and extraordinary sensitivity. The iron oxide nanoparticle tracers required for MPI are also used in MRI, and some are already approved for human use, but the contrast agents are far more effective at illuminating blood vessels when used in the MPI modality. We have recently developed a systems theoretic framework for MPI called x-space MPI, which has already dramatically improved the speed and robustness of MPI image reconstruction. X-space MPI has allowed us to optimize the hardware for fi ve MPI scanners. Moreover, x-space MPI provides a powerful framework for optimizing the size and magnetic properties of the iron oxide nanoparticle tracers used in MPI. Currently MPI nanoparticles have diameters in the 10-20 nanometer range, enabling millimeter-scale resolution in small animals. X-space MPI theory predicts that larger nanoparticles could enable up to 250 micrometer resolution imaging, which would represent a major breakthrough in safe imaging for CKD patients.
Supercritical Catalytic Cracking of Hydrocarbon Feeds Insight
2016-04-21
University teamed with Spectral Energies, LLC to develop appropriate spatiotemporal imaging capabilities in single body zeolites to describe beneficial...We demonstrated the ability to follow in a spatiotemporal fashion, the decomposition of the structure-directing agent used to template the zeolite ...appropriate spatiotemporal imaging capabilities in single body zeolites to describe beneficial and parasitic catalytic cracking pathways. Beneficial
NASA Astrophysics Data System (ADS)
LeGendre-McGhee, Susan; Rice, Photini F. S.; Wall, R. Andrew; Klein, Justin; Luttman, Amber; Sprute, Kyle; Gerner, Eugene; Barton, Jennifer K.
2012-02-01
Optical coherence tomography (OCT) is a minimally-invasive imaging modality capable of tracking the development of individual colonic adenomas. As such, OCT can be used to evaluate the mechanisms and effectiveness of chemopreventive and chemotherapeutic agents in colorectal cancer models. The data presented here represent part of a larger study evaluating α-difluoromethylornithine (DFMO) and Sulindac as chemopreventive and chemotherapeutic agents using mice treated with the carcinogen azoxymethane (AOM). 27 A/J mice were included in the chemoprevention study, subdivided into four treatment groups (No Drug, DFMO, Sulindac, DFMO/Sulindac). 30 mm lateral images of each colon at eight different rotations were obtained at five different time points using a 2 mm diameter spectral domain OCT endoscopy system centered at 890 nm with 3.5 μm axial resolution in air and 5 μm lateral resolution. Images were visually analyzed to determine number and size of adenomas. Gross photos of the excised colons and histology provided gold standard confirmation of the final imaging time point. Preliminary results show that 100% of mice in the No Drug group developed adenomas over the course of the chemoprevention study. Incidence was reduced to 71.43% in mice given DFMO, 85.71% for Sulindac and 0% for DFMO/Sulindac. Discrete adenoma size did not vary significantly between experimental groups. Additional experiments are currently under way to verify these results and evaluate DFMO and Sulindac for chemotherapeutic applications.
Martin, Erik W.; Li, Changqing; Lu, Wuyuan; Kao, Joseph P. Y.
2015-01-01
Liposomes are promising vehicles to deliver diagnostic and therapeutic agents to cells in vivo. After uptake into cells by endocytosis, liposomes are degraded in the endolysosomal system. Consequently, the encapsulated cargo molecules frequently remain sequestered in endosomal compartments; this limits their usefulness in many applications (e.g. gene delivery). To overcome this, various fusogenic peptides have been developed to facilitate delivery of liposomally-encapsulated molecules into the cytosol. One such peptide is the pH-sensitive influenza-derived peptide INF7. Liposomal delivery of imaging agents is an attractive approach for enabling cell imaging and cell tracking in vivo, but can be hampered by inadequate intracellular accumulation and retention of probes caused by exocytosis (and possible degradation) of endosome-entrapped probes. Such signal loss could be minimized by facilitating escape of probe molecules from endolysosomal compartments into the cytosol. We investigated the ability of co-encapsulated INF7 to release liposomally-delivered rhodamine fluorophores into the cytosol after endosomal acidification/maturation. We co-encapsulated INF7 and fluorescent rhodamine derivatives having vastly different transport properties to show that after endocytosis by CV1 cells, the INF7 peptide is activated by acidic endosomal pH and facilitates efficient release of the fluorescent tracers into the cytosol. Furthermore, we show that INF7-facilitated escape from endosomes markedly enhanced retention of tracers that cannot be actively extruded from the cytosol. Minimizing loss of intracellular probes improves cellular imaging by increasing the signal-to-noise ratio of images and lengthening the time window that imaging can be performed. In particular, this will enhance in vivo electron paramagnetic resonance imaging, an emergent magnetic resonance imaging modality requires exogenous paramagnetic imaging agents and is highly promising for cellular and molecular imaging. PMID:25816348
Nanomedicines for image-guided cancer therapy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zheng, Jinzi
2016-09-01
Imaging technologies are being increasingly employed to guide the delivery of cancer therapies with the intent to increase their performance and efficacy. To date, many patients have benefited from image-guided treatments through prolonged survival and improvements in quality of life. Advances in nanomedicine have enabled the development of multifunctional imaging agents that can further increase the performance of image-guided cancer therapy. Specifically, this talk will focus on examples that demonstrate the benefits and application of nanomedicine in the context of image-guide surgery, personalized drug delivery, tracking of cell therapies and high precision radiotherapy delivery.
Exploring silver as a contrast agent for contrast-enhanced dual-energy X-ray breast imaging
Tsourkas, A; Maidment, A D A
2014-01-01
Objective: Through prior monoenergetic modelling, we have identified silver as a potential alternative to iodine in dual-energy (DE) X-ray breast imaging. The purpose of this study was to compare the performance of silver and iodine contrast agents in a commercially available DE imaging system through a quantitative analysis of signal difference-to-noise ratio (SDNR). Methods: A polyenergetic simulation algorithm was developed to model the signal intensity and noise. The model identified the influence of various technique parameters on SDNR. The model was also used to identify the optimal imaging techniques for silver and iodine, so that the two contrast materials could be objectively compared. Results: The major influences on the SDNR were the low-energy dose fraction and breast thickness. An increase in the value of either of these parameters resulted in a decrease in SDNR. The SDNR for silver was on average 43% higher than that for iodine when imaged at their respective optimal conditions, and 40% higher when both were imaged at the optimal conditions for iodine. Conclusion: A silver contrast agent should provide benefit over iodine, even when translated to the clinic without modification of imaging system or protocol. If the system were slightly modified to reflect the lower k-edge of silver, the difference in SDNR between the two materials would be increased. Advances in knowledge: These data are the first to demonstrate the suitability of silver as a contrast material in a clinical contrast-enhanced DE image acquisition system. PMID:24998157
Optical coherence tomography for embryonic imaging: a review
Raghunathan, Raksha; Singh, Manmohan; Dickinson, Mary E.; Larin, Kirill V.
2016-01-01
Abstract. Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue. OCT has bridged the gap between ultrahigh resolution imaging techniques with limited imaging depth like confocal microscopy and modalities, such as ultrasound sonography, which have deeper penetration but poorer spatial resolution. Moreover, the noninvasive nature of OCT has enabled live imaging of embryos without any external contrast agents. We review how OCT has been utilized to study developing embryos and also discuss advances in techniques used in conjunction with OCT to understand embryonic development. PMID:27228503
Thread concept for automatic task parallelization in image analysis
NASA Astrophysics Data System (ADS)
Lueckenhaus, Maximilian; Eckstein, Wolfgang
1998-09-01
Parallel processing of image analysis tasks is an essential method to speed up image processing and helps to exploit the full capacity of distributed systems. However, writing parallel code is a difficult and time-consuming process and often leads to an architecture-dependent program that has to be re-implemented when changing the hardware. Therefore it is highly desirable to do the parallelization automatically. For this we have developed a special kind of thread concept for image analysis tasks. Threads derivated from one subtask may share objects and run in the same context but may process different threads of execution and work on different data in parallel. In this paper we describe the basics of our thread concept and show how it can be used as basis of an automatic task parallelization to speed up image processing. We further illustrate the design and implementation of an agent-based system that uses image analysis threads for generating and processing parallel programs by taking into account the available hardware. The tests made with our system prototype show that the thread concept combined with the agent paradigm is suitable to speed up image processing by an automatic parallelization of image analysis tasks.
Carrel, Maxence; Beltran, Mario A; Morales, Verónica L; Derlon, Nicolas; Morgenroth, Eberhard; Kaufmann, Rolf; Holzner, Markus
2017-01-01
X-ray tomography is a powerful tool giving access to the morphology of biofilms, in 3D porous media, at the mesoscale. Due to the high water content of biofilms, the attenuation coefficient of biofilms and water are very close, hindering the distinction between biofilms and water without the use of contrast agents. Until now, the use of contrast agents such as barium sulfate, silver-coated micro-particles or 1-chloronaphtalene added to the liquid phase allowed imaging the biofilm 3D morphology. However, these contrast agents are not passive and potentially interact with the biofilm when injected into the sample. Here, we use a natural inorganic compound, namely iron sulfate, as a contrast agent progressively bounded in dilute or colloidal form into the EPS matrix during biofilm growth. By combining a very long source-to-detector distance on a X-ray laboratory source with a Lorentzian filter implemented prior to tomographic reconstruction, we substantially increase the contrast between the biofilm and the surrounding liquid, which allows revealing the 3D biofilm morphology. A comparison of this new method with the method proposed by Davit et al (Davit et al., 2011), which uses barium sulfate as a contrast agent to mark the liquid phase was performed. Quantitative evaluations between the methods revealed substantial differences for the volumetric fractions obtained from both methods. Namely, contrast agent-biofilm interactions (e.g. biofilm detachment) occurring during barium sulfate injection caused a reduction of the biofilm volumetric fraction of more than 50% and displacement of biofilm patches elsewhere in the column. Two key advantages of the newly proposed method are that passive addition of iron sulfate maintains the integrity of the biofilm prior to imaging, and that the biofilm itself is marked by the contrast agent, rather than the liquid phase as in other available methods. The iron sulfate method presented can be applied to understand biofilm development and bioclogging mechanisms in porous materials and the obtained biofilm morphology could be an ideal basis for 3D numerical calculations of hydrodynamic conditions to investigate biofilm-flow coupling.
2008-04-01
Nano-Encapsulated Contrast for Enhancing Magnetic Resonance Imaging of Prostate Cancer PRINCIPAL INVESTIGATOR: Joel W. Slaton, M.D...2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Development of a Tumor Histologic-Specific, Nano-Encapsulated Contrast for Enhancing Magnetic...carry a contrast agent to human CaP cells growing in mice to enhance MR detection of cancer. Our work in the first year has focused on in vitro
Molecular imaging of Alzheimer disease pathology.
Kantarci, K
2014-06-01
Development of molecular imaging agents for fibrillar β-amyloid positron-emission tomography during the past decade has brought molecular imaging of Alzheimer disease pathology into the spotlight. Large cohort studies with longitudinal follow-up in cognitively normal individuals and patients with mild cognitive impairment and Alzheimer disease indicate that β-amyloid deposition can be detected many years before the onset of symptoms with molecular imaging, and its progression can be followed longitudinally. The utility of β-amyloid PET in the differential diagnosis of Alzheimer disease is greatest when there is no pathologic overlap between 2 dementia syndromes, such as in frontotemporal lobar degeneration and Alzheimer disease. However β-amyloid PET alone may be insufficient in distinguishing dementia syndromes that commonly have overlapping β-amyloid pathology, such as dementia with Lewy bodies and vascular dementia, which represent the 2 most common dementia pathologies after Alzheimer disease. The role of molecular imaging in Alzheimer disease clinical trials is growing rapidly, especially in an era when preventive interventions are designed to eradicate the pathology targeted by molecular imaging agents. © 2014 by American Journal of Neuroradiology.
Rosenholm, Jessica M; Sahlgren, Cecilia; Lindén, Mika
2011-07-01
The main objective in the development of nanomedicine is to obtain delivery platforms for targeted delivery of drugs or imaging agents for improved therapeutic efficacy, reduced side effects and increased diagnostic sensitivity. A (nano)material class that has been recognized for its controllable properties on many levels is ordered mesoporous inorganic materials, typically in the form of amorphous silica (SiO2). Characteristics for this class of materials include mesoscopic order, tunable pore dimensions in the (macro)molecular size range, a high pore volume and surface area, the possibility for selective surface functionality as well as morphology control. The robust but biodegradable ceramic matrix moreover provides shelter for incorporated agents (drugs, proteins, imaging agents, photosensitizers) leaving the outer particle surface free for further modification. The unique features make these materials particularly amenable to modular design, whereby functional moieties and features may be interchanged or combined to produce multifunctional nanodelivery systems combining targeting, diagnostic, and therapeutic actions. This review covers the latest developments related to the use of mesoporous silica nanoparticles (MSNs) as nanocarriers in biomedical applications, with special focus on cancer therapy and diagnostics.
X-ray spatial frequency heterodyne imaging of protein-based nanobubble contrast agents
Rand, Danielle; Uchida, Masaki; Douglas, Trevor; Rose-Petruck, Christoph
2014-01-01
Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based “nanobubble” contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size. PMID:25321797
NASA Astrophysics Data System (ADS)
Sepela, Rebecka J.; Sherlock, Benjamin E.; Tian, Lin; Marcu, Laura; Sack, Jon
2017-03-01
Photoacoustic imaging is an emerging technology capable of both functional and structural biological imaging. Absorption and scattering in tissue limit the penetration depth of conventional microscopy techniques to <1mm. Photoacoustic imaging however, can offer high-resolution and contrast at depths of several centimeters. Though functional imaging of endogenous contrast agents, such as hemoglobin, is widely implemented, currently photoacoustic imaging is unable to functionally report electrophysiological changes within cells. We aim to develop photoacoustic contrast agents to fulfill this need. Cells throughout the brain and body create electrical signals using ion channel proteins. These proteins undergo structural changes to regulate the flux of salt ions into the cell. We have recently developed ion channel activity tracers that dissociate from ion channels after the protein changes structure. By conjugating the tracer to dyes that are sensitive to changes in their chemical environment, we can detect tracer dissociation and therefore ion channel activity. We are exploring whether a similar mechanism can create photoacoustic signal intensity changes. To test if the environmental sensitivity of the dye is photoacoustically distinguishable, we imaged the dye in different solvent backgrounds. We report that manipulation of the chemical environment of the contrast dye results in robust changes in photoacoustic properties. We are working to capture photoacoustic signal changes that occur when ion channel proteins activate using live cell imaging. This technology could permit photoacoustic imaging of electrophysiological dynamics in deep tissue, such as the brain. Further optimization of this technology could lead to concurrent imaging of neural activity and hemodynamic responses, a crucial step towards understanding neurovascular coupling in the brain.
Patel, Daksha; Kell, Arnold; Simard, Benoit; Xiang, Bo; Lin, Hung Yu; Tian, Ganghong
2011-02-01
A new class of nanoparticle-based dual-modality positron emission tomography/magnetic resonance imaging (PET/MRI) contrast agents has been developed. The probe consists of a superparamagnetic iron oxide (SPIO) or manganese oxide core coated with 3,4-dihydroxy-D,L-phenylalanine (DL-DOPA). The chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to DOPA termini. The DOTA modified nanoparticles allow chelation of copper for PET imaging. These surface functionalized nanoparticle-based probes have been characterized by various analytical techniques. The cell-labeling efficacy, cytotoxicity and relaxivity of these nanoparticles have been evaluated and compared with the same properties of one of the most commonly utilized MRI contrast agents, Feridex(®). Evidently, this new nanoparticle has a great potential for use in cell tracking with MRI and PET in the absence of transfecting agent. It is noteworthy that there is a sharp increase in r(2) relaxivity of these nanoparticles on coordination with Cu(2+) ions. Thus these iron oxide nanoparticles can also be explored as the smart magnetic resonance (MR) sensor for the detection of micromolar changes in copper concentration for neurodegenerative diseases such as Alzheimer's disease, Menkes and Wilson's diseases, amyotrophic lateral sclerosis and prion diseases. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Imaging efficacy of a targeted imaging agent for fluorescence endoscopy
NASA Astrophysics Data System (ADS)
Healey, A. J.; Bendiksen, R.; Attramadal, T.; Bjerke, R.; Waagene, S.; Hvoslef, A. M.; Johannesen, E.
2008-02-01
Colorectal cancer is a major cause of cancer death. A significant unmet clinical need exists in the area of screening for earlier and more accurate diagnosis and treatment. We have identified a fluorescence imaging agent targeted to an early stage molecular marker for colorectal cancer. The agent is administered intravenously and imaged in a far red imaging channel as an adjunct to white light endoscopy. There is experimental evidence of preclinical proof of mechanism for the agent. In order to assess potential clinical efficacy, imaging was performed with a prototype fluorescence endoscope system designed to produce clinically relevant images. A clinical laparoscope system was modified for fluorescence imaging. The system was optimised for sensitivity. Images were recorded at settings matching those expected with a clinical endoscope implementation (at video frame rate operation). The animal model was comprised of a HCT-15 xenograft tumour expressing the target at concentration levels expected in early stage colorectal cancer. Tumours were grown subcutaneously. The imaging agent was administered intravenously at a dose of 50nmol/kg body weight. The animals were killed 2 hours post administration and prepared for imaging. A 3-4mm diameter, 1.6mm thick slice of viable tumour was placed over the opened colon and imaged with the laparoscope system. A receiver operator characteristic analysis was applied to imaging results. An area under the curve of 0.98 and a sensitivity of 87% [73, 96] and specificity of 100% [93, 100] were obtained.
Hammerstingl, R M; Schwarz, W; Hochmuth, K; Staib-Sebler, E; Lorenz, M; Vogl, T J
2001-01-01
The development in oncologic liver surgery as well as modified interventional therapy strategies of the liver have resulted in improved diagnostic imaging. The evolution of contrast agents for MR imaging of the liver has proceeded along several different paths with the common goal of improving liver-lesion contrast. In MRI contrast agents act indirectly by their effects on relaxation times. Contrast agents used for hepatic MR imaging can be categorized in those that target the extracellular space, the hepatobiliary system, and the reticuloendothelial system. The first two result in a positive enhancement, the last one in a negative enhancement. Positive enhancers allow a better characterization of liver metastases using dynamic sequence protocols. Detection rate of liver metastases is increased using hepatobiliary contrast-enhanced MRI compared to unenhanced MRI. Negative enhancers, iron oxide particles, significantly increase tumor-to-liver contrast and allow detection of more lesions than other diagnostic methods. Iron-oxide enhanced MRI enables differential diagnosis of liver metastases comparing morphologic features using T2 and T1-weighted sequences.
Nanocapsules of perfluorooctyl bromide for theranostics: from formulation to targeting
NASA Astrophysics Data System (ADS)
Diou, O.; Fattal, E.; Payen, T.; Bridal, S. L.; Valette, J.; Tsapis, N.
2014-03-01
The need to detect cancer at its early stages, as well as, to deliver chemotherapy to targeted site motivates many researchers to build theranostic platforms which combine diagnostic and therapy. Among imaging modalities, ultrasonography and Magnetic Resonance Imaging (MRI) are widely available, non invasive and complement each other. Both techniques often require the use of contrast agents. We have developed nanocapsules of perfluorooctyl bromide as dual contrast agent for both imaging modalities. The soft, amorphous polymer shell provides echogenicity, while the high-density perfluorinated liquid core allows detection by 19F MRI. We have used a shell of poly(lactide-co-glycolide) (PLGA) since this polymer is biodegradable, biocompatible and can be loaded with drugs. These capsules were shown to be efficient in vitro as contrast agents for both 19F MRI and ultrasonography. In addition, for in vivo applications a poly(ethyleneglycol) (PEG) coating promotes stability and prolonged circulation. Being stealth, nanocapsule can accumulate passively into implanted tumors by the EPR effect. We will present nanocapsule formulation and characterization, and will show promising in vivo results obtained for both ultrasonography and 19F MRI.
NASA Astrophysics Data System (ADS)
Kandanapitiye, Murthi S.
The combination of nanotechnology with medicinal chemistry has developed into a burgeoning research area. Nanomaterials (NMs) could be seamlessly interfaced with various facets in biology, biochemistry, medicinal chemistry and environmental chemistry that may not be available to the same material in the bulk scale. This dissertation research has focused on the development of nanoparticulate coordination polymers for diagnostic and therapeutic applications. Modern imaging techniques include X-ray computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET). We have successfully developed several types of nanoparticulate diagnostics and therapeutics that have some potential usefulness in biomedicine. Synthesis and characterization of nanoparticulate based PET (Positron emission tomography)/SPECT (Single photon emission computed tomography) are discussed in chapter 3. In chapter 4, preparation and potential utility of non-gadolinium based MRI contrast agent are reported for T1-weighted application. As far as the solely effectiveness of relaxation is concerned, Gd-based T 1-weighted MRI contrast agents have excellent enhancement of image contrast but they have risks of biological toxicity. Consequently, the search for T 1-weighted CAs with high efficacy and low toxicity has gained attention toward the Mn(II) and Fe(III). Fe(III) is considered to be more toxic to cells because free ferric or ferrous ions can catalyze the production of reactive oxygen species via the Fenton reactions. Paramagnetic chelates of Mn(II) could be employed as T1-weighted CAs. However, it is challenging to design and synthesize highly stable Mn(II) complexes that could maintain the integrity when administered to living system. Chapter 4 describes the synthesis and utility of nanoparticulate Mn analogue of Prussian blue (K2Mn 3[FeII(CN)6]2) as an effective T1 MRI contrast agent for cellular imaging X-ray computed tomography is capable of delineating the 3-D images of soft tissues with superb quality. The variation of X-ray attenuation from one tissue to another is used to generate the well spatial resolved superb quality images. Exogenous radiopaque agents are necessary for the superb visualization of different types of soft tissues. Heavy metals with high atomic number are better suited for biomedical applications to enhance the image contrast due to their high mass attenuation coefficient. Bismuth (Z- 83) is the nonradioactive, heaviest, nontoxic element available among the other closest neighbors (Hg, Tl, Pb and Po) of the periodic table. We have set out to search for compounds that are hydrolytically stable, more efficient and more amenable in terms of biocompatibility. Moreover this new discovery can significantly reduce the average radiation dose in one CT scan. We have discovered a simple one-step aqueous solution route for preparing biocompatible and ultra-small bismuth oxyiodide BiOI nanoparticles and investigated their potential application as an efficient CT contrast agent. Our ultra-small monodisperse BiOI NPs have excellent water dispersability, thermodynamic stability, kinetic inertness, high biocompatibility and superior attenuation power, suggesting their potential as an organ-specific CT contrast agent that may fill the gap left by the other nanoparticulate and iodine-based CT contrasting agents. The chapter 6 of this dissertation discusses synthesis and characterization of novel nanoparticulate therapeutics and theranostics. D-penicillamine has the highest efficacy, and hence is currently the most widely used drug for WD across the world. We have prepared the D-PEN-conjugated Au NPs of the average size of 16 [special character omited] 2 nm with superb water dispersability, and examined the kinetics and selectivity of copper binding of such NPs in aqueous solution. We also studied the cellular uptake, cytotoxicity and intracellular copper removal of these NPs to demonstrate their potential as a novel cell-penetrable copper detoxifying agent. Our approach of tackling these problems focuses on the development of cell-permeable copper-depleting nanoparticles that can be surface-engineered to be potentially organ-specific when targeting agents are used to form new-generation drugs for WD. The latter part of chapter 6, we describe the synthesis, characterization of zinc analogue of Prussian blue (K2Zn3[Fe(CN) 6]2-ZnPB) for intracellular copper detoxification. (Abstract shortened by ProQuest.).
Value of MR contrast media in image-guided body interventions.
Saeed, Maythem; Wilson, Mark
2012-01-28
In the past few years, there have been multiple advances in magnetic resonance (MR) instrumentation, in vivo devices, real-time imaging sequences and interventional procedures with new therapies. More recently, interventionists have started to use minimally invasive image-guided procedures and local therapies, which reduce the pain from conventional surgery and increase drug effectiveness, respectively. Local therapy also reduces the systemic dose and eliminates the toxic side effects of some drugs to other organs. The success of MR-guided procedures depends on visualization of the targets in 3D and precise deployment of ablation catheters, local therapies and devices. MR contrast media provide a wealth of tissue contrast and allows 3D and 4D image acquisitions. After the development of fast imaging sequences, the clinical applications of MR contrast media have been substantially expanded to include pre- during- and post-interventions. Prior to intervention, MR contrast media have the potential to localize and delineate pathologic tissues of vital organs, such as the brain, heart, breast, kidney, prostate, liver and uterus. They also offer other options such as labeling therapeutic agents or cells. During intervention, these agents have the capability to map blood vessels and enhance the contrast between the endovascular guidewire/catheters/devices, blood and tissues as well as direct therapies to the target. Furthermore, labeling therapeutic agents or cells aids in visualizing their delivery sites and tracking their tissue distribution. After intervention, MR contrast media have been used for assessing the efficacy of ablation and therapies. It should be noted that most image-guided procedures are under preclinical research and development. It can be concluded that MR contrast media have great value in preclinical and some clinical interventional procedures. Future applications of MR contrast media in image-guided procedures depend on their safety, tolerability, tissue specificity and effectiveness in demonstrating success of the interventions and therapies.
Synchrotron radiation microimaging in rabbit models of cancer for preclinical testing
NASA Astrophysics Data System (ADS)
Umetani, Keiji; Uesugi, Kentaro; Kobatake, Makito; Yamamoto, Akira; Yamashita, Takenori; Imai, Shigeki
2009-10-01
Preclinical laboratory animal imaging modalities such as microangiography and micro-computed tomography (micro-CT) have been developed at the SPring-8 BL20B2 bending magnet beamline. The objective of this paper is to demonstrate the usefulness of microangiography systems for physiological examinations of live animals and micro-CT systems for postmortem morphological examinations. Synchrotron radiation microangiography and micro-CT with contrast agents present the main advantageous capability of depicting the anatomy of small blood vessels with tens of micrometers' diameter. This paper reports two imaging instrument types and their respective applications to preclinical imaging of tumor angiogenic blood vessels in tumor-bearing rabbits, where tumor angiogenesis is characterized morphologically by an increased number of blood vessels. A microangiography system with spatial resolution around 10 μm has been used for therapeutically evaluating angiogenic vessels in a rabbit model of cancer for evaluating embolization materials in transcatheter arterial embolization and for radiation therapy. After an iodine contrast agent was injected into an artery, in vivo imaging was carried out using a high-resolution real-time detector incorporating an X-ray direct-conversion-type SATICON pickup tube. On the other hand, a micro-CT system capably performed three-dimensional visualization of tumor angiogenic blood vessels using tumor-transplanted rabbit specimens with a barium sulfate contrast agent injected into the blood vessels. For specimen imaging, a large-field high-resolution micro-CT system based on a 10-megapixel CCD camera was developed to study tumor-associated alterations in angioarchitecture. Evidence of increased vascularity by tumor angiogenesis and decreased vascularity by tumor treatments was achieved by physiological evaluation of angiogenic small blood vessels in microangiographic imaging and by morphological assessment in micro-CT imaging. These results demonstrate the accuracy and usefulness of microangiography and micro-CT systems for quantitative examination of animals' angioarchitecture, respectively, during live and postmortem examinations.
NASA Astrophysics Data System (ADS)
Taruttis, Adrian; Herzog, Eva; Razansky, Daniel; Ntziachristos, Vasilis
2011-03-01
Multispectral Optoacoustic Tomography (MSOT) is an emerging technique for high resolution macroscopic imaging with optical and molecular contrast. We present cardiovascular imaging results from a multi-element real-time MSOT system recently developed for studies on small animals. Anatomical features relevant to cardiovascular disease, such as the carotid arteries, the aorta and the heart, are imaged in mice. The system's fast acquisition time, in tens of microseconds, allows images free of motion artifacts from heartbeat and respiration. Additionally, we present in-vivo detection of optical imaging agents, gold nanorods, at high spatial and temporal resolution, paving the way for molecular imaging applications.
Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research.
Mulvana, Helen; Browning, Richard J; Luan, Ying; de Jong, Nico; Tang, Meng-Xing; Eckersley, Robert J; Stride, Eleanor
2017-01-01
The high efficiency with which gas microbubbles can scatter ultrasound compared with the surrounding blood pool or tissues has led to their widespread employment as contrast agents in ultrasound imaging. In recent years, their applications have been extended to include super-resolution imaging and the stimulation of localized bio-effects for therapy. The growing exploitation of contrast agents in ultrasound and in particular these recent developments have amplified the need to characterize and fully understand microbubble behavior. The aim in doing so is to more fully exploit their utility for both diagnostic imaging and potential future therapeutic applications. This paper presents the key characteristics of microbubbles that determine their efficacy in diagnostic and therapeutic applications and the corresponding techniques for their measurement. In each case, we have presented information regarding the methods available and their respective strengths and limitations, with the aim of presenting information relevant to the selection of appropriate characterization methods. First, we examine methods for determining the physical properties of microbubble suspensions and then techniques for acoustic characterization of both suspensions and single microbubbles. The next section covers characterization of microbubbles as therapeutic agents, including as drug carriers for which detailed understanding of their surface characteristics and drug loading capacity is required. Finally, we discuss the attempts that have been made to allow comparison across the methods employed by various groups to characterize and describe their microbubble suspensions and promote wider discussion and comparison of microbubble behavior.
NASA Astrophysics Data System (ADS)
Islam, M. Shahidul; Haque, Md. Rezuanul; Oh, Christian M.; Wang, Yan; Park, B. Hyle
2013-03-01
Current technologies for monitoring neural activity either use different variety of electrodes (electrical recording) or require contrast agents introduced exogenously or through genetic modification (optical imaging). Here we demonstrate an optical method for non-contact and contrast agent free detection of nerve activity using phase-resolved optical coherence tomography (pr-OCT). A common-path variation of the pr-OCT is recently implemented and the developed system demonstrated the capability to detect rapid transient structural changes that accompany neural spike propagation. No averaging over multiple trials was required, indicating its capability of single-shot detection of individual impulses from functionally stimulated Limulus optic nerve. The strength of this OCT-based optical electrode is that it is a contactless method and does not require any exogenous contrast agent. With further improvements in accuracy and sensitivity, this optical electrode will play a complementary role to the existing recording technologies in future.
The Effects of Image and Animation in Enhancing Pedagogical Agent Persona
ERIC Educational Resources Information Center
Baylor, Amy L.; Ryu, Jeeheon
2003-01-01
The purpose of this experimental study was to test the role of image and animation on: a) learners' perceptions of pedagogical agent persona characteristics (i.e., extent to which agent was person-like, engaging, credible, and instructor-like); b) agent value; and c) performance. The primary analysis consisted of two contrast comparisons: 1)…
DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.
2016-01-01
Abstract. There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here. PMID:27533438
NASA Astrophysics Data System (ADS)
DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.
2016-08-01
There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here.
Fluorescence-enhanced optical tomography and nuclear imaging system for small animals
NASA Astrophysics Data System (ADS)
Tan, I.-Chih; Lu, Yujie; Darne, Chinmay; Rasmussen, John C.; Zhu, Banghe; Azhdarinia, Ali; Yan, Shikui; Smith, Anne M.; Sevick-Muraca, Eva M.
2012-03-01
Near-infrared (NIR) fluorescence is an alternative modality for molecular imaging that has been demonstrated in animals and recently in humans. Fluorescence-enhanced optical tomography (FEOT) using continuous wave or frequency domain photon migration techniques could be used to provide quantitative molecular imaging in vivo if it could be validated against "gold-standard," nuclear imaging modalities, using dual-labeled imaging agents. Unfortunately, developed FEOT systems are not suitable for incorporation with CT/PET/SPECT scanners because they utilize benchtop devices and require a large footprint. In this work, we developed a miniaturized fluorescence imaging system installed in the gantry of the Siemens Inveon PET/CT scanner to enable NIR transillumination measurements. The system consists of a CCD camera equipped with NIR sensitive intensifier, a diode laser controlled by a single board compact controller, a 2-axis galvanometer, and RF circuit modules for homodyne detection of the phase and amplitude of fluorescence signals. The performance of the FEOT system was tested and characterized. A mouse-shaped solid phantom of uniform optical properties with a fluorescent inclusion was scanned using CT, and NIR fluorescence images at several projections were collected. The method of high-order approximation to the radioactive transfer equation was then used to reconstruct the optical images. Dual-labeled agents were also used on a tumor bearing mouse to validate the results of the FEOT against PET/CT image. The results showed that the location of the fluorophore obtained from the FEOT matches the location of tumor obtained from the PET/CT images. Besides validation of FEOT, this hybrid system could allow multimodal molecular imaging (FEOT/PET/CT) for small animal imaging.
Molecular Innovations Toward Theranostics of Aggressive Prostate Cancer
2015-09-01
therapeutic agents assisted with new imaging probe is expect to bring a new frontier for prostate cancer management. Our objective is to develop dendrimer ...selective dendrimer nanoparticle platform with both targeted imaging and drug delivery capabilities to target metastatic PCa. Using this unique...constructing dendrimer conjugated with therapeutic peptide, determining the mechanism of action and preparing chelator for conjugating PET tracer and
Wei, Lihui; Petryk, Julia; Gaudet, Chantal; Kamkar, Maryam; Gan, Wei; Duan, Yin; Ruddy, Terrence D
2018-02-07
Chemokine receptor 5 (CCR5) plays an important role in atherosclerosis. Our objective was to develop a SPECT tracer targeting CCR5 for imaging plaque inflammation by radiolabeling D-Ala-peptide T-amide (DAPTA), a CCR5 antagonist, with 111 In. 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated DAPTA (DOTA-DAPTA) was labeled with 111 In. Cell uptake studies were conducted in U87-CD4-CCR5 and U87-MG cells. Biodistribution was determined in C57BL/6 mice. Autoradiography, en face and Oil Red O (ORO) imaging studies were performed in ApoE -/- mice. DOTA-DAPTA was radiolabeled with 111 In with high radiochemical purity (> 98%) and specific activity (70 MBq·nmol). 111 In-DOTA-DAPTA exhibited fast blood and renal clearance and high spleen uptake. The U87-CD4-CCR5 cells had significantly higher uptake in comparison to the U87-MG cells. The cell uptake was reduced by three times with DAPTA, indicating the receptor specificity of the uptake. Autoradiographic images showed significantly higher lesion uptake of 111 In-DOTA-DAPTA in ApoE -/- mice than that in C57BL/6 mice. The tracer uptake in 4 month old ApoE -/- high fat diet (HFD) mice with blocking agent was twofold lower than the same mice without the blocking agent, demonstrating the specificity of the tracer for the CCR5 receptor. 111 In-DOTA-DAPTA, specifically targeting chemokine receptor CCR5, is a potential SPECT agent for imaging inflammation in atherosclerosis.
Imaging of tumor hypermetabolism with near-infrared fluorescence contrast agents
NASA Astrophysics Data System (ADS)
Chen, Yu; Zheng, Gang; Zhang, Zhihong; Blessington, Dana; Intes, Xavier; Achilefu, Samuel I.; Chance, Britton
2004-08-01
We have developed a high sensitivity near-infrared (NIR) optical imaging system for non-invasive cancer detection through molecular labeled fluorescent contrast agents. Near-infrared (NIR) imaging can probe tissue deeply thus possess the potential for non-invasively detection of breast or lymph node cancer. Recent developments in molecular beacons can selectively label various pre-cancer/cancer signatures and provide high tumor to background contrast. To increase the sensitivity in detecting fluorescent photons and the accuracy of localization, phase cancellation (in- and anti-phase) device is employed. This frequency-domain system utilizes the interference-like pattern of diffuse photon density wave to achieve high detection sensitivity and localization accuracy for the fluorescent heterogeneity embedded inside the scattering media. The opto-electronic system consists of the laser sources, fiber optics, interference filter to select the fluorescent photons and the high sensitivity photon detector (photomultiplier tube). The source-detector pair scans the tissue surface in multiple directions and the two-dimensional localization image can be obtained using goniometric reconstruction. In vivo measurements with tumor-bearing mouse model using the novel Cypate-mono-2-deoxy-glucose (Cypate-2-D-Glucosamide) fluorescent contrast agent, which targets the enhanced tumor glycolysis, demonstrated the feasibility on detection of 2 cm deep subsurface tumor in the tissue-like medium, with a localization accuracy within 2 ~ 3 mm. This instrument has the potential for tumor diagnosis and imaging, and the accuracy of the localization suggests that this system could help to guide the clinical fine-needle biopsy. This portable device would be complementary to X-ray mammogram and provide add-on information on early diagnosis and localization of early breast tumor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orza, Anamaria; Wu, Hui; Li, Yuancheng
Purpose: To develop a core/shell nanodimer of gold (core) and silver iodine (shell) as a dual-modal contrast-enhancing agent for biomarker targeted x-ray computed tomography (CT) and photoacoustic imaging (PAI) applications. Methods: The gold and silver iodine core/shell nanodimer (Au/AgICSD) was prepared by fusing together components of gold, silver, and iodine. The physicochemical properties of Au/AgICSD were then characterized using different optical and imaging techniques (e.g., HR- transmission electron microscope, scanning transmission electron microscope, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, Z-potential, and UV-vis). The CT and PAI contrast-enhancing effects were tested and then compared with a clinically used CT contrast agentmore » and Au nanoparticles. To confer biocompatibility and the capability for efficient biomarker targeting, the surface of the Au/AgICSD nanodimer was modified with the amphiphilic diblock polymer and then functionalized with transferrin for targeting transferrin receptor that is overexpressed in various cancer cells. Cytotoxicity of the prepared Au/AgICSD nanodimer was also tested with both normal and cancer cell lines. Results: The characterizations of prepared Au/AgI core/shell nanostructure confirmed the formation of Au/AgICSD nanodimers. Au/AgICSD nanodimer is stable in physiological conditions for in vivo applications. Au/AgICSD nanodimer exhibited higher contrast enhancement in both CT and PAI for dual-modality imaging. Moreover, transferrin functionalized Au/AgICSD nanodimer showed specific binding to the tumor cells that have a high level of expression of the transferrin receptor. Conclusions: The developed Au/AgICSD nanodimer can be used as a potential biomarker targeted dual-modal contrast agent for both or combined CT and PAI molecular imaging.« less
Cell-permeable Ln(III) chelate-functionalized InP quantum dots as multimodal imaging agents.
Stasiuk, Graeme J; Tamang, Sudarsan; Imbert, Daniel; Poillot, Cathy; Giardiello, Marco; Tisseyre, Céline; Barbier, Emmanuel L; Fries, Pascal Henry; de Waard, Michel; Reiss, Peter; Mazzanti, Marinella
2011-10-25
Quantum dots (QDs) are ideal scaffolds for the development of multimodal imaging agents, but their application in clinical diagnostics is limited by the toxicity of classical CdSe QDs. A new bimodal MRI/optical nanosized contrast agent with high gadolinium payload has been prepared through direct covalent attachment of up to 80 Gd(III) chelates on fluorescent nontoxic InP/ZnS QDs. It shows a high relaxivity of 900 mM(-1) s(-1) (13 mM(-1 )s(-1) per Gd ion) at 35 MHz (0.81 T) and 298 K, while the bright luminescence of the QDs is preserved. Eu(III) and Tb(III) chelates were also successfully grafted to the InP/ZnS QDs. The absence of energy transfer between the QD and lanthanide emitting centers results in a multicolor system. Using this convenient direct grafting strategy additional targeting ligands can be included on the QD. Here a cell-penetrating peptide has been co-grafted in a one-pot reaction to afford a cell-permeable multimodal multimeric MRI contrast agent that reports cellular localization by fluorescence and provides high relaxivity and increased tissue retention with respect to commercial contrast agents.
Pani, Silvia; Saifuddin, Sarene C; Ferreira, Filipa I M; Henthorn, Nicholas; Seller, Paul; Sellin, Paul J; Stratmann, Philipp; Veale, Matthew C; Wilson, Matthew D; Cernik, Robert J
2017-09-01
Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.
Ale, Angelique; Ermolayev, Vladimir; Deliolanis, Nikolaos C; Ntziachristos, Vasilis
2013-05-01
The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method. Despite this progress, the detection sensitivity of targeted fluorescence agents remains limited by nonspecific background accumulation of the fluorochrome employed, which complicates early detection of murine cancers. Therefore we examine whether x-ray CT information and bulk fluorescence detection can be combined to increase detection sensitivity. Correspondingly, we research the performance of a data-driven fluorescence background estimator employed for subtraction of background fluorescence from acquisition data. Using mice containing known fluorochromes ex vivo, we demonstrate the reduction of background signals from reconstructed images and sensitivity improvements. Finally, by applying the method to in vivo data from K-ras transgenic mice developing lung cancer, we find small tumors at an early stage compared with reconstructions performed using raw data. We conclude with the benefits of employing fluorescence subtraction in hybrid FMT-XCT for early detection studies.
Multifunctional nanomaterials for advanced molecular imaging and cancer therapy
NASA Astrophysics Data System (ADS)
Subramaniam, Prasad
Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on the synthesis and use of a biodegradable dendritic polypeptide-based nanocarrier for the delivery of multiple anticancer drugs and siRNA to brain tumor cells. The co-delivery of important anticancer agents using a single platform was shown to increase the efficacy of the drugs manyfold, ensuring the cancer cell-specific delivery and minimizing dose limiting toxicities of the individual drugs. This would be of immense importance when used in vivo.
Das, Manasi; Duan, Wei; Sahoo, Sanjeeb K
2015-02-01
The promising proposition of multifunctional nanoparticles for cancer diagnostics and therapeutics has inspired the development of theranostic approach for improved cancer therapy. Moreover, active targeting of drug carrier to specific target site is crucial for providing efficient delivery of therapeutics and imaging agents. In this regard, the present study investigates the theranostic capabilities of nutlin-3a loaded poly (lactide-co-glycolide) nanoparticles, functionalized with a targeting ligand (EpCAM aptamer) and an imaging agent (quantum dots) for cancer therapy and bioimaging. A wide spectrum of in vitro analysis (cellular uptake study, cytotoxicity assay, cell cycle and apoptosis analysis, apoptosis associated proteins study) revealed superior therapeutic potentiality of targeted NPs over other formulations in EpCAM expressing cells. Moreover, our nanotheranostic system served as a superlative bio-imaging modality both in 2D monolayer culture and tumor spheroid model. Our result suggests that, these aptamer-guided multifunctional NPs may act as indispensable nanotheranostic approach toward cancer therapy. This study investigated the theranostic capabilities of nutlin-3a loaded poly (lactide-co-glycolide) nanoparticles functionalized with a targeting ligand (EpCAM aptamer) and an imaging agent (quantum dots) for cancer therapy and bioimaging. It was concluded that the studied multifunctional targeted nanoparticle may become a viable and efficient approach in cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Roeder, Ryan K.; Curtis, Tyler E.; Nallathamby, Prakash D.; Irimata, Lisa E.; McGinnity, Tracie L.; Cole, Lisa E.; Vargo-Gogola, Tracy; Cowden Dahl, Karen D.
2017-03-01
Precision imaging is needed to realize precision medicine in cancer detection and treatment. Molecular imaging offers the ability to target and identify tumors, associated abnormalities, and specific cell populations with overexpressed receptors. Nuclear imaging and radionuclide probes provide high sensitivity but subject the patient to a high radiation dose and provide limited spatiotemporal information, requiring combined computed tomography (CT) for anatomic imaging. Therefore, nanoparticle contrast agents have been designed to enable molecular imaging and improve detection in CT alone. Core-shell nanoparticles provide a powerful platform for designing tailored imaging probes. The composition of the core is chosen for enabling strong X-ray contrast, multi-agent imaging with photon-counting spectral CT, and multimodal imaging. A silica shell is used for protective, biocompatible encapsulation of the core composition, volume-loading fluorophores or radionuclides for multimodal imaging, and facile surface functionalization with antibodies or small molecules for targeted delivery. Multi-agent (k-edge) imaging and quantitative molecular imaging with spectral CT was demonstrated using current clinical agents (iodine and BaSO4) and a proposed spectral library of contrast agents (Gd2O3, HfO2, and Au). Bisphosphonate-functionalized Au nanoparticles were demonstrated to enhance sensitivity and specificity for the detection of breast microcalcifications by conventional radiography and CT in both normal and dense mammary tissue using murine models. Moreover, photon-counting spectral CT enabled quantitative material decomposition of the Au and calcium signals. Immunoconjugated Au@SiO2 nanoparticles enabled highly-specific targeting of CD133+ ovarian cancer stem cells for contrast-enhanced detection in model tumors.
Single-photon emitting radiotracers produced by cyclotrons for myocardial imaging
NASA Astrophysics Data System (ADS)
Kulkarni, Padmakar V.
1989-04-01
Radionuclides produced by cyclotron have played an important role in clinical nuclear medicine. Among these, 210T1, 123I, 111In and 67Ga in various chemical forms have important applications in the diagnosis of cancer and heart disease using scintigraphic imaging techniques. Cardiac imaging using nuclear scintigraphy and echocardiography has been among the fastest growing diagnostic technologies in medicine during the past 15 years. Development of new tracers in conjunction with new equipment with better resolution has contributed to the better quantification and analysis of test results. The development of new biomolecules, monoclonal antibodies to myosin, platelets, fibrin and other receptor binding agents has added a new dimension to nuclear imaging studies.
Shiraishi, Kouichi
2013-01-01
We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1-weighted images at 24 h after i.v. injection. To observe enhancement of the EPR effect by Cderiv pretreatment on tumor targeting, we used the contrast agent for the evaluation by means of MRI. Cderiv pretreatment significantly enhanced tumor accumulation of the contrast agent. Interestingly, very high signal intensity in tumor region was found at 24 h after the contrast agent injection in Cderiv pretreated mice. The contrast agent visualized a microenvironmental change in tumor. These results indicate that the contrast agent exhibits potential use for tumor diagnostic agent. To combine with a polymeric micelle carrier system for therapeutic agent, the usage of the combination makes a new concept of "theranostic" for a better cancer treatment.
Karunamuni, Roshan; Naha, Pratap C; Lau, Kristen C; Al-Zaki, Ajlan; Popov, Anatoliy V; Delikatny, Edward J; Tsourkas, Andrew; Cormode, David P; Maidment, Andrew D A
2016-09-01
Dual-energy (DE) mammography has recently entered the clinic. Previous theoretical and phantom studies demonstrated that silver provides greater contrast than iodine for this technique. Our objective was to characterize and evaluate in vivo a prototype silver contrast agent ultimately intended for DE mammography. The prototype silver contrast agent was synthesized using a three-step process: synthesis of a silver core, silica encapsulation and PEG coating. The nanoparticles were then injected into mice to determine their accumulation in various organs, blood half-life and dual-energy contrast. All animal procedures were approved by the institutional animal care and use committee. The final diameter of the nanoparticles was measured to be 102 (±9) nm. The particles were removed from the vascular circulation with a half-life of 15 min, and accumulated in macrophage-rich organs such as the liver, spleen and lymph nodes. Dual-energy subtraction techniques increased the signal difference-to-noise ratio of the particles by as much as a factor of 15.2 compared to the single-energy images. These nanoparticles produced no adverse effects in mice. Silver nanoparticles are an effective contrast agent for dual-energy x-ray imaging. With further design improvements, silver nanoparticles may prove valuable in breast cancer screening and diagnosis. • Silver has potential as a contrast agent for DE mammography. • Silica-coated silver nanoparticles are biocompatible and suited for in vivo use. • Silver nanoparticles produce strong contrast in vivo using DE mammography imaging systems.
Magnetic and Plasmonic Contrast Agents in Optical Coherence Tomography
Oldenburg, Amy L.; Blackmon, Richard L.; Sierchio, Justin M.
2016-01-01
Optical coherence tomography (OCT) has gained widespread application for many biomedical applications, yet the traditional array of contrast agents used in incoherent imaging modalities do not provide contrast in OCT. Owing to the high biocompatibility of iron oxides and noble metals, magnetic and plasmonic nanoparticles, respectively, have been developed as OCT contrast agents to enable a range of biological and pre-clinical studies. Here we provide a review of these developments within the past decade, including an overview of the physical contrast mechanisms and classes of OCT system hardware addons needed for magnetic and plasmonic nanoparticle contrast. A comparison of the wide variety of nanoparticle systems is also presented, where the figures of merit depend strongly upon the choice of biological application. PMID:27429543
Mahajan, A; Goh, V; Basu, S; Vaish, R; Weeks, A J; Thakur, M H; Cook, G J
2015-10-01
Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure-function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [(18)F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed "theranostics". Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Smart Contrast Agents for Magnetic Resonance Imaging.
Bonnet, Célia S; Tóth, Éva
2016-01-01
By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.
Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.
Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid
2013-03-01
Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.
Optical Coherence Tomography for Brain Imaging and Developmental Biology
Men, Jing; Huang, Yongyang; Solanki, Jitendra; Zeng, Xianxu; Alex, Aneesh; Jerwick, Jason; Zhang, Zhan; Tanzi, Rudolph E.; Li, Airong; Zhou, Chao
2016-01-01
Optical coherence tomography (OCT) is a promising research tool for brain imaging and developmental biology. Serving as a three-dimensional optical biopsy technique, OCT provides volumetric reconstruction of brain tissues and embryonic structures with micrometer resolution and video rate imaging speed. Functional OCT enables label-free monitoring of hemodynamic and metabolic changes in the brain in vitro and in vivo in animal models. Due to its non-invasiveness nature, OCT enables longitudinal imaging of developing specimens in vivo without potential damage from surgical operation, tissue fixation and processing, and staining with exogenous contrast agents. In this paper, various OCT applications in brain imaging and developmental biology are reviewed, with a particular focus on imaging heart development. In addition, we report findings on the effects of a circadian gene (Clock) and high-fat-diet on heart development in Drosophila melanogaster. These findings contribute to our understanding of the fundamental mechanisms connecting circadian genes and obesity to heart development and cardiac diseases. PMID:27721647
New frontier in hypericin-mediated diagnosis of cancer with current optical technologies.
Olivo, Malini; Fu, Chit Yaw; Raghavan, Vijaya; Lau, Weber Kam On
2012-02-01
Photosensitizers (PSs) have shown great potentials as molecular contrast agents in photodynamic diagnosis (PDD) of cancer. While the diagnostic values of PSs have been proven previously, little efforts have been put into developing optical imaging and diagnostic algorithms. In this article, we review the recent development of optical probes that have been used in conjunction with a potent PS, hypericin (HY). Various fluorescence techniques such as laser confocal microscopy, fluorescence urine cytology, endoscopy and endomicroscopy are covered. We will also discuss about image processing and classification approaches employed for accurate PDD. We anticipate that continual efforts in these developments could lead to an objective PDD and complete surgical clearance of tumors. Recent advancements in nanotechnology have also opened new horizons for PSs. The use of biocompatible gold nanoparticles as carrier for enhanced targeted delivery of HY has been attained. In addition, plasmonic properties of nanoparticles were harnessed to induce localized hyperthermia and to manage the release of PS molecules, enabling a better therapeutic outcome of a combined photodynamic and photothermal therapy. Finally, we discuss how nanoparticles can be used as contrast agents for other optical techniques such as optical coherence tomography and surface-enhanced Raman scattering imaging.
Sheeran, Paul S; Luois, Samantha; Dayton, Paul A; Matsunaga, Terry O
2011-09-06
Recent efforts in the area of acoustic droplet vaporization with the objective of designing extravascular ultrasound contrast agents has led to the development of stabilized, lipid-encapsulated nanodroplets of the highly volatile compound decafluorobutane (DFB). We developed two methods of generating DFB droplets, the first of which involves condensing DFB gas (boiling point from -1.1 to -2 °C) followed by extrusion with a lipid formulation in HEPES buffer. Acoustic droplet vaporization of micrometer-sized lipid-coated droplets at diagnostic ultrasound frequencies and mechanical indices were confirmed optically. In our second formulation methodology, we demonstrate the formulation of submicrometer-sized lipid-coated nanodroplets based upon condensation of preformed microbubbles containing DFB. The droplets are routinely in the 200-300 nm range and yield microbubbles on the order of 1-5 μm once vaporized, consistent with ideal gas law expansion predictions. The simple and effective nature of this methodology allows for the development of a variety of different formulations that can be used for imaging, drug and gene delivery, and therapy. This study is the first to our knowledge to demonstrate both a method of generating ADV agents by microbubble condensation and formulation of primarily submicrometer droplets of decafluorobutane that remain stable at physiological temperatures. Finally, activation of DFB nanodroplets is demonstrated using pressures within the FDA guidelines for diagnostic imaging, which may minimize the potential for bioeffects in humans. This methodology offers a new means of developing extravascular contrast agents for diagnostic and therapeutic applications. © 2011 American Chemical Society
Peptide Based Radiopharmaceuticals: Specific Construct Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, P; Rhodes, B A; Sharma, S S
1997-10-21
The objective of this project was to develop receptor based peptides for diagnostic imaging and therapy. A series of peptides related to cell adhesion molecules (CAM) and immune regulation were designed for radiolabeling with 99mTc and evaluated in animal models as potential diagnostic imaging agents for various disease conditions such as thrombus (clot), acute kidney failure, and inflection/inflammation imaging. The peptides for this project were designed by the industrial partner, Palatin Technologies, (formerly Rhomed, Inc.) using various peptide design approaches including a newly developed rational computer assisted drug design (CADD) approach termed MIDAS (Metal ion Induced Distinctive Array of Structures).more » In this approach, the biological function domain and the 99mTc complexing domain are fused together so that structurally these domains are indistinguishable. This approach allows construction of conformationally rigid metallo-peptide molecules (similar to cyclic peptides) that are metabolically stable in-vivo. All the newly designed peptides were screened in various in vitro receptor binding and functional assays to identify a lead compound. The lead compounds were formulated in a one-step 99mTc labeling kit form which were studied by BNL for detailed in-vivo imaging using various animals models of human disease. Two main peptides usingMIDAS approach evolved and were investigated: RGD peptide for acute renal failure and an immunomodulatory peptide derived from tuftsin (RMT-1) for infection/inflammation imaging. Various RGD based metallopeptides were designed, synthesized and assayed for their efficacy in inhibiting ADP-induced human platelet aggregation. Most of these peptides displayed biological activity in the 1-100 µM range. Based on previous work by others, RGD-I and RGD-II were evaluated in animal models of acute renal failure. These earlier studies showed that after acute ischemic injury the renal cortex displays RGD receptor with higher density. The results have indicated good diagnostic potential for their use in this clinical situation, as an imaging agent to diagnose ischemic renal injury and differentiate from other causes. Very promising results were obtained with newly developed tuftsin related metallopeptides. A number of these peptides displayed high potency (nM range) in imaging infection. Antagonists were successfully used to image experimentally induced abscesses in rodents. One of the antagonists, termed 99mTc-RMT-1, was evaluated in rabbits and dogs for its applicability as infection/inflammation imaging agent. Both in dog and rabbit infection/inflammation models 99mTc-RMT-1 could be used for rapid scintigraphic diagnosis. A very high and rapid uptake was observed in both soft tissue and bone infection providing a good target to background contrast. The agent also allowed distinction between bone fracture and osteomyelitis. All these results warrant human clinical trials with 99mTc-RMT-1 which may help replace hazardous ex-vivo WBC labeling procedures that are current clincial modality for imaging infection foci.« less
Pennachi, Caterina Maria Pia Simoni; Moura, Diogo Turiani Hourneaux de; Amorim, Renato Bastos Pimenta; Guedes, Hugo Gonçalo; Kumbhari, Vivek; Moura, Eduardo Guimarães Hourneaux de
2017-01-01
The diagnosis of corrosion cancer should be suspected in patients with corrosive ingestion if after a latent period of negligible symptoms there is development of dysphagia, or poor response to dilatation, or if respiratory symptoms develop in an otherwise stable patient of esophageal stenosis. Narrow Band Imaging detects superficial squamous cell carcinoma more frequently than white-light imaging, and has significantly higher sensitivity and accuracy compared with white-light. To determinate the clinical applicability of Narrow Band Imaging versus Lugol´s solution chromendoscopy for detection of early esophageal cancer in patients with caustic/corrosive agent stenosis. Thirty-eight patients, aged between 28-84 were enrolled and examined by both Narrow Band Imaging and Lugol´s solution chromendoscopy. A 4.9mm diameter endoscope was used facilitating examination of a stenotic area without dilation. Narrow Band Imaging was performed and any lesion detected was marked for later biopsy. Then, Lugol´s solution chromoendoscopy was performed and biopsies were taken at suspicious areas. Patients who had abnormal findings at the routine, Narrow Band Imaging or Lugol´s solution chromoscopy exam had their stenotic ring biopsied. We detected nine suspicious lesions with Narrow Band Imaging and 14 with Lugol´s solution chromendoscopy. The sensitivity and specificity of the Narrow Band Imaging was 100% and 80.6%, and with Lugol´s chromoscopy 100% and 66.67%, respectively. Five (13%) suspicious lesions were detected both with Narrow Band Imaging and Lugol's chromoscopy, two (40%) of these lesions were confirmed carcinoma on histopathological examination. Narrow Band Imaging is an applicable option to detect and evaluate cancer in patients with caustic /corrosive stenosis compared to the Lugol´s solution chromoscopy.
A challenge for theranostics: is the optimal particle for therapy also optimal for diagnostics?
NASA Astrophysics Data System (ADS)
Dreifuss, Tamar; Betzer, Oshra; Shilo, Malka; Popovtzer, Aron; Motiei, Menachem; Popovtzer, Rachela
2015-09-01
Theranostics is defined as the combination of therapeutic and diagnostic capabilities in the same agent. Nanotechnology is emerging as an efficient platform for theranostics, since nanoparticle-based contrast agents are powerful tools for enhancing in vivo imaging, while therapeutic nanoparticles may overcome several limitations of conventional drug delivery systems. Theranostic nanoparticles have drawn particular interest in cancer treatment, as they offer significant advantages over both common imaging contrast agents and chemotherapeutic drugs. However, the development of platforms for theranostic applications raises critical questions; is the optimal particle for therapy also the optimal particle for diagnostics? Are the specific characteristics needed to optimize diagnostic imaging parallel to those required for treatment applications? This issue is examined in the present study, by investigating the effect of the gold nanoparticle (GNP) size on tumor uptake and tumor imaging. A series of anti-epidermal growth factor receptor conjugated GNPs of different sizes (diameter range: 20-120 nm) was synthesized, and then their uptake by human squamous cell carcinoma head and neck cancer cells, in vitro and in vivo, as well as their tumor visualization capabilities were evaluated using CT. The results showed that the size of the nanoparticle plays an instrumental role in determining its potential activity in vivo. Interestingly, we found that although the highest tumor uptake was obtained with 20 nm C225-GNPs, the highest contrast enhancement in the tumor was obtained with 50 nm C225-GNPs, thus leading to the conclusion that the optimal particle size for drug delivery is not necessarily optimal for imaging. These findings stress the importance of the investigation and design of optimal nanoparticles for theranostic applications.Theranostics is defined as the combination of therapeutic and diagnostic capabilities in the same agent. Nanotechnology is emerging as an efficient platform for theranostics, since nanoparticle-based contrast agents are powerful tools for enhancing in vivo imaging, while therapeutic nanoparticles may overcome several limitations of conventional drug delivery systems. Theranostic nanoparticles have drawn particular interest in cancer treatment, as they offer significant advantages over both common imaging contrast agents and chemotherapeutic drugs. However, the development of platforms for theranostic applications raises critical questions; is the optimal particle for therapy also the optimal particle for diagnostics? Are the specific characteristics needed to optimize diagnostic imaging parallel to those required for treatment applications? This issue is examined in the present study, by investigating the effect of the gold nanoparticle (GNP) size on tumor uptake and tumor imaging. A series of anti-epidermal growth factor receptor conjugated GNPs of different sizes (diameter range: 20-120 nm) was synthesized, and then their uptake by human squamous cell carcinoma head and neck cancer cells, in vitro and in vivo, as well as their tumor visualization capabilities were evaluated using CT. The results showed that the size of the nanoparticle plays an instrumental role in determining its potential activity in vivo. Interestingly, we found that although the highest tumor uptake was obtained with 20 nm C225-GNPs, the highest contrast enhancement in the tumor was obtained with 50 nm C225-GNPs, thus leading to the conclusion that the optimal particle size for drug delivery is not necessarily optimal for imaging. These findings stress the importance of the investigation and design of optimal nanoparticles for theranostic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03119b
Development of a Multifaceted Ovarian Cancer Therapeutic and Imaging Agent
2011-04-01
by 1-ethyl-3- [3-(dimethylamino) propyl ]carbodiimide (EDC) and N-hydroxysulfonosuccinimide (SNHS) at pH 5.5 for 30 min with a molar ratio of...particle-coated migratory substrate that can act as a permanent record of cellular movement. The gold chloride solution was prepared using 0.342 g... Synthesis and clinical Evaluation. Anticancer Agents Med. Chem. McLane, M.A., Joerger, T., Mahmoud, A., 2008. Disintegrins in health and disease. Front
Experimental study on foam coverage on simulated longwall roof.
Reed, W R; Zheng, Y; Klima, S; Shahan, M R; Beck, T W
2017-01-01
Testing was conducted to determine the ability of foam to maintain roof coverage in a simulated longwall mining environment. Approximately 27 percent of respirable coal mine dust can be attributed to longwall shield movement, and developing controls for this dust source has been difficult. The application of foam is a possible dust control method for this source. Laboratory testing of two foam agents was conducted to determine the ability of the foam to adhere to a simulated longwall face roof surface. Two different foam generation methods were used: compressed air and blower air. Using a new imaging technology, image processing and analysis utilizing ImageJ software produced quantifiable results of foam roof coverage. For compressed air foam in 3.3 m/s (650 fpm) ventilation, 98 percent of agent A was intact while 95 percent of agent B was intact on the roof at three minutes after application. At 30 minutes after application, 94 percent of agent A was intact while only 20 percent of agent B remained. For blower air in 3.3 m/s (650 fpm) ventilation, the results were dependent upon nozzle type. Three different nozzles were tested. At 30 min after application, 74 to 92 percent of foam agent A remained, while 3 to 50 percent of foam agent B remained. Compressed air foam seems to remain intact for longer durations and is easier to apply than blower air foam. However, more water drained from the foam when using compressed air foam, which demonstrates that blower air foam retains more water at the roof surface. Agent A seemed to be the better performer as far as roof application is concerned. This testing demonstrates that roof application of foam is feasible and is able to withstand a typical face ventilation velocity, establishing this technique's potential for longwall shield dust control.
Experimental study on foam coverage on simulated longwall roof
Reed, W.R.; Zheng, Y.; Klima, S.; Shahan, M.R.; Beck, T.W.
2018-01-01
Testing was conducted to determine the ability of foam to maintain roof coverage in a simulated longwall mining environment. Approximately 27 percent of respirable coal mine dust can be attributed to longwall shield movement, and developing controls for this dust source has been difficult. The application of foam is a possible dust control method for this source. Laboratory testing of two foam agents was conducted to determine the ability of the foam to adhere to a simulated longwall face roof surface. Two different foam generation methods were used: compressed air and blower air. Using a new imaging technology, image processing and analysis utilizing ImageJ software produced quantifiable results of foam roof coverage. For compressed air foam in 3.3 m/s (650 fpm) ventilation, 98 percent of agent A was intact while 95 percent of agent B was intact on the roof at three minutes after application. At 30 minutes after application, 94 percent of agent A was intact while only 20 percent of agent B remained. For blower air in 3.3 m/s (650 fpm) ventilation, the results were dependent upon nozzle type. Three different nozzles were tested. At 30 min after application, 74 to 92 percent of foam agent A remained, while 3 to 50 percent of foam agent B remained. Compressed air foam seems to remain intact for longer durations and is easier to apply than blower air foam. However, more water drained from the foam when using compressed air foam, which demonstrates that blower air foam retains more water at the roof surface. Agent A seemed to be the better performer as far as roof application is concerned. This testing demonstrates that roof application of foam is feasible and is able to withstand a typical face ventilation velocity, establishing this technique’s potential for longwall shield dust control. PMID:29563765
Cope, FO; Abbruzzese, B; Sanders, J; Metz, W; Sturms, K; Ralph, D; Blue, M; Zhang, J; Bracci, P; Bshara, W; Behr, S; Maurer, T; Beverly, A; Blay, B; Damughatla, A; Larsen, M; Mountain, C; Neylon, E; Parcel, K; Raghuraman, K; Ricks, K; Rose, L; Sivakumar, A; Streck, N; Wang, B; Wasco, C; Williams, A; McGrath, M
2016-01-01
Summary In considering the challenges of approaches to clinical imaging, we are faced with choices that sometimes are impacted by rather dogmatic notions about what is a better or worse technology to achieve the most useful diagnostic image for the patient. For example, is PET or SPECT most useful in imaging any particular disease dissemination? The dictatorial approach would be to choose PET, all other matters being equal. But is such a totalitarian attitude toward imaging selection still valid? In the face of new receptor targeted SPECT agents one must consider the remarkable specificity and sensitivity of these agents. 99mTc-Tilmanocept is one of the newest of these agents, now approved for guiding sentinel node biopsy (SLNB) in several solid tumors. Tilmanocept has a Kd of 3×10−11 M, and it specificity for the CD206 receptor is unlike any other agent to date. This coupled with a number of facts, that specific disease-associated macrophages express this receptor (100 to 150 thousand receptors), the receptor has multiple binding sites for tilmanocept (>2 sites per receptor) and that these receptors are recycled every 15 minutes to bind more tilmanocept (acting as intracellular “drug compilers” of tilmanocept into non-degraded vesicles), give serious pause as to how we select our approaches to diagnostic imaging. Clinically, the size of SLNs varies greatly, some, anatomically, below the machine resolution of SPECT. Yet, with tilmanocept targeting, the SLNs are highly visible with macrophages stably accruing adequate 99mTc-tilmanocept counting statistics, as high target-to-background ratios can compensate for spatial resolution blurring. Importantly, it may be targeted imaging agents per se, again such as tilmanocept, which may significantly shrink any perceived chasm between the imaging technologies and anchor the diagnostic considerations in the targeting and specificity of the agent rather than any lingering dogma about the hardware as the basis for imaging approaches. Beyond the elements of imaging applications of these agents is their evolution to therapeutic agents as well, and even in the neo-logical realm of theranostics. Characteristics of agents such as tilmanocept that exploit the natural history of diseases with remarkably high specificity are the expectations for the future of patient- and disease-centered diagnosis and therapy. PMID:26924502
Cope, Frederick O; Abbruzzese, Bonnie; Sanders, James; Metz, Wendy; Sturms, Kristyn; Ralph, David; Blue, Michael; Zhang, Jane; Bracci, Paige; Bshara, Wiam; Behr, Spencer; Maurer, Toby; Williams, Kenneth; Walker, Joshua; Beverly, Allison; Blay, Brooke; Damughatla, Anirudh; Larsen, Mark; Mountain, Courtney; Neylon, Erin; Parcel, Kaeli; Raghuraman, Kapil; Ricks, Kevin; Rose, Lucas; Sivakumar, Akhilesh; Streck, Nicholas; Wang, Bryan; Wasco, Christopher; Williams, Amifred; McGrath, Michael
2016-03-01
In considering the challenges of approaches to clinical imaging, we are faced with choices that sometimes are impacted by rather dogmatic notions about what is a better or worse technology to achieve the most useful diagnostic image for the patient. For example, is PET or SPECT most useful in imaging any particular disease dissemination? The dictatorial approach would be to choose PET, all other matters being equal. But is such a totalitarian attitude toward imaging selection still valid? In the face of new receptor targeted SPECT agents one must consider the remarkable specificity and sensitivity of these agents. (99m)Tc-Tilmanocept is one of the newest of these agents, now approved for guiding sentinel node biopsy (SLNB) in several solid tumors. Tilmanocept has a Kd of 3×10(-11)M, and it specificity for the CD206 receptor is unlike any other agent to date. This coupled with a number of facts, that specific disease-associated macrophages express this receptor (100 to 150 thousand receptors), that the receptor has multiple binding sites for tilmanocept (>2 sites per receptor) and that these receptors are recycled every 15 min to bind more tilmanocept (acting as intracellular "drug compilers" of tilmanocept into non-degraded vesicles), gives serious pause as to how we select our approaches to diagnostic imaging. Clinically, the size of SLNs varies greatly, some, anatomically, below the machine resolution of SPECT. Yet, with tilmanocept targeting, the SLNs are highly visible with macrophages stably accruing adequate (99m)Tc-tilmanocept counting statistics, as high target-to-background ratios can compensate for spatial resolution blurring. Importantly, it may be targeted imaging agents per se, again such as tilmanocept, which may significantly shrink any perceived chasm between the imaging technologies and anchor the diagnostic considerations in the targeting and specificity of the agent rather than any lingering dogma about the hardware as the basis for imaging approaches. Beyond the elements of imaging applications of these agents is their evolution to therapeutic agents as well, and even in the neo-logical realm of theranostics. Characteristics of agents such as tilmanocept that exploit the natural history of diseases with remarkably high specificity are the expectations for the future of patient- and disease-centered diagnosis and therapy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Stewart, Rachel C; Patwa, Amit N; Lusic, Hrvoje; Freedman, Jonathan D; Wathier, Michel; Snyder, Brian D; Guermazi, Ali; Grinstaff, Mark W
2017-07-13
Contrast agents that go beyond qualitative visualization and enable quantitative assessments of functional tissue performance represent the next generation of clinically useful imaging tools. An optimized and efficient large-scale synthesis of a cationic iodinated contrast agent (CA4+) is described for imaging articular cartilage. Contrast-enhanced CT (CECT) using CA4+ reveals significantly greater agent uptake of CA4+ in articular cartilage compared to that of similar anionic or nonionic agents, and CA4+ uptake follows Donnan equilibrium theory. The CA4+ CECT attenuation obtained from imaging ex vivo human hip cartilage correlates with the glycosaminoglycan content, equilibrium modulus, and coefficient of friction, which are key indicators of cartilage functional performance and osteoarthritis stage. Finally, preliminary toxicity studies in a rat model show no adverse events, and a pharmacokinetics study documents a peak plasma concentration 30 min after dosing, with the agent no longer present in vivo at 96 h via excretion in the urine.
Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun
2015-10-28
Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery.
Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun
2015-01-01
Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery. PMID:26507179
Li, Lele; Tong, Rong; Li, Mengyuan; Kohane, Daniel S
2016-03-01
Nanoparticles with combined diagnostic and therapeutic functions are promising tools for cancer diagnosis and treatment. Here, we demonstrate a theranostic nanoparticle that integrates an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile supramolecular self-assembly synthesis, where the anti-cancer drug gemcitabine-5'-monophosphate (a phosphorylated active metabolite of the anti-cancer drug gemcitabine) was used to coordinate with Gd(III) to self-assemble into theranostic nanoparticles. The formulation exhibits a strong T1 contrast signal for magnetic resonance imaging of tumors in vivo, with enhanced retention time. Furthermore, the nanoparticles did not require other inert nanocarriers or excipients and thus had an exceptionally high drug loading (55 wt%), resulting in the inhibition of MDA-MB-231 tumor growth in mice. Recent advances in nanoparticle-based drug delivery systems have spurred the development of "theranostic" multifunctional nanoparticles, which combine therapeutic and diagnostic functionalities in a single formulation. Developing simple and efficient synthetic strategies for the construction of nanotheranostics with high drug loading remains a challenge. Here, we demonstrate a theranostic nanoparticle that integrates high loadings of an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile synthesis. The nanoparticles were better T1 contrast agents than currently used Gd-DTPA and had prolonged retention in tumor. Moreover they exhibited enhanced in vivo antitumor activity compared to free drug in a breast cancer xenograft mouse model. The strategy provides a scalable way to fabricate nanoparticles that enables enhancement of both therapeutic and diagnostic capabilities. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Pu, Yang
Optical spectroscopy and imaging using near-infrared (NIR) light provides powerful tools for non-invasive detection of cancer in tissue. Optical techniques are capable of quantitative reconstructions maps of tissue absorption and scattering properties, thus can map in vivo the differences in the content of certain marker chromophores and/or fluorophores in normal and cancerous tissues (for example: water, tryptophan, collagen and NADH contents). Potential clinical applications of optical spectroscopy and imaging include functional tumor detection and photothermal therapeutics. Optical spectroscopy and imaging apply contrasts from intrinsic tissue chromophores such as water, collagen and NADH, and extrinsic optical contrast agents such as Indocyanine Green (ICG) to distinguish disease tissue from the normal one. Fluorescence spectroscopy and imaging also gives high sensitivity and specificity for biomedical diagnosis. Recent developments on specific-targeting fluorophores such as small receptor-targeted dye-peptide conjugate contrast agent offer high contrast between normal and cancerous tissues hence provide promising future for early tumour detection. This thesis focus on a study to distinguish the cancerous prostate tissue from the normal prostate tissues with enhancement of specific receptor-targeted prostate cancer contrast agents using optical spectroscopy and imaging techniques. The scattering and absorption coefficients, and anisotropy factor of cancerous and normal prostate tissues were investigated first as the basis for the biomedical diagnostic and optical imaging. Understanding the receptors over-expressed prostate cancer cells and molecular target mechanism of ligand, two small ICG-derivative dye-peptides, namely Cypate-Bombesin Peptide Analogue Conjugate (Cybesin) and Cypate-Octreotate Peptide Conjugate (Cytate), were applied to study their clinical potential for human prostate cancer detection. In this work, the steady-state and time-resolved fluorescence spectroscopy of Cybesin (Cytate) in solution, and in cancerous and normal prostate tissues were studied. It was found that more Cybesin (Cytate) was uptaken in the cancerous prostate tissue than those in the normal tissue. The preferential uptake of Cybesin (Cytate) in cancerous tissue was used to image and distinguish cancerous areas from the normal tissue. To investigate rotational dynamics and fluorescence polarization anisotropy of the contrast agents in prostate tissues, an analytical model was used to extract the rotational times and polarization anisotropies, which were observed for higher values of Cybesin (Cytate)-stained cancerous prostate tissue in comparison with the normal tissue. These reflect changes of microstructures of cancerous and normal tissues and their different binding affinity with contrast agents. The results indicate that the use of optical spectroscopy and imaging combined with receptor-targeted contrast agents is a valuable tool to study microenvironmental changes of tissue, and detect prostate cancer in early stage.
Development of a green fluorescent protein metastatic-cancer chick-embryo drug-screen model.
Bobek, Vladimir; Plachy, Jiri; Pinterova, Daniela; Kolostova, Katarina; Boubelik, Michael; Jiang, Ping; Yang, Meng; Hoffman, Robert M
2004-01-01
The chick-embryo model has been an important tool to study tumor growth, metastasis, and angiogenesis. However, an imageable model with a genetic fluorescent tag in the growing and spreading cancer cells that is stable over time has not been developed. We report here the development of such an imageable fluorescent chick-embryo metastatic cancer model with the use of green fluorescent protein (GFP). Lewis lung carcinoma cells, stably expressing GFP, were injected on the 12th day of incubation in the chick embryo. GFP-Lewis lung carcinoma metastases were visualized by fluorescence, after seven days additional incubation, in the brain, heart, and sternum of the developing chick embryo, with the most frequent site being the brain. The combination of streptokinase and gemcitabine was evaluated in this GFP metastatic model. Twelve-day-old chick embryos were injected intravenously with GFP-Lewis lung cancer cells, along with these two agents either alone or in combination. The streptokinase-gemcitabine combination inhibited metastases at all sites. The effective dose of gemcitabine was found to be 10 mg/kg and streptokinase 2000 IU per embryo. The data in this report suggest that this new stably fluorescent imageable metastatic-cancer chick-embryo model will enable rapid screening of new antimetastatic agents.
General Anesthesia Inhibits the Activity of the “Glymphatic System”
Gakuba, Clement; Gaberel, Thomas; Goursaud, Suzanne; Bourges, Jennifer; Di Palma, Camille; Quenault, Aurélien; Martinez de Lizarrondo, Sara; Vivien, Denis; Gauberti, Maxime
2018-01-01
INTRODUCTION: According to the “glymphatic system” hypothesis, brain waste clearance is mediated by a continuous replacement of the interstitial milieu by a bulk flow of cerebrospinal fluid (CSF). Previous reports suggested that this cerebral CSF circulation is only active during general anesthesia or sleep, an effect mediated by the dilatation of the extracellular space. Given the controversies regarding the plausibility of this phenomenon and the limitations of currently available methods to image the glymphatic system, we developed original whole-brain in vivo imaging methods to investigate the effects of general anesthesia on the brain CSF circulation. METHODS: We used magnetic resonance imaging (MRI) and near-infrared fluorescence imaging (NIRF) after injection of a paramagnetic contrast agent or a fluorescent dye in the cisterna magna, in order to investigate the impact of general anesthesia (isoflurane, ketamine or ketamine/xylazine) on the intracranial CSF circulation in mice. RESULTS: In vivo imaging allowed us to image CSF flow in awake and anesthetized mice and confirmed the existence of a brain-wide CSF circulation. Contrary to what was initially thought, we demonstrated that the parenchymal CSF circulation is mainly active during wakefulness and significantly impaired during general anesthesia. This effect was especially significant when high doses of anesthetic agent were used (3% isoflurane). These results were consistent across the different anesthesia regimens and imaging modalities. Moreover, we failed to detect a significant change in the brain extracellular water volume using diffusion weighted imaging in awake and anesthetized mice. CONCLUSION: The parenchymal diffusion of small molecular weight compounds from the CSF is active during wakefulness. General anesthesia has a negative impact on the intracranial CSF circulation, especially when using a high dose of anesthetic agent. PMID:29344300
General Anesthesia Inhibits the Activity of the "Glymphatic System".
Gakuba, Clement; Gaberel, Thomas; Goursaud, Suzanne; Bourges, Jennifer; Di Palma, Camille; Quenault, Aurélien; de Lizarrondo, Sara Martinez; Vivien, Denis; Gauberti, Maxime
2018-01-01
INTRODUCTION: According to the "glymphatic system" hypothesis, brain waste clearance is mediated by a continuous replacement of the interstitial milieu by a bulk flow of cerebrospinal fluid (CSF). Previous reports suggested that this cerebral CSF circulation is only active during general anesthesia or sleep, an effect mediated by the dilatation of the extracellular space. Given the controversies regarding the plausibility of this phenomenon and the limitations of currently available methods to image the glymphatic system, we developed original whole-brain in vivo imaging methods to investigate the effects of general anesthesia on the brain CSF circulation. METHODS: We used magnetic resonance imaging (MRI) and near-infrared fluorescence imaging (NIRF) after injection of a paramagnetic contrast agent or a fluorescent dye in the cisterna magna, in order to investigate the impact of general anesthesia (isoflurane, ketamine or ketamine/xylazine) on the intracranial CSF circulation in mice. RESULTS: In vivo imaging allowed us to image CSF flow in awake and anesthetized mice and confirmed the existence of a brain-wide CSF circulation. Contrary to what was initially thought, we demonstrated that the parenchymal CSF circulation is mainly active during wakefulness and significantly impaired during general anesthesia. This effect was especially significant when high doses of anesthetic agent were used (3% isoflurane). These results were consistent across the different anesthesia regimens and imaging modalities. Moreover, we failed to detect a significant change in the brain extracellular water volume using diffusion weighted imaging in awake and anesthetized mice. CONCLUSION: The parenchymal diffusion of small molecular weight compounds from the CSF is active during wakefulness. General anesthesia has a negative impact on the intracranial CSF circulation, especially when using a high dose of anesthetic agent.
Kim, Myoung Hyoun; Kim, Seul-Gi; Kim, Dae-Weung
2018-06-15
We developed a Tc-99m and TAMRA-labeled peptide, Tc-99m arginine-arginine-leucine (RRL) peptide (TAMRA-GHEG-ECG-RRL), to target tumor cells and evaluated the diagnostic performance of Tc-99m TAMRA-GHEG-ECG-RRL as a dual-modality imaging agent for tumor in a murine model. TAMRA-GHEG-ECG-RRL was synthesized using Fmoc solid-phase peptide synthesis. Binding affinity and in vitro cellular uptake studies were performed. Gamma camera imaging, biodistribution, and ex vivo imaging studies were performed in murine models with PC-3 tumors. Tumor tissue slides were prepared and analyzed with immunohistochemistry using confocal microscopy. After radiolabeling procedures with Tc-99m, Tc-99m TAMRA-GHEG-ECG-RRL complexes were prepared in high yield (>96%). The K d of Tc-99m TAMRA-GHEG-ECG-RRL determined by saturation binding was 41.7 ± 7.8 nM. Confocal microscopy images of PC-3 cells incubated with TAMRA-GHEG-ECG-RRL showed strong fluorescence in the cytoplasm. Gamma camera imaging revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-RRL in tumors. Tumor uptake was effectively blocked by the coinjection of an excess concentration of RRL. Specific uptake of Tc-99m TAMRA-GHEG-ECG-RRL was confirmed by biodistribution, ex vivo imaging, and immunohistochemistry stain studies. In conclusion, in vivo and in vitro studies revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-RRL in tumors. Tc-99m TAMRA-GHEG-ECG-RRL has potential as a dual-modality tumor imaging agent. Copyright © 2018 John Wiley & Sons, Ltd.
Berke, Ian M.; Miola, Joseph P.; David, Michael A.; Smith, Melanie K.; Price, Christopher
2016-01-01
In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues. PMID:26930293
Berke, Ian M; Miola, Joseph P; David, Michael A; Smith, Melanie K; Price, Christopher
2016-01-01
In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues.
NASA Astrophysics Data System (ADS)
Reynolds, Jeffery S.; Thompson, Alan B.; Troy, Tamara L.; Mayer, Ralf H.; Waters, David J.; Sevick-Muraca, Eva M.
1999-07-01
In this paper we demonstrate the ability to detect the frequency-domain fluorescent signal from the contrast agent indocyanine green within the mammary chain of dogs with spontaneous mammary tumors. We use a gain-modulated image intensifier to rapidly capture multi-pixel images of the fluorescent modulation amplitude, modulation phase, and average intensity signals. Excitation is provided by a 100 MHz amplitude-modulated, 780 nm laser diode. Time series images of the uptake and clearance of the contrast agent in the diseased tissue are also presented.
Technical aspects of contrast-enhanced ultrasound (CEUS) examinations: tips and tricks.
Greis, C
2014-01-01
Ultrasound contrast agents have substantially extended the clinical value of ultrasound, allowing the assessment of blood flow and distribution in real-time down to microcapillary level. Selective imaging of contrast agent signals requires a contrast-specific imaging mode on the ultrasound scanner, allowing real-time separation of tissue and contrast agent signals. The creation of a contrast image requires a specific interaction between the insonated ultrasound wave and the contrast agent microbubbles, leading to persistent oscillation of the bubbles. Several technical and procedural parameters have a significant influence on the quality of CEUS images and should be controlled carefully to obtain good image quality and a reliable diagnosis. Achieving the proper balance between the respective parameters is a matter of technical knowledge and experience. Appropriate training and education should be mandatory for every investigator performing CEUS examinations.
Will nanotechnology influence targeted cancer therapy?
Grimm, Jan; Scheinberg, David A.
2011-01-01
The rapid development of techniques that enable synthesis (and manipulation) of matter on the nanometer scale, as well as the development of new nano-materials, will play a large role in disease diagnosis and treatment, specifically in targeted cancer therapy. Targeted nanocarriers are an intriguing means to selectively deliver high concentrations of cytotoxic agents or imaging labels directly to the cancer site. Often solubility issues and an unfavorable biodistribution can result in a suboptimal response of novel agents even though they are very potent. New nanoparticulate formulations allow simultaneous imaging and therapy (“theranostics”), which can provide a realistic means for the clinical implementation of such otherwise suboptimal formulations. In this review we will not attempt to provide a complete overview of the rapidly enlarging field of nanotechnology in cancer; rather, we will present properties specific to nanoparticles, and examples of their uses, which demonstrate their importance for targeted cancer therapy. PMID:21356476
Sheng, Zonghai; Song, Liang; Zheng, Jiaxiang; Hu, Dehong; He, Meng; Zheng, Mingbin; Gao, Guanhui; Gong, Ping; Zhang, Pengfei; Ma, Yifan; Cai, Lintao
2013-07-01
Theranostic agents are attracting a great deal of attention in personalized medicine. Here, we developed a protein-based, facile method for fabrication of nanosized, reduced graphene oxide (nano-rGO) with high stability and low cytotoxicity. We constructed highly integrated photoacoustic/ultrasonic dual-modality imaging and photothermal therapy platforms, and further demonstrated that the prepared nano-rGO can be used as ready-to-use theranostic agents for both photoacoustic imaging and photothermal therapy without further surface modification. Intravenous administration of nano-rGO in tumor-bearing mice showed rapid and significant photoacoustic signal enhancement in the tumor region, indicating its excellence for passive targeting and photoacoustic imaging. Meanwhile, using a continuous-wave near-infrared laser, cancer cells in vivo were efficiently ablated, due to the photothermal effect of nano-rGO. The results suggest that the nano-rGO with protein-assisted fabrication was well suited for photoacoustic imaging and photothermal therapy of tumor, which is promising for theranostic nanomedicine. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Cardiac radiology: centenary review.
de Roos, Albert; Higgins, Charles B
2014-11-01
During the past century, cardiac imaging technologies have revolutionized the diagnosis and treatment of acquired and congenital heart disease. Many important contributions to the field of cardiac imaging were initially reported in Radiology. The field developed from the early stages of cardiac imaging, including the use of coronary x-ray angiography and roentgen kymography, to nowadays the widely used echocardiographic, nuclear medicine, cardiac computed tomographic (CT), and magnetic resonance (MR) applications. It is surprising how many of these techniques were not recognized for their potential during their early inception. Some techniques were described in the literature but required many years to enter the clinical arena and presently continue to expand in terms of clinical application. The application of various CT and MR contrast agents for the diagnosis of myocardial ischemia is a case in point, as the utility of contrast agents continues to expand the noninvasive characterization of myocardium. The history of cardiac imaging has included a continuous process of advances in our understanding of the anatomy and physiology of the cardiovascular system, along with advances in imaging technology that continue to the present day.
Beltran, Mario A.; Morales, Verónica L.; Derlon, Nicolas; Morgenroth, Eberhard; Kaufmann, Rolf; Holzner, Markus
2017-01-01
X-ray tomography is a powerful tool giving access to the morphology of biofilms, in 3D porous media, at the mesoscale. Due to the high water content of biofilms, the attenuation coefficient of biofilms and water are very close, hindering the distinction between biofilms and water without the use of contrast agents. Until now, the use of contrast agents such as barium sulfate, silver-coated micro-particles or 1-chloronaphtalene added to the liquid phase allowed imaging the biofilm 3D morphology. However, these contrast agents are not passive and potentially interact with the biofilm when injected into the sample. Here, we use a natural inorganic compound, namely iron sulfate, as a contrast agent progressively bounded in dilute or colloidal form into the EPS matrix during biofilm growth. By combining a very long source-to-detector distance on a X-ray laboratory source with a Lorentzian filter implemented prior to tomographic reconstruction, we substantially increase the contrast between the biofilm and the surrounding liquid, which allows revealing the 3D biofilm morphology. A comparison of this new method with the method proposed by Davit et al (Davit et al., 2011), which uses barium sulfate as a contrast agent to mark the liquid phase was performed. Quantitative evaluations between the methods revealed substantial differences for the volumetric fractions obtained from both methods. Namely, contrast agent—biofilm interactions (e.g. biofilm detachment) occurring during barium sulfate injection caused a reduction of the biofilm volumetric fraction of more than 50% and displacement of biofilm patches elsewhere in the column. Two key advantages of the newly proposed method are that passive addition of iron sulfate maintains the integrity of the biofilm prior to imaging, and that the biofilm itself is marked by the contrast agent, rather than the liquid phase as in other available methods. The iron sulfate method presented can be applied to understand biofilm development and bioclogging mechanisms in porous materials and the obtained biofilm morphology could be an ideal basis for 3D numerical calculations of hydrodynamic conditions to investigate biofilm-flow coupling. PMID:28732010
Tosi, Umberto; Marnell, Christopher S.; Chang, Raymond; Cho, William C.; Ting, Richard; Maachani, Uday B.; Souweidane, Mark M.
2017-01-01
Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents. PMID:28208698
Tosi, Umberto; Marnell, Christopher S; Chang, Raymond; Cho, William C; Ting, Richard; Maachani, Uday B; Souweidane, Mark M
2017-02-08
Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood-brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a "wait-and-see" approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.
Red fluorescent zinc oxide nanoparticle: A novel platform for cancer targeting
Hong, Hao; Wang, Fei; Zhang, Yin; ...
2015-01-21
Multifunctional zinc oxide (ZnO) nanoparticles (NPs) with well-integrated multimodality imaging capacities have generated increasing research interest in the past decade. However, limited progress has been made in developing ZnO NP-based multimodality tumor-imaging agents. In this paper, we developed novel red fluorescent ZnO NPs and described the successful conjugation of 64Cu ( t 1/2 = 12.7 h) and TRC105, a chimeric monoclonal antibody against CD105, to these ZnO NPs via well-developed surface engineering procedures. The produced dual-modality ZnO NPs were readily applicable for positron emission tomography (PET) imaging and fluorescence imaging of the tumor vasculature. Their pharmacokinetics and tumor-targeting efficacy/specificity inmore » mice bearing murine breast 4T1 tumor were thoroughly investigated. In conclusion, ZnO NPs with dual-modality imaging properties can serve as an attractive candidate for future cancer theranostics.« less
Gadolinium Endohedral Metallofullerene-Based MRI Contrast Agents
NASA Astrophysics Data System (ADS)
Bolskar, Robert D.
With the ability to encapsulate and carry the highly paramagnetic Gd3+ ion, gadolinium endohedral metallofullerenes or "gadofullerenes" are being explored as alternatives to the chelate complexes that are currently used for contrast-enhanced magnetic resonance imaging (MRI). Reviewed here are the various water-soluble derivatives of the gadofullerenes Gd@C82, Gd@C60, and Gd3N@C80 that have been investigated as MRI contrast agents. The water proton r1 relaxivities of gadofullerenes can be more than an order of magnitude higher than those of clinically used chelate agents. Gadofullerene relaxivity mechanisms have been studied, and multiple factors are found to contribute to their high relaxivities. In vitro and in vivoT1-weighted MRI tests of gadofullerene derivatives have shown their utility as bright image-enhancing agents. The gadofullerene MRI contrast agents are a promising new and unique style of gadolinium carrier for advanced imaging applications, including cellular and molecular imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakshminarayan, Raghuram, E-mail: raghuram.lakshminarayan@hey.nhs.u; Simpson, James O.; Ettles, Duncan F., E-mail: Duncan.Ettles@hey.nhs.u
Magnetic resonance angiography (MRA) has become an established imaging modality in the management of lower-limb arterial disease, with emerging roles in treatment planning and follow-up. Contrast-enhanced MRA is now the most widely used technique with clinically acceptable results in the majority of patients. Difficulties in imaging and image interpretation are recognised in certain subgroups, including patients with critical limb ischaemia as well as patients with stents. Although newer contrast agents and refined imaging protocols may offer some solutions to these problems, this optimism is balanced by concerns about the toxicity of certain gadolinium chelates. Further development of interventional MRA remainsmore » one of the most significant challenges in the development of magnetic resonance imaging-guided peripheral vascular intervention. The status of MRA in managing patients with lower-limb arterial disease in current clinical practice is reviewed.« less
Optical imaging-guided cancer therapy with fluorescent nanoparticles
Jiang, Shan; Gnanasammandhan, Muthu Kumara; Zhang, Yong
2010-01-01
The diagnosis and treatment of cancer have been greatly improved with the recent developments in nanotechnology. One of the promising nanoscale tools for cancer diagnosis is fluorescent nanoparticles (NPs), such as organic dye-doped NPs, quantum dots and upconversion NPs that enable highly sensitive optical imaging of cancer at cellular and animal level. Furthermore, the emerging development of novel multi-functional NPs, which can be conjugated with several functional molecules simultaneously including targeting moieties, therapeutic agents and imaging probes, provides new potentials for clinical therapies and diagnostics and undoubtedly will play a critical role in cancer therapy. In this article, we review the types and characteristics of fluorescent NPs, in vitro and in vivo imaging of cancer using fluorescent NPs and multi-functional NPs for imaging-guided cancer therapy. PMID:19759055
NASA Astrophysics Data System (ADS)
Luk, Alex T.; Lin, Yuting; Grimmond, Brian; Sood, Anup; Uzgiris, Egidijus E.; Nalcioglu, Orhan; Gulsen, Gultekin
2013-03-01
Since diffuse optical tomography (DOT) is a low spatial resolution modality, it is desirable to validate its quantitative accuracy with another well-established imaging modality, such as magnetic resonance imaging (MRI). In this work, we have used a polymer based bi-functional MRI-optical contrast agent (Gd-DTPA-polylysine-IR800) in collaboration with GE Global Research. This multi-modality contrast agent provided not only co-localization but also the same kinetics, to cross-validate two imaging modalities. Bi-functional agents are injected to the rats and pharmacokinetics at the bladder are recovered using both optical and MR imaging. DOT results are validated using MRI results as "gold standard"
Pandey, Vivek; Pandey, Gajanan; Tripathi, Vinay Kumar; Yadav, Sapna; Mudiam, Mohana Krishna Reddy
2016-03-01
Quantum dots (QDs), one of the fastest developing and most exciting fluorescent materials, have attracted increasing interest in bioimaging and biomedical applications. The long-term stability and emission in the visible region of QDs have proved their applicability as a significant fluorophore in cell labelling. In this study, an attempt has been made to explore the efficacy of L-cysteine as a capping agent for Mn-doped ZnS QD for intracellular imaging. A room temperature nucleation strategy was adopted to prepare non-toxic, water-dispersible and biocompatible Mn:ZnS QDs. Aqueous and room temperature QDs with L-cysteine as a capping agent were found to be non-toxic even at a concentration of 1500 µg/mL and have wide applications in intracellular imaging. Copyright © 2015 John Wiley & Sons, Ltd.
Chiral DOTA chelators as an improved platform for biomedical imaging and therapy applications.
Dai, Lixiong; Jones, Chloe M; Chan, Wesley Ting Kwok; Pham, Tiffany A; Ling, Xiaoxi; Gale, Eric M; Rotile, Nicholas J; Tai, William Chi-Shing; Anderson, Carolyn J; Caravan, Peter; Law, Ga-Lai
2018-02-27
Despite established clinical utilisation, there is an increasing need for safer, more inert gadolinium-based contrast agents, and for chelators that react rapidly with radiometals. Here we report the syntheses of a series of chiral DOTA chelators and their corresponding metal complexes and reveal properties that transcend the parent DOTA compound. We incorporated symmetrical chiral substituents around the tetraaza ring, imparting enhanced rigidity to the DOTA cavity, enabling control over the range of stereoisomers of the lanthanide complexes. The Gd chiral DOTA complexes are shown to be orders of magnitude more inert to Gd release than [GdDOTA] - . These compounds also exhibit very-fast water exchange rates in an optimal range for high field imaging. Radiolabeling studies with (Cu-64/Lu-177) also demonstrate faster labelling properties. These chiral DOTA chelators are alternative general platforms for the development of stable, high relaxivity contrast agents, and for radiometal complexes used for imaging and/or therapy.
Tumor Lysing Genetically Engineered T Cells Loaded with Multi-Modal Imaging Agents
NASA Astrophysics Data System (ADS)
Bhatnagar, Parijat; Alauddin, Mian; Bankson, James A.; Kirui, Dickson; Seifi, Payam; Huls, Helen; Lee, Dean A.; Babakhani, Aydin; Ferrari, Mauro; Li, King C.; Cooper, Laurence J. N.
2014-03-01
Genetically-modified T cells expressing chimeric antigen receptors (CAR) exert anti-tumor effect by identifying tumor-associated antigen (TAA), independent of major histocompatibility complex. For maximal efficacy and safety of adoptively transferred cells, imaging their biodistribution is critical. This will determine if cells home to the tumor and assist in moderating cell dose. Here, T cells are modified to express CAR. An efficient, non-toxic process with potential for cGMP compliance is developed for loading high cell number with multi-modal (PET-MRI) contrast agents (Super Paramagnetic Iron Oxide Nanoparticles - Copper-64; SPION-64Cu). This can now be potentially used for 64Cu-based whole-body PET to detect T cell accumulation region with high-sensitivity, followed by SPION-based MRI of these regions for high-resolution anatomically correlated images of T cells. CD19-specific-CAR+SPIONpos T cells effectively target in vitro CD19+ lymphoma.
High-level production of C-11-carboxyl-labeled amino acids. [For use in tumor and pancreatic imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washburn, L. C.; Sun, T. T.; Byrd, B. L.
Carbon-11-labeled amino acids have significant potential as agents for positron tomographic functional imaging. We have developed a rapid, high-temperature, high-pressure modification of the Buecherer--Strecker amino acid synthesis and found it to be quite general for the production of C-11-carboxyl-labeled neutral amino acids. Production of C-11-carboxyl-labeled DL-tryptophan requires certain modifications in the procedure. Twelve different amino acids have been produced to date by this technique. Synthesis and chromatographic purification require approximately 40 min, and C-11-carboxyl-labeled amino acids have been produced in yields of up to 425 mCi. Two C-11-carboxyl-labeled amino acids are being investigated clinically for tumor scanning and two othersmore » for pancreatic imaging. Over 120 batches of the various agents have been produced for clinical use over a three-year period.« less
Gorelikov, Ivan; Martin, Amanda L; Seo, Minseok; Matsuura, Naomi
2011-12-20
There has been recent interest in developing new, targeted, perfluorocarbon (PFC) droplet-based contrast agents for medical imaging (e.g., magnetic resonance imaging, X-ray/computed tomography, and ultrasound imaging). However, due to the large number of potential PFCs and droplet stabilization strategies available, it is challenging to determine in advance the PFC droplet formulation that will result in the optimal in vivo behavior and imaging performance required for clinical success. We propose that the integration of fluorescent quantum dots (QDs) into new PFC droplet agents can help to rapidly screen new PFC-based candidate agents for biological compatibility early in their development. QD labels can allow the interaction of PFC droplets with single cells to be assessed at high sensitivity and resolution using optical methods in vitro, complementing the deeper depth penetration but lower resolution provided by PFC droplet imaging using in vivo medical imaging systems. In this work, we introduce a simple and robust method to miscibilize silica-coated nanoparticles into hydrophobic and lipophobic PFCs through fluorination of the silica surface via a hydrolysis-condensation reaction with 1H,1H,2H,2H-perfluorodecyltriethoxysilane. Using CdSe/ZnS core/shell QDs, we show that nanoscale, QD-labeled PFC droplets can be easily formed, with similar sizes and surface charges as unlabeled PFC droplets. The QD label can be used to determine the PFC droplet uptake into cells in vitro by fluorescence microscopy and flow cytometry, and can be used to validate the fate of PFC droplets in vivo in small animals via fluorescence microscopy of histological tissue sections. This is demonstrated in macrophage and cancer cells, and in rabbits, respectively. This work reveals the potential of using QD labels for rapid, preclinical, optical assessment of different PFC droplet formulations for their future use in patients. © 2011 American Chemical Society
Carbohydrate Recognition by Boronolectins, Small Molecules, and Lectins
Jin, Shan; Cheng, Yunfeng; Reid, Suazette; Li, Minyong; Wang, Binghe
2009-01-01
Carbohydrates are known to mediate a large number of biological and pathological events. Small and macromolecules capable of carbohydrate recognition have great potentials as research tools, diagnostics, vectors for targeted delivery of therapeutic and imaging agents, and therapeutic agents. However, this potential is far from being realized. One key issue is the difficulty in the development of “binders” capable of specific recognition of carbohydrates of biological relevance. This review discusses systematically the general approaches that are available in developing carbohydrate sensors and “binders/receptors,” and their applications. The focus is on discoveries during the last five years. PMID:19291708
Indocyanine green fluorescence in second near-infrared (NIR-II) window
Bhavane, Rohan; Ghaghada, Ketan B.; Vasudevan, Sanjeev A.; Kaay, Alexander; Annapragada, Ananth
2017-01-01
Indocyanine green (ICG), a FDA approved near infrared (NIR) fluorescent agent, is used in the clinic for a variety of applications including lymphangiography, intra-operative lymph node identification, tumor imaging, superficial vascular imaging, and marking ischemic tissues. These applications operate in the so-called “NIR-I” window (700–900 nm). Recently, imaging in the “NIR-II” window (1000–1700 nm) has attracted attention since, at longer wavelengths, photon absorption, and scattering effects by tissue components are reduced, making it possible to image deeper into the underlying tissue. Agents for NIR-II imaging are, however, still in pre-clinical development. In this study, we investigated ICG as a NIR-II dye. The absorbance and NIR-II fluorescence emission of ICG were measured in different media (PBS, plasma and ethanol) for a range of ICG concentrations. In vitro and in vivo testing were performed using a custom-built spectral NIR assembly to facilitate simultaneous imaging in NIR-I and NIR-II window. In vitro studies using ICG were performed using capillary tubes (as a simulation of blood vessels) embedded in Intralipid solution and tissue phantoms to evaluate depth of tissue penetration in NIR-I and NIR-II window. In vivo imaging using ICG was performed in nude mice to evaluate vascular visualization in the hind limb in the NIR-I and II windows. Contrast-to-noise ratios (CNR) were calculated for comparison of image quality in NIR-I and NIR-II window. ICG exhibited significant fluorescence emission in the NIR-II window and this emission (similar to the absorption profile) is substantially affected by the environment of the ICG molecules. In vivo imaging further confirmed the utility of ICG as a fluorescent dye in the NIR-II domain, with the CNR values being ~2 times those in the NIR-I window. The availability of an FDA approved imaging agent could accelerate the clinical translation of NIR-II imaging technology. PMID:29121078
31 CFR 321.25 - Payment and retention of definitive securities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... prohibited from accepting an image, or other copy or reproduction of the definitive security, for redemption or processing. To ensure that all transactions processed by agents are properly validated, agents... converted to an electronic image. At a minimum, the agent must retain such securities for a period of thirty...
31 CFR 321.25 - Payment and retention of definitive securities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... agent is prohibited from accepting an image, or other copy or reproduction of the definitive security, for redemption or processing. To ensure that all transactions processed by agents are properly... truncated and converted to an electronic image. At a minimum, the agent must retain such securities for a...
31 CFR 321.25 - Payment and retention of definitive securities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... prohibited from accepting an image, or other copy or reproduction of the definitive security, for redemption or processing. To ensure that all transactions processed by agents are properly validated, agents... converted to an electronic image. At a minimum, the agent must retain such securities for a period of thirty...
RBC micromotors carrying multiple cargos towards potential theranostic applications
NASA Astrophysics Data System (ADS)
Wu, Zhiguang; Esteban-Fernández de Ávila, Berta; Martín, Aída; Christianson, Caleb; Gao, Weiwei; Thamphiwatana, Soracha Kun; Escarpa, Alberto; He, Qiang; Zhang, Liangfang; Wang, Joseph
2015-08-01
Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic resonance imaging. The simultaneous encapsulation of the imaging nanoparticles and therapeutic payloads within the same RBC micromotor has a minimal effect upon its propulsion behavior. The ability of the RBC micromotors to transport imaging and therapeutic agents at high speed and spatial precision through a complex microchannel network is also demonstrated. Such ability to load and transport diagnostic imaging agents and therapeutic drugs within a single cell-based motor, in addition to a lower toxicity observed once the drug is encapsulated within the multicargo RBC motor, opens the door to the development of theranostic micromotors that may simultaneously treat and monitor diseases.Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic resonance imaging. The simultaneous encapsulation of the imaging nanoparticles and therapeutic payloads within the same RBC micromotor has a minimal effect upon its propulsion behavior. The ability of the RBC micromotors to transport imaging and therapeutic agents at high speed and spatial precision through a complex microchannel network is also demonstrated. Such ability to load and transport diagnostic imaging agents and therapeutic drugs within a single cell-based motor, in addition to a lower toxicity observed once the drug is encapsulated within the multicargo RBC motor, opens the door to the development of theranostic micromotors that may simultaneously treat and monitor diseases. Electronic supplementary information (ESI) available: Videos of the propulsion of the multicargo-loaded, RBC-based micromotors and more data are available in the ESI. See DOI: 10.1039/c5nr03730a
Materials Chemistry of Nanoultrasonic Biomedicine.
Tang, Hailin; Zheng, Yuanyi; Chen, Yu
2017-03-01
As a special cross-disciplinary research frontier, nanoultrasonic biomedicine refers to the design and synthesis of nanomaterials to solve some critical issues of ultrasound (US)-based biomedicine. The concept of nanoultrasonic biomedicine can also overcome the drawbacks of traditional microbubbles and promote the generation of novel US-based contrast agents or synergistic agents for US theranostics. Here, we discuss the recent developments of material chemistry in advancing the nanoultrasonic biomedicine for diverse US-based bio-applications. We initially introduce the design principles of novel nanoplatforms for serving the nanoultrasonic biomedicine, from the viewpoint of synthetic material chemistry. Based on these principles and diverse US-based bio-application backgrounds, the representative proof-of-concept paradigms on this topic are clarified in detail, including nanodroplet vaporization for intelligent/responsive US imaging, multifunctional nano-contrast agents for US-based multi-modality imaging, activatable synergistic agents for US-based therapy, US-triggered on-demand drug releasing, US-enhanced gene transfection, US-based synergistic therapy on combating the cancer and potential toxicity issue of screening various nanosystems suitable for nanoultrasonic biomedicine. It is highly expected that this novel nanoultrasonic biomedicine and corresponding high performance in US imaging and therapy can significantly promote the generation of new sub-discipline of US-based biomedicine by rationally integrating material chemistry and theranostic nanomedicine with clinical US-based biomedicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pyropheophorbide 2-deoxyglucosamide: a new photosensitizer targeting glucose transporters.
Zhang, Min; Zhang, Zhihong; Blessington, Dana; Li, Hui; Busch, Theresa M; Madrak, Vanessa; Miles, Jeremy; Chance, Britton; Glickson, Jerry D; Zheng, Gang
2003-01-01
To prepare near-infrared fluorescence imaging and photodynamic therapy agents targeted at glucose transporters, pyropheophorbide 2-deoxyglucosamide (Pyro-2DG) was synthesized and evaluated in a 9L glioma rat model. Fluorescence imaging studies demonstrate that Pyro-2DG is selectively accumulated in the tumor. Upon its photoactivation, we demonstrate that this agent efficiently causes selective mitochondrial damage to the region of a tumor that was photoirradiated after administration of this agent, but does not affect tissues photoirradiated in the absence of the agent or tissues treated with the agent that are not photoirradiated. Preliminary confocal microscopy studies suggest that Pyro-2DG is delivered and trapped in tumor cells via the GLUT/hexokinase pathway and therefore is useful both as a tumor-targeted NIR fluorescence imaging probe and as a PDT agent for the destruction of cancer.
NASA Astrophysics Data System (ADS)
Dreifuss, Tamar; Betzer, Oshra; Barnoy, Eran; Motiei, Menachem; Popovtzer, Rachela
2018-02-01
Theranostics is an emerging field, defined as combination of therapeutic and diagnostic capabilities in the same material. Nanoparticles are considered as an efficient platform for theranostics, particularly in cancer treatment, as they offer substantial advantages over both common imaging contrast agents and chemotherapeutic drugs. However, the development of theranostic nanoplatforms raises an important question: Is the optimal particle for imaging also optimal for therapy? Are the specific parameters required for maximal drug delivery, similar to those required for imaging applications? Herein, we examined this issue by investigating the effect of nanoparticle size on tumor uptake and imaging. Anti-epidermal growth factor receptor (EGFR)-conjugated gold nanoparticles (GNPs) in different sizes (diameter range: 20-120 nm) were injected to tumor bearing mice and their uptake by tumors was measured, as well as their tumor visualization capabilities as tumor-targeted CT contrast agent. Interestingly, the results showed that different particles led to highest tumor uptake or highest contrast enhancement, meaning that the optimal particle size for drug delivery is not necessarily optimal for tumor imaging. These results have important implications on the design of theranostic nanoplatforms.
Gao, Meng; Fan, Feng; Li, Dongdong; Yu, Yue; Mao, Kuirong; Sun, Tianmeng; Qian, Haisheng; Tao, Wei; Yang, Xianzhu
2017-07-01
Nanoparticles simultaneously integrated the photosensitizers and diagnostic agents represent an emerging approach for imaging-guided photodynamic therapy (PDT). However, the diagnostic sensitivity and therapeutic efficacy of nanoparticles as well as the heterogeneity of tumors pose tremendous challenges for clinical imaging-guided PDT treatment. Herein, a polymeric nanoparticle with tumor acidity (pH e )-activatable TAT targeting ligand that encapsulates the photosensitizer chlorin e6 (Ce6) and chelates contrast agent Gd 3+ is successfully developed for fluorescence/magnetic resonance (MR) dual-model imaging-guided precision PDT. We show clear evidence that the resulting nanoparticle DA TAT-NP [its TAT lysine residues' amines was modified by 2,3-dimethylmaleic anhydride (DA)] efficiently avoids the rapid clearance by reticuloendothelial system (RES) by masking of the TAT peptide, resulting in the significantly prolonged circulation time in the blood. Once accumulating in the tumor tissues, DA TAT-NP is reactivated by tumor acidity to promote cellular uptake, resulting in enlarged fluorescence/MR imaging signal intensity and elevated in vivo PDT therapeutic effect. This concept provides new avenues to design tumor acidity-activatable targeted nanoparticles for imaging-guided cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, M.A.; Craig, J.I.
Integrated Product and Process Development (IPPD) embodies the simultaneous application to both system and quality engineering methods throughout an iterative design process. The use of IPPD results in the time-conscious, cost-saving development of engineering systems. To implement IPPD, a Decision-Based Design perspective is encapsulated in an approach that focuses on the role of the human designer in product development. The approach has two parts and is outlined in this paper. First, an architecture, called DREAMS, is being developed that facilitates design from a decision-based perspective. Second, a supporting computing infrastructure, called IMAGE, is being designed. Agents are used to implementmore » the overall infrastructure on the computer. Successful agent utilization requires that they be made of three components: the resource, the model, and the wrap. Current work is focused on the development of generalized agent schemes and associated demonstration projects. When in place, the technology independent computing infrastructure will aid the designer in systematically generating knowledge used to facilitate decision-making.« less
Rieves, Dwaine; Jacobs, Paula
2016-12-01
Pharmaceutical companies typically perform prospective, multicenter phase 3 clinical studies to support approval of a new imaging agent by the U.S. Food and Drug Administration (FDA). In uncommon situations, the FDA has approved imaging agents based solely, or in large part, on the clinical study experience described in published reports, including reports of exploratory (i.e., phase 1 or 2) studies performed at a single clinical site. We performed a survey of published reports to assess the potential of the reported information to support FDA approval of a commonly cited investigational imaging agent. Our survey revealed critical data limitations in most publications, all of which reported exploratory clinical studies. Here we summarize the precedent for FDA approval of imaging agents using effectiveness data from publications, FDA guidance, and our experience in reviewing publications. We also present a key-data checklist for investigators to consider in the design, conduct, and reporting of exploratory clinical studies for publication. We encourage editors and peer reviewers to consider requiring these key data when reviewing these reports for publication. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Iqbal, Anam; Naqvi, Syed Ali Raza; Rasheed, Rashid; Mansha, Asim; Ahmad, Matloob; Zahoor, Ameer Fawad
2018-05-01
Bacterial infection poses life-threatening challenge to humanity and stimulates to the researchers for developing better diagnostic and therapeutic agents complying with existing theranostic techniques. Nuclear medicine technique helps to visualize hard-to-diagnose deep-seated bacterial infections using radionuclide-labeled tracer agents. Metronidazole is an antiprotozoal antibiotic that serves as a preeminent anaerobic chemotherapeutic agent. The aim of this study was to develop technetium-99m-labeled metronidazole radiotracer for the detection of deep-seated bacterial infections. Radiosynthesis of 99m Tc-metronidazole was carried by reacting reduced technetium-99m and metronidazole at neutral pH for 30 min. The stannous chloride dihydrate was used as the reducing agent. At optimum radiolabeling conditions, ~ 94% radiochemical was obtained. Quality control analysis was carried out with a chromatographic paper and instant thin-layer chromatographic analysis. The biodistribution study of radiochemical was performed using Escherichia coli bacterial infection-induced rat model. The scintigraphic study was performed using E. coli bacterial infection-induced rabbit model. The results showed promising accumulation at the site of infection and its rapid clearance from the body. The tracer showed target-to-non-target ratio 5.57 ± 0.04 at 1 h post-injection. The results showed that 99m Tc-MNZ has promising potential to accumulate at E. coli bacterial infection that can be used for E. coli infection imaging.
Uchiyama, Mayara Klimuk; Toma, Sergio Hiroshi; Rodrigues, Stephen Fernandes; Shimada, Ana Lucia Borges; Loiola, Rodrigo Azevedo; Cervantes Rodríguez, Hernán Joel; Oliveira, Pedro Vitoriano; Luz, Maciel Santos; Rabbani, Said Rahnamaye; Toma, Henrique Eisi; Poliselli Farsky, Sandra Helena; Araki, Koiti
2015-01-01
Fully dispersible, cationic ultrasmall (7 nm diameter) superparamagnetic iron oxide nanoparticles, exhibiting high relaxivity (178 mM−1s−1 in 0.47 T) and no acute or subchronic toxicity in Wistar rats, were studied and their suitability as contrast agents for magnetic resonance imaging and material for development of new diagnostic and treatment tools demonstrated. After intravenous injection (10 mg/kg body weight), they circulated throughout the vascular system causing no microhemorrhage or thrombus, neither inflammatory processes at the mesentery vascular bed and hepatic sinusoids (leukocyte rolling, adhesion, or migration as evaluated by intravital microscopy), but having been spontaneously concentrated in the liver, spleen, and kidneys, they caused strong negative contrast. The nanoparticles are cleared from kidneys and bladder in few days, whereas the complete elimination from liver and spleen occurred only after 4 weeks. Ex vivo studies demonstrated that cationic ultrasmall superparamagnetic iron oxide nanoparticles caused no effects on hepatic and renal enzymes dosage as well as on leukocyte count. In addition, they were readily concentrated in rat thigh by a magnet showing its potential as magnetically targeted carriers of therapeutic and diagnostic agents. Summarizing, cationic ultrasmall superparamagnetic iron oxide nanoparticles are nontoxic and efficient magnetic resonance imaging contrast agents useful as platform for the development of new materials for application in theranostics. PMID:26251595
[Possibilities of sonographic image fusion: Current developments].
Jung, E M; Clevert, D-A
2015-11-01
For diagnostic and interventional procedures ultrasound (US) image fusion can be used as a complementary imaging technique. Image fusion has the advantage of real time imaging and can be combined with other cross-sectional imaging techniques. With the introduction of US contrast agents sonography and image fusion have gained more importance in the detection and characterization of liver lesions. Fusion of US images with computed tomography (CT) or magnetic resonance imaging (MRI) facilitates the diagnostics and postinterventional therapy control. In addition to the primary application of image fusion in the diagnosis and treatment of liver lesions, there are more useful indications for contrast-enhanced US (CEUS) in routine clinical diagnostic procedures, such as intraoperative US (IOUS), vascular imaging and diagnostics of other organs, such as the kidneys and prostate gland.
Liu, Hong; Tan, Yan; Xie, Lisi; Yang, Lei; Zhao, Jing; Bai, Jingxuan; Huang, Ping; Zhan, Wugen; Wan, Qian; Zou, Chao; Han, Yali; Wang, Zhiyong
2016-09-15
Stem cells hold great promise for treating various diseases. However, one of the main drawbacks of stem cell therapy is the lack of non-invasive image-tracking technologies. Although magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging have been employed to analyse cellular and subcellular events via the assistance of contrast agents, the sensitivity and temporal resolution of MRI and the spatial resolution of NIRF are still shortcomings. In this study, superparamagnetic iron oxide nanocrystals and IR-780 dyes were co-encapsulated in stearic acid-modified polyethylenimine to form a dual-modality contrast agent with nano-size and positive charge. These resulting agents efficiently labelled stem cells and did not influence the cellular viability and differentiation. Moreover, the labelled cells showed the advantages of dual-modality imaging in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Comba, Peter; Martin, Bodo; Sanyal, Avik; Stephan, Holger
2013-08-21
A QSPR scheme for the computation of lipophilicities of ⁶⁴Cu complexes was developed with a training set of 24 tetraazamacrocylic and bispidine-based Cu(II) compounds and their experimentally available 1-octanol-water distribution coefficients. A minimum number of physically meaningful parameters were used in the scheme, and these are primarily based on data available from molecular mechanics calculations, using an established force field for Cu(II) complexes and a recently developed scheme for the calculation of fluctuating atomic charges. The developed model was also applied to an independent validation set and was found to accurately predict distribution coefficients of potential ⁶⁴Cu PET (positron emission tomography) systems. A possible next step would be the development of a QSAR-based biodistribution model to track the uptake of imaging agents in different organs and tissues of the body. It is expected that such simple, empirical models of lipophilicity and biodistribution will be very useful in the design and virtual screening of positron emission tomography (PET) imaging agents.
Buckler, Andrew J; Liu, Tiffany Ting; Savig, Erica; Suzek, Baris E; Ouellette, M; Danagoulian, J; Wernsing, G; Rubin, Daniel L; Paik, David
2013-08-01
A widening array of novel imaging biomarkers is being developed using ever more powerful clinical and preclinical imaging modalities. These biomarkers have demonstrated effectiveness in quantifying biological processes as they occur in vivo and in the early prediction of therapeutic outcomes. However, quantitative imaging biomarker data and knowledge are not standardized, representing a critical barrier to accumulating medical knowledge based on quantitative imaging data. We use an ontology to represent, integrate, and harmonize heterogeneous knowledge across the domain of imaging biomarkers. This advances the goal of developing applications to (1) improve precision and recall of storage and retrieval of quantitative imaging-related data using standardized terminology; (2) streamline the discovery and development of novel imaging biomarkers by normalizing knowledge across heterogeneous resources; (3) effectively annotate imaging experiments thus aiding comprehension, re-use, and reproducibility; and (4) provide validation frameworks through rigorous specification as a basis for testable hypotheses and compliance tests. We have developed the Quantitative Imaging Biomarker Ontology (QIBO), which currently consists of 488 terms spanning the following upper classes: experimental subject, biological intervention, imaging agent, imaging instrument, image post-processing algorithm, biological target, indicated biology, and biomarker application. We have demonstrated that QIBO can be used to annotate imaging experiments with standardized terms in the ontology and to generate hypotheses for novel imaging biomarker-disease associations. Our results established the utility of QIBO in enabling integrated analysis of quantitative imaging data.
2012-04-01
detection of bone metastasis from breast cancer. The proposed imaging agent is consist of bone targeting moiety of Asp8 and MRI imaging moiety of DOTA ...peptide onto DOTA followed by Gd complexation was performed to achieve the proposed imaging agent. Non-targeting and CTSK-insensitive controls were...synthesis (SPPS) strategy, and purified by preparative HPLC. The chemical structures of peptides were shown below. Peptides reacted with DOTA -NHS
NASA Astrophysics Data System (ADS)
Badea, C. T.; Samei, E.; Ghaghada, K.; Saunders, R.; Yuan, H.; Qi, Y.; Hedlund, L. W.; Mukundan, S.
2008-03-01
Imaging tumor angiogenesis in small animals is extremely challenging due to the size of the tumor vessels. Consequently, both dedicated small animal imaging systems and specialized intravascular contrast agents are required. The goal of this study was to investigate the use of a liposomal contrast agent for high-resolution micro-CT imaging of breast tumors in small animals. A liposomal blood pool agent encapsulating iodine with a concentration of 65.5 mg/ml was used with a Duke Center for In Vivo Microscopy (CIVM) prototype micro-computed tomography (micro-CT) system to image the R3230AC mammary carcinoma implanted in rats. The animals were injected with equivalent volume doses (0.02 ml/kg) of contrast agent. Micro-CT with the liposomal blood pool contrast agent ensured a signal difference between the blood and the muscle higher than 450 HU allowing the visualization of the tumors 3D vascular architecture in exquisite detail at 100-micron resolution. The micro-CT data correlated well with the histological examination of tumor tissue. We also studied the ability to detect vascular enhancement with limited angle based reconstruction, i.e. tomosynthesis. Tumor volumes and their regional vascular percentage were estimated. This imaging approach could be used to better understand tumor angiogenesis and be the basis for evaluating anti-angiogenic therapies.
Characterization, catalyzed water oxidation and anticancer activities of a NIR BODIPY-Mn polymer
NASA Astrophysics Data System (ADS)
Lan, Ya-Quan; Xiao, Ke-Jing; Wu, Yun-Jie; Chen, Qiu-Yun
2017-04-01
To obtain near-IR absorbing biomaterials as fluorescence cellular imaging and anticancer agents for hypoxic cancer cell, a nano NIR fluorescence Mn(III/IV) polymer (PMnD) was spectroscopically characterized. The PMnD shows strong emission at 661 nm when excited with 643 nm. Furthermore, PMnD can catalyze water oxidation to generate dioxygen when irradiated by red LED light (10 W). In particular, the PMnD can enter into HepG-2 cells and mitochondria. Both anticancer activity and the inhibition of the expression of HIF-1α for PMnD were concentration dependent. Our results demonstrate that PMnD can be developed as mitochondria targeted imaging agents and new inhibitors for HIF-1 in hypoxic cancer cells.
Renaud, Guillaume; Bosch, Johan G; Van Der Steen, Antonius F W; De Jong, Nico
2014-06-01
Contrast-enhanced ultrasound imaging is based on the detection of non-linear vibrational responses of a contrast agent after its intravenous administration. Improving contrast-enhanced images requires an accurate understanding of the vibrational response to ultrasound of the lipid-coated gas microbubbles that constitute most ultrasound contrast agents. Variations in the volume of microbubbles provide the most efficient radiation of ultrasound and, therefore, are the most important bubble vibrations for medical diagnostic ultrasound imaging. We developed an "acoustical camera" that measures the dynamic volume change of individual microbubbles when excited by a pressure wave. In the work described here, the technique was applied to the characterization of low-amplitude non-linear behaviors of BR14 microbubbles (Bracco Research, Geneva, Switzerland). The amplitude dependence of the resonance frequency and the damping, the prevalence of efficient subharmonic and ultraharmonic vibrations and the amplitude dependence of the response at the fundamental frequency and at the second harmonic frequency were investigated. Because of the large number of measurements, we provide a statistical characterization of the low-amplitude non-linear properties of the contrast agent. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Sheeran, Paul S; Rojas, Juan D; Puett, Connor; Hjelmquist, Jordan; Arena, Christopher B; Dayton, Paul A
2015-03-01
Many studies have explored phase-change contrast agents (PCCAs) that can be vaporized by an ultrasonic pulse to form microbubbles for ultrasound imaging and therapy. However, few investigations have been published on the utility and characteristics of PCCAs as contrast agents in vivo. In this study, we examine the properties of low-boiling-point nanoscale PCCAs evaluated in vivo and compare data with those for conventional microbubbles with respect to contrast generation and circulation properties. To do this, we develop a custom pulse sequence to vaporize and image PCCAs using the Verasonics research platform and a clinical array transducer. Results indicate that droplets can produce contrast enhancement similar to that of microbubbles (7.29 to 18.24 dB over baseline, depending on formulation) and can be designed to circulate for as much as 3.3 times longer than microbubbles. This study also reports for the first time the ability to capture contrast washout kinetics of the target organ as a measure of vascular perfusion. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Xiao, Yunbin; Lin, Zuan Tao; Chen, Yanmei; Wang, He; Deng, Ya Li; Le, D Elizabeth; Bin, Jianguo; Li, Meiyu; Liao, Yulin; Liu, Yili; Jiang, Gangbiao; Bin, Jianping
2015-01-01
Magnetic resonance imaging (MRI) contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs) encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS) micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm) and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors. PMID:25709439
Xiao, Yunbin; Lin, Zuan Tao; Chen, Yanmei; Wang, He; Deng, Ya Li; Le, D Elizabeth; Bin, Jianguo; Li, Meiyu; Liao, Yulin; Liu, Yili; Jiang, Gangbiao; Bin, Jianping
2015-01-01
Magnetic resonance imaging (MRI) contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs) encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS) micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm) and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors.
Nwe, Kido; Huang, Ching-Hui; Tsourkas, Andrew
2013-10-24
Neoplastic lesions can create a hostile tumor microenvironment with low extracellular pH. It is commonly believed that these conditions can contribute to tumor progression as well as resistance to therapy. We report the development and characterization of a pH-responsive magnetic resonance imaging contrast agent for imaging the acidic tumor microenvironment. The preparation included the conjugation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 1-(2,5-dioxo-1-pyrrolidinyl) ester (DOTA-NHS) to the surface of a water-soluble glycol chitosan (GC) polymer, which contains pH-titrable primary amines, followed by gadolinium complexation (GC-NH2-GdDOTA). GC-NH2-GdDOTA had a chelate-to-polymer ratio of approximately1:24 and a molar relaxivity of 9.1 mM(-1) s(-1). GC-NH2-GdDOTA demonstrated pH-dependent cellular association in vitro compared to the control. It also generated a 2.4-fold enhancement in signal in tumor-bearing mice 2 h postinjection. These findings suggest that glycol chitosan coupled with contrast agents can provide important diagnostic information about the tumor microenvironment.
Ghaghada, Ketan B; Starosolski, Zbigniew A; Bhayana, Saakshi; Stupin, Igor; Patel, Chandreshkumar V; Bhavane, Rohan C; Gao, Haijun; Bednov, Andrey; Yallampalli, Chandrasekhar; Belfort, Michael; George, Verghese; Annapragada, Ananth V
2017-09-01
Non-invasive 3D imaging that enables clear visualization of placental margins is of interest in the accurate diagnosis of placental pathologies. This study investigated if contrast-enhanced MRI performed using a liposomal gadolinium blood-pool contrast agent (liposomal-Gd) enables clear visualization of the placental margins and the placental-myometrial interface (retroplacental space). Non-contrast MRI and contrast-enhanced MRI using a clinically approved conventional contrast agent were used as comparators. Studies were performed in pregnant rats under an approved protocol. MRI was performed at 1T using a permanent magnet small animal scanner. Pre-contrast and post-liposomal-Gd contrast images were acquired using T1-weighted and T2-weighted sequences. Dynamic Contrast enhanced MRI (DCE-MRI) was performed using gadoterate meglumine (Gd-DOTA, Dotarem ® ). Visualization of the retroplacental clear space, a marker of normal placentation, was judged by a trained radiologist. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both single and averaged acquisitions. Images were reviewed by a radiologist and scored for the visualization of placental features. Contrast-enhanced CT (CE-CT) imaging using a liposomal CT agent was performed for confirmation of the MR findings. Transplacental transport of liposomal-Gd was evaluated by post-mortem elemental analysis of tissues. Ex-vivo studies in perfused human placentae from normal, GDM, and IUGR pregnancies evaluated the transport of liposomal agent across the human placental barrier. Post-contrast T1w images acquired with liposomal-Gd demonstrated significantly higher SNR (p = 0.0002) in the placenta compared to pre-contrast images (28.0 ± 4.7 vs. 6.9 ± 1.8). No significant differences (p = 0.39) were noted between SNR in pre-contrast and post-contrast liposomal-Gd images of the amniotic fluid, indicating absence of transplacental passage of the agent. The placental margins were significantly (p < 0.001) better visualized on post-contrast liposomal-Gd images. DCE-MRI with the conventional Gd agent demonstrated retrograde opacification of the placenta from fetal edge to the myometrium, consistent with the anatomy of the rat placenta. However, no consistent and reproducible visualization of the retroplacental space was demonstrated on the conventional Gd-enhanced images. The retroplacental space was only visualized on post-contrast T1w images acquired using the liposomal agent (SNR = 15.5 ± 3.4) as a sharply defined, hypo-enhanced interface. The retroplacental space was also visible as a similar hypo-enhancing interface on CE-CT images acquired using a liposomal CT contrast agent. Tissue analysis demonstrated undetectably low transplacental permeation of liposomal-Gd, and was confirmed by lack of permeation through a perfused human placental model. Contrast-enhanced T1w-MRI performed using liposomal-Gd enabled clear visualization of placental margins and delineation of the retroplacental space from the rest of the placenta; the space is undetectable on non-contrast imaging and on post-contrast T1w images acquired using a conventional, clinically approved Gd chelate contrast agent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Calzada, Victoria; Moreno, María; Newton, Jessica; González, Joel; Fernández, Marcelo; Gambini, Juan Pablo; Ibarra, Manuel; Chabalgoity, Alejandro; Deutscher, Susan; Quinn, Thomas; Cabral, Pablo; Cerecetto, Hugo
2017-02-01
Aptamers are single-stranded oligonucleotides that recognize molecular targets with high affinity and specificity. Aptamer that selectively bind to the protein tyrosine kinase-7 (PTK7) receptor, overexpressed on many cancers, has been labelled as probes for molecular imaging of cancer. Two new PTK7-targeting aptamer probes were developed by coupling frameworks from the fluorescent dye AlexaFluor647 or the 6-hydrazinonicotinamide (HYNIC) chelator-labelled to 99m Tc. The derivatizations via a 5'-aminohexyl terminal linker were done at room temperature and under mild buffer conditions. Physicochemical and biological controls for both imaging agents were performed verifying the integrity of the aptamer-conjugates by HPLC. Recognition of melanoma (B16F1) and lymphoma (A20) mouse cell lines by the aptamer was studied using cell binding, flow cytometry and confocal microscopy. Finally, in vivo imaging studies in tumour-bearing mice were performed. The new probes were able to bind to melanoma and lymphoma cell lines in vitro, the in vivo imaging in tumour-bearing mice showed different uptake behaviours showing for the fluorescent conjugate good uptake by B cell lymphoma while the radiolabelled conjugate did not display tumour uptake due to its high extravascular distribution, and both showed rapid clearance properties in tumour-bearing mice. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Xiaochun; Sinha, Lagnojita; Singh, Aparna; Yang, Cynthia; Xiang, Jialing; Tichauer, Kenneth M.
2015-03-01
Immunofluorescence staining is a robust way to visualize the distribution of targeted biomolecules invasively in in fixed tissues and tissue culture. Despite the fact that these methods has been a well-established method in fixed tissue imaging for over 70 years, quantification of receptor concentration still simply assumes that the signal from the targeted fluorescent marker after incubation and sufficient rinsing is directly proportional to the concentration of targeted biomolecules, thus neglecting the experimental inconsistencies in incubation and rinsing procedures and assuming no, nonspecific binding of the fluorescent markers. This work presents the first imaging approach capable of quantifying the concentration of cell surface receptor on cancer cells grown in vitro based on compartment modeling in a nondestructive way. The approach utilizes a dual-tracer protocol where any non-specific retention or variability in incubation and rinsing of a receptor-targeted imaging agent is corrected by simultaneously imaging the retention of a chemically similar, "untargeted" imaging agent. Various different compartment models were used to analyze the data in order to find the optimal procedure for extracting estimates of epidermal growth factor receptor (EGFR) concentration (a receptor overexpressed in many cancers and a key target for emerging molecular therapies) in tissue cultures with varying concentrations of human glioma cells (U251). Preliminary results demonstrated a need to model nonspecific binding of both the targeted and untargeted imaging agents used. The approach could be used to carry out the first repeated measures of cell surface receptor dynamics during 3D tumor mass development, in addition to the receptor response to therapies.
Muñoz-Egea, María-Carmen; García-Pedrazuela, María; Mahillo-Fernandez, Ignacio; Esteban, Jaime
2016-01-01
We analyze the effect of amikacin, ciprofloxacin, and clarithromycin, alone and associated with N-acetylcysteine (NAC) and Tween 80, at different times and concentrations in nonpigmented rapidly growing mycobacteria (NPRGM) biofilms. For this purpose, confocal laser scanning microscopy and image analysis were used to study the development and behavior of intrinsic autofluorescence, covered area, thickness, and cell viability in NPRGM biofilms after adding antibiotics alone and associated with antibiofilm agents. In this study, ciprofloxacin is the most active antibiotic against this type of biofilm and thickness is the most affected parameter. NAC and Tween 80 combined with antibiotics exert a synergistic effect in increasing the percentage of dead bacteria and also reducing the percentage of covered surface and thickness of NPRGM biofilms. Tween 80 seems to be an antibiofilm agent more effective than NAC due to its higher reduction in the percentage of cover surface and thickness. In conclusion, the results obtained in this work show that phenotypic parameters (thickness, percentage of covered surface, autofluorescence, percentage of live/dead bacteria) are affected by combining antibiotics and antibiofilm agents, ciprofloxacin and Tween 80 being the most active agents against NPRGM biofilms.
New generation of magnetic and luminescent nanoparticles for in vivo real-time imaging
Lacroix, Lise-Marie; Delpech, Fabien; Nayral, Céline; Lachaize, Sébastien; Chaudret, Bruno
2013-01-01
A new generation of optimized contrast agents is emerging, based on metallic nanoparticles (NPs) and semiconductor nanocrystals for, respectively, magnetic resonance imaging (MRI) and near-infrared (NIR) fluorescent imaging techniques. Compared with established contrast agents, such as iron oxide NPs or organic dyes, these NPs benefit from several advantages: their magnetic and optical properties can be tuned through size, shape and composition engineering, their efficiency can exceed by several orders of magnitude that of contrast agents clinically used, their surface can be modified to incorporate specific targeting agents and antifolding polymers to increase blood circulation time and tumour recognition, and they can possibly be integrated in complex architecture to yield multi-modal imaging agents. In this review, we will report the materials of choice based on the understanding of the basic physics of NIR and MRI techniques and their corresponding syntheses as NPs. Surface engineering, water transfer and specific targeting will be highlighted prior to their first use for in vivo real-time imaging. Highly efficient NPs that are safer and target specific are likely to enter clinical application in a near future. PMID:24427542
NASA Astrophysics Data System (ADS)
Kim, Wihan; Zebrowski, Erin; Lopez, Hazel C.; Applegate, Brian E.; Charoenphol, Phapanin; Jo, Javier A.
2016-03-01
Molecular contrast imaging can target specific molecules or receptors to provide detailed information on the local biochemistry and yield enhanced visualization of pathological and physiological processes. When paired with Optical Coherence Tomography (OCT) it can simultaneously supply the morphological context for the molecular information. We recently demonstrated in vivo molecular contrast imaging of methylene blue (MB) using a 663 nm diode laser as a pump in a Pump-Probe OCT (PPOCT) system. The simple addition of a dichroic mirror in the sample arm enabled PPOCT imaging with a typical 830-nm band spectral-domain OCT system. Here we report on the development of a microencapsulated MB contrast agent. The poly lactic-co-glycolic acid (PLGA) microspheres loaded with MB offer several advantages over bare MB. The microsphere encapsulation improves the PPOCT signal both by enhancing the scattering and preventing the reduction of MB to leucomethylene blue. The surface of the microsphere can readily be functionalized to enable active targeting of the contrast agent without modifying the excited state dynamics of MB that enable PPOCT imaging. Both MB and PLGA are used clinically. PLGA is FDA approved and used in drug delivery and tissue engineering applications. 2.5 μm diameter microspheres were synthesized with an inner core containing 0.01% (w/v) aqueous MB. As an initial demonstration the MB microspheres were imaged in a 100 μm diameter capillary tube submerged in a 1% intralipid emulsion.
A surgical confocal microlaparoscope for real-time optical biopsies
NASA Astrophysics Data System (ADS)
Tanbakuchi, Anthony Amir
The first real-time fluorescence confocal microlaparoscope has been developed that provides instant in vivo cellular images, comparable to those provided by histology, through a nondestructive procedure. The device includes an integrated contrast agent delivery mechanism and a computerized depth scan system. The instrument uses a fiber bundle to relay the image plane of a slit-scan confocal microlaparoscope into tissue. The confocal laparoscope was used to image the ovaries of twenty-one patients in vivo using fluorescein sodium and acridine orange as the fluorescent contrast agents. The results indicate that the device is safe and functions as designed. A Monte Carlo model was developed to characterize the system performance in a scattering media representative of human tissues. The results indicate that a slit aperture has limited ability to image below the surface of tissue. In contrast, the results show that multi-pinhole apertures such as a Nipkow disk or a linear pinhole array can achieve nearly the same depth performance as a single pinhole aperture. The model was used to determine the optimal aperture spacing for the multi-pinhole apertures. The confocal microlaparoscope represents a new type of in vivo imaging device. With its ability to image cellular details in real time, it has the potential to aid in the early diagnosis of cancer. Initially, the device may be used to locate unusual regions for guided biopsies. In the long term, the device may be able to supplant traditional biopsies and allow the surgeon to identify early stage cancer in vivo.
Researchers at the National Cancer Institute (NCI) have developed an improved class of heptamethine cyanine fluorophore dyes useful for imaging applications in the near-IR range (750-850 nm). A new chemical reaction has been developed that provides easy access to novel molecules with improved properties. Specifically, the dyes display greater resistance to thiol nucleophiles, and are more robust while maintaining excellent optical properties. The dyes have been successfully employed in various in vivo imaging applications and in vitro labeling and microscopy applications. The NCI seek co-development or licensees to develop them as targetable agents for optical-guided surgical interventions.
A Functional Iron Oxide Nanoparticles Modified with PLA-PEG-DG as Tumor-Targeted MRI Contrast Agent.
Xiong, Fei; Hu, Ke; Yu, Haoli; Zhou, Lijun; Song, Lina; Zhang, Yu; Shan, Xiuhong; Liu, Jianping; Gu, Ning
2017-08-01
Tumor targeting could greatly promote the performance of magnetic nanomaterials as MRI (Magnetic Resonance Imaging) agent for tumor diagnosis. Herein, we reported a novel magnetic nanoparticle modified with PLA (poly lactic acid)-PEG (polyethylene glycol)-DG (D-glucosamine) as Tumor-targeted MRI Contrast Agent. In this work, we took use of the D-glucose passive targeting on tumor cells, combining it on PLA-PEG through amide reaction, and then wrapped the PLA-PEG-DG up to the Fe 3 O 4 @OA NPs. The stability and anti phagocytosis of Fe 3 O 4 @OA@PLA-PEG-DG was tested in vitro; the MRI efficiency and toxicity was also detected in vivo. These functional magnetic nanoparticles demonstrated good biocompatibility and stability both in vitro and in vivo. Cell experiments showed that Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles exist good anti phagocytosis and high targetability. In vivo MRI images showed that the contrast effect of Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles prevailed over the commercial non tumor-targeting magnetic nanomaterials MRI agent at a relatively low dose. The DG can validly enhance the tumor-targetting effect of Fe 3 O 4 @OA@PLA-PEG nanoparticle. Maybe MRI agents with DG can hold promise as tumor-targetting development in the future.
NASA Astrophysics Data System (ADS)
Karunamuni, R.; Maidment, A. D. A.
2014-08-01
Contrast-enhanced (CE) dual-energy (DE) x-ray breast imaging uses a low- and high-energy x-ray spectral pair to eliminate soft-tissue signal variation and thereby increase the detectability of exogenous imaging agents. Currently, CEDE breast imaging is performed with iodinated contrast agents. These compounds are limited by several deficiencies, including rapid clearance and poor tumor targeting ability. The purpose of this work is to identify novel contrast materials whose contrast-to-noise ratio (CNR) is comparable or superior to that of iodine in the mammographic energy range. A monoenergetic DE subtraction framework was developed to calculate the DE signal intensity resulting from the logarithmic subtraction of the low- and high-energy signal intensities. A weighting factor is calculated to remove the dependence of the DE signal on the glandularity of the breast tissue. Using the DE signal intensity and weighting factor, the CNR for materials with atomic numbers (Z) ranging from 1 to 79 are computed for energy pairs between 10 and 50 keV. A group of materials with atomic numbers ranging from 42 to 63 were identified to exhibit the highest levels of CNR in the mammographic energy range. Several of these materials have been formulated as nanoparticles for various applications but none, apart from iodine, have been investigated as CEDE breast imaging agents. Within this group of materials, the necessary dose fraction to the LE image decreases as the atomic number increases. By reducing the dose to the LE image, the DE subtraction technique will not provide an anatomical image of sufficient quality to accompany the contrast information. Therefore, materials with Z from 42 to 52 provide nearly optimal values of CNR with energy pairs and dose fractions that provide good anatomical images. This work is intended to inspire further research into new materials for optimized CEDE breast functional imaging.
Karunamuni, R; Maidment, A D A
2014-08-07
Contrast-enhanced (CE) dual-energy (DE) x-ray breast imaging uses a low- and high-energy x-ray spectral pair to eliminate soft-tissue signal variation and thereby increase the detectability of exogenous imaging agents. Currently, CEDE breast imaging is performed with iodinated contrast agents. These compounds are limited by several deficiencies, including rapid clearance and poor tumor targeting ability. The purpose of this work is to identify novel contrast materials whose contrast-to-noise ratio (CNR) is comparable or superior to that of iodine in the mammographic energy range. A monoenergetic DE subtraction framework was developed to calculate the DE signal intensity resulting from the logarithmic subtraction of the low- and high-energy signal intensities. A weighting factor is calculated to remove the dependence of the DE signal on the glandularity of the breast tissue. Using the DE signal intensity and weighting factor, the CNR for materials with atomic numbers (Z) ranging from 1 to 79 are computed for energy pairs between 10 and 50 keV. A group of materials with atomic numbers ranging from 42 to 63 were identified to exhibit the highest levels of CNR in the mammographic energy range. Several of these materials have been formulated as nanoparticles for various applications but none, apart from iodine, have been investigated as CEDE breast imaging agents. Within this group of materials, the necessary dose fraction to the LE image decreases as the atomic number increases. By reducing the dose to the LE image, the DE subtraction technique will not provide an anatomical image of sufficient quality to accompany the contrast information. Therefore, materials with Z from 42 to 52 provide nearly optimal values of CNR with energy pairs and dose fractions that provide good anatomical images. This work is intended to inspire further research into new materials for optimized CEDE breast functional imaging.
Nonlinear Interferometric Vibrational Imaging (NIVI) with Novel Optical Sources
NASA Astrophysics Data System (ADS)
Boppart, Stephen A.; King, Matthew D.; Liu, Yuan; Tu, Haohua; Gruebele, Martin
Optical imaging is essential in medicine and in fundamental studies of biological systems. Although many existing imaging modalities can supply valuable information, not all are capable of label-free imaging with high-contrast and molecular specificity. The application of molecular or nanoparticle contrast agents may adversely influence the biological system under investigation. These substances also present ongoing concerns over toxicity or particle clearance, which must be properly addressed before their approval for in vivo human imaging. Hence there is an increasing appreciation for label-free imaging techniques. It is of primary importance to develop imaging techniques that can indiscriminately identify and quantify biochemical compositions to high degrees of sensitivity and specificity through only the intrinsic optical response of endogenous molecular species. The development and use of nonlinear interferometric vibrational imaging, which is based on the interferometric detection of optical signals from coherent anti-Stokes Raman scattering (CARS), along with novel optical sources, offers the potential for label-free molecular imaging.
ten Kate, Gerrit L.; Sijbrands, Eric J. G.; Valkema, Roelf; ten Cate, Folkert J.; Feinstein, Steven B.; van der Steen, Antonius F. W.; Daemen, Mat J. A. P.
2010-01-01
Current developments in cardiovascular biology and imaging enable the noninvasive molecular evaluation of atherosclerotic vascular disease. Intraplaque neovascularization sprouting from the adventitial vasa vasorum has been identified as an independent predictor of intraplaque hemorrhage and plaque rupture. These intraplaque vasa vasorum result from angiogenesis, most likely under influence of hypoxic and inflammatory stimuli. Several molecular imaging techniques are currently available. Most experience has been obtained with molecular imaging using positron emission tomography and single photon emission computed tomography. Recently, the development of targeted contrast agents has allowed molecular imaging with magnetic resonance imaging, ultrasound and computed tomography. The present review discusses the use of these molecular imaging techniques to identify inflammation and intraplaque vasa vasorum to identify vulnerable atherosclerotic plaques at risk of rupture and thrombosis. The available literature on molecular imaging techniques and molecular targets associated with inflammation and angiogenesis is discussed, and the clinical applications of molecular cardiovascular imaging and the use of molecular techniques for local drug delivery are addressed. PMID:20552308
Demi, Libertario; Wijkstra, Hessel; Mischi, Massimo
2014-12-01
Several imaging techniques aimed at detecting ultrasound contrast agents (UCAs) echo signals, while suppressing signals coming from the surrounding tissue, have been developed. These techniques are especially relevant for blood flow, perfusion, or contrast dispersion quantification. However, despite several approaches being presented, improving the understanding of the ultrasound/UCAs interaction may support further development of imaging techniques. In this paper, the physical phenomena behind the formation of harmonic components in tissue and UCAs, respectively, are addressed as a possible way to recognize the origin of the echo signals. Simulations based on a modified Rayleigh, Plesset, Noltingk, Neppiras, and Poritsky equation and transmission and backscattering measurements of ultrasound propagating through UCAs performed with a single element transducer and a submergible hydrophone, are presented. Both numerical and in vitro results show the occurrence of a cumulative time delay between the second harmonic and fundamental component which increases with UCA concentration and propagation path length through UCAs, and that was clearly observable at frequencies ( f0 = 2.5 MHz) and pressure regimes (mechanical index = 0.1) of interest for imaging. Most importantly, this delay is not observed in the absence of UCAs. In conclusion, the reported phenomenon represents a marker for UCAs with potential application for imaging.
Shaping the future through innovations: From medical imaging to precision medicine.
Comaniciu, Dorin; Engel, Klaus; Georgescu, Bogdan; Mansi, Tommaso
2016-10-01
Medical images constitute a source of information essential for disease diagnosis, treatment and follow-up. In addition, due to its patient-specific nature, imaging information represents a critical component required for advancing precision medicine into clinical practice. This manuscript describes recently developed technologies for better handling of image information: photorealistic visualization of medical images with Cinematic Rendering, artificial agents for in-depth image understanding, support for minimally invasive procedures, and patient-specific computational models with enhanced predictive power. Throughout the manuscript we will analyze the capabilities of such technologies and extrapolate on their potential impact to advance the quality of medical care, while reducing its cost. Copyright © 2016 Elsevier B.V. All rights reserved.
Richard Mazurchuk, PhD | Division of Cancer Prevention
Dr. Richard Mazurchuk received a BS in Physics and MS and PhD in Biophysics from SUNY Buffalo. His research focused on developing novel multi-modality imaging techniques, contrast (enhancing) agents and methods to assess the efficacy of experimental therapeutics. |
The NCI Radiation Oncology Branch and the NHLBI Laboratory of Single Molecule Biophysics seek parties to co-develop fluorescent nanodiamonds for use as in vivo and in vitro optical tracking probes toward commercialization.
Ultrasound Molecular Imaging: Moving Towards Clinical Translation
Abou-Elkacem, Lotfi; Bachawal, Sunitha V.; Willmann, Jürgen K.
2015-01-01
Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging. PMID:25851932
Ultrasound molecular imaging: Moving toward clinical translation.
Abou-Elkacem, Lotfi; Bachawal, Sunitha V; Willmann, Jürgen K
2015-09-01
Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Lymphatic imaging in unsedated infants and children
NASA Astrophysics Data System (ADS)
Rasmussen, John C.; Balaguru, Duraisamy; Douglas, William I.; Breinholt, John P.; Greives, Matthew R.; Aldrich, Melissa B.; Sevick-Muraca, Eva M.
2017-02-01
Primary lymphedema and lymphatic malformations in the pediatric population remains poorly diagnosed and misunderstood due to a lack of information on the underlying anatomy and function of the lymphatic system. Diagnostics for the lymphatic vasculature are limited, consisting of lymphoscintigraphy or invasive lymphangiography, both of which require sedation that can restrict use in infants and children. As a result, therapeutic protocols for pediatric patients with lymphatic disorders remain sparse and with little evidence to support them. Because near-infrared fluorescence (NIRF) imaging enables image acquisition on the order of tenths of seconds with trace administration of fluorescent dye, sedation is not necessary. The lack of harmful radiation and radioactive contrast agents further facilitates imaging. Herein we summarize our experiences in imaging infants and children who are suspected to have disorders of the lymphatic vascular system using indocyanine green (ICG) and who have developed chylothorax following surgery for congenital heart defects. The results show both anatomical as well as functional lymphatic deficits in children with congenital disease. In the future, NIRF lymphatic imaging could provide new opportunities to tailor effective therapies and monitor responses. The opportunity to use expand NIRF imaging for pediatric diagnostics beyond the lymphatic vasculature is also afforded by the rapid acquisition following trace administration of NIRF contrast agent.
Image reconstruction for x-ray K-edge imaging with a photon counting detector
NASA Astrophysics Data System (ADS)
Meng, Bo; Cong, Wenxiang; Xi, Yan; Wang, Ge
2014-09-01
Contrast agents with high-Z elements have K-absorption edges which significantly change X-ray attenuation coefficients. The K-edge characteristics is different for various kinds of contrast agents, which offers opportunities for material decomposition in biomedical applications. In this paper, we propose a new K-edge imaging method, which not only quantifies a distribution of a contrast agent but also provides an optimized contrast ratio. Our numerical simulation tests demonstrate the feasibility and merits of the proposed methodology.
2017-01-01
Metal-free magnetic resonance imaging (MRI) agents could overcome the established toxicity associated with metal-based agents in some patient populations and enable new modes of functional MRI in vivo. Herein, we report nitroxide-functionalized brush-arm star polymer organic radical contrast agents (BASP-ORCAs) that overcome the low contrast and poor in vivo stability associated with nitroxide-based MRI contrast agents. As a consequence of their unique nanoarchitectures, BASP-ORCAs possess per-nitroxide transverse relaxivities up to ∼44-fold greater than common nitroxides, exceptional stability in highly reducing environments, and low toxicity. These features combine to provide for accumulation of a sufficient concentration of BASP-ORCA in murine subcutaneous tumors up to 20 h following systemic administration such that MRI contrast on par with metal-based agents is observed. BASP-ORCAs are, to our knowledge, the first nitroxide MRI contrast agents capable of tumor imaging over long time periods using clinical high-field 1H MRI techniques. PMID:28776023
Gadolinium-enhanced MR images of the growing piglet skeleton: ionic versus nonionic contrast agent.
Menezes, Nina M; Olear, Elizabeth A; Li, Xiaoming; Connolly, Susan A; Zurakowski, David; Foley, Mary; Shapiro, Frederic; Jaramillo, Diego
2006-05-01
To determine whether there are differences in the distribution of ionic and nonionic gadolinium-based contrast agents by evaluating contrast enhancement of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis in the knees of normal piglets. Following approval from the Subcommittee on Research Animal Care, knees of 12 3-week-old piglets were imaged at 3-T magnetic resonance (MR) imaging after intravenous injection of gadoteridol (nonionic contrast agent; n = 6) or gadopentetate dimeglumine (ionic contrast agent; n = 6). Early enhancement evaluation with gradient-echo MR imaging was quantified and compared (Student t test) by means of enhancement ratios. Distribution of contrast material was assessed and compared (Student t test) by means of T1 measurements obtained before and at three 15-minute intervals after contrast agent administration. The relative visibility of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis was qualitatively assessed by two observers and compared (Wilcoxon signed rank test). Differences in matrix content and cellularity that might explain the imaging findings were studied at histologic evaluation. Enhancement ratios were significantly higher for gadoteridol than for gadopentetate dimeglumine in the physis, epiphyseal cartilage, and secondary ossification center (P < .05). After contrast agent administration, T1 values decreased sharply for both agents-but more so for gadoteridol. Additionally, there was less variability in T1 values across structures with this contrast agent. Gadoteridol resulted in greater visibility of the physis, while gadopentetate dimeglumine resulted in greater contrast between the physis and metaphysis (P < .05). The results suggest different roles for the two gadolinium-based contrast agents: The nonionic contrast medium is better suited for evaluating perfusion and anatomic definition in the immature skeleton, while the ionic contrast medium is better for evaluating cartilage fixed-charge density. (c) RSNA, 2006.
Perera, Reshani H; Wu, Hanping; Peiris, Pubudu; Hernandez, Christopher; Burke, Alan; Zhang, Helen; Exner, Agata A
2017-01-01
The design of nanoscale yet highly echogenic agents for imaging outside of the vasculature and for ultrasound-mediated drug delivery remains a formidable challenge. We have previously reported on formulation of echogenic perfluoropropane gas nanobubbles stabilized by a lipid-pluronic surfactant shell. In the current work we describe the development of a new generation of these nanoparticles which consist of perfluoropropane gas stabilized by a surfactant and lipid membrane and a crosslinked network of N,N-diethylacrylamide. The resulting crosslinked nanobubbles (CL-PEG-NB) were 95.2±25.2nm in diameter and showed significant improvement in stability and retention of echogenic signal over 24h. In vivo analysis via ultrasound and fluorescence mediated tomography showed greater tumor extravasation and accumulation with CL-PEG-NB compared to microbubbles. Together these results demonstrate the capabilities and advantages of a new, more stable, nanometer-scale ultrasound contrast agent that can be utilized in future work for diagnostic scans and molecular imaging. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Garbin, Valeria; Cojoc, Dan; Ferrari, Enrico; Di Fabrizio, Enzo; Overvelde, Marlies L. J.; Versluis, Michel; van der Meer, Sander M.; de Jong, Nico; Lohse, Detlef
2006-08-01
Optical tweezers enable non-destructive, contact-free manipulation of ultrasound contrast agent (UCA) microbubbles, which are used in medical imaging for enhancing the echogenicity of the blood pool and to quantify organ perfusion. The understanding of the fundamental dynamics of ultrasound-driven contrast agent microbubbles is a first step for exploiting their acoustical properties and to develop new diagnostic and therapeutic applications. In this respect, optical tweezers can be used to study UCA microbubbles under controlled and repeatable conditions, by positioning them away from interfaces and from neighboring bubbles. In addition, a high-speed imaging system is required to record the dynamics of UCA microbubbles in ultrasound, as their oscillations occur on the nanoseconds timescale. In this work, we demonstrate the use of an optical tweezers system combined with a high-speed camera capable of 128-frame recordings at up to 25 million frames per second (Mfps), for the study of individual UCA microbubble dynamics as a function of the distance from solid interfaces.
Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Wu, Hailiang; Terada, Yasuko; Saga, Tsuneo; Aoki, Ichio; Nishiyama, Nobuhiro; Kataoka, Kazunori
2016-08-01
Engineered nanoparticles that respond to pathophysiological parameters, such as pH or redox potential, have been developed as contrast agents for the magnetic resonance imaging (MRI) of tumours. However, beyond anatomic assessment, contrast agents that can sense these pathological parameters and rapidly amplify their magnetic resonance signals are desirable because they could potentially be used to monitor the biological processes of tumours and improve cancer diagnosis. Here, we report an MRI contrast agent that rapidly amplifies magnetic resonance signals in response to pH. We confined Mn(2+) within pH-sensitive calcium phosphate (CaP) nanoparticles comprising a poly(ethylene glycol) shell. At a low pH, such as in solid tumours, the CaP disintegrates and releases Mn(2+) ions. Binding to proteins increases the relaxivity of Mn(2+) and enhances the contrast. We show that these nanoparticles could rapidly and selectively brighten solid tumours, identify hypoxic regions within the tumour mass and detect invisible millimetre-sized metastatic tumours in the liver.
Boron chemicals in diagnosis and therapeutics
Das, Bhaskar C; Thapa, Pritam; Karki, Radha; Schinke, Caroline; Das, Sasmita; Kambhampati, Suman; Banerjee, Sushanta K; Van Veldhuizen, Peter; Verma, Amit; Weiss, Louis M; Evans, Todd
2013-01-01
Advances in the field of boron chemistry have expanded the application of boron from material use to medicine. Boron-based drugs represent a new class of molecules that possess several biomedical applications including use as imaging agents for both optical and nuclear imaging as well as therapeutic agents with anticancer, antiviral, antibacterial, antifungal and other disease-specific activities. For example, bortezomib (Velcade®), the only drug in clinical use with boron as an active element, was approved in 2003 as a proteasome inhibitor for the treatment of multiple myeloma and non-Hodgkin’s lymphoma. Several other boron-based compounds are in various phases of clinical trials, which illustrates the promise of this approach for medicinal chemists working in the area of boron chemistry. It is expected that in the near future, several boron-containing drugs should become available in the market with better efficacy and potency than existing drugs. This article discusses the current status of the development of boron-based compounds as diagnostic and therapeutic agents in humans. PMID:23617429
NASA Astrophysics Data System (ADS)
Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Wu, Hailiang; Terada, Yasuko; Saga, Tsuneo; Aoki, Ichio; Nishiyama, Nobuhiro; Kataoka, Kazunori
2016-08-01
Engineered nanoparticles that respond to pathophysiological parameters, such as pH or redox potential, have been developed as contrast agents for the magnetic resonance imaging (MRI) of tumours. However, beyond anatomic assessment, contrast agents that can sense these pathological parameters and rapidly amplify their magnetic resonance signals are desirable because they could potentially be used to monitor the biological processes of tumours and improve cancer diagnosis. Here, we report an MRI contrast agent that rapidly amplifies magnetic resonance signals in response to pH. We confined Mn2+ within pH-sensitive calcium phosphate (CaP) nanoparticles comprising a poly(ethylene glycol) shell. At a low pH, such as in solid tumours, the CaP disintegrates and releases Mn2+ ions. Binding to proteins increases the relaxivity of Mn2+ and enhances the contrast. We show that these nanoparticles could rapidly and selectively brighten solid tumours, identify hypoxic regions within the tumour mass and detect invisible millimetre-sized metastatic tumours in the liver.
NASA Astrophysics Data System (ADS)
Dong, Kai; Liu, Zhen; Liu, Jianhua; Huang, Sa; Li, Zhenhua; Yuan, Qinghai; Ren, Jinsong; Qu, Xiaogang
2014-01-01
In the present work, a novel non-lanthanide dual-modality contrast agent, manganese tungstate (MnWO4), has been successfully constructed by a facile and versatile hydrothermal route. With the merits of a high atomic number and a well-positioned K-edge energy of tungsten, our well-prepared non-lanthanide nanoprobes provide a higher contrast efficacy than routine iodine-based agents in clinics. Additionally, the presence of Mn in these nanoparticles endow them with excellent T1-weighted MR imaging capabilities. As an alternative to T2-weighted MRI and CT dual-modality contrast agents, the nanoprobes can provide a positive contrast signal, which prevents confusion with the dark signals from hemorrhage and blood clots. To the best of our knowledge, this is the first report that a non-lanthanide imaging nanoprobe is applied for CT and T1-weighted MRI simultaneously. Moreover, comparing with gadolinium-based T1-weighted MRI and CT dual-modality contrast agents that were associated with nephrogenic systemic fibrosis (NSF), our contrast agents have superior biocompatibility, which is proved by a detailed study of the pharmacokinetics, biodistribution, and in vivo toxicology. Together with excellent dispersibility, high biocompatibility and superior contrast efficacy, these nanoprobes provide detailed and complementary information from dual-modality imaging over traditional single-mode imaging and bring more opportunities to the new generation of non-lanthanide nanoparticulate-based contrast agents.In the present work, a novel non-lanthanide dual-modality contrast agent, manganese tungstate (MnWO4), has been successfully constructed by a facile and versatile hydrothermal route. With the merits of a high atomic number and a well-positioned K-edge energy of tungsten, our well-prepared non-lanthanide nanoprobes provide a higher contrast efficacy than routine iodine-based agents in clinics. Additionally, the presence of Mn in these nanoparticles endow them with excellent T1-weighted MR imaging capabilities. As an alternative to T2-weighted MRI and CT dual-modality contrast agents, the nanoprobes can provide a positive contrast signal, which prevents confusion with the dark signals from hemorrhage and blood clots. To the best of our knowledge, this is the first report that a non-lanthanide imaging nanoprobe is applied for CT and T1-weighted MRI simultaneously. Moreover, comparing with gadolinium-based T1-weighted MRI and CT dual-modality contrast agents that were associated with nephrogenic systemic fibrosis (NSF), our contrast agents have superior biocompatibility, which is proved by a detailed study of the pharmacokinetics, biodistribution, and in vivo toxicology. Together with excellent dispersibility, high biocompatibility and superior contrast efficacy, these nanoprobes provide detailed and complementary information from dual-modality imaging over traditional single-mode imaging and bring more opportunities to the new generation of non-lanthanide nanoparticulate-based contrast agents. Electronic supplementary information (ESI) available: TEM images of MnWO4 nanoparticles synthesized at pH = 7, 180 °C pH = 9, 180 °C pH = 6, 200 °C with various amino acid molecules as capped agents, survey XPS spectra, FTIR spectrum of glycine capped MnWO4 nanorods, photos of glycine capped MnWO4 nanorods in various solutions including PBS, DMEM cell medium, and FBS, in vivo coronal view CT images of a rat before and after intravenous injection of iobitridol at different timed intervals, in vivo CT imaging of the rat one month after intravenous injection of MnWO4 nanorods, CT values of the heart, liver, spleen and kidney of a rat before and after intravenous administration of MnWO4 nanorods and iobitridol at different time intervals, hematology analysis and blood biochemical assay. See DOI: 10.1039/c3nr05455a
Silicon Nanoparticles as Hyperpolarized Magnetic Resonance Imaging Agents
Aptekar, Jacob W.; Cassidy, Maja C.; Johnson, Alexander C.; Barton, Robert A.; Lee, Menyoung; Ogier, Alexander C.; Vo, Chinh; Anahtar, Melis N.; Ren, Yin; Bhatia, Sangeeta N.; Ramanathan, Chandrasekhar; Cory, David G.; Hill, Alison L.; Mair, Ross W.; Rosen, Matthew S.; Walsworth, Ronald L.
2014-01-01
Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in-vivo applications of pre-hyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications. PMID:19950973
Silicon nanoparticles as hyperpolarized magnetic resonance imaging agents.
Aptekar, Jacob W; Cassidy, Maja C; Johnson, Alexander C; Barton, Robert A; Lee, Menyoung; Ogier, Alexander C; Vo, Chinh; Anahtar, Melis N; Ren, Yin; Bhatia, Sangeeta N; Ramanathan, Chandrasekhar; Cory, David G; Hill, Alison L; Mair, Ross W; Rosen, Matthew S; Walsworth, Ronald L; Marcus, Charles M
2009-12-22
Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in vivo applications of prehyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications.
Iqbal, Muhammad; Robin, Sophie; Humbert, Philippe; Viennet, Céline; Agusti, Geraldine; Fessi, Hatem; Elaissari, Abdelhamid
2015-12-01
Fluorescent materials have recently attracted considerable attention due to their unique properties and high performance as imaging agent in biomedical fields. Different imaging agents have been encapsulated in order to restrict its delivery to a specific area. In this study, a fluorescent contrast agent was encapsulated for in vitro application by polycaprolactone (PCL) polymer. The encapsulation was performed using modified double emulsion solvent evaporation technique with sonication. Fluorescent nanoparticles (20 nm) were incorporated in the inner aqueous phase of double emulsion. A number of samples were fabricated using different concentrations of fluorescent contrast agent. The contrast agent-containing submicron particle was characterized by a zetasizer for average particle size, SEM and TEM for morphology observations and fluorescence spectrophotometer for encapsulation efficiency. Moreover, contrast agent distribution in the PCL matrix was determined by confocal microscopy. The incorporation of contrast agent in different concentrations did not affect the physicochemical properties of PCL particles and the average size of encapsulated particles was found to be in the submicron range. Copyright © 2015 Elsevier B.V. All rights reserved.
2, 3-dimercaptosuccinic acid-modified iron oxide clusters for magnetic resonance imaging.
Xiong, Fei; Yan, Caiyun; Tian, Jilai; Geng, Kunkun; Zhu, Ziyi; Song, Lina; Zhang, Yu; Mulvale, Matthew; Gu, Ning
2014-12-01
Over the last decade, various magnetic nanomaterials have been developed as magnetic resonance imaging (MRI) contrast agents; the greatest challenges encountered for clinical application have been insufficient stability. In this paper, a lyophilization method for 2, 3-dimercaptosuccinic acid-modified iron oxide (γ-Fe2 O3 @DMSA) nanoparticles was developed to simultaneously overcome two disadvantages; these include insufficient stability and low-magnetic response. After lyophilization, the clusters of γ-Fe2 O3 @DMSA with the size of 156.7 ± 15.3 nm were formed, and the stability of the lyophilized powder (γ-Fe2 O3 @DMSA-LP) increased up to over 3 years. It was also found that rehydrated γ-Fe2 O3 @DMSA-LP could be ingested by RAW264.7 cells in very large quantities. Results of pharmacokinetics and biodistribution studies in vivo indicated that γ-Fe2 O3 @DMSA-LP is a promising liver-targeted material. Furthermore, it also exhibited higher MRI efficiency and longer imaging time in the liver than the well-known product Feridex(®) . Moreover, results of vascular irritation and long-term toxicity experiments demonstrated γ-Fe2 O3 @DMSA-LP could be a nontoxic, biocompatible contrast agent in vivo. Therefore, the proposed γ-Fe2 O3 @DMSA-LP can be used as a potential MRI contrast agent in clinic for hepatic diseases. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Sonnaert, Maarten; Kerckhofs, Greet; Papantoniou, Ioannis; Van Vlierberghe, Sandra; Boterberg, Veerle; Dubruel, Peter; Luyten, Frank P; Schrooten, Jan; Geris, Liesbet
2015-01-01
To progress the fields of tissue engineering (TE) and regenerative medicine, development of quantitative methods for non-invasive three dimensional characterization of engineered constructs (i.e. cells/tissue combined with scaffolds) becomes essential. In this study, we have defined the most optimal staining conditions for contrast-enhanced nanofocus computed tomography for three dimensional visualization and quantitative analysis of in vitro engineered neo-tissue (i.e. extracellular matrix containing cells) in perfusion bioreactor-developed Ti6Al4V constructs. A fractional factorial 'design of experiments' approach was used to elucidate the influence of the staining time and concentration of two contrast agents (Hexabrix and phosphotungstic acid) and the neo-tissue volume on the image contrast and dataset quality. Additionally, the neo-tissue shrinkage that was induced by phosphotungstic acid staining was quantified to determine the operating window within which this contrast agent can be accurately applied. For Hexabrix the staining concentration was the main parameter influencing image contrast and dataset quality. Using phosphotungstic acid the staining concentration had a significant influence on the image contrast while both staining concentration and neo-tissue volume had an influence on the dataset quality. The use of high concentrations of phosphotungstic acid did however introduce significant shrinkage of the neo-tissue indicating that, despite sub-optimal image contrast, low concentrations of this staining agent should be used to enable quantitative analysis. To conclude, design of experiments allowed us to define the most optimal staining conditions for contrast-enhanced nanofocus computed tomography to be used as a routine screening tool of neo-tissue formation in Ti6Al4V constructs, transforming it into a robust three dimensional quality control methodology.
Xu, Weichen; Lu, Yi
2011-05-07
We report a general strategy for developing a smart MRI contrast agent for the sensing of small molecules such as adenosine based on a DNA aptamer that is conjugated to a Gd compound and a protein streptavidin. The binding of adenosine to its aptamer results in the dissociation of the Gd compound from the large protein, leading to decreases in the rotational correlation time and thus change of MRI contrast. © The Royal Society of Chemistry 2011
Near Infrared Fluorescence Imaging in Nano-Therapeutics and Photo-Thermal Evaluation
Vats, Mukti; Mishra, Sumit Kumar; Baghini, Mahdieh Shojaei; Chauhan, Deepak S.; Srivastava, Rohit; De, Abhijit
2017-01-01
The unresolved and paramount challenge in bio-imaging and targeted therapy is to clearly define and demarcate the physical margins of tumor tissue. The ability to outline the healthy vital tissues to be carefully navigated with transection while an intraoperative surgery procedure is performed sets up a necessary and under-researched goal. To achieve the aforementioned objectives, there is a need to optimize design considerations in order to not only obtain an effective imaging agent but to also achieve attributes like favorable water solubility, biocompatibility, high molecular brightness, and a tissue specific targeting approach. The emergence of near infra-red fluorescence (NIRF) light for tissue scale imaging owes to the provision of highly specific images of the target organ. The special characteristics of near infra-red window such as minimal auto-fluorescence, low light scattering, and absorption of biomolecules in tissue converge to form an attractive modality for cancer imaging. Imparting molecular fluorescence as an exogenous contrast agent is the most beneficial attribute of NIRF light as a clinical imaging technology. Additionally, many such agents also display therapeutic potentials as photo-thermal agents, thus meeting the dual purpose of imaging and therapy. Here, we primarily discuss molecular imaging and therapeutic potentials of two such classes of materials, i.e., inorganic NIR dyes and metallic gold nanoparticle based materials. PMID:28452928
Portable wide-field hand-held NIR scanner
NASA Astrophysics Data System (ADS)
Jung, Young-Jin; Roman, Manuela; Carrasquilla, Jennifer; Erickson, Sarah J.; Godavarty, Anuradha
2013-03-01
Near-infrared (NIR) optical imaging modality is one of the widely used medical imaging techniques for breast cancer imaging, functional brain mapping, and many other applications. However, conventional NIR imaging systems are bulky and expensive, thereby limiting their accelerated clinical translation. Herein a new compact (6 × 7 × 12 cm3), cost-effective, and wide-field NIR scanner has been developed towards contact as well as no-contact based real-time imaging in both reflectance and transmission mode. The scanner mainly consists of an NIR source light (between 700- 900 nm), an NIR sensitive CCD camera, and a custom-developed image acquisition and processing software to image an area of 12 cm2. Phantom experiments have been conducted to estimate the feasibility of diffuse optical imaging by using Indian-Ink as absorption-based contrast agents. As a result, the developed NIR system measured the light intensity change in absorption-contrasted target up to 4 cm depth under transillumination mode. Preliminary in-vivo studies demonstrated the feasibility of real-time monitoring of blood flow changes. Currently, extensive in-vivo studies are carried out using the ultra-portable NIR scanner in order to assess the potential of the imager towards breast imaging..
Airborne Particulate Threat Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Treado; Oksana Klueva; Jeffrey Beckstead
Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. governmentmore » agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our findings and APICD Gen II subsystems for automated collection, deposition and detection of ambient particulate matter. Key findings from the APTA Program include: Ambient biological PM taxonomy; Demonstration of key subsystems needed for autonomous bioaerosol detection; System design; Efficient electrostatic collection; Automated bioagent recognition; Raman analysis performance validating Td<9 sec; Efficient collection surface regeneration; and Development of a quantitative bioaerosol defection model. The objective of the APTA program was to advance the state of our knowledge of ambient background PM composition. Operation of an automated aerosol detection system was enhanced by a more accurate assessment of background variability, especially for sensitive and specific sensing strategies like Raman detection that are background-limited in performance. Based on this improved knowledge of background, the overall threat detection performance of Raman sensors was improved.« less
NASA Astrophysics Data System (ADS)
Carvlin, Mark J.; Renshaw, Perry F.; Arger, Peter; Kundel, Harold L.; Dougherty, Larry; Axel, Leon; Kassab, Eleanor; Moore, Bethanne
1988-06-01
The paramagnetic chelate complex, gadolinium-diethylene-triamine-pentaacetic acid, Gd-DTPA, and superparamagnetic particles, such as those composed of dextran coated magnetite, function as magnetic resonance contrast agents by changing the relaxation rates, 1/T1 and 1/T2. The effects that these agents have upon MR signal intensity are determined by: the inherent biophysical properties of the tissue being imaged, the concentration of the contrast agent and the data acquisition scheme (pulse sequence parameters) employed. Following the time course of MR signal change in the first minutes after the injection of contrast agent(s) allows a dynamic assessment of organ functions in a manner analogous to certain nuclear medicine studies. In order to study renal function, sequential MR fast scan images, gradient echo (TR=35/TE=7 msec, flip angle=25 degrees), were acquired, one every 12 seconds, after intravenous injection of Gd-DTPA and/or dextran-magnetite. Gd-DTPA, which is freely filtered at the glomerulus and is neither secreted nor reabsorbed, provides information concerning renal perfusion, glomerular filtration and tubular concentrating ability. Dextran-magnetite (200 A diameter), which is primarily contained within the intravascular space shortly after injection, provides information on blood flow to and distribution within the kidney. The MR signal change observed after administration of contrast agents varied dramatically depending upon the agents injected and the imaging parameters used. Hence a broad range of physiolgic processes may be described using these techniques, i.e. contrast agent enhanced functional MR examinations.
Microbubble Compositions, Properties and Biomedical Applications
Sirsi, Shashank
2010-01-01
Over the last decade, there has been significant progress towards the development of microbubbles as theranostics for a wide variety of biomedical applications. The unique ability of microbubbles to respond to ultrasound makes them useful agents for contrast ultrasound imaging, molecular imaging, and targeted drug and gene delivery. The general composition of a microbubble is a gas core stabilized by a shell comprised of proteins, lipids or polymers. Each type of microbubble has its own unique advantages and can be tailored for specialized functions. In this review, different microbubbles compositions and physiochemical properties are discussed in the context of current progress towards developing novel constructs for biomedical applications, with specific emphasis on molecular imaging and targeted drug/gene delivery. PMID:20574549
MONICA: A Compact, Portable Dual Gamma Camera System for Mouse Whole-Body Imaging
Xi, Wenze; Seidel, Jurgen; Karkareka, John W.; Pohida, Thomas J.; Milenic, Diane E.; Proffitt, James; Majewski, Stan; Weisenberger, Andrew G.; Green, Michael V.; Choyke, Peter L.
2009-01-01
Introduction We describe a compact, portable dual-gamma camera system (named “MONICA” for MObile Nuclear Imaging CAmeras) for visualizing and analyzing the whole-body biodistribution of putative diagnostic and therapeutic single photon emitting radiotracers in animals the size of mice. Methods Two identical, miniature pixelated NaI(Tl) gamma cameras were fabricated and installed “looking up” through the tabletop of a compact portable cart. Mice are placed directly on the tabletop for imaging. Camera imaging performance was evaluated with phantoms and field performance was evaluated in a weeklong In-111 imaging study performed in a mouse tumor xenograft model. Results Tc-99m performance measurements, using a photopeak energy window of 140 keV ± 10%, yielded the following results: spatial resolution (FWHM at 1-cm), 2.2-mm; sensitivity, 149 cps/MBq (5.5 cps/μCi); energy resolution (FWHM), 10.8%; count rate linearity (count rate vs. activity), r2 = 0.99 for 0–185 MBq (0–5 mCi) in the field-of-view (FOV); spatial uniformity, < 3% count rate variation across the FOV. Tumor and whole-body distributions of the In-111 agent were well visualized in all animals in 5-minute images acquired throughout the 168-hour study period. Conclusion Performance measurements indicate that MONICA is well suited to whole-body single photon mouse imaging. The field study suggests that inter-device communications and user-oriented interfaces included in the MONICA design facilitate use of the system in practice. We believe that MONICA may be particularly useful early in the (cancer) drug development cycle where basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors, e.g. limited imaging space, portability, and, potentially, cost are important. PMID:20346864
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deutscher, Susan
2014-09-30
The objective of this research is to develop phage display-selected peptides into radio- and fluoresecently- labeled scaffolds for the multimodal imaging of carbohydrate-lectin interactions. While numerous protein and receptor systems are being explored for the development of targeted imaging agents, the targeting and analysis of carbohydrate-lectin complexes in vivo remains relatively unexplored. Antibodies, nanoparticles, and peptides are being developed that target carbohydrate-lectin complexes in living systems. However, antibodies and nanoparticles often suffer from slow clearance and toxicity problems. Peptides are attractive alternative vehicles for the specific delivery of radionuclides or fluorophores to sites of interest in vivo, although, because ofmore » their size, uptake and retention may be less than antibodies. We have selected high affinity peptides that bind a specific carbohydrate-lectin complex involved in cell-cell adhesion and cross-linking using bacteriophage (phage) display technologies (1,2). These peptides have allowed us to probe the role of these antigens in cell adhesion. Fluorescent versions of the peptides have been developed for optical imaging and radiolabeled versions have been used in single photon emission computed tomography (SPECT) and positron emission tomography (PET) in vivo imaging (3-6). A benefit in employing the radiolabeled peptides in SPECT and PET is that these imaging modalities are widely used in living systems and offer deep tissue sensitivity. Radiolabeled peptides, however, often exhibit poor stability and high kidney uptake in vivo. Conversely, optical imaging is sensitive and offers good spatial resolution, but is not useful for deep tissue penetration and is semi-quantitative. Thus, multimodality imaging that relies on the strengths of both radio- and optical- imaging is a current focus for development of new in vivo imaging agents. We propose a novel means to improve the efficacy of radiolabeled and fluorescently labeled peptides, including our lectin/carbohydrate- targeting peptides, by displaying the targeting epitopes on small ~29 amino acid cyclic plant protein scaffolds known as cyclotides. Cyclotides are extremely stable molecules with long serum half-lives and low kidney uptake (7). More than one copy of the peptide can be engineered into the cyclotide loops, thus increasing the avidity of the peptide construct for its target.« less
Miyahira, Andrea K; Pienta, Kenneth J; Morris, Michael J; Bander, Neil H; Baum, Richard P; Fendler, Wolfgang P; Goeckeler, William; Gorin, Michael A; Hennekes, Hartwig; Pomper, Martin G; Sartor, Oliver; Tagawa, Scott T; Williams, Scott; Soule, Howard R
2018-05-01
The Prostate Cancer Foundation (PCF) convened a PSMA-Directed Radionuclide Scientific Working Group on November 14, 2017, at Weill Cornell Medicine, New York, NY. The meeting was attended by 35 global investigators with expertise in prostate cancer biology, radionuclide therapy, molecular imaging, prostate-specific membrane antigen (PSMA)-targeted agents, drug development, and prostate cancer clinical trials. The goal of this meeting was to discuss the potential for using PSMA-targeted radionuclide agents for the treatment of advanced prostate cancer and to define the studies and clinical trials necessary for validating and optimizing the use of these agents. Several major topic areas were discussed including the overview of PSMA biology, lessons and applications of PSMA-targeted PET imaging, the nuances of designing PSMA-targeted radionuclide agents, clinical experiences with PSMA-targeted radionuclides, PCF-funded projects to accelerate PSMA-targeted radionuclide therapy, and barriers to the use of radionuclide treatments in widespread clinical practice. This article reviews the major topics discussed at the meeting with the goal of promoting research that will validate and optimize the use of PSMA-targeted radionuclide therapies for the treatment of advanced prostate cancer. © 2018 Wiley Periodicals, Inc.
Studies of MRI relaxivities of gadolinium-labeled dendrons
NASA Astrophysics Data System (ADS)
Pan, Hongmu; Daniel, Marie-Christine
2011-05-01
In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).
USDA-ARS?s Scientific Manuscript database
Background: Nanoparticles have emerged as key materials for developing applications in nanomedicine, nanobiotechnology, bioimaging and theranostics. Existing bioimaging technologies include bioluminescent resonance energy transfer-conjugated quantum dots (BRET-QDs). Despite the current use of BRET-Q...
Aptamer-Targeted Magnetic Resonance Imaging Contrast Agents and Their Applications.
Zhang, Yajie; Zhang, Tingting; Liu, Min; Kuang, Ye; Zu, Guangyue; Zhang, Kunchi; Cao, Yi; Pei, Renjun
2018-06-01
Magnetic resonance imaging is a powerful diagnostic technology with high spatial resolution and non-invasion. The contrast agents have significant effect on the resolution of the MR imaging. However, the commercial contrast agents (CAs) usually consist of individual Gd3+ chelated with a low molecular weight acyclic or cyclic ligand, and these small-molecule CAs are usually subjected to nonspecificity, thus leading to rapid renal clearance and modest contrast enhancement for tumor imaging. In recent years, the nanostructured materials conjugated with aptamers were widely used and opened a new door in biomedical imaging due to excellent specificity, non-immunogenicity, easily synthesis and chemical modification of aptamers. This review summarizes all kinds of aptamertargeted MRI CAs and their applications.
Imaging efficiency of an X-ray contrast agent-incorporated polymeric microparticle.
Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon
2011-01-01
Biocompatible polymeric encapsulants have been widely used as a delivery vehicle for a variety of drugs and imaging agents. In this study, X-ray contrast agent (iopamidol) is encapsulated into a polymeric microparticle (polyvinyl alcohol) as a particulate flow tracer in synchrotron X-ray imaging system. The physical properties of the designed microparticles are investigated and correlated with enhancement in the imaging efficiency by experimental observation and theoretical interpretation. The X-ray absorption ability of the designed microparticle is assessed by Beer-Lambert-Bouguer law. Particle size, either in dried state or in solvent, primarily dominates the X-ray absorption ability under the given condition, thus affecting imaging efficiency of the designed X-ray contrast flow tracers. Copyright © 2011 John Wiley & Sons, Ltd.
pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent
Wu, Yunkou; Zhang, Shanrong; Soesbe, Todd C.; Yu, Jing; Vinogradov, Elena; Lenkinski, Robert E.; Sherry, A. Dean
2015-01-01
Purpose This study explored the feasibility of using a pH responsive paraCEST agent to image the pH gradient in kidneys of healthy mice. Methods CEST signals were acquired on an Agilent 9.4 T small animal MRI system using a steady-state gradient echo pulse sequence after a bolus injection of agent. The magnetic field inhomogeneity across each kidney was corrected using the WASSR method and pH maps were calculated by measuring the frequency of water exchange signal arising from the agent. Results Dynamic CEST studies demonstrated that the agent was readily detectable in kidneys only between 4 to 12 min post-injection. The CEST images showed a higher signal intensity in the pelvis and calyx regions and lower signal intensity in the medulla and cortex regions. The pH maps reflected tissue pH values spanning from 6.0 to 7.5 in kidneys of healthy mice. Conclusion This study demonstrated that pH maps of the kidney can be imaged in vivo by measuring the pH-dependent chemical shift of a single water exchange CEST peak without prior knowledge of the agent concentration in vivo. The results demonstrate the potential of using a simple frequency-dependent paraCEST agent for mapping tissue pH in vivo. PMID:26173637
Lipid- and Polymer-Based Nanostructures for Cancer Theranostics
Luk, Brian T.; Fang, Ronnie H.; Zhang, Liangfang
2012-01-01
The relatively new field of nanotheranostics combines the advantages of in vivo diagnosis with the ability to administer treatment through a single nano-sized carrier, offering new opportunities for cancer diagnosis and therapy. Nanotheranostics has facilitated the development of nanomedicine through direct visualization of drug blood circulation and biodistribution. From a clinical perspective, nanotheranostics allows therapies to be administered and monitored in real time, thus decreasing the potential of under- or over-dosing and allowing for more personalized treatment regimens. Herein, we review recent development of nanotheranostics using lipid- and polymer-based formulations, with a particular focus on their applications in cancer research. Recent advances in nanotechnology aimed to combine therapeutic molecules with imaging agents for magnetic resonance imaging, radionuclide imaging, or fluorescence imaging are discussed. PMID:23382770
Molecular and chemical engineering of bacteriophages for potential medical applications.
Hodyra, Katarzyna; Dąbrowska, Krystyna
2015-04-01
Recent progress in molecular engineering has contributed to the great progress of medicine. However, there are still difficult problems constituting a challenge for molecular biology and biotechnology, e.g. new generation of anticancer agents, alternative biosensors or vaccines. As a biotechnological tool, bacteriophages (phages) offer a promising alternative to traditional approaches. They can be applied as anticancer agents, novel platforms in vaccine design, or as target carriers in drug discovery. Phages also offer solutions for modern cell imaging, biosensor construction or food pathogen detection. Here we present a review of bacteriophage research as a dynamically developing field with promising prospects for further development of medicine and biotechnology.
NASA Astrophysics Data System (ADS)
Huang, Guojia; Yuan, Yi; Xing, Da
2011-01-01
X-ray is one of the most useful diagnostic tools in hospitals in terms of frequency of use and cost, while photoacoustic (PA) imaging is a rapidly emerging non-invasive imaging technology that integrates the merits of high optical contrast with high ultrasound resolution. In this study, for the first time, we used gold nanoparticles (GNPs) as a dual modal contrast agent for X-ray and PA imaging. Soft gelatin phantoms with embedded tumor simulators of GNPs in various concentrations are clearly shown in both X-ray and PA imaging. With GNPs as a dual modal contrast agent, X-ray can fast detect the position of tumor and provide morphological information, whereas PA imaging has important potential applications in the image guided therapy of superficial tumors such as breast cancer, melanoma and Merkel cell carcinoma.
2013-08-01
AD_________________ Award Number: W81XWH-12-1-0284 TITLE: Development of Targeted Nanobubbles for...REPORT TYPE Annual 3. DATES COVERED 15 July 2012 - 14 July 2013 4. TITLE AND SUBTITLE Development of Targeted Nanobubbles for Ultrasound...be able to formulate nanodroplets contrast agents with tunable size, PFP content, and shell flexibility to obtain stable and echogenic nanobubbles
NASA Astrophysics Data System (ADS)
Huang, Hai; Xie, Qiuping; Kang, Muxing; Zhang, Bo; Zhang, Hui; Chen, Jin; Zhai, Chuanxin; Yang, Deren; Jiang, Biao; Wu, Yulian
2009-09-01
Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet β-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into β-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.
A stopping criterion to halt iterations at the Richardson-Lucy deconvolution of radiographic images
NASA Astrophysics Data System (ADS)
Almeida, G. L.; Silvani, M. I.; Souza, E. S.; Lopes, R. T.
2015-07-01
Radiographic images, as any experimentally acquired ones, are affected by spoiling agents which degrade their final quality. The degradation caused by agents of systematic character, can be reduced by some kind of treatment such as an iterative deconvolution. This approach requires two parameters, namely the system resolution and the best number of iterations in order to achieve the best final image. This work proposes a novel procedure to estimate the best number of iterations, which replaces the cumbersome visual inspection by a comparison of numbers. These numbers are deduced from the image histograms, taking into account the global difference G between them for two subsequent iterations. The developed algorithm, including a Richardson-Lucy deconvolution procedure has been embodied into a Fortran program capable to plot the 1st derivative of G as the processing progresses and to stop it automatically when this derivative - within the data dispersion - reaches zero. The radiograph of a specially chosen object acquired with thermal neutrons from the Argonauta research reactor at Institutode Engenharia Nuclear - CNEN, Rio de Janeiro, Brazil, have undergone this treatment with fair results.
Minami, Yasunori; Kudo, Masatoshi
2009-12-31
The success rate of percutaneous radiofrequency (RF) ablation for hepatocellular carcinoma (HCC) depends on correct targeting via an imaging technique. However, RF electrode insertion is not completely accurate for residual HCC nodules because B-mode ultrasound (US), color Doppler, and power Doppler US findings cannot adequately differentiate between treated and viable residual tumor tissue. Electrode insertion is also difficult when we must identify the true HCC nodule among many large regenerated nodules in cirrhotic liver. Two breakthroughs in the field of US technology, harmonic imaging and the development of second-generation contrast agents, have recently been described and have demonstrated the potential to dramatically broaden the scope of US diagnosis of hepatic lesions. Contrast-enhanced harmonic US imaging with an intravenous contrast agent can evaluate small hypervascular HCC even when B-mode US cannot adequately characterize tumor. Therefore, contrast-enhanced harmonic US can facilitate RF ablation electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of contrast-enhanced harmonic US in ablation therapy for liver cancer is an efficient approach.