Sample records for imaging algorithm based

  1. New development of the image matching algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqiang; Feng, Zhao

    2018-04-01

    To study the image matching algorithm, algorithm four elements are described, i.e., similarity measurement, feature space, search space and search strategy. Four common indexes for evaluating the image matching algorithm are described, i.e., matching accuracy, matching efficiency, robustness and universality. Meanwhile, this paper describes the principle of image matching algorithm based on the gray value, image matching algorithm based on the feature, image matching algorithm based on the frequency domain analysis, image matching algorithm based on the neural network and image matching algorithm based on the semantic recognition, and analyzes their characteristics and latest research achievements. Finally, the development trend of image matching algorithm is discussed. This study is significant for the algorithm improvement, new algorithm design and algorithm selection in practice.

  2. Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking †

    PubMed Central

    Kiku, Daisuke; Okutomi, Masatoshi

    2017-01-01

    Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking. PMID:29194407

  3. Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking.

    PubMed

    Monno, Yusuke; Kiku, Daisuke; Tanaka, Masayuki; Okutomi, Masatoshi

    2017-12-01

    Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking.

  4. An improved non-uniformity correction algorithm and its hardware implementation on FPGA

    NASA Astrophysics Data System (ADS)

    Rong, Shenghui; Zhou, Huixin; Wen, Zhigang; Qin, Hanlin; Qian, Kun; Cheng, Kuanhong

    2017-09-01

    The Non-uniformity of Infrared Focal Plane Arrays (IRFPA) severely degrades the infrared image quality. An effective non-uniformity correction (NUC) algorithm is necessary for an IRFPA imaging and application system. However traditional scene-based NUC algorithm suffers the image blurring and artificial ghosting. In addition, few effective hardware platforms have been proposed to implement corresponding NUC algorithms. Thus, this paper proposed an improved neural-network based NUC algorithm by the guided image filter and the projection-based motion detection algorithm. First, the guided image filter is utilized to achieve the accurate desired image to decrease the artificial ghosting. Then a projection-based moving detection algorithm is utilized to determine whether the correction coefficients should be updated or not. In this way the problem of image blurring can be overcome. At last, an FPGA-based hardware design is introduced to realize the proposed NUC algorithm. A real and a simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. Experimental results indicated that the proposed NUC algorithm can effectively eliminate the fix pattern noise with less image blurring and artificial ghosting. The proposed hardware design takes less logic elements in FPGA and spends less clock cycles to process one frame of image.

  5. Study on the algorithm of computational ghost imaging based on discrete fourier transform measurement matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua

    2016-07-01

    On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.

  6. Analysis of image thresholding segmentation algorithms based on swarm intelligence

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lu, Kai; Gao, Yinghui; Yang, Bo

    2013-03-01

    Swarm intelligence-based image thresholding segmentation algorithms are playing an important role in the research field of image segmentation. In this paper, we briefly introduce the theories of four existing image segmentation algorithms based on swarm intelligence including fish swarm algorithm, artificial bee colony, bacteria foraging algorithm and particle swarm optimization. Then some image benchmarks are tested in order to show the differences of the segmentation accuracy, time consumption, convergence and robustness for Salt & Pepper noise and Gaussian noise of these four algorithms. Through these comparisons, this paper gives qualitative analyses for the performance variance of the four algorithms. The conclusions in this paper would give a significant guide for the actual image segmentation.

  7. Digital watermarking algorithm research of color images based on quaternion Fourier transform

    NASA Astrophysics Data System (ADS)

    An, Mali; Wang, Weijiang; Zhao, Zhen

    2013-10-01

    A watermarking algorithm of color images based on the quaternion Fourier Transform (QFFT) and improved quantization index algorithm (QIM) is proposed in this paper. The original image is transformed by QFFT, the watermark image is processed by compression and quantization coding, and then the processed watermark image is embedded into the components of the transformed original image. It achieves embedding and blind extraction of the watermark image. The experimental results show that the watermarking algorithm based on the improved QIM algorithm with distortion compensation achieves a good tradeoff between invisibility and robustness, and better robustness for the attacks of Gaussian noises, salt and pepper noises, JPEG compression, cropping, filtering and image enhancement than the traditional QIM algorithm.

  8. Synthetic aperture radar image formation for the moving-target and near-field bistatic cases

    NASA Astrophysics Data System (ADS)

    Ding, Yu

    This dissertation addresses topics in two areas of synthetic aperture radar (SAR) image formation: time-frequency based SAR imaging of moving targets and a fast backprojection (BP) algorithm for near-field bistatic SAR imaging. SAR imaging of a moving target is a challenging task due to unknown motion of the target. We approach this problem in a theoretical way, by analyzing the Wigner-Ville distribution (WVD) based SAR imaging technique. We derive approximate closed-form expressions for the point-target response of the SAR imaging system, which quantify the image resolution, and show how the blurring in conventional SAR imaging can be eliminated, while the target shift still remains. Our analyses lead to accurate prediction of the target position in the reconstructed images. The derived expressions also enable us to further study additional aspects of WVD-based SAR imaging. Bistatic SAR imaging is more involved than the monostatic SAR case, because of the separation of the transmitter and the receiver, and possibly the changing bistatic geometry. For near-field bistatic SAR imaging, we develop a novel fast BP algorithm, motivated by a newly proposed fast BP algorithm in computer tomography. First we show that the BP algorithm is the spatial-domain counterpart of the benchmark o -- k algorithm in bistatic SAR imaging, yet it avoids the frequency-domain interpolation in the o -- k algorithm, which may cause artifacts in the reconstructed image. We then derive the band-limited property for BP methods in both monostatic and bistatic SAR imaging, which is the basis for developing the fast BP algorithm. We compare our algorithm with other frequency-domain based algorithms, and show that it achieves better reconstructed image quality, while having the same computational complexity as that of the frequency-domain based algorithms.

  9. Quantum Image Steganography and Steganalysis Based On LSQu-Blocks Image Information Concealing Algorithm

    NASA Astrophysics Data System (ADS)

    A. AL-Salhi, Yahya E.; Lu, Songfeng

    2016-08-01

    Quantum steganography can solve some problems that are considered inefficient in image information concealing. It researches on Quantum image information concealing to have been widely exploited in recent years. Quantum image information concealing can be categorized into quantum image digital blocking, quantum image stereography, anonymity and other branches. Least significant bit (LSB) information concealing plays vital roles in the classical world because many image information concealing algorithms are designed based on it. Firstly, based on the novel enhanced quantum representation (NEQR), image uniform blocks clustering around the concrete the least significant Qu-block (LSQB) information concealing algorithm for quantum image steganography is presented. Secondly, a clustering algorithm is proposed to optimize the concealment of important data. Finally, we used Con-Steg algorithm to conceal the clustered image blocks. Information concealing located on the Fourier domain of an image can achieve the security of image information, thus we further discuss the Fourier domain LSQu-block information concealing algorithm for quantum image based on Quantum Fourier Transforms. In our algorithms, the corresponding unitary Transformations are designed to realize the aim of concealing the secret information to the least significant Qu-block representing color of the quantum cover image. Finally, the procedures of extracting the secret information are illustrated. Quantum image LSQu-block image information concealing algorithm can be applied in many fields according to different needs.

  10. An Image Encryption Algorithm Based on Information Hiding

    NASA Astrophysics Data System (ADS)

    Ge, Xin; Lu, Bin; Liu, Fenlin; Gong, Daofu

    Aiming at resolving the conflict between security and efficiency in the design of chaotic image encryption algorithms, an image encryption algorithm based on information hiding is proposed based on the “one-time pad” idea. A random parameter is introduced to ensure a different keystream for each encryption, which has the characteristics of “one-time pad”, improving the security of the algorithm rapidly without significant increase in algorithm complexity. The random parameter is embedded into the ciphered image with information hiding technology, which avoids negotiation for its transport and makes the application of the algorithm easier. Algorithm analysis and experiments show that the algorithm is secure against chosen plaintext attack, differential attack and divide-and-conquer attack, and has good statistical properties in ciphered images.

  11. Research on compressive sensing reconstruction algorithm based on total variation model

    NASA Astrophysics Data System (ADS)

    Gao, Yu-xuan; Sun, Huayan; Zhang, Tinghua; Du, Lin

    2017-12-01

    Compressed sensing for breakthrough Nyquist sampling theorem provides a strong theoretical , making compressive sampling for image signals be carried out simultaneously. In traditional imaging procedures using compressed sensing theory, not only can it reduces the storage space, but also can reduce the demand for detector resolution greatly. Using the sparsity of image signal, by solving the mathematical model of inverse reconfiguration, realize the super-resolution imaging. Reconstruction algorithm is the most critical part of compression perception, to a large extent determine the accuracy of the reconstruction of the image.The reconstruction algorithm based on the total variation (TV) model is more suitable for the compression reconstruction of the two-dimensional image, and the better edge information can be obtained. In order to verify the performance of the algorithm, Simulation Analysis the reconstruction result in different coding mode of the reconstruction algorithm based on the TV reconstruction algorithm. The reconstruction effect of the reconfigurable algorithm based on TV based on the different coding methods is analyzed to verify the stability of the algorithm. This paper compares and analyzes the typical reconstruction algorithm in the same coding mode. On the basis of the minimum total variation algorithm, the Augmented Lagrangian function term is added and the optimal value is solved by the alternating direction method.Experimental results show that the reconstruction algorithm is compared with the traditional classical algorithm based on TV has great advantages, under the low measurement rate can be quickly and accurately recovers target image.

  12. Evaluation of Demons- and FEM-Based Registration Algorithms for Lung Cancer.

    PubMed

    Yang, Juan; Li, Dengwang; Yin, Yong; Zhao, Fen; Wang, Hongjun

    2016-04-01

    We evaluated and compared the accuracy of 2 deformable image registration algorithms in 4-dimensional computed tomography images for patients with lung cancer. Ten patients with non-small cell lung cancer or small cell lung cancer were enrolled in this institutional review board-approved study. The displacement vector fields relative to a specific reference image were calculated by using the diffeomorphic demons (DD) algorithm and the finite element method (FEM)-based algorithm. The registration accuracy was evaluated by using normalized mutual information (NMI), the sum of squared intensity difference (SSD), modified Hausdorff distance (dH_M), and ratio of gross tumor volume (rGTV) difference between reference image and deformed phase image. We also compared the registration speed of the 2 algorithms. Of all patients, the FEM-based algorithm showed stronger ability in aligning 2 images than the DD algorithm. The means (±standard deviation) of NMI were 0.86 (±0.05) and 0.90 (±0.05) using the DD algorithm and the FEM-based algorithm, respectively. The means of SSD were 0.006 (±0.003) and 0.003 (±0.002) using the DD algorithm and the FEM-based algorithm, respectively. The means of dH_M were 0.04 (±0.02) and 0.03 (±0.03) using the DD algorithm and the FEM-based algorithm, respectively. The means of rGTV were 3.9% (±1.01%) and 2.9% (±1.1%) using the DD algorithm and the FEM-based algorithm, respectively. However, the FEM-based algorithm costs a longer time than the DD algorithm, with the average running time of 31.4 minutes compared to 21.9 minutes for all patients. The preliminary results showed that the FEM-based algorithm was more accurate than the DD algorithm while compromised with the registration speed. © The Author(s) 2015.

  13. Implementation of digital image encryption algorithm using logistic function and DNA encoding

    NASA Astrophysics Data System (ADS)

    Suryadi, MT; Satria, Yudi; Fauzi, Muhammad

    2018-03-01

    Cryptography is a method to secure information that might be in form of digital image. Based on past research, in order to increase security level of chaos based encryption algorithm and DNA based encryption algorithm, encryption algorithm using logistic function and DNA encoding was proposed. Digital image encryption algorithm using logistic function and DNA encoding use DNA encoding to scramble the pixel values into DNA base and scramble it in DNA addition, DNA complement, and XOR operation. The logistic function in this algorithm used as random number generator needed in DNA complement and XOR operation. The result of the test show that the PSNR values of cipher images are 7.98-7.99 bits, the entropy values are close to 8, the histogram of cipher images are uniformly distributed and the correlation coefficient of cipher images are near 0. Thus, the cipher image can be decrypted perfectly and the encryption algorithm has good resistance to entropy attack and statistical attack.

  14. Noisy image magnification with total variation regularization and order-changed dictionary learning

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Chang, Zhiguo; Fan, Jiulun; Zhao, Xiaoqiang; Wu, Xiaomin; Wang, Yanzi

    2015-12-01

    Noisy low resolution (LR) images are always obtained in real applications, but many existing image magnification algorithms can not get good result from a noisy LR image. We propose a two-step image magnification algorithm to solve this problem. The proposed algorithm takes the advantages of both regularization-based method and learning-based method. The first step is based on total variation (TV) regularization and the second step is based on sparse representation. In the first step, we add a constraint on the TV regularization model to magnify the LR image and at the same time to suppress the noise in it. In the second step, we propose an order-changed dictionary training algorithm to train the dictionaries which is dominated by texture details. Experimental results demonstrate that the proposed algorithm performs better than many other algorithms when the noise is not serious. The proposed algorithm can also provide better visual quality on natural LR images.

  15. Score-Level Fusion of Phase-Based and Feature-Based Fingerprint Matching Algorithms

    NASA Astrophysics Data System (ADS)

    Ito, Koichi; Morita, Ayumi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo

    This paper proposes an efficient fingerprint recognition algorithm combining phase-based image matching and feature-based matching. In our previous work, we have already proposed an efficient fingerprint recognition algorithm using Phase-Only Correlation (POC), and developed commercial fingerprint verification units for access control applications. The use of Fourier phase information of fingerprint images makes it possible to achieve robust recognition for weakly impressed, low-quality fingerprint images. This paper presents an idea of improving the performance of POC-based fingerprint matching by combining it with feature-based matching, where feature-based matching is introduced in order to improve recognition efficiency for images with nonlinear distortion. Experimental evaluation using two different types of fingerprint image databases demonstrates efficient recognition performance of the combination of the POC-based algorithm and the feature-based algorithm.

  16. Retinex enhancement of infrared images.

    PubMed

    Li, Ying; He, Renjie; Xu, Guizhi; Hou, Changzhi; Sun, Yunyan; Guo, Lei; Rao, Liyun; Yan, Weili

    2008-01-01

    With the ability of imaging the temperature distribution of body, infrared imaging is promising in diagnostication and prognostication of diseases. However the poor quality of the raw original infrared images prevented applications and one of the essential problems is the low contrast appearance of the imagined object. In this paper, the image enhancement technique based on the Retinex theory is studied, which is a process that automatically retrieve the visual realism to images. The algorithms, including Frackle-McCann algorithm, McCann99 algorithm, single-scale Retinex algorithm, multi-scale Retinex algorithm and multi-scale Retinex algorithm with color restoration, are experienced to the enhancement of infrared images. The entropy measurements along with the visual inspection were compared and results shown the algorithms based on Retinex theory have the ability in enhancing the infrared image. Out of the algorithms compared, MSRCR demonstrated the best performance.

  17. Range image registration based on hash map and moth-flame optimization

    NASA Astrophysics Data System (ADS)

    Zou, Li; Ge, Baozhen; Chen, Lei

    2018-03-01

    Over the past decade, evolutionary algorithms (EAs) have been introduced to solve range image registration problems because of their robustness and high precision. However, EA-based range image registration algorithms are time-consuming. To reduce the computational time, an EA-based range image registration algorithm using hash map and moth-flame optimization is proposed. In this registration algorithm, a hash map is used to avoid over-exploitation in registration process. Additionally, we present a search equation that is better at exploration and a restart mechanism to avoid being trapped in local minima. We compare the proposed registration algorithm with the registration algorithms using moth-flame optimization and several state-of-the-art EA-based registration algorithms. The experimental results show that the proposed algorithm has a lower computational cost than other algorithms and achieves similar registration precision.

  18. Infrared traffic image enhancement algorithm based on dark channel prior and gamma correction

    NASA Astrophysics Data System (ADS)

    Zheng, Lintao; Shi, Hengliang; Gu, Ming

    2017-07-01

    The infrared traffic image acquired by the intelligent traffic surveillance equipment has low contrast, little hierarchical differences in perceptions of image and the blurred vision effect. Therefore, infrared traffic image enhancement, being an indispensable key step, is applied to nearly all infrared imaging based traffic engineering applications. In this paper, we propose an infrared traffic image enhancement algorithm that is based on dark channel prior and gamma correction. In existing research dark channel prior, known as a famous image dehazing method, here is used to do infrared image enhancement for the first time. Initially, in the proposed algorithm, the original degraded infrared traffic image is transformed with dark channel prior as the initial enhanced result. A further adjustment based on the gamma curve is needed because initial enhanced result has lower brightness. Comprehensive validation experiments reveal that the proposed algorithm outperforms the current state-of-the-art algorithms.

  19. Multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement

    NASA Astrophysics Data System (ADS)

    Yan, Dan; Bai, Lianfa; Zhang, Yi; Han, Jing

    2018-02-01

    For the problems of missing details and performance of the colorization based on sparse representation, we propose a conceptual model framework for colorizing gray-scale images, and then a multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement (CEMDC) is proposed based on this framework. The algorithm can achieve a natural colorized effect for a gray-scale image, and it is consistent with the human vision. First, the algorithm establishes a multi-sparse dictionary classification colorization model. Then, to improve the accuracy rate of the classification, the corresponding local constraint algorithm is proposed. Finally, we propose a detail enhancement based on Laplacian Pyramid, which is effective in solving the problem of missing details and improving the speed of image colorization. In addition, the algorithm not only realizes the colorization of the visual gray-scale image, but also can be applied to the other areas, such as color transfer between color images, colorizing gray fusion images, and infrared images.

  20. Cryptanalysis of "an improvement over an image encryption method based on total shuffling"

    NASA Astrophysics Data System (ADS)

    Akhavan, A.; Samsudin, A.; Akhshani, A.

    2015-09-01

    In the past two decades, several image encryption algorithms based on chaotic systems had been proposed. Many of the proposed algorithms are meant to improve other chaos based and conventional cryptographic algorithms. Whereas, many of the proposed improvement methods suffer from serious security problems. In this paper, the security of the recently proposed improvement method for a chaos-based image encryption algorithm is analyzed. The results indicate the weakness of the analyzed algorithm against chosen plain-text.

  1. Robust Global Image Registration Based on a Hybrid Algorithm Combining Fourier and Spatial Domain Techniques

    DTIC Science & Technology

    2012-09-01

    Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain techniques Peter N. Crabtree, Collin Seanor...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain...demonstrate performance of a hybrid algorithm . These results are from analysis of a set of images of an ISO 12233 [12] resolution chart captured in the

  2. Autonomous subpixel satellite track end point determination for space-based images.

    PubMed

    Simms, Lance M

    2011-08-01

    An algorithm for determining satellite track end points with subpixel resolution in spaced-based images is presented. The algorithm allows for significant curvature in the imaged track due to rotation of the spacecraft capturing the image. The motivation behind the subpixel end point determination is first presented, followed by a description of the methodology used. Results from running the algorithm on real ground-based and simulated spaced-based images are shown to highlight its effectiveness.

  3. Fast perceptual image hash based on cascade algorithm

    NASA Astrophysics Data System (ADS)

    Ruchay, Alexey; Kober, Vitaly; Yavtushenko, Evgeniya

    2017-09-01

    In this paper, we propose a perceptual image hash algorithm based on cascade algorithm, which can be applied in image authentication, retrieval, and indexing. Image perceptual hash uses for image retrieval in sense of human perception against distortions caused by compression, noise, common signal processing and geometrical modifications. The main disadvantage of perceptual hash is high time expenses. In the proposed cascade algorithm of image retrieval initializes with short hashes, and then a full hash is applied to the processed results. Computer simulation results show that the proposed hash algorithm yields a good performance in terms of robustness, discriminability, and time expenses.

  4. Dependence of Adaptive Cross-correlation Algorithm Performance on the Extended Scene Image Quality

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2008-01-01

    Recently, we reported an adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels between two extended-scene sub-images captured by a Shack-Hartmann wavefront sensor. It determines the positions of all extended-scene image cells relative to a reference cell in the same frame using an FFT-based iterative image-shifting algorithm. It works with both point-source spot images as well as extended scene images. We have demonstrated previously based on some measured images that the ACC algorithm can determine image shifts with as high an accuracy as 0.01 pixel for shifts as large 3 pixels, and yield similar results for both point source spot images and extended scene images. The shift estimate accuracy of the ACC algorithm depends on illumination level, background, and scene content in addition to the amount of the shift between two image cells. In this paper we investigate how the performance of the ACC algorithm depends on the quality and the frequency content of extended scene images captured by a Shack-Hatmann camera. We also compare the performance of the ACC algorithm with those of several other approaches, and introduce a failsafe criterion for the ACC algorithm-based extended scene Shack-Hatmann sensors.

  5. A real-time MTFC algorithm of space remote-sensing camera based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Liting; Huang, Gang; Lin, Zhe

    2018-01-01

    A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.

  6. [An improved medical image fusion algorithm and quality evaluation].

    PubMed

    Chen, Meiling; Tao, Ling; Qian, Zhiyu

    2009-08-01

    Medical image fusion is of very important value for application in medical image analysis and diagnosis. In this paper, the conventional method of wavelet fusion is improved,so a new algorithm of medical image fusion is presented and the high frequency and low frequency coefficients are studied respectively. When high frequency coefficients are chosen, the regional edge intensities of each sub-image are calculated to realize adaptive fusion. The choice of low frequency coefficient is based on the edges of images, so that the fused image preserves all useful information and appears more distinctly. We apply the conventional and the improved fusion algorithms based on wavelet transform to fuse two images of human body and also evaluate the fusion results through a quality evaluation method. Experimental results show that this algorithm can effectively retain the details of information on original images and enhance their edge and texture features. This new algorithm is better than the conventional fusion algorithm based on wavelet transform.

  7. Research and implementation of the algorithm for unwrapped and distortion correction basing on CORDIC for panoramic image

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenhai; Li, Kejie; Wu, Xiaobing; Zhang, Shujiang

    2008-03-01

    The unwrapped and correcting algorithm based on Coordinate Rotation Digital Computer (CORDIC) and bilinear interpolation algorithm was presented in this paper, with the purpose of processing dynamic panoramic annular image. An original annular panoramic image captured by panoramic annular lens (PAL) can be unwrapped and corrected to conventional rectangular image without distortion, which is much more coincident with people's vision. The algorithm for panoramic image processing is modeled by VHDL and implemented in FPGA. The experimental results show that the proposed panoramic image algorithm for unwrapped and distortion correction has the lower computation complexity and the architecture for dynamic panoramic image processing has lower hardware cost and power consumption. And the proposed algorithm is valid.

  8. Fast image matching algorithm based on projection characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun

    2011-06-01

    Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.

  9. Sparsity-constrained PET image reconstruction with learned dictionaries

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie

    2016-09-01

    PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.

  10. Acceleration of image-based resolution modelling reconstruction using an expectation maximization nested algorithm.

    PubMed

    Angelis, G I; Reader, A J; Markiewicz, P J; Kotasidis, F A; Lionheart, W R; Matthews, J C

    2013-08-07

    Recent studies have demonstrated the benefits of a resolution model within iterative reconstruction algorithms in an attempt to account for effects that degrade the spatial resolution of the reconstructed images. However, these algorithms suffer from slower convergence rates, compared to algorithms where no resolution model is used, due to the additional need to solve an image deconvolution problem. In this paper, a recently proposed algorithm, which decouples the tomographic and image deconvolution problems within an image-based expectation maximization (EM) framework, was evaluated. This separation is convenient, because more computational effort can be placed on the image deconvolution problem and therefore accelerate convergence. Since the computational cost of solving the image deconvolution problem is relatively small, multiple image-based EM iterations do not significantly increase the overall reconstruction time. The proposed algorithm was evaluated using 2D simulations, as well as measured 3D data acquired on the high-resolution research tomograph. Results showed that bias reduction can be accelerated by interleaving multiple iterations of the image-based EM algorithm solving the resolution model problem, with a single EM iteration solving the tomographic problem. Significant improvements were observed particularly for voxels that were located on the boundaries between regions of high contrast within the object being imaged and for small regions of interest, where resolution recovery is usually more challenging. Minor differences were observed using the proposed nested algorithm, compared to the single iteration normally performed, when an optimal number of iterations are performed for each algorithm. However, using the proposed nested approach convergence is significantly accelerated enabling reconstruction using far fewer tomographic iterations (up to 70% fewer iterations for small regions). Nevertheless, the optimal number of nested image-based EM iterations is hard to be defined and it should be selected according to the given application.

  11. An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Sang, Jun; Alam, Mohammad S.

    2013-03-01

    An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm was proposed. Firstly, the original secret image was encrypted into two phase-only masks M1 and M2 via cascaded iterative Fourier transform (CIFT) algorithm. Then, the public-key encryption algorithm RSA was adopted to encrypt M2 into M2' . Finally, a host image was enlarged by extending one pixel into 2×2 pixels and each element in M1 and M2' was multiplied with a superimposition coefficient and added to or subtracted from two different elements in the 2×2 pixels of the enlarged host image. To recover the secret image from the stego-image, the two masks were extracted from the stego-image without the original host image. By applying public-key encryption algorithm, the key distribution was facilitated, and also compared with the image hiding method based on optical interference, the proposed method may reach higher robustness by employing the characteristics of the CIFT algorithm. Computer simulations show that this method has good robustness against image processing.

  12. Ship Detection in SAR Image Based on the Alpha-stable Distribution

    PubMed Central

    Wang, Changcheng; Liao, Mingsheng; Li, Xiaofeng

    2008-01-01

    This paper describes an improved Constant False Alarm Rate (CFAR) ship detection algorithm in spaceborne synthetic aperture radar (SAR) image based on Alpha-stable distribution model. Typically, the CFAR algorithm uses the Gaussian distribution model to describe statistical characteristics of a SAR image background clutter. However, the Gaussian distribution is only valid for multilook SAR images when several radar looks are averaged. As sea clutter in SAR images shows spiky or heavy-tailed characteristics, the Gaussian distribution often fails to describe background sea clutter. In this study, we replace the Gaussian distribution with the Alpha-stable distribution, which is widely used in impulsive or spiky signal processing, to describe the background sea clutter in SAR images. In our proposed algorithm, an initial step for detecting possible ship targets is employed. Then, similar to the typical two-parameter CFAR algorithm, a local process is applied to the pixel identified as possible target. A RADARSAT-1 image is used to validate this Alpha-stable distribution based algorithm. Meanwhile, known ship location data during the time of RADARSAT-1 SAR image acquisition is used to validate ship detection results. Validation results show improvements of the new CFAR algorithm based on the Alpha-stable distribution over the CFAR algorithm based on the Gaussian distribution. PMID:27873794

  13. A Stereo Dual-Channel Dynamic Programming Algorithm for UAV Image Stitching

    PubMed Central

    Chen, Ruizhi; Zhang, Weilong; Li, Deren; Liao, Xuan; Zhang, Peng

    2017-01-01

    Dislocation is one of the major challenges in unmanned aerial vehicle (UAV) image stitching. In this paper, we propose a new algorithm for seamlessly stitching UAV images based on a dynamic programming approach. Our solution consists of two steps: Firstly, an image matching algorithm is used to correct the images so that they are in the same coordinate system. Secondly, a new dynamic programming algorithm is developed based on the concept of a stereo dual-channel energy accumulation. A new energy aggregation and traversal strategy is adopted in our solution, which can find a more optimal seam line for image stitching. Our algorithm overcomes the theoretical limitation of the classical Duplaquet algorithm. Experiments show that the algorithm can effectively solve the dislocation problem in UAV image stitching, especially for the cases in dense urban areas. Our solution is also direction-independent, which has better adaptability and robustness for stitching images. PMID:28885547

  14. A Stereo Dual-Channel Dynamic Programming Algorithm for UAV Image Stitching.

    PubMed

    Li, Ming; Chen, Ruizhi; Zhang, Weilong; Li, Deren; Liao, Xuan; Wang, Lei; Pan, Yuanjin; Zhang, Peng

    2017-09-08

    Dislocation is one of the major challenges in unmanned aerial vehicle (UAV) image stitching. In this paper, we propose a new algorithm for seamlessly stitching UAV images based on a dynamic programming approach. Our solution consists of two steps: Firstly, an image matching algorithm is used to correct the images so that they are in the same coordinate system. Secondly, a new dynamic programming algorithm is developed based on the concept of a stereo dual-channel energy accumulation. A new energy aggregation and traversal strategy is adopted in our solution, which can find a more optimal seam line for image stitching. Our algorithm overcomes the theoretical limitation of the classical Duplaquet algorithm. Experiments show that the algorithm can effectively solve the dislocation problem in UAV image stitching, especially for the cases in dense urban areas. Our solution is also direction-independent, which has better adaptability and robustness for stitching images.

  15. Research on fast Fourier transforms algorithm of huge remote sensing image technology with GPU and partitioning technology.

    PubMed

    Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye

    2014-02-01

    Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.

  16. A novel image retrieval algorithm based on PHOG and LSH

    NASA Astrophysics Data System (ADS)

    Wu, Hongliang; Wu, Weimin; Peng, Jiajin; Zhang, Junyuan

    2017-08-01

    PHOG can describe the local shape of the image and its relationship between the spaces. The using of PHOG algorithm to extract image features in image recognition and retrieval and other aspects have achieved good results. In recent years, locality sensitive hashing (LSH) algorithm has been superior to large-scale data in solving near-nearest neighbor problems compared with traditional algorithms. This paper presents a novel image retrieval algorithm based on PHOG and LSH. First, we use PHOG to extract the feature vector of the image, then use L different LSH hash table to reduce the dimension of PHOG texture to index values and map to different bucket, and finally extract the corresponding value of the image in the bucket for second image retrieval using Manhattan distance. This algorithm can adapt to the massive image retrieval, which ensures the high accuracy of the image retrieval and reduces the time complexity of the retrieval. This algorithm is of great significance.

  17. The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhou, Liqing

    2015-12-01

    With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.

  18. Multiple-algorithm parallel fusion of infrared polarization and intensity images based on algorithmic complementarity and synergy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng

    2018-01-01

    Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.

  19. Study on Underwater Image Denoising Algorithm Based on Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Jian, Sun; Wen, Wang

    2017-02-01

    This paper analyzes the application of MATLAB in underwater image processing, the transmission characteristics of the underwater laser light signal and the kinds of underwater noise has been described, the common noise suppression algorithm: Wiener filter, median filter, average filter algorithm is brought out. Then the advantages and disadvantages of each algorithm in image sharpness and edge protection areas have been compared. A hybrid filter algorithm based on wavelet transform has been proposed which can be used for Color Image Denoising. At last the PSNR and NMSE of each algorithm has been given out, which compares the ability to de-noising

  20. Research on Image Encryption Based on DNA Sequence and Chaos Theory

    NASA Astrophysics Data System (ADS)

    Tian Zhang, Tian; Yan, Shan Jun; Gu, Cheng Yan; Ren, Ran; Liao, Kai Xin

    2018-04-01

    Nowadays encryption is a common technique to protect image data from unauthorized access. In recent years, many scientists have proposed various encryption algorithms based on DNA sequence to provide a new idea for the design of image encryption algorithm. Therefore, a new method of image encryption based on DNA computing technology is proposed in this paper, whose original image is encrypted by DNA coding and 1-D logistic chaotic mapping. First, the algorithm uses two modules as the encryption key. The first module uses the real DNA sequence, and the second module is made by one-dimensional logistic chaos mapping. Secondly, the algorithm uses DNA complementary rules to encode original image, and uses the key and DNA computing technology to compute each pixel value of the original image, so as to realize the encryption of the whole image. Simulation results show that the algorithm has good encryption effect and security.

  1. Research on the Improved Image Dodging Algorithm Based on Mask Technique

    NASA Astrophysics Data System (ADS)

    Yao, F.; Hu, H.; Wan, Y.

    2012-08-01

    The remote sensing image dodging algorithm based on Mask technique is a good method for removing the uneven lightness within a single image. However, there are some problems with this algorithm, such as how to set an appropriate filter size, for which there is no good solution. In order to solve these problems, an improved algorithm is proposed. In this improved algorithm, the original image is divided into blocks, and then the image blocks with different definitions are smoothed using the low-pass filters with different cut-off frequencies to get the background image; for the image after subtraction, the regions with different lightness are processed using different linear transformation models. The improved algorithm can get a better dodging result than the original one, and can make the contrast of the whole image more consistent.

  2. Optimization-based image reconstruction from sparse-view data in offset-detector CBCT

    NASA Astrophysics Data System (ADS)

    Bian, Junguo; Wang, Jiong; Han, Xiao; Sidky, Emil Y.; Shao, Lingxiong; Pan, Xiaochuan

    2013-01-01

    The field of view (FOV) of a cone-beam computed tomography (CBCT) unit in a single-photon emission computed tomography (SPECT)/CBCT system can be increased by offsetting the CBCT detector. Analytic-based algorithms have been developed for image reconstruction from data collected at a large number of densely sampled views in offset-detector CBCT. However, the radiation dose involved in a large number of projections can be of a health concern to the imaged subject. CBCT-imaging dose can be reduced by lowering the number of projections. As analytic-based algorithms are unlikely to reconstruct accurate images from sparse-view data, we investigate and characterize in the work optimization-based algorithms, including an adaptive steepest descent-weighted projection onto convex sets (ASD-WPOCS) algorithms, for image reconstruction from sparse-view data collected in offset-detector CBCT. Using simulated data and real data collected from a physical pelvis phantom and patient, we verify and characterize properties of the algorithms under study. Results of our study suggest that optimization-based algorithms such as ASD-WPOCS may be developed for yielding images of potential utility from a number of projections substantially smaller than those used currently in clinical SPECT/CBCT imaging, thus leading to a dose reduction in CBCT imaging.

  3. Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm

    NASA Astrophysics Data System (ADS)

    Elahi, Sana; kaleem, Muhammad; Omer, Hammad

    2018-01-01

    Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k -space. This paper introduces an improved iterative algorithm based on p -thresholding technique for CS-MRI image reconstruction. The use of p -thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p -thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p -thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary's Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.

  4. The implementation of contour-based object orientation estimation algorithm in FPGA-based on-board vision system

    NASA Astrophysics Data System (ADS)

    Alpatov, Boris; Babayan, Pavel; Ershov, Maksim; Strotov, Valery

    2016-10-01

    This paper describes the implementation of the orientation estimation algorithm in FPGA-based vision system. An approach to estimate an orientation of objects lacking axial symmetry is proposed. Suggested algorithm is intended to estimate orientation of a specific known 3D object based on object 3D model. The proposed orientation estimation algorithm consists of two stages: learning and estimation. Learning stage is devoted to the exploring of studied object. Using 3D model we can gather set of training images by capturing 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the estimation stage of the algorithm. The estimation stage is focusing on matching process between an observed image descriptor and the training image descriptors. The experimental research was performed using a set of images of Airbus A380. The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.

  5. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm.

    PubMed

    Yang, Mengzhao; Song, Wei; Mei, Haibin

    2017-07-23

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient.

  6. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm

    PubMed Central

    Song, Wei; Mei, Haibin

    2017-01-01

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient. PMID:28737699

  7. Image-processing algorithms for inspecting characteristics of hybrid rice seed

    NASA Astrophysics Data System (ADS)

    Cheng, Fang; Ying, Yibin

    2004-03-01

    Incompletely closed glumes, germ and disease are three characteristics of hybrid rice seed. Image-processing algorithms developed to detect these seed characteristics were presented in this paper. The rice seed used for this study involved five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and IIyou. The algorithms were implemented with a 5*600 images set, a 4*400 images set and the other 5*600 images set respectively. The image sets included black background images, white background images and both sides images of rice seed. Results show that the algorithm for inspecting seeds with incompletely closed glumes based on Radon Transform achieved an accuracy of 96% for normal seeds, 92% for seeds with fine fissure and 87% for seeds with unclosed glumes, the algorithm for inspecting germinated seeds on panicle based on PCA and ANN achieved n average accuracy of 98% for normal seeds, 88% for germinated seeds on panicle and the algorithm for inspecting diseased seeds based on color features achieved an accuracy of 92% for normal and healthy seeds, 95% for spot diseased seeds and 83% for severe diseased seeds.

  8. Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees

    PubMed Central

    Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng

    2015-01-01

    In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597

  9. FIVQ algorithm for interference hyper-spectral image compression

    NASA Astrophysics Data System (ADS)

    Wen, Jia; Ma, Caiwen; Zhao, Junsuo

    2014-07-01

    Based on the improved vector quantization (IVQ) algorithm [1] which was proposed in 2012, this paper proposes a further improved vector quantization (FIVQ) algorithm for LASIS (Large Aperture Static Imaging Spectrometer) interference hyper-spectral image compression. To get better image quality, IVQ algorithm takes both the mean values and the VQ indices as the encoding rules. Although IVQ algorithm can improve both the bit rate and the image quality, it still can be further improved in order to get much lower bit rate for the LASIS interference pattern with the special optical characteristics based on the pushing and sweeping in LASIS imaging principle. In the proposed algorithm FIVQ, the neighborhood of the encoding blocks of the interference pattern image, which are using the mean value rules, will be checked whether they have the same mean value as the current processing block. Experiments show the proposed algorithm FIVQ can get lower bit rate compared to that of the IVQ algorithm for the LASIS interference hyper-spectral sequences.

  10. Adaptive optics image restoration algorithm based on wavefront reconstruction and adaptive total variation method

    NASA Astrophysics Data System (ADS)

    Li, Dongming; Zhang, Lijuan; Wang, Ting; Liu, Huan; Yang, Jinhua; Chen, Guifen

    2016-11-01

    To improve the adaptive optics (AO) image's quality, we study the AO image restoration algorithm based on wavefront reconstruction technology and adaptive total variation (TV) method in this paper. Firstly, the wavefront reconstruction using Zernike polynomial is used for initial estimated for the point spread function (PSF). Then, we develop our proposed iterative solutions for AO images restoration, addressing the joint deconvolution issue. The image restoration experiments are performed to verify the image restoration effect of our proposed algorithm. The experimental results show that, compared with the RL-IBD algorithm and Wiener-IBD algorithm, we can see that GMG measures (for real AO image) from our algorithm are increased by 36.92%, and 27.44% respectively, and the computation time are decreased by 7.2%, and 3.4% respectively, and its estimation accuracy is significantly improved.

  11. 3-D Image Encryption Based on Rubik's Cube and RC6 Algorithm

    NASA Astrophysics Data System (ADS)

    Helmy, Mai; El-Rabaie, El-Sayed M.; Eldokany, Ibrahim M.; El-Samie, Fathi E. Abd

    2017-12-01

    A novel encryption algorithm based on the 3-D Rubik's cube is proposed in this paper to achieve 3D encryption of a group of images. This proposed encryption algorithm begins with RC6 as a first step for encrypting multiple images, separately. After that, the obtained encrypted images are further encrypted with the 3-D Rubik's cube. The RC6 encrypted images are used as the faces of the Rubik's cube. From the concepts of image encryption, the RC6 algorithm adds a degree of diffusion, while the Rubik's cube algorithm adds a degree of permutation. The simulation results demonstrate that the proposed encryption algorithm is efficient, and it exhibits strong robustness and security. The encrypted images are further transmitted over wireless Orthogonal Frequency Division Multiplexing (OFDM) system and decrypted at the receiver side. Evaluation of the quality of the decrypted images at the receiver side reveals good results.

  12. SKL algorithm based fabric image matching and retrieval

    NASA Astrophysics Data System (ADS)

    Cao, Yichen; Zhang, Xueqin; Ma, Guojian; Sun, Rongqing; Dong, Deping

    2017-07-01

    Intelligent computer image processing technology provides convenience and possibility for designers to carry out designs. Shape analysis can be achieved by extracting SURF feature. However, high dimension of SURF feature causes to lower matching speed. To solve this problem, this paper proposed a fast fabric image matching algorithm based on SURF K-means and LSH algorithm. By constructing the bag of visual words on K-Means algorithm, and forming feature histogram of each image, the dimension of SURF feature is reduced at the first step. Then with the help of LSH algorithm, the features are encoded and the dimension is further reduced. In addition, the indexes of each image and each class of image are created, and the number of matching images is decreased by LSH hash bucket. Experiments on fabric image database show that this algorithm can speed up the matching and retrieval process, the result can satisfy the requirement of dress designers with accuracy and speed.

  13. A difference tracking algorithm based on discrete sine transform

    NASA Astrophysics Data System (ADS)

    Liu, HaoPeng; Yao, Yong; Lei, HeBing; Wu, HaoKun

    2018-04-01

    Target tracking is an important field of computer vision. The template matching tracking algorithm based on squared difference matching (SSD) and standard correlation coefficient (NCC) matching is very sensitive to the gray change of image. When the brightness or gray change, the tracking algorithm will be affected by high-frequency information. Tracking accuracy is reduced, resulting in loss of tracking target. In this paper, a differential tracking algorithm based on discrete sine transform is proposed to reduce the influence of image gray or brightness change. The algorithm that combines the discrete sine transform and the difference algorithm maps the target image into a image digital sequence. The Kalman filter predicts the target position. Using the Hamming distance determines the degree of similarity between the target and the template. The window closest to the template is determined the target to be tracked. The target to be tracked updates the template. Based on the above achieve target tracking. The algorithm is tested in this paper. Compared with SSD and NCC template matching algorithms, the algorithm tracks target stably when image gray or brightness change. And the tracking speed can meet the read-time requirement.

  14. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  15. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation ofmore » quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.« less

  16. A novel blinding digital watermark algorithm based on lab color space

    NASA Astrophysics Data System (ADS)

    Dong, Bing-feng; Qiu, Yun-jie; Lu, Hong-tao

    2010-02-01

    It is necessary for blinding digital image watermark algorithm to extract watermark information without any extra information except the watermarked image itself. But most of the current blinding watermark algorithms have the same disadvantage: besides the watermarked image, they also need the size and other information about the original image when extracting the watermark. This paper presents an innovative blinding color image watermark algorithm based on Lab color space, which does not have the disadvantages mentioned above. This algorithm first marks the watermark region size and position through embedding some regular blocks called anchor points in image spatial domain, and then embeds the watermark into the image. In doing so, the watermark information can be easily extracted after doing cropping and scale change to the image. Experimental results show that the algorithm is particularly robust against the color adjusting and geometry transformation. This algorithm has already been used in a copyright protecting project and works very well.

  17. Research on adaptive optics image restoration algorithm based on improved joint maximum a posteriori method

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Li, Yang; Wang, Junnan; Liu, Ying

    2018-03-01

    In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio ( PSNR) and Laplacian sum ( LS) value than the others. The research results have a certain application values for actual AO image restoration.

  18. Imaging reconstruction based on improved wavelet denoising combined with parallel-beam filtered back-projection algorithm

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2012-11-01

    The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.

  19. Design of Restoration Method Based on Compressed Sensing and TwIST Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; Piao, Yan

    2018-04-01

    In order to improve the subjective and objective quality of degraded images at low sampling rates effectively,save storage space and reduce computational complexity at the same time, this paper proposes a joint restoration algorithm of compressed sensing and two step iterative threshold shrinkage (TwIST). The algorithm applies the TwIST algorithm which used in image restoration to the compressed sensing theory. Then, a small amount of sparse high-frequency information is obtained in frequency domain. The TwIST algorithm based on compressed sensing theory is used to accurately reconstruct the high frequency image. The experimental results show that the proposed algorithm achieves better subjective visual effects and objective quality of degraded images while accurately restoring degraded images.

  20. Image-classification-based global dimming algorithm for LED backlights in LCDs

    NASA Astrophysics Data System (ADS)

    Qibin, Feng; Huijie, He; Dong, Han; Lei, Zhang; Guoqiang, Lv

    2015-07-01

    Backlight dimming can help LCDs reduce power consumption and improve CR. With fixed parameters, dimming algorithm cannot achieve satisfied effects for all kinds of images. The paper introduces an image-classification-based global dimming algorithm. The proposed classification method especially for backlight dimming is based on luminance and CR of input images. The parameters for backlight dimming level and pixel compensation are adaptive with image classifications. The simulation results show that the classification based dimming algorithm presents 86.13% power reduction improvement compared with dimming without classification, with almost same display quality. The prototype is developed. There are no perceived distortions when playing videos. The practical average power reduction of the prototype TV is 18.72%, compared with common TV without dimming.

  1. Ridge-branch-based blood vessel detection algorithm for multimodal retinal images

    NASA Astrophysics Data System (ADS)

    Li, Y.; Hutchings, N.; Knighton, R. W.; Gregori, G.; Lujan, B. J.; Flanagan, J. G.

    2009-02-01

    Automatic detection of retinal blood vessels is important to medical diagnoses and imaging. With the development of imaging technologies, various modals of retinal images are available. Few of currently published algorithms are applied to multimodal retinal images. Besides, the performance of algorithms with pathologies is expected to be improved. The purpose of this paper is to propose an automatic Ridge-Branch-Based (RBB) detection algorithm of blood vessel centerlines and blood vessels for multimodal retinal images (color fundus photographs, fluorescein angiograms, fundus autofluorescence images, SLO fundus images and OCT fundus images, for example). Ridges, which can be considered as centerlines of vessel-like patterns, are first extracted. The method uses the connective branching information of image ridges: if ridge pixels are connected, they are more likely to be in the same class, vessel ridge pixels or non-vessel ridge pixels. Thanks to the good distinguishing ability of the designed "Segment-Based Ridge Features", the classifier and its parameters can be easily adapted to multimodal retinal images without ground truth training. We present thorough experimental results on SLO images, color fundus photograph database and other multimodal retinal images, as well as comparison between other published algorithms. Results showed that the RBB algorithm achieved a good performance.

  2. GPU-based parallel algorithm for blind image restoration using midfrequency-based methods

    NASA Astrophysics Data System (ADS)

    Xie, Lang; Luo, Yi-han; Bao, Qi-liang

    2013-08-01

    GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.

  3. Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Kalinovsky, A.; Liauchuk, V.; Tarasau, A.

    2017-05-01

    In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.

  4. New segmentation-based tone mapping algorithm for high dynamic range image

    NASA Astrophysics Data System (ADS)

    Duan, Weiwei; Guo, Huinan; Zhou, Zuofeng; Huang, Huimin; Cao, Jianzhong

    2017-07-01

    The traditional tone mapping algorithm for the display of high dynamic range (HDR) image has the drawback of losing the impression of brightness, contrast and color information. To overcome this phenomenon, we propose a new tone mapping algorithm based on dividing the image into different exposure regions in this paper. Firstly, the over-exposure region is determined using the Local Binary Pattern information of HDR image. Then, based on the peak and average gray of the histogram, the under-exposure and normal-exposure region of HDR image are selected separately. Finally, the different exposure regions are mapped by differentiated tone mapping methods to get the final result. The experiment results show that the proposed algorithm achieve the better performance both in visual quality and objective contrast criterion than other algorithms.

  5. Evaluation of GMI and PMI diffeomorphic‐based demons algorithms for aligning PET and CT Images

    PubMed Central

    Yang, Juan; Zhang, You; Yin, Yong

    2015-01-01

    Fusion of anatomic information in computed tomography (CT) and functional information in F18‐FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined F18‐FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole‐body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)‐based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point‐wise mutual information (PMI) diffeomorphic‐based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB‐approved study. Whole‐body PET and CT images were acquired from a combined F18‐FDG PET/CT scanner for each patient. The modified Hausdorff distance (dMH) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of dMH were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI‐based demons and the PMI diffeomorphic‐based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined F18‐FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic‐based demons algorithm was more accurate than the GMI‐based demons algorithm in registering PET/CT esophageal images. PACS numbers: 87.57.nj, 87.57. Q‐, 87.57.uk PMID:26218993

  6. Evaluation of GMI and PMI diffeomorphic-based demons algorithms for aligning PET and CT Images.

    PubMed

    Yang, Juan; Wang, Hongjun; Zhang, You; Yin, Yong

    2015-07-08

    Fusion of anatomic information in computed tomography (CT) and functional information in 18F-FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined 18F-FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole-body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)-based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point-wise mutual information (PMI) diffeomorphic-based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB-approved study. Whole-body PET and CT images were acquired from a combined 18F-FDG PET/CT scanner for each patient. The modified Hausdorff distance (d(MH)) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of d(MH) were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI-based demons and the PMI diffeomorphic-based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined 18F-FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic-based demons algorithm was more accurate than the GMI-based demons algorithm in registering PET/CT esophageal images.

  7. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques.

    PubMed

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-12-01

    Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications.

  8. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques

    PubMed Central

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-01-01

    Background: Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. Methods: In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. Results: With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Conclusion: Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications. PMID:28077898

  9. Adaptive image coding based on cubic-spline interpolation

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Xing; Hong, Shao-Hua; Lin, Tsung-Ching; Wang, Lin; Truong, Trieu-Kien

    2014-09-01

    It has been investigated that at low bit rates, downsampling prior to coding and upsampling after decoding can achieve better compression performance than standard coding algorithms, e.g., JPEG and H. 264/AVC. However, at high bit rates, the sampling-based schemes generate more distortion. Additionally, the maximum bit rate for the sampling-based scheme to outperform the standard algorithm is image-dependent. In this paper, a practical adaptive image coding algorithm based on the cubic-spline interpolation (CSI) is proposed. This proposed algorithm adaptively selects the image coding method from CSI-based modified JPEG and standard JPEG under a given target bit rate utilizing the so called ρ-domain analysis. The experimental results indicate that compared with the standard JPEG, the proposed algorithm can show better performance at low bit rates and maintain the same performance at high bit rates.

  10. A modified approach combining FNEA and watershed algorithms for segmenting remotely-sensed optical images

    NASA Astrophysics Data System (ADS)

    Liu, Likun

    2018-01-01

    In the field of remote sensing image processing, remote sensing image segmentation is a preliminary step for later analysis of remote sensing image processing and semi-auto human interpretation, fully-automatic machine recognition and learning. Since 2000, a technique of object-oriented remote sensing image processing method and its basic thought prevails. The core of the approach is Fractal Net Evolution Approach (FNEA) multi-scale segmentation algorithm. The paper is intent on the research and improvement of the algorithm, which analyzes present segmentation algorithms and selects optimum watershed algorithm as an initialization. Meanwhile, the algorithm is modified by modifying an area parameter, and then combining area parameter with a heterogeneous parameter further. After that, several experiments is carried on to prove the modified FNEA algorithm, compared with traditional pixel-based method (FCM algorithm based on neighborhood information) and combination of FNEA and watershed, has a better segmentation result.

  11. Comparison Of Eigenvector-Based Statistical Pattern Recognition Algorithms For Hybrid Processing

    NASA Astrophysics Data System (ADS)

    Tian, Q.; Fainman, Y.; Lee, Sing H.

    1989-02-01

    The pattern recognition algorithms based on eigenvector analysis (group 2) are theoretically and experimentally compared in this part of the paper. Group 2 consists of Foley-Sammon (F-S) transform, Hotelling trace criterion (HTC), Fukunaga-Koontz (F-K) transform, linear discriminant function (LDF) and generalized matched filter (GMF). It is shown that all eigenvector-based algorithms can be represented in a generalized eigenvector form. However, the calculations of the discriminant vectors are different for different algorithms. Summaries on how to calculate the discriminant functions for the F-S, HTC and F-K transforms are provided. Especially for the more practical, underdetermined case, where the number of training images is less than the number of pixels in each image, the calculations usually require the inversion of a large, singular, pixel correlation (or covariance) matrix. We suggest solving this problem by finding its pseudo-inverse, which requires inverting only the smaller, non-singular image correlation (or covariance) matrix plus multiplying several non-singular matrices. We also compare theoretically the effectiveness for classification with the discriminant functions from F-S, HTC and F-K with LDF and GMF, and between the linear-mapping-based algorithms and the eigenvector-based algorithms. Experimentally, we compare the eigenvector-based algorithms using a set of image data bases each image consisting of 64 x 64 pixels.

  12. SU-F-I-09: Improvement of Image Registration Using Total-Variation Based Noise Reduction Algorithms for Low-Dose CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, S; Farr, J; Merchant, T

    Purpose: To study the effect of total-variation based noise reduction algorithms to improve the image registration of low-dose CBCT for patient positioning in radiation therapy. Methods: In low-dose CBCT, the reconstructed image is degraded by excessive quantum noise. In this study, we developed a total-variation based noise reduction algorithm and studied the effect of the algorithm on noise reduction and image registration accuracy. To study the effect of noise reduction, we have calculated the peak signal-to-noise ratio (PSNR). To study the improvement of image registration, we performed image registration between volumetric CT and MV- CBCT images of different head-and-neck patientsmore » and calculated the mutual information (MI) and Pearson correlation coefficient (PCC) as a similarity metric. The PSNR, MI and PCC were calculated for both the noisy and noise-reduced CBCT images. Results: The algorithms were shown to be effective in reducing the noise level and improving the MI and PCC for the low-dose CBCT images tested. For the different head-and-neck patients, a maximum improvement of PSNR of 10 dB with respect to the noisy image was calculated. The improvement of MI and PCC was 9% and 2% respectively. Conclusion: Total-variation based noise reduction algorithm was studied to improve the image registration between CT and low-dose CBCT. The algorithm had shown promising results in reducing the noise from low-dose CBCT images and improving the similarity metric in terms of MI and PCC.« less

  13. Super-resolution algorithm based on sparse representation and wavelet preprocessing for remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Ren, Ruizhi; Gu, Lingjia; Fu, Haoyang; Sun, Chenglin

    2017-04-01

    An effective super-resolution (SR) algorithm is proposed for actual spectral remote sensing images based on sparse representation and wavelet preprocessing. The proposed SR algorithm mainly consists of dictionary training and image reconstruction. Wavelet preprocessing is used to establish four subbands, i.e., low frequency, horizontal, vertical, and diagonal high frequency, for an input image. As compared to the traditional approaches involving the direct training of image patches, the proposed approach focuses on the training of features derived from these four subbands. The proposed algorithm is verified using different spectral remote sensing images, e.g., moderate-resolution imaging spectroradiometer (MODIS) images with different bands, and the latest Chinese Jilin-1 satellite images with high spatial resolution. According to the visual experimental results obtained from the MODIS remote sensing data, the SR images using the proposed SR algorithm are superior to those using a conventional bicubic interpolation algorithm or traditional SR algorithms without preprocessing. Fusion algorithms, e.g., standard intensity-hue-saturation, principal component analysis, wavelet transform, and the proposed SR algorithms are utilized to merge the multispectral and panchromatic images acquired by the Jilin-1 satellite. The effectiveness of the proposed SR algorithm is assessed by parameters such as peak signal-to-noise ratio, structural similarity index, correlation coefficient, root-mean-square error, relative dimensionless global error in synthesis, relative average spectral error, spectral angle mapper, and the quality index Q4, and its performance is better than that of the standard image fusion algorithms.

  14. Multivariate statistical model for 3D image segmentation with application to medical images.

    PubMed

    John, Nigel M; Kabuka, Mansur R; Ibrahim, Mohamed O

    2003-12-01

    In this article we describe a statistical model that was developed to segment brain magnetic resonance images. The statistical segmentation algorithm was applied after a pre-processing stage involving the use of a 3D anisotropic filter along with histogram equalization techniques. The segmentation algorithm makes use of prior knowledge and a probability-based multivariate model designed to semi-automate the process of segmentation. The algorithm was applied to images obtained from the Center for Morphometric Analysis at Massachusetts General Hospital as part of the Internet Brain Segmentation Repository (IBSR). The developed algorithm showed improved accuracy over the k-means, adaptive Maximum Apriori Probability (MAP), biased MAP, and other algorithms. Experimental results showing the segmentation and the results of comparisons with other algorithms are provided. Results are based on an overlap criterion against expertly segmented images from the IBSR. The algorithm produced average results of approximately 80% overlap with the expertly segmented images (compared with 85% for manual segmentation and 55% for other algorithms).

  15. Complex-based OCT angiography algorithm recovers microvascular information better than amplitude- or phase-based algorithms in phase-stable systems

    NASA Astrophysics Data System (ADS)

    Xu, Jingjiang; Song, Shaozhen; Li, Yuandong; Wang, Ruikang K.

    2018-01-01

    Optical coherence tomography angiography (OCTA) is increasingly becoming a popular inspection tool for biomedical imaging applications. By exploring the amplitude, phase and complex information available in OCT signals, numerous algorithms have been proposed that contrast functional vessel networks within microcirculatory tissue beds. However, it is not clear which algorithm delivers optimal imaging performance. Here, we investigate systematically how amplitude and phase information have an impact on the OCTA imaging performance, to establish the relationship of amplitude and phase stability with OCT signal-to-noise ratio (SNR), time interval and particle dynamics. With either repeated A-scan or repeated B-scan imaging protocols, the amplitude noise increases with the increase of OCT SNR; however, the phase noise does the opposite, i.e. it increases with the decrease of OCT SNR. Coupled with experimental measurements, we utilize a simple Monte Carlo (MC) model to simulate the performance of amplitude-, phase- and complex-based algorithms for OCTA imaging, the results of which suggest that complex-based algorithms deliver the best performance when the phase noise is  <  ~40 mrad. We also conduct a series of in vivo vascular imaging in animal models and human retina to verify the findings from the MC model through assessing the OCTA performance metrics of vessel connectivity, image SNR and contrast-to-noise ratio. We show that for all the metrics assessed, the complex-based algorithm delivers better performance than either the amplitude- or phase-based algorithms for both the repeated A-scan and the B-scan imaging protocols, which agrees well with the conclusion drawn from the MC simulations.

  16. Complex-based OCT angiography algorithm recovers microvascular information better than amplitude- or phase-based algorithms in phase-stable systems.

    PubMed

    Xu, Jingjiang; Song, Shaozhen; Li, Yuandong; Wang, Ruikang K

    2017-12-19

    Optical coherence tomography angiography (OCTA) is increasingly becoming a popular inspection tool for biomedical imaging applications. By exploring the amplitude, phase and complex information available in OCT signals, numerous algorithms have been proposed that contrast functional vessel networks within microcirculatory tissue beds. However, it is not clear which algorithm delivers optimal imaging performance. Here, we investigate systematically how amplitude and phase information have an impact on the OCTA imaging performance, to establish the relationship of amplitude and phase stability with OCT signal-to-noise ratio (SNR), time interval and particle dynamics. With either repeated A-scan or repeated B-scan imaging protocols, the amplitude noise increases with the increase of OCT SNR; however, the phase noise does the opposite, i.e. it increases with the decrease of OCT SNR. Coupled with experimental measurements, we utilize a simple Monte Carlo (MC) model to simulate the performance of amplitude-, phase- and complex-based algorithms for OCTA imaging, the results of which suggest that complex-based algorithms deliver the best performance when the phase noise is  <  ~40 mrad. We also conduct a series of in vivo vascular imaging in animal models and human retina to verify the findings from the MC model through assessing the OCTA performance metrics of vessel connectivity, image SNR and contrast-to-noise ratio. We show that for all the metrics assessed, the complex-based algorithm delivers better performance than either the amplitude- or phase-based algorithms for both the repeated A-scan and the B-scan imaging protocols, which agrees well with the conclusion drawn from the MC simulations.

  17. Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-01-01

    To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.

  18. Advanced biologically plausible algorithms for low-level image processing

    NASA Astrophysics Data System (ADS)

    Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan

    1999-08-01

    At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.

  19. An underwater turbulence degraded image restoration algorithm

    NASA Astrophysics Data System (ADS)

    Furhad, Md. Hasan; Tahtali, Murat; Lambert, Andrew

    2017-09-01

    Underwater turbulence occurs due to random fluctuations of temperature and salinity in the water. These fluctuations are responsible for variations in water density, refractive index and attenuation. These impose random geometric distortions, spatio-temporal varying blur, limited range visibility and limited contrast on the acquired images. There are some restoration techniques developed to address this problem, such as image registration based, lucky region based and centroid-based image restoration algorithms. Although these methods demonstrate better results in terms of removing turbulence, they require computationally intensive image registration, higher CPU load and memory allocations. Thus, in this paper, a simple patch based dictionary learning algorithm is proposed to restore the image by alleviating the costly image registration step. Dictionary learning is a machine learning technique which builds a dictionary of non-zero atoms derived from the sparse representation of an image or signal. The image is divided into several patches and the sharp patches are detected from them. Next, dictionary learning is performed on these patches to estimate the restored image. Finally, an image deconvolution algorithm is employed on the estimated restored image to remove noise that still exists.

  20. A photoacoustic imaging reconstruction method based on directional total variation with adaptive directivity.

    PubMed

    Wang, Jin; Zhang, Chen; Wang, Yuanyuan

    2017-05-30

    In photoacoustic tomography (PAT), total variation (TV) based iteration algorithm is reported to have a good performance in PAT image reconstruction. However, classical TV based algorithm fails to preserve the edges and texture details of the image because it is not sensitive to the direction of the image. Therefore, it is of great significance to develop a new PAT reconstruction algorithm to effectively solve the drawback of TV. In this paper, a directional total variation with adaptive directivity (DDTV) model-based PAT image reconstruction algorithm, which weightedly sums the image gradients based on the spatially varying directivity pattern of the image is proposed to overcome the shortcomings of TV. The orientation field of the image is adaptively estimated through a gradient-based approach. The image gradients are weighted at every pixel based on both its anisotropic direction and another parameter, which evaluates the estimated orientation field reliability. An efficient algorithm is derived to solve the iteration problem associated with DDTV and possessing directivity of the image adaptively updated for each iteration step. Several texture images with various directivity patterns are chosen as the phantoms for the numerical simulations. The 180-, 90- and 30-view circular scans are conducted. Results obtained show that the DDTV-based PAT reconstructed algorithm outperforms the filtered back-projection method (FBP) and TV algorithms in the quality of reconstructed images with the peak signal-to-noise rations (PSNR) exceeding those of TV and FBP by about 10 and 18 dB, respectively, for all cases. The Shepp-Logan phantom is studied with further discussion of multimode scanning, convergence speed, robustness and universality aspects. In-vitro experiments are performed for both the sparse-view circular scanning and linear scanning. The results further prove the effectiveness of the DDTV, which shows better results than that of the TV with sharper image edges and clearer texture details. Both numerical simulation and in vitro experiments confirm that the DDTV provides a significant quality improvement of PAT reconstructed images for various directivity patterns.

  1. A hybrid algorithm for the segmentation of books in libraries

    NASA Astrophysics Data System (ADS)

    Hu, Zilong; Tang, Jinshan; Lei, Liang

    2016-05-01

    This paper proposes an algorithm for book segmentation based on bookshelves images. The algorithm can be separated into three parts. The first part is pre-processing, aiming at eliminating or decreasing the effect of image noise and illumination conditions. The second part is near-horizontal line detection based on Canny edge detector, and separating a bookshelves image into multiple sub-images so that each sub-image contains an individual shelf. The last part is book segmentation. In each shelf image, near-vertical line is detected, and obtained lines are used for book segmentation. The proposed algorithm was tested with the bookshelf images taken from OPIE library in MTU, and the experimental results demonstrate good performance.

  2. A Double-function Digital Watermarking Algorithm Based on Chaotic System and LWT

    NASA Astrophysics Data System (ADS)

    Yuxia, Zhao; Jingbo, Fan

    A double- function digital watermarking technology is studied and a double-function digital watermarking algorithm of colored image is presented based on chaotic system and the lifting wavelet transformation (LWT).The algorithm has realized the double aims of the copyright protection and the integrity authentication of image content. Making use of feature of human visual system (HVS), the watermark image is embedded into the color image's low frequency component and middle frequency components by different means. The algorithm has great security by using two kinds chaotic mappings and Arnold to scramble the watermark image at the same time. The algorithm has good efficiency by using LWT. The emulation experiment indicates the algorithm has great efficiency and security, and the effect of concealing is really good.

  3. Research on HDR image fusion algorithm based on Laplace pyramid weight transform with extreme low-light CMOS

    NASA Astrophysics Data System (ADS)

    Guan, Wen; Li, Li; Jin, Weiqi; Qiu, Su; Zou, Yan

    2015-10-01

    Extreme-Low-Light CMOS has been widely applied in the field of night-vision as a new type of solid image sensor. But if the illumination in the scene has drastic changes or the illumination is too strong, Extreme-Low-Light CMOS can't both clearly present the high-light scene and low-light region. According to the partial saturation problem in the field of night-vision, a HDR image fusion algorithm based on the Laplace Pyramid was researched. The overall gray value and the contrast of the low light image is very low. We choose the fusion strategy based on regional average gradient for the top layer of the long exposure image and short exposure image, which has rich brightness and textural features. The remained layers which represent the edge feature information of the target are based on the fusion strategy based on regional energy. In the process of source image reconstruction with Laplacian pyramid image, we compare the fusion results with four kinds of basal images. The algorithm is tested using Matlab and compared with the different fusion strategies. We use information entropy, average gradient and standard deviation these three objective evaluation parameters for the further analysis of the fusion result. Different low illumination environment experiments show that the algorithm in this paper can rapidly get wide dynamic range while keeping high entropy. Through the verification of this algorithm features, there is a further application prospect of the optimized algorithm. Keywords: high dynamic range imaging, image fusion, multi-exposure image, weight coefficient, information fusion, Laplacian pyramid transform.

  4. A MULTICORE BASED PARALLEL IMAGE REGISTRATION METHOD

    PubMed Central

    Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.

    2012-01-01

    Image registration is a crucial step for many image-assisted clinical applications such as surgery planning and treatment evaluation. In this paper we proposed a landmark based nonlinear image registration algorithm for matching 2D image pairs. The algorithm was shown to be effective and robust under conditions of large deformations. In landmark based registration, the most important step is establishing the correspondence among the selected landmark points. This usually requires an extensive search which is often computationally expensive. We introduced a nonregular data partition algorithm using the K-means clustering algorithm to group the landmarks based on the number of available processing cores. The step optimizes the memory usage and data transfer. We have tested our method using IBM Cell Broadband Engine (Cell/B.E.) platform. PMID:19964921

  5. Quantum Color Image Encryption Algorithm Based on A Hyper-Chaotic System and Quantum Fourier Transform

    NASA Astrophysics Data System (ADS)

    Tan, Ru-Chao; Lei, Tong; Zhao, Qing-Min; Gong, Li-Hua; Zhou, Zhi-Hong

    2016-12-01

    To improve the slow processing speed of the classical image encryption algorithms and enhance the security of the private color images, a new quantum color image encryption algorithm based on a hyper-chaotic system is proposed, in which the sequences generated by the Chen's hyper-chaotic system are scrambled and diffused with three components of the original color image. Sequentially, the quantum Fourier transform is exploited to fulfill the encryption. Numerical simulations show that the presented quantum color image encryption algorithm possesses large key space to resist illegal attacks, sensitive dependence on initial keys, uniform distribution of gray values for the encrypted image and weak correlation between two adjacent pixels in the cipher-image.

  6. Stable and accurate methods for identification of water bodies from Landsat series imagery using meta-heuristic algorithms

    NASA Astrophysics Data System (ADS)

    Gamshadzaei, Mohammad Hossein; Rahimzadegan, Majid

    2017-10-01

    Identification of water extents in Landsat images is challenging due to surfaces with similar reflectance to water extents. The objective of this study is to provide stable and accurate methods for identifying water extents in Landsat images based on meta-heuristic algorithms. Then, seven Landsat images were selected from various environmental regions in Iran. Training of the algorithms was performed using 40 water pixels and 40 nonwater pixels in operational land imager images of Chitgar Lake (one of the study regions). Moreover, high-resolution images from Google Earth were digitized to evaluate the results. Two approaches were considered: index-based and artificial intelligence (AI) algorithms. In the first approach, nine common water spectral indices were investigated. AI algorithms were utilized to acquire coefficients of optimal band combinations to extract water extents. Among the AI algorithms, the artificial neural network algorithm and also the ant colony optimization, genetic algorithm, and particle swarm optimization (PSO) meta-heuristic algorithms were implemented. Index-based methods represented different performances in various regions. Among AI methods, PSO had the best performance with average overall accuracy and kappa coefficient of 93% and 98%, respectively. The results indicated the applicability of acquired band combinations to extract accurately and stably water extents in Landsat imagery.

  7. A New Pivoting and Iterative Text Detection Algorithm for Biomedical Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Songhua; Krauthammer, Prof. Michael

    2010-01-01

    There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper's key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manuallymore » labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. We demonstrate that our projection histogram-based text detection approach is well suited for text detection in biomedical images, and that the iterative application of the algorithm boosts performance to an F score of .60. We provide a C++ implementation of our algorithm freely available for academic use.« less

  8. A novel algorithm of super-resolution image reconstruction based on multi-class dictionaries for natural scene

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Zhao, Dewei; Zhang, Huan

    2015-12-01

    Super-resolution image reconstruction is an effective method to improve the image quality. It has important research significance in the field of image processing. However, the choice of the dictionary directly affects the efficiency of image reconstruction. A sparse representation theory is introduced into the problem of the nearest neighbor selection. Based on the sparse representation of super-resolution image reconstruction method, a super-resolution image reconstruction algorithm based on multi-class dictionary is analyzed. This method avoids the redundancy problem of only training a hyper complete dictionary, and makes the sub-dictionary more representatives, and then replaces the traditional Euclidean distance computing method to improve the quality of the whole image reconstruction. In addition, the ill-posed problem is introduced into non-local self-similarity regularization. Experimental results show that the algorithm is much better results than state-of-the-art algorithm in terms of both PSNR and visual perception.

  9. Images Encryption Method using Steganographic LSB Method, AES and RSA algorithm

    NASA Astrophysics Data System (ADS)

    Moumen, Abdelkader; Sissaoui, Hocine

    2017-03-01

    Vulnerability of communication of digital images is an extremely important issue nowadays, particularly when the images are communicated through insecure channels. To improve communication security, many cryptosystems have been presented in the image encryption literature. This paper proposes a novel image encryption technique based on an algorithm that is faster than current methods. The proposed algorithm eliminates the step in which the secrete key is shared during the encryption process. It is formulated based on the symmetric encryption, asymmetric encryption and steganography theories. The image is encrypted using a symmetric algorithm, then, the secret key is encrypted by means of an asymmetrical algorithm and it is hidden in the ciphered image using a least significant bits steganographic scheme. The analysis results show that while enjoying the faster computation, our method performs close to optimal in terms of accuracy.

  10. A street rubbish detection algorithm based on Sift and RCNN

    NASA Astrophysics Data System (ADS)

    Yu, XiPeng; Chen, Zhong; Zhang, Shuo; Zhang, Ting

    2018-02-01

    This paper presents a street rubbish detection algorithm based on image registration with Sift feature and RCNN. Firstly, obtain the rubbish region proposal on the real-time street image and set up the CNN convolution neural network trained by the rubbish samples set consists of rubbish and non-rubbish images; Secondly, for every clean street image, obtain the Sift feature and do image registration with the real-time street image to obtain the differential image, the differential image filters a lot of background information, obtain the rubbish region proposal rect where the rubbish may appear on the differential image by the selective search algorithm. Then, the CNN model is used to detect the image pixel data in each of the region proposal on the real-time street image. According to the output vector of the CNN, it is judged whether the rubbish is in the region proposal or not. If it is rubbish, the region proposal on the real-time street image is marked. This algorithm avoids the large number of false detection caused by the detection on the whole image because the CNN is used to identify the image only in the region proposal on the real-time street image that may appear rubbish. Different from the traditional object detection algorithm based on the region proposal, the region proposal is obtained on the differential image not whole real-time street image, and the number of the invalid region proposal is greatly reduced. The algorithm has the high mean average precision (mAP).

  11. Image restoration by minimizing zero norm of wavelet frame coefficients

    NASA Astrophysics Data System (ADS)

    Bao, Chenglong; Dong, Bin; Hou, Likun; Shen, Zuowei; Zhang, Xiaoqun; Zhang, Xue

    2016-11-01

    In this paper, we propose two algorithms, namely the extrapolated proximal iterative hard thresholding (EPIHT) algorithm and the EPIHT algorithm with line-search, for solving the {{\\ell }}0-norm regularized wavelet frame balanced approach for image restoration. Under the theoretical framework of Kurdyka-Łojasiewicz property, we show that the sequences generated by the two algorithms converge to a local minimizer with linear convergence rate. Moreover, extensive numerical experiments on sparse signal reconstruction and wavelet frame based image restoration problems including CT reconstruction, image deblur, demonstrate the improvement of {{\\ell }}0-norm based regularization models over some prevailing ones, as well as the computational efficiency of the proposed algorithms.

  12. Microscopic image analysis for reticulocyte based on watershed algorithm

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Liu, G. F.; Liu, J. G.; Wang, G.

    2007-12-01

    We present a watershed-based algorithm in the analysis of light microscopic image for reticulocyte (RET), which will be used in an automated recognition system for RET in peripheral blood. The original images, obtained by micrography, are segmented by modified watershed algorithm and are recognized in term of gray entropy and area of connective area. In the process of watershed algorithm, judgment conditions are controlled according to character of the image, besides, the segmentation is performed by morphological subtraction. The algorithm was simulated with MATLAB software. It is similar for automated and manual scoring and there is good correlation(r=0.956) between the methods, which is resulted from 50 pieces of RET images. The result indicates that the algorithm for peripheral blood RETs is comparable to conventional manual scoring, and it is superior in objectivity. This algorithm avoids time-consuming calculation such as ultra-erosion and region-growth, which will speed up the computation consequentially.

  13. The development of a 3D mesoscopic model of metallic foam based on an improved watershed algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Jinhua; Zhang, Yadong; Wang, Guikun; Fang, Qin

    2018-06-01

    The watershed algorithm has been used widely in the x-ray computed tomography (XCT) image segmentation. It provides a transformation defined on a grayscale image and finds the lines that separate adjacent images. However, distortion occurs in developing a mesoscopic model of metallic foam based on XCT image data. The cells are oversegmented at some events when the traditional watershed algorithm is used. The improved watershed algorithm presented in this paper can avoid oversegmentation and is composed of three steps. Firstly, it finds all of the connected cells and identifies the junctions of the corresponding cell walls. Secondly, the image segmentation is conducted to separate the adjacent cells. It generates the lost cell walls between the adjacent cells. Optimization is then performed on the segmentation image. Thirdly, this improved algorithm is validated when it is compared with the image of the metallic foam, which shows that it can avoid the image segmentation distortion. A mesoscopic model of metallic foam is thus formed based on the improved algorithm, and the mesoscopic characteristics of the metallic foam, such as cell size, volume and shape, are identified and analyzed.

  14. Fast Lossless Compression of Multispectral-Image Data

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew

    2006-01-01

    An algorithm that effects fast lossless compression of multispectral-image data is based on low-complexity, proven adaptive-filtering algorithms. This algorithm is intended for use in compressing multispectral-image data aboard spacecraft for transmission to Earth stations. Variants of this algorithm could be useful for lossless compression of three-dimensional medical imagery and, perhaps, for compressing image data in general.

  15. An improved feature extraction algorithm based on KAZE for multi-spectral image

    NASA Astrophysics Data System (ADS)

    Yang, Jianping; Li, Jun

    2018-02-01

    Multi-spectral image contains abundant spectral information, which is widely used in all fields like resource exploration, meteorological observation and modern military. Image preprocessing, such as image feature extraction and matching, is indispensable while dealing with multi-spectral remote sensing image. Although the feature matching algorithm based on linear scale such as SIFT and SURF performs strong on robustness, the local accuracy cannot be guaranteed. Therefore, this paper proposes an improved KAZE algorithm, which is based on nonlinear scale, to raise the number of feature and to enhance the matching rate by using the adjusted-cosine vector. The experiment result shows that the number of feature and the matching rate of the improved KAZE are remarkably than the original KAZE algorithm.

  16. LiveWire interactive boundary extraction algorithm based on Haar wavelet transform and control point set direction search

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Zhang, Jun; Tian, Jinwen

    2015-12-01

    Based on deep analysis of the LiveWire interactive boundary extraction algorithm, a new algorithm focusing on improving the speed of LiveWire algorithm is proposed in this paper. Firstly, the Haar wavelet transform is carried on the input image, and the boundary is extracted on the low resolution image obtained by the wavelet transform of the input image. Secondly, calculating LiveWire shortest path is based on the control point set direction search by utilizing the spatial relationship between the two control points users provide in real time. Thirdly, the search order of the adjacent points of the starting node is set in advance. An ordinary queue instead of a priority queue is taken as the storage pool of the points when optimizing their shortest path value, thus reducing the complexity of the algorithm from O[n2] to O[n]. Finally, A region iterative backward projection method based on neighborhood pixel polling has been used to convert dual-pixel boundary of the reconstructed image to single-pixel boundary after Haar wavelet inverse transform. The algorithm proposed in this paper combines the advantage of the Haar wavelet transform and the advantage of the optimal path searching method based on control point set direction search. The former has fast speed of image decomposition and reconstruction and is more consistent with the texture features of the image and the latter can reduce the time complexity of the original algorithm. So that the algorithm can improve the speed in interactive boundary extraction as well as reflect the boundary information of the image more comprehensively. All methods mentioned above have a big role in improving the execution efficiency and the robustness of the algorithm.

  17. Spaceborne SAR Imaging Algorithm for Coherence Optimized.

    PubMed

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application.

  18. Spaceborne SAR Imaging Algorithm for Coherence Optimized

    PubMed Central

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446

  19. A knowledge-based framework for image enhancement in aviation security.

    PubMed

    Singh, Maneesha; Singh, Sameer; Partridge, Derek

    2004-12-01

    The main aim of this paper is to present a knowledge-based framework for automatically selecting the best image enhancement algorithm from several available on a per image basis in the context of X-ray images of airport luggage. The approach detailed involves a system that learns to map image features that represent its viewability to one or more chosen enhancement algorithms. Viewability measures have been developed to provide an automatic check on the quality of the enhanced image, i.e., is it really enhanced? The choice is based on ground-truth information generated by human X-ray screening experts. Such a system, for a new image, predicts the best-suited enhancement algorithm. Our research details the various characteristics of the knowledge-based system and shows extensive results on real images.

  20. Experimental image alignment system

    NASA Technical Reports Server (NTRS)

    Moyer, A. L.; Kowel, S. T.; Kornreich, P. G.

    1980-01-01

    A microcomputer-based instrument for image alignment with respect to a reference image is described which uses the DEFT sensor (Direct Electronic Fourier Transform) for image sensing and preprocessing. The instrument alignment algorithm which uses the two-dimensional Fourier transform as input is also described. It generates signals used to steer the stage carrying the test image into the correct orientation. This algorithm has computational advantages over algorithms which use image intensity data as input and is suitable for a microcomputer-based instrument since the two-dimensional Fourier transform is provided by the DEFT sensor.

  1. Local-search based prediction of medical image registration error

    NASA Astrophysics Data System (ADS)

    Saygili, Görkem

    2018-03-01

    Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.

  2. An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy.

    PubMed

    Momeni, Saba; Pourghassem, Hossein

    2014-08-01

    Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.

  3. Super-resolution reconstruction of MR image with a novel residual learning network algorithm

    NASA Astrophysics Data System (ADS)

    Shi, Jun; Liu, Qingping; Wang, Chaofeng; Zhang, Qi; Ying, Shihui; Xu, Haoyu

    2018-04-01

    Spatial resolution is one of the key parameters of magnetic resonance imaging (MRI). The image super-resolution (SR) technique offers an alternative approach to improve the spatial resolution of MRI due to its simplicity. Convolutional neural networks (CNN)-based SR algorithms have achieved state-of-the-art performance, in which the global residual learning (GRL) strategy is now commonly used due to its effectiveness for learning image details for SR. However, the partial loss of image details usually happens in a very deep network due to the degradation problem. In this work, we propose a novel residual learning-based SR algorithm for MRI, which combines both multi-scale GRL and shallow network block-based local residual learning (LRL). The proposed LRL module works effectively in capturing high-frequency details by learning local residuals. One simulated MRI dataset and two real MRI datasets have been used to evaluate our algorithm. The experimental results show that the proposed SR algorithm achieves superior performance to all of the other compared CNN-based SR algorithms in this work.

  4. An Evolutionary Algorithm for Fast Intensity Based Image Matching Between Optical and SAR Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Fischer, Peter; Schuegraf, Philipp; Merkle, Nina; Storch, Tobias

    2018-04-01

    This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR) optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search) and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.

  5. Visual performance-based image enhancement methodology: an investigation of contrast enhancement algorithms

    NASA Astrophysics Data System (ADS)

    Neriani, Kelly E.; Herbranson, Travis J.; Reis, George A.; Pinkus, Alan R.; Goodyear, Charles D.

    2006-05-01

    While vast numbers of image enhancing algorithms have already been developed, the majority of these algorithms have not been assessed in terms of their visual performance-enhancing effects using militarily relevant scenarios. The goal of this research was to apply a visual performance-based assessment methodology to evaluate six algorithms that were specifically designed to enhance the contrast of digital images. The image enhancing algorithms used in this study included three different histogram equalization algorithms, the Autolevels function, the Recursive Rational Filter technique described in Marsi, Ramponi, and Carrato1 and the multiscale Retinex algorithm described in Rahman, Jobson and Woodell2. The methodology used in the assessment has been developed to acquire objective human visual performance data as a means of evaluating the contrast enhancement algorithms. Objective performance metrics, response time and error rate, were used to compare algorithm enhanced images versus two baseline conditions, original non-enhanced images and contrast-degraded images. Observers completed a visual search task using a spatial-forcedchoice paradigm. Observers searched images for a target (a military vehicle) hidden among foliage and then indicated in which quadrant of the screen the target was located. Response time and percent correct were measured for each observer. Results of the study and future directions are discussed.

  6. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation.

    PubMed

    Zhao, Zhanqi; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich; Möller, Knut

    2014-06-01

    Analysis methods of electrical impedance tomography (EIT) images based on different reconstruction algorithms were examined. EIT measurements were performed on eight mechanically ventilated patients with acute respiratory distress syndrome. A maneuver with step increase of airway pressure was performed. EIT raw data were reconstructed offline with (1) filtered back-projection (BP); (2) the Dräger algorithm based on linearized Newton-Raphson (DR); (3) the GREIT (Graz consensus reconstruction algorithm for EIT) reconstruction algorithm with a circular forward model (GR(C)) and (4) GREIT with individual thorax geometry (GR(T)). Individual thorax contours were automatically determined from the routine computed tomography images. Five indices were calculated on the resulting EIT images respectively: (a) the ratio between tidal and deep inflation impedance changes; (b) tidal impedance changes in the right and left lungs; (c) center of gravity; (d) the global inhomogeneity index and (e) ventilation delay at mid-dorsal regions. No significant differences were found in all examined indices among the four reconstruction algorithms (p > 0.2, Kruskal-Wallis test). The examined algorithms used for EIT image reconstruction do not influence the selected indices derived from the EIT image analysis. Indices that validated for images with one reconstruction algorithm are also valid for other reconstruction algorithms.

  7. Flow measurements in sewers based on image analysis: automatic flow velocity algorithm.

    PubMed

    Jeanbourquin, D; Sage, D; Nguyen, L; Schaeli, B; Kayal, S; Barry, D A; Rossi, L

    2011-01-01

    Discharges of combined sewer overflows (CSOs) and stormwater are recognized as an important source of environmental contamination. However, the harsh sewer environment and particular hydraulic conditions during rain events reduce the reliability of traditional flow measurement probes. An in situ system for sewer water flow monitoring based on video images was evaluated. Algorithms to determine water velocities were developed based on image-processing techniques. The image-based water velocity algorithm identifies surface features and measures their positions with respect to real world coordinates. A web-based user interface and a three-tier system architecture enable remote configuration of the cameras and the image-processing algorithms in order to calculate automatically flow velocity on-line. Results of investigations conducted in a CSO are presented. The system was found to measure reliably water velocities, thereby providing the means to understand particular hydraulic behaviors.

  8. The cascaded moving k-means and fuzzy c-means clustering algorithms for unsupervised segmentation of malaria images

    NASA Astrophysics Data System (ADS)

    Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Halim, Nurul Hazwani Abd; Mohamed, Zeehaida

    2015-05-01

    Malaria is a life-threatening parasitic infectious disease that corresponds for nearly one million deaths each year. Due to the requirement of prompt and accurate diagnosis of malaria, the current study has proposed an unsupervised pixel segmentation based on clustering algorithm in order to obtain the fully segmented red blood cells (RBCs) infected with malaria parasites based on the thin blood smear images of P. vivax species. In order to obtain the segmented infected cell, the malaria images are first enhanced by using modified global contrast stretching technique. Then, an unsupervised segmentation technique based on clustering algorithm has been applied on the intensity component of malaria image in order to segment the infected cell from its blood cells background. In this study, cascaded moving k-means (MKM) and fuzzy c-means (FCM) clustering algorithms has been proposed for malaria slide image segmentation. After that, median filter algorithm has been applied to smooth the image as well as to remove any unwanted regions such as small background pixels from the image. Finally, seeded region growing area extraction algorithm has been applied in order to remove large unwanted regions that are still appeared on the image due to their size in which cannot be cleaned by using median filter. The effectiveness of the proposed cascaded MKM and FCM clustering algorithms has been analyzed qualitatively and quantitatively by comparing the proposed cascaded clustering algorithm with MKM and FCM clustering algorithms. Overall, the results indicate that segmentation using the proposed cascaded clustering algorithm has produced the best segmentation performances by achieving acceptable sensitivity as well as high specificity and accuracy values compared to the segmentation results provided by MKM and FCM algorithms.

  9. SU-F-BRCD-09: Total Variation (TV) Based Fast Convergent Iterative CBCT Reconstruction with GPU Acceleration.

    PubMed

    Xu, Q; Yang, D; Tan, J; Anastasio, M

    2012-06-01

    To improve image quality and reduce imaging dose in CBCT for radiation therapy applications and to realize near real-time image reconstruction based on use of a fast convergence iterative algorithm and acceleration by multi-GPUs. An iterative image reconstruction that sought to minimize a weighted least squares cost function that employed total variation (TV) regularization was employed to mitigate projection data incompleteness and noise. To achieve rapid 3D image reconstruction (< 1 min), a highly optimized multiple-GPU implementation of the algorithm was developed. The convergence rate and reconstruction accuracy were evaluated using a modified 3D Shepp-Logan digital phantom and a Catphan-600 physical phantom. The reconstructed images were compared with the clinical FDK reconstruction results. Digital phantom studies showed that only 15 iterations and 60 iterations are needed to achieve algorithm convergence for 360-view and 60-view cases, respectively. The RMSE was reduced to 10-4 and 10-2, respectively, by using 15 iterations for each case. Our algorithm required 5.4s to complete one iteration for the 60-view case using one Tesla C2075 GPU. The few-view study indicated that our iterative algorithm has great potential to reduce the imaging dose and preserve good image quality. For the physical Catphan studies, the images obtained from the iterative algorithm possessed better spatial resolution and higher SNRs than those obtained from by use of a clinical FDK reconstruction algorithm. We have developed a fast convergence iterative algorithm for CBCT image reconstruction. The developed algorithm yielded images with better spatial resolution and higher SNR than those produced by a commercial FDK tool. In addition, from the few-view study, the iterative algorithm has shown great potential for significantly reducing imaging dose. We expect that the developed reconstruction approach will facilitate applications including IGART and patient daily CBCT-based treatment localization. © 2012 American Association of Physicists in Medicine.

  10. Time-frequency analysis-based time-windowing algorithm for the inverse synthetic aperture radar imaging of ships

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Zhang, Xi; Sun, Weifeng; Dai, Yongshou; Wan, Yong

    2018-01-01

    An algorithm based on time-frequency analysis is proposed to select an imaging time window for the inverse synthetic aperture radar imaging of ships. An appropriate range bin is selected to perform the time-frequency analysis after radial motion compensation. The selected range bin is that with the maximum mean amplitude among the range bins whose echoes are confirmed to be contributed by a dominant scatter. The criterion for judging whether the echoes of a range bin are contributed by a dominant scatter is key to the proposed algorithm and is therefore described in detail. When the first range bin that satisfies the judgment criterion is found, a sequence composed of the frequencies that have the largest amplitudes in every moment's time-frequency spectrum corresponding to this range bin is employed to calculate the length and the center moment of the optimal imaging time window. Experiments performed with simulation data and real data show the effectiveness of the proposed algorithm, and comparisons between the proposed algorithm and the image contrast-based algorithm (ICBA) are provided. Similar image contrast and lower entropy are acquired using the proposed algorithm as compared with those values when using the ICBA.

  11. An adaptive clustering algorithm for image matching based on corner feature

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-04-01

    The traditional image matching algorithm always can not balance the real-time and accuracy better, to solve the problem, an adaptive clustering algorithm for image matching based on corner feature is proposed in this paper. The method is based on the similarity of the matching pairs of vector pairs, and the adaptive clustering is performed on the matching point pairs. Harris corner detection is carried out first, the feature points of the reference image and the perceived image are extracted, and the feature points of the two images are first matched by Normalized Cross Correlation (NCC) function. Then, using the improved algorithm proposed in this paper, the matching results are clustered to reduce the ineffective operation and improve the matching speed and robustness. Finally, the Random Sample Consensus (RANSAC) algorithm is used to match the matching points after clustering. The experimental results show that the proposed algorithm can effectively eliminate the most wrong matching points while the correct matching points are retained, and improve the accuracy of RANSAC matching, reduce the computation load of whole matching process at the same time.

  12. Two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images.

    PubMed

    He, Lifeng; Chao, Yuyan; Suzuki, Kenji

    2011-08-01

    Whenever one wants to distinguish, recognize, and/or measure objects (connected components) in binary images, labeling is required. This paper presents two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images. One is voxel based and the other is run based. For the voxel-based one, we present an efficient method of deciding the order for checking voxels in the mask. For the run-based one, instead of assigning each foreground voxel, we assign each run a provisional label. Moreover, we use run data to label foreground voxels without scanning any background voxel in the second scan. Experimental results have demonstrated that our voxel-based algorithm is efficient for 3-D binary images with complicated connected components, that our run-based one is efficient for those with simple connected components, and that both are much more efficient than conventional 3-D labeling algorithms.

  13. A sparsity-based iterative algorithm for reconstruction of micro-CT images from highly undersampled projection datasets obtained with a synchrotron X-ray source

    NASA Astrophysics Data System (ADS)

    Melli, S. Ali; Wahid, Khan A.; Babyn, Paul; Cooper, David M. L.; Gopi, Varun P.

    2016-12-01

    Synchrotron X-ray Micro Computed Tomography (Micro-CT) is an imaging technique which is increasingly used for non-invasive in vivo preclinical imaging. However, it often requires a large number of projections from many different angles to reconstruct high-quality images leading to significantly high radiation doses and long scan times. To utilize this imaging technique further for in vivo imaging, we need to design reconstruction algorithms that reduce the radiation dose and scan time without reduction of reconstructed image quality. This research is focused on using a combination of gradient-based Douglas-Rachford splitting and discrete wavelet packet shrinkage image denoising methods to design an algorithm for reconstruction of large-scale reduced-view synchrotron Micro-CT images with acceptable quality metrics. These quality metrics are computed by comparing the reconstructed images with a high-dose reference image reconstructed from 1800 equally spaced projections spanning 180°. Visual and quantitative-based performance assessment of a synthetic head phantom and a femoral cortical bone sample imaged in the biomedical imaging and therapy bending magnet beamline at the Canadian Light Source demonstrates that the proposed algorithm is superior to the existing reconstruction algorithms. Using the proposed reconstruction algorithm to reduce the number of projections in synchrotron Micro-CT is an effective way to reduce the overall radiation dose and scan time which improves in vivo imaging protocols.

  14. An enhanced multi-view vertical line locus matching algorithm of object space ground primitives based on positioning consistency for aerial and space images

    NASA Astrophysics Data System (ADS)

    Zhang, Ka; Sheng, Yehua; Wang, Meizhen; Fu, Suxia

    2018-05-01

    The traditional multi-view vertical line locus (TMVLL) matching method is an object-space-based method that is commonly used to directly acquire spatial 3D coordinates of ground objects in photogrammetry. However, the TMVLL method can only obtain one elevation and lacks an accurate means of validating the matching results. In this paper, we propose an enhanced multi-view vertical line locus (EMVLL) matching algorithm based on positioning consistency for aerial or space images. The algorithm involves three components: confirming candidate pixels of the ground primitive in the base image, multi-view image matching based on the object space constraints for all candidate pixels, and validating the consistency of the object space coordinates with the multi-view matching result. The proposed algorithm was tested using actual aerial images and space images. Experimental results show that the EMVLL method successfully solves the problems associated with the TMVLL method, and has greater reliability, accuracy and computing efficiency.

  15. An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method

    NASA Astrophysics Data System (ADS)

    Nouizi, F.; Erkol, H.; Luk, A.; Marks, M.; Unlu, M. B.; Gulsen, G.

    2016-10-01

    We previously introduced photo-magnetic imaging (PMI), an imaging technique that illuminates the medium under investigation with near-infrared light and measures the induced temperature increase using magnetic resonance thermometry (MRT). Using a multiphysics solver combining photon migration and heat diffusion, PMI models the spatiotemporal distribution of temperature variation and recovers high resolution optical absorption images using these temperature maps. In this paper, we present a new fast non-iterative reconstruction algorithm for PMI. This new algorithm uses analytic methods during the resolution of the forward problem and the assembly of the sensitivity matrix. We validate our new analytic-based algorithm with the first generation finite element method (FEM) based reconstruction algorithm previously developed by our team. The validation is performed using, first synthetic data and afterwards, real MRT measured temperature maps. Our new method accelerates the reconstruction process 30-fold when compared to a single iteration of the FEM-based algorithm.

  16. Multichannel blind iterative image restoration.

    PubMed

    Sroubek, Filip; Flusser, Jan

    2003-01-01

    Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environment if channel disparity, called co-primeness, is satisfied. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. A linearization scheme of half-quadratic regularization together with a cell-centered finite difference discretization scheme is used in the algorithm and provides a unified approach to the solution of total variation or Mumford-Shah. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data. Finally, the algorithm is applied to defocused images taken with a digital camera and to data from astronomical ground-based observations of the Sun.

  17. Saliency detection algorithm based on LSC-RC

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Tian, Weiye; Wang, Ding; Luo, Xin; Wu, Yingfei; Zhang, Yu

    2018-02-01

    Image prominence is the most important region in an image, which can cause the visual attention and response of human beings. Preferentially allocating the computer resources for the image analysis and synthesis by the significant region is of great significance to improve the image area detecting. As a preprocessing of other disciplines in image processing field, the image prominence has widely applications in image retrieval and image segmentation. Among these applications, the super-pixel segmentation significance detection algorithm based on linear spectral clustering (LSC) has achieved good results. The significance detection algorithm proposed in this paper is better than the regional contrast ratio by replacing the method of regional formation in the latter with the linear spectral clustering image is super-pixel block. After combining with the latest depth learning method, the accuracy of the significant region detecting has a great promotion. At last, the superiority and feasibility of the super-pixel segmentation detection algorithm based on linear spectral clustering are proved by the comparative test.

  18. A novel material detection algorithm based on 2D GMM-based power density function and image detail addition scheme in dual energy X-ray images.

    PubMed

    Pourghassem, Hossein

    2012-01-01

    Material detection is a vital need in dual energy X-ray luggage inspection systems at security of airport and strategic places. In this paper, a novel material detection algorithm based on statistical trainable models using 2-Dimensional power density function (PDF) of three material categories in dual energy X-ray images is proposed. In this algorithm, the PDF of each material category as a statistical model is estimated from transmission measurement values of low and high energy X-ray images by Gaussian Mixture Models (GMM). Material label of each pixel of object is determined based on dependency probability of its transmission measurement values in the low and high energy to PDF of three material categories (metallic, organic and mixed materials). The performance of material detection algorithm is improved by a maximum voting scheme in a neighborhood of image as a post-processing stage. Using two background removing and denoising stages, high and low energy X-ray images are enhanced as a pre-processing procedure. For improving the discrimination capability of the proposed material detection algorithm, the details of the low and high energy X-ray images are added to constructed color image which includes three colors (orange, blue and green) for representing the organic, metallic and mixed materials. The proposed algorithm is evaluated on real images that had been captured from a commercial dual energy X-ray luggage inspection system. The obtained results show that the proposed algorithm is effective and operative in detection of the metallic, organic and mixed materials with acceptable accuracy.

  19. Text image authenticating algorithm based on MD5-hash function and Henon map

    NASA Astrophysics Data System (ADS)

    Wei, Jinqiao; Wang, Ying; Ma, Xiaoxue

    2017-07-01

    In order to cater to the evidentiary requirements of the text image, this paper proposes a fragile watermarking algorithm based on Hash function and Henon map. The algorithm is to divide a text image into parts, get flippable pixels and nonflippable pixels of every lump according to PSD, generate watermark of non-flippable pixels with MD5-Hash, encrypt watermark with Henon map and select embedded blocks. The simulation results show that the algorithm with a good ability in tampering localization can be used to authenticate and forensics the authenticity and integrity of text images

  20. Optical image hiding based on computational ghost imaging

    NASA Astrophysics Data System (ADS)

    Wang, Le; Zhao, Shengmei; Cheng, Weiwen; Gong, Longyan; Chen, Hanwu

    2016-05-01

    Imaging hiding schemes play important roles in now big data times. They provide copyright protections of digital images. In the paper, we propose a novel image hiding scheme based on computational ghost imaging to have strong robustness and high security. The watermark is encrypted with the configuration of a computational ghost imaging system, and the random speckle patterns compose a secret key. Least significant bit algorithm is adopted to embed the watermark and both the second-order correlation algorithm and the compressed sensing (CS) algorithm are used to extract the watermark. The experimental and simulation results show that the authorized users can get the watermark with the secret key. The watermark image could not be retrieved when the eavesdropping ratio is less than 45% with the second-order correlation algorithm, whereas it is less than 20% with the TVAL3 CS reconstructed algorithm. In addition, the proposed scheme is robust against the 'salt and pepper' noise and image cropping degradations.

  1. Locality constrained joint dynamic sparse representation for local matching based face recognition.

    PubMed

    Wang, Jianzhong; Yi, Yugen; Zhou, Wei; Shi, Yanjiao; Qi, Miao; Zhang, Ming; Zhang, Baoxue; Kong, Jun

    2014-01-01

    Recently, Sparse Representation-based Classification (SRC) has attracted a lot of attention for its applications to various tasks, especially in biometric techniques such as face recognition. However, factors such as lighting, expression, pose and disguise variations in face images will decrease the performances of SRC and most other face recognition techniques. In order to overcome these limitations, we propose a robust face recognition method named Locality Constrained Joint Dynamic Sparse Representation-based Classification (LCJDSRC) in this paper. In our method, a face image is first partitioned into several smaller sub-images. Then, these sub-images are sparsely represented using the proposed locality constrained joint dynamic sparse representation algorithm. Finally, the representation results for all sub-images are aggregated to obtain the final recognition result. Compared with other algorithms which process each sub-image of a face image independently, the proposed algorithm regards the local matching-based face recognition as a multi-task learning problem. Thus, the latent relationships among the sub-images from the same face image are taken into account. Meanwhile, the locality information of the data is also considered in our algorithm. We evaluate our algorithm by comparing it with other state-of-the-art approaches. Extensive experiments on four benchmark face databases (ORL, Extended YaleB, AR and LFW) demonstrate the effectiveness of LCJDSRC.

  2. Automated condition-invariable neurite segmentation and synapse classification using textural analysis-based machine-learning algorithms

    PubMed Central

    Kandaswamy, Umasankar; Rotman, Ziv; Watt, Dana; Schillebeeckx, Ian; Cavalli, Valeria; Klyachko, Vitaly

    2013-01-01

    High-resolution live-cell imaging studies of neuronal structure and function are characterized by large variability in image acquisition conditions due to background and sample variations as well as low signal-to-noise ratio. The lack of automated image analysis tools that can be generalized for varying image acquisition conditions represents one of the main challenges in the field of biomedical image analysis. Specifically, segmentation of the axonal/dendritic arborizations in brightfield or fluorescence imaging studies is extremely labor-intensive and still performed mostly manually. Here we describe a fully automated machine-learning approach based on textural analysis algorithms for segmenting neuronal arborizations in high-resolution brightfield images of live cultured neurons. We compare performance of our algorithm to manual segmentation and show that it combines 90% accuracy, with similarly high levels of specificity and sensitivity. Moreover, the algorithm maintains high performance levels under a wide range of image acquisition conditions indicating that it is largely condition-invariable. We further describe an application of this algorithm to fully automated synapse localization and classification in fluorescence imaging studies based on synaptic activity. Textural analysis-based machine-learning approach thus offers a high performance condition-invariable tool for automated neurite segmentation. PMID:23261652

  3. Denoising of polychromatic CT images based on their own noise properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji Hye; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr

    Purpose: Because of high diagnostic accuracy and fast scan time, computed tomography (CT) has been widely used in various clinical applications. Since the CT scan introduces radiation exposure to patients, however, dose reduction has recently been recognized as an important issue in CT imaging. However, low-dose CT causes an increase of noise in the image and thereby deteriorates the accuracy of diagnosis. In this paper, the authors develop an efficient denoising algorithm for low-dose CT images obtained using a polychromatic x-ray source. The algorithm is based on two steps: (i) estimation of space variant noise statistics, which are uniquely determinedmore » according to the system geometry and scanned object, and (ii) subsequent novel conversion of the estimated noise to Gaussian noise so that an existing high performance Gaussian noise filtering algorithm can be directly applied to CT images with non-Gaussian noise. Methods: For efficient polychromatic CT image denoising, the authors first reconstruct an image with the iterative maximum-likelihood polychromatic algorithm for CT to alleviate the beam-hardening problem. We then estimate the space-variant noise variance distribution on the image domain. Since there are many high performance denoising algorithms available for the Gaussian noise, image denoising can become much more efficient if they can be used. Hence, the authors propose a novel conversion scheme to transform the estimated space-variant noise to near Gaussian noise. In the suggested scheme, the authors first convert the image so that its mean and variance can have a linear relationship, and then produce a Gaussian image via variance stabilizing transform. The authors then apply a block matching 4D algorithm that is optimized for noise reduction of the Gaussian image, and reconvert the result to obtain a final denoised image. To examine the performance of the proposed method, an XCAT phantom simulation and a physical phantom experiment were conducted. Results: Both simulation and experimental results show that, unlike the existing denoising algorithms, the proposed algorithm can effectively reduce the noise over the whole region of CT images while preventing degradation of image resolution. Conclusions: To effectively denoise polychromatic low-dose CT images, a novel denoising algorithm is proposed. Because this algorithm is based on the noise statistics of a reconstructed polychromatic CT image, the spatially varying noise on the image is effectively reduced so that the denoised image will have homogeneous quality over the image domain. Through a simulation and a real experiment, it is verified that the proposed algorithm can deliver considerably better performance compared to the existing denoising algorithms.« less

  4. Multi scales based sparse matrix spectral clustering image segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin

    2018-04-01

    In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.

  5. Image reconstruction and scan configurations enabled by optimization-based algorithms in multispectral CT

    NASA Astrophysics Data System (ADS)

    Chen, Buxin; Zhang, Zheng; Sidky, Emil Y.; Xia, Dan; Pan, Xiaochuan

    2017-11-01

    Optimization-based algorithms for image reconstruction in multispectral (or photon-counting) computed tomography (MCT) remains a topic of active research. The challenge of optimization-based image reconstruction in MCT stems from the inherently non-linear data model that can lead to a non-convex optimization program for which no mathematically exact solver seems to exist for achieving globally optimal solutions. In this work, based upon a non-linear data model, we design a non-convex optimization program, derive its first-order-optimality conditions, and propose an algorithm to solve the program for image reconstruction in MCT. In addition to consideration of image reconstruction for the standard scan configuration, the emphasis is on investigating the algorithm’s potential for enabling non-standard scan configurations with no or minimum hardware modification to existing CT systems, which has potential practical implications for lowered hardware cost, enhanced scanning flexibility, and reduced imaging dose/time in MCT. Numerical studies are carried out for verification of the algorithm and its implementation, and for a preliminary demonstration and characterization of the algorithm in reconstructing images and in enabling non-standard configurations with varying scanning angular range and/or x-ray illumination coverage in MCT.

  6. Comparison of classification algorithms for various methods of preprocessing radar images of the MSTAR base

    NASA Astrophysics Data System (ADS)

    Borodinov, A. A.; Myasnikov, V. V.

    2018-04-01

    The present work is devoted to comparing the accuracy of the known qualification algorithms in the task of recognizing local objects on radar images for various image preprocessing methods. Preprocessing involves speckle noise filtering and normalization of the object orientation in the image by the method of image moments and by a method based on the Hough transform. In comparison, the following classification algorithms are used: Decision tree; Support vector machine, AdaBoost, Random forest. The principal component analysis is used to reduce the dimension. The research is carried out on the objects from the base of radar images MSTAR. The paper presents the results of the conducted studies.

  7. Segmentation Approach Towards Phase-Contrast Microscopic Images of Activated Sludge to Monitor the Wastewater Treatment.

    PubMed

    Khan, Muhammad Burhan; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Lai, Koon Chun

    2017-12-01

    Image processing and analysis is an effective tool for monitoring and fault diagnosis of activated sludge (AS) wastewater treatment plants. The AS image comprise of flocs (microbial aggregates) and filamentous bacteria. In this paper, nine different approaches are proposed for image segmentation of phase-contrast microscopic (PCM) images of AS samples. The proposed strategies are assessed for their effectiveness from the perspective of microscopic artifacts associated with PCM. The first approach uses an algorithm that is based on the idea that different color space representation of images other than red-green-blue may have better contrast. The second uses an edge detection approach. The third strategy, employs a clustering algorithm for the segmentation and the fourth applies local adaptive thresholding. The fifth technique is based on texture-based segmentation and the sixth uses watershed algorithm. The seventh adopts a split-and-merge approach. The eighth employs Kittler's thresholding. Finally, the ninth uses a top-hat and bottom-hat filtering-based technique. The approaches are assessed, and analyzed critically with reference to the artifacts of PCM. Gold approximations of ground truth images are prepared to assess the segmentations. Overall, the edge detection-based approach exhibits the best results in terms of accuracy, and the texture-based algorithm in terms of false negative ratio. The respective scenarios are explained for suitability of edge detection and texture-based algorithms.

  8. Image-Data Compression Using Edge-Optimizing Algorithm for WFA Inference.

    ERIC Educational Resources Information Center

    Culik, Karel II; Kari, Jarkko

    1994-01-01

    Presents an inference algorithm that produces a weighted finite automata (WFA), in particular, the grayness functions of graytone images. Image-data compression results based on the new inference algorithm produces a WFA with a relatively small number of edges. Image-data compression results alone and in combination with wavelets are discussed.…

  9. A Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm

    PubMed Central

    Zhang, Xin; Cui, Jintian; Wang, Weisheng; Lin, Chao

    2017-01-01

    To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature value of an image and integrates the weight factor that is introduced by the direction measure to obtain the final texture feature of an image. A set of classification experiments for the high-resolution remote sensing images were performed by using support vector machine (SVM) classifier with the direction measure and gray level co-occurrence matrix fusion algorithm. Both qualitative and quantitative approaches were applied to assess the classification results. The experimental results demonstrated that texture feature extraction based on the fusion algorithm achieved a better image recognition, and the accuracy of classification based on this method has been significantly improved. PMID:28640181

  10. A new pivoting and iterative text detection algorithm for biomedical images.

    PubMed

    Xu, Songhua; Krauthammer, Michael

    2010-12-01

    There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper's key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manually labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. We demonstrate that our projection histogram-based text detection approach is well suited for text detection in biomedical images, and that the iterative application of the algorithm boosts performance to an F score of .60. We provide a C++ implementation of our algorithm freely available for academic use. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. An improved dehazing algorithm of aerial high-definition image

    NASA Astrophysics Data System (ADS)

    Jiang, Wentao; Ji, Ming; Huang, Xiying; Wang, Chao; Yang, Yizhou; Li, Tao; Wang, Jiaoying; Zhang, Ying

    2016-01-01

    For unmanned aerial vehicle(UAV) images, the sensor can not get high quality images due to fog and haze weather. To solve this problem, An improved dehazing algorithm of aerial high-definition image is proposed. Based on the model of dark channel prior, the new algorithm firstly extracts the edges from crude estimated transmission map and expands the extracted edges. Then according to the expended edges, the algorithm sets a threshold value to divide the crude estimated transmission map into different areas and makes different guided filter on the different areas compute the optimized transmission map. The experimental results demonstrate that the performance of the proposed algorithm is substantially the same as the one based on dark channel prior and guided filter. The average computation time of the new algorithm is around 40% of the one as well as the detection ability of UAV image is improved effectively in fog and haze weather.

  12. Perception for rugged terrain

    NASA Technical Reports Server (NTRS)

    Kweon, In SO; Hebert, Martial; Kanade, Takeo

    1989-01-01

    A three-dimensional perception system for building a geometrical description of rugged terrain environments from range image data is presented with reference to the exploration of the rugged terrain of Mars. An intermediate representation consisting of an elevation map that includes an explicit representation of uncertainty and labeling of the occluded regions is proposed. The locus method used to convert range image to an elevation map is introduced, along with an uncertainty model based on this algorithm. Both the elevation map and the locus method are the basis of a terrain matching algorithm which does not assume any correspondences between range images. The two-stage algorithm consists of a feature-based matching algorithm to compute an initial transform and an iconic terrain matching algorithm to merge multiple range images into a uniform representation. Terrain modeling results on real range images of rugged terrain are presented. The algorithms considered are a fundamental part of the perception system for the Ambler, a legged locomotor.

  13. Fundamental limits of reconstruction-based superresolution algorithms under local translation.

    PubMed

    Lin, Zhouchen; Shum, Heung-Yeung

    2004-01-01

    Superresolution is a technique that can produce images of a higher resolution than that of the originally captured ones. Nevertheless, improvement in resolution using such a technique is very limited in practice. This makes it significant to study the problem: "Do fundamental limits exist for superresolution?" In this paper, we focus on a major class of superresolution algorithms, called the reconstruction-based algorithms, which compute high-resolution images by simulating the image formation process. Assuming local translation among low-resolution images, this paper is the first attempt to determine the explicit limits of reconstruction-based algorithms, under both real and synthetic conditions. Based on the perturbation theory of linear systems, we obtain the superresolution limits from the conditioning analysis of the coefficient matrix. Moreover, we determine the number of low-resolution images that are sufficient to achieve the limit. Both real and synthetic experiments are carried out to verify our analysis.

  14. Development of an embedded instrument for autofocus and polarization alignment of polarization maintaining fiber

    NASA Astrophysics Data System (ADS)

    Feng, Di; Fang, Qimeng; Huang, Huaibo; Zhao, Zhengqi; Song, Ningfang

    2017-12-01

    The development and implementation of a practical instrument based on an embedded technique for autofocus and polarization alignment of polarization maintaining fiber is presented. For focusing efficiency and stability, an image-based focusing algorithm fully considering the image definition evaluation and the focusing search strategy was used to accomplish autofocus. For improving the alignment accuracy, various image-based algorithms of alignment detection were developed with high calculation speed and strong robustness. The instrument can be operated as a standalone device with real-time processing and convenience operations. The hardware construction, software interface, and image-based algorithms of main modules are described. Additionally, several image simulation experiments were also carried out to analyze the accuracy of the above alignment detection algorithms. Both the simulation results and experiment results indicate that the instrument can achieve the accuracy of polarization alignment <±0.1 deg.

  15. Hardware architecture design of image restoration based on time-frequency domain computation

    NASA Astrophysics Data System (ADS)

    Wen, Bo; Zhang, Jing; Jiao, Zipeng

    2013-10-01

    The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.

  16. Image defog algorithm based on open close filter and gradient domain recursive bilateral filter

    NASA Astrophysics Data System (ADS)

    Liu, Daqian; Liu, Wanjun; Zhao, Qingguo; Fei, Bowen

    2017-11-01

    To solve the problems of fuzzy details, color distortion, low brightness of the image obtained by the dark channel prior defog algorithm, an image defog algorithm based on open close filter and gradient domain recursive bilateral filter, referred to as OCRBF, was put forward. The algorithm named OCRBF firstly makes use of weighted quad tree to obtain more accurate the global atmospheric value, then exploits multiple-structure element morphological open and close filter towards the minimum channel map to obtain a rough scattering map by dark channel prior, makes use of variogram to correct the transmittance map,and uses gradient domain recursive bilateral filter for the smooth operation, finally gets recovery images by image degradation model, and makes contrast adjustment to get bright, clear and no fog image. A large number of experimental results show that the proposed defog method in this paper can be good to remove the fog , recover color and definition of the fog image containing close range image, image perspective, the image including the bright areas very well, compared with other image defog algorithms,obtain more clear and natural fog free images with details of higher visibility, what's more, the relationship between the time complexity of SIDA algorithm and the number of image pixels is a linear correlation.

  17. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics.

    PubMed

    Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan

    2017-04-06

    An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.

  18. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics

    PubMed Central

    Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan

    2017-01-01

    An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods. PMID:28383503

  19. Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Bian, Junguo; Sharp, Gregory C.; Park, Yang-Kyun; Ouyang, Jinsong; Bortfeld, Thomas; El Fakhri, Georges

    2016-05-01

    It is well-known that projections acquired over an angular range slightly over 180° (so-called short scan) are sufficient for fan-beam reconstruction. However, due to practical imaging conditions (projection data and reconstruction image discretization, physical factors, and data noise), the short-scan reconstructions may have different appearances and properties from the full-scan (scans over 360°) reconstructions. Nevertheless, short-scan configurations have been used in applications such as cone-beam CT (CBCT) for head-neck-cancer image-guided radiation therapy (IGRT) that only requires a small field of view due to the potential reduced imaging time and dose. In this work, we studied the image quality trade-off for full, short, and full/short scan configurations with both conventional filtered-backprojection (FBP) reconstruction and iterative reconstruction algorithms based on total-variation (TV) minimization for head-neck-cancer IGRT. Anthropomorphic and Catphan phantoms were scanned at different exposure levels with a clinical scanner used in IGRT. Both visualization- and numerical-metric-based evaluation studies were performed. The results indicate that the optimal exposure level and number of views are in the middle range for both FBP and TV-based iterative algorithms and the optimization is object-dependent and task-dependent. The optimal view numbers decrease with the total exposure levels for both FBP and TV-based algorithms. The results also indicate there are slight differences between FBP and TV-based iterative algorithms for the image quality trade-off: FBP seems to be more in favor of larger number of views while the TV-based algorithm is more robust to different data conditions (number of views and exposure levels) than the FBP algorithm. The studies can provide a general guideline for image-quality optimization for CBCT used in IGRT and other applications.

  20. Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy.

    PubMed

    Bian, Junguo; Sharp, Gregory C; Park, Yang-Kyun; Ouyang, Jinsong; Bortfeld, Thomas; El Fakhri, Georges

    2016-05-07

    It is well-known that projections acquired over an angular range slightly over 180° (so-called short scan) are sufficient for fan-beam reconstruction. However, due to practical imaging conditions (projection data and reconstruction image discretization, physical factors, and data noise), the short-scan reconstructions may have different appearances and properties from the full-scan (scans over 360°) reconstructions. Nevertheless, short-scan configurations have been used in applications such as cone-beam CT (CBCT) for head-neck-cancer image-guided radiation therapy (IGRT) that only requires a small field of view due to the potential reduced imaging time and dose. In this work, we studied the image quality trade-off for full, short, and full/short scan configurations with both conventional filtered-backprojection (FBP) reconstruction and iterative reconstruction algorithms based on total-variation (TV) minimization for head-neck-cancer IGRT. Anthropomorphic and Catphan phantoms were scanned at different exposure levels with a clinical scanner used in IGRT. Both visualization- and numerical-metric-based evaluation studies were performed. The results indicate that the optimal exposure level and number of views are in the middle range for both FBP and TV-based iterative algorithms and the optimization is object-dependent and task-dependent. The optimal view numbers decrease with the total exposure levels for both FBP and TV-based algorithms. The results also indicate there are slight differences between FBP and TV-based iterative algorithms for the image quality trade-off: FBP seems to be more in favor of larger number of views while the TV-based algorithm is more robust to different data conditions (number of views and exposure levels) than the FBP algorithm. The studies can provide a general guideline for image-quality optimization for CBCT used in IGRT and other applications.

  1. Dosimetric Evaluation of Metal Artefact Reduction using Metal Artefact Reduction (MAR) Algorithm and Dual-energy Computed Tomography (CT) Method

    NASA Astrophysics Data System (ADS)

    Laguda, Edcer Jerecho

    Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient's medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method. Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated. Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated. Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.

  2. An improved contrast enhancement algorithm for infrared images based on adaptive double plateaus histogram equalization

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Jin, Weiqi; Li, Li; Li, Yiyang

    2018-05-01

    Infrared thermal images can reflect the thermal-radiation distribution of a particular scene. However, the contrast of the infrared images is usually low. Hence, it is generally necessary to enhance the contrast of infrared images in advance to facilitate subsequent recognition and analysis. Based on the adaptive double plateaus histogram equalization, this paper presents an improved contrast enhancement algorithm for infrared thermal images. In the proposed algorithm, the normalized coefficient of variation of the histogram, which characterizes the level of contrast enhancement, is introduced as feedback information to adjust the upper and lower plateau thresholds. The experiments on actual infrared images show that compared to the three typical contrast-enhancement algorithms, the proposed algorithm has better scene adaptability and yields better contrast-enhancement results for infrared images with more dark areas or a higher dynamic range. Hence, it has high application value in contrast enhancement, dynamic range compression, and digital detail enhancement for infrared thermal images.

  3. Efficient image enhancement using sparse source separation in the Retinex theory

    NASA Astrophysics Data System (ADS)

    Yoon, Jongsu; Choi, Jangwon; Choe, Yoonsik

    2017-11-01

    Color constancy is the feature of the human vision system (HVS) that ensures the relative constancy of the perceived color of objects under varying illumination conditions. The Retinex theory of machine vision systems is based on the HVS. Among Retinex algorithms, the physics-based algorithms are efficient; however, they generally do not satisfy the local characteristics of the original Retinex theory because they eliminate global illumination from their optimization. We apply the sparse source separation technique to the Retinex theory to present a physics-based algorithm that satisfies the locality characteristic of the original Retinex theory. Previous Retinex algorithms have limited use in image enhancement because the total variation Retinex results in an overly enhanced image and the sparse source separation Retinex cannot completely restore the original image. In contrast, our proposed method preserves the image edge and can very nearly replicate the original image without any special operation.

  4. Fast and robust wavelet-based dynamic range compression and contrast enhancement model with color restoration

    NASA Astrophysics Data System (ADS)

    Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur

    2009-05-01

    Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.

  5. Object-oriented feature-tracking algorithms for SAR images of the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Daida, Jason; Samadani, Ramin; Vesecky, John F.

    1990-01-01

    An unsupervised method that chooses and applies the most appropriate tracking algorithm from among different sea-ice tracking algorithms is reported. In contrast to current unsupervised methods, this method chooses and applies an algorithm by partially examining a sequential image pair to draw inferences about what was examined. Based on these inferences the reported method subsequently chooses which algorithm to apply to specific areas of the image pair where that algorithm should work best.

  6. Evaluation of a Delay-Doppler Imaging Algorithm Based on the Wigner-Ville Distribution

    DTIC Science & Technology

    1989-10-18

    exchanging the frequency and time variables. 2.3 PROPERTIES OF THE WIGNER - VILLE DISTRIBUTION A partial list of the properties of the WVD is provided...ESD-TH-89-163 N Technical Report (N R55 00 Lfl Evaluation of a Delay-Doppler Imaging Algorithm Based on the Wigner - Ville Distribution K.I. Schultz 18...DOPPLER IMAGING ALGORITHM BASED ON THE WIGNER - VILLE DISTRIBUTION K.I. SCHULTZ Group 52 TECHNICAL REPORT 855 18 OCTOBER 1989 Approved for public release

  7. Image-based 3D reconstruction and virtual environmental walk-through

    NASA Astrophysics Data System (ADS)

    Sun, Jifeng; Fang, Lixiong; Luo, Ying

    2001-09-01

    We present a 3D reconstruction method, which combines geometry-based modeling, image-based modeling and rendering techniques. The first component is an interactive geometry modeling method which recovery of the basic geometry of the photographed scene. The second component is model-based stereo algorithm. We discus the image processing problems and algorithms of walking through in virtual space, then designs and implement a high performance multi-thread wandering algorithm. The applications range from architectural planning and archaeological reconstruction to virtual environments and cinematic special effects.

  8. Research on Bayes matting algorithm based on Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Jiang, Shan; Han, Cheng; Zhang, Chao; Jiang, Zhengang

    2015-12-01

    The digital matting problem is a classical problem of imaging. It aims at separating non-rectangular foreground objects from a background image, and compositing with a new background image. Accurate matting determines the quality of the compositing image. A Bayesian matting Algorithm Based on Gaussian Mixture Model is proposed to solve this matting problem. Firstly, the traditional Bayesian framework is improved by introducing Gaussian mixture model. Then, a weighting factor is added in order to suppress the noises of the compositing images. Finally, the effect is further improved by regulating the user's input. This algorithm is applied to matting jobs of classical images. The results are compared to the traditional Bayesian method. It is shown that our algorithm has better performance in detail such as hair. Our algorithm eliminates the noise well. And it is very effectively in dealing with the kind of work, such as interested objects with intricate boundaries.

  9. A Fusion Algorithm for GFP Image and Phase Contrast Image of Arabidopsis Cell Based on SFL-Contourlet Transform

    PubMed Central

    Feng, Peng; Wang, Jing; Wei, Biao; Mi, Deling

    2013-01-01

    A hybrid multiscale and multilevel image fusion algorithm for green fluorescent protein (GFP) image and phase contrast image of Arabidopsis cell is proposed in this paper. Combining intensity-hue-saturation (IHS) transform and sharp frequency localization Contourlet transform (SFL-CT), this algorithm uses different fusion strategies for different detailed subbands, which include neighborhood consistency measurement (NCM) that can adaptively find balance between color background and gray structure. Also two kinds of neighborhood classes based on empirical model are taken into consideration. Visual information fidelity (VIF) as an objective criterion is introduced to evaluate the fusion image. The experimental results of 117 groups of Arabidopsis cell image from John Innes Center show that the new algorithm cannot only make the details of original images well preserved but also improve the visibility of the fusion image, which shows the superiority of the novel method to traditional ones. PMID:23476716

  10. The fast iris image clarity evaluation based on Tenengrad and ROI selection

    NASA Astrophysics Data System (ADS)

    Gao, Shuqin; Han, Min; Cheng, Xu

    2018-04-01

    In iris recognition system, the clarity of iris image is an important factor that influences recognition effect. In the process of recognition, the blurred image may possibly be rejected by the automatic iris recognition system, which will lead to the failure of identification. Therefore it is necessary to evaluate the iris image definition before recognition. Considered the existing evaluation methods on iris image definition, we proposed a fast algorithm to evaluate the definition of iris image in this paper. In our algorithm, firstly ROI (Region of Interest) is extracted based on the reference point which is determined by using the feature of the light spots within the pupil, then Tenengrad operator is used to evaluate the iris image's definition. Experiment results show that, the iris image definition algorithm proposed in this paper could accurately distinguish the iris images of different clarity, and the algorithm has the merit of low computational complexity and more effectiveness.

  11. Self-recovery fragile watermarking algorithm based on SPHIT

    NASA Astrophysics Data System (ADS)

    Xin, Li Ping

    2015-12-01

    A fragile watermark algorithm is proposed, based on SPIHT coding, which can recover the primary image itself. The novelty of the algorithm is that it can tamper location and Self-restoration. The recovery has been very good effect. The first, utilizing the zero-tree structure, the algorithm compresses and encodes the image itself, and then gained self correlative watermark data, so as to greatly reduce the quantity of embedding watermark. Then the watermark data is encoded by error correcting code, and the check bits and watermark bits are scrambled and embedded to enhance the recovery ability. At the same time, by embedding watermark into the latter two bit place of gray level image's bit-plane code, the image after embedded watermark can gain nicer visual effect. The experiment results show that the proposed algorithm may not only detect various processing such as noise adding, cropping, and filtering, but also recover tampered image and realize blind-detection. Peak signal-to-noise ratios of the watermark image were higher than other similar algorithm. The attack capability of the algorithm was enhanced.

  12. Texture Analysis of Chaotic Coupled Map Lattices Based Image Encryption Algorithm

    NASA Astrophysics Data System (ADS)

    Khan, Majid; Shah, Tariq; Batool, Syeda Iram

    2014-09-01

    As of late, data security is key in different enclosures like web correspondence, media frameworks, therapeutic imaging, telemedicine and military correspondence. In any case, a large portion of them confronted with a few issues, for example, the absence of heartiness and security. In this letter, in the wake of exploring the fundamental purposes of the chaotic trigonometric maps and the coupled map lattices, we have presented the algorithm of chaos-based image encryption based on coupled map lattices. The proposed mechanism diminishes intermittent impact of the ergodic dynamical systems in the chaos-based image encryption. To assess the security of the encoded image of this scheme, the association of two nearby pixels and composition peculiarities were performed. This algorithm tries to minimize the problems arises in image encryption.

  13. Distributed Storage Algorithm for Geospatial Image Data Based on Data Access Patterns.

    PubMed

    Pan, Shaoming; Li, Yongkai; Xu, Zhengquan; Chong, Yanwen

    2015-01-01

    Declustering techniques are widely used in distributed environments to reduce query response time through parallel I/O by splitting large files into several small blocks and then distributing those blocks among multiple storage nodes. Unfortunately, however, many small geospatial image data files cannot be further split for distributed storage. In this paper, we propose a complete theoretical system for the distributed storage of small geospatial image data files based on mining the access patterns of geospatial image data using their historical access log information. First, an algorithm is developed to construct an access correlation matrix based on the analysis of the log information, which reveals the patterns of access to the geospatial image data. Then, a practical heuristic algorithm is developed to determine a reasonable solution based on the access correlation matrix. Finally, a number of comparative experiments are presented, demonstrating that our algorithm displays a higher total parallel access probability than those of other algorithms by approximately 10-15% and that the performance can be further improved by more than 20% by simultaneously applying a copy storage strategy. These experiments show that the algorithm can be applied in distributed environments to help realize parallel I/O and thereby improve system performance.

  14. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection.

    PubMed

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-07-30

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  15. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera.

    PubMed

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-08-31

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments.

  16. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera

    PubMed Central

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-01-01

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments. PMID:26404284

  17. Optimized algorithm for the spatial nonuniformity correction of an imaging system based on a charge-coupled device color camera.

    PubMed

    de Lasarte, Marta; Pujol, Jaume; Arjona, Montserrat; Vilaseca, Meritxell

    2007-01-10

    We present an optimized linear algorithm for the spatial nonuniformity correction of a CCD color camera's imaging system and the experimental methodology developed for its implementation. We assess the influence of the algorithm's variables on the quality of the correction, that is, the dark image, the base correction image, and the reference level, and the range of application of the correction using a uniform radiance field provided by an integrator cube. The best spatial nonuniformity correction is achieved by having a nonzero dark image, by using an image with a mean digital level placed in the linear response range of the camera as the base correction image and taking the mean digital level of the image as the reference digital level. The response of the CCD color camera's imaging system to the uniform radiance field shows a high level of spatial uniformity after the optimized algorithm has been applied, which also allows us to achieve a high-quality spatial nonuniformity correction of captured images under different exposure conditions.

  18. Retinal image quality assessment based on image clarity and content

    NASA Astrophysics Data System (ADS)

    Abdel-Hamid, Lamiaa; El-Rafei, Ahmed; El-Ramly, Salwa; Michelson, Georg; Hornegger, Joachim

    2016-09-01

    Retinal image quality assessment (RIQA) is an essential step in automated screening systems to avoid misdiagnosis caused by processing poor quality retinal images. A no-reference transform-based RIQA algorithm is introduced that assesses images based on five clarity and content quality issues: sharpness, illumination, homogeneity, field definition, and content. Transform-based RIQA algorithms have the advantage of considering retinal structures while being computationally inexpensive. Wavelet-based features are proposed to evaluate the sharpness and overall illumination of the images. A retinal saturation channel is designed and used along with wavelet-based features for homogeneity assessment. The presented sharpness and illumination features are utilized to assure adequate field definition, whereas color information is used to exclude nonretinal images. Several publicly available datasets of varying quality grades are utilized to evaluate the feature sets resulting in area under the receiver operating characteristic curve above 0.99 for each of the individual feature sets. The overall quality is assessed by a classifier that uses the collective features as an input vector. The classification results show superior performance of the algorithm in comparison to other methods from literature. Moreover, the algorithm addresses efficiently and comprehensively various quality issues and is suitable for automatic screening systems.

  19. Investigation of contrast-enhanced subtracted breast CT images with MAP-EM based on projection-based weighting imaging.

    PubMed

    Zhou, Zhengdong; Guan, Shaolin; Xin, Runchao; Li, Jianbo

    2018-06-01

    Contrast-enhanced subtracted breast computer tomography (CESBCT) images acquired using energy-resolved photon counting detector can be helpful to enhance the visibility of breast tumors. In such technology, one challenge is the limited number of photons in each energy bin, thereby possibly leading to high noise in separate images from each energy bin, the projection-based weighted image, and the subtracted image. In conventional low-dose CT imaging, iterative image reconstruction provides a superior signal-to-noise compared with the filtered back projection (FBP) algorithm. In this paper, maximum a posteriori expectation maximization (MAP-EM) based on projection-based weighting imaging for reconstruction of CESBCT images acquired using an energy-resolving photon counting detector is proposed, and its performance was investigated in terms of contrast-to-noise ratio (CNR). The simulation study shows that MAP-EM based on projection-based weighting imaging can improve the CNR in CESBCT images by 117.7%-121.2% compared with FBP based on projection-based weighting imaging method. When compared with the energy-integrating imaging that uses the MAP-EM algorithm, projection-based weighting imaging that uses the MAP-EM algorithm can improve the CNR of CESBCT images by 10.5%-13.3%. In conclusion, MAP-EM based on projection-based weighting imaging shows significant improvement the CNR of the CESBCT image compared with FBP based on projection-based weighting imaging, and MAP-EM based on projection-based weighting imaging outperforms MAP-EM based on energy-integrating imaging for CESBCT imaging.

  20. Image compression/decompression based on mathematical transform, reduction/expansion, and image sharpening

    DOEpatents

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image represented in a first image array of pixels is first decimated in two dimensions before being compressed by a predefined compression algorithm such as JPEG. Another possible predefined compression algorithm can involve a wavelet technique. The compressed, reduced image is then transmitted over the limited bandwidth transmission medium, and the transmitted image is decompressed using an algorithm which is an inverse of the predefined compression algorithm (such as reverse JPEG). The decompressed, reduced image is then interpolated back to its original array size. Edges (contours) in the image are then sharpened to enhance the perceptual quality of the reconstructed image. Specific sharpening techniques are described.

  1. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G.; Liu, Chihray; Lu, Bo

    2015-12-01

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR). In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the algorithm, the code was implemented with a graphic processing unit for parallel processing purposes. Root mean square error (RMSE) between the ground truth and reconstructed volumes of the numerical phantom were in the descending order of FDK, CTV, PICCS, MCIR, and c-MGIR for all phases. Specifically, the means and the standard deviations of the RMSE of FDK, CTV, PICCS, MCIR and c-MGIR for all phases were 42.64  ±  6.5%, 3.63  ±  0.83%, 1.31%  ±  0.09%, 0.86%  ±  0.11% and 0.52 %  ±  0.02%, respectively. The image quality of the patient case also indicated the superiority of c-MGIR compared to other algorithms. The results indicated that clinically viable 4D CBCT images can be reconstructed while requiring no more projection data than a typical clinical 3D CBCT scan. This makes c-MGIR a potential online reconstruction algorithm for 4D CBCT, which can provide much better image quality than other available algorithms, while requiring less dose and potentially less scanning time.

  2. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.

    PubMed

    Park, Justin C; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G; Liu, Chihray; Lu, Bo

    2015-12-07

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm 'the common mask guided image reconstruction' (c-MGIR).In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and 'well' solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the algorithm, the code was implemented with a graphic processing unit for parallel processing purposes.Root mean square error (RMSE) between the ground truth and reconstructed volumes of the numerical phantom were in the descending order of FDK, CTV, PICCS, MCIR, and c-MGIR for all phases. Specifically, the means and the standard deviations of the RMSE of FDK, CTV, PICCS, MCIR and c-MGIR for all phases were 42.64  ±  6.5%, 3.63  ±  0.83%, 1.31%  ±  0.09%, 0.86%  ±  0.11% and 0.52 %  ±  0.02%, respectively. The image quality of the patient case also indicated the superiority of c-MGIR compared to other algorithms.The results indicated that clinically viable 4D CBCT images can be reconstructed while requiring no more projection data than a typical clinical 3D CBCT scan. This makes c-MGIR a potential online reconstruction algorithm for 4D CBCT, which can provide much better image quality than other available algorithms, while requiring less dose and potentially less scanning time.

  3. A Modified Subpulse SAR Processing Procedure Based on the Range-Doppler Algorithm for Synthetic Wideband Waveforms

    PubMed Central

    Lim, Byoung-Gyun; Woo, Jea-Choon; Lee, Hee-Young; Kim, Young-Soo

    2008-01-01

    Synthetic wideband waveforms (SWW) combine a stepped frequency CW waveform and a chirp signal waveform to achieve high range resolution without requiring a large bandwidth or the consequent very high sampling rate. If an efficient algorithm like the range-Doppler algorithm (RDA) is used to acquire the SAR images for synthetic wideband signals, errors occur due to approximations, so the images may not show the best possible result. This paper proposes a modified subpulse SAR processing algorithm for synthetic wideband signals which is based on RDA. An experiment with an automobile-based SAR system showed that the proposed algorithm is quite accurate with a considerable improvement in resolution and quality of the obtained SAR image. PMID:27873984

  4. Efficient Spatiotemporal Clutter Rejection and Nonlinear Filtering-based Dim Resolved and Unresolved Object Tracking Algorithms

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Tong, M.; Brown, A. P.; Agh, C.

    2013-09-01

    We develop efficient spatiotemporal image processing algorithms for rejection of non-stationary clutter and tracking of multiple dim objects using non-linear track-before-detect methods. For clutter suppression, we include an innovative image alignment (registration) algorithm. The images are assumed to contain elements of the same scene, but taken at different angles, from different locations, and at different times, with substantial clutter non-stationarity. These challenges are typical for space-based and surface-based IR/EO moving sensors, e.g., highly elliptical orbit or low earth orbit scenarios. The algorithm assumes that the images are related via a planar homography, also known as the projective transformation. The parameters are estimated in an iterative manner, at each step adjusting the parameter vector so as to achieve improved alignment of the images. Operating in the parameter space rather than in the coordinate space is a new idea, which makes the algorithm more robust with respect to noise as well as to large inter-frame disturbances, while operating at real-time rates. For dim object tracking, we include new advancements to a particle non-linear filtering-based track-before-detect (TrbD) algorithm. The new TrbD algorithm includes both real-time full image search for resolved objects not yet in track and joint super-resolution and tracking of individual objects in closely spaced object (CSO) clusters. The real-time full image search provides near-optimal detection and tracking of multiple extremely dim, maneuvering objects/clusters. The super-resolution and tracking CSO TrbD algorithm provides efficient near-optimal estimation of the number of unresolved objects in a CSO cluster, as well as the locations, velocities, accelerations, and intensities of the individual objects. We demonstrate that the algorithm is able to accurately estimate the number of CSO objects and their locations when the initial uncertainty on the number of objects is large. We demonstrate performance of the TrbD algorithm both for satellite-based and surface-based EO/IR surveillance scenarios.

  5. Optimization, evaluation, and comparison of standard algorithms for image reconstruction with the VIP-PET.

    PubMed

    Mikhaylova, E; Kolstein, M; De Lorenzo, G; Chmeissani, M

    2014-07-01

    A novel positron emission tomography (PET) scanner design based on a room-temperature pixelated CdTe solid-state detector is being developed within the framework of the Voxel Imaging PET (VIP) Pathfinder project [1]. The simulation results show a great potential of the VIP to produce high-resolution images even in extremely challenging conditions such as the screening of a human head [2]. With unprecedented high channel density (450 channels/cm 3 ) image reconstruction is a challenge. Therefore optimization is needed to find the best algorithm in order to exploit correctly the promising detector potential. The following reconstruction algorithms are evaluated: 2-D Filtered Backprojection (FBP), Ordered Subset Expectation Maximization (OSEM), List-Mode OSEM (LM-OSEM), and the Origin Ensemble (OE) algorithm. The evaluation is based on the comparison of a true image phantom with a set of reconstructed images obtained by each algorithm. This is achieved by calculation of image quality merit parameters such as the bias, the variance and the mean square error (MSE). A systematic optimization of each algorithm is performed by varying the reconstruction parameters, such as the cutoff frequency of the noise filters and the number of iterations. The region of interest (ROI) analysis of the reconstructed phantom is also performed for each algorithm and the results are compared. Additionally, the performance of the image reconstruction methods is compared by calculating the modulation transfer function (MTF). The reconstruction time is also taken into account to choose the optimal algorithm. The analysis is based on GAMOS [3] simulation including the expected CdTe and electronic specifics.

  6. Temporal high-pass non-uniformity correction algorithm based on grayscale mapping and hardware implementation

    NASA Astrophysics Data System (ADS)

    Jin, Minglei; Jin, Weiqi; Li, Yiyang; Li, Shuo

    2015-08-01

    In this paper, we propose a novel scene-based non-uniformity correction algorithm for infrared image processing-temporal high-pass non-uniformity correction algorithm based on grayscale mapping (THP and GM). The main sources of non-uniformity are: (1) detector fabrication inaccuracies; (2) non-linearity and variations in the read-out electronics and (3) optical path effects. The non-uniformity will be reduced by non-uniformity correction (NUC) algorithms. The NUC algorithms are often divided into calibration-based non-uniformity correction (CBNUC) algorithms and scene-based non-uniformity correction (SBNUC) algorithms. As non-uniformity drifts temporally, CBNUC algorithms must be repeated by inserting a uniform radiation source which SBNUC algorithms do not need into the view, so the SBNUC algorithm becomes an essential part of infrared imaging system. The SBNUC algorithms' poor robustness often leads two defects: artifacts and over-correction, meanwhile due to complicated calculation process and large storage consumption, hardware implementation of the SBNUC algorithms is difficult, especially in Field Programmable Gate Array (FPGA) platform. The THP and GM algorithm proposed in this paper can eliminate the non-uniformity without causing defects. The hardware implementation of the algorithm only based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay: less than 20 lines, it can be transplanted to a variety of infrared detectors equipped with FPGA image processing module, it can reduce the stripe non-uniformity and the ripple non-uniformity.

  7. Nonuniformity correction for an infrared focal plane array based on diamond search block matching.

    PubMed

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    In scene-based nonuniformity correction algorithms, artificial ghosting and image blurring degrade the correction quality severely. In this paper, an improved algorithm based on the diamond search block matching algorithm and the adaptive learning rate is proposed. First, accurate transform pairs between two adjacent frames are estimated by the diamond search block matching algorithm. Then, based on the error between the corresponding transform pairs, the gradient descent algorithm is applied to update correction parameters. During the process of gradient descent, the local standard deviation and a threshold are utilized to control the learning rate to avoid the accumulation of matching error. Finally, the nonuniformity correction would be realized by a linear model with updated correction parameters. The performance of the proposed algorithm is thoroughly studied with four real infrared image sequences. Experimental results indicate that the proposed algorithm can reduce the nonuniformity with less ghosting artifacts in moving areas and can also overcome the problem of image blurring in static areas.

  8. Image contrast enhancement using adjacent-blocks-based modification for local histogram equalization

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Pan, Zhibin

    2017-11-01

    Infrared images usually have some non-ideal characteristics such as weak target-to-background contrast and strong noise. Because of these characteristics, it is necessary to apply the contrast enhancement algorithm to improve the visual quality of infrared images. Histogram equalization (HE) algorithm is a widely used contrast enhancement algorithm due to its effectiveness and simple implementation. But a drawback of HE algorithm is that the local contrast of an image cannot be equally enhanced. Local histogram equalization algorithms are proved to be the effective techniques for local image contrast enhancement. However, over-enhancement of noise and artifacts can be easily found in the local histogram equalization enhanced images. In this paper, a new contrast enhancement technique based on local histogram equalization algorithm is proposed to overcome the drawbacks mentioned above. The input images are segmented into three kinds of overlapped sub-blocks using the gradients of them. To overcome the over-enhancement effect, the histograms of these sub-blocks are then modified by adjacent sub-blocks. We pay more attention to improve the contrast of detail information while the brightness of the flat region in these sub-blocks is well preserved. It will be shown that the proposed algorithm outperforms other related algorithms by enhancing the local contrast without introducing over-enhancement effects and additional noise.

  9. Remote Sensing Image Change Detection Based on NSCT-HMT Model and Its Application.

    PubMed

    Chen, Pengyun; Zhang, Yichen; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola

    2017-06-06

    Traditional image change detection based on a non-subsampled contourlet transform always ignores the neighborhood information's relationship to the non-subsampled contourlet coefficients, and the detection results are susceptible to noise interference. To address these disadvantages, we propose a denoising method based on the non-subsampled contourlet transform domain that uses the Hidden Markov Tree model (NSCT-HMT) for change detection of remote sensing images. First, the ENVI software is used to calibrate the original remote sensing images. After that, the mean-ratio operation is adopted to obtain the difference image that will be denoised by the NSCT-HMT model. Then, using the Fuzzy Local Information C-means (FLICM) algorithm, the difference image is divided into the change area and unchanged area. The proposed algorithm is applied to a real remote sensing data set. The application results show that the proposed algorithm can effectively suppress clutter noise, and retain more detailed information from the original images. The proposed algorithm has higher detection accuracy than the Markov Random Field-Fuzzy C-means (MRF-FCM), the non-subsampled contourlet transform-Fuzzy C-means clustering (NSCT-FCM), the pointwise approach and graph theory (PA-GT), and the Principal Component Analysis-Nonlocal Means (PCA-NLM) denosing algorithm. Finally, the five algorithms are used to detect the southern boundary of the Gurbantunggut Desert in Xinjiang Uygur Autonomous Region of China, and the results show that the proposed algorithm has the best effect on real remote sensing image change detection.

  10. Remote Sensing Image Change Detection Based on NSCT-HMT Model and Its Application

    PubMed Central

    Chen, Pengyun; Zhang, Yichen; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola

    2017-01-01

    Traditional image change detection based on a non-subsampled contourlet transform always ignores the neighborhood information’s relationship to the non-subsampled contourlet coefficients, and the detection results are susceptible to noise interference. To address these disadvantages, we propose a denoising method based on the non-subsampled contourlet transform domain that uses the Hidden Markov Tree model (NSCT-HMT) for change detection of remote sensing images. First, the ENVI software is used to calibrate the original remote sensing images. After that, the mean-ratio operation is adopted to obtain the difference image that will be denoised by the NSCT-HMT model. Then, using the Fuzzy Local Information C-means (FLICM) algorithm, the difference image is divided into the change area and unchanged area. The proposed algorithm is applied to a real remote sensing data set. The application results show that the proposed algorithm can effectively suppress clutter noise, and retain more detailed information from the original images. The proposed algorithm has higher detection accuracy than the Markov Random Field-Fuzzy C-means (MRF-FCM), the non-subsampled contourlet transform-Fuzzy C-means clustering (NSCT-FCM), the pointwise approach and graph theory (PA-GT), and the Principal Component Analysis-Nonlocal Means (PCA-NLM) denosing algorithm. Finally, the five algorithms are used to detect the southern boundary of the Gurbantunggut Desert in Xinjiang Uygur Autonomous Region of China, and the results show that the proposed algorithm has the best effect on real remote sensing image change detection. PMID:28587299

  11. Multispectral Image Compression Based on DSC Combined with CCSDS-IDC

    PubMed Central

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741

  12. Tensor Fukunaga-Koontz transform for small target detection in infrared images

    NASA Astrophysics Data System (ADS)

    Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli

    2016-09-01

    Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.

  13. Multispectral image compression based on DSC combined with CCSDS-IDC.

    PubMed

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.

  14. Medical image reconstruction algorithm based on the geometric information between sensor detector and ROI

    NASA Astrophysics Data System (ADS)

    Ham, Woonchul; Song, Chulgyu; Lee, Kangsan; Roh, Seungkuk

    2016-05-01

    In this paper, we propose a new image reconstruction algorithm considering the geometric information of acoustic sources and senor detector and review the two-step reconstruction algorithm which was previously proposed based on the geometrical information of ROI(region of interest) considering the finite size of acoustic sensor element. In a new image reconstruction algorithm, not only mathematical analysis is very simple but also its software implementation is very easy because we don't need to use the FFT. We verify the effectiveness of the proposed reconstruction algorithm by showing the simulation results by using Matlab k-wave toolkit.

  15. A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform

    PubMed Central

    Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.

    2013-01-01

    Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the K-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications. PMID:24308014

  16. An FPGA-based heterogeneous image fusion system design method

    NASA Astrophysics Data System (ADS)

    Song, Le; Lin, Yu-chi; Chen, Yan-hua; Zhao, Mei-rong

    2011-08-01

    Taking the advantages of FPGA's low cost and compact structure, an FPGA-based heterogeneous image fusion platform is established in this study. Altera's Cyclone IV series FPGA is adopted as the core processor of the platform, and the visible light CCD camera and infrared thermal imager are used as the image-capturing device in order to obtain dualchannel heterogeneous video images. Tailor-made image fusion algorithms such as gray-scale weighted averaging, maximum selection and minimum selection methods are analyzed and compared. VHDL language and the synchronous design method are utilized to perform a reliable RTL-level description. Altera's Quartus II 9.0 software is applied to simulate and implement the algorithm modules. The contrast experiments of various fusion algorithms show that, preferably image quality of the heterogeneous image fusion can be obtained on top of the proposed system. The applied range of the different fusion algorithms is also discussed.

  17. [Preliminary application of an improved Demons deformable registration algorithm in tumor radiotherapy].

    PubMed

    Zhou, Lu; Zhen, Xin; Lu, Wenting; Dou, Jianhong; Zhou, Linghong

    2012-01-01

    To validate the efficiency of an improved Demons deformable registration algorithm and evaluate its application in registration of the treatment image and the planning image in image-guided radiotherapy (IGRT). Based on Brox's gradient constancy assumption and Malis's efficient second-order minimization algorithm, a grey value gradient similarity term was added into the original energy function, and a formula was derived to calculate the update of transformation field. The limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm was used to optimize the energy function for automatic determination of the iteration number. The proposed algorithm was validated using mathematically deformed images, physically deformed phantom images and clinical tumor images. Compared with the original Additive Demons algorithm, the improved Demons algorithm achieved a higher precision and a faster convergence speed. Due to the influence of different scanning conditions in fractionated radiation, the density range of the treatment image and the planning image may be different. The improved Demons algorithm can achieve faster and more accurate radiotherapy.

  18. National Information Systems Security Conference (19th) held in Baltimore, Maryland on October 22-25, 1996. Volume 1

    DTIC Science & Technology

    1996-10-25

    been demonstrated that steganography is ineffective 195 when images are stored using this compression algorithm [2]. Difficulty in designing a general...Despite the relative ease of employing steganography to covertly transport data in an uncompressed 24-bit image , lossy compression algorithms based on... image , the security threat that steganography poses cannot be completely eliminated by application of a transform-based lossy compression algorithm

  19. Automatic extraction of via in the CT image of PCB

    NASA Astrophysics Data System (ADS)

    Liu, Xifeng; Hu, Yuwei

    2018-04-01

    In modern industry, the nondestructive testing of printed circuit board (PCB) can prevent effectively the system failure and is becoming more and more important. In order to detect the via in the PCB base on the CT image automatically accurately and reliably, a novel algorithm for via extraction based on weighting stack combining the morphologic character of via is designed. Every slice data in the vertical direction of the PCB is superimposed to enhanced vias target. The OTSU algorithm is used to segment the slice image. OTSU algorithm of thresholding gray level images is efficient for separating an image into two classes where two types of fairly distinct classes exist in the image. Randomized Hough Transform was used to locate the region of via in the segmented binary image. Then the 3D reconstruction of via based on sequence slice images was done by volume rendering. The accuracy of via positioning and detecting from a CT images of PCB was demonstrated by proposed algorithm. It was found that the method is good in veracity and stability for detecting of via in three dimensional.

  20. Color enhancement and image defogging in HSI based on Retinex model

    NASA Astrophysics Data System (ADS)

    Gao, Han; Wei, Ping; Ke, Jun

    2015-08-01

    Retinex is a luminance perceptual algorithm based on color consistency. It has a good performance in color enhancement. But in some cases, the traditional Retinex algorithms, both Single-Scale Retinex(SSR) and Multi-Scale Retinex(MSR) in RGB color space, do not work well and will cause color deviation. To solve this problem, we present improved SSR and MSR algorithms. Compared to other Retinex algorithms, we implement Retinex algorithms in HSI(Hue, Saturation, Intensity) color space, and use a parameter αto improve quality of the image. Moreover, the algorithms presented in this paper has a good performance in image defogging. Contrasted with traditional Retinex algorithms, we use intensity channel to obtain reflection information of an image. The intensity channel is processed using a Gaussian center-surround image filter to get light information, which should be removed from intensity channel. After that, we subtract the light information from intensity channel to obtain the reflection image, which only includes the attribute of the objects in image. Using the reflection image and a parameter α, which is an arbitrary scale factor set manually, we improve the intensity channel, and complete the color enhancement. Our experiments show that this approach works well compared with existing methods for color enhancement. Besides a better performance in color deviation problem and image defogging, a visible improvement in the image quality for human contrast perception is also observed.

  1. Locating and decoding barcodes in fuzzy images captured by smart phones

    NASA Astrophysics Data System (ADS)

    Deng, Wupeng; Hu, Jiwei; Liu, Quan; Lou, Ping

    2017-07-01

    With the development of barcodes for commercial use, people's requirements for detecting barcodes by smart phone become increasingly pressing. The low quality of barcode image captured by mobile phone always affects the decoding and recognition rates. This paper focuses on locating and decoding EAN-13 barcodes in fuzzy images. We present a more accurate locating algorithm based on segment length and high fault-tolerant rate algorithm for decoding barcodes. Unlike existing approaches, location algorithm is based on the edge segment length of EAN -13 barcodes, while our decoding algorithm allows the appearance of fuzzy region in barcode image. Experimental results are performed on damaged, contaminated and scratched digital images, and provide a quite promising result for EAN -13 barcode location and decoding.

  2. Space-variant restoration of images degraded by camera motion blur.

    PubMed

    Sorel, Michal; Flusser, Jan

    2008-02-01

    We examine the problem of restoration from multiple images degraded by camera motion blur. We consider scenes with significant depth variations resulting in space-variant blur. The proposed algorithm can be applied if the camera moves along an arbitrary curve parallel to the image plane, without any rotations. The knowledge of camera trajectory and camera parameters is not necessary. At the input, the user selects a region where depth variations are negligible. The algorithm belongs to the group of variational methods that estimate simultaneously a sharp image and a depth map, based on the minimization of a cost functional. To initialize the minimization, it uses an auxiliary window-based depth estimation algorithm. Feasibility of the algorithm is demonstrated by three experiments with real images.

  3. Example-based super-resolution for single-image analysis from the Chang'e-1 Mission

    NASA Astrophysics Data System (ADS)

    Wu, Fan-Lu; Wang, Xiang-Jun

    2016-11-01

    Due to the low spatial resolution of images taken from the Chang'e-1 (CE-1) orbiter, the details of the lunar surface are blurred and lost. Considering the limited spatial resolution of image data obtained by a CCD camera on CE-1, an example-based super-resolution (SR) algorithm is employed to obtain high-resolution (HR) images. SR reconstruction is important for the application of image data to increase the resolution of images. In this article, a novel example-based algorithm is proposed to implement SR reconstruction by single-image analysis, and the computational cost is reduced compared to other example-based SR methods. The results show that this method can enhance the resolution of images using SR and recover detailed information about the lunar surface. Thus it can be used for surveying HR terrain and geological features. Moreover, the algorithm is significant for the HR processing of remotely sensed images obtained by other imaging systems.

  4. Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm.

    PubMed

    Kwon, Ohin; Woo, Eung Je; Yoon, Jeong-Rock; Seo, Jin Keun

    2002-02-01

    We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.

  5. A New Pivoting and Iterative Text Detection Algorithm for Biomedical Images

    PubMed Central

    Xu, Songhua; Krauthammer, Michael

    2010-01-01

    There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper’s key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manually labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. In this paper, we demonstrate that a projection histogram-based text detection approach is well suited for text detection in biomedical images, with a performance of F score of .60. The approach performs better than comparable approaches for text detection. Further, we show that the iterative application of the algorithm is boosting overall detection performance. A C++ implementation of our algorithm is freely available through email request for academic use. PMID:20887803

  6. Novel Near-Lossless Compression Algorithm for Medical Sequence Images with Adaptive Block-Based Spatial Prediction.

    PubMed

    Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao

    2016-12-01

    To address the low compression efficiency of lossless compression and the low image quality of general near-lossless compression, a novel near-lossless compression algorithm based on adaptive spatial prediction is proposed for medical sequence images for possible diagnostic use in this paper. The proposed method employs adaptive block size-based spatial prediction to predict blocks directly in the spatial domain and Lossless Hadamard Transform before quantization to improve the quality of reconstructed images. The block-based prediction breaks the pixel neighborhood constraint and takes full advantage of the local spatial correlations found in medical images. The adaptive block size guarantees a more rational division of images and the improved use of the local structure. The results indicate that the proposed algorithm can efficiently compress medical images and produces a better peak signal-to-noise ratio (PSNR) under the same pre-defined distortion than other near-lossless methods.

  7. Inverse consistent non-rigid image registration based on robust point set matching

    PubMed Central

    2014-01-01

    Background Robust point matching (RPM) has been extensively used in non-rigid registration of images to robustly register two sets of image points. However, except for the location at control points, RPM cannot estimate the consistent correspondence between two images because RPM is a unidirectional image matching approach. Therefore, it is an important issue to make an improvement in image registration based on RPM. Methods In our work, a consistent image registration approach based on the point sets matching is proposed to incorporate the property of inverse consistency and improve registration accuracy. Instead of only estimating the forward transformation between the source point sets and the target point sets in state-of-the-art RPM algorithms, the forward and backward transformations between two point sets are estimated concurrently in our algorithm. The inverse consistency constraints are introduced to the cost function of RPM and the fuzzy correspondences between two point sets are estimated based on both the forward and backward transformations simultaneously. A modified consistent landmark thin-plate spline registration is discussed in detail to find the forward and backward transformations during the optimization of RPM. The similarity of image content is also incorporated into point matching in order to improve image matching. Results Synthetic data sets, medical images are employed to demonstrate and validate the performance of our approach. The inverse consistent errors of our algorithm are smaller than RPM. Especially, the topology of transformations is preserved well for our algorithm for the large deformation between point sets. Moreover, the distance errors of our algorithm are similar to that of RPM, and they maintain a downward trend as whole, which demonstrates the convergence of our algorithm. The registration errors for image registrations are evaluated also. Again, our algorithm achieves the lower registration errors in same iteration number. The determinant of the Jacobian matrix of the deformation field is used to analyse the smoothness of the forward and backward transformations. The forward and backward transformations estimated by our algorithm are smooth for small deformation. For registration of lung slices and individual brain slices, large or small determinant of the Jacobian matrix of the deformation fields are observed. Conclusions Results indicate the improvement of the proposed algorithm in bi-directional image registration and the decrease of the inverse consistent errors of the forward and the reverse transformations between two images. PMID:25559889

  8. Imaging quality analysis of computer-generated holograms using the point-based method and slice-based method

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Chen, Siqing; Zheng, Huadong; Sun, Tao; Yu, Yingjie; Gao, Hongyue; Asundi, Anand K.

    2017-06-01

    Computer holography has made a notably progress in recent years. The point-based method and slice-based method are chief calculation algorithms for generating holograms in holographic display. Although both two methods are validated numerically and optically, the differences of the imaging quality of these methods have not been specifically analyzed. In this paper, we analyze the imaging quality of computer-generated phase holograms generated by point-based Fresnel zone plates (PB-FZP), point-based Fresnel diffraction algorithm (PB-FDA) and slice-based Fresnel diffraction algorithm (SB-FDA). The calculation formula and hologram generation with three methods are demonstrated. In order to suppress the speckle noise, sequential phase-only holograms are generated in our work. The results of reconstructed images numerically and experimentally are also exhibited. By comparing the imaging quality, the merits and drawbacks with three methods are analyzed. Conclusions are given by us finally.

  9. Shearlet Features for Registration of Remotely Sensed Multitemporal Images

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline

    2015-01-01

    We investigate the role of anisotropic feature extraction methods for automatic image registration of remotely sensed multitemporal images. Building on the classical use of wavelets in image registration, we develop an algorithm based on shearlets, a mathematical generalization of wavelets that offers increased directional sensitivity. Initial experimental results on LANDSAT images are presented, which indicate superior performance of the shearlet algorithm when compared to classical wavelet algorithms.

  10. Distance-based over-segmentation for single-frame RGB-D images

    NASA Astrophysics Data System (ADS)

    Fang, Zhuoqun; Wu, Chengdong; Chen, Dongyue; Jia, Tong; Yu, Xiaosheng; Zhang, Shihong; Qi, Erzhao

    2017-11-01

    Over-segmentation, known as super-pixels, is a widely used preprocessing step in segmentation algorithms. Oversegmentation algorithm segments an image into regions of perceptually similar pixels, but performs badly based on only color image in the indoor environments. Fortunately, RGB-D images can improve the performances on the images of indoor scene. In order to segment RGB-D images into super-pixels effectively, we propose a novel algorithm, DBOS (Distance-Based Over-Segmentation), which realizes full coverage of super-pixels on the image. DBOS fills the holes in depth images to fully utilize the depth information, and applies SLIC-like frameworks for fast running. Additionally, depth features such as plane projection distance are extracted to compute distance which is the core of SLIC-like frameworks. Experiments on RGB-D images of NYU Depth V2 dataset demonstrate that DBOS outperforms state-ofthe-art methods in quality while maintaining speeds comparable to them.

  11. Optimized 3D stitching algorithm for whole body SPECT based on transition error minimization (TEM)

    NASA Astrophysics Data System (ADS)

    Cao, Xinhua; Xu, Xiaoyin; Voss, Stephan

    2017-02-01

    Standard Single Photon Emission Computed Tomography (SPECT) has a limited field of view (FOV) and cannot provide a 3D image of an entire long whole body SPECT. To produce a 3D whole body SPECT image, two to five overlapped SPECT FOVs from head to foot are acquired and assembled using image stitching. Most commercial software from medical imaging manufacturers applies a direct mid-slice stitching method to avoid blurring or ghosting from 3D image blending. Due to intensity changes across the middle slice of overlapped images, direct mid-slice stitching often produces visible seams in the coronal and sagittal views and maximal intensity projection (MIP). In this study, we proposed an optimized algorithm to reduce the visibility of stitching edges. The new algorithm computed, based on transition error minimization (TEM), a 3D stitching interface between two overlapped 3D SPECT images. To test the suggested algorithm, four studies of 2-FOV whole body SPECT were used and included two different reconstruction methods (filtered back projection (FBP) and ordered subset expectation maximization (OSEM)) as well as two different radiopharmaceuticals (Tc-99m MDP for bone metastases and I-131 MIBG for neuroblastoma tumors). Relative transition errors of stitched whole body SPECT using mid-slice stitching and the TEM-based algorithm were measured for objective evaluation. Preliminary experiments showed that the new algorithm reduced the visibility of the stitching interface in the coronal, sagittal, and MIP views. Average relative transition errors were reduced from 56.7% of mid-slice stitching to 11.7% of TEM-based stitching. The proposed algorithm also avoids blurring artifacts by preserving the noise properties of the original SPECT images.

  12. Crypto-Watermarking of Transmitted Medical Images.

    PubMed

    Al-Haj, Ali; Mohammad, Ahmad; Amer, Alaa'

    2017-02-01

    Telemedicine is a booming healthcare practice that has facilitated the exchange of medical data and expertise between healthcare entities. However, the widespread use of telemedicine applications requires a secured scheme to guarantee confidentiality and verify authenticity and integrity of exchanged medical data. In this paper, we describe a region-based, crypto-watermarking algorithm capable of providing confidentiality, authenticity, and integrity for medical images of different modalities. The proposed algorithm provides authenticity by embedding robust watermarks in images' region of non-interest using SVD in the DWT domain. Integrity is provided in two levels: strict integrity implemented by a cryptographic hash watermark, and content-based integrity implemented by a symmetric encryption-based tamper localization scheme. Confidentiality is achieved as a byproduct of hiding patient's data in the image. Performance of the algorithm was evaluated with respect to imperceptibility, robustness, capacity, and tamper localization, using different medical images. The results showed the effectiveness of the algorithm in providing security for telemedicine applications.

  13. Knowledge-based low-level image analysis for computer vision systems

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.; Baxi, Himanshu; Ranganath, M. V.

    1988-01-01

    Two algorithms for entry-level image analysis and preliminary segmentation are proposed which are flexible enough to incorporate local properties of the image. The first algorithm involves pyramid-based multiresolution processing and a strategy to define and use interlevel and intralevel link strengths. The second algorithm, which is designed for selected window processing, extracts regions adaptively using local histograms. The preliminary segmentation and a set of features are employed as the input to an efficient rule-based low-level analysis system, resulting in suboptimal meaningful segmentation.

  14. Filtered gradient reconstruction algorithm for compressive spectral imaging

    NASA Astrophysics Data System (ADS)

    Mejia, Yuri; Arguello, Henry

    2017-04-01

    Compressive sensing matrices are traditionally based on random Gaussian and Bernoulli entries. Nevertheless, they are subject to physical constraints, and their structure unusually follows a dense matrix distribution, such as the case of the matrix related to compressive spectral imaging (CSI). The CSI matrix represents the integration of coded and shifted versions of the spectral bands. A spectral image can be recovered from CSI measurements by using iterative algorithms for linear inverse problems that minimize an objective function including a quadratic error term combined with a sparsity regularization term. However, current algorithms are slow because they do not exploit the structure and sparse characteristics of the CSI matrices. A gradient-based CSI reconstruction algorithm, which introduces a filtering step in each iteration of a conventional CSI reconstruction algorithm that yields improved image quality, is proposed. Motivated by the structure of the CSI matrix, Φ, this algorithm modifies the iterative solution such that it is forced to converge to a filtered version of the residual ΦTy, where y is the compressive measurement vector. We show that the filtered-based algorithm converges to better quality performance results than the unfiltered version. Simulation results highlight the relative performance gain over the existing iterative algorithms.

  15. Ray Tracing Through Non-Imaging Concentrators

    NASA Astrophysics Data System (ADS)

    Greynolds, Alan W.

    1984-01-01

    A generalized algorithm for tracing rays through both imaging and non-imaging radiation collectors is presented. A computer program based on the algorithm is then applied to analyzing various two-stage Winston concentrators.

  16. Evolutionary Fuzzy Block-Matching-Based Camera Raw Image Denoising.

    PubMed

    Yang, Chin-Chang; Guo, Shu-Mei; Tsai, Jason Sheng-Hong

    2017-09-01

    An evolutionary fuzzy block-matching-based image denoising algorithm is proposed to remove noise from a camera raw image. Recently, a variance stabilization transform is widely used to stabilize the noise variance, so that a Gaussian denoising algorithm can be used to remove the signal-dependent noise in camera sensors. However, in the stabilized domain, the existed denoising algorithm may blur too much detail. To provide a better estimate of the noise-free signal, a new block-matching approach is proposed to find similar blocks by the use of a type-2 fuzzy logic system (FLS). Then, these similar blocks are averaged with the weightings which are determined by the FLS. Finally, an efficient differential evolution is used to further improve the performance of the proposed denoising algorithm. The experimental results show that the proposed denoising algorithm effectively improves the performance of image denoising. Furthermore, the average performance of the proposed method is better than those of two state-of-the-art image denoising algorithms in subjective and objective measures.

  17. A fuzzy optimal threshold technique for medical images

    NASA Astrophysics Data System (ADS)

    Thirupathi Kannan, Balaji; Krishnasamy, Krishnaveni; Pradeep Kumar Kenny, S.

    2012-01-01

    A new fuzzy based thresholding method for medical images especially cervical cytology images having blob and mosaic structures is proposed in this paper. Many existing thresholding algorithms may segment either blob or mosaic images but there aren't any single algorithm that can do both. In this paper, an input cervical cytology image is binarized, preprocessed and the pixel value with minimum Fuzzy Gaussian Index is identified as an optimal threshold value and used for segmentation. The proposed technique is tested on various cervical cytology images having blob or mosaic structures, compared with various existing algorithms and proved better than the existing algorithms.

  18. Infrared image enhancement using H(infinity) bounds for surveillance applications.

    PubMed

    Qidwai, Uvais

    2008-08-01

    In this paper, two algorithms have been presented to enhance the infrared (IR) images. Using the autoregressive moving average model structure and H(infinity) optimal bounds, the image pixels are mapped from the IR pixel space into normal optical image space, thus enhancing the IR image for improved visual quality. Although H(infinity)-based system identification algorithms are very common now, they are not quite suitable for real-time applications owing to their complexity. However, many variants of such algorithms are possible that can overcome this constraint. Two such algorithms have been developed and implemented in this paper. Theoretical and algorithmic results show remarkable enhancement in the acquired images. This will help in enhancing the visual quality of IR images for surveillance applications.

  19. Image compression/decompression based on mathematical transform, reduction/expansion, and image sharpening

    DOEpatents

    Fu, C.Y.; Petrich, L.I.

    1997-12-30

    An image represented in a first image array of pixels is first decimated in two dimensions before being compressed by a predefined compression algorithm such as JPEG. Another possible predefined compression algorithm can involve a wavelet technique. The compressed, reduced image is then transmitted over the limited bandwidth transmission medium, and the transmitted image is decompressed using an algorithm which is an inverse of the predefined compression algorithm (such as reverse JPEG). The decompressed, reduced image is then interpolated back to its original array size. Edges (contours) in the image are then sharpened to enhance the perceptual quality of the reconstructed image. Specific sharpening techniques are described. 22 figs.

  20. A segmentation algorithm based on image projection for complex text layout

    NASA Astrophysics Data System (ADS)

    Zhu, Wangsheng; Chen, Qin; Wei, Chuanyi; Li, Ziyang

    2017-10-01

    Segmentation algorithm is an important part of layout analysis, considering the efficiency advantage of the top-down approach and the particularity of the object, a breakdown of projection layout segmentation algorithm. Firstly, the algorithm will algorithm first partitions the text image, and divided into several columns, then for each column scanning projection, the text image is divided into several sub regions through multiple projection. The experimental results show that, this method inherits the projection itself and rapid calculation speed, but also can avoid the effect of arc image information page segmentation, and also can accurate segmentation of the text image layout is complex.

  1. Tissue Probability Map Constrained 4-D Clustering Algorithm for Increased Accuracy and Robustness in Serial MR Brain Image Segmentation

    PubMed Central

    Xue, Zhong; Shen, Dinggang; Li, Hai; Wong, Stephen

    2010-01-01

    The traditional fuzzy clustering algorithm and its extensions have been successfully applied in medical image segmentation. However, because of the variability of tissues and anatomical structures, the clustering results might be biased by the tissue population and intensity differences. For example, clustering-based algorithms tend to over-segment white matter tissues of MR brain images. To solve this problem, we introduce a tissue probability map constrained clustering algorithm and apply it to serial MR brain image segmentation, i.e., a series of 3-D MR brain images of the same subject at different time points. Using the new serial image segmentation algorithm in the framework of the CLASSIC framework, which iteratively segments the images and estimates the longitudinal deformations, we improved both accuracy and robustness for serial image computing, and at the mean time produced longitudinally consistent segmentation and stable measures. In the algorithm, the tissue probability maps consist of both the population-based and subject-specific segmentation priors. Experimental study using both simulated longitudinal MR brain data and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data confirmed that using both priors more accurate and robust segmentation results can be obtained. The proposed algorithm can be applied in longitudinal follow up studies of MR brain imaging with subtle morphological changes for neurological disorders. PMID:26566399

  2. A robust firearm identification algorithm of forensic ballistics specimens

    NASA Astrophysics Data System (ADS)

    Chuan, Z. L.; Jemain, A. A.; Liong, C.-Y.; Ghani, N. A. M.; Tan, L. K.

    2017-09-01

    There are several inherent difficulties in the existing firearm identification algorithms, include requiring the physical interpretation and time consuming. Therefore, the aim of this study is to propose a robust algorithm for a firearm identification based on extracting a set of informative features from the segmented region of interest (ROI) using the simulated noisy center-firing pin impression images. The proposed algorithm comprises Laplacian sharpening filter, clustering-based threshold selection, unweighted least square estimator, and segment a square ROI from the noisy images. A total of 250 simulated noisy images collected from five different pistols of the same make, model and caliber are used to evaluate the robustness of the proposed algorithm. This study found that the proposed algorithm is able to perform the identical task on the noisy images with noise levels as high as 70%, while maintaining a firearm identification accuracy rate of over 90%.

  3. Automatic elastic image registration by interpolation of 3D rotations and translations from discrete rigid-body transformations.

    PubMed

    Walimbe, Vivek; Shekhar, Raj

    2006-12-01

    We present an algorithm for automatic elastic registration of three-dimensional (3D) medical images. Our algorithm initially recovers the global spatial mismatch between the reference and floating images, followed by hierarchical octree-based subdivision of the reference image and independent registration of the floating image with the individual subvolumes of the reference image at each hierarchical level. Global as well as local registrations use the six-parameter full rigid-body transformation model and are based on maximization of normalized mutual information (NMI). To ensure robustness of the subvolume registration with low voxel counts, we calculate NMI using a combination of current and prior mutual histograms. To generate a smooth deformation field, we perform direct interpolation of six-parameter rigid-body subvolume transformations obtained at the last subdivision level. Our interpolation scheme involves scalar interpolation of the 3D translations and quaternion interpolation of the 3D rotational pose. We analyzed the performance of our algorithm through experiments involving registration of synthetically deformed computed tomography (CT) images. Our algorithm is general and can be applied to image pairs of any two modalities of most organs. We have demonstrated successful registration of clinical whole-body CT and positron emission tomography (PET) images using this algorithm. The registration accuracy for this application was evaluated, based on validation using expert-identified anatomical landmarks in 15 CT-PET image pairs. The algorithm's performance was comparable to the average accuracy observed for three expert-determined registrations in the same 15 image pairs.

  4. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection

    PubMed Central

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-01-01

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285

  5. Cone-Beam Computed Tomography for Image-Guided Radiation Therapy of Prostate Cancer

    DTIC Science & Technology

    2008-01-01

    forexa t volumetri image re onstru tion. As a onsequense, images re onstru ted by approx-imate algorithms, mostly based on the Feldkamp algorithm...patient dose from CBCT. Reverse heli al CBCT has been developed for exa tre onstru tion of volumetri images, region-of-interest (ROI) re onstru tion...algorithm with a priori informa-tion in few-view CBCT for IGRT. We expe t the proposed algorithm an redu e the numberof proje tions needed for volumetri

  6. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    PubMed Central

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A.D.; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation. PMID:23599905

  7. TU-A-12A-07: CT-Based Biomarkers to Characterize Lung Lesion: Effects of CT Dose, Slice Thickness and Reconstruction Algorithm Based Upon a Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, B; Tan, Y; Tsai, W

    2014-06-15

    Purpose: Radiogenomics promises the ability to study cancer tumor genotype from the phenotype obtained through radiographic imaging. However, little attention has been paid to the sensitivity of image features, the image-based biomarkers, to imaging acquisition techniques. This study explores the impact of CT dose, slice thickness and reconstruction algorithm on measuring image features using a thorax phantom. Methods: Twentyfour phantom lesions of known volume (1 and 2mm), shape (spherical, elliptical, lobular and spicular) and density (-630, -10 and +100 HU) were scanned on a GE VCT at four doses (25, 50, 100, and 200 mAs). For each scan, six imagemore » series were reconstructed at three slice thicknesses of 5, 2.5 and 1.25mm with continuous intervals, using the lung and standard reconstruction algorithms. The lesions were segmented with an in-house 3D algorithm. Fifty (50) image features representing lesion size, shape, edge, and density distribution/texture were computed. Regression method was employed to analyze the effect of CT dose, slice of thickness and reconstruction algorithm on these features adjusting 3 confounding factors (size, density and shape of phantom lesions). Results: The coefficients of CT dose, slice thickness and reconstruction algorithm are presented in Table 1 in the supplementary material. No significant difference was found between the image features calculated on low dose CT scans (25mAs and 50mAs). About 50% texture features were found statistically different between low doses and high doses (100 and 200mAs). Significant differences were found for almost all features when calculated on 1.25mm, 2.5mm, and 5mm slice thickness images. Reconstruction algorithms significantly affected all density-based image features, but not morphological features. Conclusions: There is a great need to standardize the CT imaging protocols for radiogenomics study because CT dose, slice thickness and reconstruction algorithm impact quantitative image features to various degrees as our study has shown.« less

  8. A Space Object Detection Algorithm using Fourier Domain Likelihood Ratio Test

    NASA Astrophysics Data System (ADS)

    Becker, D.; Cain, S.

    Space object detection is of great importance in the highly dependent yet competitive and congested space domain. Detection algorithms employed play a crucial role in fulfilling the detection component in the situational awareness mission to detect, track, characterize and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution. This paper explores the potential for detection performance advantages when operating in the Fourier domain of long exposure images of small and/or dim space objects from ground based telescopes. A binary hypothesis test is developed based on the joint probability distribution function of the image under the hypothesis that an object is present and under the hypothesis that the image only contains background noise. The detection algorithm tests each pixel point of the Fourier transformed images to make the determination if an object is present based on the criteria threshold found in the likelihood ratio test. Using simulated data, the performance of the Fourier domain detection algorithm is compared to the current algorithm used in space situational awareness applications to evaluate its value.

  9. Efficient super-resolution image reconstruction applied to surveillance video captured by small unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    He, Qiang; Schultz, Richard R.; Chu, Chee-Hung Henry

    2008-04-01

    The concept surrounding super-resolution image reconstruction is to recover a highly-resolved image from a series of low-resolution images via between-frame subpixel image registration. In this paper, we propose a novel and efficient super-resolution algorithm, and then apply it to the reconstruction of real video data captured by a small Unmanned Aircraft System (UAS). Small UAS aircraft generally have a wingspan of less than four meters, so that these vehicles and their payloads can be buffeted by even light winds, resulting in potentially unstable video. This algorithm is based on a coarse-to-fine strategy, in which a coarsely super-resolved image sequence is first built from the original video data by image registration and bi-cubic interpolation between a fixed reference frame and every additional frame. It is well known that the median filter is robust to outliers. If we calculate pixel-wise medians in the coarsely super-resolved image sequence, we can restore a refined super-resolved image. The primary advantage is that this is a noniterative algorithm, unlike traditional approaches based on highly-computational iterative algorithms. Experimental results show that our coarse-to-fine super-resolution algorithm is not only robust, but also very efficient. In comparison with five well-known super-resolution algorithms, namely the robust super-resolution algorithm, bi-cubic interpolation, projection onto convex sets (POCS), the Papoulis-Gerchberg algorithm, and the iterated back projection algorithm, our proposed algorithm gives both strong efficiency and robustness, as well as good visual performance. This is particularly useful for the application of super-resolution to UAS surveillance video, where real-time processing is highly desired.

  10. Development of a new metal artifact reduction algorithm by using an edge preserving method for CBCT imaging

    NASA Astrophysics Data System (ADS)

    Kim, Juhye; Nam, Haewon; Lee, Rena

    2015-07-01

    CT (computed tomography) images, metal materials such as tooth supplements or surgical clips can cause metal artifact and degrade image quality. In severe cases, this may lead to misdiagnosis. In this research, we developed a new MAR (metal artifact reduction) algorithm by using an edge preserving filter and the MATLAB program (Mathworks, version R2012a). The proposed algorithm consists of 6 steps: image reconstruction from projection data, metal segmentation, forward projection, interpolation, applied edge preserving smoothing filter, and new image reconstruction. For an evaluation of the proposed algorithm, we obtained both numerical simulation data and data for a Rando phantom. In the numerical simulation data, four metal regions were added into the Shepp Logan phantom for metal artifacts. The projection data of the metal-inserted Rando phantom were obtained by using a prototype CBCT scanner manufactured by medical engineering and medical physics (MEMP) laboratory research group in medical science at Ewha Womans University. After these had been adopted the proposed algorithm was performed, and the result were compared with the original image (with metal artifact without correction) and with a corrected image based on linear interpolation. Both visual and quantitative evaluations were done. Compared with the original image with metal artifacts and with the image corrected by using linear interpolation, both the numerical and the experimental phantom data demonstrated that the proposed algorithm reduced the metal artifact. In conclusion, the evaluation in this research showed that the proposed algorithm outperformed the interpolation based MAR algorithm. If an optimization and a stability evaluation of the proposed algorithm can be performed, the developed algorithm is expected to be an effective tool for eliminating metal artifacts even in commercial CT systems.

  11. A novel image encryption algorithm based on synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers

    NASA Astrophysics Data System (ADS)

    Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun

    2018-03-01

    In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.

  12. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less

  13. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan

    2013-12-15

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less

  14. Iterative Nonlocal Total Variation Regularization Method for Image Restoration

    PubMed Central

    Xu, Huanyu; Sun, Quansen; Luo, Nan; Cao, Guo; Xia, Deshen

    2013-01-01

    In this paper, a Bregman iteration based total variation image restoration algorithm is proposed. Based on the Bregman iteration, the algorithm splits the original total variation problem into sub-problems that are easy to solve. Moreover, non-local regularization is introduced into the proposed algorithm, and a method to choose the non-local filter parameter locally and adaptively is proposed. Experiment results show that the proposed algorithms outperform some other regularization methods. PMID:23776560

  15. Reducing noise component on medical images

    NASA Astrophysics Data System (ADS)

    Semenishchev, Evgeny; Voronin, Viacheslav; Dub, Vladimir; Balabaeva, Oksana

    2018-04-01

    Medical visualization and analysis of medical data is an actual direction. Medical images are used in microbiology, genetics, roentgenology, oncology, surgery, ophthalmology, etc. Initial data processing is a major step towards obtaining a good diagnostic result. The paper considers the approach allows an image filtering with preservation of objects borders. The algorithm proposed in this paper is based on sequential data processing. At the first stage, local areas are determined, for this purpose the method of threshold processing, as well as the classical ICI algorithm, is applied. The second stage uses a method based on based on two criteria, namely, L2 norm and the first order square difference. To preserve the boundaries of objects, we will process the transition boundary and local neighborhood the filtering algorithm with a fixed-coefficient. For example, reconstructed images of CT, x-ray, and microbiological studies are shown. The test images show the effectiveness of the proposed algorithm. This shows the applicability of analysis many medical imaging applications.

  16. Real-time polarization imaging algorithm for camera-based polarization navigation sensors.

    PubMed

    Lu, Hao; Zhao, Kaichun; You, Zheng; Huang, Kaoli

    2017-04-10

    Biologically inspired polarization navigation is a promising approach due to its autonomous nature, high precision, and robustness. Many researchers have built point source-based and camera-based polarization navigation prototypes in recent years. Camera-based prototypes can benefit from their high spatial resolution but incur a heavy computation load. The pattern recognition algorithm in most polarization imaging algorithms involves several nonlinear calculations that impose a significant computation burden. In this paper, the polarization imaging and pattern recognition algorithms are optimized through reduction to several linear calculations by exploiting the orthogonality of the Stokes parameters without affecting precision according to the features of the solar meridian and the patterns of the polarized skylight. The algorithm contains a pattern recognition algorithm with a Hough transform as well as orientation measurement algorithms. The algorithm was loaded and run on a digital signal processing system to test its computational complexity. The test showed that the running time decreased to several tens of milliseconds from several thousand milliseconds. Through simulations and experiments, it was found that the algorithm can measure orientation without reducing precision. It can hence satisfy the practical demands of low computational load and high precision for use in embedded systems.

  17. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers.

    PubMed

    Wognum, S; Heethuis, S E; Rosario, T; Hoogeman, M S; Bel, A

    2014-07-01

    The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images of ex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Five excised porcine bladders with a grid of 30-40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100-400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. The authors found good structure accuracy without dependency on bladder volume difference for all but one algorithm, and with the best result for the structure-based algorithm. Spatial accuracy as assessed from marker errors was disappointing for all algorithms, especially for large volume differences, implying that the deformations described by the registration did not represent anatomically correct deformations. The structure-based algorithm performed the best in terms of marker error for the large volume difference (100-400 ml). In general, for the small volume difference (100-150 ml) the algorithms performed relatively similarly. The structure-based algorithm exhibited the best balance in performance between small and large volume differences, and among the intensity-based algorithms, the algorithm implemented in VelocityAI exhibited the best balance. Validation of multiple DIR algorithms on a novel physiological bladder phantom revealed that the structure accuracy was good for most algorithms, but that the spatial accuracy as assessed from markers was low for all algorithms, especially for large deformations. Hence, many of the available algorithms exhibit sufficient accuracy for contour propagation purposes, but possibly not for accurate dose accumulation.

  18. Test and Verification of AES Used for Image Encryption

    NASA Astrophysics Data System (ADS)

    Zhang, Yong

    2018-03-01

    In this paper, an image encryption program based on AES in cipher block chaining mode was designed with C language. The encryption/decryption speed and security performance of AES based image cryptosystem were tested and used to compare the proposed cryptosystem with some existing image cryptosystems based on chaos. Simulation results show that AES can apply to image encryption, which refutes the widely accepted point of view that AES is not suitable for image encryption. This paper also suggests taking the speed of AES based image encryption as the speed benchmark of image encryption algorithms. And those image encryption algorithms whose speeds are lower than the benchmark should be discarded in practical communications.

  19. Self-localization for an autonomous mobile robot based on an omni-directional vision system

    NASA Astrophysics Data System (ADS)

    Chiang, Shu-Yin; Lin, Kuang-Yu; Chia, Tsorng-Lin

    2013-12-01

    In this study, we designed an autonomous mobile robot based on the rules of the Federation of International Robotsoccer Association (FIRA) RoboSot category, integrating the techniques of computer vision, real-time image processing, dynamic target tracking, wireless communication, self-localization, motion control, path planning, and control strategy to achieve the contest goal. The self-localization scheme of the mobile robot is based on the algorithms featured in the images from its omni-directional vision system. In previous works, we used the image colors of the field goals as reference points, combining either dual-circle or trilateration positioning of the reference points to achieve selflocalization of the autonomous mobile robot. However, because the image of the game field is easily affected by ambient light, positioning systems exclusively based on color model algorithms cause errors. To reduce environmental effects and achieve the self-localization of the robot, the proposed algorithm is applied in assessing the corners of field lines by using an omni-directional vision system. Particularly in the mid-size league of the RobotCup soccer competition, selflocalization algorithms based on extracting white lines from the soccer field have become increasingly popular. Moreover, white lines are less influenced by light than are the color model of the goals. Therefore, we propose an algorithm that transforms the omni-directional image into an unwrapped transformed image, enhancing the extraction features. The process is described as follows: First, radical scan-lines were used to process omni-directional images, reducing the computational load and improving system efficiency. The lines were radically arranged around the center of the omni-directional camera image, resulting in a shorter computational time compared with the traditional Cartesian coordinate system. However, the omni-directional image is a distorted image, which makes it difficult to recognize the position of the robot. Therefore, image transformation was required to implement self-localization. Second, we used an approach to transform the omni-directional images into panoramic images. Hence, the distortion of the white line can be fixed through the transformation. The interest points that form the corners of the landmark were then located using the features from accelerated segment test (FAST) algorithm. In this algorithm, a circle of sixteen pixels surrounding the corner candidate is considered and is a high-speed feature detector in real-time frame rate applications. Finally, the dual-circle, trilateration, and cross-ratio projection algorithms were implemented in choosing the corners obtained from the FAST algorithm and localizing the position of the robot. The results demonstrate that the proposed algorithm is accurate, exhibiting a 2-cm position error in the soccer field measuring 600 cm2 x 400 cm2.

  20. Patch-based models and algorithms for image processing: a review of the basic principles and methods, and their application in computed tomography.

    PubMed

    Karimi, Davood; Ward, Rabab K

    2016-10-01

    Image models are central to all image processing tasks. The great advancements in digital image processing would not have been made possible without powerful models which, themselves, have evolved over time. In the past decade, "patch-based" models have emerged as one of the most effective models for natural images. Patch-based methods have outperformed other competing methods in many image processing tasks. These developments have come at a time when greater availability of powerful computational resources and growing concerns over the health risks of the ionizing radiation encourage research on image processing algorithms for computed tomography (CT). The goal of this paper is to explain the principles of patch-based methods and to review some of their recent applications in CT. We first review the central concepts in patch-based image processing and explain some of the state-of-the-art algorithms, with a focus on aspects that are more relevant to CT. Then, we review some of the recent application of patch-based methods in CT. Patch-based methods have already transformed the field of image processing, leading to state-of-the-art results in many applications. More recently, several studies have proposed patch-based algorithms for various image processing tasks in CT, from denoising and restoration to iterative reconstruction. Although these studies have reported good results, the true potential of patch-based methods for CT has not been yet appreciated. Patch-based methods can play a central role in image reconstruction and processing for CT. They have the potential to lead to substantial improvements in the current state of the art.

  1. Multimodal medical image fusion by combining gradient minimization smoothing filter and non-subsampled directional filter bank

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wenbo, Mei; Huiqian, Du; Zexian, Wang

    2018-04-01

    A new algorithm was proposed for medical images fusion in this paper, which combined gradient minimization smoothing filter (GMSF) with non-sampled directional filter bank (NSDFB). In order to preserve more detail information, a multi scale edge preserving decomposition framework (MEDF) was used to decompose an image into a base image and a series of detail images. For the fusion of base images, the local Gaussian membership function is applied to construct the fusion weighted factor. For the fusion of detail images, NSDFB was applied to decompose each detail image into multiple directional sub-images that are fused by pulse coupled neural network (PCNN) respectively. The experimental results demonstrate that the proposed algorithm is superior to the compared algorithms in both visual effect and objective assessment.

  2. Simulation of co-phase error correction of optical multi-aperture imaging system based on stochastic parallel gradient decent algorithm

    NASA Astrophysics Data System (ADS)

    He, Xiaojun; Ma, Haotong; Luo, Chuanxin

    2016-10-01

    The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.

  3. Multi-viewpoint Image Array Virtual Viewpoint Rapid Generation Algorithm Based on Image Layering

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Piao, Yan

    2018-04-01

    The use of multi-view image array combined with virtual viewpoint generation technology to record 3D scene information in large scenes has become one of the key technologies for the development of integrated imaging. This paper presents a virtual viewpoint rendering method based on image layering algorithm. Firstly, the depth information of reference viewpoint image is quickly obtained. During this process, SAD is chosen as the similarity measure function. Then layer the reference image and calculate the parallax based on the depth information. Through the relative distance between the virtual viewpoint and the reference viewpoint, the image layers are weighted and panned. Finally the virtual viewpoint image is rendered layer by layer according to the distance between the image layers and the viewer. This method avoids the disadvantages of the algorithm DIBR, such as high-precision requirements of depth map and complex mapping operations. Experiments show that, this algorithm can achieve the synthesis of virtual viewpoints in any position within 2×2 viewpoints range, and the rendering speed is also very impressive. The average result proved that this method can get satisfactory image quality. The average SSIM value of the results relative to real viewpoint images can reaches 0.9525, the PSNR value can reaches 38.353 and the image histogram similarity can reaches 93.77%.

  4. Intelligent fuzzy approach for fast fractal image compression

    NASA Astrophysics Data System (ADS)

    Nodehi, Ali; Sulong, Ghazali; Al-Rodhaan, Mznah; Al-Dhelaan, Abdullah; Rehman, Amjad; Saba, Tanzila

    2014-12-01

    Fractal image compression (FIC) is recognized as a NP-hard problem, and it suffers from a high number of mean square error (MSE) computations. In this paper, a two-phase algorithm was proposed to reduce the MSE computation of FIC. In the first phase, based on edge property, range and domains are arranged. In the second one, imperialist competitive algorithm (ICA) is used according to the classified blocks. For maintaining the quality of the retrieved image and accelerating algorithm operation, we divided the solutions into two groups: developed countries and undeveloped countries. Simulations were carried out to evaluate the performance of the developed approach. Promising results thus achieved exhibit performance better than genetic algorithm (GA)-based and Full-search algorithms in terms of decreasing the number of MSE computations. The number of MSE computations was reduced by the proposed algorithm for 463 times faster compared to the Full-search algorithm, although the retrieved image quality did not have a considerable change.

  5. A fast non-local means algorithm based on integral image and reconstructed similar kernel

    NASA Astrophysics Data System (ADS)

    Lin, Zheng; Song, Enmin

    2018-03-01

    Image denoising is one of the essential methods in digital image processing. The non-local means (NLM) denoising approach is a remarkable denoising technique. However, its time complexity of the computation is high. In this paper, we design a fast NLM algorithm based on integral image and reconstructed similar kernel. First, the integral image is introduced in the traditional NLM algorithm. In doing so, it reduces a great deal of repetitive operations in the parallel processing, which will greatly improves the running speed of the algorithm. Secondly, in order to amend the error of the integral image, we construct a similar window resembling the Gaussian kernel in the pyramidal stacking pattern. Finally, in order to eliminate the influence produced by replacing the Gaussian weighted Euclidean distance with Euclidean distance, we propose a scheme to construct a similar kernel with a size of 3 x 3 in a neighborhood window which will reduce the effect of noise on a single pixel. Experimental results demonstrate that the proposed algorithm is about seventeen times faster than the traditional NLM algorithm, yet produce comparable results in terms of Peak Signal-to- Noise Ratio (the PSNR increased 2.9% in average) and perceptual image quality.

  6. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation.

    PubMed

    Pelet, S; Previte, M J R; Laiho, L H; So, P T C

    2004-10-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society

  7. Despeckling Polsar Images Based on Relative Total Variation Model

    NASA Astrophysics Data System (ADS)

    Jiang, C.; He, X. F.; Yang, L. J.; Jiang, J.; Wang, D. Y.; Yuan, Y.

    2018-04-01

    Relatively total variation (RTV) algorithm, which can effectively decompose structure information and texture in image, is employed in extracting main structures of the image. However, applying the RTV directly to polarimetric SAR (PolSAR) image filtering will not preserve polarimetric information. A new RTV approach based on the complex Wishart distribution is proposed considering the polarimetric properties of PolSAR. The proposed polarization RTV (PolRTV) algorithm can be used for PolSAR image filtering. The L-band Airborne SAR (AIRSAR) San Francisco data is used to demonstrate the effectiveness of the proposed algorithm in speckle suppression, structural information preservation, and polarimetric property preservation.

  8. Performance evaluation of image denoising developed using convolutional denoising autoencoders in chest radiography

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Choi, Sunghoon; Kim, Hee-Joung

    2018-03-01

    When processing medical images, image denoising is an important pre-processing step. Various image denoising algorithms have been developed in the past few decades. Recently, image denoising using the deep learning method has shown excellent performance compared to conventional image denoising algorithms. In this study, we introduce an image denoising technique based on a convolutional denoising autoencoder (CDAE) and evaluate clinical applications by comparing existing image denoising algorithms. We train the proposed CDAE model using 3000 chest radiograms training data. To evaluate the performance of the developed CDAE model, we compare it with conventional denoising algorithms including median filter, total variation (TV) minimization, and non-local mean (NLM) algorithms. Furthermore, to verify the clinical effectiveness of the developed denoising model with CDAE, we investigate the performance of the developed denoising algorithm on chest radiograms acquired from real patients. The results demonstrate that the proposed denoising algorithm developed using CDAE achieves a superior noise-reduction effect in chest radiograms compared to TV minimization and NLM algorithms, which are state-of-the-art algorithms for image noise reduction. For example, the peak signal-to-noise ratio and structure similarity index measure of CDAE were at least 10% higher compared to conventional denoising algorithms. In conclusion, the image denoising algorithm developed using CDAE effectively eliminated noise without loss of information on anatomical structures in chest radiograms. It is expected that the proposed denoising algorithm developed using CDAE will be effective for medical images with microscopic anatomical structures, such as terminal bronchioles.

  9. B-spline based image tracking by detection

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam; Sithiravel, Rajiv; Damini, Anthony; Kirubarajan, Thiagalingam; Rajan, Sreeraman

    2016-05-01

    Visual image tracking involves the estimation of the motion of any desired targets in a surveillance region using a sequence of images. A standard method of isolating moving targets in image tracking uses background subtraction. The standard background subtraction method is often impacted by irrelevant information in the images, which can lead to poor performance in image-based target tracking. In this paper, a B-Spline based image tracking is implemented. The novel method models the background and foreground using the B-Spline method followed by a tracking-by-detection algorithm. The effectiveness of the proposed algorithm is demonstrated.

  10. Soft learning vector quantization and clustering algorithms based on ordered weighted aggregation operators.

    PubMed

    Karayiannis, N B

    2000-01-01

    This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms.

  11. A novel image enhancement algorithm based on stationary wavelet transform for infrared thermography to the de-bonding defect in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zhang, Wei; Yan, Shaoze

    2015-10-01

    In this paper, a multi-scale image enhancement algorithm based on low-passing filtering and nonlinear transformation is proposed for infrared testing image of the de-bonding defect in solid propellant rocket motors. Infrared testing images with high-level noise and low contrast are foundations for identifying defects and calculating the defects size. In order to improve quality of the infrared image, according to distribution properties of the detection image, within framework of stationary wavelet transform, the approximation coefficients at suitable decomposition level is processed by index low-passing filtering by using Fourier transform, after that, the nonlinear transformation is applied to further process the figure to improve the picture contrast. To verify validity of the algorithm, the image enhancement algorithm is applied to infrared testing pictures of two specimens with de-bonding defect. Therein, one specimen is made of a type of high-strength steel, and the other is a type of carbon fiber composite. As the result shown, in the images processed by the image enhancement algorithm presented in the paper, most of noises are eliminated, and contrast between defect areas and normal area is improved greatly; in addition, by using the binary picture of the processed figure, the continuous defect edges can be extracted, all of which show the validity of the algorithm. The paper provides a well-performing image enhancement algorithm for the infrared thermography.

  12. Study of image matching algorithm and sub-pixel fitting algorithm in target tracking

    NASA Astrophysics Data System (ADS)

    Yang, Ming-dong; Jia, Jianjun; Qiang, Jia; Wang, Jian-yu

    2015-03-01

    Image correlation matching is a tracking method that searched a region most approximate to the target template based on the correlation measure between two images. Because there is no need to segment the image, and the computation of this method is little. Image correlation matching is a basic method of target tracking. This paper mainly studies the image matching algorithm of gray scale image, which precision is at sub-pixel level. The matching algorithm used in this paper is SAD (Sum of Absolute Difference) method. This method excels in real-time systems because of its low computation complexity. The SAD method is introduced firstly and the most frequently used sub-pixel fitting algorithms are introduced at the meantime. These fitting algorithms can't be used in real-time systems because they are too complex. However, target tracking often requires high real-time performance, we put forward a fitting algorithm named paraboloidal fitting algorithm based on the consideration above, this algorithm is simple and realized easily in real-time system. The result of this algorithm is compared with that of surface fitting algorithm through image matching simulation. By comparison, the precision difference between these two algorithms is little, it's less than 0.01pixel. In order to research the influence of target rotation on precision of image matching, the experiment of camera rotation was carried on. The detector used in the camera is a CMOS detector. It is fixed to an arc pendulum table, take pictures when the camera rotated different angles. Choose a subarea in the original picture as the template, and search the best matching spot using image matching algorithm mentioned above. The result shows that the matching error is bigger when the target rotation angle is larger. It's an approximate linear relation. Finally, the influence of noise on matching precision was researched. Gaussian noise and pepper and salt noise were added in the image respectively, and the image was processed by mean filter and median filter, then image matching was processed. The result show that when the noise is little, mean filter and median filter can achieve a good result. But when the noise density of salt and pepper noise is bigger than 0.4, or the variance of Gaussian noise is bigger than 0.0015, the result of image matching will be wrong.

  13. X-Ray Phase Imaging for Breast Cancer Detection

    DTIC Science & Technology

    2012-09-01

    the Gerchberg-Saxton algorithm in the Fresnel diffraction regime, and is much more robust against image noise than the TIE-based method. For details...developed efficient coding with the software modules for the image registration, flat-filed correction , and phase retrievals. In addition, we...X, Liu H. 2010. Performance analysis of the attenuation-partition based iterative phase retrieval algorithm for in-line phase-contrast imaging

  14. Characteristic extraction and matching algorithms of ballistic missile in near-space by hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Lu, Li; Sheng, Wen; Liu, Shihua; Zhang, Xianzhi

    2014-10-01

    The ballistic missile hyperspectral data of imaging spectrometer from the near-space platform are generated by numerical method. The characteristic of the ballistic missile hyperspectral data is extracted and matched based on two different kinds of algorithms, which called transverse counting and quantization coding, respectively. The simulation results show that two algorithms extract the characteristic of ballistic missile adequately and accurately. The algorithm based on the transverse counting has the low complexity and can be implemented easily compared to the algorithm based on the quantization coding does. The transverse counting algorithm also shows the good immunity to the disturbance signals and speed up the matching and recognition of subsequent targets.

  15. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT

    PubMed Central

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A.; Pan, Xiaochuan

    2010-01-01

    Purpose: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. Methods: The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack–Noo-formula-based filteredbackprojection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. Results: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. Conclusions: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories. PMID:20175463

  16. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT.

    PubMed

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A; Pan, Xiaochuan

    2010-01-01

    Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredback-projection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.

  17. A highly accurate symmetric optical flow based high-dimensional nonlinear spatial normalization of brain images.

    PubMed

    Wen, Ying; Hou, Lili; He, Lianghua; Peterson, Bradley S; Xu, Dongrong

    2015-05-01

    Spatial normalization plays a key role in voxel-based analyses of brain images. We propose a highly accurate algorithm for high-dimensional spatial normalization of brain images based on the technique of symmetric optical flow. We first construct a three dimension optical model with the consistency assumption of intensity and consistency of the gradient of intensity under a constraint of discontinuity-preserving spatio-temporal smoothness. Then, an efficient inverse consistency optical flow is proposed with aims of higher registration accuracy, where the flow is naturally symmetric. By employing a hierarchical strategy ranging from coarse to fine scales of resolution and a method of Euler-Lagrange numerical analysis, our algorithm is capable of registering brain images data. Experiments using both simulated and real datasets demonstrated that the accuracy of our algorithm is not only better than that of those traditional optical flow algorithms, but also comparable to other registration methods used extensively in the medical imaging community. Moreover, our registration algorithm is fully automated, requiring a very limited number of parameters and no manual intervention. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A new kernel-based fuzzy level set method for automated segmentation of medical images in the presence of intensity inhomogeneity.

    PubMed

    Rastgarpour, Maryam; Shanbehzadeh, Jamshid

    2014-01-01

    Researchers recently apply an integrative approach to automate medical image segmentation for benefiting available methods and eliminating their disadvantages. Intensity inhomogeneity is a challenging and open problem in this area, which has received less attention by this approach. It has considerable effects on segmentation accuracy. This paper proposes a new kernel-based fuzzy level set algorithm by an integrative approach to deal with this problem. It can directly evolve from the initial level set obtained by Gaussian Kernel-Based Fuzzy C-Means (GKFCM). The controlling parameters of level set evolution are also estimated from the results of GKFCM. Moreover the proposed algorithm is enhanced with locally regularized evolution based on an image model that describes the composition of real-world images, in which intensity inhomogeneity is assumed as a component of an image. Such improvements make level set manipulation easier and lead to more robust segmentation in intensity inhomogeneity. The proposed algorithm has valuable benefits including automation, invariant of intensity inhomogeneity, and high accuracy. Performance evaluation of the proposed algorithm was carried on medical images from different modalities. The results confirm its effectiveness for medical image segmentation.

  19. Adaptive Cross-correlation Algorithm and Experiment of Extended Scene Shack-Hartmann Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Morgan, Rhonda M.; Green, Joseph J.; Ohara, Catherine M.; Redding, David C.

    2007-01-01

    We have developed a new, adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels in two extended-scene images captured by a Shack-Hartmann wavefront sensor (SH-WFS). It determines the positions of all of the extended-scene image cells relative to a reference cell using an FFT-based iterative image shifting algorithm. It works with both point-source spot images as well as extended scene images. We have also set up a testbed for extended0scene SH-WFS, and tested the ACC algorithm with the measured data of both point-source and extended-scene images. In this paper we describe our algorithm and present out experimental results.

  20. Limitations and requirements of content-based multimedia authentication systems

    NASA Astrophysics Data System (ADS)

    Wu, Chai W.

    2001-08-01

    Recently, a number of authentication schemes have been proposed for multimedia data such as images and sound data. They include both label based systems and semifragile watermarks. The main requirement for such authentication systems is that minor modifications such as lossy compression which do not alter the content of the data preserve the authenticity of the data, whereas modifications which do modify the content render the data not authentic. These schemes can be classified into two main classes depending on the model of image authentication they are based on. One of the purposes of this paper is to look at some of the advantages and disadvantages of these image authentication schemes and their relationship with fundamental limitations of the underlying model of image authentication. In particular, we study feature-based algorithms which generate an authentication tag based on some inherent features in the image such as the location of edges. The main disadvantage of most proposed feature-based algorithms is that similar images generate similar features, and therefore it is possible for a forger to generate dissimilar images that have the same features. On the other hand, the class of hash-based algorithms utilizes a cryptographic hash function or a digital signature scheme to reduce the data and generate an authentication tag. It inherits the security of digital signatures to thwart forgery attacks. The main disadvantage of hash-based algorithms is that the image needs to be modified in order to be made authenticatable. The amount of modification is on the order of the noise the image can tolerate before it is rendered inauthentic. The other purpose of this paper is to propose a multimedia authentication scheme which combines some of the best features of both classes of algorithms. The proposed scheme utilizes cryptographic hash functions and digital signature schemes and the data does not need to be modified in order to be made authenticatable. Several applications including the authentication of images on CD-ROM and handwritten documents will be discussed.

  1. Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

    PubMed Central

    A., Javadpour; A., Mohammadi

    2016-01-01

    Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629

  2. Global Contrast Based Salient Region Detection.

    PubMed

    Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min

    2015-03-01

    Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

  3. Lossless medical image compression using geometry-adaptive partitioning and least square-based prediction.

    PubMed

    Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao

    2018-06-01

    To improve the compression rates for lossless compression of medical images, an efficient algorithm, based on irregular segmentation and region-based prediction, is proposed in this paper. Considering that the first step of a region-based compression algorithm is segmentation, this paper proposes a hybrid method by combining geometry-adaptive partitioning and quadtree partitioning to achieve adaptive irregular segmentation for medical images. Then, least square (LS)-based predictors are adaptively designed for each region (regular subblock or irregular subregion). The proposed adaptive algorithm not only exploits spatial correlation between pixels but it utilizes local structure similarity, resulting in efficient compression performance. Experimental results show that the average compression performance of the proposed algorithm is 10.48, 4.86, 3.58, and 0.10% better than that of JPEG 2000, CALIC, EDP, and JPEG-LS, respectively. Graphical abstract ᅟ.

  4. Comparison of Unsupervised Vegetation Classification Methods from Vhr Images after Shadows Removal by Innovative Algorithms

    NASA Astrophysics Data System (ADS)

    Movia, A.; Beinat, A.; Crosilla, F.

    2015-04-01

    The recognition of vegetation by the analysis of very high resolution (VHR) aerial images provides meaningful information about environmental features; nevertheless, VHR images frequently contain shadows that generate significant problems for the classification of the image components and for the extraction of the needed information. The aim of this research is to classify, from VHR aerial images, vegetation involved in the balance process of the environmental biochemical cycle, and to discriminate it with respect to urban and agricultural features. Three classification algorithms have been experimented in order to better recognize vegetation, and compared to NDVI index; unfortunately all these methods are conditioned by the presence of shadows on the images. Literature presents several algorithms to detect and remove shadows in the scene: most of them are based on the RGB to HSI transformations. In this work some of them have been implemented and compared with one based on RGB bands. Successively, in order to remove shadows and restore brightness on the images, some innovative algorithms, based on Procrustes theory, have been implemented and applied. Among these, we evaluate the capability of the so called "not-centered oblique Procrustes" and "anisotropic Procrustes" methods to efficiently restore brightness with respect to a linear correlation correction based on the Cholesky decomposition. Some experimental results obtained by different classification methods after shadows removal carried out with the innovative algorithms are presented and discussed.

  5. The algorithm stitching for medical imaging

    NASA Astrophysics Data System (ADS)

    Semenishchev, E.; Marchuk, V.; Voronin, V.; Pismenskova, M.; Tolstova, I.; Svirin, I.

    2016-05-01

    In this paper we propose a stitching algorithm of medical images into one. The algorithm is designed to stitching the medical x-ray imaging, biological particles in microscopic images, medical microscopic images and other. Such image can improve the diagnosis accuracy and quality for minimally invasive studies (e.g., laparoscopy, ophthalmology and other). The proposed algorithm is based on the following steps: the searching and selection areas with overlap boundaries; the keypoint and feature detection; the preliminary stitching images and transformation to reduce the visible distortion; the search a single unified borders in overlap area; brightness, contrast and white balance converting; the superimposition into a one image. Experimental results demonstrate the effectiveness of the proposed method in the task of image stitching.

  6. [Research and realization of signal processing algorithms based on FPGA in digital ophthalmic ultrasonography imaging].

    PubMed

    Fang, Simin; Zhou, Sheng; Wang, Xiaochun; Ye, Qingsheng; Tian, Ling; Ji, Jianjun; Wang, Yanqun

    2015-01-01

    To design and improve signal processing algorithms of ophthalmic ultrasonography based on FPGA. Achieved three signal processing modules: full parallel distributed dynamic filter, digital quadrature demodulation, logarithmic compression, using Verilog HDL hardware language in Quartus II. Compared to the original system, the hardware cost is reduced, the whole image shows clearer and more information of the deep eyeball contained in the image, the depth of detection increases from 5 cm to 6 cm. The new algorithms meet the design requirements and achieve the system's optimization that they can effectively improve the image quality of existing equipment.

  7. Enhanced image fusion using directional contrast rules in fuzzy transform domain.

    PubMed

    Nandal, Amita; Rosales, Hamurabi Gamboa

    2016-01-01

    In this paper a novel image fusion algorithm based on directional contrast in fuzzy transform (FTR) domain is proposed. Input images to be fused are first divided into several non-overlapping blocks. The components of these sub-blocks are fused using directional contrast based fuzzy fusion rule in FTR domain. The fused sub-blocks are then transformed into original size blocks using inverse-FTR. Further, these inverse transformed blocks are fused according to select maximum based fusion rule for reconstructing the final fused image. The proposed fusion algorithm is both visually and quantitatively compared with other standard and recent fusion algorithms. Experimental results demonstrate that the proposed method generates better results than the other methods.

  8. The algorithm of motion blur image restoration based on PSF half-blind estimation

    NASA Astrophysics Data System (ADS)

    Chen, Da-Ke; Lin, Zhe

    2011-08-01

    A novel algorithm of motion blur image restoration based on PSF half-blind estimation with Hough transform was introduced on the basis of full analysis of the principle of TDICCD camera, with the problem that vertical uniform linear motion estimation used by IBD algorithm as the original value of PSF led to image restoration distortion. Firstly, the mathematical model of image degradation was established with the transcendental information of multi-frame images, and then two parameters (movement blur length and angle) that have crucial influence on PSF estimation was set accordingly. Finally, the ultimate restored image can be acquired through multiple iterative of the initial value of PSF estimation in Fourier domain, which the initial value was gained by the above method. Experimental results show that the proposal algorithm can not only effectively solve the image distortion problem caused by relative motion between TDICCD camera and movement objects, but also the details characteristics of original image are clearly restored.

  9. Centroids evaluation of the images obtained with the conical null-screen corneal topographer

    NASA Astrophysics Data System (ADS)

    Osorio-Infante, Arturo I.; Armengol-Cruz, Victor de Emanuel; Campos-García, Manuel; Cossio-Guerrero, Cesar; Marquez-Flores, Jorge; Díaz-Uribe, José Rufino

    2016-09-01

    In this work, we propose some algorithms to recover the centroids of the resultant image obtained by a conical nullscreen based corneal topographer. With these algorithms, we obtain the region of interest (roi) of the original image and using an image-processing algorithm, we calculate the geometric centroid of each roi. In order to improve our algorithm performance, we use different settings of null-screen targets, changing their size and number. We also improved the illumination system to avoid inhomogeneous zones in the corneal images. Finally, we report some corneal topographic measurements with the best setting we found.

  10. Information Hiding: an Annotated Bibliography

    DTIC Science & Technology

    1999-04-13

    parameters needed for reconstruction are enciphered using DES . The encrypted image is hidden in a cover image . [153] 074115, ‘Watermarking algorithm ...authors present a block based watermarking algorithm for digital images . The D.C.T. of the block is increased by a certain value. Quality control is...includes evaluation of the watermark robustness and the subjec- tive visual image quality. Two algorithms use the frequency domain while the two others use

  11. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Steincamp, James; Taylor, Jaime

    2003-01-01

    A reduced surrogate, one point crossover genetic algorithm with random rank-based selection was used successfully to estimate the multiple phases of a segmented optical system modeled on the seven-mirror Systematic Image-Based Optical Alignment testbed located at NASA's Marshall Space Flight Center.

  12. Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization

    NASA Astrophysics Data System (ADS)

    Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li

    2018-04-01

    Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.

  13. A combination chaotic system and application in color image encryption

    NASA Astrophysics Data System (ADS)

    Parvaz, R.; Zarebnia, M.

    2018-05-01

    In this paper, by using Logistic, Sine and Tent systems we define a combination chaotic system. Some properties of the chaotic system are studied by using figures and numerical results. A color image encryption algorithm is introduced based on new chaotic system. Also this encryption algorithm can be used for gray scale or binary images. The experimental results of the encryption algorithm show that the encryption algorithm is secure and practical.

  14. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  15. Image segmentation algorithm based on improved PCNN

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Wu, Chengdong; Yu, Xiaosheng; Wu, Jiahui

    2017-11-01

    A modified simplified Pulse Coupled Neural Network (PCNN) model is proposed in this article based on simplified PCNN. Some work have done to enrich this model, such as imposing restrictions items of the inputs, improving linking inputs and internal activity of PCNN. A self-adaptive parameter setting method of linking coefficient and threshold value decay time constant is proposed here, too. At last, we realized image segmentation algorithm for five pictures based on this proposed simplified PCNN model and PSO. Experimental results demonstrate that this image segmentation algorithm is much better than method of SPCNN and OTSU.

  16. Automatic computation of 2D cardiac measurements from B-mode echocardiography

    NASA Astrophysics Data System (ADS)

    Park, JinHyeong; Feng, Shaolei; Zhou, S. Kevin

    2012-03-01

    We propose a robust and fully automatic algorithm which computes the 2D echocardiography measurements recommended by America Society of Echocardiography. The algorithm employs knowledge-based imaging technologies which can learn the expert's knowledge from the training images and expert's annotation. Based on the models constructed from the learning stage, the algorithm searches initial location of the landmark points for the measurements by utilizing heart structure of left ventricle including mitral valve aortic valve. It employs the pseudo anatomic M-mode image generated by accumulating the line images in 2D parasternal long axis view along the time to refine the measurement landmark points. The experiment results with large volume of data show that the algorithm runs fast and is robust comparable to expert.

  17. Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.

    PubMed

    Li, Qingli; Zhou, Mei; Liu, Hongying; Wang, Yiting; Guo, Fangmin

    2015-12-01

    Red blood cell counts have been proven to be one of the most frequently performed blood tests and are valuable for early diagnosis of some diseases. This paper describes an automated red blood cell counting method based on microscopic hyperspectral imaging technology. Unlike the light microscopy-based red blood count methods, a combined spatial and spectral algorithm is proposed to identify red blood cells by integrating active contour models and automated two-dimensional k-means with spectral angle mapper algorithm. Experimental results show that the proposed algorithm has better performance than spatial based algorithm because the new algorithm can jointly use the spatial and spectral information of blood cells.

  18. Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation

    PubMed Central

    Li, Shutao; McNabb, Ryan P.; Nie, Qing; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.; Farsiu, Sina

    2014-01-01

    In this paper, we present a novel technique, based on compressive sensing principles, for reconstruction and enhancement of multi-dimensional image data. Our method is a major improvement and generalization of the multi-scale sparsity based tomographic denoising (MSBTD) algorithm we recently introduced for reducing speckle noise. Our new technique exhibits several advantages over MSBTD, including its capability to simultaneously reduce noise and interpolate missing data. Unlike MSBTD, our new method does not require an a priori high-quality image from the target imaging subject and thus offers the potential to shorten clinical imaging sessions. This novel image restoration method, which we termed sparsity based simultaneous denoising and interpolation (SBSDI), utilizes sparse representation dictionaries constructed from previously collected datasets. We tested the SBSDI algorithm on retinal spectral domain optical coherence tomography images captured in the clinic. Experiments showed that the SBSDI algorithm qualitatively and quantitatively outperforms other state-of-the-art methods. PMID:23846467

  19. Global rotational motion and displacement estimation of digital image stabilization based on the oblique vectors matching algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Hui, Mei; Zhao, Yue-jin

    2009-08-01

    The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.

  20. Autofocus algorithm using one-dimensional Fourier transform and Pearson correlation

    NASA Astrophysics Data System (ADS)

    Bueno Mario, A.; Alvarez-Borrego, Josue; Acho, L.

    2004-10-01

    A new autofocus algorithm based on one-dimensional Fourier transform and Pearson correlation for Z automatized microscope is proposed. Our goal is to determine in fast response time and accuracy, the best focused plane through an algorithm. We capture in bright and dark field several images set at different Z distances from biological organism sample. The algorithm uses the one-dimensional Fourier transform to obtain the image frequency content of a vectors pattern previously defined comparing the Pearson correlation of these frequency vectors versus the reference image frequency vector, the most out of focus image, we find the best focusing. Experimental results showed the algorithm has fast response time and accuracy in getting the best focus plane from captured images. In conclusions, the algorithm can be implemented in real time systems due fast response time, accuracy and robustness. The algorithm can be used to get focused images in bright and dark field and it can be extended to include fusion techniques to construct multifocus final images beyond of this paper.

  1. Validation of vision-based obstacle detection algorithms for low-altitude helicopter flight

    NASA Technical Reports Server (NTRS)

    Suorsa, Raymond; Sridhar, Banavar

    1991-01-01

    A validation facility being used at the NASA Ames Research Center is described which is aimed at testing vision based obstacle detection and range estimation algorithms suitable for low level helicopter flight. The facility is capable of processing hundreds of frames of calibrated multicamera 6 degree-of-freedom motion image sequencies, generating calibrated multicamera laboratory images using convenient window-based software, and viewing range estimation results from different algorithms along with truth data using powerful window-based visualization software.

  2. The implementation of aerial object recognition algorithm based on contour descriptor in FPGA-based on-board vision system

    NASA Astrophysics Data System (ADS)

    Babayan, Pavel; Smirnov, Sergey; Strotov, Valery

    2017-10-01

    This paper describes the aerial object recognition algorithm for on-board and stationary vision system. Suggested algorithm is intended to recognize the objects of a specific kind using the set of the reference objects defined by 3D models. The proposed algorithm based on the outer contour descriptor building. The algorithm consists of two stages: learning and recognition. Learning stage is devoted to the exploring of reference objects. Using 3D models we can build the database containing training images by rendering the 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the recognition stage of the algorithm. The recognition stage is focusing on estimating the similarity of the captured object and the reference objects by matching an observed image descriptor and the reference object descriptors. The experimental research was performed using a set of the models of the aircraft of the different types (airplanes, helicopters, UAVs). The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.

  3. Hierarchical layered and semantic-based image segmentation using ergodicity map

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing

    2010-04-01

    Image segmentation plays a foundational role in image understanding and computer vision. Although great strides have been made and progress achieved on automatic/semi-automatic image segmentation algorithms, designing a generic, robust, and efficient image segmentation algorithm is still challenging. Human vision is still far superior compared to computer vision, especially in interpreting semantic meanings/objects in images. We present a hierarchical/layered semantic image segmentation algorithm that can automatically and efficiently segment images into hierarchical layered/multi-scaled semantic regions/objects with contextual topological relationships. The proposed algorithm bridges the gap between high-level semantics and low-level visual features/cues (such as color, intensity, edge, etc.) through utilizing a layered/hierarchical ergodicity map, where ergodicity is computed based on a space filling fractal concept and used as a region dissimilarity measurement. The algorithm applies a highly scalable, efficient, and adaptive Peano- Cesaro triangulation/tiling technique to decompose the given image into a set of similar/homogenous regions based on low-level visual cues in a top-down manner. The layered/hierarchical ergodicity map is built through a bottom-up region dissimilarity analysis. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level of detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanisms for contextual topological object/region relationship generation. Experiments have been conducted within the maritime image environment where the segmented layered semantic objects include the basic level objects (i.e. sky/land/water) and deeper level objects in the sky/land/water surfaces. Experimental results demonstrate the proposed algorithm has the capability to robustly and efficiently segment images into layered semantic objects/regions with contextual topological relationships.

  4. An enhanced fast scanning algorithm for image segmentation

    NASA Astrophysics Data System (ADS)

    Ismael, Ahmed Naser; Yusof, Yuhanis binti

    2015-12-01

    Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical images. It scans all pixels in the image and cluster each pixel according to the upper and left neighbor pixels. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold. Such an approach will lead to a weak reliability and shape matching of the produced segments. This paper proposes an adaptive threshold function to be used in the clustering process of the Fast Scanning algorithm. This function used the gray'value in the image's pixels and variance Also, the level of the image that is more the threshold are converted into intensity values between 0 and 1, and other values are converted into intensity values zero. The proposed enhanced Fast Scanning algorithm is realized on images of the public and private transportation in Iraq. Evaluation is later made by comparing the produced images of proposed algorithm and the standard Fast Scanning algorithm. The results showed that proposed algorithm is faster in terms the time from standard fast scanning.

  5. A kind of color image segmentation algorithm based on super-pixel and PCNN

    NASA Astrophysics Data System (ADS)

    Xu, GuangZhu; Wang, YaWen; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun

    2018-04-01

    Image segmentation is a very important step in the low-level visual computing. Although image segmentation has been studied for many years, there are still many problems. PCNN (Pulse Coupled Neural network) has biological background, when it is applied to image segmentation it can be viewed as a region-based method, but due to the dynamics properties of PCNN, many connectionless neurons will pulse at the same time, so it is necessary to identify different regions for further processing. The existing PCNN image segmentation algorithm based on region growing is used for grayscale image segmentation, cannot be directly used for color image segmentation. In addition, the super-pixel can better reserve the edges of images, and reduce the influences resulted from the individual difference between the pixels on image segmentation at the same time. Therefore, on the basis of the super-pixel, the original PCNN algorithm based on region growing is improved by this paper. First, the color super-pixel image was transformed into grayscale super-pixel image which was used to seek seeds among the neurons that hadn't been fired. And then it determined whether to stop growing by comparing the average of each color channel of all the pixels in the corresponding regions of the color super-pixel image. Experiment results show that the proposed algorithm for the color image segmentation is fast and effective, and has a certain effect and accuracy.

  6. A Novel Image Encryption Algorithm Based on DNA Subsequence Operation

    PubMed Central

    Zhang, Qiang; Xue, Xianglian; Wei, Xiaopeng

    2012-01-01

    We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc.) combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack. PMID:23093912

  7. LBP-based penalized weighted least-squares approach to low-dose cone-beam computed tomography reconstruction

    NASA Astrophysics Data System (ADS)

    Ma, Ming; Wang, Huafeng; Liu, Yan; Zhang, Hao; Gu, Xianfeng; Liang, Zhengrong

    2014-03-01

    Cone-beam computed tomography (CBCT) has attracted growing interest of researchers in image reconstruction. The mAs level of the X-ray tube current, in practical application of CBCT, is mitigated in order to reduce the CBCT dose. The lowering of the X-ray tube current, however, results in the degradation of image quality. Thus, low-dose CBCT image reconstruction is in effect a noise problem. To acquire clinically acceptable quality of image, and keep the X-ray tube current as low as achievable in the meanwhile, some penalized weighted least-squares (PWLS)-based image reconstruction algorithms have been developed. One representative strategy in previous work is to model the prior information for solution regularization using an anisotropic penalty term. To enhance the edge preserving and noise suppressing in a finer scale, a novel algorithm combining the local binary pattern (LBP) with penalized weighted leastsquares (PWLS), called LBP-PWLS-based image reconstruction algorithm, is proposed in this work. The proposed LBP-PWLS-based algorithm adaptively encourages strong diffusion on the local spot/flat region around a voxel and less diffusion on edge/corner ones by adjusting the penalty for cost function, after the LBP is utilized to detect the region around the voxel as spot, flat and edge ones. The LBP-PWLS-based reconstruction algorithm was evaluated using the sinogram data acquired by a clinical CT scanner from the CatPhan® 600 phantom. Experimental results on the noiseresolution tradeoff measurement and other quantitative measurements demonstrated its feasibility and effectiveness in edge preserving and noise suppressing in comparison with a previous PWLS reconstruction algorithm.

  8. Vision based obstacle detection and grouping for helicopter guidance

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chatterji, Gano

    1993-01-01

    Electro-optical sensors can be used to compute range to objects in the flight path of a helicopter. The computation is based on the optical flow/motion at different points in the image. The motion algorithms provide a sparse set of ranges to discrete features in the image sequence as a function of azimuth and elevation. For obstacle avoidance guidance and display purposes, these discrete set of ranges, varying from a few hundreds to several thousands, need to be grouped into sets which correspond to objects in the real world. This paper presents a new method for object segmentation based on clustering the sparse range information provided by motion algorithms together with the spatial relation provided by the static image. The range values are initially grouped into clusters based on depth. Subsequently, the clusters are modified by using the K-means algorithm in the inertial horizontal plane and the minimum spanning tree algorithms in the image plane. The object grouping allows interpolation within a group and enables the creation of dense range maps. Researchers in robotics have used densely scanned sequence of laser range images to build three-dimensional representation of the outside world. Thus, modeling techniques developed for dense range images can be extended to sparse range images. The paper presents object segmentation results for a sequence of flight images.

  9. Determination of the Earth's Plasmapause Location from the CE-3 EUVC Images

    NASA Technical Reports Server (NTRS)

    He, Fei; Zhang, Xiao-Xin; Chen, Bo; Fok, Mei-Ching; Nakano, Shinya

    2016-01-01

    The Moon-based Extreme Ultraviolet Camera (EUVC) aboard China's Chang'e-3 (CE-3) mission has successfully imaged the entire Earth's plasmasphere for the first time from the side views on lunar surface. An EUVC image on 21 April 2014 is used in this study to demonstrate the characteristics and configurations of the Moon-based EUV imaging and to illustrate the determination algorithm of the plasmapause locations on the magnetic equator. The plasmapause locations determined from all the available EUVC images with the Minimum L Algorithm are quantitatively compared with those extracted from insitu observations (Defense Meteorological Satellite Program, Time History of Events and Macroscale Interactions during Substorms, and Radiation Belt Storm Probes). Excellent agreement between the determined plasmapauses seen by EUVC and the extracted ones from other satellites indicates the reliability of the Moon-based EUVC images as well as the determination algorithm. This preliminary study provides an important basis for future investigation of the dynamics of the plasmasphere with the Moon-based EUVC imaging.

  10. Exemplar-Based Image Inpainting Using a Modified Priority Definition.

    PubMed

    Deng, Liang-Jian; Huang, Ting-Zhu; Zhao, Xi-Le

    2015-01-01

    Exemplar-based algorithms are a popular technique for image inpainting. They mainly have two important phases: deciding the filling-in order and selecting good exemplars. Traditional exemplar-based algorithms are to search suitable patches from source regions to fill in the missing parts, but they have to face a problem: improper selection of exemplars. To improve the problem, we introduce an independent strategy through investigating the process of patches propagation in this paper. We first define a new separated priority definition to propagate geometry and then synthesize image textures, aiming to well recover image geometry and textures. In addition, an automatic algorithm is designed to estimate steps for the new separated priority definition. Comparing with some competitive approaches, the new priority definition can recover image geometry and textures well.

  11. a Metadata Based Approach for Analyzing Uav Datasets for Photogrammetric Applications

    NASA Astrophysics Data System (ADS)

    Dhanda, A.; Remondino, F.; Santana Quintero, M.

    2018-05-01

    This paper proposes a methodology for pre-processing and analysing Unmanned Aerial Vehicle (UAV) datasets before photogrammetric processing. In cases where images are gathered without a detailed flight plan and at regular acquisition intervals the datasets can be quite large and be time consuming to process. This paper proposes a method to calculate the image overlap and filter out images to reduce large block sizes and speed up photogrammetric processing. The python-based algorithm that implements this methodology leverages the metadata in each image to determine the end and side overlap of grid-based UAV flights. Utilizing user input, the algorithm filters out images that are unneeded for photogrammetric processing. The result is an algorithm that can speed up photogrammetric processing and provide valuable information to the user about the flight path.

  12. Exemplar-Based Image Inpainting Using a Modified Priority Definition

    PubMed Central

    Deng, Liang-Jian; Huang, Ting-Zhu; Zhao, Xi-Le

    2015-01-01

    Exemplar-based algorithms are a popular technique for image inpainting. They mainly have two important phases: deciding the filling-in order and selecting good exemplars. Traditional exemplar-based algorithms are to search suitable patches from source regions to fill in the missing parts, but they have to face a problem: improper selection of exemplars. To improve the problem, we introduce an independent strategy through investigating the process of patches propagation in this paper. We first define a new separated priority definition to propagate geometry and then synthesize image textures, aiming to well recover image geometry and textures. In addition, an automatic algorithm is designed to estimate steps for the new separated priority definition. Comparing with some competitive approaches, the new priority definition can recover image geometry and textures well. PMID:26492491

  13. An optimized digital watermarking algorithm in wavelet domain based on differential evolution for color image.

    PubMed

    Cui, Xinchun; Niu, Yuying; Zheng, Xiangwei; Han, Yingshuai

    2018-01-01

    In this paper, a new color watermarking algorithm based on differential evolution is proposed. A color host image is first converted from RGB space to YIQ space, which is more suitable for the human visual system. Then, apply three-level discrete wavelet transformation to luminance component Y and generate four different frequency sub-bands. After that, perform singular value decomposition on these sub-bands. In the watermark embedding process, apply discrete wavelet transformation to a watermark image after the scrambling encryption processing. Our new algorithm uses differential evolution algorithm with adaptive optimization to choose the right scaling factors. Experimental results show that the proposed algorithm has a better performance in terms of invisibility and robustness.

  14. Multimodal molecular 3D imaging for the tumoral volumetric distribution assessment of folate-based biosensors.

    PubMed

    Ramírez-Nava, Gerardo J; Santos-Cuevas, Clara L; Chairez, Isaac; Aranda-Lara, Liliana

    2017-12-01

    The aim of this study was to characterize the in vivo volumetric distribution of three folate-based biosensors by different imaging modalities (X-ray, fluorescence, Cerenkov luminescence, and radioisotopic imaging) through the development of a tridimensional image reconstruction algorithm. The preclinical and multimodal Xtreme imaging system, with a Multimodal Animal Rotation System (MARS), was used to acquire bidimensional images, which were processed to obtain the tridimensional reconstruction. Images of mice at different times (biosensor distribution) were simultaneously obtained from the four imaging modalities. The filtered back projection and inverse Radon transformation were used as main image-processing techniques. The algorithm developed in Matlab was able to calculate the volumetric profiles of 99m Tc-Folate-Bombesin (radioisotopic image), 177 Lu-Folate-Bombesin (Cerenkov image), and FolateRSense™ 680 (fluorescence image) in tumors and kidneys of mice, and no significant differences were detected in the volumetric quantifications among measurement techniques. The imaging tridimensional reconstruction algorithm can be easily extrapolated to different 2D acquisition-type images. This characteristic flexibility of the algorithm developed in this study is a remarkable advantage in comparison to similar reconstruction methods.

  15. Algorithm for Automatic Segmentation of Nuclear Boundaries in Cancer Cells in Three-Channel Luminescent Images

    NASA Astrophysics Data System (ADS)

    Lisitsa, Y. V.; Yatskou, M. M.; Apanasovich, V. V.; Apanasovich, T. V.

    2015-09-01

    We have developed an algorithm for segmentation of cancer cell nuclei in three-channel luminescent images of microbiological specimens. The algorithm is based on using a correlation between fluorescence signals in the detection channels for object segmentation, which permits complete automation of the data analysis procedure. We have carried out a comparative analysis of the proposed method and conventional algorithms implemented in the CellProfiler and ImageJ software packages. Our algorithm has an object localization uncertainty which is 2-3 times smaller than for the conventional algorithms, with comparable segmentation accuracy.

  16. Image Registration for Stability Testing of MEMS

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; LeMoigne, Jacqueline; Blake, Peter N.; Morey, Peter A.; Landsman, Wayne B.; Chambers, Victor J.; Moseley, Samuel H.

    2011-01-01

    Image registration, or alignment of two or more images covering the same scenes or objects, is of great interest in many disciplines such as remote sensing, medical imaging. astronomy, and computer vision. In this paper, we introduce a new application of image registration algorithms. We demonstrate how through a wavelet based image registration algorithm, engineers can evaluate stability of Micro-Electro-Mechanical Systems (MEMS). In particular, we applied image registration algorithms to assess alignment stability of the MicroShutters Subsystem (MSS) of the Near Infrared Spectrograph (NIRSpec) instrument of the James Webb Space Telescope (JWST). This work introduces a new methodology for evaluating stability of MEMS devices to engineers as well as a new application of image registration algorithms to computer scientists.

  17. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    PubMed

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  18. Research and implementation of finger-vein recognition algorithm

    NASA Astrophysics Data System (ADS)

    Pang, Zengyao; Yang, Jie; Chen, Yilei; Liu, Yin

    2017-06-01

    In finger vein image preprocessing, finger angle correction and ROI extraction are important parts of the system. In this paper, we propose an angle correction algorithm based on the centroid of the vein image, and extract the ROI region according to the bidirectional gray projection method. Inspired by the fact that features in those vein areas have similar appearance as valleys, a novel method was proposed to extract center and width of palm vein based on multi-directional gradients, which is easy-computing, quick and stable. On this basis, an encoding method was designed to determine the gray value distribution of texture image. This algorithm could effectively overcome the edge of the texture extraction error. Finally, the system was equipped with higher robustness and recognition accuracy by utilizing fuzzy threshold determination and global gray value matching algorithm. Experimental results on pairs of matched palm images show that, the proposed method has a EER with 3.21% extracts features at the speed of 27ms per image. It can be concluded that the proposed algorithm has obvious advantages in grain extraction efficiency, matching accuracy and algorithm efficiency.

  19. Photoacoustic image reconstruction via deep learning

    NASA Astrophysics Data System (ADS)

    Antholzer, Stephan; Haltmeier, Markus; Nuster, Robert; Schwab, Johannes

    2018-02-01

    Applying standard algorithms to sparse data problems in photoacoustic tomography (PAT) yields low-quality images containing severe under-sampling artifacts. To some extent, these artifacts can be reduced by iterative image reconstruction algorithms which allow to include prior knowledge such as smoothness, total variation (TV) or sparsity constraints. These algorithms tend to be time consuming as the forward and adjoint problems have to be solved repeatedly. Further, iterative algorithms have additional drawbacks. For example, the reconstruction quality strongly depends on a-priori model assumptions about the objects to be recovered, which are often not strictly satisfied in practical applications. To overcome these issues, in this paper, we develop direct and efficient reconstruction algorithms based on deep learning. As opposed to iterative algorithms, we apply a convolutional neural network, whose parameters are trained before the reconstruction process based on a set of training data. For actual image reconstruction, a single evaluation of the trained network yields the desired result. Our presented numerical results (using two different network architectures) demonstrate that the proposed deep learning approach reconstructs images with a quality comparable to state of the art iterative reconstruction methods.

  20. Remote sensing image denoising application by generalized morphological component analysis

    NASA Astrophysics Data System (ADS)

    Yu, Chong; Chen, Xiong

    2014-12-01

    In this paper, we introduced a remote sensing image denoising method based on generalized morphological component analysis (GMCA). This novel algorithm is the further extension of morphological component analysis (MCA) algorithm to the blind source separation framework. The iterative thresholding strategy adopted by GMCA algorithm firstly works on the most significant features in the image, and then progressively incorporates smaller features to finely tune the parameters of whole model. Mathematical analysis of the computational complexity of GMCA algorithm is provided. Several comparison experiments with state-of-the-art denoising algorithms are reported. In order to make quantitative assessment of algorithms in experiments, Peak Signal to Noise Ratio (PSNR) index and Structural Similarity (SSIM) index are calculated to assess the denoising effect from the gray-level fidelity aspect and the structure-level fidelity aspect, respectively. Quantitative analysis on experiment results, which is consistent with the visual effect illustrated by denoised images, has proven that the introduced GMCA algorithm possesses a marvelous remote sensing image denoising effectiveness and ability. It is even hard to distinguish the original noiseless image from the recovered image by adopting GMCA algorithm through visual effect.

  1. Artifact removal algorithms for stroke detection using a multistatic MIST beamforming algorithm.

    PubMed

    Ricci, E; Di Domenico, S; Cianca, E; Rossi, T

    2015-01-01

    Microwave imaging (MWI) has been recently proved as a promising imaging modality for low-complexity, low-cost and fast brain imaging tools, which could play a fundamental role to efficiently manage emergencies related to stroke and hemorrhages. This paper focuses on the UWB radar imaging approach and in particular on the processing algorithms of the backscattered signals. Assuming the use of the multistatic version of the MIST (Microwave Imaging Space-Time) beamforming algorithm, developed by Hagness et al. for the early detection of breast cancer, the paper proposes and compares two artifact removal algorithms. Artifacts removal is an essential step of any UWB radar imaging system and currently considered artifact removal algorithms have been shown not to be effective in the specific scenario of brain imaging. First of all, the paper proposes modifications of a known artifact removal algorithm. These modifications are shown to be effective to achieve good localization accuracy and lower false positives. However, the main contribution is the proposal of an artifact removal algorithm based on statistical methods, which allows to achieve even better performance but with much lower computational complexity.

  2. Architectures and algorithms for digital image processing; Proceedings of the Meeting, Cannes, France, December 5, 6, 1985

    NASA Technical Reports Server (NTRS)

    Duff, Michael J. B. (Editor); Siegel, Howard J. (Editor); Corbett, Francis J. (Editor)

    1986-01-01

    The conference presents papers on the architectures, algorithms, and applications of image processing. Particular attention is given to a very large scale integration system for image reconstruction from projections, a prebuffer algorithm for instant display of volume data, and an adaptive image sequence filtering scheme based on motion detection. Papers are also presented on a simple, direct practical method of sensing local motion and analyzing local optical flow, image matching techniques, and an automated biological dosimetry system.

  3. Geometry correction Algorithm for UAV Remote Sensing Image Based on Improved Neural Network

    NASA Astrophysics Data System (ADS)

    Liu, Ruian; Liu, Nan; Zeng, Beibei; Chen, Tingting; Yin, Ninghao

    2018-03-01

    Aiming at the disadvantage of current geometry correction algorithm for UAV remote sensing image, a new algorithm is proposed. Adaptive genetic algorithm (AGA) and RBF neural network are introduced into this algorithm. And combined with the geometry correction principle for UAV remote sensing image, the algorithm and solving steps of AGA-RBF are presented in order to realize geometry correction for UAV remote sensing. The correction accuracy and operational efficiency is improved through optimizing the structure and connection weight of RBF neural network separately with AGA and LMS algorithm. Finally, experiments show that AGA-RBF algorithm has the advantages of high correction accuracy, high running rate and strong generalization ability.

  4. Canny edge-based deformable image registration

    NASA Astrophysics Data System (ADS)

    Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping

    2017-02-01

    This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.

  5. An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin

    2018-04-01

    Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.

  6. Gaussian mixture models-based ship target recognition algorithm in remote sensing infrared images

    NASA Astrophysics Data System (ADS)

    Yao, Shoukui; Qin, Xiaojuan

    2018-02-01

    Since the resolution of remote sensing infrared images is low, the features of ship targets become unstable. The issue of how to recognize ships with fuzzy features is an open problem. In this paper, we propose a novel ship target recognition algorithm based on Gaussian mixture models (GMMs). In the proposed algorithm, there are mainly two steps. At the first step, the Hu moments of these ship target images are calculated, and the GMMs are trained on the moment features of ships. At the second step, the moment feature of each ship image is assigned to the trained GMMs for recognition. Because of the scale, rotation, translation invariance property of Hu moments and the power feature-space description ability of GMMs, the GMMs-based ship target recognition algorithm can recognize ship reliably. Experimental results of a large simulating image set show that our approach is effective in distinguishing different ship types, and obtains a satisfactory ship recognition performance.

  7. A Laplacian based image filtering using switching noise detector.

    PubMed

    Ranjbaran, Ali; Hassan, Anwar Hasni Abu; Jafarpour, Mahboobe; Ranjbaran, Bahar

    2015-01-01

    This paper presents a Laplacian-based image filtering method. Using a local noise estimator function in an energy functional minimizing scheme we show that Laplacian that has been known as an edge detection function can be used for noise removal applications. The algorithm can be implemented on a 3x3 window and easily tuned by number of iterations. Image denoising is simplified to the reduction of the pixels value with their related Laplacian value weighted by local noise estimator. The only parameter which controls smoothness is the number of iterations. Noise reduction quality of the introduced method is evaluated and compared with some classic algorithms like Wiener and Total Variation based filters for Gaussian noise. And also the method compared with the state-of-the-art method BM3D for some images. The algorithm appears to be easy, fast and comparable with many classic denoising algorithms for Gaussian noise.

  8. Filtering method of star control points for geometric correction of remote sensing image based on RANSAC algorithm

    NASA Astrophysics Data System (ADS)

    Tan, Xiangli; Yang, Jungang; Deng, Xinpu

    2018-04-01

    In the process of geometric correction of remote sensing image, occasionally, a large number of redundant control points may result in low correction accuracy. In order to solve this problem, a control points filtering algorithm based on RANdom SAmple Consensus (RANSAC) was proposed. The basic idea of the RANSAC algorithm is that using the smallest data set possible to estimate the model parameters and then enlarge this set with consistent data points. In this paper, unlike traditional methods of geometric correction using Ground Control Points (GCPs), the simulation experiments are carried out to correct remote sensing images, which using visible stars as control points. In addition, the accuracy of geometric correction without Star Control Points (SCPs) optimization is also shown. The experimental results show that the SCPs's filtering method based on RANSAC algorithm has a great improvement on the accuracy of remote sensing image correction.

  9. SAR image registration based on Susan algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Chun-bo; Fu, Shao-hua; Wei, Zhong-yi

    2011-10-01

    Synthetic Aperture Radar (SAR) is an active remote sensing system which can be installed on aircraft, satellite and other carriers with the advantages of all day and night and all-weather ability. It is the important problem that how to deal with SAR and extract information reasonably and efficiently. Particularly SAR image geometric correction is the bottleneck to impede the application of SAR. In this paper we introduces image registration and the Susan algorithm knowledge firstly, then introduces the process of SAR image registration based on Susan algorithm and finally presents experimental results of SAR image registration. The Experiment shows that this method is effective and applicable, no matter from calculating the time or from the calculation accuracy.

  10. An improved image non-blind image deblurring method based on FoEs

    NASA Astrophysics Data System (ADS)

    Zhu, Qidan; Sun, Lei

    2013-03-01

    Traditional non-blind image deblurring algorithms always use maximum a posterior(MAP). MAP estimates involving natural image priors can reduce the ripples effectively in contrast to maximum likelihood(ML). However, they have been found lacking in terms of restoration performance. Based on this issue, we utilize MAP with KL penalty to replace traditional MAP. We develop an image reconstruction algorithm that minimizes the KL divergence between the reference distribution and the prior distribution. The approximate KL penalty can restrain over-smooth caused by MAP. We use three groups of images and Harris corner detection to prove our method. The experimental results show that our algorithm of non-blind image restoration can effectively reduce the ringing effect and exhibit the state-of-the-art deblurring results.

  11. Skull removal in MR images using a modified artificial bee colony optimization algorithm.

    PubMed

    Taherdangkoo, Mohammad

    2014-01-01

    Removal of the skull from brain Magnetic Resonance (MR) images is an important preprocessing step required for other image analysis techniques such as brain tissue segmentation. In this paper, we propose a new algorithm based on the Artificial Bee Colony (ABC) optimization algorithm to remove the skull region from brain MR images. We modify the ABC algorithm using a different strategy for initializing the coordinates of scout bees and their direction of search. Moreover, we impose an additional constraint to the ABC algorithm to avoid the creation of discontinuous regions. We found that our algorithm successfully removed all bony skull from a sample of de-identified MR brain images acquired from different model scanners. The obtained results of the proposed algorithm compared with those of previously introduced well known optimization algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) demonstrate the superior results and computational performance of our algorithm, suggesting its potential for clinical applications.

  12. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wognum, S., E-mail: s.wognum@gmail.com; Heethuis, S. E.; Bel, A.

    2014-07-15

    Purpose: The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images ofex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Methods: Fivemore » excised porcine bladders with a grid of 30–40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100–400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. Results: The authors found good structure accuracy without dependency on bladder volume difference for all but one algorithm, and with the best result for the structure-based algorithm. Spatial accuracy as assessed from marker errors was disappointing for all algorithms, especially for large volume differences, implying that the deformations described by the registration did not represent anatomically correct deformations. The structure-based algorithm performed the best in terms of marker error for the large volume difference (100–400 ml). In general, for the small volume difference (100–150 ml) the algorithms performed relatively similarly. The structure-based algorithm exhibited the best balance in performance between small and large volume differences, and among the intensity-based algorithms, the algorithm implemented in VelocityAI exhibited the best balance. Conclusions: Validation of multiple DIR algorithms on a novel physiological bladder phantom revealed that the structure accuracy was good for most algorithms, but that the spatial accuracy as assessed from markers was low for all algorithms, especially for large deformations. Hence, many of the available algorithms exhibit sufficient accuracy for contour propagation purposes, but possibly not for accurate dose accumulation.« less

  13. The New CCSDS Image Compression Recommendation

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Armbruster, Philippe; Kiely, Aaron; Masschelein, Bart; Moury, Gilles; Schaefer, Christoph

    2005-01-01

    The Consultative Committee for Space Data Systems (CCSDS) data compression working group has recently adopted a recommendation for image data compression, with a final release expected in 2005. The algorithm adopted in the recommendation consists of a two-dimensional discrete wavelet transform of the image, followed by progressive bit-plane coding of the transformed data. The algorithm can provide both lossless and lossy compression, and allows a user to directly control the compressed data volume or the fidelity with which the wavelet-transformed data can be reconstructed. The algorithm is suitable for both frame-based image data and scan-based sensor data, and has applications for near-Earth and deep-space missions. The standard will be accompanied by free software sources on a future web site. An Application-Specific Integrated Circuit (ASIC) implementation of the compressor is currently under development. This paper describes the compression algorithm along with the requirements that drove the selection of the algorithm. Performance results and comparisons with other compressors are given for a test set of space images.

  14. Hyperspectral feature mapping classification based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Li, Junwei; Wang, Guangping; Wu, Jingli

    2016-03-01

    This paper proposed a hyperspectral feature mapping classification algorithm based on mathematical morphology. Without the priori information such as spectral library etc., the spectral and spatial information can be used to realize the hyperspectral feature mapping classification. The mathematical morphological erosion and dilation operations are performed respectively to extract endmembers. The spectral feature mapping algorithm is used to carry on hyperspectral image classification. The hyperspectral image collected by AVIRIS is applied to evaluate the proposed algorithm. The proposed algorithm is compared with minimum Euclidean distance mapping algorithm, minimum Mahalanobis distance mapping algorithm, SAM algorithm and binary encoding mapping algorithm. From the results of the experiments, it is illuminated that the proposed algorithm's performance is better than that of the other algorithms under the same condition and has higher classification accuracy.

  15. Duplicate document detection in DocBrowse

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Bruce, Andrew G.; Nguyen, Thien

    1998-04-01

    Duplicate documents are frequently found in large databases of digital documents, such as those found in digital libraries or in the government declassification effort. Efficient duplicate document detection is important not only to allow querying for similar documents, but also to filter out redundant information in large document databases. We have designed three different algorithm to identify duplicate documents. The first algorithm is based on features extracted from the textual content of a document, the second algorithm is based on wavelet features extracted from the document image itself, and the third algorithm is a combination of the first two. These algorithms are integrated within the DocBrowse system for information retrieval from document images which is currently under development at MathSoft. DocBrowse supports duplicate document detection by allowing (1) automatic filtering to hide duplicate documents, and (2) ad hoc querying for similar or duplicate documents. We have tested the duplicate document detection algorithms on 171 documents and found that text-based method has an average 11-point precision of 97.7 percent while the image-based method has an average 11- point precision of 98.9 percent. However, in general, the text-based method performs better when the document contains enough high-quality machine printed text while the image- based method performs better when the document contains little or no quality machine readable text.

  16. A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    PubMed Central

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise. PMID:22163672

  17. A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.

    PubMed

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  18. Fast and accurate face recognition based on image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Blasch, Erik

    2017-05-01

    Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.

  19. [Application of elastic registration based on Demons algorithm in cone beam CT].

    PubMed

    Pang, Haowen; Sun, Xiaoyang

    2014-02-01

    We applied Demons and accelerated Demons elastic registration algorithm in radiotherapy cone beam CT (CBCT) images, We provided software support for real-time understanding of organ changes during radiotherapy. We wrote a 3D CBCT image elastic registration program using Matlab software, and we tested and verified the images of two patients with cervical cancer 3D CBCT images for elastic registration, based on the classic Demons algorithm, minimum mean square error (MSE) decreased 59.7%, correlation coefficient (CC) increased 11.0%. While for the accelerated Demons algorithm, MSE decreased 40.1%, CC increased 7.2%. The experimental verification with two methods of Demons algorithm obtained the desired results, but the small difference appeared to be lack of precision, and the total registration time was a little long. All these problems need to be further improved for accuracy and reducing of time.

  20. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI).

    PubMed

    Delakis, Ioannis; Hammad, Omer; Kitney, Richard I

    2007-07-07

    Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting.

  1. Similarity measure and domain adaptation in multiple mixture model clustering: An application to image processing.

    PubMed

    Leong, Siow Hoo; Ong, Seng Huat

    2017-01-01

    This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index.

  2. Similarity measure and domain adaptation in multiple mixture model clustering: An application to image processing

    PubMed Central

    Leong, Siow Hoo

    2017-01-01

    This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index. PMID:28686634

  3. Medical image registration by combining global and local information: a chain-type diffeomorphic demons algorithm.

    PubMed

    Liu, Xiaozheng; Yuan, Zhenming; Zhu, Junming; Xu, Dongrong

    2013-12-07

    The demons algorithm is a popular algorithm for non-rigid image registration because of its computational efficiency and simple implementation. The deformation forces of the classic demons algorithm were derived from image gradients by considering the deformation to decrease the intensity dissimilarity between images. However, the methods using the difference of image intensity for medical image registration are easily affected by image artifacts, such as image noise, non-uniform imaging and partial volume effects. The gradient magnitude image is constructed from the local information of an image, so the difference in a gradient magnitude image can be regarded as more reliable and robust for these artifacts. Then, registering medical images by considering the differences in both image intensity and gradient magnitude is a straightforward selection. In this paper, based on a diffeomorphic demons algorithm, we propose a chain-type diffeomorphic demons algorithm by combining the differences in both image intensity and gradient magnitude for medical image registration. Previous work had shown that the classic demons algorithm can be considered as an approximation of a second order gradient descent on the sum of the squared intensity differences. By optimizing the new dissimilarity criteria, we also present a set of new demons forces which were derived from the gradients of the image and gradient magnitude image. We show that, in controlled experiments, this advantage is confirmed, and yields a fast convergence.

  4. Skeletonization with hollow detection on gray image by gray weighted distance transform

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Prabir; Qian, Kai; Cao, Siqi; Qian, Yi

    1998-10-01

    A skeletonization algorithm that could be used to process non-uniformly distributed gray-scale images with hollows was presented. This algorithm is based on the Gray Weighted Distance Transformation. The process includes a preliminary phase of investigation in the hollows in the gray-scale image, whether these hollows are considered as topological constraints for the skeleton structure depending on their statistically significant depth. We then extract the resulting skeleton that has certain meaningful information for understanding the object in the image. This improved algorithm can overcome the possible misinterpretation of some complicated images in the extracted skeleton, especially in images with asymmetric hollows and asymmetric features. This algorithm can be executed on a parallel machine as all the operations are executed in local. Some examples are discussed to illustrate the algorithm.

  5. Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing

    PubMed Central

    Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang

    2018-01-01

    Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, feature extraction algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system. PMID:29462855

  6. Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing.

    PubMed

    Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang

    2018-02-15

    Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED light target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, direction location algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system.

  7. A Locality-Constrained and Label Embedding Dictionary Learning Algorithm for Image Classification.

    PubMed

    Zhengming Li; Zhihui Lai; Yong Xu; Jian Yang; Zhang, David

    2017-02-01

    Locality and label information of training samples play an important role in image classification. However, previous dictionary learning algorithms do not take the locality and label information of atoms into account together in the learning process, and thus their performance is limited. In this paper, a discriminative dictionary learning algorithm, called the locality-constrained and label embedding dictionary learning (LCLE-DL) algorithm, was proposed for image classification. First, the locality information was preserved using the graph Laplacian matrix of the learned dictionary instead of the conventional one derived from the training samples. Then, the label embedding term was constructed using the label information of atoms instead of the classification error term, which contained discriminating information of the learned dictionary. The optimal coding coefficients derived by the locality-based and label-based reconstruction were effective for image classification. Experimental results demonstrated that the LCLE-DL algorithm can achieve better performance than some state-of-the-art algorithms.

  8. Nonrigid Image Registration in Digital Subtraction Angiography Using Multilevel B-Spline

    PubMed Central

    2013-01-01

    We address the problem of motion artifact reduction in digital subtraction angiography (DSA) using image registration techniques. Most of registration algorithms proposed for application in DSA, have been designed for peripheral and cerebral angiography images in which we mainly deal with global rigid motions. These algorithms did not yield good results when applied to coronary angiography images because of complex nonrigid motions that exist in this type of angiography images. Multiresolution and iterative algorithms are proposed to cope with this problem, but these algorithms are associated with high computational cost which makes them not acceptable for real-time clinical applications. In this paper we propose a nonrigid image registration algorithm for coronary angiography images that is significantly faster than multiresolution and iterative blocking methods and outperforms competing algorithms evaluated on the same data sets. This algorithm is based on a sparse set of matched feature point pairs and the elastic registration is performed by means of multilevel B-spline image warping. Experimental results with several clinical data sets demonstrate the effectiveness of our approach. PMID:23971026

  9. Blind restoration method of three-dimensional microscope image based on RL algorithm

    NASA Astrophysics Data System (ADS)

    Yao, Jin-li; Tian, Si; Wang, Xiang-rong; Wang, Jing-li

    2013-08-01

    Thin specimens of biological tissue appear three dimensional transparent under a microscope. The optic slice images can be captured by moving the focal planes at the different locations of the specimen. The captured image has low resolution due to the influence of the out-of-focus information comes from the planes adjacent to the local plane. Using traditional methods can remove the blur in the images at a certain degree, but it needs to know the point spread function (PSF) of the imaging system accurately. The accuracy degree of PSF influences the restoration result greatly. In fact, it is difficult to obtain the accurate PSF of the imaging system. In order to restore the original appearance of the specimen under the conditions of the imaging system parameters are unknown or there is noise and spherical aberration in the system, a blind restoration methods of three-dimensional microscope based on the R-L algorithm is proposed in this paper. On the basis of the exhaustive study of the two-dimension R-L algorithm, according to the theory of the microscopy imaging and the wavelet transform denoising pretreatment, we expand the R-L algorithm to three-dimension space. It is a nonlinear restoration method with the maximum entropy constraint. The method doesn't need to know the PSF of the microscopy imaging system precisely to recover the blur image. The image and PSF converge to the optimum solutions by many alterative iterations and corrections. The matlab simulation and experiments results show that the expansion algorithm is better in visual indicators, peak signal to noise ratio and improved signal to noise ratio when compared with the PML algorithm, and the proposed algorithm can suppress noise, restore more details of target, increase image resolution.

  10. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging.

    PubMed

    Jiang, J; Hall, T J

    2007-07-07

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s(-1)) that exceed our previous methods.

  11. A Depth Map Generation Algorithm Based on Saliency Detection for 2D to 3D Conversion

    NASA Astrophysics Data System (ADS)

    Yang, Yizhong; Hu, Xionglou; Wu, Nengju; Wang, Pengfei; Xu, Dong; Rong, Shen

    2017-09-01

    In recent years, 3D movies attract people's attention more and more because of their immersive stereoscopic experience. However, 3D movies is still insufficient, so estimating depth information for 2D to 3D conversion from a video is more and more important. In this paper, we present a novel algorithm to estimate depth information from a video via scene classification algorithm. In order to obtain perceptually reliable depth information for viewers, the algorithm classifies them into three categories: landscape type, close-up type, linear perspective type firstly. Then we employ a specific algorithm to divide the landscape type image into many blocks, and assign depth value by similar relative height cue with the image. As to the close-up type image, a saliency-based method is adopted to enhance the foreground in the image and the method combine it with the global depth gradient to generate final depth map. By vanishing line detection, the calculated vanishing point which is regarded as the farthest point to the viewer is assigned with deepest depth value. According to the distance between the other points and the vanishing point, the entire image is assigned with corresponding depth value. Finally, depth image-based rendering is employed to generate stereoscopic virtual views after bilateral filter. Experiments show that the proposed algorithm can achieve realistic 3D effects and yield satisfactory results, while the perception scores of anaglyph images lie between 6.8 and 7.8.

  12. Reversible Data Hiding Based on DNA Computing

    PubMed Central

    Xie, Yingjie

    2017-01-01

    Biocomputing, especially DNA, computing has got great development. It is widely used in information security. In this paper, a novel algorithm of reversible data hiding based on DNA computing is proposed. Inspired by the algorithm of histogram modification, which is a classical algorithm for reversible data hiding, we combine it with DNA computing to realize this algorithm based on biological technology. Compared with previous results, our experimental results have significantly improved the ER (Embedding Rate). Furthermore, some PSNR (peak signal-to-noise ratios) of test images are also improved. Experimental results show that it is suitable for protecting the copyright of cover image in DNA-based information security. PMID:28280504

  13. The Research on Denoising of SAR Image Based on Improved K-SVD Algorithm

    NASA Astrophysics Data System (ADS)

    Tan, Linglong; Li, Changkai; Wang, Yueqin

    2018-04-01

    SAR images often receive noise interference in the process of acquisition and transmission, which can greatly reduce the quality of images and cause great difficulties for image processing. The existing complete DCT dictionary algorithm is fast in processing speed, but its denoising effect is poor. In this paper, the problem of poor denoising, proposed K-SVD (K-means and singular value decomposition) algorithm is applied to the image noise suppression. Firstly, the sparse dictionary structure is introduced in detail. The dictionary has a compact representation and can effectively train the image signal. Then, the sparse dictionary is trained by K-SVD algorithm according to the sparse representation of the dictionary. The algorithm has more advantages in high dimensional data processing. Experimental results show that the proposed algorithm can remove the speckle noise more effectively than the complete DCT dictionary and retain the edge details better.

  14. An Image-Based Algorithm for Precise and Accurate High Throughput Assessment of Drug Activity against the Human Parasite Trypanosoma cruzi

    PubMed Central

    Moraes, Carolina Borsoi; Yang, Gyongseon; Kang, Myungjoo; Freitas-Junior, Lucio H.; Hansen, Michael A. E.

    2014-01-01

    We present a customized high content (image-based) and high throughput screening algorithm for the quantification of Trypanosoma cruzi infection in host cells. Based solely on DNA staining and single-channel images, the algorithm precisely segments and identifies the nuclei and cytoplasm of mammalian host cells as well as the intracellular parasites infecting the cells. The algorithm outputs statistical parameters including the total number of cells, number of infected cells and the total number of parasites per image, the average number of parasites per infected cell, and the infection ratio (defined as the number of infected cells divided by the total number of cells). Accurate and precise estimation of these parameters allow for both quantification of compound activity against parasites, as well as the compound cytotoxicity, thus eliminating the need for an additional toxicity-assay, hereby reducing screening costs significantly. We validate the performance of the algorithm using two known drugs against T.cruzi: Benznidazole and Nifurtimox. Also, we have checked the performance of the cell detection with manual inspection of the images. Finally, from the titration of the two compounds, we confirm that the algorithm provides the expected half maximal effective concentration (EC50) of the anti-T. cruzi activity. PMID:24503652

  15. Richardson-Lucy/maximum likelihood image restoration algorithm for fluorescence microscopy: further testing.

    PubMed

    Holmes, T J; Liu, Y H

    1989-11-15

    A maximum likelihood based iterative algorithm adapted from nuclear medicine imaging for noncoherent optical imaging was presented in a previous publication with some initial computer-simulation testing. This algorithm is identical in form to that previously derived in a different way by W. H. Richardson "Bayesian-Based Iterative Method of Image Restoration," J. Opt. Soc. Am. 62, 55-59 (1972) and L. B. Lucy "An Iterative Technique for the Rectification of Observed Distributions," Astron. J. 79, 745-765 (1974). Foreseen applications include superresolution and 3-D fluorescence microscopy. This paper presents further simulation testing of this algorithm and a preliminary experiment with a defocused camera. The simulations show quantified resolution improvement as a function of iteration number, and they show qualitatively the trend in limitations on restored resolution when noise is present in the data. Also shown are results of a simulation in restoring missing-cone information for 3-D imaging. Conclusions are in support of the feasibility of using these methods with real systems, while computational cost and timing estimates indicate that it should be realistic to implement these methods. Itis suggested in the Appendix that future extensions to the maximum likelihood based derivation of this algorithm will address some of the limitations that are experienced with the nonextended form of the algorithm presented here.

  16. A Novel Color Image Encryption Algorithm Based on Quantum Chaos Sequence

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Jin, Cong

    2017-03-01

    In this paper, a novel algorithm of image encryption based on quantum chaotic is proposed. The keystreams are generated by the two-dimensional logistic map as initial conditions and parameters. And then general Arnold scrambling algorithm with keys is exploited to permute the pixels of color components. In diffusion process, a novel encryption algorithm, folding algorithm, is proposed to modify the value of diffused pixels. In order to get the high randomness and complexity, the two-dimensional logistic map and quantum chaotic map are coupled with nearest-neighboring coupled-map lattices. Theoretical analyses and computer simulations confirm that the proposed algorithm has high level of security.

  17. An Example-Based Super-Resolution Algorithm for Selfie Images

    PubMed Central

    William, Jino Hans; Venkateswaran, N.; Narayanan, Srinath; Ramachandran, Sandeep

    2016-01-01

    A selfie is typically a self-portrait captured using the front camera of a smartphone. Most state-of-the-art smartphones are equipped with a high-resolution (HR) rear camera and a low-resolution (LR) front camera. As selfies are captured by front camera with limited pixel resolution, the fine details in it are explicitly missed. This paper aims to improve the resolution of selfies by exploiting the fine details in HR images captured by rear camera using an example-based super-resolution (SR) algorithm. HR images captured by rear camera carry significant fine details and are used as an exemplar to train an optimal matrix-value regression (MVR) operator. The MVR operator serves as an image-pair priori which learns the correspondence between the LR-HR patch-pairs and is effectively used to super-resolve LR selfie images. The proposed MVR algorithm avoids vectorization of image patch-pairs and preserves image-level information during both learning and recovering process. The proposed algorithm is evaluated for its efficiency and effectiveness both qualitatively and quantitatively with other state-of-the-art SR algorithms. The results validate that the proposed algorithm is efficient as it requires less than 3 seconds to super-resolve LR selfie and is effective as it preserves sharp details without introducing any counterfeit fine details. PMID:27064500

  18. On the usefulness of gradient information in multi-objective deformable image registration using a B-spline-based dual-dynamic transformation model: comparison of three optimization algorithms

    NASA Astrophysics Data System (ADS)

    Pirpinia, Kleopatra; Bosman, Peter A. N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja

    2015-03-01

    The use of gradient information is well-known to be highly useful in single-objective optimization-based image registration methods. However, its usefulness has not yet been investigated for deformable image registration from a multi-objective optimization perspective. To this end, within a previously introduced multi-objective optimization framework, we use a smooth B-spline-based dual-dynamic transformation model that allows us to derive gradient information analytically, while still being able to account for large deformations. Within the multi-objective framework, we previously employed a powerful evolutionary algorithm (EA) that computes and advances multiple outcomes at once, resulting in a set of solutions (a so-called Pareto front) that represents efficient trade-offs between the objectives. With the addition of the B-spline-based transformation model, we studied the usefulness of gradient information in multiobjective deformable image registration using three different optimization algorithms: the (gradient-less) EA, a gradientonly algorithm, and a hybridization of these two. We evaluated the algorithms to register highly deformed images: 2D MRI slices of the breast in prone and supine positions. Results demonstrate that gradient-based multi-objective optimization significantly speeds up optimization in the initial stages of optimization. However, allowing sufficient computational resources, better results could still be obtained with the EA. Ultimately, the hybrid EA found the best overall approximation of the optimal Pareto front, further indicating that adding gradient-based optimization for multiobjective optimization-based deformable image registration can indeed be beneficial

  19. The performance analysis of three-dimensional track-before-detect algorithm based on Fisher-Tippett-Gnedenko theorem

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan; Song, Sungchan

    2016-09-01

    The dim moving target tracking from the infrared image sequence in the presence of high clutter and noise has been recently under intensive investigation. The track-before-detect (TBD) algorithm processing the image sequence over a number of frames before decisions on the target track and existence is known to be especially attractive in very low SNR environments (⩽ 3 dB). In this paper, we shortly present a three-dimensional (3-D) TBD with dynamic programming (TBD-DP) algorithm using multiple IR image sensors. Since traditional two-dimensional TBD algorithm cannot track and detect the along the viewing direction, we use 3-D TBD with multiple sensors and also strictly analyze the detection performance (false alarm and detection probabilities) based on Fisher-Tippett-Gnedenko theorem. The 3-D TBD-DP algorithm which does not require a separate image registration step uses the pixel intensity values jointly read off from multiple image frames to compute the merit function required in the DP process. Therefore, we also establish the relationship between the pixel coordinates of image frame and the reference coordinates.

  20. [Design and Implementation of Image Interpolation and Color Correction for Ultra-thin Electronic Endoscope on FPGA].

    PubMed

    Luo, Qiang; Yan, Zhuangzhi; Gu, Dongxing; Cao, Lei

    This paper proposed an image interpolation algorithm based on bilinear interpolation and a color correction algorithm based on polynomial regression on FPGA, which focused on the limited number of imaging pixels and color distortion of the ultra-thin electronic endoscope. Simulation experiment results showed that the proposed algorithm realized the real-time display of 1280 x 720@60Hz HD video, and using the X-rite color checker as standard colors, the average color difference was reduced about 30% comparing with that before color correction.

  1. Improvement of Speckle Contrast Image Processing by an Efficient Algorithm.

    PubMed

    Steimers, A; Farnung, W; Kohl-Bareis, M

    2016-01-01

    We demonstrate an efficient algorithm for the temporal and spatial based calculation of speckle contrast for the imaging of blood flow by laser speckle contrast analysis (LASCA). It reduces the numerical complexity of necessary calculations, facilitates a multi-core and many-core implementation of the speckle analysis and enables an independence of temporal or spatial resolution and SNR. The new algorithm was evaluated for both spatial and temporal based analysis of speckle patterns with different image sizes and amounts of recruited pixels as sequential, multi-core and many-core code.

  2. Plane-Based Sampling for Ray Casting Algorithm in Sequential Medical Images

    PubMed Central

    Lin, Lili; Chen, Shengyong; Shao, Yan; Gu, Zichun

    2013-01-01

    This paper proposes a plane-based sampling method to improve the traditional Ray Casting Algorithm (RCA) for the fast reconstruction of a three-dimensional biomedical model from sequential images. In the novel method, the optical properties of all sampling points depend on the intersection points when a ray travels through an equidistant parallel plan cluster of the volume dataset. The results show that the method improves the rendering speed at over three times compared with the conventional algorithm and the image quality is well guaranteed. PMID:23424608

  3. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    PubMed

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  4. Machine-Vision Aids for Improved Flight Operations

    NASA Technical Reports Server (NTRS)

    Menon, P. K.; Chatterji, Gano B.

    1996-01-01

    The development of machine vision based pilot aids to help reduce night approach and landing accidents is explored. The techniques developed are motivated by the desire to use the available information sources for navigation such as the airport lighting layout, attitude sensors and Global Positioning System to derive more precise aircraft position and orientation information. The fact that airport lighting geometry is known and that images of airport lighting can be acquired by the camera, has lead to the synthesis of machine vision based algorithms for runway relative aircraft position and orientation estimation. The main contribution of this research is the synthesis of seven navigation algorithms based on two broad families of solutions. The first family of solution methods consists of techniques that reconstruct the airport lighting layout from the camera image and then estimate the aircraft position components by comparing the reconstructed lighting layout geometry with the known model of the airport lighting layout geometry. The second family of methods comprises techniques that synthesize the image of the airport lighting layout using a camera model and estimate the aircraft position and orientation by comparing this image with the actual image of the airport lighting acquired by the camera. Algorithms 1 through 4 belong to the first family of solutions while Algorithms 5 through 7 belong to the second family of solutions. Algorithms 1 and 2 are parameter optimization methods, Algorithms 3 and 4 are feature correspondence methods and Algorithms 5 through 7 are Kalman filter centered algorithms. Results of computer simulation are presented to demonstrate the performance of all the seven algorithms developed.

  5. Evaluation of security algorithms used for security processing on DICOM images

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomeng; Shuai, Jie; Zhang, Jianguo; Huang, H. K.

    2005-04-01

    In this paper, we developed security approach to provide security measures and features in PACS image acquisition and Tele-radiology image transmission. The security processing on medical images was based on public key infrastructure (PKI) and including digital signature and data encryption to achieve the security features of confidentiality, privacy, authenticity, integrity, and non-repudiation. There are many algorithms which can be used in PKI for data encryption and digital signature. In this research, we select several algorithms to perform security processing on different DICOM images in PACS environment, evaluate the security processing performance of these algorithms, and find the relationship between performance with image types, sizes and the implementation methods.

  6. Image recognition of clipped stigma traces in rice seeds

    NASA Astrophysics Data System (ADS)

    Cheng, F.; Ying, YB

    2005-11-01

    The objective of this research is to develop algorithm to recognize clipped stigma traces in rice seeds using image processing. At first, the micro-configuration of clipped stigma traces was observed with electronic scanning microscope. Then images of rice seeds were acquired with a color machine vision system. A digital image-processing algorithm based on morphological operations and Hough transform was developed to inspect the occurrence of clipped stigma traces. Five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and you3207 were evaluated. The algorithm was implemented with all image sets using a Matlab 6.5 procedure. The results showed that the algorithm achieved an average accuracy of 96%. The algorithm was proved to be insensitive to the different rice seed varieties.

  7. LSB Based Quantum Image Steganography Algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Zhao, Na; Wang, Luo

    2016-01-01

    Quantum steganography is the technique which hides a secret message into quantum covers such as quantum images. In this paper, two blind LSB steganography algorithms in the form of quantum circuits are proposed based on the novel enhanced quantum representation (NEQR) for quantum images. One algorithm is plain LSB which uses the message bits to substitute for the pixels' LSB directly. The other is block LSB which embeds a message bit into a number of pixels that belong to one image block. The extracting circuits can regain the secret message only according to the stego cover. Analysis and simulation-based experimental results demonstrate that the invisibility is good, and the balance between the capacity and the robustness can be adjusted according to the needs of applications.

  8. Color reproduction and processing algorithm based on real-time mapping for endoscopic images.

    PubMed

    Khan, Tareq H; Mohammed, Shahed K; Imtiaz, Mohammad S; Wahid, Khan A

    2016-01-01

    In this paper, we present a real-time preprocessing algorithm for image enhancement for endoscopic images. A novel dictionary based color mapping algorithm is used for reproducing the color information from a theme image. The theme image is selected from a nearby anatomical location. A database of color endoscopy image for different location is prepared for this purpose. The color map is dynamic as its contents change with the change of the theme image. This method is used on low contrast grayscale white light images and raw narrow band images to highlight the vascular and mucosa structures and to colorize the images. It can also be applied to enhance the tone of color images. The statistic visual representation and universal image quality measures show that the proposed method can highlight the mucosa structure compared to other methods. The color similarity has been verified using Delta E color difference, structure similarity index, mean structure similarity index and structure and hue similarity. The color enhancement was measured using color enhancement factor that shows considerable improvements. The proposed algorithm has low and linear time complexity, which results in higher execution speed than other related works.

  9. Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study.

    PubMed

    Zhang, Xiaoyong; Homma, Noriyasu; Ichiji, Kei; Takai, Yoshihiro; Yoshizawa, Makoto

    2015-05-01

    To develop a markerless tracking algorithm to track the tumor boundary in megavoltage (MV)-electronic portal imaging device (EPID) images for image-guided radiation therapy. A level set method (LSM)-based algorithm is developed to track tumor boundary in EPID image sequences. Given an EPID image sequence, an initial curve is manually specified in the first frame. Driven by a region-scalable energy fitting function, the initial curve automatically evolves toward the tumor boundary and stops on the desired boundary while the energy function reaches its minimum. For the subsequent frames, the tracking algorithm updates the initial curve by using the tracking result in the previous frame and reuses the LSM to detect the tumor boundary in the subsequent frame so that the tracking processing can be continued without user intervention. The tracking algorithm is tested on three image datasets, including a 4-D phantom EPID image sequence, four digitally deformable phantom image sequences with different noise levels, and four clinical EPID image sequences acquired in lung cancer treatment. The tracking accuracy is evaluated based on two metrics: centroid localization error (CLE) and volume overlap index (VOI) between the tracking result and the ground truth. For the 4-D phantom image sequence, the CLE is 0.23 ± 0.20 mm, and VOI is 95.6% ± 0.2%. For the digital phantom image sequences, the total CLE and VOI are 0.11 ± 0.08 mm and 96.7% ± 0.7%, respectively. In addition, for the clinical EPID image sequences, the proposed algorithm achieves 0.32 ± 0.77 mm in the CLE and 72.1% ± 5.5% in the VOI. These results demonstrate the effectiveness of the authors' proposed method both in tumor localization and boundary tracking in EPID images. In addition, compared with two existing tracking algorithms, the proposed method achieves a higher accuracy in tumor localization. In this paper, the authors presented a feasibility study of tracking tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors' algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such as adaptive beam delivery, dose evaluation.

  10. Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoyong, E-mail: xiaoyong@ieee.org; Homma, Noriyasu, E-mail: homma@ieee.org; Ichiji, Kei, E-mail: ichiji@yoshizawa.ecei.tohoku.ac.jp

    2015-05-15

    Purpose: To develop a markerless tracking algorithm to track the tumor boundary in megavoltage (MV)-electronic portal imaging device (EPID) images for image-guided radiation therapy. Methods: A level set method (LSM)-based algorithm is developed to track tumor boundary in EPID image sequences. Given an EPID image sequence, an initial curve is manually specified in the first frame. Driven by a region-scalable energy fitting function, the initial curve automatically evolves toward the tumor boundary and stops on the desired boundary while the energy function reaches its minimum. For the subsequent frames, the tracking algorithm updates the initial curve by using the trackingmore » result in the previous frame and reuses the LSM to detect the tumor boundary in the subsequent frame so that the tracking processing can be continued without user intervention. The tracking algorithm is tested on three image datasets, including a 4-D phantom EPID image sequence, four digitally deformable phantom image sequences with different noise levels, and four clinical EPID image sequences acquired in lung cancer treatment. The tracking accuracy is evaluated based on two metrics: centroid localization error (CLE) and volume overlap index (VOI) between the tracking result and the ground truth. Results: For the 4-D phantom image sequence, the CLE is 0.23 ± 0.20 mm, and VOI is 95.6% ± 0.2%. For the digital phantom image sequences, the total CLE and VOI are 0.11 ± 0.08 mm and 96.7% ± 0.7%, respectively. In addition, for the clinical EPID image sequences, the proposed algorithm achieves 0.32 ± 0.77 mm in the CLE and 72.1% ± 5.5% in the VOI. These results demonstrate the effectiveness of the authors’ proposed method both in tumor localization and boundary tracking in EPID images. In addition, compared with two existing tracking algorithms, the proposed method achieves a higher accuracy in tumor localization. Conclusions: In this paper, the authors presented a feasibility study of tracking tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors’ algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such as adaptive beam delivery, dose evaluation.« less

  11. Evaluation of Laser Based Alignment Algorithms Under Additive Random and Diffraction Noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClay, W A; Awwal, A; Wilhelmsen, K

    2004-09-30

    The purpose of the automatic alignment algorithm at the National Ignition Facility (NIF) is to determine the position of a laser beam based on the position of beam features from video images. The position information obtained is used to command motors and attenuators to adjust the beam lines to the desired position, which facilitates the alignment of all 192 beams. One of the goals of the algorithm development effort is to ascertain the performance, reliability, and uncertainty of the position measurement. This paper describes a method of evaluating the performance of algorithms using Monte Carlo simulation. In particular we showmore » the application of this technique to the LM1{_}LM3 algorithm, which determines the position of a series of two beam light sources. The performance of the algorithm was evaluated for an ensemble of over 900 simulated images with varying image intensities and noise counts, as well as varying diffraction noise amplitude and frequency. The performance of the algorithm on the image data set had a tolerance well beneath the 0.5-pixel system requirement.« less

  12. An improved finger-vein recognition algorithm based on template matching

    NASA Astrophysics Data System (ADS)

    Liu, Yueyue; Di, Si; Jin, Jian; Huang, Daoping

    2016-10-01

    Finger-vein recognition has became the most popular biometric identify methods. The investigation on the recognition algorithms always is the key point in this field. So far, there are many applicable algorithms have been developed. However, there are still some problems in practice, such as the variance of the finger position which may lead to the image distortion and shifting; during the identification process, some matching parameters determined according to experience may also reduce the adaptability of algorithm. Focus on above mentioned problems, this paper proposes an improved finger-vein recognition algorithm based on template matching. In order to enhance the robustness of the algorithm for the image distortion, the least squares error method is adopted to correct the oblique finger. During the feature extraction, local adaptive threshold method is adopted. As regard as the matching scores, we optimized the translation preferences as well as matching distance between the input images and register images on the basis of Naoto Miura algorithm. Experimental results indicate that the proposed method can improve the robustness effectively under the finger shifting and rotation conditions.

  13. Research on improved edge extraction algorithm of rectangular piece

    NASA Astrophysics Data System (ADS)

    He, Yi-Bin; Zeng, Ya-Jun; Chen, Han-Xin; Xiao, San-Xia; Wang, Yan-Wei; Huang, Si-Yu

    Traditional edge detection operators such as Prewitt operator, LOG operator and Canny operator, etc. cannot meet the requirements of the modern industrial measurement. This paper proposes a kind of image edge detection algorithm based on improved morphological gradient. It can be detect the image using structural elements, which deals with the characteristic information of the image directly. Choosing different shapes and sizes of structural elements to use together, the ideal image edge information can be detected. The experimental result shows that the algorithm can well extract image edge with noise, which is clearer, and has more detailed edges compared with the previous edge detection algorithm.

  14. Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography

    PubMed Central

    Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Miura, Masahiro; Yasuno, Yoshiaki

    2016-01-01

    This paper describes a complex correlation mapping algorithm for optical coherence angiography (cmOCA). The proposed algorithm avoids the signal-to-noise ratio dependence and exhibits low noise in vasculature imaging. The complex correlation coefficient of the signals, rather than that of the measured data are estimated, and two-step averaging is introduced. Algorithms of motion artifact removal based on non perfusing tissue detection using correlation are developed. The algorithms are implemented with Jones-matrix OCT. Simultaneous imaging of pigmented tissue and vasculature is also achieved using degree of polarization uniformity imaging with cmOCA. An application of cmOCA to in vivo posterior human eyes is presented to demonstrate that high-contrast images of patients’ eyes can be obtained. PMID:27446673

  15. Image encryption algorithm based on multiple mixed hash functions and cyclic shift

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Zhu, Xiaoqiang; Wu, Xiangjun; Zhang, Yingqian

    2018-08-01

    This paper proposes a new one-time pad scheme for chaotic image encryption that is based on the multiple mixed hash functions and the cyclic-shift function. The initial value is generated using both information of the plaintext image and the chaotic sequences, which are calculated from the SHA1 and MD5 hash algorithms. The scrambling sequences are generated by the nonlinear equations and logistic map. This paper aims to improve the deficiencies of traditional Baptista algorithms and its improved algorithms. We employ the cyclic-shift function and piece-wise linear chaotic maps (PWLCM), which give each shift number the characteristics of chaos, to diffuse the image. Experimental results and security analysis show that the new scheme has better security and can resist common attacks.

  16. Single image super resolution algorithm based on edge interpolation in NSCT domain

    NASA Astrophysics Data System (ADS)

    Zhang, Mengqun; Zhang, Wei; He, Xinyu

    2017-11-01

    In order to preserve the texture and edge information and to improve the space resolution of single frame, a superresolution algorithm based on Contourlet (NSCT) is proposed. The original low resolution image is transformed by NSCT, and the directional sub-band coefficients of the transform domain are obtained. According to the scale factor, the high frequency sub-band coefficients are amplified by the interpolation method based on the edge direction to the desired resolution. For high frequency sub-band coefficients with noise and weak targets, Bayesian shrinkage is used to calculate the threshold value. The coefficients below the threshold are determined by the correlation among the sub-bands of the same scale to determine whether it is noise and de-noising. The anisotropic diffusion filter is used to effectively enhance the weak target in the low contrast region of the target and background. Finally, the high-frequency sub-band is amplified by the bilinear interpolation method to the desired resolution, and then combined with the high-frequency subband coefficients after de-noising and small target enhancement, the NSCT inverse transform is used to obtain the desired resolution image. In order to verify the effectiveness of the proposed algorithm, the proposed algorithm and several common image reconstruction methods are used to test the synthetic image, motion blurred image and hyperspectral image, the experimental results show that compared with the traditional single resolution algorithm, the proposed algorithm can obtain smooth edges and good texture features, and the reconstructed image structure is well preserved and the noise is suppressed to some extent.

  17. MLESAC Based Localization of Needle Insertion Using 2D Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Gao, Dedong; Wang, Shan; Zhanwen, A.

    2018-04-01

    In the 2D ultrasound image of ultrasound-guided percutaneous needle insertions, it is difficult to determine the positions of needle axis and tip because of the existence of artifacts and other noises. In this work the speckle is regarded as the noise of an ultrasound image, and a novel algorithm is presented to detect the needle in a 2D ultrasound image. Firstly, the wavelet soft thresholding technique based on BayesShrink rule is used to denoise the speckle of ultrasound image. Secondly, we add Otsu’s thresholding method and morphologic operations to pre-process the ultrasound image. Finally, the localization of the needle is identified and positioned in the 2D ultrasound image based on the maximum likelihood estimation sample consensus (MLESAC) algorithm. The experimental results show that it is valid for estimating the position of needle axis and tip in the ultrasound images with the proposed algorithm. The research work is hopeful to be used in the path planning and robot-assisted needle insertion procedures.

  18. GPU-based relative fuzzy connectedness image segmentation.

    PubMed

    Zhuge, Ying; Ciesielski, Krzysztof C; Udupa, Jayaram K; Miller, Robert W

    2013-01-01

    Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. The most common FC segmentations, optimizing an [script-l](∞)-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  19. GPU-based relative fuzzy connectedness image segmentation

    PubMed Central

    Zhuge, Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.

    2013-01-01

    Purpose: Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an ℓ∞-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology. PMID:23298094

  20. Automatic parameter selection for feature-based multi-sensor image registration

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen; Tom, Victor; Webb, Helen; Chao, Alan

    2006-05-01

    Accurate image registration is critical for applications such as precision targeting, geo-location, change-detection, surveillance, and remote sensing. However, the increasing volume of image data is exceeding the current capacity of human analysts to perform manual registration. This image data glut necessitates the development of automated approaches to image registration, including algorithm parameter value selection. Proper parameter value selection is crucial to the success of registration techniques. The appropriate algorithm parameters can be highly scene and sensor dependent. Therefore, robust algorithm parameter value selection approaches are a critical component of an end-to-end image registration algorithm. In previous work, we developed a general framework for multisensor image registration which includes feature-based registration approaches. In this work we examine the problem of automated parameter selection. We apply the automated parameter selection approach of Yitzhaky and Peli to select parameters for feature-based registration of multisensor image data. The approach consists of generating multiple feature-detected images by sweeping over parameter combinations and using these images to generate estimated ground truth. The feature-detected images are compared to the estimated ground truth images to generate ROC points associated with each parameter combination. We develop a strategy for selecting the optimal parameter set by choosing the parameter combination corresponding to the optimal ROC point. We present numerical results showing the effectiveness of the approach using registration of collected SAR data to reference EO data.

  1. Convex composite wavelet frame and total variation-based image deblurring using nonconvex penalty functions

    NASA Astrophysics Data System (ADS)

    Shen, Zhengwei; Cheng, Lishuang

    2017-09-01

    Total variation (TV)-based image deblurring method can bring on staircase artifacts in the homogenous region of the latent images recovered from the degraded images while a wavelet/frame-based image deblurring method will lead to spurious noise spikes and pseudo-Gibbs artifacts in the vicinity of discontinuities of the latent images. To suppress these artifacts efficiently, we propose a nonconvex composite wavelet/frame and TV-based image deblurring model. In this model, the wavelet/frame and the TV-based methods may complement each other, which are verified by theoretical analysis and experimental results. To further improve the quality of the latent images, nonconvex penalty function is used to be the regularization terms of the model, which may induce a stronger sparse solution and will more accurately estimate the relative large gradient or wavelet/frame coefficients of the latent images. In addition, by choosing a suitable parameter to the nonconvex penalty function, the subproblem that splits by the alternative direction method of multipliers algorithm from the proposed model can be guaranteed to be a convex optimization problem; hence, each subproblem can converge to a global optimum. The mean doubly augmented Lagrangian and the isotropic split Bregman algorithms are used to solve these convex subproblems where the designed proximal operator is used to reduce the computational complexity of the algorithms. Extensive numerical experiments indicate that the proposed model and algorithms are comparable to other state-of-the-art model and methods.

  2. An overview of methods to mitigate artifacts in optical coherence tomography imaging of the skin.

    PubMed

    Adabi, Saba; Fotouhi, Audrey; Xu, Qiuyun; Daveluy, Steve; Mehregan, Darius; Podoleanu, Adrian; Nasiriavanaki, Mohammadreza

    2018-05-01

    Optical coherence tomography (OCT) of skin delivers three-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution modality, OCT images suffer from some artifacts that lead to misinterpretation of tissue structures. Therefore, an overview of methods to mitigate artifacts in OCT imaging of the skin is of paramount importance. Speckle, intensity decay, and blurring are three major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. Two speckle reduction methods (one based on artificial neural network and one based on spatial compounding), an attenuation compensation algorithm (based on Beer-Lambert law) and a deblurring procedure (using deconvolution), are described. Moreover, optical properties extraction algorithm based on extended Huygens-Fresnel (EHF) principle to obtain some additional information from OCT images are discussed. In this short overview, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts. The results showed a significant improvement in the visibility of the clinically relevant features in the images. The quality improvement was evaluated using several numerical assessment measures. Clinical dermatologists benefit from using these image enhancement algorithms to improve OCT diagnosis and essentially function as a noninvasive optical biopsy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    NASA Technical Reports Server (NTRS)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  4. PSF reconstruction for Compton-based prompt gamma imaging

    NASA Astrophysics Data System (ADS)

    Jan, Meei-Ling; Lee, Ming-Wei; Huang, Hsuan-Ming

    2018-02-01

    Compton-based prompt gamma (PG) imaging has been proposed for in vivo range verification in proton therapy. However, several factors degrade the image quality of PG images, some of which are due to inherent properties of a Compton camera such as spatial resolution and energy resolution. Moreover, Compton-based PG imaging has a spatially variant resolution loss. In this study, we investigate the performance of the list-mode ordered subset expectation maximization algorithm with a shift-variant point spread function (LM-OSEM-SV-PSF) model. We also evaluate how well the PG images reconstructed using an SV-PSF model reproduce the distal falloff of the proton beam. The SV-PSF parameters were estimated from simulation data of point sources at various positions. Simulated PGs were produced in a water phantom irradiated with a proton beam. Compared to the LM-OSEM algorithm, the LM-OSEM-SV-PSF algorithm improved the quality of the reconstructed PG images and the estimation of PG falloff positions. In addition, the 4.44 and 5.25 MeV PG emissions can be accurately reconstructed using the LM-OSEM-SV-PSF algorithm. However, for the 2.31 and 6.13 MeV PG emissions, the LM-OSEM-SV-PSF reconstruction provides limited improvement. We also found that the LM-OSEM algorithm followed by a shift-variant Richardson-Lucy deconvolution could reconstruct images with quality visually similar to the LM-OSEM-SV-PSF-reconstructed images, while requiring shorter computation time.

  5. A probabilistic approach to segmentation and classification of neoplasia in uterine cervix images using color and geometric features

    NASA Astrophysics Data System (ADS)

    Srinivasan, Yeshwanth; Hernes, Dana; Tulpule, Bhakti; Yang, Shuyu; Guo, Jiangling; Mitra, Sunanda; Yagneswaran, Sriraja; Nutter, Brian; Jeronimo, Jose; Phillips, Benny; Long, Rodney; Ferris, Daron

    2005-04-01

    Automated segmentation and classification of diagnostic markers in medical imagery are challenging tasks. Numerous algorithms for segmentation and classification based on statistical approaches of varying complexity are found in the literature. However, the design of an efficient and automated algorithm for precise classification of desired diagnostic markers is extremely image-specific. The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating an archive of 60,000 digitized color images of the uterine cervix. NLM is developing tools for the analysis and dissemination of these images over the Web for the study of visual features correlated with precancerous neoplasia and cancer. To enable indexing of images of the cervix, it is essential to develop algorithms for the segmentation of regions of interest, such as acetowhitened regions, and automatic identification and classification of regions exhibiting mosaicism and punctation. Success of such algorithms depends, primarily, on the selection of relevant features representing the region of interest. We present color and geometric features based statistical classification and segmentation algorithms yielding excellent identification of the regions of interest. The distinct classification of the mosaic regions from the non-mosaic ones has been obtained by clustering multiple geometric and color features of the segmented sections using various morphological and statistical approaches. Such automated classification methodologies will facilitate content-based image retrieval from the digital archive of uterine cervix and have the potential of developing an image based screening tool for cervical cancer.

  6. Creating an anthropomorphic digital MR phantom—an extensible tool for comparing and evaluating quantitative imaging algorithms

    NASA Astrophysics Data System (ADS)

    Bosca, Ryan J.; Jackson, Edward F.

    2016-01-01

    Assessing and mitigating the various sources of bias and variance associated with image quantification algorithms is essential to the use of such algorithms in clinical research and practice. Assessment is usually accomplished with grid-based digital reference objects (DRO) or, more recently, digital anthropomorphic phantoms based on normal human anatomy. Publicly available digital anthropomorphic phantoms can provide a basis for generating realistic model-based DROs that incorporate the heterogeneity commonly found in pathology. Using a publicly available vascular input function (VIF) and digital anthropomorphic phantom of a normal human brain, a methodology was developed to generate a DRO based on the general kinetic model (GKM) that represented realistic and heterogeneously enhancing pathology. GKM parameters were estimated from a deidentified clinical dynamic contrast-enhanced (DCE) MRI exam. This clinical imaging volume was co-registered with a discrete tissue model, and model parameters estimated from clinical images were used to synthesize a DCE-MRI exam that consisted of normal brain tissues and a heterogeneously enhancing brain tumor. An example application of spatial smoothing was used to illustrate potential applications in assessing quantitative imaging algorithms. A voxel-wise Bland-Altman analysis demonstrated negligible differences between the parameters estimated with and without spatial smoothing (using a small radius Gaussian kernel). In this work, we reported an extensible methodology for generating model-based anthropomorphic DROs containing normal and pathological tissue that can be used to assess quantitative imaging algorithms.

  7. Fast and automatic algorithm for optic disc extraction in retinal images using principle-component-analysis-based preprocessing and curvelet transform.

    PubMed

    Shahbeig, Saleh; Pourghassem, Hossein

    2013-01-01

    Optic disc or optic nerve (ON) head extraction in retinal images has widespread applications in retinal disease diagnosis and human identification in biometric systems. This paper introduces a fast and automatic algorithm for detecting and extracting the ON region accurately from the retinal images without the use of the blood-vessel information. In this algorithm, to compensate for the destructive changes of the illumination and also enhance the contrast of the retinal images, we estimate the illumination of background and apply an adaptive correction function on the curvelet transform coefficients of retinal images. In other words, we eliminate the fault factors and pave the way to extract the ON region exactly. Then, we detect the ON region from retinal images using the morphology operators based on geodesic conversions, by applying a proper adaptive correction function on the reconstructed image's curvelet transform coefficients and a novel powerful criterion. Finally, using a local thresholding on the detected area of the retinal images, we extract the ON region. The proposed algorithm is evaluated on available images of DRIVE and STARE databases. The experimental results indicate that the proposed algorithm obtains an accuracy rate of 100% and 97.53% for the ON extractions on DRIVE and STARE databases, respectively.

  8. Algorithm based on regional separation for automatic grain boundary extraction using improved mean shift method

    NASA Astrophysics Data System (ADS)

    Zhenying, Xu; Jiandong, Zhu; Qi, Zhang; Yamba, Philip

    2018-06-01

    Metallographic microscopy shows that the vast majority of metal materials are composed of many small grains; the grain size of a metal is important for determining the tensile strength, toughness, plasticity, and other mechanical properties. In order to quantitatively evaluate grain size in metals, grain boundaries must be identified in metallographic images. Based on the phenomenon of grain boundary blurring or disconnection in metallographic images, this study develops an algorithm based on regional separation for automatically extracting grain boundaries by an improved mean shift method. Experimental observation shows that the grain boundaries obtained by the proposed algorithm are highly complete and accurate. This research has practical value because the proposed algorithm is suitable for grain boundary extraction from most metallographic images.

  9. SU-E-J-110: A Novel Level Set Active Contour Algorithm for Multimodality Joint Segmentation/Registration Using the Jensen-Rényi Divergence.

    PubMed

    Markel, D; Naqa, I El; Freeman, C; Vallières, M

    2012-06-01

    To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. It was found that JR divergence when used for segmentation has an improved robustness to noise compared to using mutual information, or other entropy-based metrics. The MI metric failed at around 2/3 the noise power than the JR divergence. The JR divergence metric is useful for the task of joint segmentation/registration of multimodality images and shows improved results compared entropy based metric. The algorithm can be easily modified to incorporate non-intensity based images, which would allow applications into multi-modality and texture analysis. © 2012 American Association of Physicists in Medicine.

  10. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited

    PubMed Central

    Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Jian, Yifan; Verhaegen, Michel; Sarunic, Marinko V.

    2017-01-01

    In this report, which is an international collaboration of OCT, adaptive optics, and control research, we demonstrate the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm to guide the image based optimization for wavefront sensorless adaptive optics (WFSL-AO) OCT for in vivo human retinal imaging. The ocular aberrations were corrected using a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators. The DONE algorithm succeeded in drastically improving image quality and the OCT signal intensity, up to a factor seven, while achieving a computational time of 1 ms per iteration, making it applicable for many high speed applications. We demonstrate the correction of five aberrations using 70 iterations of the DONE algorithm performed over 2.8 s of continuous volumetric OCT acquisition. Data acquired from an imaging phantom and in vivo from human research volunteers are presented. PMID:28736670

  11. Noise-cancellation-based nonuniformity correction algorithm for infrared focal-plane arrays.

    PubMed

    Godoy, Sebastián E; Pezoa, Jorge E; Torres, Sergio N

    2008-10-10

    The spatial fixed-pattern noise (FPN) inherently generated in infrared (IR) imaging systems compromises severely the quality of the acquired imagery, even making such images inappropriate for some applications. The FPN refers to the inability of the photodetectors in the focal-plane array to render a uniform output image when a uniform-intensity scene is being imaged. We present a noise-cancellation-based algorithm that compensates for the additive component of the FPN. The proposed method relies on the assumption that a source of noise correlated to the additive FPN is available to the IR camera. An important feature of the algorithm is that all the calculations are reduced to a simple equation, which allows for the bias compensation of the raw imagery. The algorithm performance is tested using real IR image sequences and is compared to some classical methodologies. (c) 2008 Optical Society of America

  12. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited].

    PubMed

    Verstraete, Hans R G W; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Jian, Yifan; Verhaegen, Michel; Sarunic, Marinko V

    2017-04-01

    In this report, which is an international collaboration of OCT, adaptive optics, and control research, we demonstrate the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm to guide the image based optimization for wavefront sensorless adaptive optics (WFSL-AO) OCT for in vivo human retinal imaging. The ocular aberrations were corrected using a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators. The DONE algorithm succeeded in drastically improving image quality and the OCT signal intensity, up to a factor seven, while achieving a computational time of 1 ms per iteration, making it applicable for many high speed applications. We demonstrate the correction of five aberrations using 70 iterations of the DONE algorithm performed over 2.8 s of continuous volumetric OCT acquisition. Data acquired from an imaging phantom and in vivo from human research volunteers are presented.

  13. Automatic page layout using genetic algorithms for electronic albuming

    NASA Astrophysics Data System (ADS)

    Geigel, Joe; Loui, Alexander C. P.

    2000-12-01

    In this paper, we describe a flexible system for automatic page layout that makes use of genetic algorithms for albuming applications. The system is divided into two modules, a page creator module which is responsible for distributing images amongst various album pages, and an image placement module which positions images on individual pages. Final page layouts are specified in a textual form using XML for printing or viewing over the Internet. The system makes use of genetic algorithms, a class of search and optimization algorithms that are based on the concepts of biological evolution, for generating solutions with fitness based on graphic design preferences supplied by the user. The genetic page layout algorithm has been incorporated into a web-based prototype system for interactive page layout over the Internet. The prototype system is built using client-server architecture and is implemented in java. The system described in this paper has demonstrated the feasibility of using genetic algorithms for automated page layout in albuming and web-based imaging applications. We believe that the system adequately proves the validity of the concept, providing creative layouts in a reasonable number of iterations. By optimizing the layout parameters of the fitness function, we hope to further improve the quality of the final layout in terms of user preference and computation speed.

  14. Generation and assessment of turntable SAR data for the support of ATR development

    NASA Astrophysics Data System (ADS)

    Cohen, Marvin N.; Showman, Gregory A.; Sangston, K. James; Sylvester, Vincent B.; Gostin, Lamar; Scheer, C. Ruby

    1998-10-01

    Inverse synthetic aperture radar (ISAR) imaging on a turntable-tower test range permits convenient generation of high resolution two-dimensional images of radar targets under controlled conditions for testing SAR image processing and for supporting automatic target recognition (ATR) algorithm development. However, turntable ISAR images are often obtained under near-field geometries and hence may suffer geometric distortions not present in airborne SAR images. In this paper, turntable data collected at Georgia Tech's Electromagnetic Test Facility are used to begin to assess the utility of two- dimensional ISAR imaging algorithms in forming images to support ATR development. The imaging algorithms considered include a simple 2D discrete Fourier transform (DFT), a 2-D DFT with geometric correction based on image domain resampling, and a computationally-intensive geometric matched filter solution. Images formed with the various algorithms are used to develop ATR templates, which are then compared with an eye toward utilization in an ATR algorithm.

  15. Infrared small target tracking based on SOPC

    NASA Astrophysics Data System (ADS)

    Hu, Taotao; Fan, Xiang; Zhang, Yu-Jin; Cheng, Zheng-dong; Zhu, Bin

    2011-01-01

    The paper presents a low cost FPGA based solution for a real-time infrared small target tracking system. A specialized architecture is presented based on a soft RISC processor capable of running kernel based mean shift tracking algorithm. Mean shift tracking algorithm is realized in NIOS II soft-core with SOPC (System on a Programmable Chip) technology. Though mean shift algorithm is widely used for target tracking, the original mean shift algorithm can not be directly used for infrared small target tracking. As infrared small target only has intensity information, so an improved mean shift algorithm is presented in this paper. How to describe target will determine whether target can be tracked by mean shift algorithm. Because color target can be tracked well by mean shift algorithm, imitating color image expression, spatial component and temporal component are advanced to describe target, which forms pseudo-color image. In order to improve the processing speed parallel technology and pipeline technology are taken. Two RAM are taken to stored images separately by ping-pong technology. A FLASH is used to store mass temp data. The experimental results show that infrared small target is tracked stably in complicated background.

  16. Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images

    NASA Astrophysics Data System (ADS)

    Awumah, Anna; Mahanti, Prasun; Robinson, Mark

    2016-10-01

    Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).

  17. GPU implementation of prior image constrained compressed sensing (PICCS)

    NASA Astrophysics Data System (ADS)

    Nett, Brian E.; Tang, Jie; Chen, Guang-Hong

    2010-04-01

    The Prior Image Constrained Compressed Sensing (PICCS) algorithm (Med. Phys. 35, pg. 660, 2008) has been applied to several computed tomography applications with both standard CT systems and flat-panel based systems designed for guiding interventional procedures and radiation therapy treatment delivery. The PICCS algorithm typically utilizes a prior image which is reconstructed via the standard Filtered Backprojection (FBP) reconstruction algorithm. The algorithm then iteratively solves for the image volume that matches the measured data, while simultaneously assuring the image is similar to the prior image. The PICCS algorithm has demonstrated utility in several applications including: improved temporal resolution reconstruction, 4D respiratory phase specific reconstructions for radiation therapy, and cardiac reconstruction from data acquired on an interventional C-arm. One disadvantage of the PICCS algorithm, just as other iterative algorithms, is the long computation times typically associated with reconstruction. In order for an algorithm to gain clinical acceptance reconstruction must be achievable in minutes rather than hours. In this work the PICCS algorithm has been implemented on the GPU in order to significantly reduce the reconstruction time of the PICCS algorithm. The Compute Unified Device Architecture (CUDA) was used in this implementation.

  18. Security Analysis of Image Encryption Based on Gyrator Transform by Searching the Rotation Angle with Improved PSO Algorithm.

    PubMed

    Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong

    2015-08-05

    Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms.

  19. WE-G-18A-04: 3D Dictionary Learning Based Statistical Iterative Reconstruction for Low-Dose Cone Beam CT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, T; UT Southwestern Medical Center, Dallas, TX; Yan, H

    2014-06-15

    Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm inmore » a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential clinical application. A high zresolution is preferred to stabilize statistical iterative reconstruction. This work was supported in part by NIH(1R01CA154747-01), NSFC((No. 61172163), Research Fund for the Doctoral Program of Higher Education of China (No. 20110201110011), China Scholarship Council.« less

  20. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    PubMed

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-04-28

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  1. SU-E-J-16: Automatic Image Contrast Enhancement Based On Automatic Parameter Optimization for Radiation Therapy Setup Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, J; Washington University in St Louis, St Louis, MO; Li, H. Harlod

    Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The mostmore » important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.« less

  2. A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images.

    PubMed

    Du, Xiaogang; Dang, Jianwu; Wang, Yangping; Wang, Song; Lei, Tao

    2016-01-01

    The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU).

  3. Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms.

    PubMed

    Yousefi, Sahar; Azmi, Reza; Zahedi, Morteza

    2012-05-01

    Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Least significant qubit algorithm for quantum images

    NASA Astrophysics Data System (ADS)

    Sang, Jianzhi; Wang, Shen; Li, Qiong

    2016-11-01

    To study the feasibility of the classical image least significant bit (LSB) information hiding algorithm on quantum computer, a least significant qubit (LSQb) information hiding algorithm of quantum image is proposed. In this paper, we focus on a novel quantum representation for color digital images (NCQI). Firstly, by designing the three qubits comparator and unitary operators, the reasonability and feasibility of LSQb based on NCQI are presented. Then, the concrete LSQb information hiding algorithm is proposed, which can realize the aim of embedding the secret qubits into the least significant qubits of RGB channels of quantum cover image. Quantum circuit of the LSQb information hiding algorithm is also illustrated. Furthermore, the secrets extracting algorithm and circuit are illustrated through utilizing control-swap gates. The two merits of our algorithm are: (1) it is absolutely blind and (2) when extracting secret binary qubits, it does not need any quantum measurement operation or any other help from classical computer. Finally, simulation and comparative analysis show the performance of our algorithm.

  5. Joint Transform Correlation for face tracking: elderly fall detection application

    NASA Astrophysics Data System (ADS)

    Katz, Philippe; Aron, Michael; Alfalou, Ayman

    2013-03-01

    In this paper, an iterative tracking algorithm based on a non-linear JTC (Joint Transform Correlator) architecture and enhanced by a digital image processing method is proposed and validated. This algorithm is based on the computation of a correlation plane where the reference image is updated at each frame. For that purpose, we use the JTC technique in real time to track a patient (target image) in a room fitted with a video camera. The correlation plane is used to localize the target image in the current video frame (frame i). Then, the reference image to be exploited in the next frame (frame i+1) is updated according to the previous one (frame i). In an effort to validate our algorithm, our work is divided into two parts: (i) a large study based on different sequences with several situations and different JTC parameters is achieved in order to quantify their effects on the tracking performances (decimation, non-linearity coefficient, size of the correlation plane, size of the region of interest...). (ii) the tracking algorithm is integrated into an application of elderly fall detection. The first reference image is a face detected by means of Haar descriptors, and then localized into the new video image thanks to our tracking method. In order to avoid a bad update of the reference frame, a method based on a comparison of image intensity histograms is proposed and integrated in our algorithm. This step ensures a robust tracking of the reference frame. This article focuses on face tracking step optimisation and evalutation. A supplementary step of fall detection, based on vertical acceleration and position, will be added and studied in further work.

  6. A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Huang, Xia; Li, Yu-Xia; Song, Xiao-Na

    2013-01-01

    We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.

  7. Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Liu, Ti C.; Mitra, Sunanda

    1996-06-01

    Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.

  8. Two Automated Techniques for Carotid Lumen Diameter Measurement: Regional versus Boundary Approaches.

    PubMed

    Araki, Tadashi; Kumar, P Krishna; Suri, Harman S; Ikeda, Nobutaka; Gupta, Ajay; Saba, Luca; Rajan, Jeny; Lavra, Francesco; Sharma, Aditya M; Shafique, Shoaib; Nicolaides, Andrew; Laird, John R; Suri, Jasjit S

    2016-07-01

    The degree of stenosis in the carotid artery can be predicted using automated carotid lumen diameter (LD) measured from B-mode ultrasound images. Systolic velocity-based methods for measurement of LD are subjective. With the advancement of high resolution imaging, image-based methods have started to emerge. However, they require robust image analysis for accurate LD measurement. This paper presents two different algorithms for automated segmentation of the lumen borders in carotid ultrasound images. Both algorithms are modeled as a two stage process. Stage one consists of a global-based model using scale-space framework for the extraction of the region of interest. This stage is common to both algorithms. Stage two is modeled using a local-based strategy that extracts the lumen interfaces. At this stage, the algorithm-1 is modeled as a region-based strategy using a classification framework, whereas the algorithm-2 is modeled as a boundary-based approach that uses the level set framework. Two sets of databases (DB), Japan DB (JDB) (202 patients, 404 images) and Hong Kong DB (HKDB) (50 patients, 300 images) were used in this study. Two trained neuroradiologists performed manual LD tracings. The mean automated LD measured was 6.35 ± 0.95 mm for JDB and 6.20 ± 1.35 mm for HKDB. The precision-of-merit was: 97.4 % and 98.0 % w.r.t to two manual tracings for JDB and 99.7 % and 97.9 % w.r.t to two manual tracings for HKDB. Statistical tests such as ANOVA, Chi-Squared, T-test, and Mann-Whitney test were conducted to show the stability and reliability of the automated techniques.

  9. Evaluation of mathematical algorithms for automatic patient alignment in radiosurgery.

    PubMed

    Williams, Kenneth M; Schulte, Reinhard W; Schubert, Keith E; Wroe, Andrew J

    2015-06-01

    Image registration techniques based on anatomical features can serve to automate patient alignment for intracranial radiosurgery procedures in an effort to improve the accuracy and efficiency of the alignment process as well as potentially eliminate the need for implanted fiducial markers. To explore this option, four two-dimensional (2D) image registration algorithms were analyzed: the phase correlation technique, mutual information (MI) maximization, enhanced correlation coefficient (ECC) maximization, and the iterative closest point (ICP) algorithm. Digitally reconstructed radiographs from the treatment planning computed tomography scan of a human skull were used as the reference images, while orthogonal digital x-ray images taken in the treatment room were used as the captured images to be aligned. The accuracy of aligning the skull with each algorithm was compared to the alignment of the currently practiced procedure, which is based on a manual process of selecting common landmarks, including implanted fiducials and anatomical skull features. Of the four algorithms, three (phase correlation, MI maximization, and ECC maximization) demonstrated clinically adequate (ie, comparable to the standard alignment technique) translational accuracy and improvements in speed compared to the interactive, user-guided technique; however, the ICP algorithm failed to give clinically acceptable results. The results of this work suggest that a combination of different algorithms may provide the best registration results. This research serves as the initial groundwork for the translation of automated, anatomy-based 2D algorithms into a real-world system for 2D-to-2D image registration and alignment for intracranial radiosurgery. This may obviate the need for invasive implantation of fiducial markers into the skull and may improve treatment room efficiency and accuracy. © The Author(s) 2014.

  10. Intra-operative registration for image enhanced endoscopic sinus surgery using photo-consistency.

    PubMed

    Chen, Min Si; Gonzalez, Gerardo; Lapeer, Rudy

    2007-01-01

    The purpose of this paper is to present an intensity based algorithm for aligning 2D endoscopic images with virtual images generated from pre-operative 3D data. The proposed algorithm uses photo-consistency as the measurement of similarity between images, provided the illumination is independent from the viewing direction.

  11. An effective approach for iris recognition using phase-based image matching.

    PubMed

    Miyazawa, Kazuyuki; Ito, Koichi; Aoki, Takafumi; Kobayashi, Koji; Nakajima, Hiroshi

    2008-10-01

    This paper presents an efficient algorithm for iris recognition using phase-based image matching--an image matching technique using phase components in 2D Discrete Fourier Transforms (DFTs) of given images. Experimental evaluation using CASIA iris image databases (versions 1.0 and 2.0) and Iris Challenge Evaluation (ICE) 2005 database clearly demonstrates that the use of phase components of iris images makes possible to achieve highly accurate iris recognition with a simple matching algorithm. This paper also discusses major implementation issues of our algorithm. In order to reduce the size of iris data and to prevent the visibility of iris images, we introduce the idea of 2D Fourier Phase Code (FPC) for representing iris information. The 2D FPC is particularly useful for implementing compact iris recognition devices using state-of-the-art Digital Signal Processing (DSP) technology.

  12. Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature.

    PubMed

    Qu, Yufu; Zou, Zhaofan

    2017-10-16

    Photographic images taken in foggy or hazy weather (hazy images) exhibit poor visibility and detail because of scattering and attenuation of light caused by suspended particles, and therefore, image dehazing has attracted considerable research attention. The current polarization-based dehazing algorithms strongly rely on the presence of a "sky area", and thus, the selection of model parameters is susceptible to external interference of high-brightness objects and strong light sources. In addition, the noise of the restored image is large. In order to solve these problems, we propose a polarization-based dehazing algorithm that does not rely on the sky area ("non-sky"). First, a linear polarizer is used to collect three polarized images. The maximum- and minimum-intensity images are then obtained by calculation, assuming the polarization of light emanating from objects is negligible in most scenarios involving non-specular objects. Subsequently, the polarization difference of the two images is used to determine a sky area and calculate the infinite atmospheric light value. Next, using the global features of the image, and based on the assumption that the airlight and object radiance are irrelevant, the degree of polarization of the airlight (DPA) is calculated by solving for the optimal solution of the correlation coefficient equation between airlight and object radiance; the optimal solution is obtained by setting the right-hand side of the equation to zero. Then, the hazy image is subjected to dehazing. Subsequently, a filtering denoising algorithm, which combines the polarization difference information and block-matching and 3D (BM3D) filtering, is designed to filter the image smoothly. Our experimental results show that the proposed polarization-based dehazing algorithm does not depend on whether the image includes a sky area and does not require complex models. Moreover, the dehazing image except specular object scenarios is superior to those obtained by Tarel, Fattal, Ren, and Berman based on the criteria of no-reference quality assessment (NRQA), blind/referenceless image spatial quality evaluator (BRISQUE), blind anistropic quality index (AQI), and e.

  13. Colony image acquisition and segmentation

    NASA Astrophysics Data System (ADS)

    Wang, W. X.

    2007-12-01

    For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems. The main problems are image acquisition and image segmentation. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. The developed colony image segmentation algorithm consists of the sub-algorithms: (1) image classification; (2) image processing; and (3) colony delineation. The colony delineation algorithm main contain: the procedures based on grey level similarity, on boundary tracing, on shape information and colony excluding. In addition, a number of algorithms are developed for colony analysis. The system has been tested and satisfactory.

  14. A novel ship CFAR detection algorithm based on adaptive parameter enhancement and wake-aided detection in SAR images

    NASA Astrophysics Data System (ADS)

    Meng, Siqi; Ren, Kan; Lu, Dongming; Gu, Guohua; Chen, Qian; Lu, Guojun

    2018-03-01

    Synthetic aperture radar (SAR) is an indispensable and useful method for marine monitoring. With the increase of SAR sensors, high resolution images can be acquired and contain more target structure information, such as more spatial details etc. This paper presents a novel adaptive parameter transform (APT) domain constant false alarm rate (CFAR) to highlight targets. The whole method is based on the APT domain value. Firstly, the image is mapped to the new transform domain by the algorithm. Secondly, the false candidate target pixels are screened out by the CFAR detector to highlight the target ships. Thirdly, the ship pixels are replaced by the homogeneous sea pixels. And then, the enhanced image is processed by Niblack algorithm to obtain the wake binary image. Finally, normalized Hough transform (NHT) is used to detect wakes in the binary image, as a verification of the presence of the ships. Experiments on real SAR images validate that the proposed transform does enhance the target structure and improve the contrast of the image. The algorithm has a good performance in the ship and ship wake detection.

  15. A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation.

    PubMed

    Wang, Rui; Zhou, Yongquan; Zhao, Chengyan; Wu, Haizhou

    2015-01-01

    Multi-threshold image segmentation is a powerful image processing technique that is used for the preprocessing of pattern recognition and computer vision. However, traditional multilevel thresholding methods are computationally expensive because they involve exhaustively searching the optimal thresholds to optimize the objective functions. To overcome this drawback, this paper proposes a flower pollination algorithm with a randomized location modification. The proposed algorithm is used to find optimal threshold values for maximizing Otsu's objective functions with regard to eight medical grayscale images. When benchmarked against other state-of-the-art evolutionary algorithms, the new algorithm proves itself to be robust and effective through numerical experimental results including Otsu's objective values and standard deviations.

  16. A scale space based algorithm for automated segmentation of single shot tagged MRI of shearing deformation.

    PubMed

    Sprengers, Andre M J; Caan, Matthan W A; Moerman, Kevin M; Nederveen, Aart J; Lamerichs, Rolf M; Stoker, Jaap

    2013-04-01

    This study proposes a scale space based algorithm for automated segmentation of single-shot tagged images of modest SNR. Furthermore the algorithm was designed for analysis of discontinuous or shearing types of motion, i.e. segmentation of broken tag patterns. The proposed algorithm utilises non-linear scale space for automatic segmentation of single-shot tagged images. The algorithm's ability to automatically segment tagged shearing motion was evaluated in a numerical simulation and in vivo. A typical shearing deformation was simulated in a Shepp-Logan phantom allowing for quantitative evaluation of the algorithm's success rate as a function of both SNR and the amount of deformation. For a qualitative in vivo evaluation tagged images showing deformations in the calf muscles and eye movement in a healthy volunteer were acquired. Both the numerical simulation and the in vivo tagged data demonstrated the algorithm's ability for automated segmentation of single-shot tagged MR provided that SNR of the images is above 10 and the amount of deformation does not exceed the tag spacing. The latter constraint can be met by adjusting the tag delay or the tag spacing. The scale space based algorithm for automatic segmentation of single-shot tagged MR enables the application of tagged MR to complex (shearing) deformation and the processing of datasets with relatively low SNR.

  17. Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm.

    PubMed

    Zou, Weiyao; Qi, Xiaofeng; Burns, Stephen A

    2011-07-01

    We implemented a Lagrange-multiplier (LM)-based damped least-squares (DLS) control algorithm in a woofer-tweeter dual deformable-mirror (DM) adaptive optics scanning laser ophthalmoscope (AOSLO). The algorithm uses data from a single Shack-Hartmann wavefront sensor to simultaneously correct large-amplitude low-order aberrations by a woofer DM and small-amplitude higher-order aberrations by a tweeter DM. We measured the in vivo performance of high resolution retinal imaging with the dual DM AOSLO. We compared the simultaneous LM-based DLS dual DM controller with both single DM controller, and a successive dual DM controller. We evaluated performance using both wavefront (RMS) and image quality metrics including brightness and power spectrum. The simultaneous LM-based dual DM AO can consistently provide near diffraction-limited in vivo routine imaging of human retina.

  18. Pixel-level multisensor image fusion based on matrix completion and robust principal component analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.

    2016-01-01

    Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.

  19. The lucky image-motion prediction for simple scene observation based soft-sensor technology

    NASA Astrophysics Data System (ADS)

    Li, Yan; Su, Yun; Hu, Bin

    2015-08-01

    High resolution is important to earth remote sensors, while the vibration of the platforms of the remote sensors is a major factor restricting high resolution imaging. The image-motion prediction and real-time compensation are key technologies to solve this problem. For the reason that the traditional autocorrelation image algorithm cannot meet the demand for the simple scene image stabilization, this paper proposes to utilize soft-sensor technology in image-motion prediction, and focus on the research of algorithm optimization in imaging image-motion prediction. Simulations results indicate that the improving lucky image-motion stabilization algorithm combining the Back Propagation Network (BP NN) and support vector machine (SVM) is the most suitable for the simple scene image stabilization. The relative error of the image-motion prediction based the soft-sensor technology is below 5%, the training computing speed of the mathematical predication model is as fast as the real-time image stabilization in aerial photography.

  20. An improved non-uniformity correction algorithm and its GPU parallel implementation

    NASA Astrophysics Data System (ADS)

    Cheng, Kuanhong; Zhou, Huixin; Qin, Hanlin; Zhao, Dong; Qian, Kun; Rong, Shenghui

    2018-05-01

    The performance of SLP-THP based non-uniformity correction algorithm is seriously affected by the result of SLP filter, which always leads to image blurring and ghosting artifacts. To address this problem, an improved SLP-THP based non-uniformity correction method with curvature constraint was proposed. Here we put forward a new way to estimate spatial low frequency component. First, the details and contours of input image were obtained respectively by minimizing local Gaussian curvature and mean curvature of image surface. Then, the guided filter was utilized to combine these two parts together to get the estimate of spatial low frequency component. Finally, we brought this SLP component into SLP-THP method to achieve non-uniformity correction. The performance of proposed algorithm was verified by several real and simulated infrared image sequences. The experimental results indicated that the proposed algorithm can reduce the non-uniformity without detail losing. After that, a GPU based parallel implementation that runs 150 times faster than CPU was presented, which showed the proposed algorithm has great potential for real time application.

  1. Generation of high-dynamic range image from digital photo

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Potemin, Igor S.; Zhdanov, Dmitry D.; Wang, Xu-yang; Cheng, Han

    2016-10-01

    A number of the modern applications such as medical imaging, remote sensing satellites imaging, virtual prototyping etc use the High Dynamic Range Image (HDRI). Generally to obtain HDRI from ordinary digital image the camera is calibrated. The article proposes the camera calibration method based on the clear sky as the standard light source and takes sky luminance from CIE sky model for the corresponding geographical coordinates and time. The article considers base algorithms for getting real luminance values from ordinary digital image and corresponding programmed implementation of the algorithms. Moreover, examples of HDRI reconstructed from ordinary images illustrate the article.

  2. An effective non-rigid registration approach for ultrasound image based on "demons" algorithm.

    PubMed

    Liu, Yan; Cheng, H D; Huang, Jianhua; Zhang, Yingtao; Tang, Xianglong; Tian, Jiawei

    2013-06-01

    Medical image registration is an important component of computer-aided diagnosis system in diagnostics, therapy planning, and guidance of surgery. Because of its low signal/noise ratio (SNR), ultrasound (US) image registration is a difficult task. In this paper, a fully automatic non-rigid image registration algorithm based on demons algorithm is proposed for registration of ultrasound images. In the proposed method, an "inertia force" derived from the local motion trend of pixels in a Moore neighborhood system is produced and integrated into optical flow equation to estimate the demons force, which is helpful to handle the speckle noise and preserve the geometric continuity of US images. In the experiment, a series of US images and several similarity measure metrics are utilized for evaluating the performance. The experimental results demonstrate that the proposed method can register ultrasound images efficiently, robust to noise, quickly and automatically.

  3. A Novel Speed Compensation Method for ISAR Imaging with Low SNR

    PubMed Central

    Liu, Yongxiang; Zhang, Shuanghui; Zhu, Dekang; Li, Xiang

    2015-01-01

    In this paper, two novel speed compensation algorithms for ISAR imaging under a low signal-to-noise ratio (SNR) condition have been proposed, which are based on the cubic phase function (CPF) and the integrated cubic phase function (ICPF), respectively. These two algorithms can estimate the speed of the target from the wideband radar echo directly, which breaks the limitation of speed measuring in a radar system. With the utilization of non-coherent accumulation, the ICPF-based speed compensation algorithm is robust to noise and can meet the requirement of speed compensation for ISAR imaging under a low SNR condition. Moreover, a fast searching implementation strategy, which consists of coarse search and precise search, has been introduced to decrease the computational burden of speed compensation based on CPF and ICPF. Experimental results based on radar data validate the effectiveness of the proposed algorithms. PMID:26225980

  4. Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions

    PubMed Central

    Patwary, Nurmohammed; Preza, Chrysanthe

    2015-01-01

    A depth-variant (DV) image restoration algorithm for wide field fluorescence microscopy, using an orthonormal basis decomposition of DV point-spread functions (PSFs), is investigated in this study. The efficient PSF representation is based on a previously developed principal component analysis (PCA), which is computationally intensive. We present an approach developed to reduce the number of DV PSFs required for the PCA computation, thereby making the PCA-based approach computationally tractable for thick samples. Restoration results from both synthetic and experimental images show consistency and that the proposed algorithm addresses efficiently depth-induced aberration using a small number of principal components. Comparison of the PCA-based algorithm with a previously-developed strata-based DV restoration algorithm demonstrates that the proposed method improves performance by 50% in terms of accuracy and simultaneously reduces the processing time by 64% using comparable computational resources. PMID:26504634

  5. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A.

    2010-01-15

    Purpose: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. Methods: The proposed approach comprises of two reconstruction steps. In the first step, amore » chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredbackprojection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. Results: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. Conclusions: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.« less

  6. Automatic Image Registration of Multimodal Remotely Sensed Data with Global Shearlet Features

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2015-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone.

  7. Automatic Image Registration of Multi-Modal Remotely Sensed Data with Global Shearlet Features

    PubMed Central

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2017-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone. PMID:29123329

  8. Infrared super-resolution imaging based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Sui, Xiubao; Chen, Qian; Gu, Guohua; Shen, Xuewei

    2014-03-01

    The theoretical basis of traditional infrared super-resolution imaging method is Nyquist sampling theorem. The reconstruction premise is that the relative positions of the infrared objects in the low-resolution image sequences should keep fixed and the image restoration means is the inverse operation of ill-posed issues without fixed rules. The super-resolution reconstruction ability of the infrared image, algorithm's application area and stability of reconstruction algorithm are limited. To this end, we proposed super-resolution reconstruction method based on compressed sensing in this paper. In the method, we selected Toeplitz matrix as the measurement matrix and realized it by phase mask method. We researched complementary matching pursuit algorithm and selected it as the recovery algorithm. In order to adapt to the moving target and decrease imaging time, we take use of area infrared focal plane array to acquire multiple measurements at one time. Theoretically, the method breaks though Nyquist sampling theorem and can greatly improve the spatial resolution of the infrared image. The last image contrast and experiment data indicate that our method is effective in improving resolution of infrared images and is superior than some traditional super-resolution imaging method. The compressed sensing super-resolution method is expected to have a wide application prospect.

  9. A novel scheme for automatic nonrigid image registration using deformation invariant feature and geometric constraint

    NASA Astrophysics Data System (ADS)

    Deng, Zhipeng; Lei, Lin; Zhou, Shilin

    2015-10-01

    Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.

  10. MO-FG-204-06: A New Algorithm for Gold Nano-Particle Concentration Identification in Dual Energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Shen, C; Ng, M

    Purpose: Gold nano-particle (GNP) has recently attracted a lot of attentions due to its potential as an imaging contrast agent and radiotherapy sensitiser. Imaging the GNP at its low contraction is a challenging problem. We propose a new algorithm to improve the identification of GNP based on dual energy CT (DECT). Methods: We consider three base materials: water, bone, and gold. Determining three density images from two images in DECT is an under-determined problem. We propose to solve this problem by exploring image domain sparsity via an optimization approach. The objective function contains four terms. A data-fidelity term ensures themore » fidelity between the identified material densities and the DECT images, while the other three terms enforces the sparsity in the gradient domain of the three images corresponding to the density of the base materials by using total variation (TV) regularization. A primal-dual algorithm is applied to solve the proposed optimization problem. We have performed simulation studies to test this model. Results: Our digital phantom in the tests contains water, bone regions and gold inserts of different sizes and densities. The gold inserts contain mixed material consisting of water with 1g/cm3 and gold at a certain density. At a low gold density of 0.0008 g/cm3, the insert is hardly visible in DECT images, especially for those with small sizes. Our algorithm is able to decompose the DECT into three density images. Those gold inserts at a low density can be clearly visualized in the density image. Conclusion: We have developed a new algorithm to decompose DECT images into three different material density images, in particular, to retrieve density of gold. Numerical studies showed promising results.« less

  11. [Improvement of magnetic resonance phase unwrapping method based on Goldstein Branch-cut algorithm].

    PubMed

    Guo, Lin; Kang, Lili; Wang, Dandan

    2013-02-01

    The phase information of magnetic resonance (MR) phase image can be used in many MR imaging techniques, but phase wrapping of the images often results in inaccurate phase information and phase unwrapping is essential for MR imaging techniques. In this paper we analyze the causes of errors in phase unwrapping with the commonly used Goldstein Brunch-cut algorithm and propose an improved algorithm. During the unwrapping process, masking, filtering, dipole- remover preprocessor, and the Prim algorithm of the minimum spanning tree were introduced to optimize the residues essential for the Goldstein Brunch-cut algorithm. Experimental results showed that the residues, branch-cuts and continuous unwrapped phase surface were efficiently reduced and the quality of MR phase images was obviously improved with the proposed method.

  12. Integrating image quality in 2nu-SVM biometric match score fusion.

    PubMed

    Vatsa, Mayank; Singh, Richa; Noore, Afzel

    2007-10-01

    This paper proposes an intelligent 2nu-support vector machine based match score fusion algorithm to improve the performance of face and iris recognition by integrating the quality of images. The proposed algorithm applies redundant discrete wavelet transform to evaluate the underlying linear and non-linear features present in the image. A composite quality score is computed to determine the extent of smoothness, sharpness, noise, and other pertinent features present in each subband of the image. The match score and the corresponding quality score of an image are fused using 2nu-support vector machine to improve the verification performance. The proposed algorithm is experimentally validated using the FERET face database and the CASIA iris database. The verification performance and statistical evaluation show that the proposed algorithm outperforms existing fusion algorithms.

  13. An Interferometry Imaging Beauty Contest

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Monnier, John D.; Zhaod, Ming; Young, John S.; Thorsteinsson, Hrobjartur; Meimon, Serge C.; Mugnier, Laurent; LeBesnerais, Guy; hide

    2004-01-01

    We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Six different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formated in the interferometry Data Exchange Standard and is designed to simulate a specific problem relevant to long-baseline imaging. The data are calibrated power spectra and bispectra measured with a ctitious array, intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.

  14. Real Time Intelligent Target Detection and Analysis with Machine Vision

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna; Padgett, Curtis; Brown, Kenneth

    2000-01-01

    We present an algorithm for detecting a specified set of targets for an Automatic Target Recognition (ATR) application. ATR involves processing images for detecting, classifying, and tracking targets embedded in a background scene. We address the problem of discriminating between targets and nontarget objects in a scene by evaluating 40x40 image blocks belonging to an image. Each image block is first projected onto a set of templates specifically designed to separate images of targets embedded in a typical background scene from those background images without targets. These filters are found using directed principal component analysis which maximally separates the two groups. The projected images are then clustered into one of n classes based on a minimum distance to a set of n cluster prototypes. These cluster prototypes have previously been identified using a modified clustering algorithm based on prior sensed data. Each projected image pattern is then fed into the associated cluster's trained neural network for classification. A detailed description of our algorithm will be given in this paper. We outline our methodology for designing the templates, describe our modified clustering algorithm, and provide details on the neural network classifiers. Evaluation of the overall algorithm demonstrates that our detection rates approach 96% with a false positive rate of less than 0.03%.

  15. Contour Detection and Completion for Inpainting and Segmentation Based on Topological Gradient and Fast Marching Algorithms

    PubMed Central

    Auroux, Didier; Cohen, Laurent D.; Masmoudi, Mohamed

    2011-01-01

    We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis of the image than the standard gradient and identifies the main edges of an image. Several image processing problems (e.g., inpainting and segmentation) require continuous contours. For this purpose, we consider the fast marching algorithm in order to find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours. We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm. PMID:22194734

  16. Segmentation of financial seals and its implementation on a DSP-based system

    NASA Astrophysics Data System (ADS)

    He, Jin; Liu, Tiegen; Guo, Jingjing; Zhang, Hao

    2009-11-01

    Automatic seal imprint identification is an important part of modern financial security. Accurate segmentation is the basis of correct identification. In this paper, a DSP (digital signal processor) based identification system was designed, and an adaptive algorithm was proposed to extract binary seal images from financial instruments. As the kernel of the identification system, a DSP chip of TMS320DM642 was used to implement image processing, controlling and coordinating works of each system module. The proposed algorithm consisted of three stages, including extraction of grayscale seal image, denoising and binarization. A grayscale seal image was extracted by color transform from a financial instrument image. Adaptive morphological operations were used to highlight details of the extracted grayscale seal image and smooth the background. After median filter for noise elimination, the filtered seal image was binarized by Otsu's method. The algorithm was developed based on the DSP development environment CCS and real-time operation system DSP/BIOS. To simplify the implementation of the proposed algorithm, the calibration of white balance and the coarse positioning of the seal imprint were implemented by TMS320DM642 controlling image acquisition. IMGLIB of TMS320DM642 was used for the efficiency improvement. The experiment result showed that financial seal imprints, even with intricate and dense strokes can be correctly segmented by the proposed algorithm. Adhesion and incompleteness distortions in the segmentation results were reduced, even when the original seal imprint had a poor quality.

  17. A general Bayesian image reconstruction algorithm with entropy prior: Preliminary application to HST data

    NASA Astrophysics Data System (ADS)

    Nunez, Jorge; Llacer, Jorge

    1993-10-01

    This paper describes a general Bayesian iterative algorithm with entropy prior for image reconstruction. It solves the cases of both pure Poisson data and Poisson data with Gaussian readout noise. The algorithm maintains positivity of the solution; it includes case-specific prior information (default map) and flatfield corrections; it removes background and can be accelerated to be faster than the Richardson-Lucy algorithm. In order to determine the hyperparameter that balances the entropy and liklihood terms in the Bayesian approach, we have used a liklihood cross-validation technique. Cross-validation is more robust than other methods because it is less demanding in terms of the knowledge of exact data characteristics and of the point-spread function. We have used the algorithm to reconstruct successfully images obtained in different space-and ground-based imaging situations. It has been possible to recover most of the original intended capabilities of the Hubble Space Telescope (HST) wide field and planetary camera (WFPC) and faint object camera (FOC) from images obtained in their present state. Semireal simulations for the future wide field planetary camera 2 show that even after the repair of the spherical abberration problem, image reconstruction can play a key role in improving the resolution of the cameras, well beyond the design of the Hubble instruments. We also show that ground-based images can be reconstructed successfully with the algorithm. A technique which consists of dividing the CCD observations into two frames, with one-half the exposure time each, emerges as a recommended procedure for the utilization of the described algorithms. We have compared our technique with two commonly used reconstruction algorithms: the Richardson-Lucy and the Cambridge maximum entropy algorithms.

  18. A Local Fast Marching-Based Diffusion Tensor Image Registration Algorithm by Simultaneously Considering Spatial Deformation and Tensor Orientation

    PubMed Central

    Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T.C.

    2010-01-01

    It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity, is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233

  19. 2006 Interferometry Imaging Beauty Contest

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Ireland, Michael; Monnier, John D.; Thiebaut, Eric; Rengaswamy, Sridharan; Baron, Fabien; Young, John S.; Kraus, Stefan; hide

    2006-01-01

    We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Five different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formatted in the OI-FITS format. The data are calibrated power spectra and bispectra measured with an array intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.

  20. Vision-based system for the control and measurement of wastewater flow rate in sewer systems.

    PubMed

    Nguyen, L S; Schaeli, B; Sage, D; Kayal, S; Jeanbourquin, D; Barry, D A; Rossi, L

    2009-01-01

    Combined sewer overflows and stormwater discharges represent an important source of contamination to the environment. However, the harsh environment inside sewers and particular hydraulic conditions during rain events reduce the reliability of traditional flow measurement probes. In the following, we present and evaluate an in situ system for the monitoring of water flow in sewers based on video images. This paper focuses on the measurement of the water level based on image-processing techniques. The developed image-based water level algorithms identify the wall/water interface from sewer images and measure its position with respect to real world coordinates. A web-based user interface and a 3-tier system architecture enable the remote configuration of the cameras and the image-processing algorithms. Images acquired and processed by our system were found to reliably measure water levels and thereby to provide crucial information leading to better understand particular hydraulic behaviors. In terms of robustness and accuracy, the water level algorithm provided equal or better results compared to traditional water level probes in three different in situ configurations.

  1. Fast parallel MR image reconstruction via B1-based, adaptive restart, iterative soft thresholding algorithms (BARISTA).

    PubMed

    Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A

    2015-02-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms.

  2. Fast Parallel MR Image Reconstruction via B1-based, Adaptive Restart, Iterative Soft Thresholding Algorithms (BARISTA)

    PubMed Central

    Noll, Douglas C.; Fessler, Jeffrey A.

    2014-01-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484

  3. Detection and Counting of Orchard Trees from Vhr Images Using a Geometrical-Optical Model and Marked Template Matching

    NASA Astrophysics Data System (ADS)

    Maillard, Philippe; Gomes, Marília F.

    2016-06-01

    This article presents an original algorithm created to detect and count trees in orchards using very high resolution images. The algorithm is based on an adaptation of the "template matching" image processing approach, in which the template is based on a "geometricaloptical" model created from a series of parameters, such as illumination angles, maximum and ambient radiance, and tree size specifications. The algorithm is tested on four images from different regions of the world and different crop types. These images all have < 1 meter spatial resolution and were downloaded from the GoogleEarth application. Results show that the algorithm is very efficient at detecting and counting trees as long as their spectral and spatial characteristics are relatively constant. For walnut, mango and orange trees, the overall accuracy was clearly above 90%. However, the overall success rate for apple trees fell under 75%. It appears that the openness of the apple tree crown is most probably responsible for this poorer result. The algorithm is fully explained with a step-by-step description. At this stage, the algorithm still requires quite a bit of user interaction. The automatic determination of most of the required parameters is under development.

  4. Novel techniques for data decomposition and load balancing for parallel processing of vision systems: Implementation and evaluation using a motion estimation system

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.

  5. Phase retrieval using regularization method in intensity correlation imaging

    NASA Astrophysics Data System (ADS)

    Li, Xiyu; Gao, Xin; Tang, Jia; Lu, Changming; Wang, Jianli; Wang, Bin

    2014-11-01

    Intensity correlation imaging(ICI) method can obtain high resolution image with ground-based low precision mirrors, in the imaging process, phase retrieval algorithm should be used to reconstituted the object's image. But the algorithm now used(such as hybrid input-output algorithm) is sensitive to noise and easy to stagnate. However the signal-to-noise ratio of intensity interferometry is low especially in imaging astronomical objects. In this paper, we build the mathematical model of phase retrieval and simplified it into a constrained optimization problem of a multi-dimensional function. New error function was designed by noise distribution and prior information using regularization method. The simulation results show that the regularization method can improve the performance of phase retrieval algorithm and get better image especially in low SNR condition

  6. Efficient method of image edge detection based on FSVM

    NASA Astrophysics Data System (ADS)

    Cai, Aiping; Xiong, Xiaomei

    2013-07-01

    For efficient object cover edge detection in digital images, this paper studied traditional methods and algorithm based on SVM. It analyzed Canny edge detection algorithm existed some pseudo-edge and poor anti-noise capability. In order to provide a reliable edge extraction method, propose a new detection algorithm based on FSVM. Which contains several steps: first, trains classify sample and gives the different membership function to different samples. Then, a new training sample is formed by increase the punishment some wrong sub-sample, and use the new FSVM classification model for train and test them. Finally the edges are extracted of the object image by using the model. Experimental result shows that good edge detection image will be obtained and adding noise experiments results show that this method has good anti-noise.

  7. Speckle-reduction algorithm for ultrasound images in complex wavelet domain using genetic algorithm-based mixture model.

    PubMed

    Uddin, Muhammad Shahin; Tahtali, Murat; Lambert, Andrew J; Pickering, Mark R; Marchese, Margaret; Stuart, Iain

    2016-05-20

    Compared with other medical-imaging modalities, ultrasound (US) imaging is a valuable way to examine the body's internal organs, and two-dimensional (2D) imaging is currently the most common technique used in clinical diagnoses. Conventional 2D US imaging systems are highly flexible cost-effective imaging tools that permit operators to observe and record images of a large variety of thin anatomical sections in real time. Recently, 3D US imaging has also been gaining popularity due to its considerable advantages over 2D US imaging. It reduces dependency on the operator and provides better qualitative and quantitative information for an effective diagnosis. Furthermore, it provides a 3D view, which allows the observation of volume information. The major shortcoming of any type of US imaging is the presence of speckle noise. Hence, speckle reduction is vital in providing a better clinical diagnosis. The key objective of any speckle-reduction algorithm is to attain a speckle-free image while preserving the important anatomical features. In this paper we introduce a nonlinear multi-scale complex wavelet-diffusion based algorithm for speckle reduction and sharp-edge preservation of 2D and 3D US images. In the proposed method we use a Rayleigh and Maxwell-mixture model for 2D and 3D US images, respectively, where a genetic algorithm is used in combination with an expectation maximization method to estimate mixture parameters. Experimental results using both 2D and 3D synthetic, physical phantom, and clinical data demonstrate that our proposed algorithm significantly reduces speckle noise while preserving sharp edges without discernible distortions. The proposed approach performs better than the state-of-the-art approaches in both qualitative and quantitative measures.

  8. A detail enhancement and dynamic range adjustment algorithm for high dynamic range images

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Wang, Huachuang; Liang, Mingtao; Yu, Cong; Hu, Jinlong; Cheng, Hua

    2014-08-01

    Although high dynamic range (HDR) images contain large amounts of information, they have weak texture and low contrast. What's more, these images are difficult to be reproduced on low dynamic range displaying mediums. If much more information is to be acquired when these images are displayed on PCs, some specific transforms, such as compressing the dynamic range, enhancing the portions of little difference in original contrast and highlighting the texture details on the premise of keeping the parts of large contrast, are needed. To this ends, a multi-scale guided filter enhancement algorithm which derives from the single-scale guided filter based on the analysis of non-physical model is proposed in this paper. Firstly, this algorithm decomposes the original HDR images into base image and detail images of different scales, and then it adaptively selects a transform function which acts on the enhanced detail images and original images. By comparing the treatment effects of HDR images and low dynamic range (LDR) images of different scene features, it proves that this algorithm, on the basis of maintaining the hierarchy and texture details of images, not only improves the contrast and enhances the details of images, but also adjusts the dynamic range well. Thus, it is much suitable for human observation or analytical processing of machines.

  9. 3-Dimensional stereo implementation of photoacoustic imaging based on a new image reconstruction algorithm without using discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Ham, Woonchul; Song, Chulgyu

    2017-05-01

    In this paper, we propose a new three-dimensional stereo image reconstruction algorithm for a photoacoustic medical imaging system. We also introduce and discuss a new theoretical algorithm by using the physical concept of Radon transform. The main key concept of proposed theoretical algorithm is to evaluate the existence possibility of the acoustic source within a searching region by using the geometric distance between each sensor element of acoustic detector and the corresponding searching region denoted by grid. We derive the mathematical equation for the magnitude of the existence possibility which can be used for implementing a new proposed algorithm. We handle and derive mathematical equations of proposed algorithm for the one-dimensional sensing array case as well as two dimensional sensing array case too. A mathematical k-wave simulation data are used for comparing the image quality of the proposed algorithm with that of general conventional algorithm in which the FFT should be necessarily used. From the k-wave Matlab simulation results, we can prove the effectiveness of the proposed reconstruction algorithm.

  10. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Hall, T. J.

    2007-07-01

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows® system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s-1) that exceed our previous methods.

  11. The effects of navigator distortion and noise level on interleaved EPI DWI reconstruction: a comparison between image- and k-space-based method.

    PubMed

    Dai, Erpeng; Zhang, Zhe; Ma, Xiaodong; Dong, Zijing; Li, Xuesong; Xiong, Yuhui; Yuan, Chun; Guo, Hua

    2018-03-23

    To study the effects of 2D navigator distortion and noise level on interleaved EPI (iEPI) DWI reconstruction, using either the image- or k-space-based method. The 2D navigator acquisition was adjusted by reducing its echo spacing in the readout direction and undersampling in the phase encoding direction. A POCS-based reconstruction using image-space sampling function (IRIS) algorithm (POCSIRIS) was developed to reduce the impact of navigator distortion. POCSIRIS was then compared with the original IRIS algorithm and a SPIRiT-based k-space algorithm, under different navigator distortion and noise levels. Reducing the navigator distortion can improve the reconstruction of iEPI DWI. The proposed POCSIRIS and SPIRiT-based algorithms are more tolerable to different navigator distortion levels, compared to the original IRIS algorithm. SPIRiT may be hindered by low SNR of the navigator. Multi-shot iEPI DWI reconstruction can be improved by reducing the 2D navigator distortion. Different reconstruction methods show variable sensitivity to navigator distortion or noise levels. Furthermore, the findings can be valuable in applications such as simultaneous multi-slice accelerated iEPI DWI and multi-slab diffusion imaging. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Broadband Phase Retrieval for Image-Based Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature wavefront sensing, and Shack-Hartmann sensing, all of which entail disadvantages in comparison with image-based methods. The main disadvantages of these non-image based methods are complexity of test equipment and the need for a wavefront reference.

  13. Aircraft target detection algorithm based on high resolution spaceborne SAR imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Hao, Mengxi; Zhang, Cong; Su, Xiaojing

    2018-03-01

    In this paper, an image classification algorithm for airport area is proposed, which based on the statistical features of synthetic aperture radar (SAR) images and the spatial information of pixels. The algorithm combines Gamma mixture model and MRF. The algorithm using Gamma mixture model to obtain the initial classification result. Pixel space correlation based on the classification results are optimized by the MRF technique. Additionally, morphology methods are employed to extract airport (ROI) region where the suspected aircraft target samples are clarified to reduce the false alarm and increase the detection performance. Finally, this paper presents the plane target detection, which have been verified by simulation test.

  14. Real-time Imaging Orientation Determination System to Verify Imaging Polarization Navigation Algorithm

    PubMed Central

    Lu, Hao; Zhao, Kaichun; Wang, Xiaochu; You, Zheng; Huang, Kaoli

    2016-01-01

    Bio-inspired imaging polarization navigation which can provide navigation information and is capable of sensing polarization information has advantages of high-precision and anti-interference over polarization navigation sensors that use photodiodes. Although all types of imaging polarimeters exist, they may not qualify for the research on the imaging polarization navigation algorithm. To verify the algorithm, a real-time imaging orientation determination system was designed and implemented. Essential calibration procedures for the type of system that contained camera parameter calibration and the inconsistency of complementary metal oxide semiconductor calibration were discussed, designed, and implemented. Calibration results were used to undistort and rectify the multi-camera system. An orientation determination experiment was conducted. The results indicated that the system could acquire and compute the polarized skylight images throughout the calibrations and resolve orientation by the algorithm to verify in real-time. An orientation determination algorithm based on image processing was tested on the system. The performance and properties of the algorithm were evaluated. The rate of the algorithm was over 1 Hz, the error was over 0.313°, and the population standard deviation was 0.148° without any data filter. PMID:26805851

  15. Image processing meta-algorithm development via genetic manipulation of existing algorithm graphs

    NASA Astrophysics Data System (ADS)

    Schalkoff, Robert J.; Shaaban, Khaled M.

    1999-07-01

    Automatic algorithm generation for image processing applications is not a new idea, however previous work is either restricted to morphological operates or impractical. In this paper, we show recent research result in the development and use of meta-algorithms, i.e. algorithms which lead to new algorithms. Although the concept is generally applicable, the application domain in this work is restricted to image processing. The meta-algorithm concept described in this paper is based upon out work in dynamic algorithm. The paper first present the concept of dynamic algorithms which, on the basis of training and archived algorithmic experience embedded in an algorithm graph (AG), dynamically adjust the sequence of operations applied to the input image data. Each node in the tree-based representation of a dynamic algorithm with out degree greater than 2 is a decision node. At these nodes, the algorithm examines the input data and determines which path will most likely achieve the desired results. This is currently done using nearest-neighbor classification. The details of this implementation are shown. The constrained perturbation of existing algorithm graphs, coupled with a suitable search strategy, is one mechanism to achieve meta-algorithm an doffers rich potential for the discovery of new algorithms. In our work, a meta-algorithm autonomously generates new dynamic algorithm graphs via genetic recombination of existing algorithm graphs. The AG representation is well suited to this genetic-like perturbation, using a commonly- employed technique in artificial neural network synthesis, namely the blueprint representation of graphs. A number of exam. One of the principal limitations of our current approach is the need for significant human input in the learning phase. Efforts to overcome this limitation are discussed. Future research directions are indicated.

  16. Generalized Chirp Scaling Combined with Baseband Azimuth Scaling Algorithm for Large Bandwidth Sliding Spotlight SAR Imaging

    PubMed Central

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-01-01

    This paper presents an efficient and precise imaging algorithm for the large bandwidth sliding spotlight synthetic aperture radar (SAR). The existing sub-aperture processing method based on the baseband azimuth scaling (BAS) algorithm cannot cope with the high order phase coupling along the range and azimuth dimensions. This coupling problem causes defocusing along the range and azimuth dimensions. This paper proposes a generalized chirp scaling (GCS)-BAS processing algorithm, which is based on the GCS algorithm. It successfully mitigates the deep focus along the range dimension of a sub-aperture of the large bandwidth sliding spotlight SAR, as well as high order phase coupling along the range and azimuth dimensions. Additionally, the azimuth focusing can be achieved by this azimuth scaling method. Simulation results demonstrate the ability of the GCS-BAS algorithm to process the large bandwidth sliding spotlight SAR data. It is proven that great improvements of the focus depth and imaging accuracy are obtained via the GCS-BAS algorithm. PMID:28555057

  17. Novel image encryption algorithm based on multiple-parameter discrete fractional random transform

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Dong, Taiji; Wu, Jianhua

    2010-08-01

    A new method of digital image encryption is presented by utilizing a new multiple-parameter discrete fractional random transform. Image encryption and decryption are performed based on the index additivity and multiple parameters of the multiple-parameter fractional random transform. The plaintext and ciphertext are respectively in the spatial domain and in the fractional domain determined by the encryption keys. The proposed algorithm can resist statistic analyses effectively. The computer simulation results show that the proposed encryption algorithm is sensitive to the multiple keys, and that it has considerable robustness, noise immunity and security.

  18. Robust generative asymmetric GMM for brain MR image segmentation.

    PubMed

    Ji, Zexuan; Xia, Yong; Zheng, Yuhui

    2017-11-01

    Accurate segmentation of brain tissues from magnetic resonance (MR) images based on the unsupervised statistical models such as Gaussian mixture model (GMM) has been widely studied during last decades. However, most GMM based segmentation methods suffer from limited accuracy due to the influences of noise and intensity inhomogeneity in brain MR images. To further improve the accuracy for brain MR image segmentation, this paper presents a Robust Generative Asymmetric GMM (RGAGMM) for simultaneous brain MR image segmentation and intensity inhomogeneity correction. First, we develop an asymmetric distribution to fit the data shapes, and thus construct a spatial constrained asymmetric model. Then, we incorporate two pseudo-likelihood quantities and bias field estimation into the model's log-likelihood, aiming to exploit the neighboring priors of within-cluster and between-cluster and to alleviate the impact of intensity inhomogeneity, respectively. Finally, an expectation maximization algorithm is derived to iteratively maximize the approximation of the data log-likelihood function to overcome the intensity inhomogeneity in the image and segment the brain MR images simultaneously. To demonstrate the performances of the proposed algorithm, we first applied the proposed algorithm to a synthetic brain MR image to show the intermediate illustrations and the estimated distribution of the proposed algorithm. The next group of experiments is carried out in clinical 3T-weighted brain MR images which contain quite serious intensity inhomogeneity and noise. Then we quantitatively compare our algorithm to state-of-the-art segmentation approaches by using Dice coefficient (DC) on benchmark images obtained from IBSR and BrainWeb with different level of noise and intensity inhomogeneity. The comparison results on various brain MR images demonstrate the superior performances of the proposed algorithm in dealing with the noise and intensity inhomogeneity. In this paper, the RGAGMM algorithm is proposed which can simply and efficiently incorporate spatial constraints into an EM framework to simultaneously segment brain MR images and estimate the intensity inhomogeneity. The proposed algorithm is flexible to fit the data shapes, and can simultaneously overcome the influence of noise and intensity inhomogeneity, and hence is capable of improving over 5% segmentation accuracy comparing with several state-of-the-art algorithms. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The optimal algorithm for Multi-source RS image fusion.

    PubMed

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.

  20. Accurate quantification of local changes for carotid arteries in 3D ultrasound images using convex optimization-based deformable registration

    NASA Astrophysics Data System (ADS)

    Cheng, Jieyu; Qiu, Wu; Yuan, Jing; Fenster, Aaron; Chiu, Bernard

    2016-03-01

    Registration of longitudinally acquired 3D ultrasound (US) images plays an important role in monitoring and quantifying progression/regression of carotid atherosclerosis. We introduce an image-based non-rigid registration algorithm to align the baseline 3D carotid US with longitudinal images acquired over several follow-up time points. This algorithm minimizes the sum of absolute intensity differences (SAD) under a variational optical-flow perspective within a multi-scale optimization framework to capture local and global deformations. Outer wall and lumen were segmented manually on each image, and the performance of the registration algorithm was quantified by Dice similarity coefficient (DSC) and mean absolute distance (MAD) of the outer wall and lumen surfaces after registration. In this study, images for 5 subjects were registered initially by rigid registration, followed by the proposed algorithm. Mean DSC generated by the proposed algorithm was 79:3+/-3:8% for lumen and 85:9+/-4:0% for outer wall, compared to 73:9+/-3:4% and 84:7+/-3:2% generated by rigid registration. Mean MAD of 0:46+/-0:08mm and 0:52+/-0:13mm were generated for lumen and outer wall respectively by the proposed algorithm, compared to 0:55+/-0:08mm and 0:54+/-0:11mm generated by rigid registration. The mean registration time of our method per image pair was 143+/-23s.

  1. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering.

    PubMed

    Gong, Maoguo; Zhou, Zhiqiang; Ma, Jingjing

    2012-04-01

    This paper presents an unsupervised distribution-free change detection approach for synthetic aperture radar (SAR) images based on an image fusion strategy and a novel fuzzy clustering algorithm. The image fusion technique is introduced to generate a difference image by using complementary information from a mean-ratio image and a log-ratio image. In order to restrain the background information and enhance the information of changed regions in the fused difference image, wavelet fusion rules based on an average operator and minimum local area energy are chosen to fuse the wavelet coefficients for a low-frequency band and a high-frequency band, respectively. A reformulated fuzzy local-information C-means clustering algorithm is proposed for classifying changed and unchanged regions in the fused difference image. It incorporates the information about spatial context in a novel fuzzy way for the purpose of enhancing the changed information and of reducing the effect of speckle noise. Experiments on real SAR images show that the image fusion strategy integrates the advantages of the log-ratio operator and the mean-ratio operator and gains a better performance. The change detection results obtained by the improved fuzzy clustering algorithm exhibited lower error than its preexistences.

  2. Analyser-based mammography using single-image reconstruction.

    PubMed

    Briedis, Dahliyani; Siu, Karen K W; Paganin, David M; Pavlov, Konstantin M; Lewis, Rob A

    2005-08-07

    We implement an algorithm that is able to decode a single analyser-based x-ray phase-contrast image of a sample, converting it into an equivalent conventional absorption-contrast radiograph. The algorithm assumes the projection approximation for x-ray propagation in a single-material object embedded in a substrate of approximately uniform thickness. Unlike the phase-contrast images, which have both directional bias and a bias towards edges present in the sample, the reconstructed images are directly interpretable in terms of the projected absorption coefficient of the sample. The technique was applied to a Leeds TOR[MAM] phantom, which is designed to test mammogram quality by the inclusion of simulated microcalcifications, filaments and circular discs. This phantom was imaged at varying doses using three modalities: analyser-based synchrotron phase-contrast images converted to equivalent absorption radiographs using our algorithm, slot-scanned synchrotron imaging and imaging using a conventional mammography unit. Features in the resulting images were then assigned a quality score by volunteers. The single-image reconstruction method achieved higher scores at equivalent and lower doses than the conventional mammography images, but no improvement of visualization of the simulated microcalcifications, and some degradation in image quality at reduced doses for filament features.

  3. A novel image encryption algorithm based on chaos maps with Markov properties

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Li, Pei-yue; Zhang, Ming-chao; Sui, Yong-xin; Yang, Huai-jiang

    2015-02-01

    In order to construct high complexity, secure and low cost image encryption algorithm, a class of chaos with Markov properties was researched and such algorithm was also proposed. The kind of chaos has higher complexity than the Logistic map and Tent map, which keeps the uniformity and low autocorrelation. An improved couple map lattice based on the chaos with Markov properties is also employed to cover the phase space of the chaos and enlarge the key space, which has better performance than the original one. A novel image encryption algorithm is constructed on the new couple map lattice, which is used as a key stream generator. A true random number is used to disturb the key which can dynamically change the permutation matrix and the key stream. From the experiments, it is known that the key stream can pass SP800-22 test. The novel image encryption can resist CPA and CCA attack and differential attack. The algorithm is sensitive to the initial key and can change the distribution the pixel values of the image. The correlation of the adjacent pixels can also be eliminated. When compared with the algorithm based on Logistic map, it has higher complexity and better uniformity, which is nearer to the true random number. It is also efficient to realize which showed its value in common use.

  4. Minimizing the semantic gap in biomedical content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Guan, Haiying; Antani, Sameer; Long, L. Rodney; Thoma, George R.

    2010-03-01

    A major challenge in biomedical Content-Based Image Retrieval (CBIR) is to achieve meaningful mappings that minimize the semantic gap between the high-level biomedical semantic concepts and the low-level visual features in images. This paper presents a comprehensive learning-based scheme toward meeting this challenge and improving retrieval quality. The article presents two algorithms: a learning-based feature selection and fusion algorithm and the Ranking Support Vector Machine (Ranking SVM) algorithm. The feature selection algorithm aims to select 'good' features and fuse them using different similarity measurements to provide a better representation of the high-level concepts with the low-level image features. Ranking SVM is applied to learn the retrieval rank function and associate the selected low-level features with query concepts, given the ground-truth ranking of the training samples. The proposed scheme addresses four major issues in CBIR to improve the retrieval accuracy: image feature extraction, selection and fusion, similarity measurements, the association of the low-level features with high-level concepts, and the generation of the rank function to support high-level semantic image retrieval. It models the relationship between semantic concepts and image features, and enables retrieval at the semantic level. We apply it to the problem of vertebra shape retrieval from a digitized spine x-ray image set collected by the second National Health and Nutrition Examination Survey (NHANES II). The experimental results show an improvement of up to 41.92% in the mean average precision (MAP) over conventional image similarity computation methods.

  5. Improved discrete swarm intelligence algorithms for endmember extraction from hyperspectral remote sensing images

    NASA Astrophysics Data System (ADS)

    Su, Yuanchao; Sun, Xu; Gao, Lianru; Li, Jun; Zhang, Bing

    2016-10-01

    Endmember extraction is a key step in hyperspectral unmixing. A new endmember extraction framework is proposed for hyperspectral endmember extraction. The proposed approach is based on the swarm intelligence (SI) algorithm, where discretization is used to solve the SI algorithm because pixels in a hyperspectral image are naturally defined within a discrete space. Moreover, a "distance" factor is introduced into the objective function to limit the endmember numbers which is generally limited in real scenarios, while traditional SI algorithms likely produce superabundant spectral signatures, which generally belong to the same classes. Three endmember extraction methods are proposed based on the artificial bee colony, ant colony optimization, and particle swarm optimization algorithms. Experiments with both simulated and real hyperspectral images indicate that the proposed framework can improve the accuracy of endmember extraction.

  6. Pattern recognition for passive polarimetric data using nonparametric classifiers

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.

    2005-08-01

    Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.

  7. Priori mask guided image reconstruction (p-MGIR) for ultra-low dose cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Kahler, Darren L.; Liu, Chihray; Lu, Bo

    2015-11-01

    Recently, the compressed sensing (CS) based iterative reconstruction method has received attention because of its ability to reconstruct cone beam computed tomography (CBCT) images with good quality using sparsely sampled or noisy projections, thus enabling dose reduction. However, some challenges remain. In particular, there is always a tradeoff between image resolution and noise/streak artifact reduction based on the amount of regularization weighting that is applied uniformly across the CBCT volume. The purpose of this study is to develop a novel low-dose CBCT reconstruction algorithm framework called priori mask guided image reconstruction (p-MGIR) that allows reconstruction of high-quality low-dose CBCT images while preserving the image resolution. In p-MGIR, the unknown CBCT volume was mathematically modeled as a combination of two regions: (1) where anatomical structures are complex, and (2) where intensities are relatively uniform. The priori mask, which is the key concept of the p-MGIR algorithm, was defined as the matrix that distinguishes between the two separate CBCT regions where the resolution needs to be preserved and where streak or noise needs to be suppressed. We then alternately updated each part of image by solving two sub-minimization problems iteratively, where one minimization was focused on preserving the edge information of the first part while the other concentrated on the removal of noise/artifacts from the latter part. To evaluate the performance of the p-MGIR algorithm, a numerical head-and-neck phantom, a Catphan 600 physical phantom, and a clinical head-and-neck cancer case were used for analysis. The results were compared with the standard Feldkamp-Davis-Kress as well as conventional CS-based algorithms. Examination of the p-MGIR algorithm showed that high-quality low-dose CBCT images can be reconstructed without compromising the image resolution. For both phantom and the patient cases, the p-MGIR is able to achieve a clinically-reasonable image with 60 projections. Therefore, a clinically-viable, high-resolution head-and-neck CBCT image can be obtained while cutting the dose by 83%. Moreover, the image quality obtained using p-MGIR is better than the quality obtained using other algorithms. In this work, we propose a novel low-dose CBCT reconstruction algorithm called p-MGIR. It can be potentially used as a CBCT reconstruction algorithm with low dose scan requests

  8. Algorithm for lung cancer detection based on PET/CT images

    NASA Astrophysics Data System (ADS)

    Saita, Shinsuke; Ishimatsu, Keita; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Ohtsuka, Hideki; Nishitani, Hiromu; Ohmatsu, Hironobu; Eguchi, Kenji; Kaneko, Masahiro; Moriyama, Noriyuki

    2009-02-01

    The five year survival rate of the lung cancer is low with about twenty-five percent. In addition it is an obstinate lung cancer wherein three out of four people die within five years. Then, the early stage detection and treatment of the lung cancer are important. Recently, we can obtain CT and PET image at the same time because PET/CT device has been developed. PET/CT is possible for a highly accurate cancer diagnosis because it analyzes quantitative shape information from CT image and FDG distribution from PET image. However, neither benign-malignant classification nor staging intended for lung cancer have been established still enough by using PET/CT images. In this study, we detect lung nodules based on internal organs extracted from CT image, and we also develop algorithm which classifies benignmalignant and metastatic or non metastatic lung cancer using lung structure and FDG distribution(one and two hour after administering FDG). We apply the algorithm to 59 PET/CT images (malignant 43 cases [Ad:31, Sq:9, sm:3], benign 16 cases) and show the effectiveness of this algorithm.

  9. Evaluation of amplitude-based sorting algorithm to reduce lung tumor blurring in PET images using 4D NCAT phantom.

    PubMed

    Wang, Jiali; Byrne, James; Franquiz, Juan; McGoron, Anthony

    2007-08-01

    develop and validate a PET sorting algorithm based on the respiratory amplitude to correct for abnormal respiratory cycles. using the 4D NCAT phantom model, 3D PET images were simulated in lung and other structures at different times within a respiratory cycle and noise was added. To validate the amplitude binning algorithm, NCAT phantom was used to simulate one case of five different respiratory periods and another case of five respiratory periods alone with five respiratory amplitudes. Comparison was performed for gated and un-gated images and for the new amplitude binning algorithm with the time binning algorithm by calculating the mean number of counts in the ROI (region of interest). an average of 8.87+/-5.10% improvement was reported for total 16 tumors with different tumor sizes and different T/B (tumor to background) ratios using the new sorting algorithm. As both the T/B ratio and tumor size decreases, image degradation due to respiration increases. The greater benefit for smaller diameter tumor and lower T/B ratio indicates a potential improvement in detecting more problematic tumors.

  10. Optic disc segmentation for glaucoma screening system using fundus images.

    PubMed

    Almazroa, Ahmed; Sun, Weiwei; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2017-01-01

    Segmenting the optic disc (OD) is an important and essential step in creating a frame of reference for diagnosing optic nerve head pathologies such as glaucoma. Therefore, a reliable OD segmentation technique is necessary for automatic screening of optic nerve head abnormalities. The main contribution of this paper is in presenting a novel OD segmentation algorithm based on applying a level set method on a localized OD image. To prevent the blood vessels from interfering with the level set process, an inpainting technique was applied. As well an important contribution was to involve the variations in opinions among the ophthalmologists in detecting the disc boundaries and diagnosing the glaucoma. Most of the previous studies were trained and tested based on only one opinion, which can be assumed to be biased for the ophthalmologist. In addition, the accuracy was calculated based on the number of images that coincided with the ophthalmologists' agreed-upon images, and not only on the overlapping images as in previous studies. The ultimate goal of this project is to develop an automated image processing system for glaucoma screening. The disc algorithm is evaluated using a new retinal fundus image dataset called RIGA (retinal images for glaucoma analysis). In the case of low-quality images, a double level set was applied, in which the first level set was considered to be localization for the OD. Five hundred and fifty images are used to test the algorithm accuracy as well as the agreement among the manual markings of six ophthalmologists. The accuracy of the algorithm in marking the optic disc area and centroid was 83.9%, and the best agreement was observed between the results of the algorithm and manual markings in 379 images.

  11. Image recombination transform algorithm for superresolution structured illumination microscopy

    PubMed Central

    Zhou, Xing; Lei, Ming; Dan, Dan; Yao, Baoli; Yang, Yanlong; Qian, Jia; Chen, Guangde; Bianco, Piero R.

    2016-01-01

    Abstract. Structured illumination microscopy (SIM) is an attractive choice for fast superresolution imaging. The generation of structured illumination patterns made by interference of laser beams is broadly employed to obtain high modulation depth of patterns, while the polarizations of the laser beams must be elaborately controlled to guarantee the high contrast of interference intensity, which brings a more complex configuration for the polarization control. The emerging pattern projection strategy is much more compact, but the modulation depth of patterns is deteriorated by the optical transfer function of the optical system, especially in high spatial frequency near the diffraction limit. Therefore, the traditional superresolution reconstruction algorithm for interference-based SIM will suffer from many artifacts in the case of projection-based SIM that possesses a low modulation depth. Here, we propose an alternative reconstruction algorithm based on image recombination transform, which provides an alternative solution to address this problem even in a weak modulation depth. We demonstrated the effectiveness of this algorithm in the multicolor superresolution imaging of bovine pulmonary arterial endothelial cells in our developed projection-based SIM system, which applies a computer controlled digital micromirror device for fast fringe generation and multicolor light-emitting diodes for illumination. The merit of the system incorporated with the proposed algorithm allows for a low excitation intensity fluorescence imaging even less than 1  W/cm2, which is beneficial for the long-term, in vivo superresolved imaging of live cells and tissues. PMID:27653935

  12. Parallel algorithm of real-time infrared image restoration based on total variation theory

    NASA Astrophysics Data System (ADS)

    Zhu, Ran; Li, Miao; Long, Yunli; Zeng, Yaoyuan; An, Wei

    2015-10-01

    Image restoration is a necessary preprocessing step for infrared remote sensing applications. Traditional methods allow us to remove the noise but penalize too much the gradients corresponding to edges. Image restoration techniques based on variational approaches can solve this over-smoothing problem for the merits of their well-defined mathematical modeling of the restore procedure. The total variation (TV) of infrared image is introduced as a L1 regularization term added to the objective energy functional. It converts the restoration process to an optimization problem of functional involving a fidelity term to the image data plus a regularization term. Infrared image restoration technology with TV-L1 model exploits the remote sensing data obtained sufficiently and preserves information at edges caused by clouds. Numerical implementation algorithm is presented in detail. Analysis indicates that the structure of this algorithm can be easily implemented in parallelization. Therefore a parallel implementation of the TV-L1 filter based on multicore architecture with shared memory is proposed for infrared real-time remote sensing systems. Massive computation of image data is performed in parallel by cooperating threads running simultaneously on multiple cores. Several groups of synthetic infrared image data are used to validate the feasibility and effectiveness of the proposed parallel algorithm. Quantitative analysis of measuring the restored image quality compared to input image is presented. Experiment results show that the TV-L1 filter can restore the varying background image reasonably, and that its performance can achieve the requirement of real-time image processing.

  13. Enhanced encrypted reversible data hiding algorithm with minimum distortion through homomorphic encryption

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Rupali

    2018-03-01

    Reversible data hiding means embedding a secret message in a cover image in such a manner, to the point that in the midst of extraction of the secret message, the cover image and, furthermore, the secret message are recovered with no error. The goal of by far most of the reversible data hiding algorithms is to have improved the embedding rate and enhanced visual quality of stego image. An improved encrypted-domain-based reversible data hiding algorithm to embed two binary bits in each gray pixel of original cover image with minimum distortion of stego-pixels is employed in this paper. Highlights of the proposed algorithm are minimum distortion of pixel's value, elimination of underflow and overflow problem, and equivalence of stego image and cover image with a PSNR of ∞ (for Lena, Goldhill, and Barbara image). The experimental outcomes reveal that in terms of average PSNR and embedding rate, for natural images, the proposed algorithm performed better than other conventional ones.

  14. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl

    2013-03-15

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phasemore » (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum improvement of the NCC value by 100% and of the RMSD value by 81%. The corresponding maximum improvements for the registration-based approach were 20% and 40%. In phases with very rapid motion the registration-based algorithm obtained better image quality, while the image quality of the MAM algorithm was superior in phases with less motion. The image quality improvement of the MAM optimization was visually confirmed for the different clinical cases. Conclusions: The proposed method allows a software-based best-phase image quality improvement in coronary CT angiography. A short scan data interval at the target heart phase is sufficient, no additional scan data in other cardiac phases are required. The algorithm is therefore directly applicable to any standard cardiac CT acquisition protocol.« less

  15. An Automatic Assessment System of Diabetic Foot Ulcers Based on Wound Area Determination, Color Segmentation, and Healing Score Evaluation.

    PubMed

    Wang, Lei; Pedersen, Peder C; Strong, Diane M; Tulu, Bengisu; Agu, Emmanuel; Ignotz, Ron; He, Qian

    2015-08-07

    For individuals with type 2 diabetes, foot ulcers represent a significant health issue. The aim of this study is to design and evaluate a wound assessment system to help wound clinics assess patients with foot ulcers in a way that complements their current visual examination and manual measurements of their foot ulcers. The physical components of the system consist of an image capture box, a smartphone for wound image capture and a laptop for analyzing the wound image. The wound image assessment algorithms calculate the overall wound area, color segmented wound areas, and a healing score, to provide a quantitative assessment of the wound healing status both for a single wound image and comparisons of subsequent images to an initial wound image. The system was evaluated by assessing foot ulcers for 12 patients in the Wound Clinic at University of Massachusetts Medical School. As performance measures, the Matthews correlation coefficient (MCC) value for the wound area determination algorithm tested on 32 foot ulcer images was .68. The clinical validity of our healing score algorithm relative to the experienced clinicians was measured by Krippendorff's alpha coefficient (KAC) and ranged from .42 to .81. Our system provides a promising real-time method for wound assessment based on image analysis. Clinical comparisons indicate that the optimized mean-shift-based algorithm is well suited for wound area determination. Clinical evaluation of our healing score algorithm shows its potential to provide clinicians with a quantitative method for evaluating wound healing status. © 2015 Diabetes Technology Society.

  16. Optimization-based reconstruction for reduction of CBCT artifact in IGRT

    NASA Astrophysics Data System (ADS)

    Xia, Dan; Zhang, Zheng; Paysan, Pascal; Seghers, Dieter; Brehm, Marcus; Munro, Peter; Sidky, Emil Y.; Pelizzari, Charles; Pan, Xiaochuan

    2016-04-01

    Kilo-voltage cone-beam computed tomography (CBCT) plays an important role in image guided radiation therapy (IGRT) by providing 3D spatial information of tumor potentially useful for optimizing treatment planning. In current IGRT CBCT system, reconstructed images obtained with analytic algorithms, such as FDK algorithm and its variants, may contain artifacts. In an attempt to compensate for the artifacts, we investigate optimization-based reconstruction algorithms such as the ASD-POCS algorithm for potentially reducing arti- facts in IGRT CBCT images. In this study, using data acquired with a physical phantom and a patient subject, we demonstrate that the ASD-POCS reconstruction can significantly reduce artifacts observed in clinical re- constructions. Moreover, patient images reconstructed by use of the ASD-POCS algorithm indicate a contrast level of soft-tissue improved over that of the clinical reconstruction. We have also performed reconstructions from sparse-view data, and observe that, for current clinical imaging conditions, ASD-POCS reconstructions from data collected at one half of the current clinical projection views appear to show image quality, in terms of spatial and soft-tissue-contrast resolution, higher than that of the corresponding clinical reconstructions.

  17. Face sketch recognition based on edge enhancement via deep learning

    NASA Astrophysics Data System (ADS)

    Xie, Zhenzhu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong

    2017-11-01

    In this paper,we address the face sketch recognition problem. Firstly, we utilize the eigenface algorithm to convert a sketch image into a synthesized sketch face image. Subsequently, considering the low-level vision problem in synthesized face sketch image .Super resolution reconstruction algorithm based on CNN(convolutional neural network) is employed to improve the visual effect. To be specific, we uses a lightweight super-resolution structure to learn a residual mapping instead of directly mapping the feature maps from the low-level space to high-level patch representations, which making the networks are easier to optimize and have lower computational complexity. Finally, we adopt LDA(Linear Discriminant Analysis) algorithm to realize face sketch recognition on synthesized face image before super resolution and after respectively. Extensive experiments on the face sketch database(CUFS) from CUHK demonstrate that the recognition rate of SVM(Support Vector Machine) algorithm improves from 65% to 69% and the recognition rate of LDA(Linear Discriminant Analysis) algorithm improves from 69% to 75%.What'more,the synthesized face image after super resolution can not only better describer image details such as hair ,nose and mouth etc, but also improve the recognition accuracy effectively.

  18. The effects of variations in parameters and algorithm choices on calculated radiomics feature values: initial investigations and comparisons to feature variability across CT image acquisition conditions

    NASA Astrophysics Data System (ADS)

    Emaminejad, Nastaran; Wahi-Anwar, Muhammad; Hoffman, John; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael

    2018-02-01

    Translation of radiomics into clinical practice requires confidence in its interpretations. This may be obtained via understanding and overcoming the limitations in current radiomic approaches. Currently there is a lack of standardization in radiomic feature extraction. In this study we examined a few factors that are potential sources of inconsistency in characterizing lung nodules, such as 1)different choices of parameters and algorithms in feature calculation, 2)two CT image dose levels, 3)different CT reconstruction algorithms (WFBP, denoised WFBP, and Iterative). We investigated the effect of variation of these factors on entropy textural feature of lung nodules. CT images of 19 lung nodules identified from our lung cancer screening program were identified by a CAD tool and contours provided. The radiomics features were extracted by calculating 36 GLCM based and 4 histogram based entropy features in addition to 2 intensity based features. A robustness index was calculated across different image acquisition parameters to illustrate the reproducibility of features. Most GLCM based and all histogram based entropy features were robust across two CT image dose levels. Denoising of images slightly improved robustness of some entropy features at WFBP. Iterative reconstruction resulted in improvement of robustness in a fewer times and caused more variation in entropy feature values and their robustness. Within different choices of parameters and algorithms texture features showed a wide range of variation, as much as 75% for individual nodules. Results indicate the need for harmonization of feature calculations and identification of optimum parameters and algorithms in a radiomics study.

  19. Segment fusion of ToF-SIMS images.

    PubMed

    Milillo, Tammy M; Miller, Mary E; Fischione, Remo; Montes, Angelina; Gardella, Joseph A

    2016-06-08

    The imaging capabilities of time-of-flight secondary ion mass spectrometry (ToF-SIMS) have not been used to their full potential in the analysis of polymer and biological samples. Imaging has been limited by the size of the dataset and the chemical complexity of the sample being imaged. Pixel and segment based image fusion algorithms commonly used in remote sensing, ecology, geography, and geology provide a way to improve spatial resolution and classification of biological images. In this study, a sample of Arabidopsis thaliana was treated with silver nanoparticles and imaged with ToF-SIMS. These images provide insight into the uptake mechanism for the silver nanoparticles into the plant tissue, giving new understanding to the mechanism of uptake of heavy metals in the environment. The Munechika algorithm was programmed in-house and applied to achieve pixel based fusion, which improved the spatial resolution of the image obtained. Multispectral and quadtree segment or region based fusion algorithms were performed using ecognition software, a commercially available remote sensing software suite, and used to classify the images. The Munechika fusion improved the spatial resolution for the images containing silver nanoparticles, while the segment fusion allowed classification and fusion based on the tissue types in the sample, suggesting potential pathways for the uptake of the silver nanoparticles.

  20. Solution for the nonuniformity correction of infrared focal plane arrays.

    PubMed

    Zhou, Huixin; Liu, Shangqian; Lai, Rui; Wang, Dabao; Cheng, Yubao

    2005-05-20

    Based on the S-curve model of the detector response of infrared focal plan arrays (IRFPAs), an improved two-point correction algorithm is presented. The algorithm first transforms the nonlinear image data into linear data and then uses the normal two-point algorithm to correct the linear data. The algorithm can effectively overcome the influence of nonlinearity of the detector's response, and it enlarges the correction precision and the dynamic range of the response. A real-time imaging-signal-processing system for IRFPAs that is based on a digital signal processor and field-programmable gate arrays is also presented. The nonuniformity correction capability of the presented solution is validated by experimental imaging procedures of a 128 x 128 pixel IRFPA camera prototype.

  1. Cuckoo search algorithm based satellite image contrast and brightness enhancement using DWT-SVD.

    PubMed

    Bhandari, A K; Soni, V; Kumar, A; Singh, G K

    2014-07-01

    This paper presents a new contrast enhancement approach which is based on Cuckoo Search (CS) algorithm and DWT-SVD for quality improvement of the low contrast satellite images. The input image is decomposed into the four frequency subbands through Discrete Wavelet Transform (DWT), and CS algorithm used to optimize each subband of DWT and then obtains the singular value matrix of the low-low thresholded subband image and finally, it reconstructs the enhanced image by applying IDWT. The singular value matrix employed intensity information of the particular image, and any modification in the singular values changes the intensity of the given image. The experimental results show superiority of the proposed method performance in terms of PSNR, MSE, Mean and Standard Deviation over conventional and state-of-the-art techniques. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Using patient-specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy

    PubMed Central

    Stanley, Nick; Glide-Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J.; Zhong, Hualiang

    2014-01-01

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B-spline–based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast-Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM-DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B-spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient-specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient-dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that DIR algorithms need to be verified for each registration instance when implementing adaptive radiation therapy. PMID:24257278

  3. Using patient‐specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy

    PubMed Central

    Stanley, Nick; Glide‐Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J

    2013-01-01

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B‐spline‐based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast‐Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM‐DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0~3.1mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B‐spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient‐specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient‐dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that DIR algorithms need to be verified for each registration instance when implementing adaptive radiation therapy. PACS numbers: 87.10.Kn, 87.55.km, 87.55.Qr, 87.57.nj

  4. Optimized atom position and coefficient coding for matching pursuit-based image compression.

    PubMed

    Shoa, Alireza; Shirani, Shahram

    2009-12-01

    In this paper, we propose a new encoding algorithm for matching pursuit image coding. We show that coding performance is improved when correlations between atom positions and atom coefficients are both used in encoding. We find the optimum tradeoff between efficient atom position coding and efficient atom coefficient coding and optimize the encoder parameters. Our proposed algorithm outperforms the existing coding algorithms designed for matching pursuit image coding. Additionally, we show that our algorithm results in better rate distortion performance than JPEG 2000 at low bit rates.

  5. Small convolution kernels for high-fidelity image restoration

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Park, Stephen K.

    1991-01-01

    An algorithm is developed for computing the mean-square-optimal values for small, image-restoration kernels. The algorithm is based on a comprehensive, end-to-end imaging system model that accounts for the important components of the imaging process: the statistics of the scene, the point-spread function of the image-gathering device, sampling effects, noise, and display reconstruction. Subject to constraints on the spatial support of the kernel, the algorithm generates the kernel values that restore the image with maximum fidelity, that is, the kernel minimizes the expected mean-square restoration error. The algorithm is consistent with the derivation of the spatially unconstrained Wiener filter, but leads to a small, spatially constrained kernel that, unlike the unconstrained filter, can be efficiently implemented by convolution. Simulation experiments demonstrate that for a wide range of imaging systems these small kernels can restore images with fidelity comparable to images restored with the unconstrained Wiener filter.

  6. Computed Tomography Image Origin Identification Based on Original Sensor Pattern Noise and 3-D Image Reconstruction Algorithm Footprints.

    PubMed

    Duan, Yuping; Bouslimi, Dalel; Yang, Guanyu; Shu, Huazhong; Coatrieux, Gouenou

    2017-07-01

    In this paper, we focus on the "blind" identification of the computed tomography (CT) scanner that has produced a CT image. To do so, we propose a set of noise features derived from the image chain acquisition and which can be used as CT-scanner footprint. Basically, we propose two approaches. The first one aims at identifying a CT scanner based on an original sensor pattern noise (OSPN) that is intrinsic to the X-ray detectors. The second one identifies an acquisition system based on the way this noise is modified by its three-dimensional (3-D) image reconstruction algorithm. As these reconstruction algorithms are manufacturer dependent and kept secret, our features are used as input to train a support vector machine (SVM) based classifier to discriminate acquisition systems. Experiments conducted on images issued from 15 different CT-scanner models of 4 distinct manufacturers demonstrate that our system identifies the origin of one CT image with a detection rate of at least 94% and that it achieves better performance than sensor pattern noise (SPN) based strategy proposed for general public camera devices.

  7. Reconstructing liver shape and position from MR image slices using an active shape model

    NASA Astrophysics Data System (ADS)

    Fenchel, Matthias; Thesen, Stefan; Schilling, Andreas

    2008-03-01

    We present an algorithm for fully automatic reconstruction of 3D position, orientation and shape of the human liver from a sparsely covering set of n 2D MR slice images. Reconstructing the shape of an organ from slice images can be used for scan planning, for surgical planning or other purposes where 3D anatomical knowledge has to be inferred from sparse slices. The algorithm is based on adapting an active shape model of the liver surface to a given set of slice images. The active shape model is created from a training set of liver segmentations from a group of volunteers. The training set is set up with semi-manual segmentations of T1-weighted volumetric MR images. Searching for the optimal shape model that best fits to the image data is done by maximizing a similarity measure based on local appearance at the surface. Two different algorithms for the active shape model search are proposed and compared: both algorithms seek to maximize the a-posteriori probability of the grey level appearance around the surface while constraining the surface to the space of valid shapes. The first algorithm works by using grey value profile statistics in normal direction. The second algorithm uses average and variance images to calculate the local surface appearance on the fly. Both algorithms are validated by fitting the active shape model to abdominal 2D slice images and comparing the shapes, which have been reconstructed, to the manual segmentations and to the results of active shape model searches from 3D image data. The results turn out to be promising and competitive to active shape model segmentations from 3D data.

  8. Color object detection using spatial-color joint probability functions.

    PubMed

    Luo, Jiebo; Crandall, David

    2006-06-01

    Object detection in unconstrained images is an important image understanding problem with many potential applications. There has been little success in creating a single algorithm that can detect arbitrary objects in unconstrained images; instead, algorithms typically must be customized for each specific object. Consequently, it typically requires a large number of exemplars (for rigid objects) or a large amount of human intuition (for nonrigid objects) to develop a robust algorithm. We present a robust algorithm designed to detect a class of compound color objects given a single model image. A compound color object is defined as having a set of multiple, particular colors arranged spatially in a particular way, including flags, logos, cartoon characters, people in uniforms, etc. Our approach is based on a particular type of spatial-color joint probability function called the color edge co-occurrence histogram. In addition, our algorithm employs perceptual color naming to handle color variation, and prescreening to limit the search scope (i.e., size and location) for the object. Experimental results demonstrated that the proposed algorithm is insensitive to object rotation, scaling, partial occlusion, and folding, outperforming a closely related algorithm based on color co-occurrence histograms by a decisive margin.

  9. Low dose CT reconstruction via L1 norm dictionary learning using alternating minimization algorithm and balancing principle.

    PubMed

    Wu, Junfeng; Dai, Fang; Hu, Gang; Mou, Xuanqin

    2018-04-18

    Excessive radiation exposure in computed tomography (CT) scans increases the chance of developing cancer and has become a major clinical concern. Recently, statistical iterative reconstruction (SIR) with l0-norm dictionary learning regularization has been developed to reconstruct CT images from the low dose and few-view dataset in order to reduce radiation dose. Nonetheless, the sparse regularization term adopted in this approach is l0-norm, which cannot guarantee the global convergence of the proposed algorithm. To address this problem, in this study we introduced the l1-norm dictionary learning penalty into SIR framework for low dose CT image reconstruction, and developed an alternating minimization algorithm to minimize the associated objective function, which transforms CT image reconstruction problem into a sparse coding subproblem and an image updating subproblem. During the image updating process, an efficient model function approach based on balancing principle is applied to choose the regularization parameters. The proposed alternating minimization algorithm was evaluated first using real projection data of a sheep lung CT perfusion and then using numerical simulation based on sheep lung CT image and chest image. Both visual assessment and quantitative comparison using terms of root mean square error (RMSE) and structural similarity (SSIM) index demonstrated that the new image reconstruction algorithm yielded similar performance with l0-norm dictionary learning penalty and outperformed the conventional filtered backprojection (FBP) and total variation (TV) minimization algorithms.

  10. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images

    PubMed Central

    Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi

    2016-01-01

    Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704

  11. Real-time image dehazing using local adaptive neighborhoods and dark-channel-prior

    NASA Astrophysics Data System (ADS)

    Valderrama, Jesus A.; Díaz-Ramírez, Víctor H.; Kober, Vitaly; Hernandez, Enrique

    2015-09-01

    A real-time algorithm for single image dehazing is presented. The algorithm is based on calculation of local neighborhoods of a hazed image inside a moving window. The local neighborhoods are constructed by computing rank-order statistics. Next the dark-channel-prior approach is applied to the local neighborhoods to estimate the transmission function of the scene. By using the suggested approach there is no need for applying a refining algorithm to the estimated transmission such as the soft matting algorithm. To achieve high-rate signal processing the proposed algorithm is implemented exploiting massive parallelism on a graphics processing unit (GPU). Computer simulation results are carried out to test the performance of the proposed algorithm in terms of dehazing efficiency and speed of processing. These tests are performed using several synthetic and real images. The obtained results are analyzed and compared with those obtained with existing dehazing algorithms.

  12. Steganography on quantum pixel images using Shannon entropy

    NASA Astrophysics Data System (ADS)

    Laurel, Carlos Ortega; Dong, Shi-Hai; Cruz-Irisson, M.

    2016-07-01

    This paper presents a steganographical algorithm based on least significant bit (LSB) from the most significant bit information (MSBI) and the equivalence of a bit pixel image to a quantum pixel image, which permits to make the information communicate secretly onto quantum pixel images for its secure transmission through insecure channels. This algorithm offers higher security since it exploits the Shannon entropy for an image.

  13. Features Extraction of Flotation Froth Images and BP Neural Network Soft-Sensor Model of Concentrate Grade Optimized by Shuffled Cuckoo Searching Algorithm

    PubMed Central

    Wang, Jie-sheng; Han, Shuang; Shen, Na-na; Li, Shu-xia

    2014-01-01

    For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the color features in HSI color space, the visual features based on the gray level cooccurrence matrix, and the shape characteristics based on the geometric theory of flotation froth images are extracted, respectively, as the input variables of the proposed soft-sensor model. Then the isometric mapping method is used to reduce the input dimension, the network size, and learning time of BP neural network. Finally, a shuffled cuckoo search algorithm is adopted to optimize the BP neural network soft-sensor model. Simulation results show that the model has better generalization results and prediction accuracy. PMID:25133210

  14. Image fusion algorithm based on energy of Laplacian and PCNN

    NASA Astrophysics Data System (ADS)

    Li, Meili; Wang, Hongmei; Li, Yanjun; Zhang, Ke

    2009-12-01

    Owing to the global coupling and pulse synchronization characteristic of pulse coupled neural networks (PCNN), it has been proved to be suitable for image processing and successfully employed in image fusion. However, in almost all the literatures of image processing about PCNN, linking strength of each neuron is assigned the same value which is chosen by experiments. This is not consistent with the human vision system in which the responses to the region with notable features are stronger than that to the region with nonnotable features. It is more reasonable that notable features, rather than the same value, are employed to linking strength of each neuron. As notable feature, energy of Laplacian (EOL) is used to obtain the value of linking strength in PCNN in this paper. Experimental results demonstrate that the proposed algorithm outperforms Laplacian-based, wavelet-based, PCNN -based fusion algorithms.

  15. Threshold secret sharing scheme based on phase-shifting interferometry.

    PubMed

    Deng, Xiaopeng; Shi, Zhengang; Wen, Wei

    2016-11-01

    We propose a new method for secret image sharing with the (3,N) threshold scheme based on phase-shifting interferometry. The secret image, which is multiplied with an encryption key in advance, is first encrypted by using Fourier transformation. Then, the encoded image is shared into N shadow images based on the recording principle of phase-shifting interferometry. Based on the reconstruction principle of phase-shifting interferometry, any three or more shadow images can retrieve the secret image, while any two or fewer shadow images cannot obtain any information of the secret image. Thus, a (3,N) threshold secret sharing scheme can be implemented. Compared with our previously reported method, the algorithm of this paper is suited for not only a binary image but also a gray-scale image. Moreover, the proposed algorithm can obtain a larger threshold value t. Simulation results are presented to demonstrate the feasibility of the proposed method.

  16. Novel Image Encryption Scheme Based on Chebyshev Polynomial and Duffing Map

    PubMed Central

    2014-01-01

    We present a novel image encryption algorithm using Chebyshev polynomial based on permutation and substitution and Duffing map based on substitution. Comprehensive security analysis has been performed on the designed scheme using key space analysis, visual testing, histogram analysis, information entropy calculation, correlation coefficient analysis, differential analysis, key sensitivity test, and speed test. The study demonstrates that the proposed image encryption algorithm shows advantages of more than 10113 key space and desirable level of security based on the good statistical results and theoretical arguments. PMID:25143970

  17. New approach to gallbladder ultrasonic images analysis and lesions recognition.

    PubMed

    Bodzioch, Sławomir; Ogiela, Marek R

    2009-03-01

    This paper presents a new approach to gallbladder ultrasonic image processing and analysis towards detection of disease symptoms on processed images. First, in this paper, there is presented a new method of filtering gallbladder contours from USG images. A major stage in this filtration is to segment and section off areas occupied by the said organ. In most cases this procedure is based on filtration that plays a key role in the process of diagnosing pathological changes. Unfortunately ultrasound images present among the most troublesome methods of analysis owing to the echogenic inconsistency of structures under observation. This paper provides for an inventive algorithm for the holistic extraction of gallbladder image contours. The algorithm is based on rank filtration, as well as on the analysis of histogram sections on tested organs. The second part concerns detecting lesion symptoms of the gallbladder. Automating a process of diagnosis always comes down to developing algorithms used to analyze the object of such diagnosis and verify the occurrence of symptoms related to given affection. Usually the final stage is to make a diagnosis based on the detected symptoms. This last stage can be carried out through either dedicated expert systems or more classic pattern analysis approach like using rules to determine illness basing on detected symptoms. This paper discusses the pattern analysis algorithms for gallbladder image interpretation towards classification of the most frequent illness symptoms of this organ.

  18. Natural Inspired Intelligent Visual Computing and Its Application to Viticulture.

    PubMed

    Ang, Li Minn; Seng, Kah Phooi; Ge, Feng Lu

    2017-05-23

    This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1) a review of visual information processing applications for viticulture; (2) the development of natural inspired computing algorithms based on artificial immune system (AIS) techniques for grape berry detection; and (3) the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2) were developed based on a nature-inspired clonal selection algorithm (CSA) which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT) and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD) respectively.

  19. Volumetric visualization algorithm development for an FPGA-based custom computing machine

    NASA Astrophysics Data System (ADS)

    Sallinen, Sami J.; Alakuijala, Jyrki; Helminen, Hannu; Laitinen, Joakim

    1998-05-01

    Rendering volumetric medical images is a burdensome computational task for contemporary computers due to the large size of the data sets. Custom designed reconfigurable hardware could considerably speed up volume visualization if an algorithm suitable for the platform is used. We present an algorithm and speedup techniques for visualizing volumetric medical CT and MR images with a custom-computing machine based on a Field Programmable Gate Array (FPGA). We also present simulated performance results of the proposed algorithm calculated with a software implementation running on a desktop PC. Our algorithm is capable of generating perspective projection renderings of single and multiple isosurfaces with transparency, simulated X-ray images, and Maximum Intensity Projections (MIP). Although more speedup techniques exist for parallel projection than for perspective projection, we have constrained ourselves to perspective viewing, because of its importance in the field of radiotherapy. The algorithm we have developed is based on ray casting, and the rendering is sped up by three different methods: shading speedup by gradient precalculation, a new generalized version of Ray-Acceleration by Distance Coding (RADC), and background ray elimination by speculative ray selection.

  20. A lane line segmentation algorithm based on adaptive threshold and connected domain theory

    NASA Astrophysics Data System (ADS)

    Feng, Hui; Xu, Guo-sheng; Han, Yi; Liu, Yang

    2018-04-01

    Before detecting cracks and repairs on road lanes, it's necessary to eliminate the influence of lane lines on the recognition result in road lane images. Aiming at the problems caused by lane lines, an image segmentation algorithm based on adaptive threshold and connected domain is proposed. First, by analyzing features like grey level distribution and the illumination of the images, the algorithm uses Hough transform to divide the images into different sections and convert them into binary images separately. It then uses the connected domain theory to amend the outcome of segmentation, remove noises and fill the interior zone of lane lines. Experiments have proved that this method could eliminate the influence of illumination and lane line abrasion, removing noises thoroughly while maintaining high segmentation precision.

  1. Image contrast enhancement based on a local standard deviation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Dah-Chung; Wu, Wen-Rong

    1996-12-31

    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt`s Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details aremore » concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm.« less

  2. Real-time image annotation by manifold-based biased Fisher discriminant analysis

    NASA Astrophysics Data System (ADS)

    Ji, Rongrong; Yao, Hongxun; Wang, Jicheng; Sun, Xiaoshuai; Liu, Xianming

    2008-01-01

    Automatic Linguistic Annotation is a promising solution to bridge the semantic gap in content-based image retrieval. However, two crucial issues are not well addressed in state-of-art annotation algorithms: 1. The Small Sample Size (3S) problem in keyword classifier/model learning; 2. Most of annotation algorithms can not extend to real-time online usage due to their low computational efficiencies. This paper presents a novel Manifold-based Biased Fisher Discriminant Analysis (MBFDA) algorithm to address these two issues by transductive semantic learning and keyword filtering. To address the 3S problem, Co-Training based Manifold learning is adopted for keyword model construction. To achieve real-time annotation, a Bias Fisher Discriminant Analysis (BFDA) based semantic feature reduction algorithm is presented for keyword confidence discrimination and semantic feature reduction. Different from all existing annotation methods, MBFDA views image annotation from a novel Eigen semantic feature (which corresponds to keywords) selection aspect. As demonstrated in experiments, our manifold-based biased Fisher discriminant analysis annotation algorithm outperforms classical and state-of-art annotation methods (1.K-NN Expansion; 2.One-to-All SVM; 3.PWC-SVM) in both computational time and annotation accuracy with a large margin.

  3. BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation

    NASA Astrophysics Data System (ADS)

    Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana

    2006-01-01

    Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.

  4. An improved robust blind motion de-blurring algorithm for remote sensing images

    NASA Astrophysics Data System (ADS)

    He, Yulong; Liu, Jin; Liang, Yonghui

    2016-10-01

    Shift-invariant motion blur can be modeled as a convolution of the true latent image and the blur kernel with additive noise. Blind motion de-blurring estimates a sharp image from a motion blurred image without the knowledge of the blur kernel. This paper proposes an improved edge-specific motion de-blurring algorithm which proved to be fit for processing remote sensing images. We find that an inaccurate blur kernel is the main factor to the low-quality restored images. To improve image quality, we do the following contributions. For the robust kernel estimation, first, we adapt the multi-scale scheme to make sure that the edge map could be constructed accurately; second, an effective salient edge selection method based on RTV (Relative Total Variation) is used to extract salient structure from texture; third, an alternative iterative method is introduced to perform kernel optimization, in this step, we adopt l1 and l0 norm as the priors to remove noise and ensure the continuity of blur kernel. For the final latent image reconstruction, an improved adaptive deconvolution algorithm based on TV-l2 model is used to recover the latent image; we control the regularization weight adaptively in different region according to the image local characteristics in order to preserve tiny details and eliminate noise and ringing artifacts. Some synthetic remote sensing images are used to test the proposed algorithm, and results demonstrate that the proposed algorithm obtains accurate blur kernel and achieves better de-blurring results.

  5. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory.

    PubMed

    Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong

    2018-01-31

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  6. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory

    PubMed Central

    Zhou, Rui; Hu, Yuxin; Qi, Yaolong

    2018-01-01

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm. PMID:29385059

  7. Fast algorithm of low power image reformation for OLED display

    NASA Astrophysics Data System (ADS)

    Lee, Myungwoo; Kim, Taewhan

    2014-04-01

    We propose a fast algorithm of low-power image reformation for organic light-emitting diode (OLED) display. The proposed algorithm scales the image histogram in a way to reduce power consumption in OLED display by remapping the gray levels of the pixels in the image based on the fast analysis of the histogram of the input image while maintaining contrast of the image. The key idea is that a large number of gray levels are never used in the images and these gray levels can be effectively exploited to reduce power consumption. On the other hand, to maintain the image contrast the gray level remapping is performed by taking into account the object size in the image to which each gray level is applied, that is, reforming little for the gray levels in the objects of large size. Through experiments with 24 Kodak images, it is shown that our proposed algorithm is able to reduce the power consumption by 10% even with 9% contrast enhancement. Our algorithm runs in a linear time so that it can be applied to moving pictures with high resolution.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stassi, D.; Ma, H.; Schmidt, T. G., E-mail: taly.gilat-schmidt@marquette.edu

    Purpose: Reconstructing a low-motion cardiac phase is expected to improve coronary artery visualization in coronary computed tomography angiography (CCTA) exams. This study developed an automated algorithm for selecting the optimal cardiac phase for CCTA reconstruction. The algorithm uses prospectively gated, single-beat, multiphase data made possible by wide cone-beam imaging. The proposed algorithm differs from previous approaches because the optimal phase is identified based on vessel image quality (IQ) directly, compared to previous approaches that included motion estimation and interphase processing. Because there is no processing of interphase information, the algorithm can be applied to any sampling of image phases, makingmore » it suited for prospectively gated studies where only a subset of phases are available. Methods: An automated algorithm was developed to select the optimal phase based on quantitative IQ metrics. For each reconstructed slice at each reconstructed phase, an image quality metric was calculated based on measures of circularity and edge strength of through-plane vessels. The image quality metric was aggregated across slices, while a metric of vessel-location consistency was used to ignore slices that did not contain through-plane vessels. The algorithm performance was evaluated using two observer studies. Fourteen single-beat cardiac CT exams (Revolution CT, GE Healthcare, Chalfont St. Giles, UK) reconstructed at 2% intervals were evaluated for best systolic (1), diastolic (6), or systolic and diastolic phases (7) by three readers and the algorithm. Pairwise inter-reader and reader-algorithm agreement was evaluated using the mean absolute difference (MAD) and concordance correlation coefficient (CCC) between the reader and algorithm-selected phases. A reader-consensus best phase was determined and compared to the algorithm selected phase. In cases where the algorithm and consensus best phases differed by more than 2%, IQ was scored by three readers using a five point Likert scale. Results: There was no statistically significant difference between inter-reader and reader-algorithm agreement for either MAD or CCC metrics (p > 0.1). The algorithm phase was within 2% of the consensus phase in 15/21 of cases. The average absolute difference between consensus and algorithm best phases was 2.29% ± 2.47%, with a maximum difference of 8%. Average image quality scores for the algorithm chosen best phase were 4.01 ± 0.65 overall, 3.33 ± 1.27 for right coronary artery (RCA), 4.50 ± 0.35 for left anterior descending (LAD) artery, and 4.50 ± 0.35 for left circumflex artery (LCX). Average image quality scores for the consensus best phase were 4.11 ± 0.54 overall, 3.44 ± 1.03 for RCA, 4.39 ± 0.39 for LAD, and 4.50 ± 0.18 for LCX. There was no statistically significant difference (p > 0.1) between the image quality scores of the algorithm phase and the consensus phase. Conclusions: The proposed algorithm was statistically equivalent to a reader in selecting an optimal cardiac phase for CCTA exams. When reader and algorithm phases differed by >2%, image quality as rated by blinded readers was statistically equivalent. By detecting the optimal phase for CCTA reconstruction, the proposed algorithm is expected to improve coronary artery visualization in CCTA exams.« less

  9. A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images

    PubMed Central

    Wang, Yangping; Wang, Song

    2016-01-01

    The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU). PMID:28053653

  10. Classification algorithm of lung lobe for lung disease cases based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Mishima, M.; Ohmatsu, H.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2011-03-01

    With the development of multi-slice CT technology, to obtain an accurate 3D image of lung field in a short time is possible. To support that, a lot of image processing methods need to be developed. In clinical setting for diagnosis of lung cancer, it is important to study and analyse lung structure. Therefore, classification of lung lobe provides useful information for lung cancer analysis. In this report, we describe algorithm which classify lungs into lung lobes for lung disease cases from multi-slice CT images. The classification algorithm of lung lobes is efficiently carried out using information of lung blood vessel, bronchus, and interlobar fissure. Applying the classification algorithms to multi-slice CT images of 20 normal cases and 5 lung disease cases, we demonstrate the usefulness of the proposed algorithms.

  11. Medical microscopic image matching based on relativity

    NASA Astrophysics Data System (ADS)

    Xie, Fengying; Zhu, Liangen; Jiang, Zhiguo

    2003-12-01

    In this paper, an effective medical micro-optical image matching algorithm based on relativity is described. The algorithm includes the following steps: Firstly, selecting a sub-area that has obvious character in one of the two images as standard image; Secondly, finding the right matching position in the other image; Thirdly, applying coordinate transformation to merge the two images together. As a kind of application of image matching in medical micro-optical image, this method overcomes the shortcoming of microscope whose visual field is little and makes it possible to watch a big object or many objects in one view. Simultaneously it implements adaptive selection of standard image, and has a satisfied matching speed and result.

  12. Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research.

    PubMed

    Ababneh, Sufyan Y; Prescott, Jeff W; Gurcan, Metin N

    2011-08-01

    In this paper, a new, fully automated, content-based system is proposed for knee bone segmentation from magnetic resonance images (MRI). The purpose of the bone segmentation is to support the discovery and characterization of imaging biomarkers for the incidence and progression of osteoarthritis, a debilitating joint disease, which affects a large portion of the aging population. The segmentation algorithm includes a novel content-based, two-pass disjoint block discovery mechanism, which is designed to support automation, segmentation initialization, and post-processing. The block discovery is achieved by classifying the image content to bone and background blocks according to their similarity to the categories in the training data collected from typical bone structures. The classified blocks are then used to design an efficient graph-cut based segmentation algorithm. This algorithm requires constructing a graph using image pixel data followed by applying a maximum-flow algorithm which generates a minimum graph-cut that corresponds to an initial image segmentation. Content-based refinements and morphological operations are then applied to obtain the final segmentation. The proposed segmentation technique does not require any user interaction and can distinguish between bone and highly similar adjacent structures, such as fat tissues with high accuracy. The performance of the proposed system is evaluated by testing it on 376 MR images from the Osteoarthritis Initiative (OAI) database. This database included a selection of single images containing the femur and tibia from 200 subjects with varying levels of osteoarthritis severity. Additionally, a full three-dimensional segmentation of the bones from ten subjects with 14 slices each, and synthetic images with background having intensity and spatial characteristics similar to those of bone are used to assess the robustness and consistency of the developed algorithm. The results show an automatic bone detection rate of 0.99 and an average segmentation accuracy of 0.95 using the Dice similarity index. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    This viewgraph presentation reviews the creation of a prototype algorithm for atmospheric correction using high spatial resolution earth observing imaging systems. The objective of the work was to evaluate accuracy of a prototype algorithm that uses satellite-derived atmospheric products to generate scene reflectance maps for high spatial resolution (HSR) systems. This presentation focused on preliminary results of only the satellite-based atmospheric correction algorithm.

  14. Quantitative Image Quality and Histogram-Based Evaluations of an Iterative Reconstruction Algorithm at Low-to-Ultralow Radiation Dose Levels: A Phantom Study in Chest CT

    PubMed Central

    Lee, Ki Baek

    2018-01-01

    Objective To describe the quantitative image quality and histogram-based evaluation of an iterative reconstruction (IR) algorithm in chest computed tomography (CT) scans at low-to-ultralow CT radiation dose levels. Materials and Methods In an adult anthropomorphic phantom, chest CT scans were performed with 128-section dual-source CT at 70, 80, 100, 120, and 140 kVp, and the reference (3.4 mGy in volume CT Dose Index [CTDIvol]), 30%-, 60%-, and 90%-reduced radiation dose levels (2.4, 1.4, and 0.3 mGy). The CT images were reconstructed by using filtered back projection (FBP) algorithms and IR algorithm with strengths 1, 3, and 5. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were statistically compared between different dose levels, tube voltages, and reconstruction algorithms. Moreover, histograms of subtraction images before and after standardization in x- and y-axes were visually compared. Results Compared with FBP images, IR images with strengths 1, 3, and 5 demonstrated image noise reduction up to 49.1%, SNR increase up to 100.7%, and CNR increase up to 67.3%. Noteworthy image quality degradations on IR images including a 184.9% increase in image noise, 63.0% decrease in SNR, and 51.3% decrease in CNR, and were shown between 60% and 90% reduced levels of radiation dose (p < 0.0001). Subtraction histograms between FBP and IR images showed progressively increased dispersion with increased IR strength and increased dose reduction. After standardization, the histograms appeared deviated and ragged between FBP images and IR images with strength 3 or 5, but almost normally-distributed between FBP images and IR images with strength 1. Conclusion The IR algorithm may be used to save radiation doses without substantial image quality degradation in chest CT scanning of the adult anthropomorphic phantom, down to approximately 1.4 mGy in CTDIvol (60% reduced dose). PMID:29354008

  15. Incomplete projection reconstruction of computed tomography based on the modified discrete algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Yang, Fuqiang; Zhang, Dinghua; Huang, Kuidong; Gao, Zongzhao; Yang, YaFei

    2018-02-01

    Based on the discrete algebraic reconstruction technique (DART), this study aims to address and test a new improved algorithm applied to incomplete projection data to generate a high quality reconstruction image by reducing the artifacts and noise in computed tomography. For the incomplete projections, an augmented Lagrangian based on compressed sensing is first used in the initial reconstruction for segmentation of the DART to get higher contrast graphics for boundary and non-boundary pixels. Then, the block matching 3D filtering operator was used to suppress the noise and to improve the gray distribution of the reconstructed image. Finally, simulation studies on the polychromatic spectrum were performed to test the performance of the new algorithm. Study results show a significant improvement in the signal-to-noise ratios (SNRs) and average gradients (AGs) of the images reconstructed from incomplete data. The SNRs and AGs of the new images reconstructed by DART-ALBM were on average 30%-40% and 10% higher than the images reconstructed by DART algorithms. Since the improved DART-ALBM algorithm has a better robustness to limited-view reconstruction, which not only makes the edge of the image clear but also makes the gray distribution of non-boundary pixels better, it has the potential to improve image quality from incomplete projections or sparse projections.

  16. Image denoising based on noise detection

    NASA Astrophysics Data System (ADS)

    Jiang, Yuanxiang; Yuan, Rui; Sun, Yuqiu; Tian, Jinwen

    2018-03-01

    Because of the noise points in the images, any operation of denoising would change the original information of non-noise pixel. A noise detection algorithm based on fractional calculus was proposed to denoise in this paper. Convolution of the image was made to gain direction gradient masks firstly. Then, the mean gray was calculated to obtain the gradient detection maps. Logical product was made to acquire noise position image next. Comparisons in the visual effect and evaluation parameters after processing, the results of experiment showed that the denoising algorithms based on noise were better than that of traditional methods in both subjective and objective aspects.

  17. Interior tomography in microscopic CT with image reconstruction constrained by full field of view scan at low spatial resolution

    NASA Astrophysics Data System (ADS)

    Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang

    2018-04-01

    In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.

  18. GPU accelerated fuzzy connected image segmentation by using CUDA.

    PubMed

    Zhuge, Ying; Cao, Yong; Miller, Robert W

    2009-01-01

    Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.

  19. Automatic Depth Extraction from 2D Images Using a Cluster-Based Learning Framework.

    PubMed

    Herrera, Jose L; Del-Blanco, Carlos R; Garcia, Narciso

    2018-07-01

    There has been a significant increase in the availability of 3D players and displays in the last years. Nonetheless, the amount of 3D content has not experimented an increment of such magnitude. To alleviate this problem, many algorithms for converting images and videos from 2D to 3D have been proposed. Here, we present an automatic learning-based 2D-3D image conversion approach, based on the key hypothesis that color images with similar structure likely present a similar depth structure. The presented algorithm estimates the depth of a color query image using the prior knowledge provided by a repository of color + depth images. The algorithm clusters this database attending to their structural similarity, and then creates a representative of each color-depth image cluster that will be used as prior depth map. The selection of the appropriate prior depth map corresponding to one given color query image is accomplished by comparing the structural similarity in the color domain between the query image and the database. The comparison is based on a K-Nearest Neighbor framework that uses a learning procedure to build an adaptive combination of image feature descriptors. The best correspondences determine the cluster, and in turn the associated prior depth map. Finally, this prior estimation is enhanced through a segmentation-guided filtering that obtains the final depth map estimation. This approach has been tested using two publicly available databases, and compared with several state-of-the-art algorithms in order to prove its efficiency.

  20. Development of adaptive noise reduction filter algorithm for pediatric body images in a multi-detector CT

    NASA Astrophysics Data System (ADS)

    Nishimaru, Eiji; Ichikawa, Katsuhiro; Okita, Izumi; Ninomiya, Yuuji; Tomoshige, Yukihiro; Kurokawa, Takehiro; Ono, Yutaka; Nakamura, Yuko; Suzuki, Masayuki

    2008-03-01

    Recently, several kinds of post-processing image filters which reduce the noise of computed tomography (CT) images have been proposed. However, these image filters are mostly for adults. Because these are not very effective in small (< 20 cm) display fields of view (FOV), we cannot use them for pediatric body images (e.g., premature babies and infant children). We have developed a new noise reduction filter algorithm for pediatric body CT images. This algorithm is based on a 3D post-processing in which the output pixel values are calculated by nonlinear interpolation in z-directions on original volumetric-data-sets. This algorithm does not need the in-plane (axial plane) processing, so the spatial resolution does not change. From the phantom studies, our algorithm could reduce SD up to 40% without affecting the spatial resolution of x-y plane and z-axis, and improved the CNR up to 30%. This newly developed filter algorithm will be useful for the diagnosis and radiation dose reduction of the pediatric body CT images.

  1. Validation of an improved 'diffeomorphic demons' algorithm for deformable image registration in image-guided radiation therapy.

    PubMed

    Zhou, Lu; Zhou, Linghong; Zhang, Shuxu; Zhen, Xin; Yu, Hui; Zhang, Guoqian; Wang, Ruihao

    2014-01-01

    Deformable image registration (DIR) was widely used in radiation therapy, such as in automatic contour generation, dose accumulation, tumor growth or regression analysis. To achieve higher registration accuracy and faster convergence, an improved 'diffeomorphic demons' registration algorithm was proposed and validated. Based on Brox et al.'s gradient constancy assumption and Malis's efficient second-order minimization (ESM) algorithm, a grey value gradient similarity term and a transformation error term were added into the demons energy function, and a formula was derived to calculate the update of transformation field. The limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm was used to optimize the energy function so that the iteration number could be determined automatically. The proposed algorithm was validated using mathematically deformed images and physically deformed phantom images. Compared with the original 'diffeomorphic demons' algorithm, the registration method proposed achieve a higher precision and a faster convergence speed. Due to the influence of different scanning conditions in fractionated radiation, the density range of the treatment image and the planning image may be different. In such a case, the improved demons algorithm can achieve faster and more accurate radiotherapy.

  2. A super resolution framework for low resolution document image OCR

    NASA Astrophysics Data System (ADS)

    Ma, Di; Agam, Gady

    2013-01-01

    Optical character recognition is widely used for converting document images into digital media. Existing OCR algorithms and tools produce good results from high resolution, good quality, document images. In this paper, we propose a machine learning based super resolution framework for low resolution document image OCR. Two main techniques are used in our proposed approach: a document page segmentation algorithm and a modified K-means clustering algorithm. Using this approach, by exploiting coherence in the document, we reconstruct from a low resolution document image a better resolution image and improve OCR results. Experimental results show substantial gain in low resolution documents such as the ones captured from video.

  3. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 11: Quantification of chest wall motion during deep inspiration breast hold treatments using cine EPID images and a physics based algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpuche Aviles, Jorge E.; VanBeek, Timothy

    Purpose: This work presents an algorithm used to quantify intra-fraction motion for patients treated using deep inspiration breath hold (DIBH). The algorithm quantifies the position of the chest wall in breast tangent fields using electronic portal images. Methods: The algorithm assumes that image profiles, taken along a direction perpendicular to the medial border of the field, follow a monotonically and smooth decreasing function. This assumption is invalid in the presence of lung and can be used to calculate chest wall position. The algorithm was validated by determining the position of the chest wall for varying field edge positions in portalmore » images of a thoracic phantom. The algorithm was used to quantify intra-fraction motion in cine images for 7 patients treated with DIBH. Results: Phantom results show that changes in the distance between chest wall and field edge were accurate within 0.1 mm on average. For a fixed field edge, the algorithm calculates the position of the chest wall with a 0.2 mm standard deviation. Intra-fraction motion for DIBH patients was within 1 mm 91.4% of the time and within 1.5 mm 97.9% of the time. The maximum intra-fraction motion was 3.0 mm. Conclusions: A physics based algorithm was developed and can be used to quantify the position of chest wall irradiated in tangent portal images with an accuracy of 0.1 mm and precision of 0.6 mm. Intra-fraction motion for patients treated with DIBH at our clinic is less than 3 mm.« less

  4. Development of a control algorithm for the ultrasound scanning robot (NCCUSR) using ultrasound image and force feedback.

    PubMed

    Kim, Yeoun Jae; Seo, Jong Hyun; Kim, Hong Rae; Kim, Kwang Gi

    2017-06-01

    Clinicians who frequently perform ultrasound scanning procedures often suffer from musculoskeletal disorders, arthritis, and myalgias. To minimize their occurrence and to assist clinicians, ultrasound scanning robots have been developed worldwide. Although, to date, there is still no commercially available ultrasound scanning robot, many control methods have been suggested and researched. These control algorithms are either image based or force based. If the ultrasound scanning robot control algorithm was a combination of the two algorithms, it could benefit from the advantage of each one. However, there are no existing control methods for ultrasound scanning robots that combine force control and image analysis. Therefore, in this work, a control algorithm is developed for an ultrasound scanning robot using force feedback and ultrasound image analysis. A manipulator-type ultrasound scanning robot named 'NCCUSR' is developed and a control algorithm for this robot is suggested and verified. First, conventional hybrid position-force control is implemented for the robot and the hybrid position-force control algorithm is combined with ultrasound image analysis to fully control the robot. The control method is verified using a thyroid phantom. It was found that the proposed algorithm can be applied to control the ultrasound scanning robot and experimental outcomes suggest that the images acquired using the proposed control method can yield a rating score that is equivalent to images acquired directly by the clinicians. The proposed control method can be applied to control the ultrasound scanning robot. However, more work must be completed to verify the proposed control method in order to become clinically feasible. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Perfect blind restoration of images blurred by multiple filters: theory and efficient algorithms.

    PubMed

    Harikumar, G; Bresler, Y

    1999-01-01

    We address the problem of restoring an image from its noisy convolutions with two or more unknown finite impulse response (FIR) filters. We develop theoretical results about the existence and uniqueness of solutions, and show that under some generically true assumptions, both the filters and the image can be determined exactly in the absence of noise, and stably estimated in its presence. We present efficient algorithms to estimate the blur functions and their sizes. These algorithms are of two types, subspace-based and likelihood-based, and are extensions of techniques proposed for the solution of the multichannel blind deconvolution problem in one dimension. We present memory and computation-efficient techniques to handle the very large matrices arising in the two-dimensional (2-D) case. Once the blur functions are determined, they are used in a multichannel deconvolution step to reconstruct the unknown image. The theoretical and practical implications of edge effects, and "weakly exciting" images are examined. Finally, the algorithms are demonstrated on synthetic and real data.

  6. A spectrum fractal feature classification algorithm for agriculture crops with hyper spectrum image

    NASA Astrophysics Data System (ADS)

    Su, Junying

    2011-11-01

    A fractal dimension feature analysis method in spectrum domain for hyper spectrum image is proposed for agriculture crops classification. Firstly, a fractal dimension calculation algorithm in spectrum domain is presented together with the fast fractal dimension value calculation algorithm using the step measurement method. Secondly, the hyper spectrum image classification algorithm and flowchart is presented based on fractal dimension feature analysis in spectrum domain. Finally, the experiment result of the agricultural crops classification with FCL1 hyper spectrum image set with the proposed method and SAM (spectral angle mapper). The experiment results show it can obtain better classification result than the traditional SAM feature analysis which can fulfill use the spectrum information of hyper spectrum image to realize precision agricultural crops classification.

  7. A fast and automatic fusion algorithm for unregistered multi-exposure image sequence

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yu, Feihong

    2014-09-01

    Human visual system (HVS) can visualize all the brightness levels of the scene through visual adaptation. However, the dynamic range of most commercial digital cameras and display devices are smaller than the dynamic range of human eye. This implies low dynamic range (LDR) images captured by normal digital camera may lose image details. We propose an efficient approach to high dynamic (HDR) image fusion that copes with image displacement and image blur degradation in a computationally efficient manner, which is suitable for implementation on mobile devices. The various image registration algorithms proposed in the previous literatures are unable to meet the efficiency and performance requirements in the application of mobile devices. In this paper, we selected Oriented Brief (ORB) detector to extract local image structures. The descriptor selected in multi-exposure image fusion algorithm has to be fast and robust to illumination variations and geometric deformations. ORB descriptor is the best candidate in our algorithm. Further, we perform an improved RANdom Sample Consensus (RANSAC) algorithm to reject incorrect matches. For the fusion of images, a new approach based on Stationary Wavelet Transform (SWT) is used. The experimental results demonstrate that the proposed algorithm generates high quality images at low computational cost. Comparisons with a number of other feature matching methods show that our method gets better performance.

  8. Comparison of photo-matching algorithms commonly used for photographic capture-recapture studies.

    PubMed

    Matthé, Maximilian; Sannolo, Marco; Winiarski, Kristopher; Spitzen-van der Sluijs, Annemarieke; Goedbloed, Daniel; Steinfartz, Sebastian; Stachow, Ulrich

    2017-08-01

    Photographic capture-recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost-effectiveness. Recently, several computer-aided photo-matching algorithms have been developed to more efficiently match images of unique individuals in databases with thousands of images. However, the identification accuracy of these algorithms can severely bias estimates of vital rates and population size. Therefore, it is important to understand the performance and limitations of state-of-the-art photo-matching algorithms prior to implementation in capture-recapture studies involving possibly thousands of images. Here, we compared the performance of four photo-matching algorithms; Wild-ID, I3S Pattern+, APHIS, and AmphIdent using multiple amphibian databases of varying image quality. We measured the performance of each algorithm and evaluated the performance in relation to database size and the number of matching images in the database. We found that algorithm performance differed greatly by algorithm and image database, with recognition rates ranging from 100% to 22.6% when limiting the review to the 10 highest ranking images. We found that recognition rate degraded marginally with increased database size and could be improved considerably with a higher number of matching images in the database. In our study, the pixel-based algorithm of AmphIdent exhibited superior recognition rates compared to the other approaches. We recommend carefully evaluating algorithm performance prior to using it to match a complete database. By choosing a suitable matching algorithm, databases of sizes that are unfeasible to match "by eye" can be easily translated to accurate individual capture histories necessary for robust demographic estimates.

  9. Multipurpose image watermarking algorithm based on multistage vector quantization.

    PubMed

    Lu, Zhe-Ming; Xu, Dian-Guo; Sun, Sheng-He

    2005-06-01

    The rapid growth of digital multimedia and Internet technologies has made copyright protection, copy protection, and integrity verification three important issues in the digital world. To solve these problems, the digital watermarking technique has been presented and widely researched. Traditional watermarking algorithms are mostly based on discrete transform domains, such as the discrete cosine transform, discrete Fourier transform (DFT), and discrete wavelet transform (DWT). Most of these algorithms are good for only one purpose. Recently, some multipurpose digital watermarking methods have been presented, which can achieve the goal of content authentication and copyright protection simultaneously. However, they are based on DWT or DFT. Lately, several robust watermarking schemes based on vector quantization (VQ) have been presented, but they can only be used for copyright protection. In this paper, we present a novel multipurpose digital image watermarking method based on the multistage vector quantizer structure, which can be applied to image authentication and copyright protection. In the proposed method, the semi-fragile watermark and the robust watermark are embedded in different VQ stages using different techniques, and both of them can be extracted without the original image. Simulation results demonstrate the effectiveness of our algorithm in terms of robustness and fragility.

  10. An efficient hole-filling method based on depth map in 3D view generation

    NASA Astrophysics Data System (ADS)

    Liang, Haitao; Su, Xiu; Liu, Yilin; Xu, Huaiyuan; Wang, Yi; Chen, Xiaodong

    2018-01-01

    New virtual view is synthesized through depth image based rendering(DIBR) using a single color image and its associated depth map in 3D view generation. Holes are unavoidably generated in the 2D to 3D conversion process. We propose a hole-filling method based on depth map to address the problem. Firstly, we improve the process of DIBR by proposing a one-to-four (OTF) algorithm. The "z-buffer" algorithm is used to solve overlap problem. Then, based on the classical patch-based algorithm of Criminisi et al., we propose a hole-filling algorithm using the information of depth map to handle the image after DIBR. In order to improve the accuracy of the virtual image, inpainting starts from the background side. In the calculation of the priority, in addition to the confidence term and the data term, we add the depth term. In the search for the most similar patch in the source region, we define the depth similarity to improve the accuracy of searching. Experimental results show that the proposed method can effectively improve the quality of the 3D virtual view subjectively and objectively.

  11. Improvement of registration accuracy in accelerated partial breast irradiation using the point-based rigid-body registration algorithm for patients with implanted fiducial markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Minoru; Yoshimura, Michio, E-mail: myossy@kuhp.kyoto-u.ac.jp; Sato, Sayaka

    2015-04-15

    Purpose: To investigate image-registration errors when using fiducial markers with a manual method and the point-based rigid-body registration (PRBR) algorithm in accelerated partial breast irradiation (APBI) patients, with accompanying fiducial deviations. Methods: Twenty-two consecutive patients were enrolled in a prospective trial examining 10-fraction APBI. Titanium clips were implanted intraoperatively around the seroma in all patients. For image-registration, the positions of the clips in daily kV x-ray images were matched to those in the planning digitally reconstructed radiographs. Fiducial and gravity registration errors (FREs and GREs, respectively), representing resulting misalignments of the edge and center of the target, respectively, were comparedmore » between the manual and algorithm-based methods. Results: In total, 218 fractions were evaluated. Although the mean FRE/GRE values for the manual and algorithm-based methods were within 3 mm (2.3/1.7 and 1.3/0.4 mm, respectively), the percentages of fractions where FRE/GRE exceeded 3 mm using the manual and algorithm-based methods were 18.8%/7.3% and 0%/0%, respectively. Manual registration resulted in 18.6% of patients with fractions of FRE/GRE exceeding 5 mm. The patients with larger clip deviation had significantly more fractions showing large FRE/GRE using manual registration. Conclusions: For image-registration using fiducial markers in APBI, the manual registration results in more fractions with considerable registration error due to loss of fiducial objectivity resulting from their deviation. The authors recommend the PRBR algorithm as a safe and effective strategy for accurate, image-guided registration and PTV margin reduction.« less

  12. A model-based approach for detection of runways and other objects in image sequences acquired using an on-board camera

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Devadiga, Sadashiva; Tang, Yuan-Liang

    1994-01-01

    This research was initiated as a part of the Advanced Sensor and Imaging System Technology (ASSIST) program at NASA Langley Research Center. The primary goal of this research is the development of image analysis algorithms for the detection of runways and other objects using an on-board camera. Initial effort was concentrated on images acquired using a passive millimeter wave (PMMW) sensor. The images obtained using PMMW sensors under poor visibility conditions due to atmospheric fog are characterized by very low spatial resolution but good image contrast compared to those images obtained using sensors operating in the visible spectrum. Algorithms developed for analyzing these images using a model of the runway and other objects are described in Part 1 of this report. Experimental verification of these algorithms was limited to a sequence of images simulated from a single frame of PMMW image. Subsequent development and evaluation of algorithms was done using video image sequences. These images have better spatial and temporal resolution compared to PMMW images. Algorithms for reliable recognition of runways and accurate estimation of spatial position of stationary objects on the ground have been developed and evaluated using several image sequences. These algorithms are described in Part 2 of this report. A list of all publications resulting from this work is also included.

  13. Task-based evaluation of segmentation algorithms for diffusion-weighted MRI without using a gold standard

    PubMed Central

    Jha, Abhinav K.; Kupinski, Matthew A.; Rodríguez, Jeffrey J.; Stephen, Renu M.; Stopeck, Alison T.

    2012-01-01

    In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both accuracy and precision. We also propose consistency checks for this evaluation technique. PMID:22713231

  14. A novel line segment detection algorithm based on graph search

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-dan; Liu, Guo-ying; Song, Xu

    2018-02-01

    To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).

  15. 3D widefield light microscope image reconstruction without dyes

    NASA Astrophysics Data System (ADS)

    Larkin, S.; Larson, J.; Holmes, C.; Vaicik, M.; Turturro, M.; Jurkevich, A.; Sinha, S.; Ezashi, T.; Papavasiliou, G.; Brey, E.; Holmes, T.

    2015-03-01

    3D image reconstruction using light microscope modalities without exogenous contrast agents is proposed and investigated as an approach to produce 3D images of biological samples for live imaging applications. Multimodality and multispectral imaging, used in concert with this 3D optical sectioning approach is also proposed as a way to further produce contrast that could be specific to components in the sample. The methods avoid usage of contrast agents. Contrast agents, such as fluorescent or absorbing dyes, can be toxic to cells or alter cell behavior. Current modes of producing 3D image sets from a light microscope, such as 3D deconvolution algorithms and confocal microscopy generally require contrast agents. Zernike phase contrast (ZPC), transmitted light brightfield (TLB), darkfield microscopy and others can produce contrast without dyes. Some of these modalities have not previously benefitted from 3D image reconstruction algorithms, however. The 3D image reconstruction algorithm is based on an underlying physical model of scattering potential, expressed as the sample's 3D absorption and phase quantities. The algorithm is based upon optimizing an objective function - the I-divergence - while solving for the 3D absorption and phase quantities. Unlike typical deconvolution algorithms, each microscope modality, such as ZPC or TLB, produces two output image sets instead of one. Contrast in the displayed image and 3D renderings is further enabled by treating the multispectral/multimodal data as a feature set in a mathematical formulation that uses the principal component method of statistics.

  16. Overview of Digital Forensics Algorithms in Dslr Cameras

    NASA Astrophysics Data System (ADS)

    Aminova, E.; Trapeznikov, I.; Priorov, A.

    2017-05-01

    The widespread usage of the mobile technologies and the improvement of the digital photo devices getting has led to more frequent cases of falsification of images including in the judicial practice. Consequently, the actual task for up-to-date digital image processing tools is the development of algorithms for determining the source and model of the DSLR (Digital Single Lens Reflex) camera and improve image formation algorithms. Most research in this area based on the mention that the extraction of unique sensor trace of DSLR camera could be possible on the certain stage of the imaging process into the camera. It is considered that the study focuses on the problem of determination of unique feature of DSLR cameras based on optical subsystem artifacts and sensor noises.

  17. A joint Richardson-Lucy deconvolution algorithm for the reconstruction of multifocal structured illumination microscopy data.

    PubMed

    Ströhl, Florian; Kaminski, Clemens F

    2015-01-16

    We demonstrate the reconstruction of images obtained by multifocal structured illumination microscopy, MSIM, using a joint Richardson-Lucy, jRL-MSIM, deconvolution algorithm, which is based on an underlying widefield image-formation model. The method is efficient in the suppression of out-of-focus light and greatly improves image contrast and resolution. Furthermore, it is particularly well suited for the processing of noise corrupted data. The principle is verified on simulated as well as experimental data and a comparison of the jRL-MSIM approach with the standard reconstruction procedure, which is based on image scanning microscopy, ISM, is made. Our algorithm is efficient and freely available in a user friendly software package.

  18. A joint Richardson—Lucy deconvolution algorithm for the reconstruction of multifocal structured illumination microscopy data

    NASA Astrophysics Data System (ADS)

    Ströhl, Florian; Kaminski, Clemens F.

    2015-03-01

    We demonstrate the reconstruction of images obtained by multifocal structured illumination microscopy, MSIM, using a joint Richardson-Lucy, jRL-MSIM, deconvolution algorithm, which is based on an underlying widefield image-formation model. The method is efficient in the suppression of out-of-focus light and greatly improves image contrast and resolution. Furthermore, it is particularly well suited for the processing of noise corrupted data. The principle is verified on simulated as well as experimental data and a comparison of the jRL-MSIM approach with the standard reconstruction procedure, which is based on image scanning microscopy, ISM, is made. Our algorithm is efficient and freely available in a user friendly software package.

  19. MRI brain tumor segmentation based on improved fuzzy c-means method

    NASA Astrophysics Data System (ADS)

    Deng, Wankai; Xiao, Wei; Pan, Chao; Liu, Jianguo

    2009-10-01

    This paper focuses on the image segmentation, which is one of the key problems in medical image processing. A new medical image segmentation method is proposed based on fuzzy c- means algorithm and spatial information. Firstly, we classify the image into the region of interest and background using fuzzy c means algorithm. Then we use the information of the tissues' gradient and the intensity inhomogeneities of regions to improve the quality of segmentation. The sum of the mean variance in the region and the reciprocal of the mean gradient along the edge of the region are chosen as an objective function. The minimum of the sum is optimum result. The result shows that the clustering segmentation algorithm is effective.

  20. Underwater image enhancement through depth estimation based on random forest

    NASA Astrophysics Data System (ADS)

    Tai, Shen-Chuan; Tsai, Ting-Chou; Huang, Jyun-Han

    2017-11-01

    Light absorption and scattering in underwater environments can result in low-contrast images with a distinct color cast. This paper proposes a systematic framework for the enhancement of underwater images. Light transmission is estimated using the random forest algorithm. RGB values, luminance, color difference, blurriness, and the dark channel are treated as features in training and estimation. Transmission is calculated using an ensemble machine learning algorithm to deal with a variety of conditions encountered in underwater environments. A color compensation and contrast enhancement algorithm based on depth information was also developed with the aim of improving the visual quality of underwater images. Experimental results demonstrate that the proposed scheme outperforms existing methods with regard to subjective visual quality as well as objective measurements.

Top