Science.gov

Sample records for imaging cherenkov detector

  1. Initial performance of the SLD Cherenkov Ring Imaging Detector system

    SciTech Connect

    Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H.; Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; Muller, D.; Nagamine, T.; Pavel, T.J.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va`vra, J.; Williams, S.H.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Bean, A.; Caldwell, D.O.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Witherell, M.; Yellin, S.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Williams, D.A.; d`Oliveira, A.; Johnson, R.A.; Martinez, J.; Meadows, B.; Nussbaum, M.; Santha, A.K.S.; Shoup, A.; Sokoloff, M.; Stockdale, I.; Shank, J.; Whitaker, J.S.; Wilson, R.J.

    1991-11-01

    All of the major subsystems for the barrel Cherenkov Ring Imaging Detector (CRID) in the SLD at SLAC have now been commissioned. The CRID participated in the SLD engineering run of June--August 1991. In a cosmic ray test at the end of the run, Cherenkov rings were observed for the first time. Initial data from the CRID, including Cherenkov rings, studies of minimum ionizing particles, and data from the fiber optics calibration system are presented here.

  2. DIRC, the internally reflecting ring imaging Cherenkov detector for BABAR

    SciTech Connect

    Adam, I.; Aston, D.; Aleksan, R.

    1997-11-01

    The DIRC is a new type of Cherenkov imaging device that will be used for the first time in the BABAR detector at the asymmetric B-factory, PEP-II. It is based on total internal reflection and uses long, rectangular bars made from synthetic fused silica as Cherenkov radiator and light guide. The principles of the DIRC ring imaging Cherenkov technique are explained and results from the prototype program are presented. Its choice for the BABAR detector particle identification system is motivated, followed by a discussion of the quartz radiator properties and the detector design.

  3. The Hadron Blind Ring Imaging Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Blatnik, Marie; Zajac, Stephanie; Hemmick, Tom

    2013-10-01

    Heavy Ion Collisions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab have hinted at the existence of a new form of matter at high gluon density, the Color Glass Condensate. High energy electron scattering off of nuclei, focusing on the low-x components of the nuclear wave function, will definitively measure this state of matter. However, when a nucleus contributes a low x parton, the reaction products are highly focused in the electron-going direction and have large momentum in the lab system. High-momentum particle identification is particularly challenging. A particle is identifiable by its mass, but tracking algorithms only yield a particle's momentum based on its track's curvature. The particle's velocity is needed to identify the particle. A ring-imaging Cerenkov detector is being developed for the forward angle particle identification from the technological advancements of PHENIX's Hadron-Blind Detector (HBD), which uses Gas Electron Multipliers (GEMs) and pixelated pad planes to detect Cerenkov photons. The new HBD will focus the Cerenkov photons into a ring to determine the parent particle's velocity. Results from the pad plane simulations, construction tests, and test beam run will be presented.

  4. The HERMES dual-radiator ring imaging Cherenkov detector

    NASA Astrophysics Data System (ADS)

    Akopov, N.; Aschenauer, E. C.; Bailey, K.; Bernreuther, S.; Bianchi, N.; Capitani, G. P.; Carter, P.; Cisbani, E.; De Leo, R.; De Sanctis, E.; De Schepper, D.; Djordjadze, V.; Filippone, B. W.; Frullani, S.; Garibaldi, F.; Hansen, J.-O.; Hommez, B.; Iodice, M.; Jackson, H. E.; Jung, P.; Kaiser, R.; Kanesaka, J.; Kowalczyk, R.; Lagamba, L.; Maas, A.; Muccifora, V.; Nappi, E.; Negodaeva, K.; Nowak, W.-D.; O'Connor, T.; O'Neill, T. G.; Potterveld, D. H.; Ryckbosch, D.; Sakemi, Y.; Sato, F.; Schwind, A.; Shibata, T.-A.; Suetsugu, K.; Thomas, E.; Tytgat, M.; Urciuoli, G. M.; Van de Kerckhove, K.; Van de Vyver, R.; Yoneyama, S.; Zohrabian, H.; Zhang, L. F.

    2002-03-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C 4F 10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  5. The fluid systems for the SLD Cherenkov ring imaging detector

    SciTech Connect

    Abe, K.; Hasegawa, K.; Hasegawa, Y.; Iwasaki, Y.; Suekane, F.; Yuta, H.; Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; McCulloch, M.; McShurley, D.; Mueller, G.; Muller, D.; Nagamine, T.; Pavel, T.J.; Peterson, H.; Ratcliff, B.; Reif, R.; Rensing, P.; Schultz, D.; Shapiro, S.; Shaw, H.; Simopoulos, C.; Solodov, E.; Toge, N.; Vavra, J.; Watt, R.; Weber, T.; Williams, S.H.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Bean, A.; Caldwell, D.O.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Yellin, S.; Ben-David, R.; Manly, S.; Snyder, J.; Turk, J.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Schneider, M.; Williams, D.A.; Coller, J.; Shank, J.T.; Whitaker, J.S.; d`Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Sokoloff, M.D.; Stockdale, I.; Wilson, R.J.

    1992-10-01

    We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C{sub 2}H{sub 6} + TMAE), radiator gas (C{sub 5}F{sub 12} + N{sub 2}) and radiator liquid (C{sub 6}F{sub 14}). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported.

  6. Progress and commissioning of the SLD Cherenkov Ring Imaging Detector

    SciTech Connect

    Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H. . Dept. of Physics); Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.: Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; Muller, D.; Nagamine, T.; Pavel, T.J.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va'vra, J.; Williams, S.H. (Stanford Linear Accelerator

    1991-11-01

    We report the recent progress of the SLD Cherenkov Ring Imaging Detector. All of the individual components of the device (TPC's, mirrors, liquid radiator trays) have been completed and installed. Almost half of the electronics packages are installed and operational, and the data acquisition system has been commissioned. The liquid C{sub 6}F{sub 14} recirculation system is functioning. The drift gas supply systems are operating well with TMAE, and the gaseous Freon C{sub 5}F{sub 12} recirculator is being brought on-line. Our monitor and control systems are fully functional. The commissioning of all 40 TPCs at full operating voltage has gone very smoothly. The system shows a remarkable immunity to the SLC backgrounds, and yields very clean events, while operating with a single electron sensitivity.

  7. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    SciTech Connect

    Rose, Paul B.; Erickson, Anna S.

    2016-08-14

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  8. Monitor and control systems for the SLD Cherenkov Ring Imaging Detector

    SciTech Connect

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dunwoodie, W.; Fernandez, F.; Hallewell, G.; Kawahara, H.; Korff, P.; Kwon, Y.; Leith, D.; Muller, D.; Nagamine, T.; Pavel, T.; Rabinowitz, L.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va'Vra, J.; Williams, S.; Whitaker, J.; Wilson, R.J.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; McHugh, S.; Mathys, L.; Morriso

    1989-10-01

    To help ensure the stable long-term operation of a Cherenkov Ring Detector at high efficiency, a comprehensive monitor and control system is being developed. This system will continuously monitor and maintain the correct operating temperatures, and will provide an on-line monitor and maintain the correct operating temperatures, and will provide an on-line monitor of the pressures, flows, mixing, and purity of the various fluids. In addition the velocities and trajectories of Cherenkov photoelectrons drifting within the imaging chambers will be measured using a pulsed uv lamp and a fiberoptic light injection system. 9 refs., 6 figs.

  9. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    NASA Astrophysics Data System (ADS)

    Rose, P. B.; Erickson, A. S.

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in 11B(d,n-γ)12C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example 232Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  10. Evaluation of Multi-Anode Photomultipliers for the CLAS12 Ring-Imaging Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Samuel, Jenna

    2015-04-01

    Thomas Jefferson National Accelerator Facility has recently upgraded its Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS12) to provide a comprehensive study of the complex internal structure and dynamics of the nucleon. The upgrade includes new detectors such as the Ring Imaging Cherenkov detector (RICH). The RICH will use multi-anode photomultipliers (MAPMTs) for the detection of Cherenkov photons. Our study compared two models of Hamamatsu MAPMTs (H8500 and H12700) under consideration for the CLAS12 RICH in terms of their single photoelectron (SPE) peak, dark current, and crosstalk. The MAPMTs were tested inside a light-tight box, using a low intensity laser to simulate single photoelectron events similar to Cherenkov radiation. The H12700's SPE peaks were on average 78% the width of the H8500's peaks. For both models, the probability of dark current was on the order of 10-4. The probability of crosstalk for H8500s was 1.6 to 2.7 times that for H12700s. The H12700s were deemed better because they had negligible crosstalk and dark current while providing a narrower peak for single photoelectron events. Thomas Jefferson National Accelerator Facility, Science Undergraduate Laboratory Internship.

  11. Recent results of the forward ring imaging Cherenkov detector of the DELPHI experiment at LEP

    SciTech Connect

    Adam, W.; Albrecht, E. ); Augustinus, A. )

    1994-08-01

    The Forward Ring Imaging Cherenkov detector covers both end-cap regions of the DELPHI experiment at LEP in the polar angel 15[degree] < [theta] < 35[degree] and 145[degree] < [theta] < 165[degree]. The detector combines a layer of liquid C[sub 6]F[sub 14] and a volume of gaseous C[sub 4]F[sub 10] into a single assembly. Ultraviolet photons from both radiators are converted in a single plane of photosensitive Time Projection Chambers. Identification of charged particles is provided for momenta up to 40 GeV/c. The design of the detector is briefly described. The detector is now fully installed in DELPHI and has participated in the 1993 data taking. The overall performance will be presented together with the expectations from Monte Carlo simulations. Results close to design values are obtained.

  12. The fluid systems for the SLD Cherenkov ring imaging detector. [01

    SciTech Connect

    Abe, K.; Hasegawa, K.; Hasegawa, Y.; Iwasaki, Y.; Suekane, F.; Yuta, H. . Dept. of Physics); Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; McCulloch, M.; McShurley, D.; Mueller, G.; Muller, D.; Nagamine, T.; Pavel, T.J.; Peterson, H.; Ratcliff, B.; Reif, R.; Rensing, P.; Schultz, D.; Shapiro, S.; Shaw,

    1992-10-01

    We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C[sub 2]H[sub 6] + TMAE), radiator gas (C[sub 5]F[sub 12] + N[sub 2]) and radiator liquid (C[sub 6]F[sub 14]). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported.

  13. Test of a conceptual prototype of the total internal reflection Cherenkov imaging detector (DIRC) with cosmic muons

    SciTech Connect

    Aston, D.; Kawahara, H.; McShurley, D.; Muller, D.; Oxoby, G.; Hearty, C.; Kadyk, J.; Lynch, G.; Lu, A.

    1994-12-01

    The DIRC is a totally internally reflecting Cherenkov imaging detector proposed for particle identification at the asymmetric e{sup +}e{sup {minus}} B factories. First test results from a conceptual prototype using cosmic muons are reported. The photo-electron yield and the single Cherenkov photon resolution at various track dip angles and positions along the radiator bar have been measured. The results are consistent with estimates and Monte-Carlo simulations.

  14. The ring imaging Cherenkov detector of the NA62 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Cenci, P.; Anzivino, G.; Bucci, F.; Cassese, A.; Ciaranfi, R.; Collazuol, G.; Duk, V.; Iacopini, E.; Lamanna, G.; Lami, S.; Lenti, M.; Pepe, M.; Piandani, R.; Piccini, M.; Sergi, A.; Sozzi, M. S.

    2013-12-01

    A Ring Imaging Cherenkov (RICH) detector is the key element for particle identification in the NA62 experiment at CERN. Its purposes are to distinguish pions from muons in the momentum range from 15 GeV/c to 35 GeV/c with a muon suppression factor at the 0.5% level, to measure the particle arrival time with better than 100 ps resolution and to provide the reference time and a fast signal for the trigger system. This paper describes the updated detector design, the present status of the construction, the final results of a prototype beam test and a possible application of Graphics Processing Units in the NA62 trigger system based on RICH information.

  15. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    SciTech Connect

    Contalbrigo, Marco

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to –25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  16. Performance of the front end electronics and data acquisition system for the SLD Cherenkov Ring Imaging Detector

    SciTech Connect

    Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H. . Dept. of Physics); Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Hoeflich, J.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; Marshall, D.; Muller, D.; Nagamine, T.; Oxoby, G.; Pavel, T.J.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Stiles, P.; Toge, N.; Va'vra, J

    1991-11-01

    The front end electronics and data acquisition system for the SLD barrel Cherenkov Ring Imaging Detector (CRID) are described. This electronics must provide a 1% charge division measurement with a maximum acceptable noise level of 2000 electrons (rms). Noise and system performance results are presented for the initial SLD engineering run data.

  17. Novel large format sealed tube microchannel plate detectors for Cherenkov timing and imaging

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; McPhate, J. B.; Vallerga, J. V.; Tremsin, A. S.; Jelinsky, S. R.; Frisch, H. J.; Lappd Collaboration

    2011-05-01

    Large area (20×20 cm 2) sealed tube detectors using novel borosilicate glass microchannel plates, with bialkali photocathodes and strip-line readouts are being developed for Cherenkov light detection. Designs based on conventional sealed tubes with alumina brazed body construction and hot indium seals have been developed. Borosilicate glass substrates with 20 and 40 μm holes have been processed using atomic layer deposition to produce functional microchannel plates. Initial results for these in a 33 mm format show gain, imaging performance, pulse shape and lifetime characteristics that are similar to standard glass microchannel plates. Large area (20×20 cm 2) borosilicate glass substrates with 20 μm pores have also been made.

  18. Photon Detection Systems for Modern Cherenkov Detectors

    NASA Astrophysics Data System (ADS)

    Seitz, B.; Britting, A.; Cowie, E.; Eyrich, W.; Hoek, M.; Keri, T.; Lehmann, A.; Montgomery, R.; Uhlig, F.

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particle and their momentum vectors. The ANDA experiment at FAIR and the CLAS 12 experiment and Jefferson Laboratory both plan to use imaging Cherenkov counters for particle identification. CLAS 12 will feature a Ring Imaging CHerenkov counter (RICH), while ANDA plans to construct Cherenkov counters relying on the Detections of Internally Reflected Cherenkov light (DIRC). These detectors require high-rate, single-photon capable light detection systems with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of the rate dependence, cross-talk, time-resolution and position resolution fro a range of commercially available photon detection solutions are presented and evaluated on their applicability to the ANDA and CLAS12 Cherenkov counters.

  19. Novel Cherenkov photon detectors

    NASA Astrophysics Data System (ADS)

    Sauli, Fabio

    2005-11-01

    Gaseous detectors using multiple gas electron multiplier (GEM) electrodes permit to attain large amplification factors with a strong suppression of photon and ion-mediated feedback. With the first GEM in a cascade coated with a photosensitive layer, they provide efficient and fast single photon detection, with excellent position resolution. General performances of CsI-coated multi-GEM detectors are described, as well as a promising method of signal readout, the so-called hexaboard, a matrix of interconnected pads that permits to achieve ambiguity-free reconstruction of multi-photon events, a major requirement for RICH applications.

  20. Design and construction of the front-end electronics data acquisition for the SLD CRID (Cherenkov Ring Imaging Detector)

    SciTech Connect

    Hoeflich, J.; McShurley, D.; Marshall, D.; Oxoby, G.; Shapiro, S.; Stiles, P. ); Spencer, E. . Inst. for Particle Physics)

    1990-10-01

    We describe the front-end electronics for the Cherenkov Ring Imaging Detector (CRID) of the SLD at the Stanford Linear Accelerator Center. The design philosophy and implementation are discussed with emphasis on the low-noise hybrid amplifiers, signal processing and data acquisition electronics. The system receives signals from a highly efficient single-photo electron detector. These signals are shaped and amplified before being stored in an analog memory and processed by a digitizing system. The data from several ADCs are multiplexed and transmitted via fiber optics to the SLD FASTBUS system. We highlight the technologies used, as well as the space, power dissipation, and environmental constraints imposed on the system. 16 refs., 10 figs.

  1. Metamaterials for Cherenkov Radiation Based Particle Detectors

    SciTech Connect

    Tyukhtin, A. V.; Schoessow, P.; Kanareykin, A.; Antipov, S.

    2009-01-22

    Measurement of Cherenkov radiation (CR) has long been a useful technique for charged particle detection and beam diagnostics. We are investigating metamaterials engineered to have refractive indices tailored to enhance properties of CR that are useful for particle detectors and that cannot be obtained using conventional media. Cherenkov radiation in dispersive media with a large refractive index differs significantly from the same effect in conventional detector media, like gases or aerogel. The radiation pattern of CR in dispersive metamaterials presents lobes at very large angles with respect to particle motion. Moreover, the frequency and particle velocity dependence of the radiated energy can differ significantly from CR in a conventional dielectric medium.

  2. Development of a 144-channel Hybrid Avalanche Photo-Detector for Belle II ring-imaging Cherenkov counter with an aerogel radiator

    NASA Astrophysics Data System (ADS)

    Nishida, S.; Adachi, I.; Hamada, N.; Hara, K.; Iijima, T.; Iwata, S.; Kakuno, H.; Kawai, H.; Korpar, S.; Kriz^an, P.; Ogawa, S.; Pestotnik, R.; Ŝantelj, L.; Seljak, A.; Sumiyoshi, T.; Tabata, M.; Tahirovic, E.; Yoshida, K.; Yusa, Y.

    2015-07-01

    The Belle II detector, a follow up of the very successful Belle experiment, is under construction at the SuperKEKB electron-positron collider at KEK in Japan. For the PID system in the forward region of the spectrometer, a proximity-focusing ring-imaging Cherenkov counter with an aerogel radiator is being developed. For the position sensitive photon sensor, a 144-channel Hybrid Avalanche Photo-Detector has been developed with Hamamatsu Photonics K.K. In this report, we describe the specification of the Hybrid Avalanche Photo-Detector and the status of the mass production.

  3. Muon imaging of volcanoes with Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    The quantitative understanding of the inner structure of a volcano is a key feature to model the processes leading to paroxysmal activity and, hence, to mitigate volcanic hazards. To pursue this aim, different geophysical techniques are utilized, that are sensitive to different properties of the rocks (elastic, electrical, density). In most cases, these techniques do not allow to achieve the spatial resolution needed to characterize the shallowest part of the plumbing system and may require dense measurements in active zones, implying a high level of risk. Volcano imaging through cosmic-ray muons is a promising technique that allows to overcome the above shortcomings. Muons constantly bombard the Earth's surface and can travel through large thicknesses of rock, with an energy loss depending on the amount of crossed matter. By measuring the absorption of muons through a solid body, one can deduce the density distribution inside the target. To date, muon imaging of volcanic structures has been mainly achieved with scintillation detectors. They are sensitive to noise sourced from (i) the accidental coincidence of vertical EM shower particles, (ii) the fake tracks initiated from horizontal high-energy electrons and low-energy muons (not crossing the target) and (iii) the flux of upward going muons. A possible alternative to scintillation detectors is given by Cherenkov telescopes. They exploit the Cherenkov light emitted when charged particles (like muons) travel through a dielectric medium, with velocity higher than the speed of light. Cherenkov detectors are not significantly affected by the above noise sources. Furthermore, contrarily to scintillator-based detectors, Cherenkov telescopes permit a measurement of the energy spectrum of the incident muon flux at the installation site, an issue that is indeed relevant for deducing the density distribution inside the target. In 2014, a prototype Cherenkov telescope was installed at the Astrophysical Observatory of Serra

  4. Cherenkov detector for beam quality measurement

    NASA Astrophysics Data System (ADS)

    Orfanelli, S.; CMS Collaboration

    2016-07-01

    A new detector to measure the machine induced background at larger radii has been developed and installed in the CMS experiment at the LHC. It consists of forty modules, each comprising a quartz bar read out by a photomultiplier tube. Since Cherenkov radiation is emitted in a forward cone around the charged particle trajectory, these detectors can distinguish between the arrival directions of the machine induced background and the collision products. The back-end electronics consists of a uTCA readout with excellent time resolution. The installation in the CMS is described and first commissioning measurements with the LHC beams in Run II are presented.

  5. First Year Operational Experience with the Cherenkov Detector (DIRC) of BaBar

    SciTech Connect

    Spanier, Stefane

    2000-04-21

    The DIRC (acronym for Detection of Internally Reflected Cherenkov (light)) is a new type of Cherenkov ring imaging detector based on total internal reflection that is used for the first time in the BaBar detector at PEP-II ring of SLAC. The Cherenkov radiators are long rectangular bars made of synthetic fused silica. The photon detector is a water tank equipped with an array of 10,752 conventional photomultipliers. The first year operational experience in the BaBar detector is presented using cosmic data and collision data in the energy region of the Upsilon(4S) resonance.

  6. First year operational experience with the Cherenkov Detector (DIRC) of BaBar

    SciTech Connect

    Adam, I.; BaBar Collaboration

    2000-04-01

    The DIRC (acronym for Detection of Internally Reflected Cherenkov (light)) is a new type of Cherenkov ring imaging detector based on total internal reflection that is used for the first time in the BaBar detector at PEP-II ring of SLAC. The Cherenkov radiators are long rectangular bars made of synthetic fused silica. The photon detector is a water tank equipped with an array of 10,752 conventional photomultipliers. The first year operational experience in the BaBar detector is presented using cosmic data and collision data in the energy region of the Y(4s) resonance.

  7. HAWC - The High Altitude Water Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Tepe, Andreas; HAWC Collaboration

    2012-07-01

    The high altitude water Cherenkov observatory (HAWC) is an instrument for the detection of high energy cosmic gamma-rays. Its predecessor Milagro has successfully proven that the water Cherenkov technology for gamma-ray astronomy is a useful technique. HAWC is currently under construction at Sierra Negra in Mexico at an altitude of 4100 m and will include several improvements compared to Milagro. Two complementary DAQ systems of the HAWC detector allow for the observation of a large fraction of the sky with a very high duty cycle and independent of environmental conditions. HAWC will observe the gamma-ray sky from about 100 GeV up to 100 TeV. Also the cosmic ray flux anisotropy on different angular length scales is object of HAWC science. Because of HAWC's large effective area and field of view, we describe its prospects to observe gamma-ray bursts (GRBs) as an example for transient sources.

  8. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics.

    PubMed

    Cheon, MunSeong; Kim, Junghee

    2015-08-01

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  9. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    NASA Astrophysics Data System (ADS)

    Cheon, MunSeong; Kim, Junghee

    2015-08-01

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  10. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    SciTech Connect

    Cheon, MunSeong Kim, Junghee

    2015-08-15

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  11. Probing Cherenkov and Scintillation Light Separation for Next-Generation Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Caravaca, J.; Descamps, F. B.; Land, B. J.; Orebi Gann, G. D.; Wallig, J.; Yeh, M.

    2017-09-01

    The ability to separate Cherenkov and scintillation signals in liquid scintillator detectors would enable outstanding background rejection for next-generation neutrino experiments. Reconstruction of directional information, ring imaging, and sub-Cherenkov threshold detection all have the potential to substantially improve particle and event identification. The Cherenkov-Scintillation Separation (CHESS) experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillation medium based on photon hit times and detected charge. This setup has been used to characterize the ability to detect Cherenkov light in a range of target media. We show results with pure organic scintillator (LAB) and the prospects with scintillators with a secondary fluor (LAB/PPO). There are future plans to deploy the newly developed water-based liquid scintillator, a medium with a higher Cherenkov/Scintillation light yield ratio than conventional pure liquid scintillators, enhancing the visibility of the less abundant Cherenkov light in the presence of scintillation light. These results can inform the development of future large-scale detectors, such as the proposed Theia experiment, or other large detectors at underground laboratories such as the far-site of the new Long Baseline Neutrino Facility at the Sanford Underground Research Facility. CHESS detector calibrations and commissioning will be discussed, and the latest results will be presented.

  12. Light-weight spherical mirrors for Cherenkov detectors

    SciTech Connect

    E. Cisbani; S. Colilli; R. Crateri; F. Cusanno; R. Fratoni; S. Frullani; F. Garibaldi; F. Giuliani; M. Gricia; M. Iodice; R. Iommi; M. Lucentini; A. Mostarda; L. Pierangeli; F. Santavenere; G.M. Urciuoli; R. De Leo; L. Lagamba; E. Nappi; A. Braem; P. Vernin

    2003-03-01

    Light-weight spherical mirrors have been appositely designed and built for the gas threshold Cherenkov detectors of the two Hall A spectrometers. The mirrors are made of a 1mm thick aluminized plexiglass sheet, reinforced by a rigid backing consisting of a phenolic honeycomb sandwiched between two carbon fiber mats epoxy glued. The produced mirrors have a thickness equivalent to 0.55% of radiation length, and an optical slope error of about 5.5mrad. These characteristics make these mirrors suitable for the implementation in Cherenkov threshold detectors. Ways to improve the mirror features are also discussed in view of their possible employment in RICH detectors.

  13. Detection of tau neutrinos by imaging air Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Góra, D.; Bernardini, E.

    2016-09-01

    This paper investigates the potential to detect tau neutrinos in the energy range of 1-1000 PeV searching for very inclined showers with imaging Cherenkov telescopes. A neutrino induced tau lepton escaping from the Earth may decay and initiate an air shower which can be detected by a fluorescence or Cherenkov telescope. We present here a study of the detection potential of Earth-skimming neutrinos taking into account neutrino interactions in the Earth crust, local matter distributions at various detector sites, the development of tau-induced showers in air and the detection of Cherenkov photons with IACTs. We analyzed simulated shower images on the camera focal plane and implemented generic reconstruction chains based on Hillas parameters. We find that present IACTs can distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range. We present the neutrino trigger efficiency obtained for a few configurations being considered for the next-generation Cherenkov telescopes, i.e. the Cherenkov Telescope Array. Finally, for a few representative neutrino spectra expected from astrophysical sources, we compare the expected event rates at running IACTs to what is expected for the dedicated IceCube neutrino telescope.

  14. Long term biological developments in water Cherenkov detector media

    NASA Astrophysics Data System (ADS)

    Venturini, M.; Filevich, A.; Pizarro, R.; Ibáñez, J.; Bauleo, P.; Rodríguez Martino, J.

    2011-12-01

    Fourteen years ago, studies on bacteria growing in clean water were made in order to assess the hazard imposed by a possible expansion of bacteria population in the water tanks of the Pierre Auger Observatory Cherenkov detectors. In 1999 TANGO Array, a reduced-size unitary cell, composed of four water Cherenkov detectors, was constructed at the TANDAR campus of the Atomic Energy Commission, in Buenos Aires, to be used as a working model of the proposed surface array. TANGO Array ran for one year observing energy, intensity, and arrival directions of cosmic rays at sea level. Nine years after it was decommissioned, the water tanks configuring the Cherenkov detectors are still kept closed. In May 2009 water and liner samples from these tanks were collected to determine eventual long term bacteria growth in the internal detector environment, which is very similar to those of the detectors installed in the Malargüe Site. In the present note we report the results of the bacteriological study performed on the samples obtained from the TANGO Array detector tanks. Cultivable, long time surviving, bacterial species were identified, both in the water mass and on the liner surface, and the light transmission in water at the relevant Cherenkov wavelength was studied. An upper limit of possible interferences caused by bacteria is estimated.

  15. An internally reflecting Cherenkov detector (DIRC): Properties of the fused silica radiators

    SciTech Connect

    Adam, I.; Aston, D.; Aleksan, R.

    1997-11-01

    The DIRC, a new type of ring-imaging Cherenkov detector that images internally reflected Cherenkov light, is being constructed as the main hadronic particle identification component of the BABAR detector at SLAC. The device makes use of 5 meter long fused silica (colloquially called quartz) bars, which serve both as the Cherenkov radiators and as light pipes for transmitting the light to an array of photo-multiplier tubes. This paper describes a program of research and development aimed at determining whether bars that meet the stringent requirements of the DIRC can be obtained from commercial sources. The results of studies of bulk absorption of fused silica, surface finish, radiation damage and bulk inhomogeneities are discussed.

  16. Status of the development of large area photon detectors based on THGEMs and hybrid MPGD architectures for Cherenkov imaging applications

    NASA Astrophysics Data System (ADS)

    Alexeev, M.; Birsa, R.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Torre, S. Dalla; Dasgupta, S.; Denisov, O.; Duic, V.; Finger, M.; Finger, M.; Fischer, H.; Giorgi, M.; Gobbo, B.; Gregori, M.; Herrmann, F.; Königsmann, K.; Levorato, S.; Maggiora, A.; Martin, A.; Menon, G.; Steiger, K.; Novy, J.; Panzieri, D.; Pereira, F. A.; Santos, C. A.; Sbrizzai, G.; Schiavon, P.; Schopferer, S.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Takekawa, S.; Tessarotto, F.; Veloso, J. F. C. A.; Makke, N.

    2016-07-01

    We report about the development status of large area gaseous single photon detectors based on a novel hybrid concept for RICH applications. The hybrid concept combines Thick Gaseous Electron Multipliers (THGEMs) coupled to CsI, working as a photon sensitive pre-amplification stage, and Micromegas, as a multiplication stage. The most recent achievements within the research and development programme consist in the assembly and study of 300 × 300mm2 hybrid photon detectors, the optimization of front-end electronics, and engineering towards large area detectors. Hybrid detectors with an active area of 300 × 300mm2 have been successfully operated in laboratory conditions and at a CERN PS T10 test beam, achieving effective gains in the order of 105 and good time resolution (σ = 7 ns); APV25 front-end chips have been coupled to the detector resulting in noise levels lower than 1000 electrons; the production and characterization of 300 × 600mm2 THGEMs is ongoing. A set of hybrid detectors with 600 × 600mm2 active area is envisaged to upgrade COMPASS RICH-1 at CERN in 2016.

  17. Supernova Registration in Water Cherenkov Veto of Dark Matter Detectors

    NASA Astrophysics Data System (ADS)

    Litvinovich, E. A.; Machulin, I. N.; Pugachev, D. A.; Skorokhvatov, M. D.

    2017-01-01

    Registration of supernova neutrinos is one of the main goals of large underground neutrino detectors. We consider the possibility of using the large water veto tanks of future dark matter experiments as the additional facilities for supernova detection. Simulations were performed for registration of Cherenkov light in 2 kt water veto of Darkside-20k from high energy positrons created by supernova electron antineutrinos via inverse beta decay reaction. Comparison between characteristics of different supernova neutrino detectors are presented.

  18. A high-efficiency focusing Cherenkov radiation detector

    NASA Astrophysics Data System (ADS)

    Lewis, Katina-Pilar; Moran, Michael J.; Hall, James; Graser, Michael

    1992-03-01

    A new design uses advanced technology to produce an efficient, high-bandwidth Cherenkov detector for relativistic charged particles. The detector consists of a diamond-lathe machined ultraviolet-grade Lucite radiator, a parabolic focusing mirror, and a photodiode with an S-20 cathode. This article discusses some details of the detector design and describes preliminary measurements of its response characteristics. The data show the detector to have an overall gain of ≊76 signal electrons per incident electron and a photodiode-limited response time of ≊450 ps.

  19. ;Panchito; Water Cherenkov Detector Water Studies for the LAGO Collaboration

    NASA Astrophysics Data System (ADS)

    Quishpe, R.; Audelo, M.; Calderon, M.; Carrera, E.; Cazar, D.; Guerrero, D.; Mantilla, C.; Martinez, O.; Vargas, S.; Vasquez, N.; Velasquez, C.; LAGO Collaboration

    2015-10-01

    Water Cherenkov Detectors (WCDs), which are part of the LAGO experimental array, are being built in the cities of Riobamba, Quito and Cumbaya in Ecuador. In order to increase the sensitivity and efficiency of these devices, it is necessary to ensure that the water used as radiator media absorbs as low as possible the UV light due to the incident particles and produced by Cherenkov effect. To do this, we built and used a device that allows us to measure the attenuation length directly. Water samples purified by different techniques are analyzed. Some characteristics like absorbance, refractive index, conductivity and cost are studied. We attempt to simulate the Cherenkov effect in FLUKA, we report our findings and perform a comparison with results from previous reports of LAGO sites elsewhere, and with other experiments that use WCD technology.

  20. Spectrum of energy depositions in the Auger Water Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Salazar, Humberto

    1999-08-01

    The measured spectrum of energy depositions in a Water Cherenkov Detector (WCD) prototype for the Pierre Auger Observatory is presented. A WCD (area 10 m2 )is located in the Puebla University campus at a depth of 800 g/cm2 (2200 m above sea level). Differential and integral spectra in a wide energy deposition range (0.5 - 150 of vertical equivalent muons) are presented. The problem of the WCD "self calibration" procedure (by rate of the muon events) is discussed. The characteristic change of the slopes of the differential spectrum at the transition from single muon signals to EAS signals is also discussed. The measured energy deposition spectrum at extreme signals is used to estimate the linearity of the response of the WCD PMTs. Key words: Auger array, water Cherenkov detector, extensive air showers

  1. The water Cherenkov detectors of the HAWC Observatory

    NASA Astrophysics Data System (ADS)

    Longo, Megan; Mostafa, Miguel

    2012-10-01

    The High Altitude Water Cherenkov (HAWC) observatory is a very high-energy gamma-ray detector which is currently under construction at 4100 m in Sierra Negra, Mexico. The observatory will be composed of an array of 300 Water Cherenkov Detectors (WCDs). Each WCD consists of a 5 m tall by 7.3 m wide steel tank containing a hermetically sealed plastic bag, called a bladder, which is filled with 200,000 liters of purified water. The detectors are each equipped with four upward-facing photomultiplier tubes (PMTs), anchored to the bottom of the bladder. At Colorado State University (CSU) we have the only full-size prototype outside of the HAWC site. It serves as a testbed for installation and operation procedures for the HAWC observatory. The WCD at CSU has been fully operational since March 2011, and has several components not yet present at the HAWC site. In addition to the four HAWC position PMTs, our prototype has three additional PMTs, including one shrouded (dark) PMT. We also have five scintillator paddles, four buried underneath the HAWC position PMTs, and one freely moving paddle above the volume of water. These extra additions will allow us to work on muon reconstruction with a single WCD. We will describe the analysis being done with the data taken with the CSU prototype, its impact on the HAWC detector, and future plans for the prototype.

  2. The major atmospheric gamma-ray imaging Cherenkov telescope

    NASA Astrophysics Data System (ADS)

    Garczarczyk, Markus; MAGIC Collaboration

    2011-05-01

    MAGIC is a system of two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) for ground-based γ-ray astronomy. During many years, starting with the design phase of the first telescope in 2003, the upgrade of the second telescope in 2008 up to now, novel technologies have been developed, commissioned and continuously improved. Most components and subsystems represent nowadays state of the art techniques and are under consideration to be used in future detectors. The large reflector area, together with small diameter, high quantum efficiency (QE) photomultipliers (PMTs) in combination with an improved trigger and readout system permits an analysis threshold of 25 GeV, the lowest among current IACTs. MAGIC overlaps in energy with the upper end of current satellite experiments and gives the unique opportunity, for the first time, to cross-calibrate ground based versus satellite born detectors. Some selected techniques used in MAGIC, which are in context with this conference, are presented.

  3. About a Gadolinium-doped Water Cherenkov LAGUNA Detector

    NASA Astrophysics Data System (ADS)

    Labarga, Luis

    2010-11-01

    Water Cherenkov (wC) detectors are extremely powerful apparatuses for scientific research. Nevertheless they lack of neutron tagging capabilities, which translates, mainly, into an inability to identify the anti-matter nature of the reacting incoming anti-neutrino particles. A solution was proposed by R. Beacon and M. Vagins back in 2004: by dissolving in the water a compound with nucleus with very large cross section for neutron capture like the Gadolinium, with a corresponding emission of photons of enough energy to be detected, they can tag thermal neutrons with an efficiency larger than 80%. In this talk we detail the technique and its implications in the measurement capabilities and, as well, the new backgrounds induced. We discuss the improvement on their physics program, also for the case of LAGUNA type detectors. We comment shortly the status of the pioneering R&D program of the Super-Kamiokande Collaboration towards dissolving a Gadolinium compound in its water.

  4. Signal Temporal Profile of a Water Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Salazar, H.; Martinez, O.; Cotzomi, J.; Moreno, E.; Villaseñor, L.

    2003-07-01

    The suggested existence of temporal structure in the signals of extensive air showers (EAS) for energies greater than 1017 eV at core distances of about 500 m, and its correlation with important parameters of EASs has stimulated us to study this structure for showers with lower energies in an Auger water Cherenkov detector(WCD). Preliminary analysis of experimental data on the widths of signals in a WCD and their correlation with other parameters of the signal are presented. The detector was triggered by the EAS-BUAP array which operates in the region of 1014 - 1016 eV. The distance of the WCD to the EAS core is larger than 30 m.

  5. About a Gadolinium-doped Water Cherenkov LAGUNA Detector

    SciTech Connect

    Labarga, Luis

    2010-11-24

    Water Cherenkov (wC) detectors are extremely powerful apparatuses for scientific research. Nevertheless they lack of neutron tagging capabilities, which translates, mainly, into an inability to identify the anti-matter nature of the reacting incoming anti-neutrino particles. A solution was proposed by R. Beacon and M. Vagins back in 2004: by dissolving in the water a compound with nucleus with very large cross section for neutron capture like the Gadolinium, with a corresponding emission of photons of enough energy to be detected, they can tag thermal neutrons with an efficiency larger than 80%. In this talk we detail the technique and its implications in the measurement capabilities and, as well, the new backgrounds induced. We discuss the improvement on their physics program, also for the case of LAGUNA type detectors. We comment shortly the status of the pioneering R and D program of the Super-Kamiokande Collaboration towards dissolving a Gadolinium compound in its water.

  6. Optical properties of water for the Yangbajing water cherenkov detector

    NASA Astrophysics Data System (ADS)

    Gao, Shang-qi; Sun, Zhi-bin; Jiang, Yuan-da; Wang, Chao; Du, Ke-ming

    2011-08-01

    Cherenkov radiation is used to study the production of particles during collisions, cosmic rays detections and distinguishing between different types of neutrinos and electrons. The optical properties of water are very important to the research of Cherenkov Effect. Lambert-beer law is a method to study the attenuation of light through medium. In this paper, optical properties of water are investigated by use of a water attenuation performance test system. The system is composed of the light-emitting diode (LED) light source and the photon receiver models. The LED light source model provides a pulse light signal which frequency is 1 kHz and width is 100ns. In photon receiver model, a high sensitivity photomultiplier tube (PMT) is used to detect the photons across the water. Because the output voltage amplitude of PMT is weak which is from 80mv to 120mV, a low noise pre-amplifier is used to improve the detector precise. An effective detector maximum time window of PMT is 100ns for a long lifetime, so a peak holder circuit is used to hold the maximum peak amplitude of PMT for the induced photons signal before the digitalization. In order to reduce the noise of peak holder, a multi-pulse integration is used before the sampling of analog to digital converter. At last, the detector of photons from the light source to the PMT across the water is synchronized to the pulse width of the LED. In order to calculate the attenuation coefficient and attenuation length of water precisely, the attenuation properties of air-to-water boundary is considered in the calculation.

  7. Tagging spallation backgrounds with showers in water Cherenkov detectors

    NASA Astrophysics Data System (ADS)

    Li, Shirley Weishi; Beacom, John F.

    2015-11-01

    Cosmic-ray muons and especially their secondaries break apart nuclei ("spallation") and produce fast neutrons and beta-decay isotopes, which are backgrounds for low-energy experiments. In Super-Kamiokande, these beta decays are the dominant background in 6-18 MeV, relevant for solar neutrinos and the diffuse supernova neutrino background. In a previous paper, we showed that these spallation isotopes are produced primarily in showers, instead of in isolation. This explains an empirical spatial correlation between a peak in the muon Cherenkov light profile and the spallation decay, which Super-Kamiokande used to develop a new spallation cut. However, the muon light profiles that Super-Kamiokande measured are grossly inconsistent with shower physics. We show how to resolve this discrepancy and how to reconstruct accurate profiles of muons and their showers from their Cherenkov light. We propose a new spallation cut based on these improved profiles and quantify its effects. Our results can significantly benefit low-energy studies in Super-Kamiokande, and will be especially important for detectors at shallower depths, like the proposed Hyper-Kamiokande.

  8. The Cherenkov Surface Detector of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Billoir, Pierre

    2014-12-01

    The Pierre Auger Observatory detects the atmospheric showers induced by cosmic rays of ultra-high energy (UHE). It is the first one to use the hybrid technique. A set of telescopes observes the fluorescence of the nitrogen molecules on clear moonless nights, giving access to the longitudinal profile of the shower. These telescopes surround a giant array of 1600 water Cherenkov tanks (covering more than 3000 km2), which works continuously and samples the particles reaching the ground (mainly muons, photons and electrons/positrons); the light produced within the water is recorded into FADC (Fast Analog to Digital Convertes) traces. A subsample of hybrid events provides a cross calibration of the two components. We describe the structure of the Cherenkov detectors, their sensitivity to different particles and the information they can give on the direction of origin, the energy and the nature of the primary UHE object; we discuss also their discrimination power for rare events (UHE photons or neutrinos). To cope with the variability of weather conditions and the limitations of the communication system, the procedures for trigger and real time calibration have been shared between local processors and a central acquisition system. The overall system has been working almost continuously for 10 years, while being progressively completed and increased by the creation of a dense "infill" subarray.

  9. The HERA-B ring imaging Cherenkov counter

    NASA Astrophysics Data System (ADS)

    Ariño, I.; Bastos, J.; Broemmelsiek, D.; Carvalho, J.; Chmeissani, M.; Conde, P.; Davila, J.; Dujmić, D.; Eckmann, R.; Garrido, L.; Gascon, D.; Hamacher, T.; Gorišek, A.; Ivaniouchenkov, I.; Ispirian, M.; Karabekian, S.; Kim, M.; Korpar, S.; Križan, P.; Kupper, S.; Lau, K.; Maas, P.; McGill, J.; Miquel, R.; Murthy, N.; Peralta, D.; Pestotnik, R.; Pyrlik, J.; Ramachandran, S.; Reeves, K.; Rosen, J.; Schmidt-Parzefall, W.; Schwarz, A.; Schwitters, R. F.; Siero, X.; Starič, M.; Stanovnik, A.; Škrk, D.; Živko, T.

    2004-01-01

    The HERA-B RICH uses a radiation path length of 2.8 m in C 4F 10 gas and a large 24 m2 spherical mirror for imaging Cherenkov rings. The photon detector consists of 2240 Hamamatsu multi-anode photomultipliers with about 27 000 channels. A 2:1 reducing two-lens telescope in front of each photomultiplier tube increases the sensitive area at the expense of increased pixel size, resulting in a contribution to the resolution which roughly matches that of dispersion. The counter was completed in January of 1999, and its performance has been steady and reliable over the years it has been in operation. The design performance of the Ring Imaging Cherenkov counter was fully reached: the average number of detected photons in the RICH for a β=1 particle was found to be 33 with a single-hit resolution of 0.7 and 1 mrad in the fine and coarse granularity regions, respectively.

  10. The Non-Imaging CHErenkov (NICHE) Array: A TA/TALE extension using Cherenkov radiation to measure Cosmic Ray Composition to sub-PeV energies

    NASA Astrophysics Data System (ADS)

    Krizmanic, John; Bergman, Douglas; Tsunesada, Yoshiki; Abu-Zayyad, Tareq; Belz, John; Thomson, Gordon

    2017-01-01

    Co-sited with the Telescope Array (TA) Low Energy (TALE) extension, the Non-Imaging CHErenkov (NICHE) Array will measure the flux and nuclear composition evolution of cosmic rays (CRs) from below 1 PeV to 1 EeV in its eventual full deployment. NICHE will co-measure CR air showers with TA/TALE and will initially be deployed to observe events simultaneously with the TALE telescopes acting in imaging-Cherenkov mode, providing the first hybrid-Cherenkov (simultaneous imaging and non-imaging Cherenkov) measurements of CRs in the Knee region of the CR energy spectrum. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. First generation detectors are under construction and will form an initial prototype array (jNICHE) that will be deployed in early 2017 at the TA/TALE site. In this talk, the NICHE design, array performance, jNICHE development, and status will be discussed as well as NICHE's ability to measure the cosmic ray nuclear composition as a function of energy.

  11. DIRC, the internally reflecting ring imaging Cerenkov detector for BABAR: Properties of the quartz radiators

    SciTech Connect

    Schwiening, Jochen

    1998-02-01

    A description of DIRC, a particle identification detector for the BABAR experiment at the Standard Linear Collider B Factory is given. It is the barrel region of the detector and its name is an acronym for detection of internally reflected Cherenkov radiation. It is a Cherenkov ring imaging device which utilizes totally internally reflected Cherenkov light in the visible and ultraviolet regions.

  12. SNM Detection with an Optimized Water Cherenkov Neutron Detector

    DOE PAGES

    Dazeley, S.; Sweany, M.; Bernstein, A.

    2012-07-23

    Special Nuclear Material (SNM) can either spontaneously fission or be induced to do so: either case results in neutron emission. For this reason, neutron detection performs a crucial role in the functionality of Radiation Portal Monitoring (RPM) devices. Since neutrons are highly penetrating and difficult to shield, they could potentially be detected escaping even a well-shielded cargo container. If the shielding were sophisticated, detecting escaping neutrons would require a highly efficient detector with close to full solid angle coverage. In 2008, we reported the successful detection of neutrons with a 250 liter (l) gadolinium doped water Cherenkov prototype—a technology thatmore » could potentially be employed cost effectively with full solid angle coverage. More recently we have built and tested both 1-kl and 3.5-kl versions, demonstrating that very large, cost effective, non-flammable and environmentally benign neutron detectors can be operated efficiently without being overwhelmed by background. In our paper, we present a new design for a modular system of water-based neutron detectors that could be deployed as a real RPM. The modules contain a number of optimizations that have not previously been combined within a single system. We present simulations of the new system, based on the performance of our previous detectors. These simulations indicate that an optimized system such as is presented here could achieve SNM sensitivity competitive with a large 3He-based system. Moreover, the realization of large, cost effective neutron detectors could, for the first time, enable the detection of multiple neutrons per fission from within a large object such as a cargo container. Such a signal would provide a robust indication of the presence of fissioning material, reducing the frequency of false alarms while increasing sensitivity.« less

  13. Comparative Analysis of Cherenkov Light Detectors in an Oil Drum

    NASA Astrophysics Data System (ADS)

    Niduaza, Rexavalmar; Wedel, Zachary; Castro, Juan; Zavala, Favian; Fan, Sewan; Fatuzzo, Laura

    2014-03-01

    The multi-pixel photon counters (MPPC) has been used in a number of research development in astro-particle physics and particle physics. In an effort to further implement the MPPC detector, we constructed a modular experimental setup using a 16-inch tall acrylic cylinder filled with distilled water as the light producing medium to determine its feasibility as a possible detector for weak Cherenkov light. We have since progressed towards utilizing an oil drum (approximately 30 gallons) as our light-tight container replacing our prototype. In this talk, we would discuss the results regarding our investigation utilizing 1-inch and 3-inch photo-multiplier tubes (PMTs) in an oil drum as we did for our prototype. We would also present our experimental findings comparing our prototype and our oil drum setup using PMTs in coincidence with the MPPC coupled with wavelength-shifting fibers that are submerged in distilled water inside the oil drum vessel. Department of Education grant nymber P031S90007.

  14. Cherenkov imaging and biochemical sensing in vivo during radiation therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongxiao

    While Cherenkov emission was discovered more than eighty years ago, the potential applications of imaging this during radiation therapy have just recently been explored. With approximately half of all cancer patients being treated by radiation at some point during their cancer management, there is a constant challenge to ensure optimal treatment efficiency is achieved with maximal tumor to normal tissue therapeutic ratio. To achieve this, the treatment process as well as biological information affecting the treatment should ideally be effective and directly derived from the delivery of radiation to the patient. The value of Cherenkov emission imaging was examined here, primarily for visualization of treatment monitoring and then secondarily for Cherenkov-excited luminescence for tissue biochemical sensing within tissue. Through synchronized gating to the short radiation pulses of a linear accelerator (200Hz & 3 micros pulses), and applying a gated intensified camera for imaging, the Cherenkov radiation can be captured near video frame rates (30 frame per sec) with dim ambient room lighting. This procedure, sometimes termed Cherenkoscopy, is readily visualized without affecting the normal process of external beam radiation therapy. With simulation, phantoms and clinical trial data, each application of Cherenkoscopy was examined: i) for treatment monitoring, ii) for patient position monitoring and motion tracking, and iii) for superficial dose imaging. The temporal dynamics of delivered radiation fields can easily be directly imaged on the patient's surface. Image registration and edge detection of Cherenkov images were used to verify patient positioning during treatment. Inter-fraction setup accuracy and intra-fraction patient motion was detectable to better than 1 mm accuracy. Cherenkov emission in tissue opens up a new field of biochemical sensing within the tissue environment, using luminescent agents which can be activated by this light. In the first study of

  15. Operation of the Cherenkov Detector DIRC of BaBar at High Luminosity

    SciTech Connect

    Spanier, Stefane

    2001-03-07

    The DIRC (acronym for Detection of Internally Reflected Cherenkov (light)) is the ring imaging Cherenkov detector of the BaBar detector at the Pep-II ring of SLAC. It provides the identification of pions, kaons and protons for momenta up to 4 GeV/c with high efficiency. This is needed to reconstruct CP-violating B-decay final states and to provide B-meson flavour tagging for time dependent asymmetry measurements. The DIRC radiators consists of long rectangular bars made of synthetic fused silica and the photon detector is a water tank equipped with an array of 10,752 conventional photomultipliers. At the end of the year 2000 BaBar has recorded about 22 million {bar B}B pairs reaching the design luminosity of L = 3 x 10{sup 33}/cm{sup 2}s. The ability to keep the beam background level low at highest collision rates and the long term reliability of the DIRC components during continuous data taking are requirements of BaBar to accomplish its physics program.

  16. Beam tests of a MWPC with CsI photocathode for Cherenkov Ring Imaging

    SciTech Connect

    Krizan, P.; Staric, M.; Stanovnik, A.; Cindro, M.; Skrk, D.; Zavrtanik, M.; Korpar, S.; Hamacher, T.; Michel, E.

    1995-08-01

    A 24 x 24 cm{sup 2} asymmetric multiwire proportional chamber, with 7.5 x 7.5 mm{sup 2} photosensitive CsI pads, has been tested with Cherenkov radiation of 3 GeV/c electrons in the T24 test beam at DESY. The performance of the chamber with specially designed low-noise, charge-sensitive preamplifiers is described. The parameters of the CsI-MWPC are compared to those of a TMAE photon detector in order to evaluate their potential as Ring Imaging Cherenkov (RICH) counters for the HERA-B experiment at DESY.

  17. Studies of Multi-Anode PMTs for a Ring Imaging Cherenkov for CLAS12

    NASA Astrophysics Data System (ADS)

    Lendacky, Andrew; Benmokhtar, Fatiha; Kubarovsky, Valery; Kim, Andrey

    2015-10-01

    At Thomas Jefferson National Accelerator Facility (TJNAF), the CLAS12 detector in Hall B is undergoing an upgrade. A Ring Imaging Cherenkov (R.I.C.H) detector is being built to improve particle identification in the 3-8 GeV/c momentum range. Approximately four hundred Hamamatsu H121700 Multi-Anode Photomultiplier Tubes (MA-PMTs) are being used in this detector to measure photons emitted through Cherenkov Radiation. These MA-PMTs' characteristics are being tested and measured, and I will be presenting my work about the crosstalk study. Crosstalk is the occurrence of incident light striking one area of the photocathode, but is additionally measured in nearby areas. By using a Class 3b laser in the 470 nm wavelength, and an optical density resembling the single photon emission spectrum, the crosstalk for the H121700 MA-PMTs are measured and categorized into a database for future reference.

  18. Use of Cherenkov-type detectors for measurements of runaway electrons in the ISTTOK tokamak

    SciTech Connect

    Plyusnin, V. V.; Fernandes, H.; Silva, C.; Duarte, P.

    2008-10-15

    Gas, fluid, or solid Cherenkov-type detectors have been widely used in high-energy physics for determination of parameters of charged particles, which are moving with relativistic velocities. This paper presents experimental results on the detection of runaway electrons using Cherenkov-type detectors in the ISTTOK tokamak discharges. Such detectors have been specially designed for measurements of energetic electrons in tokamak plasma. The technique based on the use of the Cherenkov-type detectors has enabled the detection of energetic electrons (energies higher than 80 keV) and determination of their spatial and temporal parameters in the ISTTOK discharges. Obtained experimental data were found in adequate agreement to the results of numerical modeling of the runaway electron generation in ISTTOK.

  19. Underground Prototype Water Cherenkov Muon Detector with the Tibet Air Shower Array

    SciTech Connect

    Amenomori, M.; Nanjo, H.; Bi, X. J.; Ding, L. K.; Feng, Zhaoyang; He, H. H.; Hu, H. B.; Lu, H.; Lu, S. L.; Ren, J. R.; Tan, Y. H.; Wang, B.; Wang, H.; Wang, Y.; Wu, H. R.; Zhang, H. M.; Zhang, J. L.; Zhang, Y.; Chen, D.; Kawata, K.

    2008-12-24

    We are planning to build a 10,000 m{sup 2} water-Cherenkov-type muon detector (MD) array under the Tibet air shower (AS) array. The Tibet AS+MD array will have the sensitivity to detect gamma rays in the 100 TeV region by an order of the magnitude better than any other previous existing detectors in the world. In the late fall of 2007, a prototype water Cherenkov muon detector of approximately 100 m{sup 2} was constructed under the existing Tibet AS array. The preliminary data analysis is in good agreement with our MC simulation. We are now ready for further expanding the underground water Cherenkov muon detector.

  20. Picosecond Cherenkov detectors for high-energy heavy ion experiments at LHEP/JINR

    NASA Astrophysics Data System (ADS)

    Yurevich, V. I.; Batenkov, O. I.

    2016-07-01

    The modular Cherenkov detectors based on MCP-PMTs are developed for study Au+Au collisions in MPD and BM@N experiments with beams of Nuclotron and future collider NICA in Dubna. The aim of the detector is fast and effective triggering nucleus-nucleus collisions and generation of start signal for TOF detectors. The detector performance is studied with MC simulation and test measurements with a beam of Nuclotron.

  1. Digital FDIRC: A focused differential internal reflection Cherenkov imaged by SiPM arrays

    NASA Astrophysics Data System (ADS)

    Marrocchesi, P. S.; Bagliesi, M. G.; Basti, A.; Bigongiari, G.; Bonechi, S.; Brogi, P.; Checchia, C.; Collazuol, G.; Maestro, P.; Morsani, F.; Piemonte, C.; Stolzi, F.; Suh, J. E.; Sulaj, A.

    2016-07-01

    A prototype of an Internal Reflection Cherenkov, equipped with a SiO2 (fused silica) radiator bar optically connected to a cylindrical mirror, was tested at CERN SPS in March 2015 with a beam of relativistic ions obtained from fragmentation of primary argon nuclei at energies 13, 19 and 30 GeV/n. The detector, designed to identify cosmic nuclei, features an imaging focal plane of dimensions 4 cm × 3 cm equipped with 16 arrays of NUV-SiPM (near-ultraviolet sensitive silicon photon avalanche detector) for a total of 1024 sensitive elements. The outstanding performance of the photodetectors (with negligible background in between adjacent photopeaks) allowed us to apply the technique of photon counting to the Cherenkov light collected on the focal plane. Thanks to the fine granularity of the array elements, the Cherenkov pattern was recorded together with the total number of detected photoelectrons increasing as Z2 as a function of the atomic number Z. In this paper, we report the performance of the SiPM arrays and the excellent resolution achieved by the digital Cherenkov prototype in the charge identification of the elements present in the beam.

  2. New air Cherenkov light detectors to study mass composition of cosmic rays with energies above knee region

    NASA Astrophysics Data System (ADS)

    Tsunesada, Yoshiki; Katsuya, Ryoichi; Mitsumori, Yu; Nakayama, Keisuke; Kakimoto, Fumio; Tokuno, Hisao; Tajima, Norio; Miranda, Pedro; Salinas, Juan; Tavera, Wilfredo

    2014-11-01

    We have installed a hybrid detection system for air showers generated by cosmic rays with energies greater than 3 ×1015 eV at Mount Chacaltaya (5200 m above the sea level), in order to study the mass composition of cosmic rays above the knee region. This detection system comprises an air shower array with 49 scintillation counters in an area of 500 m×650 m, and seven new Cherenkov light detectors installed in a radial direction from the center of the air shower array with a separation of 50 m. It is known that the longitudinal development of a particle cascade in the atmosphere strongly depends on the type of the primary nucleus, and an air shower initiated by a heavier nucleus develops faster than that by a lighter primary of the same energy, because of the differences in the interaction cross-section and the energy per nucleon. This can be measured by detecting the Cherenkov radiation emitted from charged particles in air showers at higher altitudes. In this paper we describe the design and performance of our new non-imaging Cherenkov light detectors at Mount Chacaltaya that are operated in conjunction with the air shower array. The arrival directions and energies of air showers are determined by the shower array, and information about the primary masses is obtained from the Cherenkov light data including the time profiles and lateral distributions. The detector consists of photomultiplier tube (PMT), high-speed ADCs, other control modules, and data storage device. The Cherenkov light signals from an air shower are typically 10-100 ns long, and the waveforms are digitized with a sampling frequency of 1 GHz and recorded in situ without long-distance analog signal transfers. All the Cherenkov light detectors record their time-series data by receiving a triggering signal transmitted from the trigger module of the air shower array, which is fired by a coincidence of shower signals in four neighboring scintillation counters. The optical characteristics of the

  3. Particle Identification Using a Ring Imaging Cherenkov Counter

    NASA Astrophysics Data System (ADS)

    Goodwill, Justin; Benmokthar, Fatiha

    2016-09-01

    The installation of a Ring Imaging Cherenkov counter (RICH) on the CLAS12 spectrometer in Hall B of Jefferson Lab will aid in particle identification, specifically with regard to the separation between protons, pions, kaons. The RICH functions by detecting a ring of radiation that is given off by particles moving faster than the speed of light in a medium through the use of multi-anode photomultiplier tubes (MAPMTs). Because the size of the ring is dependent on the velocity of the particles, one can separate the incoming charged particles. With 391 MAPMTs being used in the specific design at Jefferson Lab, sophisticated electronic systems are needed to achieve complete data acquisition and ensure the safe operation of RICH. To monitor these electronic systems, the slow control system uses a compilation of graphical user interfaces (GUIs) that communicates and, if necessary, changes certain process variables such as the high voltage going to the MAPMTs and the temperature of the system. My actual project focuses on the development of an efficient and reliable slow control system for this detector as well as a java based analyzer for offline data analysis.

  4. CHerenkov detectors In mine PitS (CHIPS) Letter of Intent to FNAL

    SciTech Connect

    Adamson, P.; Austin, J.; Cao, S. V.; Coelho, J. A. B.; Davies, G. S.; Evans, J. J.; Guzowski, P.; Habig, A.; Holin, A.; Huang, J.; Johnson, R.; St. John, J.; Kreymer, A.; Kordosky, M.; Lang, K.; Marshak, M. L.; Mehdiyev, R.; Meier, J.; Miller, W.; Naples, D.; Nelson, J. K.; Nichol, R. J.; Patterson, R. B.; Paolone, V.; Pawloski, G.; Perch, A.; Pfutzner, M.; Proga, M.; Qian, X.; Radovic, A.; Sanchez, M. C.; Schreiner, S.; Soldner-Rembold, S.; Sousa, A.; Thomas, J.; Vahle, P.; Wendt, C.; Whitehead, L. H.; Wojcicki, S.

    2013-12-30

    This Letter of Intent outlines a proposal to build a large, yet cost-effective, 100 kton fiducial mass water Cherenkov detector that will initially run in the NuMI beam line. The CHIPS detector (CHerenkov detector In Mine PitS) will be deployed in a flooded mine pit, removing the necessity and expense of a substantial external structure capable of supporting a large detector mass. There are a number of mine pits in northern Minnesota along the NuMI beam that could be used to deploy such a detector. In particular, the Wentworth Pit 2W is at the ideal off-axis angle to contribute to the measurement of the CP violating phase. The detector is designed so that it can be moved to a mine pit in the LBNE beam line once that becomes operational.

  5. Measuring the attenuation length of water in the CHIPS-M water Cherenkov detector

    NASA Astrophysics Data System (ADS)

    Amat, F.; Bizouard, P.; Bryant, J.; Carroll, T. J.; Rijck, S. De; Germani, S.; Joyce, T.; Kriesten, B.; Marshak, M.; Meier, J.; Nelson, J. K.; Perch, A. J.; Pfützner, M. M.; Salazar, R.; Thomas, J.; Trokan-Tenorio, J.; Vahle, P.; Wade, R.; Wendt, C.; Whitehead, L. H.; Whitney, M.

    2017-02-01

    The water at the proposed site of the CHIPS water Cherenkov detector has been studied to measure its attenuation length for Cherenkov light as a function of filtering time. A scaled model of the CHIPS detector filled with water from the Wentworth 2W pit, proposed site of the CHIPS deployment, in conjunction with a 3.2 m vertical column filled with this water, was used to study the transmission of 405 nm laser light. Results consistent with attenuation lengths of up to 100 m were observed for this wavelength with filtration and UV sterilization alone.

  6. Cherenkov light identification in TeO2 crystals with Si low-temperature detectors

    NASA Astrophysics Data System (ADS)

    Gironi, L.; Biassoni, M.; Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Faverzani, M.; Ferri, E.; Giachero, A.; Gotti, C.; Maino, M.; Margesin, B.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pozzi, S.; Previtali, E.; Puiu, A.; Sisti, M.; Terranova, F.

    2017-09-01

    Low temperature thermal detectors with particle identification capabilities are among the best detectors for next generation experiments for the search of neutrinoless double beta decay. Thermal detectors allow to reach excellent energy resolution and to optimize the detection efficiency, while the possibility to identify the interacting particle allows to greatly reduce the background. Tellurium dioxide is one of the favourite compounds since it has long demonstrated the first two features and could reach the third through Cherenkov emission tagging [1]. A new generation of cryogenic light detectors are however required to detect the few Cherenkov photons emitted by electrons of few MeV energy. Preliminary measurements with new Si light detectors demonstrated a clear event-by-event discrimination between alpha and beta/gamma interactions at the 130Te neutrinoless double beta decay Q-value (2528 keV).

  7. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    SciTech Connect

    Sweany, M; Bernstein, A; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, S M

    2011-09-21

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 {+-} 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 {+-} 0.03 for Carbostyril-124, and 1.20 {+-} 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  8. Large-scale gadolinium-doped water Cherenkov detector for nonproliferation

    NASA Astrophysics Data System (ADS)

    Sweany, M.; Bernstein, A.; Bowden, N. S.; Dazeley, S.; Keefer, G.; Svoboda, R.; Tripathi, M.

    2011-10-01

    Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, can produce simultaneous emission of multiple neutrons and high-energy gamma-rays. The observation of time correlations between any of these particles is a significant indicator of the presence of fissionable material. Cosmogenic processes can also mimic these types of correlated signals. However, if the background is sufficiently low and fully characterized, significant changes in the correlated event rate in the presence of a target of interest constitutes a robust signature of the presence of SNM. Since fission emissions are isotropic, adequate sensitivity to these multiplicities requires a high efficiency detector with a large solid angle with respect to the target. Water Cherenkov detectors are a cost-effective choice when large solid angle coverage is required. In order to characterize the neutron detection performance of large-scale water Cherenkov detectors, we have designed and built a 3.5 kL water Cherenkov-based gamma-ray and neutron detector, and modeled the detector response in Geant4 [1]. We report the position-dependent neutron detection efficiency and energy response of the detector, as well as the basic characteristics of the simulation.

  9. Detection of Shielded Special Nuclear Material With a Cherenkov-Based Transmission Imaging System

    NASA Astrophysics Data System (ADS)

    Rose, Paul; Erickson, Anna; Mayer, Michael; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material, SSNM, while in transit, offers a unique challenge. Typical cargo imaging systems are Bremsstrahlung-based and cause an abundance of unnecessary signal in the detectors and doses to the cargo contents and surroundings. Active interrogation with dual monoenergetic photons can unveil the illicit material when coupled with a high-contrast imaging system while imparting significantly less dose to the contents. Cherenkov detectors offer speed, resilience, inherent energy threshold rejection, directionality and scalability beyond the capability of most scintillators. High energy resolution is not a priority when using two well separated gamma rays, 4.4 and 15.1 MeV, generated from low energy nuclear reactions such as 11B(d,n- γ)12C. These gamma rays offer a measure of the effective atomic number, Z, of the cargo by taking advantage of the large difference in photon interaction cross sections, Compton scattering and pair production. This imaging system will be coupled to neutron detectors to provide unique signature of SNM by monitoring delayed neutrons. Our experiments confirm that the Cherenkov imaging system can be used with the monoenergetic source to relate transmission and atomic number of the scanned material.

  10. Geomagnetic Field Effects on the Imaging Air Shower Cherenkov Technique

    NASA Astrophysics Data System (ADS)

    Commichau, S.C.; Biland, A.; Kranich, D.; de los Reyes, R.; Moralejo, A.; Sobczyńska, D.

    Imaging Air Cherenkov Telescopes (IACTs) detect the Cherenkov light flashes of Extended Air Showers (EAS) triggered by VHE gamma-rays impinging on the Earth's atmosphere. Due to the overwhelming background from hadron induced EAS, the discrimination of the rare gamma-like events is rather difficult, in particular at energies below 100 GeV. The influence of the Geomagnetic Field (GF) on the EAS development can further complicate this discrimination and, in addition, also systematically affect the gamma-efficiency and energy resolution of an IACT. Here we present the results from dedicated Monte Carlo (MC) simulations for the MAGIC telescope site, show the GF effects on real data as well as possible corrections for these effects.

  11. Gamma Ray Measurements at OMEGA with the Newest Gas Cherenkov Detector “GCD-3”

    NASA Astrophysics Data System (ADS)

    McEvoy, A. M.; Herrmann, H. W.; Kim, Y.; Zylstra, A. B.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Sedillo, T. J.; Archuleta, T. N.; Aragonez, R. J.; Malone, R. M.; Horsfield, C. J.; Rubery, M.; Gales, S.; Leatherland, A.; Stoeffl, W.; Gatu Johnson, M.; Shmayda, W. T.; Batha, S. H.

    2016-05-01

    Initial results from the newest Gas Cherenkov Detector (GCD-3) are reported demonstrating improved performance over previous GCD iterations. Increased shielding and lengthening of the Cherenkov photon optical path have resulted in a diminished precursor signal with increased temporal separation between the precursor and the primary DT Cherenkov signal. Design changes resulted in a measured GCD-3 sensitivity comparable to GCD-1 at identical 100 psia CO2 operation. All metal gasket seals and pressure vessel certification to 400 psia operation allow for a GCD-3 lower Cherenkov threshold of 1.8 MeV using the fluorinated gas C2F6 as compared to the 6.3 MeV lower limit of GCD-1 and GCD-2. Calibration data will be used to benchmark GEANT4 and ACCEPT detector models. The GCD-3 acts as a prototype for the Super GCD being fielded at the National Ignition Facility (NIF) as part of the National Diagnostics Plan and will be installed at NIF in early 2016.

  12. Gamma ray measurements at OMEGA with the newest gas Cherenkov Detector “GCD-3”

    SciTech Connect

    McEvoy, A. M.; Herrmann, H. W.; Kim, Y.; Zylstra, A. B.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Sedillo, T. J.; Archuleta, T. N.; Aragonez, R. J.; Malone, R. M.; Horsfield, C. J.; Rubery, M.; Gales, S.; Leatherland, A.; Stoeffl, W.; Johnson, M. Gatu; Shmayda, W. T.; Batha, S. H.

    2016-05-26

    Initial results from the newest Gas Cherenkov Detector (GCD-3) are reported demonstrating improved performance over previous GCD iterations. Increased shielding and lengthening of the Cherenkov photon optical path have resulted in a diminished precursor signal with increased temporal separation between the precursor and the primary DT Cherenkov signal. Design changes resulted in a measured GCD-3 sensitivity comparable to GCD-1 at identical 100 psia CO2 operation. All metal gasket seals and pressure vessel certification to 400 psia operation allow for a GCD-3 lower Cherenkov threshold of 1.8 MeV using the fluorinated gas C2F6 as compared to the 6.3 MeV lower limit of GCD-1 and GCD-2. Calibration data will be used to benchmark GEANT4 and ACCEPT detector models. Lastly, the GCD-3 acts as a prototype for the Super GCD being fielded at the National Ignition Facility (NIF) as part of the National Diagnostics Plan and will be installed at NIF in early 2016.

  13. Gamma ray measurements at OMEGA with the newest gas Cherenkov Detector “GCD-3”

    DOE PAGES

    McEvoy, A. M.; Herrmann, H. W.; Kim, Y.; ...

    2016-05-26

    Initial results from the newest Gas Cherenkov Detector (GCD-3) are reported demonstrating improved performance over previous GCD iterations. Increased shielding and lengthening of the Cherenkov photon optical path have resulted in a diminished precursor signal with increased temporal separation between the precursor and the primary DT Cherenkov signal. Design changes resulted in a measured GCD-3 sensitivity comparable to GCD-1 at identical 100 psia CO2 operation. All metal gasket seals and pressure vessel certification to 400 psia operation allow for a GCD-3 lower Cherenkov threshold of 1.8 MeV using the fluorinated gas C2F6 as compared to the 6.3 MeV lower limitmore » of GCD-1 and GCD-2. Calibration data will be used to benchmark GEANT4 and ACCEPT detector models. Lastly, the GCD-3 acts as a prototype for the Super GCD being fielded at the National Ignition Facility (NIF) as part of the National Diagnostics Plan and will be installed at NIF in early 2016.« less

  14. Strange meson spectroscopy in K[omega] and K[phi] at 11 GeV/c and Cherenkov ring imaging at SLD

    SciTech Connect

    Kwon, Youngjoon.

    1993-01-01

    This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (CRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part 1: The CRID system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e[sup +]e[sup [minus

  15. Special Nuclear Material Detection with a Water Cherenkov based Detector

    SciTech Connect

    Sweany, M; Bernstein, A; Bowden, N; Dazeley, S; Svoboda, R

    2008-11-10

    Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, produce a number of neutrons and high energy gamma-rays. Assuming the neutron multiplicity is approximately Poissonian with an average of 2 to 3, the observation of time correlations between these particles from a cargo container would constitute a robust signature of the presence of SNM inside. However, in order to be sensitive to the multiplicity, one would require a high total efficiency. There are two approaches to maximize the total efficiency; maximizing the detector efficiency or maximizing the detector solid angle coverage. The advanced detector group at LLNL is investigating one way to maximize the detector size. We are designing and building a water Cerenkov based gamma and neutron detector for the purpose of developing an efficient and cost effective way to deploy a large solid angle car wash style detector. We report on our progress in constructing a larger detector and also present preliminary results from our prototype detector that indicates detection of neutrons.

  16. The aerogel threshold Cherenkov detector for the high momentum spectrometer in Hall C at Jefferson lab

    SciTech Connect

    Razmik Asaturyan; Rolf Ent; Howard Fenker; David Gaskell; Garth Huber; Mark Jones; David Mack; Hamlet Mkrtchyan; Bert Metzger; Nadia Novikoff; Vardan Tadevosyan; William Vulcan; Stephen Wood

    2004-11-09

    We describe a new aerogel threshold Cherenkov detector installed in the HMS spectrometer in Hall C at Jefferson Lab. The Hall C experimental program in 2003 required an improved particle identification system for better identification of {pi}/K/p, which was achieved by installing an additional threshold Cherenkov counter. Two types of aerogel with n = 1.03 and n = 1.015 allow one to reach {approx}10{sup -3} proton and 10{sup -2} kaon rejection in the 1-5 GeV/c momentum range with pion detection efficiency better than 99% (97%). The detector response shows no significant position dependence due to a diffuse light collection technique. The diffusion box was equipped with 16 Photonis XP4572 PMT's. The mean number of photoelectrons in saturation was {approx}16 and {approx}8, respectively. Moderate particle identification is feasible near threshold.

  17. Study on single-channel signals of water Cherenkov detector array for the LHAASO project

    NASA Astrophysics Data System (ADS)

    Li, H. C.; Yao, Z. G.; Chen, M. J.; Yu, C. X.; Zha, M.; Wu, H. R.; Gao, B.; Wang, X. J.; Liu, J. Y.; Liao, W. Y.; Huang, D. Z.

    2017-05-01

    The Large High Altitude Air Shower Observatory (LHAASO) is planned to be built at Daocheng, Sichuan Province, China. The water Cherenkov detector array (WCDA), with an area of 78,000 m2 and capacity of 350,000 tons of purified water, is one of the major components of the LHAASO project. A 9-cell detector prototype array has been built at the Yangbajing site, Tibet, China to comprehensively understand the water Cherenkov technique and investigate the engineering issues of WCDA. In this paper, the rate and charge distribution of single-channel signals are evaluated using a full detail Monte Carlo simulation. The results are discussed and compared with the results obtained with prototype array.

  18. Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detectors

    SciTech Connect

    Hellfeld, D.; Bernstein, A.; Dazeley, S.; Marianno, C.

    2017-01-01

    The potential of elastic antineutrino-electron scattering (ν¯e + e → ν¯e + e) in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13 km standoff from a 3.758 GWt light water nuclear reactor. Background was estimated via independent simulations and by appropriately scaling published measurements from similar detectors. Many potential backgrounds were considered, including solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclide and water-borne radon decays, and gamma rays from the photomultiplier tubes, detector walls, and surrounding rock. The detector response was modeled using a GEANT4-based simulation package. The results indicate that with the use of low radioactivity PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. The directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. Lastly, the results provide a list of theoretical conditions that, if satisfied in practice, would enable nuclear reactor antineutrino directionality in a Gd-doped water Cherenkov detector approximately 10 km from a large power reactor.

  19. Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detectors

    NASA Astrophysics Data System (ADS)

    Hellfeld, D.; Bernstein, A.; Dazeley, S.; Marianno, C.

    2017-01-01

    The potential of elastic antineutrino-electron scattering in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13-km standoff from a 3.758-GWt light water nuclear reactor and the detector response was modeled using a Geant4-based simulation package. Background was estimated via independent simulations and by scaling published measurements from similar detectors. Background contributions were estimated for solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclides, water-borne radon, and gamma rays from the photomultiplier tubes (PMTs), detector walls, and surrounding rock. We show that with the use of low background PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. Directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. The results provide a list of experimental conditions that, if satisfied in practice, would enable antineutrino directional reconstruction at 3σ significance in large Gd-doped water Cherenkov detectors with greater than 10-km standoff from a nuclear reactor.

  20. Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detectors

    DOE PAGES

    Hellfeld, D.; Bernstein, A.; Dazeley, S.; ...

    2016-10-17

    The potential of elastic antineutrino-electron scattering in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13 km standoff from a 3.758 GWt light water nuclear reactor and the detector response was modeled using a Geant4-based simulation package. Background was estimated via independent simulations and by scaling published measurements from similar detectors. Background contributions were estimated for solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclides, water-borne radon, and gamma rays frommore » the photomultiplier tubes, detector walls, and surrounding rock. We show that with the use of low background PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. Directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. Lastly, the results provide a list of experimental conditions that, if satisfied in practice, would enable antineutrino directional reconstruction at 3 sigma significance in large Gd-doped water Cherenkov detectors with greater than 10 km standoff from a nuclear reactor.« less

  1. Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detectors

    SciTech Connect

    Hellfeld, D.; Bernstein, A.; Dazeley, S.; Marianno, C.

    2016-10-17

    The potential of elastic antineutrino-electron scattering in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13 km standoff from a 3.758 GWt light water nuclear reactor and the detector response was modeled using a Geant4-based simulation package. Background was estimated via independent simulations and by scaling published measurements from similar detectors. Background contributions were estimated for solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclides, water-borne radon, and gamma rays from the photomultiplier tubes, detector walls, and surrounding rock. We show that with the use of low background PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. Directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. Lastly, the results provide a list of experimental conditions that, if satisfied in practice, would enable antineutrino directional reconstruction at 3 sigma significance in large Gd-doped water Cherenkov detectors with greater than 10 km standoff from a nuclear reactor.

  2. Performance study of the fast timing Cherenkov detector based on a microchannel plate PMT

    NASA Astrophysics Data System (ADS)

    Finogeev, D. A.; Grigoriev, V. A.; Kaplin, V. A.; Karavichev, O. V.; Karavicheva, T. L.; Konevskikh, A. S.; Kurepin, A. B.; Kurepin, A. N.; Loginov, V. A.; Mayevskaya, A. I.; Melikyan, Yu A.; Morozov, I. V.; Serebryakov, D. V.; Shabanov, A. I.; Slupecki, M.; Tikhonov, A. A.; Trzaska, W. H.

    2017-01-01

    Prototype of the fast timing Cherenkov detector, applicable in high-energy collider experiments, has been developed basing on the modified Planacon XP85012 MCP-PMT and fused silica radiators. We present the reasons and description of the MCP-PMT modification, timing and amplitude characteristics of the prototype including the summary of the detector’s response on particle hits at oblique angles and MCP-PMT performance at high illumination rates.

  3. Attenuation Length of light in the CHIPS-M Water Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Amat, F.; Bizouard, P.; Bryant, J.; Germani, S.; Joyce, T.; Kreisten, B.; Nelson, J.; Salazar, R.; Thomas, J.; Trokan-Tenorio, J.; Vahle, P.; Wade, R.; Whitehead, L.; Whitney, M.

    2017-09-01

    The water at the proposed site of the CHIPS water Cherenkov detector has been studied to measure its attenuation length as a function of filtering time. A 3.2 m vertical column was filled with the water from the Wentworth Pit, proposed site of the CHIPS deployment. Results consistent with attenuation lengths of up to 100m have been observed at this wavelength with filtration and UV sterilization alone.

  4. Cherenkov light production from the α-emitting decay chains of (223)Ra, (212)Pb, and (149)Tb for Cherenkov Luminescence Imaging.

    PubMed

    Wood, V; Ackerman, N L

    2016-12-01

    Cherenkov Luminescence Imaging (CLI) is a new method to image radioactive therapeutic and diagnostic agents, primarily in preclinical studies. This study used Geant4 and Python to generate the predicted Cherenkov light production as a function of time for a set of isotopic chains of interest for targeted alpha therapy: (223)Ra, (212)Pb, and (149)Tb. All are shown to produce substantial Cherenkov light, though time delays between initial decays and the production of Cherenkov light requires caution in interpreting CLI. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Ogata, Yoshimune; Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu

    2015-03-01

    After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since 137Cs and 134Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from 137Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm 137Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq 137Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a 137Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.

  6. Design and fabrication of a window for the gas Cherenkov detector 3

    SciTech Connect

    Fatherley, V. E. Bingham, D. A.; Cartelli, M. D.; Griego, J. R.; Herrmann, H. W.; Lopez, F. E.; Oertel, J. A.; DiDomizio, R. A.; Pollack, M. J.

    2016-11-15

    The gas Cherenkov detector 3 was designed at Los Alamos National Laboratory for use in inertial confinement fusion experiments at both the Omega Laser Facility and the National Ignition Facility. This instrument uses a low-Z gamma-to-electron convertor plate and high pressure gas to convert MeV gammas into UV/visible Cherenkov photons for fast optical detection. This is a follow-on diagnostic from previous versions, with two notable differences: the pressure of the gas is four times higher, and it allows the use of fluorinated gas, requiring metal seals. These changes force significant changes in the window component, having a unique set of requirements and footprint limitations. The selected solution for this component, a sapphire window brazed into a stainless steel flange housing, is described.

  7. Design and fabrication of a window for the gas Cherenkov detector 3.

    PubMed

    Fatherley, V E; Bingham, D A; Cartelli, M D; DiDomizio, R A; Griego, J R; Herrmann, H W; Lopez, F E; Oertel, J A; Pollack, M J

    2016-11-01

    The gas Cherenkov detector 3 was designed at Los Alamos National Laboratory for use in inertial confinement fusion experiments at both the Omega Laser Facility and the National Ignition Facility. This instrument uses a low-Z gamma-to-electron convertor plate and high pressure gas to convert MeV gammas into UV/visible Cherenkov photons for fast optical detection. This is a follow-on diagnostic from previous versions, with two notable differences: the pressure of the gas is four times higher, and it allows the use of fluorinated gas, requiring metal seals. These changes force significant changes in the window component, having a unique set of requirements and footprint limitations. The selected solution for this component, a sapphire window brazed into a stainless steel flange housing, is described.

  8. Design and fabrication of a window for the gas Cherenkov detector 3

    NASA Astrophysics Data System (ADS)

    Fatherley, V. E.; Bingham, D. A.; Cartelli, M. D.; DiDomizio, R. A.; Griego, J. R.; Herrmann, H. W.; Lopez, F. E.; Oertel, J. A.; Pollack, M. J.

    2016-11-01

    The gas Cherenkov detector 3 was designed at Los Alamos National Laboratory for use in inertial confinement fusion experiments at both the Omega Laser Facility and the National Ignition Facility. This instrument uses a low-Z gamma-to-electron convertor plate and high pressure gas to convert MeV gammas into UV/visible Cherenkov photons for fast optical detection. This is a follow-on diagnostic from previous versions, with two notable differences: the pressure of the gas is four times higher, and it allows the use of fluorinated gas, requiring metal seals. These changes force significant changes in the window component, having a unique set of requirements and footprint limitations. The selected solution for this component, a sapphire window brazed into a stainless steel flange housing, is described.

  9. The possibilities of Cherenkov telescopes to perform cosmic-ray muon imaging of volcanoes

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Vercellone, Stefano; Zuccarello, Luciano

    2016-04-01

    Volcanic activity is regulated by the interaction of gas-liquid flow with conduit geometry. Hence, the quantitative understanding of the inner shallow structure of a volcano is mandatory to forecast the occurrence of dangerous stages of activity and mitigate volcanic hazards. Among the techniques used to investigate the underground structure of a volcano, muon imaging offers some advantages, as it provides a fine spatial resolution, and does not require neither spatially dense measurements in active zones, nor the implementation of cost demanding energizing systems, as when electric or active seismic sources are utilized. The principle of muon radiography is essentially the same as X-ray radiography: muons are more attenuated by higher density parts inside the target and thus information about its inner structure are obtained from the differential muon absorption. Up-to-date, muon imaging of volcanic structures has been mainly accomplished with detectors that employ planes of scintillator strips. These telescopes are exposed to different types of background noise (accidental coincidence of vertical shower particles, horizontal high-energy electrons, flux of upward going particles), whose amplitude is high relative to the tiny flux of interest. An alternative technique is based on the detection of the Cherenkov light produced by muons. The latter can be imaged as an annular pattern that contains the information needed to reconstruct both direction and energy of the particle. Cherenkov telescopes have never been utilized to perform muon imaging of volcanoes. Nonetheless, thanks to intrinsic features, they offer the possibility to detect the through-target muon flux with negligible levels of background noise. Under some circumstances, they would also provide a better spatial resolution and acceptance than scintillator-based telescopes. Furthermore, contrarily to the latter systems, Cherenkov detectors allow in-situ measurements of the open-sky energy spectrum of

  10. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casanova Mohr, R; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M N; Mitzel, D S; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schune, M H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Sterpka, F; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Trabelsi, K; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L

    A search is performed for heavy long-lived charged particles using 3.0 [Formula: see text] of proton-proton collisions collected at [Formula: see text][Formula: see text] 7 and 8  TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell-Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, [Formula: see text]. The mass-dependent cross-section upper limits are in the range 2-4 fb (at 95 % CL) for masses between 14 and 309 [Formula: see text].

  11. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A., Jr.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C. T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M. N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-12-01

    A search is performed for heavy long-lived charged particles using 3.0 fb^{-1} of proton-proton collisions collected at √{s} = 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell-Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, 1.8 < η < 4.9. The mass-dependent cross-section upper limits are in the range 2-4 fb (at 95 % CL) for masses between 14 and 309 { GeV/c^2}.

  12. Upgraded cameras for the HESS imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gérard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-François; Gräber, Tobias; Hinton, James; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, François

    2016-08-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes, sensitive to cosmic gamma rays of energies between 30 GeV and several tens of TeV. Four of them started operations in 2003 and their photomultiplier tube (PMT) cameras are currently undergoing a major upgrade, with the goals of improving the overall performance of the array and reducing the failure rate of the ageing systems. With the exception of the 960 PMTs, all components inside the camera have been replaced: these include the readout and trigger electronics, the power, ventilation and pneumatic systems and the control and data acquisition software. New designs and technical solutions have been introduced: the readout makes use of the NECTAr analog memory chip, which samples and stores the PMT signals and was developed for the Cherenkov Telescope Array (CTA). The control of all hardware subsystems is carried out by an FPGA coupled to an embedded ARM computer, a modular design which has proven to be very fast and reliable. The new camera software is based on modern C++ libraries such as Apache Thrift, ØMQ and Protocol buffers, offering very good performance, robustness, flexibility and ease of development. The first camera was upgraded in 2015, the other three cameras are foreseen to follow in fall 2016. We describe the design, the performance, the results of the tests and the lessons learned from the first upgraded H.E.S.S. camera.

  13. Design of Cherenkov bars for the optical part of the time-of-flight detector in Geant4.

    PubMed

    Nozka, L; Brandt, A; Rijssenbeek, M; Sykora, T; Hoffman, T; Griffiths, J; Steffens, J; Hamal, P; Chytka, L; Hrabovsky, M

    2014-11-17

    We present the results of studies devoted to the development and optimization of the optical part of a high precision time-of-flight (TOF) detector for the Large Hadron Collider (LHC). This work was motivated by a proposal to use such a detector in conjunction with a silicon detector to tag and measure protons from interactions of the type p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The fast timing detector uses fused silica (quartz) bars that emit Cherenkov radiation as a relativistic particle passes through and the emitted Cherenkov photons are detected by, for instance, a micro-channel plate multi-anode Photomultiplier Tube (MCP-PMT). Several possible designs are implemented in Geant4 and studied for timing optimization as a function of the arrival time, and the number of Cherenkov photons reaching the photo-sensor.

  14. Lunar Laser Ranging with Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Reitzes, Sarah; Perkins, J.

    2014-01-01

    Lunar laser ranging is the process through which light pulses are bounced off of retroreflectors on the Moon. The travel time of the photons is measured and multiplied by the speed of light to calculate the Earth-Moon distance. The measured Earth-Moon distance can be compared to the Earth-Moon distance predicted by the theory of General Relativity. In that way, possible shortcomings of General Relativity are exposed. The current best measurements are performed by the Apache Point Observatory Lunar Laser-ranging Operation using the ARC 3.5-m Ritchey-Chretien reflector at the Apache Point Observatory yielding errors of less than 1 mm. Upon launching pulses of 3 x 10^17 photons, this telescope yields a one to two photon per pulse return. This study investigates whether the larger surface area of Imaging Atmospheric Cherenkov Telescopes, such as the four 12-m diameter Davies-Cotton dishes that are part of the Very Energetic Radiation Imaging Telescope Array System, allows for a greater photon per pulse return rate and thus a more accurate measurement of the Earth-Moon distance. The feasibility of using these telescopes for lunar laser ranging is assessed, taking into account the poorer optical quality of Davies-Cotton reflectors. It is found that the Davies-Cotton dishes cannot be used as the outgoing beams in lunar laser ranging, so the feasibility of using other telescopes located close to the Very Energetic Radiation Imaging Telescope Array System as outgoing beams is also examined. Other Imaging Atmospheric Cherenkov telescope systems are considered, and the relationship between dish size and the length of time delay present with Davies-Cotton dishes is examined.

  15. Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Herrmann, H. W.; McEvoy, A. M.; Young, C. S.; Hamilton, C.; Schwellenbach, D. D.; Malone, R. M.; Kaufman, M. I.; Smith, A. S.

    2016-11-01

    An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO2 clusters to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1-3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.

  16. Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum

    SciTech Connect

    Kim, Y. Herrmann, H. W.; McEvoy, A. M.; Young, C. S.; Hamilton, C.; Schwellenbach, D. D.; Malone, R. M.; Kaufman, M. I.; Smith, A. S.

    2016-11-15

    An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO{sub 2} clusters to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1–3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.

  17. Calibration of a large water-Cherenkov detector at the Sierra Negra site of LAGO

    NASA Astrophysics Data System (ADS)

    Galindo, A.; Moreno, E.; Carrasco, E.; Torres, I.; Carramiñana, A.; Bonilla, M.; Salazar, H.; Conde, R.; Alvarez, W.; Alvarez, C.; Araujo, C.; Areso, O.; Arnaldi, H.; Asorey, H.; Audelo, M.; Barros, H.; Bonnett, M.; Calderon, R.; Calderon, M.; Campos-Fauth, A.; Carramiñana, A.; Carrasco, E.; Carrera, E.; Cazar, D.; Cifuentes, E.; Collogo, D.; Conde, R.; Cotzomi, J.; Dasso, S.; De Castro, A.; De La Torre, J.; De León, R.; Estupiñan, A.; Galindo, A.; García, L.; Gomez Berisso, M.; González, M.; Guevara, W.; Gulisano, A. M.; Hernández, H.; Jaimes, A.; López, J.; Mantilla, C.; Martín, R.; Martinez-Mendez, A.; Martínez, O.; Martins, E.; Macías-Meza, J. J.; Mayo-García, R.; Melo, T.; Mendoza, J.; Miranda, P.; Montes, E.; Morales, E.; Morales, I.; Moreno, E.; Murrugarra, C.; Nina, C.; Núñez, L. A.; Núñez-Castiñeyra, A.; Otiniano, L.; Peña-Rodríguez, J.; Perenguez, J.; Pérez, H.; Pérez, Y.; Pérez, G.; Pinilla-Velandia, S.; Ponce, E.; Quishpe, R.; Quispe, F.; Ramelli, M.; Reyes, K.; Rivera, H.; Rodriguez, J.; Rodríguez-Ferreira, J.; Rodríguez-Pascual, M.; Romero, M.; Rubio-Montero, A. J.; Salazar, H.; Salinas, J.; Sarmiento-Cano, C.; Sidelnik, I.; Sofo Haro, M.; Suárez-Durán, M.; Subieta, M.; Tello, J.; Ticona, R.; Torres, I.; Torres-Niõ, L.; Truyenque, J.; Valencia-Otero, M.; Vargas, S.; Vásquez, N.; Villaseñor, L.; Zamalloa, M.; Zavala, L.

    2017-07-01

    The Latin American Giant Observatory (LAGO) is an international network of water-Cherenkov detectors (WCD) set in different sites across Latin America. On top of the Sierra Negra volcano in Mexico at an altitude of 4530 m, LAGO has completed its first out of three instrumented detector. It consists of a cylindrical water tank with a diameter of 7.3 m and a height of 1 m and a total detection area of 40 m2 that is sectioned in four equal slices. In this work we present the full calibration procedure of this detector and the initial measurements of stability in rate. We also derive the effective area to gamma-ray bursts for the complete array using the LAGO simulation chain, based on CORSIKA and GEANT4.

  18. A Water Cherenkov Detector prototype for the HAWC Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Longo, Megan; Mostafa, Miguel; Salesa Greus, Francisco; Warner, David

    2011-10-01

    A full-size Water Cherenkov Detector (WCD) prototype for the High Altitude Water Cherenkov (HAWC) gamma-ray Observatory was deployed, and is currently being operated at Colorado State University (CSU). The HAWC Observatory will consist of 300 WCDs at the very high altitude (4100m) site in Sierra Negra, Mexico. Each WCD will have 4 baffled upward-facing Photomultiplier Tubes (PMTs) anchored to the bottom of a self made multilayer hermetic plastic bag containing 200,000 liters of purified water, inside a 5m deep by 7.3m diameter steel container. The full size WCD at CSU is the only full size prototype outside of the HAWC site. It is equipped with seven HAWC PMTs and has scintillators both under and above the volume of water. It has been in operation since March 1, 2011. This prototype also has the same laser calibration system that the detectors deployed at the HAWC site will have. The CSU WCD serves as a testbed for the different subsystems before deployment at high altitude, and for optimizing the location of the PMTs, the design of the light collectors, deployment procedures, etc. Simulations of the light inside the detectors and the expected signals in the PMTs can also be benchmarked with this prototype.

  19. Upgrade of the Cherenkov Detector of the JLab Hall A BigBite Spectrometer

    NASA Astrophysics Data System (ADS)

    Nycz, Michael

    2015-04-01

    The BigBite Spectrometer of the Hall A Facility of Jefferson Lab will be used in the upcoming MARATHON experiment at Jefferson Lab to measure the ratio of neutron to proton F2 inelastic structure functions and the ratio of up to down, d/u, quark nucleon distributions at medium and large values of Bjorken x. In preparation for this experiment, the BigBite Cherenkov detector is being modified to increase its overall efficiency for detecting electrons. This large volume counter is based on a dual system of segmented mirrors reflecting Cherenkov radiation to twenty photomultipliers. In this talk, a description of the detector and its past performance will be presented, along with the motivations for improvements and their implementation. An update on the status of the rest of the BigBite detector package, will be also presented. Additionally, current issues related to obtaining C4 F8 O, the commonly used radiator gas, which has been phased out of production by U.S. gas producers, will be discussed. This work is supported by Kent State University, NSF Grant PHY-1405814, and DOE Contract DE-AC05-06OR23177.

  20. TORCH - Cherenkov and Time-of-Flight PID Detector for the LHCb Upgrade at CERN

    NASA Astrophysics Data System (ADS)

    Föhl, K.; Brook, N.; Castillo García, L.; Conneely, T.; Cussans, D.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Milnes, J.; Piedigrossi, D.; Rademacker, J.; Ros Garcì a, A.; van Dijk, M.

    2016-05-01

    TORCH is a large-area precision time-of-flight detector, based on Cherenkov light production and propagation in a quartz radiator plate, which is read out at its edges. TORCH is proposed for the LHCb experiment at CERN to provide positive particle identification for kaons, and is currently in the Research-and-Development phase. A brief overview of the micro-channel plate photon sensor development, the custom-made electronics, and an introduction to the current test beam activities is given. Optical readout solutions are presented for the potential use of BaBar DIRC bar boxes as part of the TORCH configuration in LHCb.

  1. Selective Filtration of Gadolinium Trichloride for Use in Neutron Detection in Large Water Cherenkov Detectors

    SciTech Connect

    Vagins, Mark R.

    2013-04-10

    Water Cherenkov detectors have been used for many years as inexpensive, effective detectors for neutrino interactions and nucleon decay searches. While many important measurements have been made with these detectors a major drawback has been their inability to detect the absorption of thermal neutrons. We believe an inexpensive, effective technique could be developed to overcome this situation via the addition to water of a solute with a large neutron cross section and energetic gamma daughters which would make neutrons detectable. Gadolinium seems an excellent candidate especially since in recent years it has become very inexpensive, now less than $8 per kilogram in the form of commercially-available gadolinium trichloride, GdCl{sub 3}. This non-toxic, non-reactive substance is highly soluble in water. Neutron capture on gadolinium yields a gamma cascade which would be easily seen in detectors like Super-Kamiokande. We have been investigating the use of GdCl{sub 3} as a possible upgrade for the Super-Kamiokande detector with a view toward improving its performance as a detector for atmospheric neutrinos, supernova neutrinos, wrong-sign solar neutrinos, reactor neutrinos, proton decay, and also as a target for the coming T2K long-baseline neutrino experiment. This focused study of selective water filtration and GdCl{sub 3} extraction techniques, conducted at UC Irvine, followed up on highly promising benchtop-scale and kiloton-scale work previously carried out with the assistance of 2003 and 2005 Advanced Detector Research Program grants.

  2. Representations and image classification methods for Cherenkov telescopes

    SciTech Connect

    Malagon, C.; Parcerisa, D. S.; Barrio, J. A.; Nieto, D.

    2008-05-29

    The problem of identifying gamma ray events out of charged cosmic ray background (so called hadrons) in Cherenkov telescopes is one of the key problems in VHE gamma ray astronomy. In this contribution, we present a novel approach to this problem by implementing different classifiers relying on the information of each pixel of the camera of a Cherenkov telescope.

  3. Experimental study of the atmospheric neutrino backgrounds for p{yields}e{sup +}{pi}{sup 0} searches in water Cherenkov detectors

    SciTech Connect

    Mine, S.; Casper, D.; Kropp, W.; Smy, M.; Sobel, H.; Vagins, M.; Alcaraz, J. L.; Andringa, S.; Espinal, X.; Fernandez, E.; Jover, G.; Nova, F.; Rodriguez, A.; Sanchez, F.; Aoki, S.; Asakura, K.; Hara, T.; Moriguchi, Y.; Sekiguchi, M.; Suzuki, A.

    2008-02-01

    The atmospheric neutrino background for proton decay via p{yields}e{sup +}{pi}{sup 0} in ring imaging water Cherenkov detectors is studied with an artificial accelerator neutrino beam for the first time. In total, 3.14x10{sup 5} neutrino events corresponding to about 10 megaton-years of atmospheric neutrino interactions were collected by a 1000 ton water Cherenkov detector (KT). The KT charged-current single {pi}{sup 0} production data are well reproduced by simulation programs of neutrino and secondary hadronic interactions used in the Super-Kamiokande (SK) proton decay search. The obtained p{yields}e{sup +}{pi}{sup 0} background rate by the KT data for SK from the atmospheric neutrinos whose energies are below 3 GeV is 1.63{sub -0.33}{sup +0.42}(stat){sub -0.51}{sup +0.45}(syst)(megaton-year){sup -1}. This result is also relevant to possible future, megaton-scale water Cherenkov detectors.

  4. Cherenkov Counters

    SciTech Connect

    Barbero, Marlon

    2012-04-19

    When a charged particle passes through an optically transparent medium with a velocity greater than the phase velocity of light in that medium, it emits prompt photons, called Cherenkov radiation, at a characteristic polar angle that depends on the particle velocity. Cherenkov counters are particle detectors that make use of this radiation. Uses include prompt particle counting, the detection of fast particles, the measurement of particle masses, and the tracking or localization of events in very large, natural radiators such as the atmosphere, or natural ice fields, like those at the South Pole in Antarctica. Cherenkov counters are used in a number of different fields, including high energy and nuclear physics detectors at particle accelerators, in nuclear reactors, cosmic ray detectors, particle astrophysics detectors and neutrino astronomy, and in biomedicine for labeling certain biological molecules.

  5. Recent results on the operation of a Cherenkov detector prototype for the Pierre Auger observatory

    NASA Astrophysics Data System (ADS)

    Alarcón, M.; Medina, M.; Villaseñor, L.; Fernández, A.; Salazar, H.; Valdés-Galicia, J. F.; D'Olivo, J. C.; Nellen, L.; Zepeda, A.

    1999-10-01

    A full-sized water Cherenkov detector (WCD) prototype (cylinder 3.57 m diameter filled with purified water up to a height of 1.2 m) was used to obtain experimental results that validate the concept of remote calibration and monitoring of WCDs based on the use of the natural flux of cosmic ray muons. Two types of events can be used to monitor and to calibrate each of the WCDs: through-going muons (i.e., isolated muons) and decay electrons from muons stopped inside each detector. The different triggers that will be used to obtain these events and the on-line calibration and monitoring histograms are discussed along with the way these data can be used to diagnose component failures of any of the surface stations of the Auger Observatory.

  6. Proposal for the geometrical distribution of the air cherenkov detectors for CHARM

    NASA Astrophysics Data System (ADS)

    Morales Reyes, A. R.; Martínez Bravo, O. M.

    2011-04-01

    In this work we propose the geometrical distribution of the air Cherenkov detectors array (ACD), who will be part of the Cosmic High Altitude Radiation Monitor Observatory (CHARM) located at Pico de Orizaba Volcano at 4300 m.a.s.l.. The proposal is based on a library of events built with photons, protons and iron nuclei as primary particles by montecarlo simulations with energies from 1014 eV to 1017 eV. The goal of this detectors will be to determinate the nature of primary cosmic radiation, through measuring the height at which the secondary particles generated reach his maximum number or Xmax, this quantity is related with the effective cross section and finally with the atomic number A of the primary particles. In addition to this we proposed an energy estimator based on the study of the lateral distribution function of the generated events.

  7. Ultrafast imaging of terahertz Cherenkov waves and transition-like radiation in LiNbO₃.

    PubMed

    Wang, Zhenyou; Su, FuHai; Hegmann, Frank A

    2015-03-23

    We use ultrafast phase-contrast imaging to directly observethe cone-like terahertz (THz) Cherenkov wave generated by optical rectification of femtosecond laser pulses focused into bulk lithium niobate (LiNbO₃) single crystals. The transverse imaging geometry allows the Cherenkov angle, THz wave velocity, and optical pump pulse group velocity to be measured. Furthermore, transition-like THz radiation generated by the femtosecond laser pulse at the air-crystal boundary is observed. The effect of optical pump pulse polarization on the generation of THz Cherenkov waves and transition-like radiation in LiNbO₃ is also investigated.

  8. Software development for a Ring Imaging Detector

    NASA Astrophysics Data System (ADS)

    Torisky, Benjamin; Benmokhtar, Fatiha

    2015-04-01

    Jefferson Lab (Jlab) is performing a large-scale upgrade to their Continuous Electron Beam Accelerator Facility (CEBAF) up to 12 GeV beam. The Large Acceptance Spectrometer (CLAS12) in Hall B is being upgraded and a new Ring Imaging CHerenkov (RICH) detector is being developed to provide better kaon - pion separation throughout the 3 to 12 GeV range. With this addition, when the electron beam hits the target, the resulting pions, kaons, and other particles will pass through a wall of translucent aerogel tiles and create Cherenkov radiation. This light can then be accurately detected by a large array of Multi-Anode PhotoMultiplier Tubes (MA-PMT). I am presenting my work on the implementation of Java based reconstruction programs for the RICH in the CLAS12 main analysis package.

  9. Software Development for Ring Imaging Detector

    NASA Astrophysics Data System (ADS)

    Torisky, Benjamin

    2016-03-01

    Jefferson Lab (Jlab) is performing a large-scale upgrade to their Continuous Electron Beam Accelerator Facility (CEBAF) up to 12GeV beam. The Large Acceptance Spectrometer (CLAS12) in Hall B is being upgraded and a new Ring Imaging Cherenkov (RICH) detector is being developed to provide better kaon - pion separation throughout the 3 to 12 GeV range. With this addition, when the electron beam hits the target, the resulting pions, kaons, and other particles will pass through a wall of translucent aerogel tiles and create Cherenkov radiation. This light can then be accurately detected by a large array of Multi-Anode PhotoMultiplier Tubes (MA-PMT). I am presenting an update on my work on the implementation of Java based reconstruction programs for the RICH in the CLAS12 main analysis package.

  10. Strangeonium spectroscopy at 11 GeV/c and Cherenkov Ring Imaging at the SLD

    SciTech Connect

    Bienz, T.L.

    1990-07-01

    This thesis is divided into two sections, which describe portions of the data acquisition system and online software for the Cherenkov Ring Imaging Detector (CRID) for the SLD, and analyses of several low cross section strangeonium channels in data from the LASS spectrometer. The CRID section includes a description of the data acquisition system, determination of the preamplifier gain, and development of an online pulse finding algorithm based on deconvolution. Deconvolution uses knowledge of the preamplifier impulse response to aid in pulse finding. The algorithm is fast and shows good single pulse resolution and excellent double pulse resolution in preliminary tests. The strangeonium analyses are based on data from a 4.1 event/nanobarn exposure of the LASS spectrometer in K{sup {minus}}p interactions at 11 GeV/c, and include studies of {Lambda}{eta}{pi}{sup {plus}}{pi}{sup {minus}}, {Lambda}{Kappa}*{Kappa}*, and {Lambda}{phi}{phi}.

  11. CHERENCUBE: concept definition and implementation challenges of a Cherenkov-based detector block for PET.

    PubMed

    Somlai-Schweiger, I; Ziegler, S I

    2015-04-01

    A new concept for a depth-of-interaction (DOI) capable time-of-flight (TOF) PET detector is defined, based only on the detection of Cherenkov photons. The proposed "CHERENCUBE" consists of a cubic Cherenkov radiator with position-sensitive photodetectors covering each crystal face. By means of the spatial distribution of the detected photons and their time of arrival, the point of interaction of the gamma-ray in the crystal can be determined. This study analyzes through theoretical calculations and Monte Carlo simulations the potential advantages of the concept toward reaching a Cherenkov-only detector for TOF-PET with DOI capability. Furthermore, an algorithm for the DOI estimation is presented and the requirements for a practical implementation of the proposed concept are defined. The Monte Carlo simulations consisted of a cubic crystal with one photodetector coupled to each one of the faces of the cube. The sensitive area of the detector matched exactly the crystal size, which was varied in 1 mm steps between 1 × 1 × 1 mm(3) and 10 × 10 × 10 mm(3). For each size, five independent simulations of ten thousand 511 keV gamma-rays were triggered at a fixed distance of 10 mm. The crystal chosen was PbWO4. Its scintillation properties were simulated, but only Cherenkov photons were analyzed. Photodetectors were simulated having perfect photodetection efficiency and infinite time resolution. For every generated particle, the analysis considered its creation process, parent and daughter particles, energy, origin coordinates, trajectory, and time and position of detection. The DOI determination is based on the distribution of the emission time of all photons per event. These values are calculated as a function of the coordinates of detection and origin for every photon. The common origin is estimated by finding the distribution with the most similar emission time-points. Detection efficiency increases with crystal size from 8.2% (1 × 1 × 1 mm(3)) to 58.6% (10 × 10

  12. The water Cherenkov detector array for studies of cosmic rays at the University of Puebla

    NASA Astrophysics Data System (ADS)

    Cotzomi, J.; Moreno, E.; Murrieta, T.; Palma, B.; Pérez, E.; Salazar, H.; Villaseñor, L.

    2005-11-01

    We describe the design and performance of a hybrid extensive air shower detector array built on the Campus of the University of Puebla ( 19∘N, 90∘W, 800 g/cm2) to measure the energy, arrival direction and composition of primary cosmic rays with energies around 1 PeV, i.e., around the knee of the cosmic ray spectrum. The array consists of 3 water Cherenkov detectors of 1.86 m2 cross-section and 12 liquid scintillator detectors of 1 m2 distributed in a square grid with a detector spacing of 20 m over an area of 4000 m2. We discuss the calibration and stability of the array for both sets of detectors and report on preliminary measurements and reconstruction of the lateral distributions for the electromagnetic (EM) and muonic components of extensive air showers. We also discuss how the hybrid character of the array can be used to measure mass composition of the primary cosmic rays by estimating the relative contents of muons with respect to the EM component of extensive air showers. This facility is also used to train students interested in the field of cosmic rays.

  13. Strange Meson Spectroscopy in Kaon Omega and Kaon Phi at 11 Gev/c and Cherenkov Ring Imaging at SLD

    NASA Astrophysics Data System (ADS)

    Kwon, Youngjoon

    This thesis consists two independent parts; development of Cherenkov Ring Imaging Detector (CRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. The CRID system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e+e- collisions at m(z0). By measuring the angles of emission of the Cherenkov photons inside liquid and gaseous radiators, pi/K/p separation will be achieved up to 30 GeV/c. The results from the engineering run and initial physics run of the CRID in the SLD experiment show that the CRID hardware performs well and produces Cherenkov rings. The results from partial wave analysis of strange meson final states in the Komega and Kphi system are presented. The analyses are based on data from a 4.1 events/nb exposure of the LASS spectrometer in K^-p interactions at 11 GeV/c. Resonance structures of J^{rm P} = 2^-, 3^-, and 2^+ amplitudes are observed in the Kw system. An evidence for two J^ {rm P} = 2^- strange meson states is observed. The 3^ - signal is observed for the first time. The K phi system favors J^ {rm P} = 1^- and 2^+ states in the 1.9-2.0 GeV/c ^2 region.

  14. Muon data from a water Cherenkov detector prototype at Colorado State University

    NASA Astrophysics Data System (ADS)

    Longo, Megan; Mostafa, Miguel

    2013-04-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a very high energy gamma-ray experiment currently under construction in Sierra Negra in the state of Puebla, Mexico, at an altitude of 4,100 m a.s.l. The HAWC Observatory will consist of 300 water Cherenkov detectors (WCDs), each instrumented with three 8'' photomultiplier tubes (PMTs) and one 10'' high efficiency (HE) PMT. The PMTs are upward facing, anchored to the bottom of a 5 m deep by 7.3 m diameter steel tank, containing a multilayer hermetic plastic bag holding 200,000 L of purified water. The only full size WCD prototype outside of the HAWC site is located at Colorado State University (CSU) in Fort Collins, CO at an altitude of 1,525 m a.s.l. This prototype is instrumented with six 8'' PMTs, one 10'' HE PMT, and the same laser calibration system, electronics, and data acquisition system as the WCDs at the HAWC site. The CSU prototype is additionally equipped with scintillator paddles both under and above the volume of water, temperature probes (in the water, outside, and in the DAQ room), and one covered PMT. Preliminary results for muon rates and their temperature dependance using data collected with the CSU prototype will be presented.

  15. Cherenkov light imaging in astro-particle physics

    NASA Astrophysics Data System (ADS)

    Mirzoyan, Razmik

    2014-12-01

    Cherenkov light emission plays a key role in contemporary science; it is widely used in high energy, nuclear, and numerous astro-particle physics experiments. Most astro-particle physics experiments are based on the detection of light, and a vast majority of them on the measurement of Cherenkov light. Cherenkov light emission is measured in gases (used in air-Cherenkov technique), in water (for example, neutrino experiments BAIKAL, Super-Kamiokande, NESTOR, ANTARES, future KM3NeT; cosmic and γ-ray experiments Milagro, HAWC, AUGER) and in ice (IceCube). In this report our goal is not limited to simply listing the multitude of experiments that are based on using Cherenkov emission, but we will clarify the reasons making this emission so important and so frequently used. For completeness we will first give a short historical overview on the discovery and evolution of Cherenkov emission and then we will dwell on its main features and numerous applications in astro-particle physics experiments.

  16. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments.

    PubMed

    Herrmann, H W; Kim, Y H; Young, C S; Fatherley, V E; Lopez, F E; Oertel, J A; Malone, R M; Rubery, M S; Horsfield, C J; Stoeffl, W; Zylstra, A B; Shmayda, W T; Batha, S H

    2014-11-01

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  17. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments

    SciTech Connect

    Herrmann, H. W. Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Batha, S. H.; Malone, R. M.; Rubery, M. S.; Horsfield, C. J.; Stoeffl, W.; Zylstra, A. B.; Shmayda, W. T.

    2014-11-15

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C{sub 2}F{sub 6}, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  18. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experimentsa)

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Malone, R. M.; Rubery, M. S.; Horsfield, C. J.; Stoeffl, W.; Zylstra, A. B.; Shmayda, W. T.; Batha, S. H.

    2014-11-01

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ˜400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  19. Monte Carlo validation experiments for the gas Cherenkov detectors at the National Ignition Facility and Omega

    SciTech Connect

    Rubery, M. S.; Horsfield, C. J.; Herrmann, H.; Kim, Y.; Mack, J. M.; Young, C.; Evans, S.; Sedillo, T.; McEvoy, A.; Caldwell, S. E.; Grafil, E.; Stoeffl, W.; Milnes, J. S.

    2013-07-15

    The gas Cherenkov detectors at NIF and Omega measure several ICF burn characteristics by detecting multi-MeV nuclear γ emissions from the implosion. Of primary interest are γ bang-time (GBT) and burn width defined as the time between initial laser-plasma interaction and peak in the fusion reaction history and the FWHM of the reaction history respectively. To accurately calculate such parameters the collaboration relies on Monte Carlo codes, such as GEANT4 and ACCEPT, for diagnostic properties that cannot be measured directly. This paper describes a series of experiments performed at the High Intensity γ Source (HIγS) facility at Duke University to validate the geometries and material data used in the Monte Carlo simulations. Results published here show that model-driven parameters such as intensity and temporal response can be used with less than 50% uncertainty for all diagnostics and facilities.

  20. Optimizing light collection for low index aerogels used in Cherenkov Detectors

    NASA Astrophysics Data System (ADS)

    Roustom, Salim

    2016-09-01

    The SHMS aerogel Cherenkov detector built at CUA is used in Hall C at JLab to differentiate Kaons from Protons. It features four refractive aerogel indices ranging from n =1.03-1.01. The lowest index is expected to produce a very small signal and it is thus important to collect it with the highest possible efficiency. One way is to cover the interior of the detector with the best possible reflector material. A prototype was built to investigate possible optimizations of light collection for low aerogel refractive indices. Different reflective materials were used on its inner walls and the resulting average number of photoelectrons detected by a photomultiplier tube (PMT) compared. The coincidence trigger for these tests was constructed using two scintillator paddles. This configuration ensures that only cosmic rays passing perpendicularly through the setup are recorded by the computer. The PMTs used in this setup were calibrated using a blue LED, where the PMT is most sensitive. I will discuss the effect of the different reflectors on the average number of photoelectrons recorded, as well as other possible optimizations of light collection including wavelength shifters, and the effect of absorption and scattering on the detector's performance. This work was supported in part by NSF Grant PHY-1306227.

  1. Gas Ring-Imagining Cherenkov (GRINCH) Detector for the Super BigBite Spectrometer at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Averett, Todd; Wojtsekhowski, Bogdan; Amidouch, Abdellah; Danagoulian, Samuel; Niculescu, Gabriel; Niculescu, Ioana; Jefferson Lab SBS Collaboration Collaboration

    2017-01-01

    A new gas Cherenkov detector is under construction for the upcoming SuperBigBite spectrometer research program in Hall A at Jefferson Lab. The existing BigBite spectrometer is being upgraded to handle expected increases in event rate and background rate due to the increased luminosity required for the experimental program. The detector will primarily be used to separate good electron events from significant pion and electromagnetic contamination. In contrast to typical gas Cherenkov detectors that use large-diameter photomultiplier tubes and charge integrating ADCs, this detector uses an array of 510 small-diameter tubes that are more than 25x less sensitive to background. Cherenkov radiation clusters will be identified in this array using fast TDCs and a narrow timing window relative to typical ADC gates. In addition, a new FPGA-based DAQ system is being tested to provide a PID trigger using real-time cluster finding. Details of the detector and current status of the project will be presented.

  2. SiPM detectors for the ASTRI project in the framework of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Billotta, Sergio; Marano, Davide; Bonanno, Giovanni; Belluso, Massimiliano; Grillo, Alessandro; Garozzo, Salvatore; Romeo, Giuseppe; Timpanaro, Maria Cristina; Maccarone, Maria Concetta C.; Catalano, Osvaldo; La Rosa, Giovanni; Sottile, Giuseppe; Impiombato, Domenico; Gargano, Carmelo; Giarrusso, Salavtore

    2014-07-01

    The Cherenkov Telescope Array (CTA) is a worldwide new generation project aimed at realizing an array of a hundred ground based gamma-ray telescopes. ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is the Italian project whose primary target is the development of an end-to-end prototype, named ASTRI SST-2M, of the CTA small size class of telescopes devoted to investigation of the highest energy region, from 1 to 100 TeV. Next target is the implementation of an ASTRI/CTA mini-array based on seven identical telescopes. Silicon Photo-Multipliers (SiPMs) are the semiconductor photosensor devices designated to constitute the camera detection system at the focal plane of the ASTRI telescopes. SiPM photosensors are suitable for the detection of the Cherenkov flashes, since they are very fast and sensitive to the light in the 300-700nm wavelength spectrum. Their drawbacks compared to the traditional photomultiplier tubes are high dark count rates, after-pulsing and optical cross-talk contributions, and intrinsic gains strongly dependent on temperature. Nonetheless, for a single pixel, the dark count rate is well below the Night Sky Background, the effects of cross-talk and afterpulses are typically lower than 20%, and the gain can be kept stable against temperature variations by means of adequate bias voltage compensation strategies. This work presents and discusses some experimental results from a large set of measurements performed on the SiPM sensors to be used for the ASTRI SST-2M prototype camera and on recently developed detectors demonstrating outstanding performance for the future evolution of the project in the ASTRI/CTA mini-array.

  3. Next generation gamma-ray Cherenkov detectors for the National Ignition Facility.

    PubMed

    Herrmann, H W; Kim, Y H; McEvoy, A M; Zylstra, A B; Young, C S; Lopez, F E; Griego, J R; Fatherley, V E; Oertel, J A; Stoeffl, W; Khater, H; Hernandez, J E; Carpenter, A; Rubery, M S; Horsfield, C J; Gales, S; Leatherland, A; Hilsabeck, T; Kilkenny, J D; Malone, R M; Hares, J D; Milnes, J; Shmayda, W T; Stoeckl, C; Batha, S H

    2016-11-01

    The newest generation of Gas Cherenkov Detector (GCD-3) employed in Inertial Confinement Fusion experiments at the Omega Laser Facility has provided improved performance over previous generations. Comparison of reaction histories measured using two different deuterium-tritium fusion products, namely gamma rays using GCD and neutrons using Neutron Temporal Diagnostic (NTD), have provided added credibility to both techniques. GCD-3 is now being brought to the National Ignition Facility (NIF) to supplement the existing Gamma Reaction History (GRH-6m) located 6 m from target chamber center (TCC). Initially it will be located in a reentrant well located 3.9 m from TCC. Data from GCD-3 will inform the design of a heavily-shielded "Super" GCD to be located as close as 20 cm from TCC. It will also provide a test-bed for faster optical detectors, potentially lowering the temporal resolution from the current ∼100 ps state-of-the-art photomultiplier tubes (PMT) to ∼10 ps Pulse Dilation PMT technology currently under development.

  4. Estimates of the DT Fusion Gamma Spectrum Using an Energy Thresholding Gas Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Horsfield, Colin; Rubery, Michael; Hans, Herrmann; Mack, Joseph; Young, Carl; Caldwell, Steven; Scott, Evans; Sedillo, Thomas; Kim, Yongho; Hale, Gerry; Shah, Rahul; Kirk, Miller; Wolfgang, Stoefll

    2011-10-01

    In addition to alphas and neutrons, the DT fusion reaction also produces gamma rays from the intermediate excited 5He nucleus with a small branching ratio 10E-5 gamma/n. The very small branching ratio of the gamma-rays are mitigated by the very large yields that are expected on NIF (10E+19). The excited 5He can produce gamma-rays by decay to the ground state, emitting a 16.75 MeV gamma-ray (width 0.5 MeV), or to a broad first excited state emitting a 12 MeV gamma ray (width 5 MeV). Knowledge of the relative gamma-ray BR of these two states, from which we infer the DT gamma ray spectrum, is important to making absolutely calibrated measurements on a variety of experiments. We have carried out an energy thresh-holding experiment for DT ICF implosions on the Omega laser using a Gas Cherenkov Detector, and compared the relative intensities at various thresholds with theoretical gamma spectra folded with detector response as calculated by ACCEPT and GEANT4 codes. We present recent results from this experiment, our estimate of the precision of the DT fusion gamma spectrum and the implications for the future determination of the DT gamma/n BR.

  5. Next generation gamma-ray Cherenkov detectors for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Kim, Y. H.; McEvoy, A. M.; Zylstra, A. B.; Young, C. S.; Lopez, F. E.; Griego, J. R.; Fatherley, V. E.; Oertel, J. A.; Stoeffl, W.; Khater, H.; Hernandez, J. E.; Carpenter, A.; Rubery, M. S.; Horsfield, C. J.; Gales, S.; Leatherland, A.; Hilsabeck, T.; Kilkenny, J. D.; Malone, R. M.; Hares, J. D.; Milnes, J.; Shmayda, W. T.; Stoeckl, C.; Batha, S. H.

    2016-11-01

    The newest generation of Gas Cherenkov Detector (GCD-3) employed in Inertial Confinement Fusion experiments at the Omega Laser Facility has provided improved performance over previous generations. Comparison of reaction histories measured using two different deuterium-tritium fusion products, namely gamma rays using GCD and neutrons using Neutron Temporal Diagnostic (NTD), have provided added credibility to both techniques. GCD-3 is now being brought to the National Ignition Facility (NIF) to supplement the existing Gamma Reaction History (GRH-6m) located 6 m from target chamber center (TCC). Initially it will be located in a reentrant well located 3.9 m from TCC. Data from GCD-3 will inform the design of a heavily-shielded "Super" GCD to be located as close as 20 cm from TCC. It will also provide a test-bed for faster optical detectors, potentially lowering the temporal resolution from the current ˜100 ps state-of-the-art photomultiplier tubes (PMT) to ˜10 ps Pulse Dilation PMT technology currently under development.

  6. The Sudbury Neutrino Observatory Solar and supernova neutrino studies with a large heavy water Cherenkov detector

    NASA Astrophysics Data System (ADS)

    Chen, Herbert H.

    1988-02-01

    A brief overview is given of the status of the Sudbury Neutrino Observatory (SNO) large heavy water Cherenkov detector intended for the observation of solar and supernova neutrinos. This detector offers the potential of obtaining qualitatively and quantitatively new information about these neutrinos and their sources. Presented for the Sudbury Neutrino Observatory Collaboration. Members and Institutions of the Sudbury Neutrino Collaboration are: G.T. Ewan, H.C. Evans, H.W. Lee, J.R. Leslie, J.D. MacArthur, H.B. Mak, W. McLatchie, B.C. Robertson and P. skensved of Queen's University; R.C. Allen, G. Buehler, H.H. Chen and P.J. Doe of University of California, Irvine; D. Sinclair of University of Oxford; J.D. Anglin, M. Bercovitch, W.F. Davidson, C.K. H argrove and R.S. Storey, of National Research Council of Canada ; E.D. Earle of Chalk River Nuclear Laboratories; P. Jagam and J.J. Simpson of University of Guelph; E.D. Hallman of Laurentian University; A.B. McDonald of Princeton University; and A.L. Carter and D. Kesler of Carlton University.

  7. ``Super'' Gas Cherenkov Detector for Gamma Ray Measurements at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans W.; Kim, Y. H.; McEvoy, A. M.; Zylstra, A. B.; Lopez, F. E.; Griego, J. R.; Fatherley, V. E.; Oertel, J. A.; Batha, S. H.; Stoeffl, W.; Church, J. A.; Carpenter, A.; Rubery, M. S.; Horsfield, C. J.; Gales, S.; Leatherland, A.; Hilsabeck, T.; Kilkenny, J. D.; Malone, R. M.; Shmayda, W. T.

    2015-11-01

    New requirements to improve reaction history and ablator areal density measurements at the NIF necessitate improvements in sensitivity, temporal and spectral response relative to the existing Gamma Reaction History diagnostic (GRH-6m) located 6 meters from target chamber center (TCC). A new DIM-based ``Super'' Gas Cherenkov Detector (GCD) will ultimately provide ~ 200x more sensitivity to DT fusion gamma rays, reduce the effective temporal resolution from ~ 100 to ~ 10 ps and lower the energy threshold from 2.9 to 1.8 MeV, relative to GRH-6m. The first phase is to insert the existing coaxial GCD-3 detector into a reentrant well on the NIF chamber which will put it within 4 meters of TCC. This diagnostic platform will allow assessment of the x-ray radiation background environment within the well which will be fed into the shielding design for the follow-on ``Super'' GCD. It will also enable use of a pulse-dilation PMT which has the potential to improve the effective measurement bandwidth by ~ 10x relative to current PMT technology. GCD-3 has been thoroughly tested at the OMEGA Laser Facility and characterized at the High Intensity Gamma Ray Source (HIgS).

  8. CHERENCUBE: Concept definition and implementation challenges of a Cherenkov-based detector block for PET

    SciTech Connect

    Somlai-Schweiger, I. Ziegler, S. I.

    2015-04-15

    Purpose: A new concept for a depth-of-interaction (DOI) capable time-of-flight (TOF) PET detector is defined, based only on the detection of Cherenkov photons. The proposed “CHERENCUBE” consists of a cubic Cherenkov radiator with position-sensitive photodetectors covering each crystal face. By means of the spatial distribution of the detected photons and their time of arrival, the point of interaction of the gamma-ray in the crystal can be determined. This study analyzes through theoretical calculations and Monte Carlo simulations the potential advantages of the concept toward reaching a Cherenkov-only detector for TOF-PET with DOI capability. Furthermore, an algorithm for the DOI estimation is presented and the requirements for a practical implementation of the proposed concept are defined. Methods: The Monte Carlo simulations consisted of a cubic crystal with one photodetector coupled to each one of the faces of the cube. The sensitive area of the detector matched exactly the crystal size, which was varied in 1 mm steps between 1 × 1 × 1 mm{sup 3} and 10 × 10 × 10 mm{sup 3}. For each size, five independent simulations of ten thousand 511 keV gamma-rays were triggered at a fixed distance of 10 mm. The crystal chosen was PbWO{sub 4}. Its scintillation properties were simulated, but only Cherenkov photons were analyzed. Photodetectors were simulated having perfect photodetection efficiency and infinite time resolution. For every generated particle, the analysis considered its creation process, parent and daughter particles, energy, origin coordinates, trajectory, and time and position of detection. The DOI determination is based on the distribution of the emission time of all photons per event. These values are calculated as a function of the coordinates of detection and origin for every photon. The common origin is estimated by finding the distribution with the most similar emission time-points. Results: Detection efficiency increases with crystal size from

  9. GPU-based low-level trigger system for the standalone reconstruction of the ring-shaped hit patterns in the RICH Cherenkov detector of NA62 experiment

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Gianoli, A.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2017-03-01

    This project aims to exploit the parallel computing power of a commercial Graphics Processing Unit (GPU) to implement fast pattern matching in the Ring Imaging Cherenkov (RICH) detector for the level 0 (L0) trigger of the NA62 experiment. In this approach, the ring-fitting algorithm is seedless, being fed with raw RICH data, with no previous information on the ring position from other detectors. Moreover, since the L0 trigger is provided with a more elaborated information than a simple multiplicity number, it results in a higher selection power. Two methods have been studied in order to reduce the data transfer latency from the readout boards of the detector to the GPU, i.e., the use of a dedicated NIC device driver with very low latency and a direct data transfer protocol from a custom FPGA-based NIC to the GPU. The performance of the system, developed through the FPGA approach, for multi-ring Cherenkov online reconstruction obtained during the NA62 physics runs is presented.

  10. MO-A-BRD-06: In Vivo Cherenkov Video Imaging to Verify Whole Breast Irradiation Treatment

    SciTech Connect

    Zhang, R; Glaser, A; Jarvis, L; Gladstone, D; Andreozzi, J; Hitchcock, W; Pogue, B

    2014-06-15

    Purpose: To show in vivo video imaging of Cherenkov emission (Cherenkoscopy) can be acquired in the clinical treatment room without affecting the normal process of external beam radiation therapy (EBRT). Applications of Cherenkoscopy, such as patient positioning, movement tracking, treatment monitoring and superficial dose estimation, were examined. Methods: In a phase 1 clinical trial, including 12 patients undergoing post-lumpectomy whole breast irradiation, Cherenkov emission was imaged with a time-gated ICCD camera synchronized to the radiation pulses, during 10 fractions of the treatment. Images from different treatment days were compared by calculating the 2-D correlations corresponding to the averaged image. An edge detection algorithm was utilized to highlight biological features, such as the blood vessels. Superficial dose deposited at the sampling depth were derived from the Eclipse treatment planning system (TPS) and compared with the Cherenkov images. Skin reactions were graded weekly according to the Common Toxicity Criteria and digital photographs were obtained for comparison. Results: Real time (fps = 4.8) imaging of Cherenkov emission was feasible and feasibility tests indicated that it could be improved to video rate (fps = 30) with system improvements. Dynamic field changes due to fast MLC motion were imaged in real time. The average 2-D correlation was about 0.99, suggesting the stability of this imaging technique and repeatability of patient positioning was outstanding. Edge enhanced images of blood vessels were observed, and could serve as unique biological markers for patient positioning and movement tracking (breathing). Small discrepancies exists between the Cherenkov images and the superficial dose predicted from the TPS but the former agreed better with actual skin reactions than did the latter. Conclusion: Real time Cherenkoscopy imaging during EBRT is a novel imaging tool that could be utilized for patient positioning, movement tracking

  11. Integrated Dual Imaging Detector

    NASA Technical Reports Server (NTRS)

    Rust, David M.

    1999-01-01

    A new type of image detector was designed to simultaneously analyze the polarization of light at all picture elements in a scene. The integrated Dual Imaging detector (IDID) consists of a lenslet array and a polarizing beamsplitter bonded to a commercial charge coupled device (CCD). The IDID simplifies the design and operation of solar vector magnetographs and the imaging polarimeters and spectroscopic imagers used, for example, in atmosphere and solar research. When used in a solar telescope, the vector magnetic fields on the solar surface. Other applications include environmental monitoring, robot vision, and medical diagnoses (through the eye). Innovations in the IDID include (1) two interleaved imaging arrays (one for each polarization plane); (2) large dynamic range (well depth of 10(exp 5) electrons per pixel); (3) simultaneous readout and display of both images; and (4) laptop computer signal processing to produce polarization maps in field situations.

  12. Casa-Blanca: A Large non-imaging Cerenkov Detector at Casa-Mia

    NASA Astrophysics Data System (ADS)

    Cassidy, M.; Fortson, L. F.; Fowler, J. W.; Jui, C. H.; Kieda, D. B.; Loh, E. C.; Ong, R. A.; Sommers, P.

    The lateral distribution of Cherenkov light at ground level records important information on the development of the cosmic ray air shower which produces it. We have constructed an array of 144 non-imaging Cherenkov detectors at the CASA-MIA experiment site in Dugway, Utah. The various arrays can sample simultaneously the lateral distributions of electrons, muons, and Cherenkov light at many locations. We describe the design and operation of the CASA-BLANCA experiment and its potential to address the composition of primary cosmic rays between 300 and 30,000 TeV.

  13. Gas Cherenkov Detectors For Gamma Ray Measurements At The National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans W.; Kim, Y. H.; Zylstra, A. B.; Lopez, F. E.; Griego, J.; Fatherley, V. E.; Oertel, J. A.; Batha, S. H.; Carpenter, A.; Khater, H.; Hernandez, J. E.; Rubery, M. S.; Horsfield, C. J.; Gales, S.; Leatherland, A.; Hilsabeck, T.; Kilkenny, J. D.; Malone, R. M.; Hares, J. D.; Milnes, J.; Shmayda, W. T.

    2016-10-01

    New requirements to improve reaction history and ablator areal density measurements at the NIF necessitate diagnostic capability improvements in sensitivity, temporal and spectral response relative to the existing Gamma Reaction History diagnostic (GRH-6m) located 6 meters from target chamber center (TCC). Relative to GRH-6m, a new DIM-based ``Super'' Gas Cherenkov Detector (GCD) will ultimately provide 200x more sensitivity to DT fusion gamma rays, reduce the effective temporal resolution from 100 to 10 ps and lower the energy threshold from 2.9 to 1.8 MeV. Initially, the existing GCD-3 will be placed into a reentrant well, putting it within 4 meters of TCC. This diagnostic platform will allow assessment of the x-ray radiation background environment within the well which will be fed into the shielding design for the follow-on ``Super'' GCD. It will also enable use of a pulse-dilation PMT (PD-PMT) which has the potential to improve the effective measurement bandwidth by 10x relative to current PMT technology. Initial measurements of both GCD-3 on NIF and a PD-PMT prototype on ORION will be discussed.

  14. Design, transport, and installation of autonomous Cherenkov detectors at high altitude

    NASA Astrophysics Data System (ADS)

    Rubén Calderón Cueva, Mario; Alejandro Vasquez, Nicolas; Martínez, Oscar; Carrera, Edgar; Cazar, Dennis; Audelo, Mario; Mantilla, Cristina; Quishpe, Raquel

    2015-08-01

    Ecuador, as a member of the Latin American Giant Observatory (LAGO), wishes to expand the understanding of astroparticle physics and space weather by the installation of Water Cherenkov detectors at high altitude. The challenge for such devices lies on their transport to the remote areas of operation, the autonomy of their electrical power supply, the robustness of their data transmission system, their remote operation stability, and the reliability of the water integrity for long periods of time. LAGO Ecuador features several studies of gamma ray bursts and high energy astrophysical sources, as well as of space weather. Based on these studies, we develop a feasibility study for the design, installation, operation and maintenance of the aforementioned devices in Papallacta, Chimborazo and Cruz Loma in the Ecuadorean highlands. As the atmospheric absorption, and so the area of detection to be instrumented, is significantly reduced with the altitude, the easy access to locations higher than 4000 m a.s.l. is one of the main advantages of the Ecuadorean Andes for the installation of these facilities.

  15. Investigating D-T Reaction Spectra with the Gas Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Huff, Michael A.; Kim, Yong Ho; McEvoy, Aaron; Young, Carlton S.; Mack, Joe M.; Herrmann, Hans W.; Horsfield, Colin J.

    2010-11-01

    In this study, a new analysis of the gamma ray spectra of the D-T fusion reaction using a Gas Cherenkov Detector (GCD) is presented. The D-T reaction is an essential process to understand for the future of fusion science. The reaction produces a He^5* nucleus that usually decays into a He^4 + n. It has been seen that this reaction produces a 16.75 MeV gamma ray .0025% of the time. The Gamma Ray History (GRH) group at Los Alamos proposes that there is an even less often occurrence where a gamma ray of around 12 MeV is produced. As the truth of this statement would affect the future potential yield of fusion reactors using D-T fuel, it is worth investigating. D-T spectra were obtained by detecting the produced gamma ray with the GCD at the University of Rochester OMEGA laser facility. A GCD response curve, calculated by the Monte Carlo modeling software ACCEPT, was used to forward convolve theoretical spectra into what the theoretical curves would have looked like in the GCD data. Results are presented.

  16. Application of imaging to the atmospheric Cherenkov technique

    NASA Technical Reports Server (NTRS)

    Cawley, M. F.; Fegan, D. J.; Gibbs, K.; Gorham, P. W.; Hillas, A. M.; Lamb, R. C.; Liebing, D. F.; Mackeown, P. K.; Porter, N. A.; Stenger, V. J.

    1985-01-01

    Turver and Weekes proposed using a system of phototubes in the focal plane of a large reflector to give an air Cherenkov camera for gamma ray astronomy. Preliminary results with a 19 element camera have been reported previously. In 1983 the camera was increased to 37 pixels; it has now been routinely operated for two years. A brief physical description of the camera, its mode of operation, and the data reduction procedures are presented. The Monte Carlo simultations on which these are based on also reviewed.

  17. First beam test of a liquid Cherenkov detector prototype for a future TOF measurements at the Super-FRS

    NASA Astrophysics Data System (ADS)

    Kuzminchuk-Feuerstein, Natalia; Ferber, Nadine; Rozhkova, Elena; Kaufeld, Ingo; Voss, Bernd

    2017-09-01

    In order to separate and identify fragmentation products with the Super-Fragment Separator (SuperFRS) at FAIR a high resolving power detector system is required for position and Time-Of-Flight (TOF) measurements. The TOF detector is used to measure the velocity of the particles and hence, in conjunction with their momentum or energy, to determine their mass and hence their identity. Aiming to develop a system with a precision down to about 50 ps in time and resistant to a high radiation rate of relativistic heavy ions of up to 107 per spill (at the second focal plane), we have shown a conceptual design for a Cherenkov detector envisioned for the future TOF measurements employing Iodine Naphthalene (C10H7I) as a fluid radiator. The application of a liquid radiator allows the circulation of the active material and therefore to greatly reduce the effects of the degradation of the optical performance expected after exposure to the high ion rates at the Super-FRS. The prototype of a TOF-Cherenkov detector was designed, constructed and its key-properties have been investigated in measurements with heavy ions at CaveC at GSI. These measurements were performed with nickel ions at 300-1500 MeV/u and ion-beam intensities of up to 4 × 106 ions/spill of 8 s. As a first result a maximum detection efficiency of 70% and a timing resolution of 267 ps (σ) was achieved. We report the first attempt of time measurements with a Cherenkov detector based on a liquid radiator. Further optimization is required.

  18. SU-E-T-186: Feasibility Study of Glass Cherenkov Detector for Prompt Gamma Detection in Proton Therapy

    SciTech Connect

    Lau, A; Chen, Y; Ahmad, S

    2014-06-01

    Purpose: To simulate a Cherenkov glass detector system utilizing prompt gamma (PG) technique to quantify range uncertainties in proton radiation therapy. Methods: A simulation of high energy photons typically produced in proton interactions with materials incident onto a block of Cherenkov glass was performed with the Geant4 toolkit. The standard electromagnetic package was used along with several decay modules (G4Decay, G4DecayPhysics, and G4RadioactiveDecayPhysics) and the optical photon components (G4OpticalPhysics). Our setup included a pencil beam consisting of a hundred thousand 6 MeV photons (approximately the deexcitation energy released from 16O) incident onto a 2.5 ⊗ 2.5 ⊗ 1.5 cm3 of a Cherenkov glass (7.2 g of In2O3 + 90 g cladding, density of 2.82 g/cm3, Zeff = 33.7, index of refraction 1.56). The energy deposited from incident 6 MeV photons as well as secondary electrons and resulting optical photons were recorded. Results: The energy deposited by 6 MeV photons in glass material showed several peaks that included the photoelectric, the single and double escape peaks. About 11% of incident photons interacted with glass material to deposit energy. Most of the photons collected were in the region of double escape peak (approximately 4.98 MeV). The secondary electron spectrum produced from incident photons showed a high energy peak located near 6 MeV and a sharp peak located ∼120 keV with a continuous distribution between these two points. The resulting Cherenkov photons produced showed a continuous energy distribution between 2 and 5 eV with a slight increase in yield beginning about 3 eV. The amount of Cherenkov photons produced per interacting incident 6 MeV photon was ∼240.7. Conclusion: This study suggests the viability of utilizing the Cherenkov glass material as a possible prompt gamma photon detection device. Future work will include optimization of the detector system to maximize photon detection efficiency.

  19. Measurement of charged hadron spectra at the Z{sup 0} with Cherenkov ring imaging

    SciTech Connect

    Pavel, Tomas Josef

    1997-08-01

    This dissertation attempts to probe hadronization, the process by which the fundamental quarks described by quantum chromodynamics produce the jets of hadrons that the author observed in experiments. The measurements are made using e+e- collisions at the SLAC Linear Collider (SLC), operating at the Z0 resonance with the SLC Large Detector (SLD), and the unique capabilities of the SLC/SLD facility are exploited. First, the spectra of charged hadrons (π±, K±, and p/$\\bar{p}$) are measured. This is accomplished with the SLD Cherenkov Ring Imaging Detector (CRID), one of a first generation of devices that have been developed for efficient particle identification over a wide momentum range. The use of the CRID is central to this dissertation, and its design and performance are described in detail here. The measured spectra agree with other measurements at the Z0 and extend the momentum coverage. Next, the excellent spatial resolution of the SLD tracking systems, along with the small and stable beam spots of the SLC, is employed to identify jets produced from heavy b or c quarks and to separate them from the remaining light-quark (uds) jets. This removes the effects of heavy quark fragmentation and decays of heavy-quark hadrons from the study of hadronization. The first measurements of particle spectra in light-quark jets are then presented. Finally, the highly-polarized incident electron beam of the SLC, together with the electroweak asymmetries of the quarks, is exploited to separate quark and antiquark jets. Significant differences in quark-antiquark production of protons and of kaons are observed at high momenta. This signal suggests a leading particle effect, where the particles containing the primary quark of a jet are more likely to populate the high-momentum phase space than are other hadrons.

  20. Cherenkov imaging method for rapid optimization of clinical treatment geometry in total skin electron beam therapy

    PubMed Central

    Zhang, Rongxiao; Gladstone, David J.; Williams, Benjamin B.; Glaser, Adam K.; Pogue, Brian W.; Jarvis, Lesley A.

    2016-01-01

    Purpose: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). Methods: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, composite images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. Results: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R2 = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial angles

  1. Cherenkov imaging method for rapid optimization of clinical treatment geometry in total skin electron beam therapy

    SciTech Connect

    Andreozzi, Jacqueline M. E-mail: Lesley.A.Jarvis@hitchcock.org; Glaser, Adam K.; Zhang, Rongxiao; Gladstone, David J.; Williams, Benjamin B.; Jarvis, Lesley A. E-mail: Lesley.A.Jarvis@hitchcock.org; Pogue, Brian W.

    2016-02-15

    Purpose: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). Methods: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, composite images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. Results: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R{sup 2} = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial

  2. Characteristics of four-channel Cherenkov-type detector for measurements of runaway electrons in the ISTTOK tokamak

    SciTech Connect

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C.

    2010-10-15

    A diagnostics capable of characterizing the runaway and superthermal electrons has been developing on the ISTTOK tokamak. In previous paper, a use of single-channel Cherenkov-type detector with titanium filter for runaway electron studies in ISTTOK was reported. To measure fast electron populations with different energies, a prototype of a four-channel detector with molybdenum filters was designed. Test-stand studies of filters with different thicknesses (1, 3, 7, 10, 20, 50, and 100 {mu}m) have shown that they should allow the detection of electrons with energies higher than 69, 75, 87, 95, 120, 181, and 260 keV, respectively. First results of measurements with the four-channel detector revealed the possibility to measure reliably different fast electrons populations simultaneously.

  3. Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time

    SciTech Connect

    Jarvis, Lesley A.; Zhang, Rongxiao; Gladstone, David J.; Jiang, Shudong; Hitchcock, Whitney; Friedman, Oscar D.; Glaser, Adam K.; Jermyn, Michael; Pogue, Brian W.

    2014-07-01

    Purpose: To determine whether Cherenkov light imaging can visualize radiation therapy in real time during breast radiation therapy. Methods and Materials: An intensified charge-coupled device (CCD) camera was synchronized to the 3.25-μs radiation pulses of the clinical linear accelerator with the intensifier set × 100. Cherenkov images were acquired continuously (2.8 frames/s) during fractionated whole breast irradiation with each frame an accumulation of 100 radiation pulses (approximately 5 monitor units). Results: The first patient images ever created are used to illustrate that Cherenkov emission can be visualized as a video during conditions typical for breast radiation therapy, even with complex treatment plans, mixed energies, and modulated treatment fields. Images were generated correlating to the superficial dose received by the patient and potentially the location of the resulting skin reactions. Major blood vessels are visible in the image, providing the potential to use these as biological landmarks for improved geometric accuracy. The potential for this system to detect radiation therapy misadministrations, which can result from hardware malfunction or patient positioning setup errors during individual fractions, is shown. Conclusions: Cherenkoscopy is a unique method for visualizing surface dose resulting in real-time quality control. We propose that this system could detect radiation therapy errors in everyday clinical practice at a time when these errors can be corrected to result in improved safety and quality of radiation therapy.

  4. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging

    SciTech Connect

    Andreozzi, Jacqueline M. Glaser, Adam K.; Zhang, Rongxiao; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.

    2015-02-15

    Purpose: To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Methods: Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Results: Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary

  5. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging

    PubMed Central

    Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Jarvis, Lesley A.; Pogue, Brian W.; Gladstone, David J.

    2015-01-01

    Purpose: To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Methods: Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Results: Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary

  6. Identification of 90Sr/40K Based on Cherenkov Detector for Recovery from the Fukushima Nuclear Accident

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Han, Soorim; Kobayashi, Atsushi; Kaneko, Naomi; Kawai, Hideyuki; Tabata, Makoto

    Although five years have passed since the Fukushima nuclear accident of 2011, the local fisheries have yet to recover from its effects. One reason for this situation is the difficulty of measuring the radioactivity owing to 90Sr in seafood. After the accident, the radioactivity due to Cs isotopes in samples was measured with precision, which facilitated the enforcement of the maximum concentration of Cs radioisotopes in food at 100 Bq/kg, as defined by the Ministry of Health, Labour and Welfare in Japan. However, 90Sr is more dangerous than Cs isotopes because it has an effective half-life of 18 years and accumulates in the bone. The radioactivity owing to 90Sr in a sample is difficult to measure because the beta rays from 137Cs or 40K also contribute to the signal. When measured based on the endpoint pulse height as determined by a conventional survey meter, the beta ray signal from 90Y (daughter of 90Sr) cannot be differentiated from the beta rays from other sources. To overcome this difficulty, in this study, we develop a Cherenkov detector based on a silica aerogel with a refractive index of 1.034 that can identify beta rays from 90Y within a background of beta rays from 137Cs and 40K. This instrument involves a detector that is sensitive to beta rays from 90Sr but less sensitive to radiation from other sources. This detector comprises a trigger counter that uses scintillating fibers, an aerogel Cherenkov counter with wavelength-shifting fibers, and a veto counter to suppress cosmic rays. We characterize the detector using a 90Sr source, 137Cs source, and pure potassium chloride reagent of 16.6 Bq/g, where the radioactivity of natural 40K is estimated to be 31.7 Bq/g. The following results are obtained: the absolute detection efficiency for 90Sr, 137Cs, and 40K is [2.24 ± 0.01 (stat) ± 0.44 (sys)] × 10-3 Bq-1 s-1, [1.27 ± 0.08 (stat) ± 0.25 (sys)] × 10-6 Bq-1 s-1, and [5.05 ± 2.40 (stat) ± 0.15 (sys)] × 10-5 Bq-1 s-1, respectively. To aid in the

  7. Imaging alpha particle detector

    DOEpatents

    Anderson, David F.

    1985-01-01

    A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  8. Imaging alpha particle detector

    DOEpatents

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  9. Transmission diamond imaging detector

    SciTech Connect

    Smedley, John Pinelli, Don; Gaoweia, Mengjia; Muller, Erik; Ding, Wenxiang; Zhou, Tianyi; Bohon, Jen

    2016-07-27

    Many modern synchrotron techniques are trending toward use of high flux beams and/or beams which require enhanced stability and precise understanding of beam position and intensity from the front end of the beamline all the way to the sample. For high flux beams, major challenges include heat load management in optics (including the vacuum windows) and a mechanism of real-time volumetric measurement of beam properties such as flux, position, and morphology. For beam stability in these environments, feedback from such measurements directly to control systems for optical elements or to sample positioning stages would be invaluable. To address these challenges, we are developing diamond-based instrumented vacuum windows with integrated volumetric x-ray intensity, beam profile and beam-position monitoring capabilities. A 50 µm thick single crystal diamond has been lithographically patterned to produce 60 µm pixels, creating a >1kilopixel free-standing transmission imaging detector. This device, coupled with a custom, FPGA-based readout, has been used to image both white and monochromatic x-ray beams and capture the last x-ray photons at the National Synchrotron Light Source (NSLS). This technology will form the basis for the instrumented end-station window of the x-ray footprinting beamline (XFP) at NSLS-II.

  10. Ultrafast charge division imaging detector

    NASA Astrophysics Data System (ADS)

    Liu, Alan; Woo, Brian; Odom, Robert W.

    2000-11-01

    We have developed position computing electronics having less than 60 ns dead times for resistive anode encoders, a form of charge division imaging detector. These electronics are at least a factor of 5 faster than anything available commercially and are based on using a fast, self-resetting charge integrator and subrange digital division techniques. Our primary application for this detector is secondary ion mass spectrometry (SIMS)/ions imaging and we demonstrate that SIMS imaging applications using these ultrafast electronics can readily be performed at ion intensities above 106 cps. This article discusses the overall electronics design and presents experimental data on dead-time measurements, detector lateral resolution, and SIMS imaging.

  11. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers.

    PubMed

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A

    2017-03-24

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter (90)Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300-500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  12. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    PubMed Central

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-01-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300–500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent. PMID:28338043

  13. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    NASA Astrophysics Data System (ADS)

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-03-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300–500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  14. The Topo-trigger: a new concept of stereo trigger system for imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    López-Coto, R.; Mazin, D.; Paoletti, R.; Blanch Bigas, O.; Cortina, J.

    2016-04-01

    Imaging atmospheric Cherenkov telescopes (IACTs) such as the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes endeavor to reach the lowest possible energy threshold. In doing so the trigger system is a key element. Reducing the trigger threshold is hampered by the rapid increase of accidental triggers generated by ambient light (the so-called Night Sky Background NSB). In this paper we present a topological trigger, dubbed Topo-trigger, which rejects events on the basis of their relative orientation in the telescope cameras. We have simulated and tested the trigger selection algorithm in the MAGIC telescopes. The algorithm was tested using MonteCarlo simulations and shows a rejection of 85% of the accidental stereo triggers while preserving 99% of the gamma rays. A full implementation of this trigger system would achieve an increase in collection area between 10 and 20% at the energy threshold. The analysis energy threshold of the instrument is expected to decrease by ~ 8%. The selection algorithm was tested on real MAGIC data taken with the current trigger configuration and no γ-like events were found to be lost.

  15. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Chen, Y. T.; de La Taille, C.; Suomijärvi, T.; Cao, Z.; Deligny, O.; Dulucq, F.; Ge, M. M.; Lhenry-Yvon, I.; Martin-Chassard, G.; Nguyen Trung, T.; Wanlin, E.; Xiao, G.; Yin, L. Q.; Yun Ky, B.; Zhang, L.; Zhang, H. Y.; Zhang, S. S.; Zhu, Z.

    2015-09-01

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs.

  16. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  17. Supernova remnants and pulsar wind nebulae with Imaging Atmospheric Cherenkov Telescopes (IACTs)

    NASA Astrophysics Data System (ADS)

    Eger, Peter

    2015-08-01

    The observation of very-high-energy (VHE, E > 100 GeV) gamma rays is an excellent tool to study the most energetic and violent environments in the Galaxy. This energy range is only accessible with ground-based instruments such as Imaging Atmospheric Cherenkov Telescopes (IACTs) that reconstruct the energy and direction of the primary gamma ray by observing the Cherenkov light from the induced extended air showers in Earths atmosphere. The main goals of Galactic VHE gamma-ray science are the identification of individual sources of cosmic rays (CRs), such as supernova remnants (SNRs), and the study of other extreme astrophysical objects at the highest energies, such as gamma-ray binaries and pulsar wind nebulae (PWNe). One of the main challenges is the discrimination between leptonic and hadronic gamma-ray production channels. To that end, the gamma-ray signal from each individual source needs to be brought into context with the multi-wavelength environment of the astrophysical object in question, particularly with observations tracing the density of the surrounding interstellar medium, or synchrotron radiation from relativistic electrons. In this review presented at the European Cosmic Ray Symposium 2014 (ECRS2014), the most recent developments in the field of Galactic VHE gamma-ray science are highlighted, with particular emphasis on SNRs and PWNe.

  18. Strange meson spectroscopy in Kω and KΦ at 11 GeV/c and Cherenkov ring imaging at SLD

    SciTech Connect

    Kwon, Youngjoon

    1993-01-01

    This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (CRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part 1: The CRID system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e+e- collisions at √s = mZ0. By measuring the angles of emission of the Cherenkov photons inside liquid and gaseous radiators, {pi}/K/p separation will be achieved up to ~30 GeV/c. The signals from CRID are read in three coordinates, one of which is measured by charge-division technique. To obtain a ~1% spatial resolution in the charge-division, low-noise CRID preamplifier prototypes were developed and tested resulting in <1000 electrons noise for an average photoelectron signal with 2 x 105 gain. To help ensure the long-term stability of CRID operation at high efficiency, a comprehensive monitoring and control system was developed. Part 2: Results from the partial wave analysis of strange meson final states in the reactions K-p → K-ωp and K-p → $\\bar{K}$0Φn are presented. The analyses are based on data from a 4.1 event/nb exposure of the LASS spectrometer in K-p interactions at 11 GeV/c. The data sample of K-ωp final state contains {approximately}105 events. From the partial wave analysis, resonance structures of JP= 2-, 3- and 2+ amplitudes are observed in the Kω system. The analysis of 2- amplitudes provides an evidence for two strange meson states in the mass region around 1.75 GeV/c2. The appropriate branching fractions are calculated and compared with the SU(3) predictions. The partial wave analysis of $\\bar{K}$0Φ system favors JP = 1- and 2+ states in the 1.9--2.0 GeV/c2 region.

  19. A hybrid version of the Whipple observatory's air Cherenkov imaging camera for use in moonlight

    NASA Astrophysics Data System (ADS)

    Chantell, M. C.; Akerlof, C. W.; Badran, H. M.; Buckley, J.; Carter-Lewis, D. A.; Cawley, M. F.; Connaughton, V.; Fegan, D. J.; Fleury, P.; Gaidos, J.; Hillas, A. M.; Lamb, R. C.; Pare, E.; Rose, H. J.; Rovero, A. C.; Sarazin, X.; Sembroski, G.; Schubnell, M. S.; Urban, M.; Weekes, T. C.; Wilson, C.

    1997-02-01

    A hybrid version of the Whipple Observatory's atmospheric Cherenkov imaging camera that permits observation during periods of bright moonlight is described. The hybrid camera combines a blue-light blocking filter with the standard Whipple imaging camera to reduce sensitivity to wavelengths greater than 360 nm. Data taken with this camera are found to be free from the effects of the moonlit night-sky after the application of simple off-line noise filtering. This camera has been used to successfully detect TeV gamma rays, in bright moon light, from both the Crab Nebula and the active galactic nucleus Markarian 421 at the 4.9σ and 3.9σ levels of statistical significance, respectively. The energy threshold of the camera is estimated to be 1.1 ( +0.6/-0.3) TeV from Monte Carlo simulations.

  20. Cherenkov radiation dosimetry in water tanks - video rate imaging, tomography and IMRT & VMAT plan verification

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Glaser, Adam K.; Zhang, Rongxiao; Gladstone, David J.

    2015-01-01

    This paper presents a survey of three types of imaging of radiation beams in water tanks for comparison to dose maps. The first was simple depth and lateral profile verification, showing excellent agreement between Cherenkov and planned dose, as predicted by the treatment planning system for a square 5cm beam. The second approach was 3D tomography of such beams, using a rotating water tank with camera attached, and using filtered backprojection for the recovery of the 3D volume. The final presentation was real time 2D imaging of IMRT or VMAT treatments in a water tank. In all cases the match to the treatment planning system was within what would be considered acceptable for clinical medical physics acceptance.

  1. Cherenkov imaging during volumetric modulated arc therapy for real-time radiation beam tracking and treatment response monitoring

    NASA Astrophysics Data System (ADS)

    Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-03-01

    External beam radiotherapy utilizes high energy radiation to target cancer with dynamic, patient-specific treatment plans. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high energy beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to track the radiation beam on the surface of the patient in real-time, even for complex cases such as volumetric modulated arc therapy (VMAT). Two patients undergoing VMAT of the head and neck were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  2. Real-time 3D dose imaging in water phantoms: reconstruction from simultaneous EPID-Cherenkov 3D imaging (EC3D)

    NASA Astrophysics Data System (ADS)

    Bruza, P.; Andreozzi, J. M.; Gladstone, D. J.; Jarvis, L. A.; Rottmann, J.; Pogue, B. W.

    2017-05-01

    Combination of electronic portal imaging device (EPID) transmission imaging with frontal Cherenkov imaging enabled real-time 3D dosimetry of clinical X-ray beams in water phantoms. The EPID provides a 2D transverse distribution of attenuation which can be back-projected to estimate accumulated dose, while the Cherenkov image provides an accurate lateral view of the dose versus depth. Assuming homogeneous density and composition of the phantom, both images can be linearly combined into a true 3D distribution of the deposited dose. We describe the algorithm for volumetric dose reconstruction, and demonstrate the results of a volumetric modulated arc therapy (VMAT) 3D dosimetry.

  3. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study.

    PubMed

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del; Cherry, Simon R; Lehnert, Adrienne; Hunter, William C J; McDougald, Wendy; Miyaoka, Robert S; Kinahan, Paul E

    2015-12-01

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10-13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector's dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could be

  4. Release of Gd-ions from peralkaline borosilicate glass in pure water for neutrino detection in Water-Cherenkov Detectors

    NASA Astrophysics Data System (ADS)

    Dongol, R.; Sundaram, S. K.

    2017-09-01

    The addition of Gadolinium (Gd)-based salt, specially GdCl3, in the Water Cherenkov Detectors (WCDs) enhances the sensitivity to neutrino detection. However, the unwanted Cl-based byproducts, significantly reduces the transparency of water and sensitivity of WCDs. An alternative method, to introduce Gd-ions in the WCDs, is through Gd-release from a custom designed Gd-doped glass, when in contact with water. This can potentially eliminate the use of Gd-based salts and byproducts. In this work, we report the Gd-ions release for a Gd-doped peralkaline (Na/Al > 1) borosilicate glass, which closely represents photomultiplier tube (PMT) glass composition used in WCDs. The purpose of the paper is to show that the Gd-ion release from a custom designed glass in the form of beads or powders is feasible and could be used as a controlled Gd-source in future WCDs to enhance neutrino detection. In addition, we present our results of Gd-solubility in the base glass composition.

  5. WE-AB-BRB-04: Cherenkov Imaging for Radiation Therapy Dose Verification On Patients.

    PubMed

    Pogue, B

    2016-06-01

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on.

  6. The ROSAT WFC imaging detectors

    NASA Astrophysics Data System (ADS)

    Barstow, M. A.; Sansom, A. E.

    1990-11-01

    Results of the calibration program performed on flight and flight-spare detectors for the Rosat Wide Field Camera (WFC) are presented. The result of an accelerated life test on a development model detector assembled to flight standard are summarized. Imaging tests demonstrate that the lookup table technique for removing distortion works efficiency with low differential nonlinearity. No undesirable 'chicken wire' effects are seen in the images, and the detector resolution matches the on-axis performance of the telescope and is constant across the field of view. Peaks in efficiency occur at 10.2, 20, and 100 eV and mimima at 13 and 45 eV. The secondary 13 eV minimum is correlated with the onset of two-electron photoemission. The mean change in gain as a function of photon energy in the EUV band is much less rapid than in the soft X-ray band.

  7. MO-AB-BRA-08: Rapid Treatment Field Uniformity Optimization for Total Skin Electron Beam Therapy Using Cherenkov Imaging

    SciTech Connect

    Andreozzi, J; Zhang, R; Glaser, A; Pogue, B; Jarvis, L; Williams, B; Gladstone, D

    2015-06-15

    Purpose: To evaluate treatment field heterogeneity resulting from gantry angle choice in total skin electron beam therapy (TSEBT) following a modified Stanford dual-field technique, and determine a relationship between source to surface distance (SSD) and optimized gantry angle spread. Methods: Cherenkov imaging was used to image 62 treatment fields on a sheet of 1.2m x 2.2m x 1.2cm polyethylene following standard TSEBT setup at our institution (6 MeV, 888 MU/min, no spoiler, SSD=441cm), where gantry angles spanned from 239.5° to 300.5° at 1° increments. Average Cherenkov intensity and coefficient of variation in the region of interest were compared for the set of composite Cherenkov images created by summing all unique combinations of angle pairs to simulate dual-field treatment. The angle pair which produced the lowest coefficient of variation was further studied using an ionization chamber. The experiment was repeated at SSD=300cm, and SSD=370.5cm. Cherenkov imaging was also implemented during TSEBT of three patients. Results: The most uniform treatment region from a symmetric angle spread was achieved using gantry angles +/−17.5° about the horizontal axis at SSD=441cm, +/−18.5° at SSD=370.5cm, and +/−19.5° at SSD=300cm. Ionization chamber measurements comparing the original treatment spread (+/−14.5°) and the optimized angle pair (+/−17.5°) at SSD=441cm showed no significant deviation (r=0.999) in percent depth dose curves, and chamber measurements from nine locations within the field showed an improvement in dose uniformity from 24.41% to 9.75%. Ionization chamber measurements correlated strongly (r=0.981) with Cherenkov intensity measured concurrently on the flat Plastic Water phantom. Patient images and TLD results also showed modest uniformity improvements. Conclusion: A decreasing linear relationship between optimal angle spread and SSD was observed. Cherenkov imaging offers a new method of rapidly analyzing and optimizing TSEBT setup

  8. Primary gamma ray selection in a hybrid timing/imaging Cherenkov array

    NASA Astrophysics Data System (ADS)

    Postnikov, E. B.; Grinyuk, A. A.; Kuzmichev, L. A.; Sveshnikova, L. G.

    2017-06-01

    This work is a methodical study on hybrid reconstruction techniques for hybrid imaging/timing Cherenkov observations. This type of hybrid array is to be realized at the gamma-observatory TAIGA intended for very high energy gamma-ray astronomy (> 30 TeV). It aims at combining the cost-effective timing-array technique with imaging telescopes. Hybrid operation of both of these techniques can lead to a relatively cheap way of development of a large area array. The joint approach of gamma event selection was investigated on both types of simulated data: the image parameters from the telescopes, and the shower parameters reconstructed from the timing array. The optimal set of imaging parameters and shower parameters to be combined is revealed. The cosmic ray background suppression factor depending on distance and energy is calculated. The optimal selection technique leads to cosmic ray background suppression of about 2 orders of magnitude on distances up to 450 m for energies greater than 50 TeV.

  9. Real time radiotherapy verification with Cherenkov imaging: development of a system for beamlet verification

    NASA Astrophysics Data System (ADS)

    Pogue, B. W.; Krishnaswamy, V.; Jermyn, M.; Bruza, P.; Miao, T.; Ware, William; Saunders, S. L.; Andreozzi, J. M.; Gladstone, D. J.; Jarvis, L. A.

    2017-05-01

    Cherenkov imaging has been shown to allow near real time imaging of the beam entrance and exit on patient tissue, with the appropriate intensified camera and associated image processing. A dedicated system has been developed for research into full torso imaging of whole breast irradiation, where the dual camera system captures the beam shape for all beamlets used in this treatment protocol. Particularly challenging verification measurement exists in dynamic wedge, field in field, and boost delivery, and the system was designed to capture these as they are delivered. Two intensified CMOS (ICMOS) cameras were developed and mounted in a breast treatment room, and pilot studies for intensity and stability were completed. Software tools to contour the treatment area have been developed and are being tested prior to initiation of the full trial. At present, it is possible to record delivery of individual beamlets as small as a single MLC thickness, and readout at 20 frames per second is achieved. Statistical analysis of system repeatibilty and stability is presented, as well as pilot human studies.

  10. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    SciTech Connect

    Otte, A. N.; Williams, D. A.; Byrum, K.; Drake, G.; Horan, D.; Smith, A.; Wagner, R. G.; Falcone, A.; Funk, S.; Tajima, H.; Mukherjee, R.

    2008-12-24

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.

  11. Real-time Cherenkov emission portal imaging during CyberKnife® radiotherapy.

    PubMed

    Roussakis, Yiannis; Zhang, Rongxiao; Heyes, Geoff; Webster, Gareth; Mason, Suzannah; Green, Stuart; Pogue, Brian; Dehghani, Hamid

    2015-11-21

    The feasibility of real-time portal imaging during radiation therapy, through the Cherenkov emission (CE) effect is investigated via a medical linear accelerator (CyberKnife(®)) irradiating a partially-filled water tank with a 60 mm circular beam. A graticule of lead/plywood and a number of tissue equivalent materials were alternatively placed at the beam entrance face while the induced CE at the exit face was imaged using a gated electron-multiplying-intensified-charged-coupled device (emICCD) for both stationary and dynamic scenarios. This was replicated on an Elekta Synergy(®) linear accelerator with portal images acquired using the iViewGT(™) system. Profiles across the acquired portal images were analysed to reveal the potential resolution and contrast limits of this novel CE based portal imaging technique and compared against the current standard. The CE resolution study revealed that using the lead/plywood graticule, separations down to 3.4  ±  0.5 mm can be resolved. A 28 mm thick tissue-equivalent rod with electron density of 1.69 relative to water demonstrated a CE contrast of 15% through air and 14% through water sections, as compared to a corresponding contrast of 19% and 12% using the iViewGT(™) system. For dynamic scenarios, video rate imaging with 30 frames per second was achieved. It is demonstrated that CE-based portal imaging is feasible to identify both stationary and dynamic objects within a CyberKnife(®) radiotherapy treatment field.

  12. Real-time Cherenkov emission portal imaging during CyberKnife® radiotherapy

    NASA Astrophysics Data System (ADS)

    Roussakis, Yiannis; Zhang, Rongxiao; Heyes, Geoff; Webster, Gareth; Mason, Suzannah; Green, Stuart; Pogue, Brian; Dehghani, Hamid

    2015-11-01

    The feasibility of real-time portal imaging during radiation therapy, through the Cherenkov emission (CE) effect is investigated via a medical linear accelerator (CyberKnife®) irradiating a partially-filled water tank with a 60 mm circular beam. A graticule of lead/plywood and a number of tissue equivalent materials were alternatively placed at the beam entrance face while the induced CE at the exit face was imaged using a gated electron-multiplying-intensified-charged-coupled device (emICCD) for both stationary and dynamic scenarios. This was replicated on an Elekta Synergy® linear accelerator with portal images acquired using the iViewGT™ system. Profiles across the acquired portal images were analysed to reveal the potential resolution and contrast limits of this novel CE based portal imaging technique and compared against the current standard. The CE resolution study revealed that using the lead/plywood graticule, separations down to 3.4  ±  0.5 mm can be resolved. A 28 mm thick tissue-equivalent rod with electron density of 1.69 relative to water demonstrated a CE contrast of 15% through air and 14% through water sections, as compared to a corresponding contrast of 19% and 12% using the iViewGT™ system. For dynamic scenarios, video rate imaging with 30 frames per second was achieved. It is demonstrated that CE-based portal imaging is feasible to identify both stationary and dynamic objects within a CyberKnife® radiotherapy treatment field.

  13. Electronic readout system for the Belle II imaging Time-Of-Propagation detector

    NASA Astrophysics Data System (ADS)

    Kotchetkov, Dmitri

    2017-07-01

    The imaging Time-Of-Propagation (iTOP) detector, constructed for the Belle II experiment at the SuperKEKB e+e- collider, is an 8192-channel high precision Cherenkov particle identification detector with timing resolution below 50 ps. To acquire data from the iTOP, a novel front-end electronic readout system was designed, built, and integrated. Switched-capacitor array application-specific integrated circuits are used to sample analog signals. Triggering, digitization, readout, and data transfer are controlled by Xilinx Zynq-7000 system on a chip devices.

  14. Dark Matter Annihilation Cross-Section Limits of Dwarf Spheroidal Galaxies with the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory and on the design of a Water Cherenkov Detector Prototype

    NASA Astrophysics Data System (ADS)

    Proper, Megan Longo

    I present an indirect search for Dark Matter using the High Altitude Water Cherenkov (HAWC) gamma-ray observatory. There is significant evidence for dark matter within the known Universe, and we can set constraints on the dark matter annihilation cross-section using dark matter rich sources. Dwarf spheroidal galaxies (dSphs) are low luminosity galaxies with little to no gas or dust, or recent star formation. In addition, the total mass of a dwarf spheroidal galaxy, as inferred from gravitational effects observed within the galaxy, is many times more than the luminous mass, making them extremely dark matter rich. For these reasons dSphs are prime targets for indirect dark matter searches with gamma rays. Dark matter annihilation cross-section limits are presented for 14 dSphs within the HAWC field of view, as well as a combined limit with all sources. The limits presented here are for dark matter masses ranging from 0.5 TeV to 1000 TeV. At lower dark matter masses, the HAWC-111 limits are not competitive with other gamma-ray experiments, however it will be shown that HAWC is currently dominating in the higher dark matter mass range. The HAWC observatory is a water Cherenkov detector and consists of 300 Water Cherenkov Detectors (WCDs). The detector is located at 4100 m above sea level in the Sierra Negra region of Mexico at latitude 18°59'41" N and longitude 97°18'28" W. Each WCD is instrumented with three 8 inch photomultiplier tubes (PMTs) and one 10 inch high efficiency PMT, anchored to the bottom of a 5 m deep by 7.3 m diameter steel tank. The tank contains a multilayer hermetic plastic bag, called a bladder, which holds 200,000 L of ultra-purified water. I will also present the design, deployment, and operation of a WCD prototype for HAWC built at Colorado State University (CSU). The CSU WCD was the only full-size prototype outside of the HAWC site. It was instrumented with 7 HAWC PMTs and scintillator paddles both under and above the volume of water. In

  15. MO-FG-303-05: A Feasibility Study of Using a Cherenkov Detector Material with the Prompt Gamma Range Verification Technique in Proton Therapy

    SciTech Connect

    Lau, A; Ahmad, S; Chen, Y

    2015-06-15

    Purpose: To simulate the feasibility of a Cherenkov glass material for the determination of the penetration depth of therapeutic proton beams in water. Methods: Proton pencil beams of various energies incident onto a water phantom with dimensions of 5 x 5 x 30 cm{sup 3} were used for simulation with the Geant4 toolkit. The model used standard electromagnetic packages, packages based on binary-cascade nuclear model, several decay modules (G4Decay, G4DecayPhysics, and G4RadioactiveDecayPhysics), and optical photon components (G4OpticalPhysics). A Cherenkov glass material was modeled as the detector medium (7.2 g of In2O3 + 90 g cladding, density of 2.82 g/cm{sup 3}, Zeff = 33.7, index of refraction n(600 nm) = 1.56, and energy threshold of production Eth = 156 keV ). The emitted secondary particles are analyzed characterizing their timing, energy, and angular distributions. A feasibility analysis was conducted for a simplistic detector system using this material to locate the position of the Bragg Peak. Results: The escaping neutrons have energies ranging from thermal to the incident proton energy and the escaping photons have energies >10 MeV. Photon peaks between 4 and 6 MeV were attributed to originate from direct proton interactions with {sup 12}C (∼ 4.4 MeV) and {sup 16}O (∼ 6 MeV), respectively. The escaping photons are emitted isotropically, while low (≤10 MeV) and high (>10 MeV) neutrons are isotropic and forward-directional, respectively. The emissions of photons are categorized into prompt (∼ns) and delayed (∼min) where the prompt photons include the 4.4 and 6 MeV. The Cherenkov material had on average <2% of neutron interactions while LYSO and BGO scintillators had a minimum of ∼50%. Our simplistic detector system was capable of discerning Bragg Peak locations using a timing discrimination of ∼50 ns. Conclusion: We investigate the viability of using the Cherenkov material for MeV photon detection medium for the prompt gamma technique.

  16. Experiment to demonstrate separation of Cherenkov and scintillation signals

    DOE PAGES

    Caravaca, J.; Descamps, F. B.; Land, B. J.; ...

    2017-05-05

    The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. Furthermore, the CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. Our paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstructmore » Cherenkov rings are demonstrated in a water target, and a time precision of 338 ± 12 ps FWHM is achieved. Finally, Monte Carlo–based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ± 1 % and 81 ± 1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ± 1 % and 26 ± 1 % .« less

  17. Experiment to demonstrate separation of Cherenkov and scintillation signals

    NASA Astrophysics Data System (ADS)

    Caravaca, J.; Descamps, F. B.; Land, B. J.; Wallig, J.; Yeh, M.; Orebi Gann, G. D.

    2017-05-01

    The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. The CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. This paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstruct Cherenkov rings is demonstrated in a water target, and a time precision of 338 ±12 ps FWHM is achieved. Monte Carlo-based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ±1 % and 81 ±1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ±1 % and 26 ±1 % .

  18. Directional Spherical Cherenkov Detector

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2010-01-01

    A proposed radiation-detecting apparatus would provide information on the kinetic energies, directions, and electric charges of highly energetic incident subatomic particles. The apparatus was originally intended for use in measuring properties of cosmic rays in outer space, but could also be adapted to terrestrial uses -- for example, radiation dosimetry aboard high-altitude aircraft and in proton radiation therapy for treatment of tumors.

  19. Cerro La Negra EAS Cherenkov array

    NASA Astrophysics Data System (ADS)

    Bello, P.; Garipov, G. K.; Khrenov, B. A.; Martínez, O.; Moreno, E.; Salazar, H.; Silaev, A. A.; Villaseñor, L.; Zepeda, A.

    2001-05-01

    The design of the air Cherenkov detector array for the Cerro La Negra site (elevation 4300 m asl) is presented. The most important features of the array are: autonomous operation of the detectors, low power electronics, laser communication lines and power supplied by solar panels and batteries. The joint operation of the array with water Cherenkov extensive air shower (EAS) particle detectors will allow to obtain information on EAS core positions, primary energies, arrival directions of the primary particles, and temporal profiles of the EAS pulses in air Cherenkov and particle detectors. The study of the EAS development above the shower maximum is among the main goals of this experiment. .

  20. Results on the Performance of a Broad Band Focussing Cherenkov Counter

    DOE R&D Accomplishments Database

    Cester, R.; Fitch, V. L.; Montag, A.; Sherman, S.; Webb, R. C.; Witherell, M. S.

    1980-01-01

    The field of ring imaging (broad band differential) Cherenkov detectors has become a very active area of interest in detector development at several high energy physics laboratories. Our group has previously reported on a method of Cherenkov ring imaging for a counter with large momentum and angular acceptance using standard photo multipliers. Recently, we have applied this technique to the design of a set of Cherenkov counters for use in a particle search experiment at Fermi National Accelerator Laboratory (FNAL). This new detector operates over the range 0.998 < ..beta.. < 1.000 in velocity with a delta..beta.. approx. 2 x 10{sup -4}. The acceptance in angle is +- 14 mrad in the horizontal and +- 28 mrad in the vertical. We report here on the performance of this counter.

  1. Underground water Cherenkov muon detector array with the Tibet air shower array for gamma-ray astronomy in the 100 TeV region

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Ayabe, S.; Bi, X. J.; Chen, D.; Cui, S. W.; Danzengluobu; Ding, L. K.; Ding, X. H.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gao, X. Y.; Geng, Q. X.; Guo, H. W.; He, H. H.; He, M.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Huang, Q.; Jia, H. Y.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Labaciren; Le, G. M.; Li, A. F.; Li, J. Y.; Lu, H.; Lu, S. L.; Meng, X. R.; Mizutani, K.; Mu, J.; Munakata, K.; Nagai, A.; Nanjo, H.; Nishizawa, M.; Ohnishi, M.; Ohta, I.; Onuma, H.; Ouchi, T.; Ozawa, S.; Ren, J. R.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Sasaki, T.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, B.; Wang, H.; Wang, X.; Wang, Y. G.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yan, C. T.; Yang, X. C.; Yasue, S.; Ye, Z. H.; Yu, G. C.; Yuan, A. F.; Yuda, T.; Zhang, H. M.; Zhang, J. L.; Zhang, N. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhaxisangzhu; Zhou, X. X.

    2007-06-01

    We propose to build a large water-Cherenkov-type muon-detector array (Tibet MD array) around the 37 000 m2 Tibet air shower array (Tibet AS array) already constructed at 4300 m above sea level in Tibet, China. Each muon detector is a waterproof concrete pool, 6 m wide × 6 m long × 1.5 m deep in size, equipped with a 20 inch-in-diameter PMT. The Tibet MD array consists of 240 muon detectors set up 2.5 m underground. Its total effective area will be 8640 m2 for muon detection. The Tibet MD array will significantly improve gamma-ray sensitivity of the Tibet AS array in the 100 TeV region (10 1000 TeV) by means of gamma/hadron separation based on counting the number of muons accompanying an air shower. The Tibet AS+MD array will have the sensitivity to gamma rays in the 100 TeV region by an order of magnitude better than any other previous existing detectors in the world.

  2. TH-C-17A-05: Cherenkov Excited Phosphorescence Oxygen (CEPhOx) Imaging During Multi-Beam Radiation Therapy

    SciTech Connect

    Zhang, R; Pogue, B; Holt, R; Esipova, T; Vinogradov, S; Gladstone, D

    2014-06-15

    Purpose: Cherenkov radiation is created during external beam radiation therapy that can excite phosphorescence in tissue from oxygen-sensitive, bio-compatible probes. Utilizing the known spatial information of the treatment plan with directed multiple beam angles, Cherenkov Excited Phosphorescence Oxygen (CEPhOx) imaging was realized from the reconstructions of Cherenkov excited phosphorescence lifetime. Methods: Platinum(II)-G4 (PtG4) was used as the oxygen-sensitive phosphorescent probe and added to a oxygenated cylindrical liquid phantom with a oxygenated/deoxygenated cylindrical anomaly. Cherenkov excited phosphorescence was imaged using a time-gated ICCD camera temporallysynchronized to the LINAC pulse output. Lifetime reconstruction was carried out in NIRFAST software. Multiple angles of the incident radiation beam was combined with the location of the prescribed treatment volume (PTV) to improve the tomographic recovery as a function of location. The tissue partial pressure of oxygen (pO2) in the background and PTV was calculated based on the recovered lifetime distribution and Stern-Volmer equation. Additionally a simulation study was performed to examine the accuracy of this technique in the setting of a human brain tumor. Results: Region-based pO2 values in the oxygenated background and oxygenated/deoxygenated PTV were correctly recovered, with the deoxygenated anomaly (15.4 mmHg) easily distinguished from the oxygenated background (143 mmHg). The data acquisition time could be achieved within the normal irradiation time for a human fractionated plan. The simulations indicated that CEPhOx would be a sufficient to sample tumor pO2 sensing from tumors which are larger than 2cm in diameter or within 23mm depth from the surface. Conclusion: CEPhOx could be a novel imaging tool for pO2 assessment during external radiation beam therapy. It is minimally invasive and should work within the established treatment plan of radiation therapy with multiple beams in

  3. Intravascular imaging with a storage phosphor detector.

    PubMed

    Shikhaliev, Polad M; Petrek, Peter; Matthews, Kenneth L; Fritz, Shannon G; Bujenovic, L Steven; Xu, Tong

    2010-05-21

    The aim of this study is to develop and test an intravascular positron imaging system based on a storage phosphor detector for imaging and detecting vulnerable plaques of human coronary arteries. The radiotracer F18-FDG accumulates in vulnerable plaques with inflammation of the overlying cap. The vulnerable plaques can, therefore, be imaged by recording positrons emitted from F18-FDG with a detector inserted into the artery. A prototype intravascular detector was constructed based on storage phosphor. The detector uses a flexible storage phosphor tube with 55 mm length, 2 mm diameter and 0.28 mm wall thickness. The intravascular detector is guided into the vessel using x-ray fluoroscopy and the accumulated x-ray signal must be erased prior to positron imaging. For this purpose, a light diffuser, 0.9 mm in diameter and 55 mm in length, was inserted into the detector tube. The light diffuser was connected to a laser source through a 2 m long optical fiber. The diffuser redirected the 0.38 W laser light to the inner surface of the phosphor detector to erase it. A heart phantom with 300 cm(3) volume and three coronary arteries with 3.2 mm diameter and with several plaques was constructed. FDG solution with 0.5 microCi cm(-3) activity concentration was filled in the heart and coronary arteries. The detector was inserted in a coronary artery and the signal from the plaques and surrounding background activity was recorded for 2 min. Then the phosphor detector was extracted and read out using a storage phosphor reader. The light diffuser erased the signal resulting from fluoroscopic exposure to level below that encountered during positron imaging. Vulnerable plaques with area activities higher than 1.2 nCi mm(-2) were visualized by the detector. This activity is a factor of 10-20 lower than that expected in human vulnerable plaques. The detector was able to image the internal surface of the coronary vessels with 50 mm length and 360 degrees circumference. Spatial

  4. Image Science with Photon-Processing Detectors

    PubMed Central

    Caucci, Luca; Jha, Abhinav K.; Furenlid, Lars R.; Clarkson, Eric W.; Kupinski, Matthew A.; Barrett, Harrison H.

    2015-01-01

    We introduce and discuss photon-processing detectors and we compare them with photon-counting detectors. By estimating a relatively small number of attributes for each collected photon, photon-processing detectors may help understand and solve a fundamental theoretical problem of any imaging system based on photon-counting detectors, namely null functions. We argue that photon-processing detectors can improve task performance by estimating position, energy, and time of arrival for each collected photon. We consider a continuous-to-continuous linear operator to relate the object being imaged to the collected data, and discuss how this operator can be analyzed to derive properties of the imaging system. Finally, we derive an expression for the characteristic functional of an imaging system that produces list-mode data. PMID:26347396

  5. Enhanced neutron imaging detector using optical processing

    SciTech Connect

    Hutchinson, D.P.; McElhaney, S.A.

    1992-01-01

    Existing neutron imaging detectors have limited count rates due to inherent property and electronic limitations. The popular multiwire proportional counter is qualified by gas recombination to a count rate of less than 10{sup 5} n/s over the entire array and the neutron Anger camera, even though improved with new fiber optic encoding methods, can only achieve 10{sup 6} cps over a limited array. We present a preliminary design for a new type of neutron imaging detector with a resolution of 2--5 mm and a count rate capability of 10{sup 6} cps pixel element. We propose to combine optical and electronic processing to economically increase the throughput of advanced detector systems while simplifying computing requirements. By placing a scintillator screen ahead of an optical image processor followed by a detector array, a high throughput imaging detector may be constructed.

  6. Progress in Cherenkov femtosecond fiber lasers.

    PubMed

    Liu, Xiaomin; Svane, Ask S; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry

    2016-01-20

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems - broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  7. Progress in Cherenkov femtosecond fiber lasers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  8. Progress in Cherenkov femtosecond fiber lasers

    PubMed Central

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems – broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed. PMID:27110037

  9. Observation of the reversed Cherenkov radiation

    NASA Astrophysics Data System (ADS)

    Duan, Zhaoyun; Tang, Xianfeng; Wang, Zhanliang; Zhang, Yabin; Chen, Xiaodong; Chen, Min; Gong, Yubin

    2017-03-01

    Reversed Cherenkov radiation is the exotic electromagnetic radiation that is emitted in the opposite direction of moving charged particles in a left-handed material. Reversed Cherenkov radiation has not previously been observed, mainly due to the absence of both suitable all-metal left-handed materials for beam transport and suitable couplers for extracting the reversed Cherenkov radiation signal. In this paper, we develop an all-metal metamaterial, consisting of a square waveguide loaded with complementary electric split ring resonators. We demonstrate that this metamaterial exhibits a left-handed behaviour, and we directly observe the Cherenkov radiation emitted predominantly near the opposite direction to the movement of a single sheet electron beam bunch in the experiment. These observations confirm the reversed behaviour of Cherenkov radiation. The reversed Cherenkov radiation has many possible applications, such as novel vacuum electronic devices, particle detectors, accelerators and new types of plasmonic couplers.

  10. Observation of the reversed Cherenkov radiation

    PubMed Central

    Duan, Zhaoyun; Tang, Xianfeng; Wang, Zhanliang; Zhang, Yabin; Chen, Xiaodong; Chen, Min; Gong, Yubin

    2017-01-01

    Reversed Cherenkov radiation is the exotic electromagnetic radiation that is emitted in the opposite direction of moving charged particles in a left-handed material. Reversed Cherenkov radiation has not previously been observed, mainly due to the absence of both suitable all-metal left-handed materials for beam transport and suitable couplers for extracting the reversed Cherenkov radiation signal. In this paper, we develop an all-metal metamaterial, consisting of a square waveguide loaded with complementary electric split ring resonators. We demonstrate that this metamaterial exhibits a left-handed behaviour, and we directly observe the Cherenkov radiation emitted predominantly near the opposite direction to the movement of a single sheet electron beam bunch in the experiment. These observations confirm the reversed behaviour of Cherenkov radiation. The reversed Cherenkov radiation has many possible applications, such as novel vacuum electronic devices, particle detectors, accelerators and new types of plasmonic couplers. PMID:28332487

  11. Spatial distribution of Cherenkov light from cascade showers in water

    SciTech Connect

    Khomyakov, V. A. Bogdanov, A. G.; Kindin, V. V.; Kokoulin, R. P.; Petrukhin, A. A.; Khokhlov, S. S.; Shutenko, V. V.; Yashin, I. I.

    2016-12-15

    The spatial distribution of the Cherenkov light generated by cascade showers is analyzed using the NEVOD Cherenkov water detector. The dependence of the Cherenkov light intensity on the depth of shower development at various distances from the shower axis is investigated for the first time. The experimental data are compared with the Cherenkov light distributions predicted by various models for the scattering of cascade particles.

  12. Ghost imaging with a single detector

    SciTech Connect

    Bromberg, Yaron; Katz, Ori; Silberberg, Yaron

    2009-05-15

    We experimentally demonstrate pseudothermal ghost imaging and ghost diffraction using only a single detector. We achieve this by replacing the high-resolution detector of the reference beam with a computation of the propagating field, following a recent proposal by Shapiro [Phys. Rev. A 78, 061802(R) (2008)]. Since only a single detector is used, this provides experimental evidence that pseudothermal ghost imaging does not rely on nonlocal quantum correlations. In addition, we show the depth-resolving capability of this ghost imaging technique.

  13. Strange meson spectroscopy in K(omega) and K(phi) at 11 GeV/c and Cherenkov ring imaging at SLD

    NASA Astrophysics Data System (ADS)

    Kwon, Youngjoon

    1993-01-01

    This thesis consists of two independent parts: development of a Cherenkov Ring Imaging Detector (CRID) system; and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. The CRID system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e(+)e(-) collisions at radical s = m(sub Z(exp 0)). By measuring the angles of emission of the Cherenkov photons inside liquid and gaseous radiators, pi/K/p separation will be achieved up to approximately 30 GeV/c. The signals from CRID are read in three coordinates, one of which is measured by charge-division technique. To obtain an approximately 1% spatial resolution in the charge-division, low-noise CRID preamplifier prototypes were developed and tested resulting in less than 1000 electrons noise for an average photoelectron signal with 2(10)(exp 5) gain. To help ensure the long-term stability of CRID operation at high efficiency, a comprehensive monitoring and control system was developed. Results from the partial wave analysis of strange meson final states in the reactions K(-)p yields K(-)(omega)p and K(-)p yields (K-bar)(exp 0)(phi)n are presented. The analyses are based on data from a 4.1 event/nb exposure of the LASS spectrometer in K(-)p interactions at 11 GeV/c. The data sample of K(-)(omega)p final state contains approximately 10(exp 5) events. From the partial wave analysis, resonance structures of J(exp P) = 2(-), 3(-), and 2(+) amplitudes are observed in the K(omega) system. The analysis of 2(-) amplitudes provides an evidence for two strange meson states in the mass region around 1.75 GeV/sq c. The appropriate branching fractions are calculated and compared with the SU(3) predictions. The partial wave analysis of (K-bar)(exp 0)(phi) system favors J(exp P) = 1(-) and 2(+) states in the 1.9-2.0 GeV/sq c region.

  14. Imaging Using Energy Discriminating Radiation Detector Array

    SciTech Connect

    Willson, Paul D.; Clajus, Martin; Tuemer, Tuemay O.; Visser, Gerard; Cajipe, Victoria

    2003-08-26

    Industrial X-ray radiography is often done using a broad band energy source and always a broad band energy detector. There exist several major advantages in the use of narrow band sources and or detectors, one of which is the separation of scattered radiation from primary radiation. ARDEC has developed a large detector array system in which every detector element acts like a multi-channel analyzer. A radiographic image is created from the number of photons detected in each detector element, rather than from the total energy absorbed in the elements. For high energies, 25 KeV to 4 MeV, used in radiography, energy discriminating detectors have been limited to less than 20,000 photons per second per detector element. This rate is much too slow for practical radiography. Our detector system processes over two million events per second per detector pixel, making radiographic imaging practical. This paper expounds on the advantages of the ARDEC radiographic imaging process.

  15. NICHE: Using Cherenkov radiation to extend Telescope Array to sub-PeV energies

    NASA Astrophysics Data System (ADS)

    Bergman, Douglas; Krizmanic, John; Tsunesada, Yoshiki; Abu-Zayyad, Tareq; Belz, John; Thomson, Gordon

    2016-03-01

    The Non-Imaging CHErenkov (NICHE) Array will measure the flux and nuclear composition evolution of cosmic rays (CRs) from below 1 PeV to 1 EeV. NICHE will be co-sited with the Telescope Array (TA) Low Energy (TALE) extension, and will observe events simultaneously with the TALE telescopes acting in imaging-Cherenkov mode. This will be the first hybrid-Cherenkov (simultaneous imaging and non-imaging Cherenkov) measurements of CRs in the Knee region of the CR energy spectrum. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. First generation detectors are under construction and will form an initial prototype array (j-NICHE) that will be deployed in Summer 2016. In this talk, the NICHE design, array performance, prototype development, and status will be discussed as well as NICHE's ability to measure the cosmic ray nuclear composition as a function of energy.

  16. Tomographic imaging using poissonian detector data

    DOEpatents

    Aspelmeier, Timo; Ebel, Gernot; Hoeschen, Christoph

    2013-10-15

    An image reconstruction method for reconstructing a tomographic image (f.sub.j) of a region of investigation within an object (1), comprises the steps of providing detector data (y.sub.i) comprising Poisson random values measured at an i-th of a plurality of different positions, e.g. i=(k,l) with pixel index k on a detector device and angular index l referring to both the angular position (.alpha..sub.l) and the rotation radius (r.sub.l) of the detector device (10) relative to the object (1), providing a predetermined system matrix A.sub.ij assigning a j-th voxel of the object (1) to the i-th detector data (y.sub.i), and reconstructing the tomographic image (f.sub.j) based on the detector data (y.sub.i), said reconstructing step including a procedure of minimizing a functional F(f) depending on the detector data (y.sub.i) and the system matrix A.sub.ij and additionally including a sparse or compressive representation of the object (1) in an orthobasis T, wherein the tomographic image (f.sub.j) represents the global minimum of the functional F(f). Furthermore, an imaging method and an imaging device using the image reconstruction method are described.

  17. Efficient and fast 511-keV γ detection through Cherenkov radiation: the CaLIPSO optical detector

    NASA Astrophysics Data System (ADS)

    Ramos, E.; Kochebina, O.; Yvon, D.; Verrecchia, P.; Sharyy, V.; Tauzin, G.; Mols, J. P.; Starzinski, P.; Desforges, D.; Flouzat, Ch.; Bulbul, Y.; Jan, S.; Mancardi, X.; Canot, C.; Alokhina, M.

    2016-11-01

    The CaLIPSO project aims to develop a high precision brain-scanning PET device with time-of-flight capability. The proposed device uses an innovative liquid, the TriMethyl Bismuth, as the detection medium. It detects simultaneously the ionization and optical signals from the 511 keV gamma conversion. In this paper we present the design, the Monte Carlo simulation, and the tests results for the CaLIPSO optical prototype. In this prototype we demonstrated the ability to detect efficiently the low number of the optical photons produced by the relativistic electron from the gamma conversion through the Cherenkov effect. The time resolution of the current prototype is limited by the moderate time transition spread of the PMT, but should be improved to the level better than 100 ps (FWHM) by using micro-channel-plate PMT according to the Geant 4 simulation.

  18. Learning object detectors from online image search

    NASA Astrophysics Data System (ADS)

    Tang, Feng; Tretter, Daniel R.

    2011-03-01

    Being able to detect distinguishable objects is a key component in many high level computer vision applications. Traditional methods for building such detectors require a large amount of carefully collected and cleaned data. For example to build a face detector, a large number of face images need to be collected and faces in each image need to be cropped and aligned as the data for training. This process is tedious and error-pruning. Recently more and more people are sharing their photos on the internet, if we could leverage these data for building a detector, it will save tremendous amount of effort in collecting training data. Popular internet search engines and community photo websites like Google image search, Picassa, Flickr make it possible to harvesting online images for image understanding tasks. In this paper, we develop a method leveraging images obtained from online image search to build an object detector. The proposed method can automatically identify the most distinguishable features across the downloaded images. Using these learned features, a detector can be built to detect the object in a new image. Experiments show promising results of our approach.

  19. Performance of a Mach-Zehnder based analogue data recording system for use with the Gas Cherenkov Detector on the NIF

    NASA Astrophysics Data System (ADS)

    Carpenter, A. C.; Herrmann, H. W.; Beeman, B. V.; Lopez, F. E.; Hernandez, J. E.

    2016-09-01

    This paper covers the performance of a high speed analogue data transmission system. This system uses multiple Mach- Zehnder optical modulators to transmit and record fusion burn history data for the Gas Cherenkov Detector (GCD) on the National Ignition Facility. The GCD is designed to measure the burn duration of high energy gamma rays generated by Deuterium-Tritium (DT) interactions in the NIF. The burn duration of DT fusion can be as short as 10ps and the optical photons generated in the gas Cherenkov cell are measured using a vacuum photodiode with a FWHM of 55ps. A recording system with a 3dB bandwidth of ≥10GHz and a signal to noise ratio of ≥5 for photodiode output voltage of 50mV is presented. The data transmission system uses two or three Mach-Zehnder modulators and an RF amplifier to transmit data optically. This signal is received and recorded by optical to electrical converts and a high speed digital oscilloscope placed outside of the NIF Target Bay. Electrical performance metrics covered include signal to noise ratio (SNR), signal to peak to peak noise ratio, single shot dynamic range, shot to shot dynamic range, system bandwidth, scattering parameters, are shown. Design considerations such as self-test capabilities, the NIF radiation environment, upgrade compatibility, Mach-Zehnder (MZ) biasing, maintainability, and operating considerations for the use of MZs are covered. This data recording system will be used for the future upgrade of the GCD to be used with a Pulse Dilation PMT, currently under development.

  20. Gamma-ray imaging with germanium detectors

    NASA Astrophysics Data System (ADS)

    Mahoney, W. A.; Callas, J. L.; Ling, J. C.; Radocinski, R. G.; Skelton, R. T.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. By combining existing position-sensitive detectors with an appropriate code aperture, two-dimensional imaging with 0.2-deg angular resolution becomes practical for a typical balloon experiment. Much finer resolutions are possible with larger separations between detectors and the coded aperture as would be applicable for space-based or lunar-based observatories. Two coaxial germanium detectors divided into five external segments have been fabricated and have undergone extensive performance evaluation and imaging testing in our laboratory. These tests together with detailed Monte Carlo modeling calculations have demonstrated the great promise of this sensor technology for future gamma-ray missions.

  1. Gamma-ray imaging with germanium detectors

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Callas, J. L.; Ling, J. C.; Radocinski, R. G.; Skelton, R. T.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. By combining existing position-sensitive detectors with an appropriate code aperture, two-dimensional imaging with 0.2-deg angular resolution becomes practical for a typical balloon experiment. Much finer resolutions are possible with larger separations between detectors and the coded aperture as would be applicable for space-based or lunar-based observatories. Two coaxial germanium detectors divided into five external segments have been fabricated and have undergone extensive performance evaluation and imaging testing in our laboratory. These tests together with detailed Monte Carlo modeling calculations have demonstrated the great promise of this sensor technology for future gamma-ray missions.

  2. An astroclimatological study of candidate sites to host an imaging atmospheric Cherenkov telescope in Romania

    NASA Astrophysics Data System (ADS)

    Radu, A. A.; Angelescu, T.; Curtef, V.; Felea, D.; Hasegan, D.; Lucaschi, B.; Manea, A.; Popa, V.; Ralita, I.

    2012-05-01

    This paper presents an astroclimatological study of meteorological data on relative humidity, dew-point temperature, air temperature, wind speed and barometric air pressure recorded at four Romanian locations (Baisoara, Rosia Montana, Semenic, Ceahlau) and the Nordic Optical Telescope (NOT) located at the Observatorio del Roque de Los Muchachos (ORM), on the island of La Palma, Canary Islands, Spain. Long-term trends of microclimates are compared in order to identify site-to-site variations. We performed this analysis as part of a site testing campaign aimed at finding the best location for the establishment of a small Cherenkov telescope in Romania. The conditions at the Romanian sites are compared with those of the Canary Islands considered as a reference. A statistical approach is used for data analysis. Monthly and annual samples are extracted from series of raw data for night-time, day-time and entire-day intervals. For each of these samples, the median values, the standard deviations and the percentages of time when the weather conditions were suitable for the safe operation of a Cherenkov telescope are computed. The distributions of these medians, standard deviations and percentages are analysed in this paper. Significant differences are found between the Romanian sites and the NOT site. The comparison of the Romanian locations indicates Baisoara to be the best site for the establishment of the telescope, closely followed by Rosia Montana. As these two sites are both located in the Apuseni Mountains, we consider this area to be the optimal place for performing astronomical observations in Romania.

  3. Compton imager using room temperature silicon detectors

    NASA Astrophysics Data System (ADS)

    Kurfess, James D.; Novikova, Elena I.; Phlips, Bernard F.; Wulf, Eric A.

    2007-08-01

    We have been developing a multi-layer Compton Gamma Ray Imager using position-sensitive, intrinsic silicon detectors. Advantages of this approach include room temperature operation, reduced Doppler broadening, and use of conventional silicon fabrication technologies. We have obtained results on the imaging performance of a multi-layer instrument where each layer consists of a 2×2 array of double-sided strip detectors. Each detector is 63 mm×63 mm×2 mm thick and has 64 strips providing a strip pitch of approximately 0.9 mm. The detectors were fabricated by SINTEF ICT (Oslo Norway) from 100 mm diameter wafers. The use of large arrays of silicon detectors appears especially advantageous for applications that require excellent sensitivity, spectral resolution and imaging such as gamma ray astrophysics, detection of special nuclear materials, and medical imaging. The multiple Compton interactions (three or more) in the low-Z silicon enable the energy and direction of the incident gamma ray to be determined without full deposition of the incident gamma-ray energy in the detector. The performance of large volume instruments for various applications are presented, including an instrument under consideration for NASA's Advanced Compton Telescope (ACT) mission and applications to Homeland Security. Technology developments that could further extend the sensitivity and performance of silicon Compton Imagers are presented, including the use of low-energy (few hundred keV) electron tracking within novel silicon detectors and the potential for a wafer-bonding approach to produce thicker, position-sensitive silicon detectors with an associated reduction of required electronics and instrument cost.

  4. Novel gaseous detectors for medical imaging

    NASA Astrophysics Data System (ADS)

    Danielsson, M.; Fonte, P.; Francke, T.; Iacobaeus, C.; Ostling, J.; Peskov, V.

    2004-02-01

    We have developed and successfully tested prototypes of two new types of gaseous detectors for medical imaging purposes. The first one is called the Electronic Portal Imaging Device (EPID). It is oriented on monitoring and the precise alignment of the therapeutic cancer treatment beam (pulsed gamma radiation) with respect to the patient's tumor position. The latest will be determined from an X-ray image of the patient obtained in the time intervals between the gamma pulses. The detector is based on a "sandwich" of hole-type gaseous detectors (GEM and glass microcapillary plates) with metallic gamma and X-ray converters coated with CsI layers. The second detector is an X-ray image scanner oriented on mammography and other radiographic applications. It is based on specially developed by us high rate RPCs that are able to operate at rates of 10 5 Hz/mm 2 with a position resolution better than 50 μm at 1 atm. The quality of the images obtained with the latest version of this device were in most cases more superior than those obtained from commercially available detectors.

  5. RF Cherenkov picosecond timing technique for high energy physics applications

    SciTech Connect

    Margaryan, Amur; Hashimoto, Osamu; Majewski, Stanislaw; Tang, Liguang

    2008-09-01

    The Cherenkov time-of-propagation (TOP) detector and Cherenkov time-of-flight (TOF) detector in a ?head-on? geometry based on the recently proposed time measuring technique with radio frequency (RF) phototube are considered. Results of the Monte Carlo simulations are presented.

  6. Proposal for Cherenkov Time of Flight Technique with Picosecond Resolution

    SciTech Connect

    S. Majewski; A. Margaryan; L. Tang

    2005-08-05

    A new particle identification device for Jlab 12 GeV program is proposed. It is based on the measurement of time information obtained by means of a new photon detector and time measuring concept. The expected time measurement precision for the Cherenkov time-of-flight detector is about or less than 10 picosecond for Cherenkov radiators with lengths less than 50 cm.

  7. Neutron beam imaging with GEM detectors

    NASA Astrophysics Data System (ADS)

    Albani, G.; Croci, G.; Cazzaniga, C.; Cavenago, M.; Claps, G.; Muraro, A.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Rebai, M.; Tardocchi, M.; Gorini, G.

    2015-04-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10B(n,α)7Li reaction). GEM detectors can be realized in large area (1 m2) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards the

  8. Electron imaging with an EBSD detector.

    PubMed

    Wright, Stuart I; Nowell, Matthew M; de Kloe, René; Camus, Patrick; Rampton, Travis

    2015-01-01

    Electron Backscatter Diffraction (EBSD) has proven to be a useful tool for characterizing the crystallographic orientation aspects of microstructures at length scales ranging from tens of nanometers to millimeters in the scanning electron microscope (SEM). With the advent of high-speed digital cameras for EBSD use, it has become practical to use the EBSD detector as an imaging device similar to a backscatter (or forward-scatter) detector. Using the EBSD detector in this manner enables images exhibiting topographic, atomic density and orientation contrast to be obtained at rates similar to slow scanning in the conventional SEM manner. The high-speed acquisition is achieved through extreme binning of the camera-enough to result in a 5 × 5 pixel pattern. At such high binning, the captured patterns are not suitable for indexing. However, no indexing is required for using the detector as an imaging device. Rather, a 5 × 5 array of images is formed by essentially using each pixel in the 5 × 5 pixel pattern as an individual scattered electron detector. The images can also be formed at traditional EBSD scanning rates by recording the image data during a scan or can also be formed through post-processing of patterns recorded at each point in the scan. Such images lend themselves to correlative analysis of image data with the usual orientation data provided by and with chemical data obtained simultaneously via X-Ray Energy Dispersive Spectroscopy (XEDS). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Uncooled IR imaging using optomechanical detectors.

    PubMed

    Miao, Zhengyu; Zhang, Qingchuan; Chen, Dapeng; Guo, Zheying; Dong, Fengliang; Xiong, Zhiming; Wu, Xiaoping; Li, Chaobo; Jiao, Binbin

    2007-08-01

    In this study, we present an uncooled infrared imaging detector using knife-edge filter optical readout method. The tilt angle change of each cantilever in a focal plane array (FPA) can be simultaneously detected with a resolution of 10(-5) degrees. A deformation magnifying substrate-free microcantilever unit is specially designed. The multi-fold legs of microcantilever are interval metal coated to form a thermal deformation magnifying structure. Thermal and thermomechanical performance of this microcantilever unit are modeled and analyzed. An FPA with 100 x 100 pixels is fabricated and thermal images of human body are obtained by this detector.

  10. Novel Photon Detectors for RICH Applications

    SciTech Connect

    Va'vra, Jaroslav

    2003-01-08

    The paper describes recent developments in Photon Detectors useful for the Cherenkov Ring Imaging Applications (RICH). We discuss the Multi-anode PMTs, HPDs with PIN and APD diode readout, APDs working in a Geiger mode, and the gaseous multi-pattern detectors. The paper emphasizes their timing properties. We give equal chance to fragile, not yet entirely proven ideas.

  11. Imaging radiation detector with gain

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1982-07-21

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  12. Imaging radiation detector with gain

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1984-01-01

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  13. Ultraviolet imaging detectors for the GOLD mission

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; McPhate, J.; Curtis, T.; Jelinsky, S.; Vallerga, J. V.; Hull, J.; Tedesco, J.

    2016-07-01

    The GOLD mission is a NASA Explorer class ultraviolet Earth observing spectroscopy instrument that will be flown on a telecommunications satellite in geostationary orbit in 2018. Microchannel plate detectors operating in the 132 nm to 162 nm FUV bandpass with 2D imaging cross delay line readouts and electronics have been built for each of the two spectrometer channels for GOLD. The detectors are "open face" with CsI photocathodes, providing 30% efficiency at 130.4 nm and 15% efficiency at 160.8 nm. These detectors with their position encoding electronics provide 600 x 500 FWHM resolution elements and are photon counting, with event handling rates of > 200 KHz. The operational details of the detectors and their performance are discussed.

  14. 68Ga-labeled superparamagnetic iron oxide nanoparticles (SPIONs) for multi-modality PET/MR/Cherenkov luminescence imaging of sentinel lymph nodes

    PubMed Central

    Madru, Renata; Tran, Thuy A; Axelsson, Johan; Ingvar, Christian; Bibic, Adnan; Ståhlberg, Freddy; Knutsson, Linda; Strand, Sven-Erik

    2014-01-01

    The aim of this study was to develop 68Ga-SPIONs for use as a single contrast agent for dynamic, quantitative and high resolution PET/MR imaging of Sentinel Lymph Node (SLN). In addition 68Ga enables Cherenkov light emission which can be used for optical guidance during resection of SLN. SPIONs were labeled with 68Ga in ammonium acetate buffer, pH 5.5. The labeling yield and stability in human serum were determined using instant thin layer chromatography. An amount of 0.07-0.1 mL (~5-10 MBq, 0.13 mg Fe) of 68Ga-SPIONs was subcutaneously injected in the hind paw of rats. The animals were imaged at 0-3 h and 25 h post injection with PET/CT, 9.4 T MR and CCDbased Cherenkov optical systems. A biodistribution study was performed by dissecting and measuring the radioactivity in lymph nodes, kidneys, spleen, liver and the injection site. The labeling yield was 97.3 ± 0.05% after 15 min and the 68Ga-SPIONs were stable in human serum. PET, MR and Cherenkov luminescence imaging clearly visualized the SLN. Biodistribution confirmed a high uptake of the 68Ga-SPIONs within the SLN. We conclude that generator produced 68Ga can be labeled to SPIONs. Subcutaneously injected 68Ga-SPIONs can enhance the identification of the SLNs by combining sensitive PET and high resolution MR imaging. Clinically, hybrid PET/MR cameras are already in use and 68Ga-SPIONs have a great potential as a single-dose, tri-modality agent for diagnostic imaging and potential Cherenkov luminescent guided resection of SLN. PMID:24380046

  15. Results from the SLD barrel CRID detector

    SciTech Connect

    Abe, K.; Antilogus, P. |; Aston, D.

    1993-11-01

    We report on operational experience with and experimental performance of the SLD barrel Cherenkov Ring Imaging Detector from the 1992 and 1993 physics runs. The liquid (C{sub 6}F{sub 14}) and gas (C{sub 5}F{sub 12}) radiator recirculation systems have performed well, and the drift gas supply system has operated successfully with TMAE for three years. Cherenkov rings have been observed from both the liquid and gas radiators. The number and angular resolution of Cherenkov photons have been measured, and found to be close to design specifications.

  16. Position sensitive detector for fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Prokazov, Y.; Turbin, E.; Weber, A.; Hartig, R.; Zuschratter, W.

    2014-12-01

    We present a detector system with a microchannel plate based photomultiplier tube (MCP-PMT) and its application for fluorescence lifetime imaging (FLIM) in visible light. A capacity coupled imaging technique (charge image) combined with a charge division anode is employed for the positional readout. Using an artificial neural network's (ANN) computation model we are able to reconstruct the position of the incident photon as precise as 20 microns over the detector active area of 25 mm diameter. Thus, the resulting image quality corresponds roughly to a megapixel conventional CCD camera. Importantly, it is feasible to reach such resolution using only 9 charge acquisition channels supporting the anode structure of 14 interconnected readout electrodes. Additionally, the system features better than 50 ps temporal resolution allowing single photon counting FLIM acquisition with a regular fluorescence wide-field microscope.

  17. Microchannel Plate Imaging Detectors for the Ultraviolet

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Gummin, M. A.; Stock, J.; Marsh, D.

    1992-01-01

    There has been significant progress over the last few years in the development of technologies for microchannel plate imaging detectors in the Ultraviolet (UV). Areas where significant developments have occurred include enhancements of quantum detection efficiency through improved photocathodes, advances in microchannel plate performance characteristics, and development of high performance image readout techniques. The current developments in these areas are summarized, with their applications in astrophysical instrumentation.

  18. Microchannel Plate Imaging Detectors for the Ultraviolet

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Gummin, M. A.; Stock, J.; Marsh, D.

    1992-01-01

    There has been significant progress over the last few years in the development of technologies for microchannel plate imaging detectors in the Ultraviolet (UV). Areas where significant developments have occurred include enhancements of quantum detection efficiency through improved photocathodes, advances in microchannel plate performance characteristics, and development of high performance image readout techniques. The current developments in these areas are summarized, with their applications in astrophysical instrumentation.

  19. X-ray detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Spahn, Martin

    2013-12-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  20. R&D in photosensors and data acquisition systems for a new generation of Cosmic Ray Cherenkov and Fluorescence Imaging focal planes

    NASA Astrophysics Data System (ADS)

    Assis, Pedro; Brogueira, Pedro; Catalano, Osvaldo; Ferreira, Miguel; Lorenz, Eckart; Mendes, Luís; Pimenta, Mário; Rodrigues, Pedro; Schweizer, Thomas

    2012-12-01

    In this work we present the design, first prototypes and experimental R&D activities on the development of novel imaging cameras for Imaging Atmospheric Cherenkov and Fluorescence Telescopes. The baseline solution for the focal plane is based on a photosensor architecture instrumented with Silicon Photomultipliers (SiPMs). To decrease the trigger threshold and improve the signal-to-noise ratio for low-energy events, the Photon Counting technique is used. For very bright events the conventional Charge Integration approach is retained. The large number of channels requires a compact and modular design with minimal cabling and distance between the photosensors and the frontend. Other design requirements are an efficient light concentration system treated with an anti-reflective coating, a liquid cooling system able to keep the SiPMs at a temperature of -20 °C to -10 °C, a low-power frontend electronics down to 1 kW/m2 and an easy field maintenance, high reliability data acquisition and trigger system. In the baseline design, the data acquisition system is partitioned in on-board frontend and off-detector high-level trigger electronics. Extensive use of mixed-signal ASICs and low-power FPGAs for early data reduction (Level 1 trigger), compatible with a liquid cooling sub-system for temperature control is adopted. The off-detector data acquisition and higher trigger (Level 2 and Level 3) architecture is based on the VME64X standard. The boards are connected by multi-Gbps optical links to the focal plane camera. Trigger primitives are sent asynchronously to the trigger boards via data links running at their own clocks. Data and slow-control data streams are also sent over the same links with the parallel VME64X backplane kept for trigger board configuration, slow-control and final data readout. Each 8-slot 6U crate can process up to about 3.6×104 SiPM channels.

  1. Wide-angle cherenkov telescope prototype preliminary data

    NASA Astrophysics Data System (ADS)

    Timofeev, Lev; Anatoly, Ivanov

    2016-07-01

    This report presents an observation method of Cherenkov light from extensive air showers (EAS) generated by cosmic rays (CRs) above 10^16eV and preliminary observations. The interest in Cherenkov light differential detectors of EAS is caused by the possibility to measure the depth of cascade maximum, Xmax, and/or the shower age via angular and temporal distributions of the Cherenkov signal. In particular, it was shown using EAS model simulations that the pulse width measured at the periphery of the shower, r > 300 m, at sea level is pronouncedly connected with Xmax. Cherenkov detector is a wide-angle telescope working in coincidence with scintillation detectors, integral and differential Cherenkov detectors Yakutsk complex EAS.

  2. The Belle II imaging Time-of-Propagation (iTOP) detector

    DOE PAGES

    Fast, J.

    2017-02-16

    High precision flavor physics measurements are an essential complement to the direct searches for new physics at the LHC ATLAS and CMS experiments. We will perform these measurements using the upgraded Belle II detector that will take data at the SuperKEKB accelerator. With 40x the luminosity of KEKB, the detector systems must operate efficiently at much higher rates than the original Belle detector. A central element of the upgrade is the barrel particle identification system. Belle II has built and installed an imaging-Time-of-Propagation (iTOP) detector. The iTOP uses quartz optics as Cherenkov radiators. The photons are transported down the quartzmore » bars via total internal reflection with a spherical mirror at the forward end to reflect photons to the backward end where they are imaged onto an array of segmented Micro-Channel Plate Photo-Multiplier Tubes (MCP-PMTs). The system is read out using giga-samples per second waveform sampling Application-Specific Integrated Circuits (ASICs). Furthermore, we used the combined timing and spatial distribution of the photons for each event to determine particle species. This paper provides an overview of the iTOP system.« less

  3. TH-C-17A-01: Imaging Sensor Comparison for Real-Time Cherenkov Signal Detection From Tissue for Treatment Verification

    SciTech Connect

    Andreozzi, J; Zhang, R; Glaser, A; Pogue, B; Jarvis, L; Gladstone, D

    2014-06-15

    Purpose: To identify the optimum imaging sensor for a clinical system that would provide real-time imaging of the surface beam profile on patients as novel visual information to radiation therapy technologists, and more rapidly collect clinical data for large-scale studies of Cherenkov applications in radiotherapy. Methods: Four camera types, CMOS, CCD, ICCD and EMICCD, were tested to determine proficiency in the detection of Cherenkov signal in the clinical radiotherapy setting, and subsequent maximum supportable frame rate. Where possible, time-gating between the trigger signal from the LINAC and the intensifiers was implemented to detect signal with room lighting conditions comparable to patient treatment scenarios. A solid water phantom was imaged by the EM-ICCD and ICCD to evaluate the minimum number of accumulations-on-chip required for adequate Cherenkov detection, defined as >200% electron counts per pixel over background signal. Additionally, an ICCD and EM-ICCD were used clinically to image patients undergoing whole-breast radiation therapy, to understand the impact of the resolution limitation of the EM-ICCD. Results: The intensifier-coupled cameras performed best at imaging Cherenkov signal, even with room lights on, which is essential for patient comfort. The tested EM-ICCD was able to support single-shot imaging and frame rates of 30 fps, however, the current maximum resolution of 512 × 512 pixels was restricting. The ICCD used in current clinical trials was limited to 4.7 fps at a 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths (30% QE vs current 7%) promises 16 fps at the same resolution at lower cost than the EM-ICCD. Conclusion: The ICCD with the better red wavelength QE intensifier was determined to be the best suited commercial-off-the-shelf camera to detect real-time Cherenkov signal and provide the best potential for real-time display of radiation dose on the skin

  4. LISe pixel detector for neutron imaging

    NASA Astrophysics Data System (ADS)

    Herrera, Elan; Hamm, Daniel; Wiggins, Brenden; Milburn, Rob; Burger, Arnold; Bilheux, Hassina; Santodonato, Louis; Chvala, Ondrej; Stowe, Ashley; Lukosi, Eric

    2016-10-01

    Semiconducting lithium indium diselenide, 6LiInSe2 or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of 6Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 μm pitch on a 5×5×0.56 mm3 LISe substrate. An experimentally verified spatial resolution of 300 μm was observed utilizing a super-sampling technique.

  5. The cross-talk problem in SiPMs and their use as light sensors for imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kaplin, V.; Klemin, S.; Mirzoyan, R.; Popova, E.; Teshima, M.

    2009-10-01

    One of the major drawbacks of a SiPM is due to the so-called cross-talk effect. Often, one single photon in a chain reaction can generate more photons and thus can fire more than one micro-cell of a SiPM. This can be considered as a noise in the signal multiplication process and this degrades the signal/noise ratio. In self-trigger schemes this noise can be so high that it can make operating them difficult at low threshold settings. For the past few years, we have dwelt on this effect aiming to suppress it at the design stage. One can use (a) trenches around the micro-cells for suppressing the direct photon “communication” channel and (b) the so-called double p-n junction for suppressing photon-induced charge “communication” in neighbor pixels. The low cross-talk is mandatory, for example, for producing SiPM-based light sensor modules for the Imaging Atmospheric Cherenkov Technique projects for ground-based gamma-ray astrophysics. We produced and tested a few modules consisting of 4 SiPMs, each with a size of 5 mm×5 mm of custom production type. We report here on the main parameters of these units.

  6. MACHETE: A transit imaging atmospheric Cherenkov telescope to survey half of the very high energy γ-ray sky

    NASA Astrophysics Data System (ADS)

    Cortina, J.; López-Coto, R.; Moralejo, A.

    2016-01-01

    Current imaging atmospheric Cherenkov telescopes for very high energy γ-ray astrophysics are pointing instruments with a field of view up to a few tens of sq deg. We propose to build an array of two non-steerable (drift) telescopes. Each of the telescopes would have a camera with a FOV of 5 × 60 sq deg oriented along the meridian. About half of the sky drifts through this FOV in a year. We have performed a Monte Carlo simulation to estimate the performance of this instrument. We expect it to survey this half of the sky with an integral flux sensitivity of ˜0.77% of the steady flux of the Crab Nebula in 5 years, an analysis energy threshold of ˜150 GeV and an angular resolution of ˜0.1°. For astronomical objects that transit over the telescope for a specific night, we can achieve an integral sensitivity of 12% of the Crab Nebula flux in a night, making it a very powerful tool to trigger further observations of variable sources using steerable IACTs or instruments at other wavelengths.

  7. Measurement of the Muon Atmospheric Production Depth with the Water Cherenkov Detectors of the Pierre Auger Observatory

    SciTech Connect

    Molina Bueno, Laura

    2015-09-01

    Ultra-high-energy cosmic rays (UHECR) are particles of uncertain origin and composition, with energies above 1 EeV (1018 eV or 0.16 J). The measured flux of UHECR is a steeply decreasing function of energy. The largest and most sensitive apparatus built to date to record and study cosmic ray Extensive Air Showers (EAS) is the Pierre Auger Observatory. The Pierre Auger Observatory has produced the largest and finest amount of data ever collected for UHECR. A broad physics program is being carried out covering all relevant topics of the field. Among them, one of the most interesting is the problem related to the estimation of the mass composition of cosmic rays in this energy range. Currently the best measurements of mass are those obtained by studying the longitudinal development of the electromagnetic part of the EAS with the Fluorescence Detector. However, the collected statistics is small, specially at energies above several tens of EeV. Although less precise, the volume of data gathered with the Surface Detector is nearly a factor ten larger than the fluorescence data. So new ways to study composition with data collected at the ground are under investigation. The subject of this thesis follows one of those new lines of research. Using preferentially the time information associated with the muons that reach the ground, we try to build observables related to the composition of the primaries that initiated the EAS. A simple phenomenological model relates the arrival times with the depths in the atmosphere where muons are produced. The experimental confirmation that the distributions of muon production depths (MPD) correlate with the mass of the primary particle has opened the way to a variety of studies, of which this thesis is a continuation, with the aim of enlarging and improving its range of applicability. We revisit the phenomenological model which is at the root of the analysis and discuss a new way to improve some aspects of the model. We carry

  8. Search for Proton Decay through p {r_arrow} {bar {nu}}K{sup +} in a Large Water Cherenkov Detector

    SciTech Connect

    Fukuda, Y.; Hayakawa, T.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; Kobayashi, K.; Kobayashi, Y.; Koshio, Y.; Miura, M.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Okada, A.; Okumura, K.; Sakurai, N.; Shiozawa, M.; Suzuki, Y.; Takeuchi, H.; Takeuchi, Y.; Totsuka, Y.; Yamada, S.; Earl, M.; Habig, A.; Kearns, E.; Messier, M.D.; Scholberg, K.; Stone, J.L.; Sulak, L.R.; Walter, C.W.; Goldhaber, M.; Barszczak, T.; Casper, D.; Gajewski, W.; Kropp, W.R.; Mine, S.; Price, L.R.; Smy, M.; Sobel, H.W.; Vagins, M.R.; Haines, T.J.; Kielczewska, D.; Ganezer, K.S.; Keig, W.E.; Ellsworth, R.W.; Tasaka, S.; Kibayashi, A.; Learned, J.G.; Matsuno, S.; Stenger, V.J.; Takemori, D.; Ishii, T.; Kanzaki, J.; Kobayashi, T.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Sakai, A.; Sakuda, M.; Sasaki, O.; Echigo, S.; Kohama, M.; Suzuki, A.T.; Haines, T.J.; Blaufuss, E.; Kim, B.K.; Sanford, R.; and others

    1999-08-01

    We present results of a search for proton decays, p{r_arrow}{bar {nu}}K{sup +} , using data from a 33 kt{center_dot}yr exposure of the Super-Kamiokande detector. Two decay modes of the kaon, K{sup +}{r_arrow}{mu}{sup +}{nu}{sub {mu}} and K{sup +}{r_arrow}{pi}{sup +}{pi}{sup 0} , were studied. The data were consistent with the background expected from atmospheric neutrinos; therefore a lower limit on the partial lifetime of the proton {tau}/B(p{r_arrow}{bar {nu}} K{sup +}) was found to be 6.7{times}10{sup 32} years at 90{percent} confidence level. {copyright} {ital 1999} {ital The American Physical Society}

  9. Characterisation of a track structure imaging detector.

    PubMed

    Casiraghi, M; Bashkirov, V A; Hurley, R F; Schulte, R W

    2015-09-01

    The spatial distribution of radiation-induced ionisations in sub-cellular structures plays an important role in the initial formation of radiation damage to biological tissues. Using the nanodosimetry approach, physical characteristics of the track structure can be measured and correlated to DNA damage. In this work, a novel nanodosimeter is presented, which detects positive ions produced by radiation interacting with a gas-sensitive volume in order to obtain a high resolution image of the radiation track structure. The characterisation of the detector prototype was performed and different configurations of the device were tested by varying the detector cathode material and the working gas. Preliminary results show that the ionisation cluster size distribution can be obtained with this approach. Further work is planned to improve the detector efficiency in order to register the complete three-dimensional track structure of ionising radiation.

  10. Comparative Study of Edge Detectors in case of Echocardiographic Images

    NASA Astrophysics Data System (ADS)

    Saini, Kalpana; Dewal, M. L.; Rohit, Manoj Kumar

    2010-11-01

    In this paper we compare different edge detectors based on peak signal to noise ratio on Echocardiographic images. Edge detection is a critical element in image processing, since edges contain a major function of image information. The function of edge detection is to identify the boundaries of homogeneous regions in an image based on properties such as intensity and texture.We have taken Perwitt edge detector, Robarts edge detector, LoG edge detector, Canny edge detector, and Sobel edge detector for this comparison and study.

  11. Development of a custom on-line ultrasonic vapour analyzer and flow meter for the ATLAS inner detector, with application to Cherenkov and gaseous charged particle detectors

    NASA Astrophysics Data System (ADS)

    Alhroob, M.; Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Bozza, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; DiGirolamo, B.; Doubek, M.; Favre, G.; Godlewski, J.; Hallewell, G.; Hasib, A.; Katunin, S.; Langevin, N.; Lombard, D.; Mathieu, M.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Strauss, M.; Vacek, V.; Zwalinski, L.

    2015-03-01

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom microcontroller-based electronics, currently used in the ATLAS Detector Control System, with numerous potential applications. Three instruments monitor C3F8 and CO2 coolant leak rates into the nitrogen envelopes of the ATLAS silicon microstrip and Pixel detectors. Two further instruments will aid operation of the new thermosiphon coolant recirculator: one of these will monitor air leaks into the low pressure condenser while the other will measure return vapour flow along with C3F8/C2F6 blend composition, should blend operation be necessary to protect the ATLAS silicon tracker under increasing LHC luminosity. We describe these instruments and their electronics.

  12. RESEARCH NOTES FROM COLLABORATIONS: How to focus a Cherenkov telescope

    NASA Astrophysics Data System (ADS)

    Hofmann, W.

    2001-04-01

    Cherenkov telescopes image the Cherenkov emission from air showers. A priori, it is not obvious if the `best' images are achieved by measuring Cherenkov photon angles, i.e. focusing the telescope at infinity, or by considering the air shower as an object to be imaged, in which case one might focus the telescope on the central region of the shower. The issue is addressed using shower simulations.

  13. Multispectral imaging using a single bucket detector.

    PubMed

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-04-22

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector's fast response, a scene's 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers.

  14. Advanced digital detectors for neutron imaging.

    SciTech Connect

    Doty, F. Patrick

    2003-12-01

    Neutron interrogation provides unique information valuable for Nonproliferation & Materials Control and other important applications including medicine, airport security, protein crystallography, and corrosion detection. Neutrons probe deep inside massive objects to detect small defects and chemical composition, even through high atomic number materials such as lead. However, current detectors are bulky gas-filled tubes or scintillator/PM tubes, which severely limit many applications. Therefore this project was undertaken to develop new semiconductor radiation detection materials to develop the first direct digital imaging detectors for neutrons. The approach relied on new discovery and characterization of new solid-state sensor materials which convert neutrons directly to electronic signals via reactions BlO(n,a)Li7 and Li6(n,a)T.

  15. Characteristics of stereo images from detectors in focal plane array.

    PubMed

    Son, Jung-Young; Yeom, Seokwon; Chun, Joo-Hwan; Guschin, Vladmir P; Lee, Dong-Su

    2011-07-01

    The equivalent ray geometry of two horizontally aligned detectors at the focal plane of the main antenna in a millimeter wave imaging system is analyzed to reveal the reason why the images from the detectors are fused as an image with a depth sense. Scanning the main antenna in both horizontal and vertical directions makes each detector perform as a camera, and the two detectors can work like a stereo camera in the millimeter wave range. However, the stereo camera geometry is different from that of the stereo camera used in the visual spectral range because the detectors' viewing directions are diverging to each other and they are a certain distance apart. The depth sense is mainly induced by the distance between detectors. The images obtained from the detectors in the millimeter imaging system are perceived with a good depth sense. The disparities responsible for the depth sense are identified in the images.

  16. Microtomography with sandwich detectors for small-animal bone imaging

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Kim, D. W.; Kim, D.; Youn, H.; Cho, S.; Kim, H. K.

    2016-10-01

    An x-ray radiographic system consisting of two detectors in tandem, or a sandwich detector, can produce dual-energy image from a single-shot exposure. Subtraction of two images obtained from the two detectors can produce a sharper image through an unsharp masking effect if the two images are formed at different spatial resolutions. This is indeed possible by incorporating different thicknesses of x-ray conversion layers in the detectors. In this study, we have developed a microtomography system with a sandwich detector in pursuit of high-resolution bone-enhanced small-animal imaging. The results show that the bone-enhanced images reconstructed from the dual-energy projection data provide higher visibility of bone details than the conventionally reconstructed images. The microtomography with the single-shot dual-energy sandwich detector will be useful for the high-resolution bone-enhanced small-animal imaging.

  17. Development of a custom on-line ultrasonic vapour analyzer/flowmeter for the ATLAS inner detector, with application to gaseous tracking and Cherenkov detectors

    NASA Astrophysics Data System (ADS)

    Bates, R.; Battistin, M.; Berry, S.; Berthoud, J.; Bitadze, A.; Bonneau, P.; Botelho-Direito, J.; Bousson, N.; Boyd, G.; Bozza, G.; Da Riva, E.; Degeorge, C.; DiGirolamo, B.; Doubek, M.; Godlewski, J.; Hallewell, G.; Katunin, S.; Lombard, D.; Mathieu, M.; McMahon, S.; Nagai, K.; Perez-Rodriguez, E.; Rossi, C.; Rozanov, A.; Vacek, V.; Vitek, M.; Zwalinski, L.

    2013-01-01

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom electronics, currently in use in the ATLAS inner detector, with numerous potential applications. The instrument has demonstrated ~ 0.3% mixture precision for C3F8/C2F6 mixtures and < 10-4 resolution for N2/C3F8 mixtures. Moderate and high flow versions of the instrument have demonstrated flow resolutions of ± 2% of full scale for flows up to 250 l min-1, and ± 1.9% of full scale for linear flow velocities up to 15 m s-1 the latter flow approaching that expected in the vapour return of the thermosiphon fluorocarbon coolant recirculator being built for the ATLAS silicon tracker.

  18. High density scintillating glass proton imaging detector

    NASA Astrophysics Data System (ADS)

    Wilkinson, C. J.; Goranson, K.; Turney, A.; Xie, Q.; Tillman, I. J.; Thune, Z. L.; Dong, A.; Pritchett, D.; McInally, W.; Potter, A.; Wang, D.; Akgun, U.

    2017-03-01

    In recent years, proton therapy has achieved remarkable precision in delivering doses to cancerous cells while avoiding healthy tissue. However, in order to utilize this high precision treatment, greater accuracy in patient positioning is needed. An accepted approximate uncertainty of +/-3% exists in the current practice of proton therapy due to conversions between x-ray and proton stopping power. The use of protons in imaging would eliminate this source of error and lessen the radiation exposure of the patient. To this end, this study focuses on developing a novel proton-imaging detector built with high-density glass scintillator. The model described herein contains a compact homogeneous proton calorimeter composed of scintillating, high density glass as the active medium. The unique geometry of this detector allows for the measurement of both the position and residual energy of protons, eliminating the need for a separate set of position trackers in the system. Average position and energy of a pencil beam of 106 protons is used to reconstruct the image rather than by analyzing individual proton data. Simplicity and efficiency were major objectives in this model in order to present an imaging technique that is compact, cost-effective, and precise, as well as practical for a clinical setting with pencil-beam scanning proton therapy equipment. In this work, the development of novel high-density glass scintillator and the unique conceptual design of the imager are discussed; a proof-of-principle Monte Carlo simulation study is performed; preliminary two-dimensional images reconstructed from the Geant4 simulation are presented.

  19. Simulation studies of the high-energy component of a future imaging Cherenkov telescope array

    SciTech Connect

    Funk, S.; Hinton, J. A.

    2008-12-24

    The current generation of Imaging Atmospheric telescopes (IACTs) has demonstrated the power of the technique in an energy range between {approx}100 GeV up to several tens of TeV. At the high-energy end, these instruments are limited by photon statistics. Future arrays of IACTs such as CTA or AGIS are planned to push into the energy range beyond 100 TeV. Scientifically, this region is very promising, providing a probe of particles up to the 'knee' in the cosmic ray spectrum and access to an unexplored region in the spectra of nearby extragalactic sources. We present first results from our simulation studies of the high-energy part of a future IACT array and discuss the design parameters of such an array.

  20. The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Daniel, M. K.; CTA Consortium

    2015-04-01

    The Imaging Atmospheric Cherenkov Technique (IACT) is unusual in astronomy as the atmosphere actually forms an intrinsic part of the detector system, with telescopes indirectly detecting very high energy particles by the generation and transport of Cherenkov photons deep within the atmosphere. This means that accurate measurement, characterisation and monitoring of the atmosphere is at the very heart of successfully operating an IACT system. The Cherenkov Telescope Array (CTA) will be the next generation IACT observatory with an ambitious aim to improve the sensitivity of an order of magnitude over current facilities, along with corresponding improvements in angular and energy resolution and extended energy coverage, through an array of Large (23 m), Medium (12 m) and Small (4 m) sized telescopes spread over an area of order ~km2. Whole sky coverage will be achieved by operating at two sites: one in the northern hemisphere and one in the southern hemisphere. This proceedings will cover the characterisation of the candidate sites and the atmospheric calibration strategy. CTA will utilise a suite of instrumentation and analysis techniques for atmospheric modelling and monitoring regarding pointing forecasts, intelligent pointing selection for the observatory operations and for offline data correction.

  1. Gallium arsenide pixel detectors for medical imaging

    NASA Astrophysics Data System (ADS)

    Da Via, C.; Bates, R.; Bertolucci, E.; Bottigli, U.; Campbell, M.; Chesi, E.; Conti, M.; D'Auria, S.; DelPapa, C.; Fantacci, M. E.; Grossi, G.; Heijne, E.; Mancini, E.; Middelkamp, P.; Raine, C.; Russo, P.; O'Shea, V.; Scharfetter, L.; Smith, K.; Snoeys, W.; Stefanini, A.

    1997-08-01

    Gallium arsenide pixel detectors processed on a 200 μm Semi-Insulating (SI) Hitachi substrate were bump-bonded to the Omega3 electronics developed at CERN for high energy physics [1]. The pixel dimensions are 50 μm × 500 μm for a total of 2048 cells and an active area of ˜0.5 cm 2. Our aim is to use this system for medical imaging. We report the results obtained after irradiation of the detector with different X-ray sources on phantoms with different contrasts. The system showed good sensitivity to X-rays from 241Am (60 keV) and 109Cd (22.1 keV). It is also sensitive to β- particles from 90Sr as well as from 32P which is used as a tracer for autoradiography applications. The inherent high absorption efficiency of GaAs associated with the self-triggering capabilities of the pixel readout system reduced considerably the acquisition time compared with traditional systems based on silicon or emulsions. The present configuration is not optimised for X-ray imaging. The reduction of the pixel dimensions to 200 μm × 200 μm together with the integration of a counter in the pixel electronics would make the detector competitive for applications like mammography or dental radiology. For certain applications in biochemistry, such as DNA sequencing, where good spatial resolution is required only in one direction, the present setup should allow the best spatial resolution available up to now with respect to other digital autoradiographic systems. DNA sequencing tests are now under way.

  2. Multispectral imaging using a single bucket detector

    NASA Astrophysics Data System (ADS)

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-04-01

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector’s fast response, a scene’s 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers.

  3. Multispectral imaging using a single bucket detector

    PubMed Central

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-01-01

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector’s fast response, a scene’s 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers. PMID:27103168

  4. Computational imaging with a balanced detector

    NASA Astrophysics Data System (ADS)

    Soldevila, F.; Clemente, P.; Tajahuerce, E.; Uribe-Patarroyo, N.; Andrés, P.; Lancis, J.

    2016-06-01

    Single-pixel cameras allow to obtain images in a wide range of challenging scenarios, including broad regions of the electromagnetic spectrum and through scattering media. However, there still exist several drawbacks that single-pixel architectures must address, such as acquisition speed and imaging in the presence of ambient light. In this work we introduce balanced detection in combination with simultaneous complementary illumination in a single-pixel camera. This approach enables to acquire information even when the power of the parasite signal is higher than the signal itself. Furthermore, this novel detection scheme increases both the frame rate and the signal-to-noise ratio of the system. By means of a fast digital micromirror device together with a low numerical aperture collecting system, we are able to produce a live-feed video with a resolution of 64 × 64 pixels at 5 Hz. With advanced undersampling techniques, such as compressive sensing, we can acquire information at rates of 25 Hz. By using this strategy, we foresee real-time biological imaging with large area detectors in conditions where array sensors are unable to operate properly, such as infrared imaging and dealing with objects embedded in turbid media.

  5. Computational imaging with a balanced detector.

    PubMed

    Soldevila, F; Clemente, P; Tajahuerce, E; Uribe-Patarroyo, N; Andrés, P; Lancis, J

    2016-06-29

    Single-pixel cameras allow to obtain images in a wide range of challenging scenarios, including broad regions of the electromagnetic spectrum and through scattering media. However, there still exist several drawbacks that single-pixel architectures must address, such as acquisition speed and imaging in the presence of ambient light. In this work we introduce balanced detection in combination with simultaneous complementary illumination in a single-pixel camera. This approach enables to acquire information even when the power of the parasite signal is higher than the signal itself. Furthermore, this novel detection scheme increases both the frame rate and the signal-to-noise ratio of the system. By means of a fast digital micromirror device together with a low numerical aperture collecting system, we are able to produce a live-feed video with a resolution of 64 × 64 pixels at 5 Hz. With advanced undersampling techniques, such as compressive sensing, we can acquire information at rates of 25 Hz. By using this strategy, we foresee real-time biological imaging with large area detectors in conditions where array sensors are unable to operate properly, such as infrared imaging and dealing with objects embedded in turbid media.

  6. Computational imaging with a balanced detector

    PubMed Central

    Soldevila, F.; Clemente, P.; Tajahuerce, E.; Uribe-Patarroyo, N.; Andrés, P.; Lancis, J.

    2016-01-01

    Single-pixel cameras allow to obtain images in a wide range of challenging scenarios, including broad regions of the electromagnetic spectrum and through scattering media. However, there still exist several drawbacks that single-pixel architectures must address, such as acquisition speed and imaging in the presence of ambient light. In this work we introduce balanced detection in combination with simultaneous complementary illumination in a single-pixel camera. This approach enables to acquire information even when the power of the parasite signal is higher than the signal itself. Furthermore, this novel detection scheme increases both the frame rate and the signal-to-noise ratio of the system. By means of a fast digital micromirror device together with a low numerical aperture collecting system, we are able to produce a live-feed video with a resolution of 64 × 64 pixels at 5 Hz. With advanced undersampling techniques, such as compressive sensing, we can acquire information at rates of 25 Hz. By using this strategy, we foresee real-time biological imaging with large area detectors in conditions where array sensors are unable to operate properly, such as infrared imaging and dealing with objects embedded in turbid media. PMID:27353733

  7. Imaging in (high pressure) Micromegas TPC detectors

    NASA Astrophysics Data System (ADS)

    Luzón, G.; Cebrián, S.; Castel, J.; Dafni, Th.; Galán, J.; Garza, J. G.; Irastorza, I. G.; Iguaz, F. J.; Mirallas, H.; Ruíz-Choliz, E.

    2016-11-01

    The T-REX project of the group of the University of Zaragoza includes a number of R&D and prototyping activities to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches where the pattern recognition of the signal is crucial for background discrimination. In the CAST experiment (CERN Axion Solar Telescope) a background level as low as 0.8 × 10-6 counts keV-1 cm-2 s-1 was achieved. Prototyping and simulations promise a 105 better signal-to-noise ratio than CAST for the future IAXO (International Axion Observatory) using x-ray telescopes. A new strategy is also explored in the search of WIMPS based on high gas pressure: the TREX-DM experiment, a low energy threshold detector. In both cases, axion and WIMP searches, the image of the expected signal is quite simple: a one cluster deposition coming from the magnet bore in the case of axions and, if possible, with a tadpole form in the case of WIMPs. It is the case of double beta decay (DBD) where imaging and pattern recognition play a major role. Results obtained in Xe + trimethylamine (TMA) mixture point to a reduction in electron diffusion which improves the quality of the topological pattern, with a positive impact on the discrimination capability, as shown in TREX-ββ prototype. Microbulk Micromegas are able to image the DBD ionization signature with high quality while, at the same time, measuring its energy deposition with a resolution of at least a ~ 3% FWHM at the transition energy Qββ and even better (up to ~ 1% FWHM) as extrapolated from low energy events. That makes Micromegas-based HPXe TPC a very competitive technique for the next generation DBD experiments (as PANDAX-III). Here, it will be shown the last results of the TREX project detectors and software concerning Axions, Dark matter and double beta decay.

  8. Gallium nitride photocathode development for imaging detectors

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; McPhate, Jason B.; Hull, Jeffrey S.; Malloy, James; Dabiran, Amir M.

    2008-07-01

    Recent progress in Gallium Nitride (GaN, AlGaN, InGaN) photocathodes show great promise for future detector applications in Astrophysical instruments. Efforts with opaque GaN photocathodes have yielded quantum efficiencies up to 70% at 120 nm and cutoffs at ~380 nm, with low out of band response, and high stability. Previous work with semitransparent GaN photocathodes produced relatively low quantum efficiencies in transmission mode (4%). We now have preliminary data showing that quantum efficiency improvements of a factor of 5 can be achieved. We have also performed two dimensional photon counting imaging with 25mm diameter semitransparent GaN photocathodes in close proximity to a microchannel plate stack and a cross delay line readout. The imaging performance achieves spatial resolution of ~50μm with low intrinsic background (below 1 event sec-1 cm-2) and reasonable image uniformity. GaN photocathodes with significant quantum efficiency have been fabricated on ceramic MCP substrates. In addition GaN has been deposited at low temperature onto quartz substrates, also achieving substantial quantum efficiency.

  9. High time-resolution imaging with the MAMA detector systems

    NASA Technical Reports Server (NTRS)

    Morgan, Jeffrey S.; Timothy, J. Gethyn; Smith, Andrew M.; Hill, Bob; Kasle, David B.

    1990-01-01

    Current uses of the MAMA detector which utilize the photon time-tagging capabilities of these detectors are reported. These applications currently include image stabilization by means of post-processing corrections of platform drift and speckle interferometry. The initial results of a sounding rocket experiment to obtain UV images of NGC 6240 and results from speckle interferometry of Neptune's moon Triton are presented.

  10. Microbolometer Detectors for Passive Millimeter-Wave Imaging

    DTIC Science & Technology

    2005-03-01

    Proc. SPIE April 2003, 5077, 33–41. 6. Rahman A.; et al. Micromachined room - temperature microbolometer for mm-wave detection and focal-plane... Microbolometer Detectors for Passive Millimeter -Wave Imaging by Joseph Nemarich ARL-TR-3460 March 2005...GRANT NUMBER 4. TITLE AND SUBTITLE Microbolometer Detectors for Passive Millimeter -Wave Imaging 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER

  11. The upgraded MAGIC Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Tescaro, D.

    2014-12-01

    The MAGIC Cherenkov telescopes underwent a major upgrade in 2011 and 2012. A new 1039-pixel camera and a larger area digital trigger system were installed in MAGIC-I, making it essentially identical to the newer MAGIC-II telescope. The readout systems of both telescopes were also upgraded, with fully programmable receiver boards and DRS4-chip-based digitization systems. The upgrade eased the operation and maintenance of the telescopes and also improved significantly their performance. The system has now an integral sensitivity as good as 0.6% of the Crab Nebula flux (for E > 400 GeV), with an effective analysis threshold at 70 GeV. This allows MAGIC to secure one of the leading roles among the current major ground-based Imaging Atmospheric Cherenkov telescopes for the next 5-10 years.

  12. Real-time imaging detectors for portal imaging

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Cheng, Chee-Wai

    1993-12-01

    This paper reviews the status of real-time imaging systems which are used in radiation-therapy for radiotherapy localization and verification. Imaging systems under review include (1) metal- fluorescent screens, optically coupled to video cameras; (2) metal-phosphor screen in direct contact with two-dimensional photo-diode array (flat panel detector); (3) two-dimensional liquid ionization chamber; and (4) linear diode arrays. These systems permit frequent verification during the treatment and have been shown to be very useful. Unfortunately the image quality achieved, while impressive considering the short time the devices have been on the market, is significantly inferior to that which is available from the metal/film combination (port film).

  13. HAWC: The high altitude water Cherenkov observatory

    NASA Astrophysics Data System (ADS)

    Goodman, Jordan A.

    2013-02-01

    The High Altitude Water Cherenkov Observatory (HAWC) is currently being deployed at 4100m above sea level on the Vulcan Sierra Negra near Puebla, Mexico. The HAWC observatory will consist of 250-300 Water Cherenkov Detectors totaling approximately 22,000 m2 of instrumented area. The water Cherenkov technique allows HAWC to have a nearly 100% duty cycle and large field of view, making the HAWC observatory an ideal instrument for the study of transient phenomena. With its large effective area, excellent angular and energy resolutions, and efficient gamma-hadron separation, HAWC will survey the TeV gamma-ray sky, measure spectra of galactic sources from 1 TeV to beyond 100 TeV, and map galactic diffuse gamma ray emission. The science goals, instrument performance and status of the HAWC observatory will be presented.

  14. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  15. X-ray imaging detectors for synchrotron and XFEL sources.

    PubMed

    Hatsui, Takaki; Graafsma, Heinz

    2015-05-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors.

  16. Mosaic-Detector-Based Fluorescence Spectral Imager

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong

    2007-01-01

    A battery-powered, pen-sized, portable instrument for measuring molecular fluorescence spectra of chemical and biological samples in the field has been proposed. Molecular fluorescence spectroscopy is among the techniques used most frequently in laboratories to analyze compositions of chemical and biological samples. Heretofore, it has been possible to measure fluorescence spectra of molecular species at relative concentrations as low as parts per billion (ppb), with a few nm spectral resolution. The proposed instrument would include a planar array (mosaic) of detectors, onto which a fluorescence spectrum would be spatially mapped. Unlike in the larger laboratory-type molecular fluorescence spectrometers, mapping of wavelengths to spatial positions would be accomplished without use of relatively bulky optical parts. The proposed instrument is expected to be sensitive enough to enable measurement of spectra of chemical species at relative concentrations <1 ppb, with spectral resolution that could be tailored by design to be comparable to a laboratory molecular fluorescence spectrometer. The proposed instrument (see figure) would include a button-cell battery and a laser diode, which would generate the monochromatic ultraviolet light needed to excite fluorescence in a sample. The sample would be held in a cell bounded by far-ultraviolet-transparent quartz or optical glass. The detector array would be, more specifically, a complementary metal oxide/ semiconductor or charge-coupled- device imaging photodetector array, the photodetectors of which would be tailored to respond to light in the wavelength range of the fluorescence spectrum to be measured. The light-input face of the photodetector array would be covered with a matching checkerboard array of multilayer thin film interference filters, such that each pixel in the array would be sensitive only to light in a spectral band narrow enough so as not to overlap significantly with the band of an adjacent pixel. The

  17. TH-C-17A-03: Dynamic Visualization and Dosimetry of IMRT and VMAT Treatment Plans by Video-Rate Imaging of Cherenkov Radiation in Pure Water

    SciTech Connect

    Glaser, A; Andreozzi, J; Davis, S; Zhang, R; Fox, C; Gladstone, D; Pogue, B

    2014-06-15

    Purpose: A novel optical dosimetry technique for the QA and verification of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) radiotherapy plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: An intensified CCD camera (ICCD) was used to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank. The ICCD acquisition was gated to the Linac, operated for single pulse imaging, and binned to a resolution of 512×512 pixels. The resulting videos were analyzed temporally for regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR) and summed to obtain an overall light distribution, which was compared to the expected dose distribution from the TPS using a gammaindex analysis. Results: The chosen camera settings resulted in data at 23.5 frames per second. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.2% and 95.6% agreement between the light distribution and expected TPS dose distribution based upon a 3% / 3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans respectively. Conclusion: The results from this initial study demonstrate the first documented use of Cherenkov radiation for optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications. NIH R01CA109558 and R21EB017559.

  18. Image scanning microscopy using a SPAD detector array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Castello, Marco; Tortarolo, Giorgio; Buttafava, Mauro; Tosi, Alberto; Sheppard, Colin J. R.; Diaspro, Alberto; Vicidomini, Giuseppe

    2017-02-01

    The use of an array of detectors can help overcoming the traditional limitation of confocal microscopy: the compromise between signal and theoretical resolution. Each element independently records a view of the sample and the final image can be reconstructed by pixel reassignment or by inverse filtering (e.g. deconvolution). In this work, we used a SPAD array of 25 detectors specifically designed for this goal and our scanning microscopy control system (Carma) to acquire the partial images and to perform online image processing. Further work will be devoted to optimize the image reconstruction step and to improve the fill-factor of the detector.

  19. The High-Altitude Water Cherenkov Observatory: First Light

    NASA Astrophysics Data System (ADS)

    Weisgarber, Thomas

    2013-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is under construction at Sierra Negra in the state of Puebla in Mexico. Operation began in September 2012, with the first 30 out of the final 300 water Cherenkov detectors deployed and in data acquisition. The HAWC Observatory is designed to record particle air showers from gamma rays and cosmic rays with TeV energies. Though the detector is only 10% complete, HAWC is already the world's largest water Cherenkov detector in the TeV band. In this presentation, I will summarize the performance of the detector to date and discuss preliminary observations of cosmic-ray and gamma-ray sources. I will also describe deployment plans for the remainder of the detector and outline prospects for TeV observations in the coming year.

  20. Operating Hybrid Photon Detectors in the LHCb RICH counters at high occupancy

    NASA Astrophysics Data System (ADS)

    Eisenhardt, Stephan

    2014-12-01

    We report about the experiences in the operation of the Hybrid Photon Detectors in the Ring Imaging Cherenkov Detectors of the LHCb experiment during the first run period, 2010-2012. Of particular interest is the ageing due to the deterioration of the vacuum quality of the tubes, leading to an increase of ion feedback.

  1. Germanium orthogonal strip detector system for gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Hull, Ethan L.; Burks, Morgan; Cork, Chris P.; Craig, William W.; Eckels, Del; Fabris, Lorenzo; Lavietes, Anthony D.; Luke, Paul N.; Madden, Norman W.; Pehl, Richard H.; Ziock, Klaus

    2001-12-01

    A germanium-detector based, gamma-ray imaging system has been designed, fabricated, and tested. The detector, cryostat, electronics, readout, and imaging software are discussed. An 11 millimeter thick, 2 millimeter pitch 19x19 orthogonal strip planar germanium detector is used in front of a coaxial detector to provide broad energy coverage. The planar detector was fabricated using amorphous germanium contacts. Each channel is read out with a compact, low noise external FET preamplifier specially designed for this detector. A bank of shaping amplifiers, fast amplifiers, and fast leading edge discriminators were designed and fabricated to process the signals from preamplifiers. The readout system coordinates time coincident x-y strip addresses with an x-strip spectroscopy signal and a spectroscopy signal from the coaxial detector. This information is sent to a computer where an image is formed. Preliminary shadow and pinhole images demonstrate the viability of a germanium based imaging system. The excellent energy resolution of the germanium detector system provides isotopic imaging.

  2. Status and perspectives of solid state photon detectors

    NASA Astrophysics Data System (ADS)

    Korpar, Samo

    2011-05-01

    Recent years have seen a considerable progress in the development of solid state photon detectors. In particular it is the Geiger mode avalanche photodiode, also known as the silicon photomultiplier (SiPM), which is much investigated for its single photon sensitivity as well as its other appealing properties. In the present paper we discuss the recent advances of such photon detectors as well as possibilities for their application, mainly in ring imaging Cherenkov detectors.

  3. Searching for tau neutrinos with Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Góra, D.; Bernardini, E.; Kappes, A.

    2015-02-01

    Cherenkov telescopes have the capability of detecting high energy tau neutrinos in the energy range of 1-1000 PeV by searching for very inclined showers. If a tau lepton, produced by a tau neutrino, escapes from the Earth or a mountain, it will decay and initiate a shower in the air which can be detected by an air shower fluorescence or Cherenkov telescope. In this paper, we present detailed Monte Carlo simulations of corresponding event rates for the VERITAS and two proposed Cherenkov Telescope Array sites: Meteor Crater and Yavapai Ranch, which use representative AGN neutrino flux models and take into account topographic conditions of the detector sites. The calculated neutrino sensitivities depend on the observation time and the shape of the energy spectrum, but in some cases are comparable or even better than corresponding neutrino sensitivities of the IceCube detector. For VERITAS and the considered Cherenkov Telescope Array sites the expected neutrino sensitivities are up to factor 3 higher than for the MAGIC site because of the presence of surrounding mountains.

  4. Multianode microchannel array detectors for Space Shuttle imaging applications

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1981-01-01

    The Multi-Anode Microchannel Arrays (MAMAs) are a family of photoelectric, photoncounting array detectors that have been developed and qualified specifically for use in space. MAMA detectors with formats as large as 256 x 1024 pixels are now in use or under construction for a variety of imaging and tracking applications. These photo-emissive detectors can be operated in a windowless configuration at extreme ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. The construction and modes-of-operation of the MAMA detectors are briefly described and the scientific objectives of a number of sounding rocket and Space Shuttle instruments utilizing these detectors are outlined. Performance characteristics of the MAMA detectors that are of fundamental importance for operation in the Space Shuttle environment are described and compared with those of the photo-conductive array detectors such as the CCDs and CIDs.

  5. Imaging detectors and electronics - A view of the future

    SciTech Connect

    Spieler, Helmuth

    2004-06-16

    Imaging sensors and readout electronics have made tremendous strides in the past two decades. The application of modern semiconductor fabrication techniques and the introduction of customized monolithic integrated circuits have made large scale imaging systems routine in high energy physics. This technology is now finding its way into other areas, such as space missions, synchrotron light sources, and medical imaging. I review current developments and discuss the promise and limits of new technologies. Several detector systems are described as examples of future trends. The discussion emphasizes semiconductor detector systems, but I also include recent developments for large-scale superconducting detector arrays.

  6. Scintillator-fiber charged-particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.

  7. Recent advances in CZT strip detectors and coded mask imagers

    NASA Astrophysics Data System (ADS)

    Matteson, J. L.; Gruber, D. E.; Heindl, W. A.; Pelling, M. R.; Peterson, L. E.; Rothschild, R. E.; Skelton, R. T.; Hink, P. L.; Slavis, K. R.; Binns, W. R.; Tumer, T.; Visser, G.

    1999-09-01

    The UCSD, WU, UCR and Nova collaboration has made significant progress on the necessary techniques for coded mask imaging of gamma-ray bursts: position sensitive CZT detectors with good energy resolution, ASIC readout, coded mask imaging, and background properties at balloon altitudes. Results on coded mask imaging techniques appropriate for wide field imaging and localization of gamma-ray bursts are presented, including a shadowgram and deconvolved image taken with a prototype detector/ASIC and MURA mask. This research was supported by NASA Grants NAG5-5111, NAG5-5114, and NGT5-50170.

  8. Coincidence velocity map imaging using a single detector

    NASA Astrophysics Data System (ADS)

    Zhao, Arthur; Sándor, Péter; Weinacht, Thomas

    2017-07-01

    We demonstrate a single-detector velocity map imaging setup which is capable of rapidly switching between coincidence and non-coincidence measurements. By rapidly switching the extraction voltages on the electrostatic lenses, both electrons and ions can be collected in coincidence with a single detector. Using a fast camera as the 2D detector avoids the saturation problem associated with traditional delay line detectors and allows for easy transitions between coincidence and non-coincidence data collection modes. This is a major advantage in setting up a low-cost and versatile coincidence apparatus. We present both coincidence and non-coincidence measurements of strong field atomic and molecular ionization.

  9. Flat-panel-detector-based volume tomographic angiography imaging: detector evaluation

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Zhang, Dinghua; Chen, Biao; Conover, David L.; Yu, Rongfeng

    1999-09-01

    Recent development of large area flat panel solid state detector arrays indicates that flat panel image sensors have some common potential advantages: compactness, absence of geometric distortion and veiling glare with the benefits of high resolution, high DQE, high frame rate and high dynamic range, small image lag (less than 1%) and excellent linearity (approximately 1%). The advantages of the new flat-panel detector make it a promising candidate for cone beam volume tomographic angiography imaging. The purpose of this study is to characterize a Selenium thin film transistor (STFT) flat panel detector-based imaging system for cone beam volume tomographic angiography imaging applications. A prototype STFT detector-based cone beam volume tomographic angiography imaging system has been designed and constructed based on the modification of a GE 8800 CT scanner. This system is evaluated using a vascular phantom with different x-ray spectra, different sizes of vessels and different iodine concentration levels. The results indicate that with the currently available STFT flat panel detector, 90 kVp is the optimal kVp to achieve the highest signal-to-noise ratio for volume tomographic angiography imaging and the low contrast resolution of the system is 4 mg/ml iodine for a 2 mm vessel.

  10. Photoconducting positions monitor and imaging detector

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    2000-01-01

    A photoconductive, high energy photon beam detector/monitor for detecting x-rays and gamma radiation, having a thin, disk-shaped diamond substrate with a first and second surface, and electrically conductive coatings, or electrodes, of a predetermined configuration or pattern, disposed on the surfaces of the substrate. A voltage source and a current amplifier is connected to the electrodes to provide a voltage bias to the electrodes and to amplify signals from the detector.

  11. Further developments of electrographic image detectors

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.

    1981-01-01

    This paper reports the current status of a program to develop far- and middle-ultraviolet-sensitive electrographic detectors. These include large-format, semitransparent-photocathode detectors and opaque-photocathode electrographic Schmidt cameras. Modifications of a previously-demonstrated far-UV large-format detector to make it suitable for possible Shuttle/Spacelab space astronomy investigations have been implemented and tested. Middle-ultraviolet-sensitive large-format and Schmidt electrographic detectors are now in the laboratory development stage. Cesium telluride photocathodes are used to provide sensitivity in the 1700-3100 A spectral range, and techniques for processing these photocathodes are discussed. The preparation and use of polyimide barrier membranes, for protecting the photocathodes from deterioration by film outgassing, are described. A new opaque-photocathode vacuum-ultraviolet-sensitive electrographic detector has been demonstrated, which is based on an oblique-focusing electron optical system similar to that used by Princeton with electron-bombarded CCD arrays. Test results and potential applications of this detector are described.

  12. Imaging characteristics of the Extreme Ultraviolet Explorer microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Kaplan, G. C.; Siegmund, O. H. W.; Lampton, M.; Malina, R. F.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) satellite will conduct an all-sky survey over the wavelength range from 70 A to 760 A using four grazing-incidence telescopes and seven microchannel-plate (MCP) detectors. The imaging photon-counting MCP detectors have active areas of 19.6 cm2. Photon arrival position is determined using a wedge-and-strip anode and associated pulse-encoding electronics. The imaging characteristics of the EUVE flight detectors are presented including image distortion, flat-field response, and spatial differential nonlinearity. Also included is a detailed discussion of image distortions due to the detector mechanical assembly, the wedge-and-strip anode, and the electronics. Model predictions of these distortions are compared to preflight calibration images which show distortions less than 1.3 percent rms of the detector diameter of 50 mm before correction. The plans for correcting these residual detector image distortions to less than 0.1 percent rms are also presented.

  13. Imaging characteristics of the Extreme Ultraviolet Explorer microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Kaplan, G. C.; Siegmund, O. H. W.; Lampton, M.; Malina, R. F.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) satellite will conduct an all-sky survey over the wavelength range from 70 A to 760 A using four grazing-incidence telescopes and seven microchannel-plate (MCP) detectors. The imaging photon-counting MCP detectors have active areas of 19.6 cm2. Photon arrival position is determined using a wedge-and-strip anode and associated pulse-encoding electronics. The imaging characteristics of the EUVE flight detectors are presented including image distortion, flat-field response, and spatial differential nonlinearity. Also included is a detailed discussion of image distortions due to the detector mechanical assembly, the wedge-and-strip anode, and the electronics. Model predictions of these distortions are compared to preflight calibration images which show distortions less than 1.3 percent rms of the detector diameter of 50 mm before correction. The plans for correcting these residual detector image distortions to less than 0.1 percent rms are also presented.

  14. Uncooled infrared detector and imager development at DALI Technology

    NASA Astrophysics Data System (ADS)

    Jiang, Lijun; Liu, Haitao; Chi, Jiguang; Qian, Liangshan; Pan, Feng; Liu, Xiang; Zhu, Xiaorong; Ma, Zhigang

    2015-06-01

    Zhejiang Dali Technology Co. Ltd. is one of the major players in the China Infrared industry. The company has been working on infrared imagers using uncooled FPAs for about 15 years. It started the research and development of uncooled microbolometer detectors since 2006, and has brought several uncooled detectors into mass production, including 35um 384x288, 25um 160x120, 384x288, 640x480, and 17um 384x288, 640x480. In this presentation, we will describe the uncooled infrared detector and imager development at DALI Technology.

  15. FastDIRC: a fast Monte Carlo and reconstruction algorithm for DIRC detectors

    NASA Astrophysics Data System (ADS)

    Hardin, J.; Williams, M.

    2016-10-01

    FastDIRC is a novel fast Monte Carlo and reconstruction algorithm for DIRC detectors. A DIRC employs rectangular fused-silica bars both as Cherenkov radiators and as light guides. Cherenkov-photon imaging and time-of-propagation information are utilized by a DIRC to identify charged particles. GEANT4-based DIRC Monte Carlo simulations are extremely CPU intensive. The FastDIRC algorithm permits fully simulating a DIRC detector more than 10 000 times faster than using GEANT4. This facilitates designing a DIRC-reconstruction algorithm that improves the Cherenkov-angle resolution of a DIRC detector by ≈ 30% compared to existing algorithms. FastDIRC also greatly reduces the time required to study competing DIRC-detector designs.

  16. X-ray imaging with the PILATUS 100k detector.

    PubMed

    Bech, M; Bunk, O; David, C; Kraft, P; Brönnimann, C; Eikenberry, E F; Pfeiffer, F

    2008-04-01

    We report on the application of the PILATUS 100K pixel detector for medical imaging. Experimental results are presented in the form of X-ray radiographs using standard X-ray absorption contrast and a recently developed phase contrast imaging method. The results obtained with the PILATUS detector are compared to results obtained with a conventional X-ray imaging system consisting of an X-ray scintillation screen, lens optics, and a charge coupled device. Finally, the results for both systems are discussed more quantitatively based on an image power spectrum analysis.

  17. The first results from the CRID detector at SLD

    SciTech Connect

    Va'vra, J.; Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; Mueller, G.; Muller, D.; Nagamine, T.; Pavel, T.J.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Williams, S.H. ); Abe, K.; Hasegawa, K.; Hasegawa, Y.; Suekan

    1992-10-01

    We report first results from the initial physics run of the Cherenkov Ring Imaging Detector (CRID) in the SLD experiment at the SLC. We describe the experimental conditions, show liquid and gas rings, report the number of photoelectrons per ring, and comment on resolution.

  18. Photon counting with a FDIRC Cherenkov prototype readout by SiPM arrays

    NASA Astrophysics Data System (ADS)

    Marrocchesi, P. S.; Bagliesi, M. G.; Basti, A.; Bigongiari, G.; Bonechi, S.; Brogi, P.; Checchia, C.; Collazuol, G.; Maestro, P.; Morsani, F.; Piemonte, C.; Stolzi, F.; Suh, J. E.; Sulaj, A.

    2017-02-01

    A prototype of a Focused Internal Reflection Cherenkov, equipped with 16 arrays of NUV-SiPM, was tested at CERN SPS in March 2015 with beams of relativistic ions at 13, 19 and 30 GeV/n obtained from fragmentation of an Ar primary beam. The detector, designed to identify cosmic nuclei, features a Fused Silica radiator bar optically connected to a cylindrical mirror of the same material and an imaging focal plane of dimensions ∼4 cm×3 cm covered with a total of 1024 SiPM photosensors. Thanks to the outstanding performance of the SiPM arrays, the detector could be operated in photon counting mode as a fully digital device. The Cherenkov pattern was recorded together with the total number of detected photoelectrons increasing as Z2 as a function of the atomic number Z of the beam particle. In this paper, we report on the characterization and test of the SiPM arrays and the performance of the Cherenkov prototype for the charge identification of the beam particles.

  19. MACHETE: A transit Imaging Atmospheric Cherenkov Telescope to survey half of the Very High Energy γ-ray sky

    NASA Astrophysics Data System (ADS)

    López-Coto, Rubén; Cortina, Juan; Moralejo, Abelardo

    2016-10-01

    Current Cherenkov Telescopes for VHE gamma ray astrophysics are pointing instruments with a field of view up to a few tens of deg2. We propose to build an array of two non-steerable telescopes with a FoV of 5×60 deg2 oriented along the meridian. Roughly half of the sky drifts through this FoV in a year. We have performed a MC simulation to estimate the performance of this instrument, which we dub MACHETE. The sensitivity that MACHETE would achieve after 5 years of operation for every source in this half of the sky is comparable to the sensitivity that a current IACT achieves for a specific source after a 50 h devoted observation. The analysis energy threshold would be 150 GeV and the angular resolution 0.1 deg. For astronomical objects that transit over MACHETE for a specific night, it would achieve an integral sensitivity of 12% of Crab in a night. This makes MACHETE a powerful tool to trigger observations of variable sources at VHE or any other wavelengths.

  20. A novel phoswich imaging detector for simultaneous beta and coincidence-gamma imaging of plant leaves.

    PubMed

    Wu, Heyu; Tai, Yuan-Chuan

    2011-09-07

    To meet the growing demand for functional imaging technology for use in studying plant biology, we are developing a novel technique that permits simultaneous imaging of escaped positrons and coincidence gammas from annihilation of positrons within an intake leaf. The multi-modality imaging system will include two planar detectors: one is a typical PET detector array and the other is a phoswich imaging detector that detects both beta and gamma. The novel phoswich detector is made of a plastic scintillator, a lutetium oxyorthosilicate (LSO) array, and a position sensitive photomultiplier tube (PS-PMT). The plastic scintillator serves as a beta detector, while the LSO array serves as a gamma detector and light guide that couples scintillation light from the plastic detector to the PMT. In our prototype, the PMT signal was fed into the Siemens QuickSilver electronics to achieve shaping and waveform sampling. Pulse-shape discrimination based on the detectors' decay times (2.1 ns for plastic and 40 ns for LSO) was used to differentiate beta and gamma events using the common PMT signals. Using our prototype phoswich detector, we simultaneously measured a beta image and gamma events (in single mode). The beta image showed a resolution of 1.6 mm full-width-at-half-maximum using F-18 line sources. Because this shows promise for plant-scale imaging, our future plans include development of a fully functional simultaneous beta-and-coincidence-gamma imager with sub-millimeter resolution imaging capability for both modalities.

  1. A novel phoswich imaging detector for simultaneous beta and coincidence-gamma imaging of plant leaves

    NASA Astrophysics Data System (ADS)

    Wu, Heyu; Tai, Yuan-Chuan

    2011-09-01

    To meet the growing demand for functional imaging technology for use in studying plant biology, we are developing a novel technique that permits simultaneous imaging of escaped positrons and coincidence gammas from annihilation of positrons within an intake leaf. The multi-modality imaging system will include two planar detectors: one is a typical PET detector array and the other is a phoswich imaging detector that detects both beta and gamma. The novel phoswich detector is made of a plastic scintillator, a lutetium oxyorthosilicate (LSO) array, and a position sensitive photomultiplier tube (PS-PMT). The plastic scintillator serves as a beta detector, while the LSO array serves as a gamma detector and light guide that couples scintillation light from the plastic detector to the PMT. In our prototype, the PMT signal was fed into the Siemens QuickSilver electronics to achieve shaping and waveform sampling. Pulse-shape discrimination based on the detectors' decay times (2.1 ns for plastic and 40 ns for LSO) was used to differentiate beta and gamma events using the common PMT signals. Using our prototype phoswich detector, we simultaneously measured a beta image and gamma events (in single mode). The beta image showed a resolution of 1.6 mm full-width-at-half-maximum using F-18 line sources. Because this shows promise for plant-scale imaging, our future plans include development of a fully functional simultaneous beta-and-coincidence-gamma imager with sub-millimeter resolution imaging capability for both modalities.

  2. The challenge of highly curved monolithic imaging detectors

    NASA Astrophysics Data System (ADS)

    Iwert, Olaf; Delabre, Bernard

    2010-07-01

    In a recent optical design study of CODEX - a visible spectrograph planned for the European Extremely Large Telescope (E-ELT) - it was determined that a significant simplification of the optical design - accompanied by an improvement of the image quality - could be achieved through the application of large format (90mm square) concave spherically curved detectors with a low radius of curvature (500 to 250mm). Current assemblies of image sensors and optics rely on the optics to project a corrected image onto a flat detector. While scientific large-size CCDs (49mm square) have been produced unintentionally with a spherical radius of convex curvature of around 5m, in the past most efforts have concentrated onto flattening the light-sensitive detector silicon area as best as possible for both scientific state-of-the-art systems, as well as commercial low-cost consumer products. In some cases curved focal planes are mosaicked out of individual flat detectors, but a standard method to derive individual spherically curved large size detectors has not been demonstrated. This paper summarizes important developments in the area of curved detectors in the past and their different technical approaches mostly linked to specific thinning processes. ESO's specifications for an ongoing feasibility study are presented. First results of the latter are described with a link to theoretical and practical examinations of currently available technology to implement curved CCD and CMOS detectors for scientific applications.

  3. Wavelength-shifted Cherenkov radiators

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Jacobson, V. L.; Pifer, A. E.; Polakos, P. A.; Kurz, R. J.

    1976-01-01

    The scintillation and Cherenkov responses of plastic Cherenkov radiators containing different wavelength-shifting fluors in varying concentrations have been studied in beams of low energy protons and pions. For cosmic ray applications, where large Cherenkov to scintillation ratios are desired, the optimum fluor concentrations are 0.000025 by weight or less.

  4. THCOBRA X-ray imaging detector operating in pure Kr

    NASA Astrophysics Data System (ADS)

    Carramate, L. F. N. D.; Silva, A. L. M.; Azevedo, C. D. R.; Fortes, I.; Monteiro, S. G.; Sousa, S.; Ribeiro, F. M.; De Francesco, S.; Covita, D. S.; Veloso, J. F. C. A.

    2017-05-01

    MicroPattern Gaseous Detectors (MPGD) have been explored for X-ray imaging, namely for photon counting imaging which allows the improvement of image quality and the collection of more information than the conventional commercial systems. A 2D-THCOBRA based detector was developed, studied and used to acquire X-ray transmission images. The 2D-THCOBRA structure used has an active area of 2.8 × 2.8 cm2 and allows obtaining the position and energy information of each single photon that interacts with the detector. It is filled with pure Kr at 1 bar operating in a sealed mode. Within this work the performance of the detector is evaluated in terms of charge gain, count rate, time stability, energy and spatial resolutions. The detector presents a charge gain of 2 × 104 and an energy resolution of 23% for 5.9 keV, showing gain stability along time for a count rate of about 1 × 105 Hz/mm2. It presents a spatial resolution of 600 μm (σ = 255 μm) and 500 μm (σ = 213 μm) for x and y directions, respectively, and, considering energy bins about 650 μm (σ = 277 μm) for approximately 16.5 keV. X-ray transmission images of some samples presented here show good prospects for X-ray imaging applications.

  5. Investigation of Hamamatsu H8500 phototubes as single photon detectors

    NASA Astrophysics Data System (ADS)

    Montgomery, R. A.; Hoek, M.; Lucherini, V.; Mirazita, M.; Orlandi, A.; Anefalos Pereira, S.; Pisano, S.; Rossi, P.; Viticchiè, A.; Witchger, A.

    2015-08-01

    We have investigated the response of a significant sample of Hamamatsu H8500 MultiAnode PhotoMultiplier Tubes (MAPMTs) as single photon detectors, in view of their use in a ring imaging Cherenkov counter for the CLAS12 spectrometer at the Thomas Jefferson National Accelerator Facility. For this, a laser working at 407.2 nm wavelength was employed. The sample is divided equally into standard window type, with a spectral response in the visible light region, and UV-enhanced window type MAPMTs. The studies confirm the suitability of these MAPMTs for single photon detection in such a Cherenkov imaging application.

  6. Digital Images of Breast Biopsies using a Silicon Strip Detector

    SciTech Connect

    Montano, Luis M.; Diaz, Claudia C.; Leyva, Antonio; Cabal, Fatima

    2006-09-08

    In our study we have used a silicon strip detector to obtain digital images of some breast tissues with micro calcifications. Some of those images will be shown and we will discuss the perspectives of using this technique as an improvement of breast cancer diagnostics.

  7. Simulation of computed radiography with imaging plate detectors

    SciTech Connect

    Tisseur, D.; Costin, M.; Mathy, F.; Schumm, A.

    2014-02-18

    Computed radiography (CR) using phosphor imaging plate detectors is taking an increasing place in Radiography Testing. CR uses similar equipment as conventional radiography except that the classical X-ray film is replaced by a numerical detector, called image plate (IP), which is made of a photostimulable layer and which is read by a scanning device through photostimulated luminescence. Such digital radiography has already demonstrated important benefits in terms of exposure time, decrease of source energies and thus reduction of radioprotection area besides being a solution without effluents. This paper presents a model for the simulation of radiography with image plate detectors in CIVA together with examples of validation of the model. The study consists in a cross comparison between experimental and simulation results obtained on a step wedge with a classical X-ray tube. Results are proposed in particular with wire Image quality Indicator (IQI) and duplex IQI.

  8. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  9. Detectors for medical radioisotope imaging: demands and perspectives

    NASA Astrophysics Data System (ADS)

    Lopes, M. I.; Chepel, V.

    2004-10-01

    Radioisotope imaging is used to obtain information on biochemical processes in living organisms, being a tool of increasing importance for medical diagnosis. The improvement and expansion of these techniques depend on the progress attained in several areas, such as radionuclide production, radiopharmaceuticals, radiation detectors and image reconstruction algorithms. This review paper will be concerned only with the detector technology. We will review in general terms the present status of medical radioisotope imaging instrumentation with the emphasis put on the developments of high-resolution gamma cameras and PET detector systems for scinti-mammography and animal imaging. The present trend to combine two or more modalities in a single machine in order to obtain complementary information will also be considered.

  10. A Gas Electron Multiplier (GEM) Detector for Fast Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Jewett, C. C.; McMahan, M.; Cerny, J.; Heilbronn, L.; Johnson, M.

    2008-10-01

    We have built a Gas Electron Multiplier (GEM) detector for detection of fast neutrons at Lawrence Berkeley National Laboratory. The detector consists of a 0.0625 inch thick polypropylene neutron converter, three GEM foils and a grid of 16 readout pads on a printed circuit board. In this talk, we present images of the GEM detector, the results of tests with ^60Co, AmBe sources and our neutron beam, and a comparison between the proposed fast neutron GEM detector and a fast neutron ^238U fission chamber we purchased. One of the advantages of the GEM detector over the fission chamber is the fact that it provides the x-y position information of the neutrons.

  11. Advanced infrared detectors for multimode active and passive imaging applications

    NASA Astrophysics Data System (ADS)

    Baker, Ian; Owton, Daniel; Trundle, Keith; Thorne, Peter; Storie, Kevin; Oakley, Philip; Copley, Jeremy

    2008-04-01

    Active systems, using a near-infrared pulse laser and a fast, gated detector, are now adopted for most long range imaging applications. This concept is often called laser-gated imaging (LGI) or burst-illumination LIDAR (BIL). The SELEX solid state detector is based on an array of HgCdTe avalanche photodiodes, and a custom-designed CMOS multiplexer to perform the fast gating and photon signal capture. This paper describes two recent developments. The first is aimed at reducing the size, weight, power and cost of steerable platforms which often have to contain a large number of electrooptic tools such as lasers, range finders, BIL, thermal imaging and visible cameras. A dual-mode infrared detector has been developed with the aim of shrinking the system to one camera. The detector can be switched to operate as a passive thermal imager, a laser-gated imager or a solar flux imager. The detector produces a sensitivity in the MW thermal band of 16-18mK and a sensitivity in the BIL mode as low as 10 photons rms, in other words close to the performance of dedicated imagers. A second development was to extend the current BIL capability to 3D. In complex scenes, with camouflage and concealment, the ability to generate 3D images provides a signal-to-clutter advantage. Also in airborne applications, especially, it is useful to have 3D information to provide agile, feedback control of the range gating in a dynamic environment. This report describes the development of the 3D detector and camera, and the results of field trials using a prototype system.

  12. Flat-panel detector-based cone beam volume CT breast imaging: detector evaluation

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Conover, David L.; Ning, Ruola

    2003-06-01

    Preliminary evaluation of large-area flat panel detectors (FPDs) indicates that FPDs have some potential advantages over film-screen and CCD-based imagers: compactness, high resolution, high frame rate, large dynamic range, small image lag (<1%), and excellent linearity (~1%). A real time large-area flat panel detector (FPD) Varian PaxScan 2520 was evaluated for cone-beam volume breast imaging (CBVCTBI) in terms of dynamic range, linearity, image lag, and spatial as well as low contrast resolution. In addition, specially made breast phantoms were imaged with our prototyped CBVCTBI system to provide real outcomes to evaluate the detector under full imaging system conditions including the x-ray source, gantry geometry, x-ray technique selection, data acquisition system and reconstruction algorithms. We have concentrated on the low kVp range (30 to 80 kVp) in the context of the breast-imaging task. For ~288 images/scan the exposure required was ~2.5mR/projection. This is equivalent to that of a conventional mammography screening exam. The results indicate that the FPD-based CBVCTBI system can achieve sufficient high- and low-contrast resolution for diagnostic CBVCT breast imaging with a clinically acceptable exposure level. The advantages of the new FPD make it a promising candidate for CBVCTBI.

  13. Musculoskeletal imaging with a prototype photon-counting detector.

    PubMed

    Gruber, M; Homolka, P; Chmeissani, M; Uffmann, M; Pretterklieber, M; Kainberger, F

    2012-01-01

    To test a digital imaging X-ray device based on the direct capture of X-ray photons with pixel detectors, which are coupled with photon-counting readout electronics. The chip consists of a matrix of 256 × 256 pixels with a pixel pitch of 55 μm. A monolithic image of 11.2 cm × 7 cm was obtained by the consecutive displacement approach. Images of embalmed anatomical specimens of eight human hands were obtained at four different dose levels (skin dose 2.4, 6, 12, 25 μGy) with the new detector, as well as with a flat-panel detector. The overall rating scores for the evaluated anatomical regions ranged from 5.23 at the lowest dose level, 6.32 at approximately 6 μGy, 6.70 at 12 μGy, to 6.99 at the highest dose level with the photon-counting system. The corresponding rating scores for the flat-panel detector were 3.84, 5.39, 6.64, and 7.34. When images obtained at the same dose were compared, the new system outperformed the conventional DR system at the two lowest dose levels. At the higher dose levels, there were no significant differences between the two systems. The photon-counting detector has great potential to obtain musculoskeletal images of excellent quality at very low dose levels.

  14. Speckle imaging with the PAPA detector. [Precision Analog Photon Address

    NASA Technical Reports Server (NTRS)

    Papaliolios, C.; Nisenson, P.; Ebstein, S.

    1985-01-01

    A new 2-D photon-counting camera, the PAPA (precision analog photon address) detector has been built, tested, and used successfully for the acquisition of speckle imaging data. The camera has 512 x 512 pixels and operates at count rates of at least 200,000/sec. In this paper, technical details on the camera are presented and some of the laboratory and astronomical results are included which demonstrate the detector's capabilities.

  15. A Photon Counting Imaging Detector for NASA Exoplanet Mission

    NASA Astrophysics Data System (ADS)

    Figer, Donald

    The key objective of the proposed project is to advance the maturity of a 256x256 pixel single-photon optical imaging detector. The detector has zero read noise and is resilient against the harsh effects of radiation in space. We expect that the device will have state-of-the-art performance in other parameters, e.g., high quantum efficiency from UV to 1 #m, low dark current, etc.

  16. Speckle imaging with the PAPA detector. [Precision Analog Photon Address

    NASA Technical Reports Server (NTRS)

    Papaliolios, C.; Nisenson, P.; Ebstein, S.

    1985-01-01

    A new 2-D photon-counting camera, the PAPA (precision analog photon address) detector has been built, tested, and used successfully for the acquisition of speckle imaging data. The camera has 512 x 512 pixels and operates at count rates of at least 200,000/sec. In this paper, technical details on the camera are presented and some of the laboratory and astronomical results are included which demonstrate the detector's capabilities.

  17. Updates on Software development for a RICH detector

    NASA Astrophysics Data System (ADS)

    Voloshin, Andrew; Benmokhtar, Fatiha; Lendacky, Andrew; Goodwill, Justin

    2017-01-01

    The CLAS12 detector at Thomas Jefferson National Accelerator Facility (TJNAF) is undergoing an upgrade. One of the improvements is the addition of a Ring Imaging Cherenkov (RICH) detector to improve particle identification in the 3-8 GeV/c momentum range. Approximately 400 multi anode photomultiplier tubes (MAPMTs) are going to be used to detect Cherenkov Radiation in the single photoelectron spectra (SPS). Software development for slow control as well as online monitoring is under development. I will be presenting my work on the development of a java based programs for a monitor and explain its interaction with a Mysql database where the MAPMTs information is stored as well as the techniques used to visualize Cherenkov rings.

  18. Monte Carlo studies for medical imaging detector optimization

    NASA Astrophysics Data System (ADS)

    Fois, G. R.; Cisbani, E.; Garibaldi, F.

    2016-02-01

    This work reports on the Monte Carlo optimization studies of detection systems for Molecular Breast Imaging with radionuclides and Bremsstrahlung Imaging in nuclear medicine. Molecular Breast Imaging requires competing performances of the detectors: high efficiency and high spatial resolutions; in this direction, it has been proposed an innovative device which combines images from two different, and somehow complementary, detectors at the opposite sides of the breast. The dual detector design allows for spot compression and improves significantly the performance of the overall system if all components are well tuned, layout and processing carefully optimized; in this direction the Monte Carlo simulation represents a valuable tools. In recent years, Bremsstrahlung Imaging potentiality in internal radiotherapy (with beta-radiopharmaceuticals) has been clearly emerged; Bremsstrahlung Imaging is currently performed with existing detector generally used for single photon radioisotopes. We are evaluating the possibility to adapt an existing compact gamma camera and optimize by Monte Carlo its performance for Bremsstrahlung imaging with photons emitted by the beta- from 90 Y.

  19. Reconstruction algorithms for optoacoustic imaging based on fiber optic detectors

    NASA Astrophysics Data System (ADS)

    Lamela, Horacio; Díaz-Tendero, Gonzalo; Gutiérrez, Rebeca; Gallego, Daniel

    2011-06-01

    Optoacoustic Imaging (OAI), a novel hybrid imaging technology, offers high contrast, molecular specificity and excellent resolution to overcome limitations of the current clinical modalities for detection of solid tumors. The exact time-domain reconstruction formula produces images with excellent resolution but poor contrast. Some approximate time-domain filtered back-projection reconstruction algorithms have also been reported to solve this problem. A wavelet transform implementation filtering can be used to sharpen object boundaries while simultaneously preserving high contrast of the reconstructed objects. In this paper, several algorithms, based on Back Projection (BP) techniques, have been suggested to process OA images in conjunction with signal filtering for ultrasonic point detectors and integral detectors. We apply these techniques first directly to a numerical generated sample image and then to the laserdigitalized image of a tissue phantom, obtaining in both cases the best results in resolution and contrast for a waveletbased filter.

  20. Residual images in charged-coupled device detectors

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Mündermann, Lars; Widenhorn, Ralf; Bodegom, Erik; McGlinn, T. C.

    2002-05-01

    We present results of a systematic study of persistent, or residual, images that occur in charged-coupled device (CCD) detectors. A phenomenological model for these residual images, also known as "ghosting," is introduced. This model relates the excess dark current in a CCD after exposure to the number of filled impurity sites which is tested for various temperatures and exposure times. We experimentally derive values for the cross section, density, and characteristic energy of the impurity sites responsible for the residual images.

  1. Development and performance of a gamma-ray imaging detector

    NASA Astrophysics Data System (ADS)

    Gálvez, J. L.; Hernanz, M.; Álvarez, J. M.; La Torre, M.; Álvarez, L.; Karelin, D.; Lozano, M.; Pellegrini, G.; Ullán, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2012-09-01

    In the last few years we have been working on feasibility studies of future instruments in the gamma-ray range, from several keV up to a few MeV. The innovative concept of focusing gamma-ray telescopes in this energy range, should allow reaching unprecedented sensitivities and angular resolution, thanks to the decoupling of collecting area and detector volume. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs), Pulsars, Active Galactic Nuclei (AGN). In order to achieve the needed performance, a gamma-ray imaging detector with mm spatial resolution and large enough efficiency is required. In order to fulfill the combined requirement of high detection efficiency with good spatial and energy resolution, an initial prototype of a gamma-ray imaging detector based on CdTe pixel detectors is being developed. It consists of a stack of several layers of CdTe detectors with increasing thickness, in order to enhance the gamma-ray absorption in the Compton regime. A CdTe module detector lies in a 11 x 11 pixel detector with a pixel pitch of 1mm attached to the readout chip. Each pixel is bump bonded to a fan-out board made of alumina (Al2O3) substrate and routed to the corresponding input channel of the readout ASIC to measure pixel position and pulse height for each incident gamma-ray photon. We will report the main features of the gamma-ray imaging detector performance such as the energy resolution for a set of radiation sources at different operating temperatures.

  2. First Results From High-Resolution Front End Electronics for Water Cherenkov Air Shower Detectors Equipped With Cyclone® V FPGA

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew

    2016-06-01

    The paper presents first results from the Front-End Board (FEB) with the biggest Cyclone® V E FPGA 5CEFA9F31I7N, supporting 8 channels sampled up to 250 MSps @ 14-bit resolution. Considered sampling for the planned upgrade of the Pierre Auger surface detector array is 120 MSps, however, the FEB has been developed with external anti-aliasing filters to keep a maximal flexibility. Six channels are targeted to the SD, two the rest for other experiments like: Auger Engineering Radio Array and additional muon counters. More channels and higher sampling generate larger size of registered events. We used the standard radio channel for a radio transmission from the detectors to the Central Data Acquisition Station (CDAS) to avoid at present a significant modification of a software in both sides: the detector and the CDAS (planned in a future for a final design). Several variants of the FPGA code were tested for 120, 160, 200 and even 240 MSps DAQ. Tests confirmed a stability and reliability of the FEB design in real pampas conditions with more than 40°C daily temperature variation and a strong sun exposition with a limited power budget only from a single solar panel. Seven FEBs have been deployed in a hexagon of test detectors on a dedicated Engineering Array.

  3. RICH Detector for Jefferson Labs CLAS12

    NASA Astrophysics Data System (ADS)

    Trotta, Richard; Torisky, Ben; Benmokhtar, Fatiha

    2015-10-01

    Jefferson Lab (Jlab) is performing a large-scale upgrade to its Continuous Electron Beam Accelerator Facility (CEBAF) up to 12GeV beams. The Large Acceptance Spectrometer (CLAS12) in Hall B is being upgraded and a new hybrid Ring Imaging Cherenkov (RICH) detector is being developed to provide better kaon - pion separation throughout the 3 to 8 GeV/c momentum range. This detector will be used for a variety of Semi-Inclusive Deep Inelastic Scattering experiments. Cherenkov light can be accurately detected by a large array of sophisticated Multi-Anode Photomultiplier Tubes (MA-PMT) and heavier particles, like kaons, will span the inner radii. We are presenting our work on the creation of the RICH's geometry within the CLAS12 java framework. This development is crucial for future calibration, reconstructions and analysis of the detector.

  4. Background measurements from balloon-born imaging CZT detectors

    NASA Astrophysics Data System (ADS)

    Jenkins, Jonathan A.; Narita, Tomohiko; Grindlay, Jonathan E.; Bloser, Peter F.; Stahle, Carl M.; Parker, Bradford H.; Barthelmy, Scott D.

    2003-03-01

    We report detector characteristics and background measurements from two prototype imaging CdZnTe (CZT) detectors flown on a scientific balloon payload in May 2001. The detectors are both platinum-contact 10 mm × 10 mm × 5 mm CZT crystals, each with a 4 × 4 array of pixels tiling the anode. One is made from IMARAD horizontal Bridgman CZT, the other from eV Products high-pressure Bridgman CZT. Both detectors were mounted side-by-side in a flip-chip configuration and read out by a 32-channel IDE VA/TA ASIC preamp/shaper. We enclosed the detectors in the same 40o field-of-view collimator used in our previously-reported September 2000 flight. I-V curves for the detectors are diode-like, and we find that the platinum contacts adhere significantly better to the CZT surfaces than gold to previosu detectors. The detectors and instrumentation performed well in a 20-hour balloon flight on 23/24 May 2001. Although we discovered a significant instrumental background component in flight, it was possible to measure and subtract this component from the spectra. The resulting IMARAD detector background spectrum reaches ~5×10-3 counts cm-2s-1keV-1 at 100 keV and has a power-law index of ~2 at hgih energies. The eV Products detector has a similar spectrum, although there is more uncertainty in the enregy scale because of calibration complications.

  5. Gamma-ray imaging with coaxial HPGe detector

    SciTech Connect

    Niedermayr, T; Vetter, K; Mihailescu, L; Schmid, G J; Beckedahl, D; Kammeraad, J; Blair, J

    2005-04-12

    We report on the first experimental demonstration of Compton imaging of gamma rays with a single coaxial high-purity germanium (HPGe) detector. This imaging capability is realized by two-dimensional segmentation of the outside contact in combination with digital pulse-shape analysis, which enables to image gamma rays in 4{pi} without employing a collimator. We are able to demonstrate the ability to image the 662keV gamma ray from a {sup 137}Cs source with preliminary event selection with an angular accuracy of 5 degree with an relative efficiency of 0.2%. In addition to the 4{pi} imaging capability, such a system is characterized by its excellent energy resolution and can be implemented in any size possible for Ge detectors to achieve high efficiency.

  6. The PICASSO digital detector for Diffraction Enhanced Imaging at ELETTRA

    NASA Astrophysics Data System (ADS)

    Arfelli, F.; Astolfo, A.; Menk, R.-H.; Rigon, L.; Zanconati, F.; De Pellegrin, A.; Chen, R. C.; Dreossi, D.; Longo, R.; Vallazza, E.; Castelli, E.

    2010-07-01

    A clinical mammography program is in progress at the medical beamline SYRMEP of the Italian synchrotron radiation laboratory ELETTRA in Trieste. A conventional screen-film system is utilized as detector for the examinations on patients. For the next experimental step a digital detector has been designed taking into account the essential requirements for mammography such as high spatial and contrast resolution, high efficiency for low dose examinations and high speed for short acquisition time. A double-layer prototype has already been tested in the frame of the PICASSO project. In addition, an analyzer crystal set-up for Diffraction Enhanced Imaging (DEI) has been available for many years at the SYRMEP beamline. Applying the DEI technique several successful experiments have been carried out in biomedical imaging and in particular in-vitro breast imaging utilizing commercially available detectors. Recently a system upgrade yielded a double-crystal analyzer set-up with improved stability and higher angular resolution. In this study the PICASSO detector has been utilized in combination with the new analyzer set-up for imaging in-vitro breast tissue samples. In order to test the potential of the combined system planar and tomographic images have been acquired and the first results are here presented.

  7. Space Radiation Detector with Spherical Geometry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2011-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  8. Space Radiation Detector with Spherical Geometry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2012-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  9. Design considerations for ultrasound detectors in photoacoustic breast imaging

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; Piras, Daniele; Singh, Mithun K. A.; van Hespen, Johan C. G.; van Veldhoven, Spiridon; Prins, Christian; van Leeuwen, Ton G.; Steenbergen, Wiendelft; Manohar, Srirang

    2013-03-01

    The ultrasound detector is the heart of a photoacoustic imaging system. In photoacoustic imaging of the breast there is a requirement to detect tumors located a few centimeters deep in tissue, where the light is heavily attenuated. Thus a sensitive ultrasound transducer is of crucial importance. As the frequency content of photoacoustic waves are inversely proportional to the dimensions of the absorbing structures, and in tissue can range from hundreds of kHz to tens of MHz, a broadband ultrasound transducer is required centered on an optimum frequency. A single element piezoelectric transducer structurally consists of the active piezoelectric material, front- and back-matching layers and a backing layer. To have both high sensitivity and broad bandwidth, the materials, their acoustic characteristics and their dimensions should be carefully chosen. In this paper, we present design considerations of an ultrasound transducer for imaging the breast such as the detector sensitivity and frequency response, which guides the selection of active material, matching layers and their geometries. We iterate between simulation of detector performance and experimental characterization of functional models to arrive at an optimized implementation. For computer simulation, we use 1D KLM and 3D finite-element based models. The optimized detector has a large-aperture possessing a center frequency of 1 MHz with fractional bandwidth of more than 80%. The measured minimum detectable pressure is 0.5 Pa, which is two orders of magnitude lower than the detector used in the Twente photoacoustic mammoscope.

  10. Detectors for single-molecule fluorescence imaging and spectroscopy

    PubMed Central

    MICHALET, X.; SIEGMUND, O.H.W.; VALLERGA, J.V.; JELINSKY, P.; MILLAUD, J.E.; WEISS, S.

    2010-01-01

    Single-molecule observation, characterization and manipulation techniques have recently come to the forefront of several research domains spanning chemistry, biology and physics. Due to the exquisite sensitivity, specificity, and unmasking of ensemble averaging, single-molecule fluorescence imaging and spectroscopy have become, in a short period of time, important tools in cell biology, biochemistry and biophysics. These methods led to new ways of thinking about biological processes such as viral infection, receptor diffusion and oligomerization, cellular signaling, protein-protein or protein-nucleic acid interactions, and molecular machines. Such achievements require a combination of several factors to be met, among which detector sensitivity and bandwidth are crucial. We examine here the needed performance of photodetectors used in these types of experiments, the current state of the art for different categories of detectors, and actual and future developments of single-photon counting detectors for single-molecule imaging and spectroscopy. PMID:20157633

  11. A Compact Imaging Detector of Polarization and Spectral Content

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Kumar, A.; Thompson, K. E.

    1993-01-01

    A new type of image detector will simultaneously analyze the polarization of light at all picture elements in a scene. The integrated Dual Imaging Detector (IDID) consists of a polarizing beam splitter bonded to a charge-coupled device (CCD), with signal-analysis circuitry and analog-to-digital converters, all integrated on a silicon chip. The polarizing beam splitter can be either a Ronchi ruling, or an array of cylindrical lenslets, bonded to a birefringent wafer. The wafer, in turn, is bonded to the CCD so that light in the two orthogonal planes of polarization falls on adjacent pairs of pixels. The use of a high-index birefringent material, e.g., rutile, allows the IDID to operate at f-numbers as high as f/3.5. Other aspects of the detector are discussed.

  12. Broadband terahertz imaging with highly sensitive silicon CMOS detectors.

    PubMed

    Schuster, Franz; Coquillat, Dominique; Videlier, Hadley; Sakowicz, Maciej; Teppe, Frédéric; Dussopt, Laurent; Giffard, Benoît; Skotnicki, Thomas; Knap, Wojciech

    2011-04-11

    This paper investigates terahertz detectors fabricated in a low-cost 130 nm silicon CMOS technology. We show that the detectors consisting of a nMOS field effect transistor as rectifying element and an integrated bow-tie coupling antenna achieve a record responsivity above 5 kV/W and a noise equivalent power below 10 pW/Hz(0.5) in the important atmospheric window around 300 GHz and at room temperature. We demonstrate furthermore that the same detectors are efficient for imaging in a very wide frequency range from ~0.27 THz up to 1.05 THz. These results pave the way towards high sensitivity focal plane arrays in silicon for terahertz imaging.

  13. BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET

    NASA Astrophysics Data System (ADS)

    Brunner, S. E.; Schaart, D. R.

    2017-06-01

    Due to detector developments in the last decade, the time-of-flight (TOF) method is now commonly used to improve the quality of positron emission tomography (PET) images. Clinical TOF-PET systems based on L(Y)SO:Ce crystals and silicon photomultipliers (SiPMs) with coincidence resolving times (CRT) between 325 ps and 400 ps FWHM have recently been developed. Before the introduction of L(Y)SO:Ce, BGO was used in many PET systems. In addition to a lower price, BGO offers a superior attenuation coefficient and a higher photoelectric fraction than L(Y)SO:Ce. However, BGO is generally considered an inferior TOF-PET scintillator. In recent years, TOF-PET detectors based on the Cherenkov effect have been proposed. However, the low Cherenkov photon yield in the order of  ˜10 photons per event complicates energy discrimination-a severe disadvantage in clinical PET. The optical characteristics of BGO, in particular its high transparency down to 310 nm and its high refractive index of  ˜2.15, are expected to make it a good Cherenkov radiator. Here, we study the feasibility of combining event timing based on Cherenkov emission with energy discrimination based on scintillation in BGO, as a potential approach towards a cost-effective TOF-PET detector. Rise time measurements were performed using a time-correlated single photon counting (TCSPC) setup implemented on a digital photon counter (DPC) array, revealing a prompt luminescent component likely to be due to Cherenkov emission. Coincidence timing measurements were performed using BGO crystals with a cross-section of 3 mm  ×  3 mm and five different lengths between 3 mm and 20 mm, coupled to DPC arrays. Non-Gaussian coincidence spectra with a FWHM of 200 ps were obtained with the 27 mm3 BGO cubes, while FWHM values as good as 330 ps were achieved with the 20 mm long crystals. The FWHM value was found to improve with decreasing temperature, while the FWTM value showed the opposite trend.

  14. BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET.

    PubMed

    Brunner, Stefan E; Schaart, Dennis

    2017-03-30

    Due to detector developments in the last decade, the time-of-flight (TOF) method is now commonly used to improve the quality of positron emission tomography (PET) images. Clinical TOF-PET systems based on L(Y)SO:Ce crystals and silicon photomultipliers (SiPMs) with coincidence resolving times (CRT) between 325 ps and 400 ps FWHM have recently been developed. Before the introduction of L(Y)SO:Ce, BGO was used in many PET systems. In addition to a lower price, BGO offers a superior attenuation coefficient and a higher photoelectric fraction than L(Y)SO:Ce. However, BGO is generally considered an inferior TOF-PET scintillator. In recent years, TOF-PET detectors based on the Cherenkov effect have been proposed. However, the low Cherenkov photon yield in the order of ∽10 photons per event complicates energy discrimination-a severe disadvantage in clinical PET. The optical characteristics of BGO, in particular its high transparency down to 310 nm and its high refractive index of ∽2.15, are expected to make it a good Cherenkov radiator. Here, we study the feasibility of combining event timing based on Cherenkov emission with energy discrimination based on scintillation in BGO, as a potential approach towards a cost-effective TOF-PET detector. Rise time measurements were performed using a time-correlated single photon counting (TCSPC) setup implemented on a digital photon counter (DPC) array, revealing a prompt luminescent component likely to be due to Cherenkov emission. Coincidence timing measurements were performed using BGO crystals with a cross-section of 3 mm × 3 mm and five different lengths between 3 mm and 20 mm, coupled to DPC arrays. Non-Gaussian coincidence spectra with a FWHM of 200 ps were obtained with the 27 mm3 BGO cubes, while FWHM values as good as 330 ps were achieved with the 20 mm long crystals. The FWHM value was found to improve with decreasing temperature, while the FWTM value showed the opposite trend.

  15. Optical and UV Sensing Sealed Tube Microchannel Plate Imaging Detectors with High Time Resolution

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Tremsin, A.; Hull, J.; Elam, J.; Mane, A.

    2014-09-01

    recently ALD MCPs with an opaque GaN photocathode (100-350nm range) on the MCP surface has been demonstrated in a sealed tube configuration. These ALD MCPs show a stable and permanent 10x gain increase during tube processing. Efforts are also underway to establish ALD MCP configurations with large area sealed tubes from 5cm up to 20cm in size. We will discuss these efforts and their performance characteristics. We will discuss how we are applying these detector system developments to a number of applications. This includes ground based instruments for observations of transient and variable astronomical objects, as well as implementation in satellite instruments for earth atmospheric and solar observations. The XS 18mm sealed tube detectors are being implemented for night time remote reconnaissance and biological single-molecule fluorescence lifetime imaging microscopy. Related efforts also include development of large (20cm) sealed tubes for Cherenkov light detection and large area focal plane imagers, and GaN sealed tube devices are candidates for future astronomical space based UV imaging and spectroscopy.

  16. Development of high resolution imaging detectors for x ray astronomy

    NASA Technical Reports Server (NTRS)

    Murray, S. S.; Schwartz, D. A.

    1992-01-01

    This final report summarizes our past activities and discusses the work performed over the period of 1 April 1990 through 1 April 1991 on x-ray optics, soft x-ray (0.1 - 10 KeV) imaging detectors, and hard x-ray (10 - 300 KeV) imaging detectors. If microchannel plates (MCPs) can be used to focus x-rays with a high efficiency and good angular resolution, they will revolutionize the field of x-ray optics. An x-ray image of a point source through an array of square MCP pores compared favorably with our ray tracing model for the MCP. Initial analysis of this image demonstrates the feasibility of MCPs for soft x-rays. Our work continues with optimizing the performance of our soft x-ray MCP imaging detectors. This work involves readout technology that should provide improved MCP readout devices (thin film crossed grid, curved, and resistive sheets), defect removal in MCPs, and photocathode optimization. In the area of hard x-ray detector development we have developed two different techniques for producing a CsI photocathode thickness of 10 to 100 microns, such that it is thick enough to absorb the high energy x-rays and still allow the photoelectrons to escape to the top MCP of a modified soft x-ray imaging detector. The methods involve vacuum depositing a thick film of CsI on a strong back, and producing a converter device that takes the place of the photocathode.

  17. A low-energy gamma-ray imaging detector

    NASA Technical Reports Server (NTRS)

    Yin, L. I.; Trombka, J. I.; Seltzer, S. M.

    1979-01-01

    We describe a hard-X-ray/soft-gamma-ray imaging detector, incorporating a microchannel-plate (MCP) electron multiplier for possible use in future telescopes. In contrast to previous attempts using MCP's this approach promises to achieve high quantum detection efficiencies in addition to high spatial and temporal resolution. Preliminary results indicate not only the capability of simultaneous imaging and single-photon counting, but also coarse energy resolution.

  18. Design of a Cherenkov telescope for the measurement of PCR composition above 1 PeV

    NASA Astrophysics Data System (ADS)

    Borisov, A. S.; Galkin, V. I.

    2013-06-01

    The problem of PCR Composition at super high energies is far from being solved.EAS Cherenkov light spatial-angular distribution (CL SAD) can yield important information on the primary mass. In order to use EAS CL SAD for the study of PCR composition one needs a set of imaging telescopes with the appropriate parameters supported by a dense net of fast optical detectors capable of measuring EAS Cherenkov light pulses. On the basis of full Monte-Carlo simulations the pixel size of imaging telescopes is optimized for a specific observation level ˜4km which is typical for the Eastern Pamir mountains. Another goal to be pursued by the new detector array is the search for ultra high energy gamma ray sources and this is where the imaging technique can help a lot. A simple criterion is introduced to recognize gamma-quanta against the proton background and its performance, once again analyzed using simulated events, sets certain limits to the pixel size.

  19. Search for Proton Decay via {ital p} {r_arrow} {ital e}{sup +}{ital {pi}}{sup 0} in a Large Water Cherenkov Detector

    SciTech Connect

    Shiozawa, M.; Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; Kobayashi, K.; Kobayashi, Y.; Koshio, Y.; Miura, M.; Nakahata, M.; Nakayama, S.; Okada, A.; Oketa, M.; Okumura, K.; Ota, M.; Sakurai, N.; Suzuki, Y.; Takeuchi, Y.; Totsuka, Y.; Yamada, S.; Earl, M.; Habig, A.; Kearns, E.; Messier, M.D.; Scholberg, K.; Stone, J.L.; Sulak, L.R.; Walter, C.W.; Goldhaber, M.; Barszczak, T.; Gajewski, W.; Halverson, P.G.; Hsu, J.; Kropp, W.R.; Price, L.R.; Reines, F.; Sobel, H.W.; Vagins, M.R.; Haines, T.J.; Kielczewska, D.; Ganezer, K.S.; Keig, W.E.; Ellsworth, R.W.; Tasaka, S.; Flanagan, J.W.; Kibayashi, A.; Learned, J.G.; Matsuno, S.; Stenger, V.; Takemori, D.; Ishii, T.; Kanzaki, J.; Kobayashi, T.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Sakai, A.; Sakuda, M.; Sasaki, O.; Echigo, S.; Kohama, M.; Suzuki, A.T.; Haines, T.J.; Blaufuss, E.; and others

    1998-10-01

    We have searched for proton decay via p{r_arrow}e{sup +}{pi}{sup 0} using data from a 25.5 kton{center_dot}yr exposure of the Super-Kamiokande detector. We find no candidate events with an expected background induced by atmospheric neutrinos of 0.1thinspthinspevents. From these data, we set a lower limit on the partial lifetime of the proton {tau}/B{sub p{r_arrow}e{sup +}{pi}{sup 0}} to be 1.6{times}10{sup 33} years at a 90{percent} confidence level. {copyright} {ital 1998} {ital The American Physical Society }

  20. Speckle imaging with the MAMA detector: Preliminary results

    NASA Technical Reports Server (NTRS)

    Horch, E.; Heanue, J. F.; Morgan, J. S.; Timothy, J. G.

    1994-01-01

    We report on the first successful speckle imaging studies using the Stanford University speckle interferometry system, an instrument that uses a multianode microchannel array (MAMA) detector as the imaging device. The method of producing high-resolution images is based on the analysis of so-called 'near-axis' bispectral subplanes and follows the work of Lohmann et al. (1983). In order to improve the signal-to-noise ratio in the bispectrum, the frame-oversampling technique of Nakajima et al. (1989) is also employed. We present speckle imaging results of binary stars and other objects from V magnitude 5.5 to 11, and the quality of these images is studied. While the Stanford system is capable of good speckle imaging results, it is limited by the overall quantum efficiency of the current MAMA detector (which is due to the response of the photocathode at visible wavelengths and other detector properties) and by channel saturation of the microchannel plate. Both affect the signal-to-noise ratio of the power spectrum and bispectrum.

  1. Speckle imaging with the MAMA detector: Preliminary results

    NASA Technical Reports Server (NTRS)

    Horch, E.; Heanue, J. F.; Morgan, J. S.; Timothy, J. G.

    1994-01-01

    We report on the first successful speckle imaging studies using the Stanford University speckle interferometry system, an instrument that uses a multianode microchannel array (MAMA) detector as the imaging device. The method of producing high-resolution images is based on the analysis of so-called 'near-axis' bispectral subplanes and follows the work of Lohmann et al. (1983). In order to improve the signal-to-noise ratio in the bispectrum, the frame-oversampling technique of Nakajima et al. (1989) is also employed. We present speckle imaging results of binary stars and other objects from V magnitude 5.5 to 11, and the quality of these images is studied. While the Stanford system is capable of good speckle imaging results, it is limited by the overall quantum efficiency of the current MAMA detector (which is due to the response of the photocathode at visible wavelengths and other detector properties) and by channel saturation of the microchannel plate. Both affect the signal-to-noise ratio of the power spectrum and bispectrum.

  2. Novel detector for portal imaging in radiation therapy

    NASA Astrophysics Data System (ADS)

    Ostling, Janina; Wallmark, M.; Brahme, Anders; Danielsson, Mats; Iacobaeus, Christian; Fonte, P.; Peskov, Vladimir N.

    2000-04-01

    We are developing a novel concept for portal imaging that would allow for on-line control and verification of the radiation treatment of cancer patients both at diagnostic and therapeutic energies. This device will consist of two consecutive detectors confided in one gas chamber: a KeV- photon detector, which can visualize the internal soft tissue of the patient, and an MeV-photon detector, which will measure the absolute intensity of the therapeutic beam and its position with respect to the tumor and normal tissues. Both detectors are based on gas and solid photon to electron converters combined with recently invented gas electron multipliers. The device will have a common charge collecting pad-type readout plate equipped with ASIC-based electronics for both detectors. A first simplified prototype device has recently been built and extensively tested. Special efforts were made to find conditions for a safe and reliable operation of the readout electronics that can be damaged by plasma-type discharge effects induced specially at high dose rates. Results obtained so far indicate that our new detector concept may satisfy all requirements on advanced therapy beam monitoring systems.

  3. Energy dispersive photon counting detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Barber, William C.; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasidharan; Nygard, Einar; Iwanczyk, Jan S.

    2013-09-01

    We report on our efforts toward the development of silicon (Si) strip detectors for energy-resolved clinical breast imaging. Typically, x-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a- Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting silicon Si strip detectors. Mammography requires high flux from the x-ray generator, therefore, in order to achieve energy resolved single photon counting, a high output count rate (OCR) for the detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions. We present our methods and results from the optimization of prototype detectors based on Si strip structures. We describe the detector optimization and the development of ASIC readout electronics that provide the required spatial resolution, low noise, high count rate capabilities and minimal power consumption.

  4. Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector

    PubMed Central

    AL Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul

    2015-01-01

    There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy. PMID:25688285

  5. Autoradiography imaging in targeted alpha therapy with Timepix detector.

    PubMed

    A L Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul

    2015-01-01

    There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy.

  6. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  7. Study on the thermal imaging application of quantum cascade detectors

    NASA Astrophysics Data System (ADS)

    Zhai, Shen-Qiang; Liu, Jun-Qi; Wang, Xue-Jiao; Tan, Song; Liu, Feng-Qi; Wang, Zhan-Guo

    2014-03-01

    A 2D mechanical scanning setup was constructed, and was used to evaluate the potential of quantum cascade detector (QCD) for IR imaging. The peak responsivity of the studied QCD is 22.3 mA/W at 9.3 μm, and the Noise Equivalent Power (NEP) reaches 6.7×10-10W/Hz at temperature of 82 K. The Noise Equivalent Temperature Difference (NETD) for this imaging system is estimated to be 102.6 mK. With this experimental setup, thermal images of an operating electric soldering iron and a projection lamp at about 310 K are obtained. The image of the projection lamp demonstrates the feasibility of human body imaging with this QCD. Our research provides a proof-of-concept demonstration of thermal imaging with QCDs and displays that QCDs are potentially useful for thermal imaging applications.

  8. SWIR hyperspectral imaging detector for surface residues

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew P.; Mangold, Paul; Gomer, Nathaniel; Klueva, Oksana; Treado, Patrick

    2013-05-01

    ChemImage has developed a SWIR Hyperspectral Imaging (HSI) sensor which uses hyperspectral imaging for wide area surveillance and standoff detection of surface residues. Existing detection technologies often require close proximity for sensing or detecting, endangering operators and costly equipment. Furthermore, most of the existing sensors do not support autonomous, real-time, mobile platform based detection of threats. The SWIR HSI sensor provides real-time standoff detection of surface residues. The SWIR HSI sensor provides wide area surveillance and HSI capability enabled by liquid crystal tunable filter technology. Easy-to-use detection software with a simple, intuitive user interface produces automated alarms and real-time display of threat and type. The system has potential to be used for the detection of variety of threats including chemicals and illicit drug substances and allows for easy updates in the field for detection of new hazardous materials. SWIR HSI technology could be used by law enforcement for standoff screening of suspicious locations and vehicles in pursuit of illegal labs or combat engineers to support route-clearance applications- ultimately to save the lives of soldiers and civilians. In this paper, results from a SWIR HSI sensor, which include detection of various materials in bulk form, as well as residue amounts on vehicles, people and other surfaces, will be discussed.

  9. Detection of atmospheric Cherenkov radiation using solar heliostat mirrors

    NASA Astrophysics Data System (ADS)

    Ong, R. A.; Bhattacharya, D.; Covault, C. E.; Dixon, D. D.; Gregorich, D. T.; Hanna, D. S.; Oser, S.; Québert, J.; Smith, D. A.; Tümer, O. T.; Zych, A. D.

    1996-10-01

    There is considerable interest world-wide in developing large area atmospheric Cherenkov detectors for ground-based gamma-ray astronomy. This interest stems, in large part, from the fact that the gamma-ray energy region between 20 and 250 GeV is unexplored by any experiment. Atmospheric Cherenkov detectors offer a possible way to explore this region, but large photon collection areas are needed to achieve low energy thresholds. We are developing an experiment using the heliostat mirrors of a solar power plant as the primary collecting element. As part of this development, we built a detector using four heliostat mirrors, a secondary Fresnel lens, and a fast photon detection system. In November 1994, we used this detector to record atmospheric Cherenkov radiation produced by cosmic ray particles showering in the atmosphere. The detected rate of cosmic ray events was consistent with an energy threshold near 1 TeV. The data presented here represent the first detection of atmospheric Cherenkov radiation using solar heliostats viewed from a central tower.

  10. DUNBID, the Delft University neutron backscattering imaging detector.

    PubMed

    Bom, V R; van Eijk, C W E; Ali, M A

    2005-01-01

    In the search for low-metallic land mines, the neutron backscattering technique may be applied if the soil is sufficiently dry. An advantage of this method is the speed of detection: the scanning speed may be made comparable to that of a metal detector. A two-dimensional position sensitive detector is tested to obtain an image of the back scattered thermal neutron radiation. Results of experiments using a radionuclide neutron source are presented. The on-mine to no-mine signal ratio can be improved by the application of a window on the neutron time-of-flight. Results using a pulsed neutron generator are also presented.

  11. Mirror position determination for the alignment of Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Adam, J.; Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Dmytriiev, A.; Domke, M.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Linhoff, L.; Mannheim, K.; Mueller, S. A.; Neise, D.; Neronov, A.; Noethe, M.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Walter, R.

    2017-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures to map the faint Cherenkov light emitted in extensive air showers onto their image sensors. Segmented reflectors fulfill these needs using mass produced and light weight mirror facets. However, as the overall image is the sum of the individual mirror facet images, alignment is important. Here we present a method to determine the mirror facet positions on a segmented reflector in a very direct way. Our method reconstructs the mirror facet positions from photographs and a laser distance meter measurement which goes from the center of the image sensor plane to the center of each mirror facet. We use our method to both align the mirror facet positions and to feed the measured positions into our IACT simulation. We demonstrate our implementation on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).

  12. The Edge Detectors Suitable for Retinal OCT Image Segmentation

    PubMed Central

    Yang, Jing; Gao, Qian; Zhou, Sheng

    2017-01-01

    Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology.

  13. Detector defect correction of medical images on graphics processors

    NASA Astrophysics Data System (ADS)

    Membarth, Richard; Hannig, Frank; Teich, Jürgen; Litz, Gerhard; Hornegger, Heinz

    2011-03-01

    The ever increasing complexity and power dissipation of computer architectures in the last decade blazed the trail for more power efficient parallel architectures. Hence, such architectures like field-programmable gate arrays (FPGAs) and particular graphics cards attained great interest and are consequently adopted for parallel execution of many number crunching loop programs from fields like image processing or linear algebra. However, there is little effort to deploy barely computational, but memory intensive applications to graphics hardware. This paper considers a memory intensive detector defect correction pipeline for medical imaging with strict latency requirements. The image pipeline compensates for different effects caused by the detector during exposure of X-ray images and calculates parameters to control the subsequent dosage. So far, dedicated hardware setups with special processors like DSPs were used for such critical processing. We show that this is today feasible with commodity graphics hardware. Using CUDA as programming model, it is demonstrated that the detector defect correction pipeline consisting of more than ten algorithms is significantly accelerated and that a speedup of 20x can be achieved on NVIDIA's Quadro FX 5800 compared to our reference implementation. For deployment in a streaming application with steadily new incoming data, it is shown that the memory transfer overhead of successive images to the graphics card memory is reduced by 83% using double buffering.

  14. Multi-pinhole SPECT Imaging with Silicon Strip Detectors

    PubMed Central

    Peterson, Todd E.; Shokouhi, Sepideh; Furenlid, Lars R.; Wilson, Donald W.

    2010-01-01

    Silicon double-sided strip detectors offer outstanding instrinsic spatial resolution with reasonable detection efficiency for iodine-125 emissions. This spatial resolution allows for multiple-pinhole imaging at low magnification, minimizing the problem of multiplexing. We have conducted imaging studies using a prototype system that utilizes a detector of 300-micrometer thickness and 50-micrometer strip pitch together with a 23-pinhole collimator. These studies include an investigation of the synthetic-collimator imaging approach, which combines multiple-pinhole projections acquired at multiple magnifications to obtain tomographic reconstructions from limited-angle data using the ML-EM algorithm. Sub-millimeter spatial resolution was obtained, demonstrating the basic validity of this approach. PMID:20953300

  15. Pixel detectors for x-ray imaging spectroscopy in space

    NASA Astrophysics Data System (ADS)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  16. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  17. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  18. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  19. The High Altitude Water Cherenkov (HAWC) Observatory

    NASA Astrophysics Data System (ADS)

    Springer, Wayne

    2014-06-01

    The High Altitude Water Cherenkov (HAWC) observatory is a continuously operated, wide field of view detector based upon a water Cherenkov technology developed by the Milagro experiment. HAWC observes, at an elevation of 4100 m on Sierra Negra Mountain in Mexico, extensive air showers initiated by gamma and cosmic rays. The completed detector will consist of 300 closely spaced water tanks each instrumented with four photomultiplier tubes that provide timing and charge information used to reconstruct energy and arrival direction. HAWC has been optimized to observe transient and steady emission from point as well as diffuse sources of gamma rays in the energy range from several hundred GeV to several hundred TeV. Studies in solar physics as well as the properties of cosmic rays will also be performed. HAWC has been making observations at various stages of deployment since completion of 10% of the array in summer 2012. A discussion of the detector design, science capabilities, current construction/commissioning status, and first results will be presented...

  20. Imaging performance of the hybrid pixel detectors XPAD3-S

    NASA Astrophysics Data System (ADS)

    Brunner, F. Cassol; Clemens, J. C.; Hemmer, C.; Morel, C.

    2009-03-01

    Hybrid pixel detectors, originally developed for tracking particles in high-energy physics experiments, have recently been used in material sciences and macromolecular crystallography. Their capability to count single photons and to apply a threshold on the photon energy suggests that they could be optimal digital x-ray detectors in low energy beams such as for small animal computed tomography (CT). To investigate this issue, we have studied the imaging performance of photon counting hybrid pixel detectors based on the XPAD3-S chip. Two detectors are considered, connected either to a Si or to a CdTe sensor, the latter being of interest for its higher efficiency. Both a standard 'International Electrotechnical Commission' (IEC) mammography beam and a beam used for mouse CT results published in the literature are employed. The detector stability, linearity and noise are investigated as a function of the dose for several imaging exposures (~0.1-400 µGy). The perfect linearity of both detectors is confirmed, but an increase in internal noise for counting statistics higher than ~5000 photons has been found, corresponding to exposures above ~110 µGy and ~50 µGy for the Si and CdTe sensors, respectively. The noise power spectrum (NPS), the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are then measured for two energy threshold configurations (5 keV and 18 keV) and three doses (~3, 30 and 300 µGy), in order to obtain a complete estimation of the detector performances. In general, the CdTe sensor shows a clear superiority with a maximal DQE(0) of ~1, thanks to its high efficiency (~100%). The DQE of the Si sensor is more dependent on the radiation quality, due to the energy dependence of its efficiency its maximum is ~0.4 with respect to the softer radiation. Finally, we compare the XPAD3-S DQE with published curves of other digital devices in a similar radiation condition. The XPAD3-S/CdTe detector appears to be the best with the highest

  1. Imaging performance of the hybrid pixel detectors XPAD3-S.

    PubMed

    Brunner, F Cassol; Clemens, J C; Hemmer, C; Morel, C

    2009-03-21

    Hybrid pixel detectors, originally developed for tracking particles in high-energy physics experiments, have recently been used in material sciences and macromolecular crystallography. Their capability to count single photons and to apply a threshold on the photon energy suggests that they could be optimal digital x-ray detectors in low energy beams such as for small animal computed tomography (CT). To investigate this issue, we have studied the imaging performance of photon counting hybrid pixel detectors based on the XPAD3-S chip. Two detectors are considered, connected either to a Si or to a CdTe sensor, the latter being of interest for its higher efficiency. Both a standard 'International Electrotechnical Commission' (IEC) mammography beam and a beam used for mouse CT results published in the literature are employed. The detector stability, linearity and noise are investigated as a function of the dose for several imaging exposures ( approximately 0.1-400 microGy). The perfect linearity of both detectors is confirmed, but an increase in internal noise for counting statistics higher than approximately 5000 photons has been found, corresponding to exposures above approximately 110 microGy and approximately 50 microGy for the Si and CdTe sensors, respectively. The noise power spectrum (NPS), the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are then measured for two energy threshold configurations (5 keV and 18 keV) and three doses ( approximately 3, 30 and 300 microGy), in order to obtain a complete estimation of the detector performances. In general, the CdTe sensor shows a clear superiority with a maximal DQE(0) of approximately 1, thanks to its high efficiency ( approximately 100%). The DQE of the Si sensor is more dependent on the radiation quality, due to the energy dependence of its efficiency its maximum is approximately 0.4 with respect to the softer radiation. Finally, we compare the XPAD3-S DQE with published curves of

  2. An Integrated Imaging Detector of Polarization and Spectral Content

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Thompson, K. E.

    1993-01-01

    A new type of image detector has been designed to simultaneously analyze the polarization of light at all picture elements in a scene. The Integrated Dual Imaging Detector (IDID) consists of a polarizing beamsplitter bonded to a charge-coupled device (CCD), with signal-analysis circuitry and analog-to-digital converters, all integrated on a silicon chip. It should be capable of 1:10(exp 4) polarization discrimination. The IDID should simplify the design and operation of imaging polarimeters and spectroscopic imagers used, for example, in atmospheric and solar research. Innovations in the IDID include (1) two interleaved 512 x 1024-pixel imaging arrays (one for each polarization plane); (2) large dynamic range (well depth of 10(exp 6) electrons per pixel); (3) simultaneous readout of both images at 10 million pixels per second each; (4) on-chip analog signal processing to produce polarization maps in real time; (5) on-chip 10-bit A/D conversion. When used with a lithium-niobate Fabry-Perot etalon or other color filter that can encode spectral information as polarization, the IDID can collect and analyze simultaneous images at two wavelengths. Precise photometric analysis of molecular or atomic concentrations in the atmosphere is one suggested application. When used in a solar telescope, the IDID will charge the polarization, which can then be converted to maps of the vector magnetic fields on the solar surface.

  3. Terahertz detectors for long wavelength multi-spectral imaging.

    SciTech Connect

    Lyo, Sungkwun Kenneth; Wanke, Michael Clement; Reno, John Louis; Shaner, Eric Arthur; Grine, Albert D.

    2007-10-01

    The purpose of this work was to develop a wavelength tunable detector for Terahertz spectroscopy and imaging. Our approach was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays. When this work began, grating-gate gate detectors, while having many promising characteristics, had a noise-equivalent power (NEP) of only 10{sup -5} W/{radical}Hz. Over the duration of this project, we have obtained a true NEP of 10{sup -8} W/{radical}Hz and a scaled NEP of 10{sup -9}W/{radical}Hz. The ultimate goal for these detectors is to reach a NEP in the 10{sup -9{yields}-10}W/{radical}Hz range; we have not yet seen a roadblock to continued improvement.

  4. Electron imaging with Medipix2 hybrid pixel detector.

    PubMed

    McMullan, G; Cattermole, D M; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 microm x 55 microm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 microm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach approximately 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach approximately 35% of that expected for a perfect detector (4/pi(2)). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/pi). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses.

  5. Some recent trends in the evolution of gaseous detectors

    NASA Astrophysics Data System (ADS)

    Charpak, G.

    1982-05-01

    The emission of VUV light by electrons drifting in intense electric fields, with or without ionizing collisions, plays an important role in a variety of new classes of gaseous detectors, which are briefly analysed. New types of X-ray detectors with high-energy resolution, 8% fwhm at 6 keV, 1 mm spatial resolution, have been built. Large-surface VUV imaging photon detectors have important applications in Cherenkov ring imaging. Multistep avalanche chambers, invented for high-rate applications, appear to be a useful ingredient for single-photon detection, and find surprizing applications in applied fields such as high-accuracy chromatography or thermal neutron localization.

  6. The RICH detector for CLAS12 at Jefferson Lab

    SciTech Connect

    Pappalardo, Luciano L.

    2014-06-01

    The CLAS12 spectrometer at JLab will offer unique possibilities to study the 3D nucleon structure in terms of TMDs and GPDs in the poorly explored valence region, and to perform high precision hadron spectroscopy. A large area ring-imaging Cherenkov detector has been designed to achieve the required hadron identification capability in the momentum range 3-8 GeV/c. The detector, based on a novel hybrid imaging design, foresees an aerogel radiator and an array of multi-anode photomultipliers. The detector concept and preliminary results of test-beams on a prototype are presented.

  7. Evaluation of cassette-based digital radiography detectors using standardized image quality metrics: AAPM TG-150 Draft Image Detector Tests.

    PubMed

    Li, Guang; Greene, Travis C; Nishino, Thomas K; Willis, Charles E

    2016-09-08

    The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region-of-interest (ROI)-based techniques to measure nonuniformity, minimum signal-to-noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX-1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG-150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG-150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG-150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG-150 tests can be

  8. Hybrid CMOS SiPIN detectors as astronomical imagers

    NASA Astrophysics Data System (ADS)

    Simms, Lance Michael

    Charge Coupled Devices (CCDs) have dominated optical and x-ray astronomy since their inception in 1969. Only recently, through improvements in design and fabrication methods, have imagers that use Complimentary Metal Oxide Semiconductor (CMOS) technology gained ground on CCDs in scientific imaging. We are now in the midst of an era where astronomers might begin to design optical telescope cameras that employ CMOS imagers. The first three chapters of this dissertation are primarily composed of introductory material. In them, we discuss the potential advantages that CMOS imagers offer over CCDs in astronomical applications. We compare the two technologies in terms of the standard metrics used to evaluate and compare scientific imagers: dark current, read noise, linearity, etc. We also discuss novel features of CMOS devices and the benefits they offer to astronomy. In particular, we focus on a specific kind of hybrid CMOS sensor that uses Silicon PIN photodiodes to detect optical light in order to overcome deficiencies of commercial CMOS sensors. The remaining four chapters focus on a specific type of hybrid CMOS Silicon PIN sensor: the Teledyne Hybrid Visible Silicon PIN Imager (HyViSI). In chapters four and five, results from testing HyViSI detectors in the laboratory and at the Kitt Peak 2.1m telescope are presented. We present our laboratory measurements of the standard detector metrics for a number of HyViSI devices, ranging from 1k×1k to 4k×4k format. We also include a description of the SIDECAR readout circuit that was used to control the detectors. We then show how they performed at the telescope in terms of photometry, astrometry, variability measurement, and telescope focusing and guiding. Lastly, in the final two chapters we present results on detector artifacts such as pixel crosstalk, electronic crosstalk, and image persistence. One form of pixel crosstalk that has not been discussed elsewhere in the literature, which we refer to as Interpixel Charge

  9. Radiography image detector capability in MCNP4B{trademark}

    SciTech Connect

    Snow, E.C.; Court, J.D.

    1998-12-31

    For some time now, people have been interested in adding a capability to the MCNP code to provide computational simulations of imagery such as x-ray images or pinhole projections of an object from an internal or external source. The main focus of these interests are in the ability to generate the direct or source contribution to the image, in addition to the total image obtained from both scattered and direct contributions. With this ability, simulations can be done to determine methods for image enhancement or to extract a direct image from one composed of direct, scattered, and background contributions. A patch extending the existing point detector capabilities in MCNP has been created to provide radiography-type imagery as a tally option in MCNP. In addition to the patch available to MCNP4B, this feature is being considered for permanent inclusion in MCNPX, the high-energy transport version of MCNP.

  10. Detector blur associated with MeV radiographic imaging systems

    NASA Astrophysics Data System (ADS)

    Baker, Stuart A.; Lutz, Stephen S.; Smalley, Duane D.; Brown, Kristina K.; Danielson, Jeremy; Haines, Todd J.; Howe, Russell A.; Mitchell, Stephen E.; Morgan, Dane; Schultz, Larry J.

    2015-08-01

    We are investigating scintillator performance in radiographic imaging systems at x-ray endpoint energies of 0.4 and 2.3 MeV in single-pulse x-ray machines. The effect of scene magnification and geometric setup will be examined along with differences between the detector response of radiation and optical scatter. Previous discussion has reviewed energy absorption and efficiency of various imaging scintillators with a 2.3 MeV x-ray source. The focal point of our study is to characterize scintillator blur to refine system models. Typical detector geometries utilize thin tiled LYSO:Ce (cerium-doped lutetium yttrium orthosilicate) assembled in a composite mosaic. Properties of individual tiles are being studied to understand system resolution effects present in the experimental setup. Comparison of two different experiments with different geometric configurations is examined. Results are then compared to different scene magnifications generated in a Monte-Carlo simulation.

  11. Fabrication of an X-Ray Imaging Detector

    NASA Technical Reports Server (NTRS)

    Alcorn, G. E.; Burgess, A. S.

    1986-01-01

    X-ray detector array yields mosaic image of object emitting 1- to 30-keV range fabricated from n-doped silicon wafer. In proposed fabrication technique, thin walls of diffused n+ dopant divide wafer into pixels of rectangular cross section, each containing central electrode of thermally migrated p-type metal. This pnn+ arrangement reduces leakage current by preventing transistor action caused by pnp structure of earlier version.

  12. Optical butting of linear infrared detector array for pushbroom imager

    NASA Astrophysics Data System (ADS)

    Qiu, Minpu; Ma, Wenpo

    2017-02-01

    High resolution and large FOV represents the developing trends of space optical imaging systems, Considering the characters of infrared optical systems, A low cost and low technical risk method of optical butting concept which offer the promise of butting smaller arrays into long linear detector assemblies is presented in this paper, the design method of optical butting is described, and a hypothetical system is demonstrated as well.

  13. Fabrication of an X-Ray Imaging Detector

    NASA Technical Reports Server (NTRS)

    Alcorn, G. E.; Burgess, A. S.

    1986-01-01

    X-ray detector array yields mosaic image of object emitting 1- to 30-keV range fabricated from n-doped silicon wafer. In proposed fabrication technique, thin walls of diffused n+ dopant divide wafer into pixels of rectangular cross section, each containing central electrode of thermally migrated p-type metal. This pnn+ arrangement reduces leakage current by preventing transistor action caused by pnp structure of earlier version.

  14. SLAC Large Detector (SLD) Image and Event Display Collections

    DOE Data Explorer

    Perl, Joseph; Cowan, Ray; Johnson, Tony

    The SLD makes use of the unique capabilities of the Stanford Linear Collider (SLC) to perform studies of polarized Z particles produced in collisions between electrons and positrons. The SLD Event Display Collection shows computer generated pictures of a number of Z particle decays as reconstructed by the SLD detector. More than 90 images, each in several formats, captured from 1991 - 1996 events, are archived here. There are also figures and data plots available.

  15. Construction and testing of the SLD Cerenkov Ring Imaging Detector

    SciTech Connect

    Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Williams, D.A.; Zucchelli, P. . Inst. for Particle Physics); Whitaker, J.S.; Wilson, R.J. . Dept. of Physics); Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Morrison, R.; Witherell, M.; Yellin, S. . Dept. of Physics); Johns

    1990-01-01

    We report on the construction of the Cerenkov Ring Imaging Detector (CRID) for the SLD experiment at the SLAC Linear Collider and the testing of its components. We include results from testing the drift boxes, liquid radiator trays, and mirrors for the barrel CRID. We also discuss development of the support systems essential for the operation of the CRID: gas and liquid recirculator systems and monitoring. 15 refs., 9 figs.

  16. Rare Events searches with Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Doro, Michele

    2017-03-01

    Ground-based Imaging Cherenkov Telescope Arrays observe the Cherenkov radiation emitted in extended atmospheric showers generated by cosmic gamma rays in the TeV regime. The rate of these events is normally overwhelmed by 2-3 orders of magnitude more abundant cosmic rays induced showers. A large fraction of these "back-ground" events is vetoed at the on-line trigger level, but a substantial fraction still goes through data acquisition system and is saved for the off-line reconstruction. What kind of information those events carry, normally rejected in the analysis? Is there the possibility that an exotic signature is hidden in those data? In the contribution, some science cases, and the problems related to the event reconstruction for the current and future generation of these telescopes will be discussed.

  17. ctools: Cherenkov Telescope Science Analysis Software

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; Mayer, Michael; Deil, Christoph; Buehler, Rolf; Bregeon, Johan; Martin, Pierrick

    2016-01-01

    ctools provides tools for the scientific analysis of Cherenkov Telescope Array (CTA) data. Analysis of data from existing Imaging Air Cherenkov Telescopes (such as H.E.S.S., MAGIC or VERITAS) is also supported, provided that the data and response functions are available in the format defined for CTA. ctools comprises a set of ftools-like binary executables with a command-line interface allowing for interactive step-wise data analysis. A Python module allows control of all executables, and the creation of shell or Python scripts and pipelines is supported. ctools provides cscripts, which are Python scripts complementing the binary executables. Extensions of the ctools package by user defined binary executables or Python scripts is supported. ctools are based on GammaLib (ascl:1110.007).

  18. The Tunka detector complex: from cosmic-ray to gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Budnev, N.; Astapov, I.; Barbashina, N.; Bogdanov, A.; Bogorodskii, D.; Boreyko, V.; Büker, M.; Brückner, M.; Chiavassa, A.; Chvalaev, O.; Gress, O.; Gress, T.; Dyachok, A.; Epimakhov, S.; Gafatov, A.; Gorbunov, N.; Grebenyuk, V.; Grinuk, A.; Haungs, A.; Hiller, R.; Horns, D.; Huege, T.; Ivanova, A.; Kalinin, A.; Karpov, N.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kirichkov, N.; Kiryuhin, S.; Kleifges, M.; Kokoulin, R.; Komponiest, K.; Konstantinov, A.; Konstantinov, E.; Korobchenko, A.; Korosteleva, E.; Kostunin, D.; Kozhin, V.; Krömer, O.; Kunnas, M.; Kuzmichev, L.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigall, R.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Platonov, V.; Poleschuk, V.; Popova, E.; Porelli, A.; Prosin, V.; Ptuskin, V.; Rubtsov, G.; Rühle, C.; Samoliga, V.; Satunin, P.; Savinov, V.; Saunkin, A.; Schröder, F.; Semeney, Yu; Shaibonov (junior, B.; Silaev, A.; Silaev (junior, A.; Skurikhin, A.; Slucka, V.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Voronin, D.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Yashin, I.

    2015-08-01

    TAIGA stands for “Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy” and is a project to build a complex, hybrid detector system for ground-based gamma- ray astronomy from a few TeV to several PeV, and for cosmic-ray studies from 100 TeV to 1 EeV. TAIGA will search for ”PeVatrons” (ultra-high energy gamma-ray sources) and measure the composition and spectrum of cosmic rays in the knee region (100 TeV - 10 PeV) with good energy resolution and high statistics. TAIGA will include Tunka-HiSCORE (an array of wide-angle air Cherenkov stations), an array of Imaging Atmospheric Cherenkov Telescopes, an array of particle detectors, both on the surface and underground, and the TUNKA-133 air Cherenkov array.

  19. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    SciTech Connect

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2016-09-11

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillation light yield was measured to be(1.01±0.12)×103photons/MeV.

  20. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    DOE PAGES

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; ...

    2016-09-11

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillationmore » light yield was measured to be(1.01±0.12)×103photons/MeV.« less

  1. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    SciTech Connect

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2016-09-11

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillation light yield was measured to be(1.01±0.12)×103photons/MeV.

  2. Hybrid Pixel Detectors for gamma/X-ray imaging

    NASA Astrophysics Data System (ADS)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  3. Development of CRID (Cerenkov Ring Imaging Detector) single electron wire detector

    SciTech Connect

    Aston, D.; Bean, A.; Bienz, T.; Bird, F.; Caldwell, D.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Dasu, S.; Dunwoodie, W.

    1989-02-01

    We describe the R and D effort to define the design parameters, method of construction and experimental results from the single electron wire detectors. These detectors will be used for particle identification using the Cerenkov Ring Imaging techniques in the SLD experiment at SLAC. We present measurements of pulse heights for several gases as a function of gas gain, charge division performance on a single electron signal using both 7 /mu/m and 33 /mu/m diameter carbon wires, photon feedback in TMAE laden gas, average pulse shape, and its comparison with the predicted shape and cross-talk. In addition, we present results of wire aging tests, and other tests associated with construction of this unusual type of wire chamber. 12 refs., 9 figs.

  4. Image quality of digital radiography using flat detector technology

    NASA Astrophysics Data System (ADS)

    Ducourant, Thierry; Couder, David; Wirth, Thibaut; Trochet, J. C.; Bastiaens, Raoul J. M.; Bruijns, Tom J. C.; Luijendijk, Hans A.; Sandkamp, Bernhard; Davies, Andrew G.; Didier, Dominique; Gonzalez, Agustin; Terraz, Sylvain; Ruefenacht, Daniel

    2003-06-01

    One of the most demanding applications in dynamic X-Ray imaging is Digital Subtraction Angiography (DSA). As opposed to other applications such as Radiography or Fluoroscopy, there has been so far limited attempts to introduce DSA with flat detector (FD) technology: Up to now, only part of the very demanding requirements could be taken into account. In order to enable an introduction of FD technology also in this area, a complete understanding of all physical phenomena related to the use of this technology in DSA is necessary. This knowledge can be used for detector design and performance optimization. Areas of research include fast switching between several detector operating modes (e.g. switching between fluoroscopy and high dose exposure modes and vice versa) and non stability during the DSA run e.g. due to differences in gain between subsequent images. Furthermore, effects of local and global X-Ray overexposure (due to direct radiation), which can cause temporal artifacts such as ghosting, may have a negative impact on the image quality. Pixel shift operations and image subtraction enhance the visibility of any artifact. The use of a refresh light plays an important role in the optimization process. Both an 18x18 cm2 as well as a large area 30x40 cm2 flat panel detector are used for studying the various phenomena. Technical measurements were obtained using complex imaging sequences representing the most demanding application conditions. Studies on subtraction test objects were performed and vascular applications have been carried out in order to confirm earlier findings. The basis for comparison of DSA is, still, the existing and mature IITV technology. The results of this investigation show that the latest generation of dynamic flat detectors is capable of handling this kind of demanding application. Not only the risk areas and their solutions and points of attention will be addressed, but also the benefits of present FD technology with respect to state

  5. Upgrade of the Detector for Imaging of Explosions

    NASA Astrophysics Data System (ADS)

    Shekhtman, L. I.; Aulchenko, V. M.; Kudryavtsev, V. N.; Kutovenko, V. D.; Titov, V. M.; Zhulanov, V. V.; Pruuel, E. L.; Ten, K. A.; Tolochko, B. P.

    Methods of dynamic imaging of explosions at a synchrotron radiation (SR) beam and small-angle X-ray scattering experiments with exploding samples are being developed in the Siberian Synchrotron Radiation Center (SSRC) at the Budker Institute of Nuclear Physics for more than fifteen years. The detector for imaging of explosions (DIMEX) was developed for these purposes and successfully operating at the beam line 0 at the VEPP-3 storage ring and at the beam line 8 at the VEPP-4 M storage ring. The DIMEX is based on gas technology and allow to measure SR flux as a function of position and time with spatial resolution of ∼200 μm (FWHM), maximum frame rate of 2 MHz and time resolution of ∼80 ns. Maximum value of the SR flux that can be measured by the present detector corresponds to ∼5000 photons/(channel*bunch) (20 keV average energy, channel area 0.1x0.5 mm2, bunch revolution frequency 4 MHz). Maximum number of frames that can be stored in the present detector is 32 and the number of channels with 0.1 mm width is 512. In order to significantly improve the precision of data obtained by the DIMEX an upgrade of the detector has been started. The electronics of the gaseous version of the detector has been changed such that the new detector is able to operate with frame rate of 8 MHz and store data in up to 100 frames. A new ASIC was developed for this purpose called DMXG64A that includes 64 channels with low noise integrator and 100 analogue memory cells in each channel. Input charge can be stored to and read out from analogue cells with maximum frequency 10 MHz. This new version of the detector is called the DIMEX-G and is planned to be used at the VEPP-3 storage ring and for SAXS studies at the VEPP-4 M storage ring. For imaging of explosions at the beam line 8 at the VEPP-4 M storage ring, where SR flux is expected to be about 10-100 times higher than at the VEPP-3, a new detector based on Si micro-strip technology is being developed. Si micro-strip sensors with

  6. Visible/Infrared Imaging Spectroscopy and Energy-Resolving Detectors

    NASA Astrophysics Data System (ADS)

    Eisenhauer, Frank; Raab, Walfried

    2015-08-01

    Imaging spectroscopy has seen rapid progress over the past 25 years, leading to breakthroughs in many fields of astronomy that would not have been otherwise possible. This review overviews the visible/infrared imaging spectroscopy techniques as well as energy-resolving detectors. We introduce the working principle of scanning Fabry-Perot and Fourier transform spectrometers and explain the most common integral field concepts based on mirror slicers, lenslet arrays, and fibers. The main advantage of integral field spectrographs is the simultaneous measurement of spatial and spectral information. Although Fabry-Perot and Fourier transform spectrometers can provide a larger field of view, it is ultimately the higher sensitivity of integral field units that make them the technique of choice. This is arguably the case for image slicers, which make the most efficient use of the available detector pixels and have equal or higher transmission than lenslet arrays and fiber integral field units, respectively. We also address the more specific issues of large étendue operation, focal ratio degradation, anamorphic magnification, and diffraction-limited operation. This review also covers the emerging technology of energy-resolving detectors, which promise very simple and efficient instrument designs. These energy-resolving detectors are based on superconducting thin film technology and exploit either the very small superconducting energy to count the number of quasi-particles excited in the absorption of the photon or the extremely steep phase transition between the normal- and superconducting phase to measure a temperature increase. We have put special emphasis on an overview of the underlying physical phenomena as well as on the recent technological progress and astronomical path finder experiments.

  7. Phasor imaging with a widefield photon-counting detector

    NASA Astrophysics Data System (ADS)

    Colyer, Ryan A.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Weiss, Shimon; Michalet, Xavier

    2012-01-01

    Fluorescence lifetime can be used as a contrast mechanism to distinguish fluorophores for localization or tracking, for studying molecular interactions, binding, assembly, and aggregation, or for observing conformational changes via Förster resonance energy transfer (FRET) between donor and acceptor molecules. Fluorescence lifetime imaging microscopy (FLIM) is thus a powerful technique but its widespread use has been hampered by demanding hardware and software requirements. FLIM data is often analyzed in terms of multicomponent fluorescence lifetime decays, which requires large signals for a good signal-to-noise ratio. This confines the approach to very low frame rates and limits the number of frames which can be acquired before bleaching the sample. Recently, a computationally efficient and intuitive graphical representation, the phasor approach, has been proposed as an alternative method for FLIM data analysis at the ensemble and single-molecule level. In this article, we illustrate the advantages of combining phasor analysis with a widefield time-resolved single photon-counting detector (the H33D detector) for FLIM applications. In particular we show that phasor analysis allows real-time subsecond identification of species by their lifetimes and rapid representation of their spatial distribution, thanks to the parallel acquisition of FLIM information over a wide field of view by the H33D detector. We also discuss possible improvements of the H33D detector's performance made possible by the simplicity of phasor analysis and its relaxed timing accuracy requirements compared to standard time-correlated single-photon counting (TCSPC) methods.

  8. Sparse Detector Imaging Sensor with Two-Class Silhouette Classification

    PubMed Central

    Russomanno, David; Chari, Srikant; Halford, Carl

    2008-01-01

    This paper presents the design and test of a simple active near-infrared sparse detector imaging sensor. The prototype of the sensor is novel in that it can capture remarkable silhouettes or profiles of a wide-variety of moving objects, including humans, animals, and vehicles using a sparse detector array comprised of only sixteen sensing elements deployed in a vertical configuration. The prototype sensor was built to collect silhouettes for a variety of objects and to evaluate several algorithms for classifying the data obtained from the sensor into two classes: human versus non-human. Initial tests show that the classification of individually sensed objects into two classes can be achieved with accuracy greater than ninety-nine percent (99%) with a subset of the sixteen detectors using a representative dataset consisting of 512 signatures. The prototype also includes a Webservice interface such that the sensor can be tasked in a network-centric environment. The sensor appears to be a low-cost alternative to traditional, high-resolution focal plane array imaging sensors for some applications. After a power optimization study, appropriate packaging, and testing with more extensive datasets, the sensor may be a good candidate for deployment in vast geographic regions for a myriad of intelligent electronic fence and persistent surveillance applications, including perimeter security scenarios. PMID:27873972

  9. R&D on a Detector for Very High Momentum Charged Hadron Identification in ALICE

    NASA Astrophysics Data System (ADS)

    Gallas, A.

    2006-04-01

    The latest theoretical and experimental results from experiments at RHIC suggest investigating a physics domain in heavy ion collisions for pt higher than the one planned to be covered at present by the Particle Identification (PID) system of the ALICE experiment. We present here a possible upgrade of the High Momentum Particle Identification Detector (HMPID) based on the idea of the Threshold Imaging Cherenkov (TIC) detector operated for the first time by the NA44 experiment.

  10. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    NASA Astrophysics Data System (ADS)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  11. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality.

    PubMed

    Vano, E; Geiger, B; Schreiner, A; Back, C; Beissel, J

    2005-12-07

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 microGy/frame (cine) and 5 and 95 mGy min(-1) (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  12. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOEpatents

    Worstell, W.A.

    1997-02-04

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions. 11 figs.

  13. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOEpatents

    Worstell, William A.

    1997-01-01

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions.

  14. Two-dimensional Detector for High Resolution Soft X-ray Imaging

    SciTech Connect

    Ejima, Takeo; Ogasawara, Shodo; Hatano, Tadashi; Yanagihara, Mihiro; Yamamoto, Masaki

    2010-06-23

    A new two-dimensional (2D) detector for detecting soft X-ray (SX) images was developed. The detector has a scintillator plate to convert a SX image into a visible (VI) one, and a relay optics to magnify and detect the converted VI image. In advance of the fabrication of the detector, quantum efficiencies of scintillators were investigated. As a result, a Ce:LYSO single crystal on which Zr thin film was deposited was used as an image conversion plate. The spatial resolution of fabricated detector is 3.0 {mu}m, and the wavelength range which the detector has sensitivity is 30-6 nm region.

  15. Imaging around corners with single-pixel detector by computational ghost imaging

    NASA Astrophysics Data System (ADS)

    Bai, Bin; He, Yuchen; Liu, Jianbin; Zhou, Yu; Zheng, Huaibin; Zhang, Songlin; Xu, Zhuo

    2017-10-01

    We have designed a single-pixel camera with imaging around corners based on computational ghost imaging. It can obtain the image of an object when the camera cannot look at the object directly. Our imaging system explores the fact that a bucket detector in a ghost imaging setup has no spatial resolution capability. A series of experiments have been designed to confirm our predictions. This camera has potential applications for imaging around corner or other similar environments where the object cannot be observed directly.

  16. High Resolution Emission and Transmission Imaging Using the Same Detector.

    PubMed

    Panse, Ashish S; Jain, A; Wang, W; Yao, R; Bednarek, D R; Rudin, S

    2010-10-30

    We demonstrate the capability of one detector, the Micro-Angiographic Fluoroscope (MAF) detector, to image for two types of applications: nuclear medicine imaging and radiography. The MAF has 1024 × 1024 pixels with an effective pixel size of 35 microns and is capable of real-time imaging at 30 fps. It has a CCD camera coupled by a fiber-optic taper to a light image intensifier (LII) viewing a 300-micron thick CsI phosphor. The large variable gain of the LII provides quantum-limited operation with little additive instrumentation noise and enables operation in both energy-integrating (EI) and sensitive low-exposure single photon counting (SPC) modes. We used the EI mode to take a radiograph, and the SPC mode to image a custom phantom filled with 1 mCi of I-125. The phantom is made of hot rods with diameters ranging from 0.9 mm to 2.3 mm. A 1 mm diameter parallel hole, medium energy gamma camera collimator was placed between the phantom and the MAF and was moved multiple times at equal intervals in random directions to eliminate the grid pattern corresponding to the collimator septa. Data was acquired at 20 fps. Two algorithms to localize the events were used: 1) simple threshold and 2) a weighted centroid method. Although all the hot rods could be clearly identified, the image generated with the simple threshold method shows more blurring than that with the weighted centroid method. With the diffuse cluster of pixels from each single detection event localized to a single pixel, the weighted centroid method shows improved spatial resolution. A radiograph of the phantom was taken with the same MAF in EI mode without the collimator. It shows clear structural details of the rods. Compared to the radiograph, the sharpness of the emission image is limited by the collimator resolution and could be improved by optimized collimator design. This study demonstrated that the same MAF detector can be used in both radioisotope and x-ray imaging, combining the benefits of each.

  17. Bokeh mirror alignment for Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Mueller, S. A.; Adam, J.; Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Dmytriiev, A.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Linhoff, L.; Mannheim, K.; Neise, D.; Neronov, A.; Noethe, M.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Walter, R.

    2016-08-01

    Segmented imaging reflectors are a great choice for Imaging Atmospheric Cherenkov Telescopes (IACTs). However, the alignment of the individual mirror facets is challenging. We align a segmented reflector by observing and optimizing its Bokeh function. Bokeh alignment can already be done with very little resources and little preparation time. Further, Bokeh alignment can be done anytime, even during the day. We present a first usage of Bokeh alignment on FACT, a 4m IACT on Canary Island La Palma, Spain and further a first Bokeh alignment test on the CTA MST IACT prototype in Brelin Adlershof.

  18. Evaluation of cassette-based digital radiography detectors using standardized image quality metrics: AAPM TG-150 Draft Image Detector Tests.

    PubMed

    Li, Guang; Greene, Travis C; Nishino, Thomas K; Willis, Charles E

    2016-09-01

    The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region-of-interest (ROI)-based techniques to measure nonuniformity, minimum signal-to-noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX-1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG-150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG-150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG-150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG-150 tests can be

  19. Performance Characterization of the Atmospheric Velocity Imaging Detector (AVID)

    NASA Astrophysics Data System (ADS)

    Gardiner, J. D.

    2015-12-01

    Central to the improvement of upper atmospheric models is a dramatic expansion in current understanding of the coupling and dynamics within the Ionosphere / Thermosphere (IT) system. Conventional in situ measurement techniques using energy scanning and analog current detection are limited by poor sensitivity and have produced incomplete datasets. The Atmospheric Velocity Imaging Detector (AVID) overcomes the limitations of current instruments through the use of two orthogonally mounted Imaging Dispersive Energy Analyzers (IDEAs) which share a single pulse-counting ion detector. The second-generation IDEA design uses inexpensive and lightweight printed circuit boards, with parallel exposed copper traces connected via resistors to generate a highly uniform deflection field. This arrangement allows AVID to make accurate and sensitive in situ measurements of neutral wind / ion drift velocities, temperature, density, and composition, with no voltage scanning required. We present results from the development progress of AVID, through laboratory testing and characterization of an individual IDEA unit when exposed to angle-resolved hypervelocity ion beams emulating 4.7 eV O and 8.2 eV N2. Through these measurements, the projected performance of the AVID system and recently developed image processing algorithms are compared against SIMION ion trajectory calculations and Monte Carlo simulations.

  20. Development and construction of the SLD Cerenkov Ring Imaging Detector

    SciTech Connect

    Aston, D.; Bean, A.; Bienz, T.; Bird, F.; Caldwell, D.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Dasu, S.; Dunwoodie, W.

    1989-06-01

    We report on the development and construction of the Cerenkov Ring Imaging Detector (CRID) for the SLD experiment at the SLAC linear collider. In particular, we outline recent progress in the construction, and results from testing the first components of the barrel CRID, including the drift boxes, liquid radiator trays and mirror system. We also review progress in the construction of the barrel CRID gas radiator vessel, the liquid radiator recirculator system, and the electronic readout system. The development of a comprehensive monitor and control system -- upon which the stable operation and physics efficacy of the CRID depend -- is also described. 19 refs., 9 figs.

  1. The SLD Cerenkov Ring Imaging Detector: Progress report

    SciTech Connect

    Ashford, V.; Bienz, T.; Bird, F.; Crawford, G.; Gaillard, M.; Hallewell, G.; Leith, D.; McShurley, D.; Nuttall, A.; Oxoby, G.

    1986-10-01

    We describe test beam results from a prototype Cerenkov Ring Imaging Detector (CRID) for the SLD experiment at the SLAC Linear Collider (SLC). The system includes both liquid and gas radiators, a long drift box containing gaseous TMAE and a proportional wire chamber with charge division readout. Measurements of the multiplicity and detection resolution of Cerenkov photons, from both radiators are presented. Various design aspects of a new engineering prototype, currently under construction, are discussed and recent R and D results relevant to this effort are reported.

  2. High gain multigap avalanche detectors for Cerenkov ring imaging

    SciTech Connect

    Gilmore, R.S.; Lavender, W.M.; Leith, D.W.G.S.; Williams, S.H.

    1980-10-01

    We report on a continuing study of multigap parallel plate avalanche chambers, primarily as photoelectron detectors for use with Cerenkov ring imaging counters. By suitable control of the fields in successive gaps and by introducing screens to reduce photon feedback to the cathode the gain many be increased considerably. We have obtained gains in excess of 6 x 10/sup 7/ for photoelectrons with a good pulse height spectrum and expect to increase this further. We discuss the use of resistive anodes to give avalanche positions in two dimensions by charge division.

  3. Advanced Scintillator Detectors for Neutron Imaging in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Volegov, Petr; Wilde, Carl

    2016-10-01

    The neutron imaging team at Los Alamos National Laboratory (LANL) has been providing two-dimensional neutron imaging of the inertial confinement fusion process at the National Ignition Facility (NIF) for over five years. Neutron imaging is a powerful tool in which position-sensitive detectors register neutrons emitted in the fusion reactions, producing a picture of the burning fuel. Recent images have revealed possible multi-dimensional asymmetries, calling for additional views to facilitate three-dimensional imaging. These will be along shorter lines of sight to stay within the existing facility at NIF. In order to field imaging capabilities equivalent to the existing system several technological challenges have to be met: high spatial resolution, high light output, and fast scintillator response to capture lower-energy neutrons, which have scattered from non-burning regions of fuel. Deuterated scintillators are a promising candidate to achieve the timing and resolution required; a systematic study of deuterated and non-deuterated polystyrene and liquid samples is currently ongoing. A test stand has been implemented to measure the response function, and preliminary data on resolution and light output have been obtained at the LANL Weapons Neutrons Research facility.

  4. Characterization and optimization of a thin direct electron detector for fast imaging applications

    NASA Astrophysics Data System (ADS)

    Dourki, I.; Westermeier, F.; Schopper, F.; Richter, R. H.; Andricek, L.; Ninkovic, J.; Treis, J.; Koffmane, C.; Wassatsch, A.; Peric, I.; Epp, S. W.; Miller, R. J. D.

    2017-03-01

    Direct electron detectors are increasingly used to explore the dynamics of macromolecules in real space and real time using transmission electron microscopy. The purpose of this work is to optimize the most suitable detector configuration of a thin silicon detector by Monte Carlo Simulations. Several simulations were performed to achieve an advanced detector geometry that reduces significantly the background signal due to backscattered electrons resulting in an enhanced imaging performance of the detector. Utilizing DEPFET (DEpleted P-channel Field Effect Transistor) technology and the novel ideas for the optimized detector geometry, a unique direct hit electron detector is currently being produced.

  5. Development of a neutron imager based on superconducting detectors

    NASA Astrophysics Data System (ADS)

    Miyajima, Shigeyuki; Yamaguchi, Hiroyuki; Nakayama, Hirotaka; Shishido, Hiroaki; Fujimaki, Akira; Hidaka, Mutsuo; Harada, Masahide; Oikawa, Kenichi; Oku, Takayuki; Arai, Masatoshi; Ishida, Takekazu

    2016-11-01

    We succeeded in demonstrating a neutron detector based on a Nb superconducting meander line with a 10B conversion layer for a neutron imager based on superconductor devices. We use a current-biased kinetic inductance detector (CB-KID), which is composed of a meander line, for detection of a neutron with high spatial resolution and fast response time. The thickness of Nb meander lines is 40 nm and the line width is narrower than 3 mu m. The area of 8 mm × 8 mm is covered by CB-KIDs, which are assembled at the center of the Si chip of the size 22 mm × 22 mm. The Nb CB-KIDs with a 10B conversion layer output the voltage by irradiating pulsed neutrons. We have investigated γ/n discrimination of a Nb-based CB-KID with 10B conversion layer using a Cd plate, which indicates that a CB-KID can operate as a neutron detector under the strong γ-ray fields.

  6. Cadmium Telluride Semiconductor Detector for Improved Spatial and Energy Resolution Radioisotopic Imaging.

    PubMed

    Abbaspour, Samira; Mahmoudian, Babak; Islamian, Jalil Pirayesh

    2017-01-01

    The detector in single-photon emission computed tomography has played a key role in the quality of the images. Over the past few decades, developments in semiconductor detector technology provided an appropriate substitution for scintillation detectors in terms of high sensitivity, better energy resolution, and also high spatial resolution. One of the considered detectors is cadmium telluride (CdTe). The purpose of this paper is to review the CdTe semiconductor detector used in preclinical studies, small organ and small animal imaging, also research in nuclear medicine and other medical imaging modalities by a complete inspect on the material characteristics, irradiation principles, applications, and epitaxial growth method.

  7. Cadmium Telluride Semiconductor Detector for Improved Spatial and Energy Resolution Radioisotopic Imaging

    PubMed Central

    Abbaspour, Samira; Mahmoudian, Babak; Islamian, Jalil Pirayesh

    2017-01-01

    The detector in single-photon emission computed tomography has played a key role in the quality of the images. Over the past few decades, developments in semiconductor detector technology provided an appropriate substitution for scintillation detectors in terms of high sensitivity, better energy resolution, and also high spatial resolution. One of the considered detectors is cadmium telluride (CdTe). The purpose of this paper is to review the CdTe semiconductor detector used in preclinical studies, small organ and small animal imaging, also research in nuclear medicine and other medical imaging modalities by a complete inspect on the material characteristics, irradiation principles, applications, and epitaxial growth method. PMID:28553175

  8. Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2013-01-01

    Due to limited resources available for power and space for payloads, miniaturizing and integrating instrumentation is a high priority for addressing the challenges of manned and unmanned deep space missions to high Earth orbit (HEO), near Earth objects (NEOs), Lunar and Martian orbits and surfaces, and outer planetary systems, as well as improvements to high-altitude aircraft safety. New, robust, and compact detectors allow future instrumentation packages more options in satisfying specific mission goals. A solid-state ultraviolet (UV) detector was developed with a theoretical fast response time and large detection area intended for application to Cherenkov detectors. The detector is based on the wide-bandgap semiconductor zinc oxide (ZnO), which in a bridge circuit can detect small, fast pulses of UV light like those required for Cherenkov detectors. The goal is to replace the role of photomultiplier tubes in Cherenkov detectors with these solid-state devices, saving on size, weight, and required power. For improving detection geometry, a spherical detector to measure high atomic number and energy (HZE) ions from any direction has been patented as part of a larger space radiation detector system. The detector will require the development of solid-state UV photodetectors fast enough (2 ns response time or better) to detect the shockwave of Cherenkov light emitted as the ions pass through a quartz, sapphire, or acrylic ball. The detector must be small enough to fit in the detector system structure, but have an active area large enough to capture enough Cherenkov light from the sphere. The detector is fabricated on bulk single-crystal undoped ZnO. Inter - digitated finger electrodes and contact pads are patterned via photolithography, and formed by sputtered metal of silver, platinum, or other high-conductivity metal.

  9. High-density scintillating glasses for a proton imaging detector

    NASA Astrophysics Data System (ADS)

    Tillman, I. J.; Dettmann, M. A.; Herrig, V.; Thune, Z. L.; Zieser, A. J.; Michalek, S. F.; Been, M. O.; Martinez-Szewczyk, M. M.; Koster, H. J.; Wilkinson, C. J.; Kielty, M. W.; Jacobsohn, L. G.; Akgun, U.

    2017-06-01

    High-density scintillating glasses are proposed for a novel proton-imaging device that can improve the accuracy of the hadron therapy. High-density scintillating glasses are needed to build a cost effective, compact calorimeter that can be attached to a gantry. This report summarizes the study on Europium, Terbium, and Cerium-doped scintillating glasses that were developed containing heavy elements such as Lanthanum, Gadolinium, and Tungsten. The density of the samples reach up to 5.9 g/cm3, and their 300-600 nm emission overlaps perfectly with the peak cathode sensitivity of the commercial photo detectors. The developed glasses do not require any special quenching and can be poured easily, which makes them a good candidate for production in various geometries. Here, the glass making conditions, preliminary tests on optical and physical properties of these scintillating, high-density, oxide glasses developed for a novel medical imaging application are reported.

  10. Multilayer fluorescence imaging on a single-pixel detector

    PubMed Central

    Guo, Kaikai; Jiang, Shaowei; Zheng, Guoan

    2016-01-01

    A critical challenge for fluorescence imaging is the loss of high frequency components in the detection path. Such a loss can be related to the limited numerical aperture of the detection optics, aberrations of the lens, and tissue turbidity. In this paper, we report an imaging scheme that integrates multilayer sample modeling, ptychography-inspired recovery procedures, and lensless single-pixel detection to tackle this challenge. In the reported scheme, we directly placed a 3D sample on top of a single-pixel detector. We then used a known mask to generate speckle patterns in 3D and scanned this known mask to different positions for sample illumination. The sample was then modeled as multiple layers and the captured 1D fluorescence signals were used to recover multiple sample images along the z axis. The reported scheme may find applications in 3D fluorescence sectioning, time-resolved and spectrum-resolved imaging. It may also find applications in deep-tissue fluorescence imaging using the memory effect. PMID:27446679

  11. Multilayer fluorescence imaging on a single-pixel detector.

    PubMed

    Guo, Kaikai; Jiang, Shaowei; Zheng, Guoan

    2016-07-01

    A critical challenge for fluorescence imaging is the loss of high frequency components in the detection path. Such a loss can be related to the limited numerical aperture of the detection optics, aberrations of the lens, and tissue turbidity. In this paper, we report an imaging scheme that integrates multilayer sample modeling, ptychography-inspired recovery procedures, and lensless single-pixel detection to tackle this challenge. In the reported scheme, we directly placed a 3D sample on top of a single-pixel detector. We then used a known mask to generate speckle patterns in 3D and scanned this known mask to different positions for sample illumination. The sample was then modeled as multiple layers and the captured 1D fluorescence signals were used to recover multiple sample images along the z axis. The reported scheme may find applications in 3D fluorescence sectioning, time-resolved and spectrum-resolved imaging. It may also find applications in deep-tissue fluorescence imaging using the memory effect.

  12. Laser system for testing radiation imaging detector circuits

    NASA Astrophysics Data System (ADS)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  13. Search for nucleon decay using the IMB-3 detector

    SciTech Connect

    McGrew, C.; Breault, J.L.; Gajewski, W.; Halverson, P.G.; Kropp, W.R.; Price, L.R.; Reines, F.; Schultz, J.; Sobel, H.W.; Becker-Szendy, R.; Dye, S.T.; Learned, J.G.; Matsuno, S.; McGrath, G.; Bratton, C.B.; Cady, D.R.; LoSecco, J.M.; Casper, D.; Stone, J.L.; Sulak, L.R.; Ganezer, K.S.; Goldhaber, M.; Haines, T.J.; Miller, R.; Kielczewska, D.; Matthews, J.; Sinclair, D.; van der Velde, J.C.; Svoboda, R.

    1999-03-01

    The IMB-3 experiment was a large water Cherenkov ring imaging detector with a fiducial mass of 3.3 kton. During a 7.6-kton-year exposure ({approximately}4.6{times}10{sup 33}thinspnucleonthinspyr) 935 contained events were observed. The observed rate and characteristics are consistent with the expected backgrounds from atmospheric neutrinos. Lower limits on the nucleon lifetime are set for a wide variety of proposed decay modes. {copyright} {ital 1999} {ital The American Physical Society}

  14. The CdTe detector module and its imaging performance.

    PubMed

    Mori, I; Takayama, T; Motomura, N

    2001-12-01

    In recent years investigations into the application of semiconductor detector technology in gamma cameras have become active world-wide. The reason for this burst of activity is the expectation that the semiconductor-based gamma camera would outperform the conventional Anger-type gamma camera with a large scintillator and photomultipliers. Nevertheless, to date, it cannot be said that this expectation has been met. While most of the studies have used CZT (Cadmium Zinc Telluride) as the semiconductor material, we designed and fabricated an experimental detector module of CdTe (Cadmium Telluride). The module consists of 512 elements and its pixel pitch is 1.6 mm. We have evaluated its energy resolution, planar image performance, single photon emission computed tomography (SPECT) image performance and time resolution for coincidence detection. The average energy resolution was 5.5% FWHM at 140 keV. The intrinsic spatial resolution was 1.6 mm. The quality of the phantom images, both planar and SPECT, was visually superior to that of the Anger-type gamma camera. The quantitative assessment of SPECT images showed accuracy far better than that of the Anger-type camera. The coincidence time resolution was 8.6 ns. All measurements were done at room temperature, and the polarization effect that had been the biggest concern for CdTe was not significant. The results indicated that the semiconductor-based gamma camera is superior in performance to the Anger-type and has the possibility of being used as a positron emission computed tomography (PET) scanner.

  15. Single Photon Counting Detectors for Low Light Level Imaging Applications

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly

    2015-10-01

    This dissertation presents the current state-of-the-art of semiconductor-based photon counting detector technologies. HgCdTe linear-mode avalanche photodiodes (LM-APDs), silicon Geiger-mode avalanche photodiodes (GM-APDs), and electron-multiplying CCDs (EMCCDs) are compared via their present and future performance in various astronomy applications. LM-APDs are studied in theory, based on work done at the University of Hawaii. EMCCDs are studied in theory and experimentally, with a device at NASA's Jet Propulsion Lab. The emphasis of the research is on GM-APD imaging arrays, developed at MIT Lincoln Laboratory and tested at the RIT Center for Detectors. The GM-APD research includes a theoretical analysis of SNR and various performance metrics, including dark count rate, afterpulsing, photon detection efficiency, and intrapixel sensitivity. The effects of radiation damage on the GM-APD were also characterized by introducing a cumulative dose of 50 krad(Si) via 60 MeV protons. Extensive development of Monte Carlo simulations and practical observation simulations was completed, including simulated astronomical imaging and adaptive optics wavefront sensing. Based on theoretical models and experimental testing, both the current state-of-the-art performance and projected future performance of each detector are compared for various applications. LM-APD performance is currently not competitive with other photon counting technologies, and are left out of the application-based comparisons. In the current state-of-the-art, EMCCDs in photon counting mode out-perform GM-APDs for long exposure scenarios, though GM-APDs are better for short exposure scenarios (fast readout) due to clock-induced-charge (CIC) in EMCCDs. In the long term, small improvements in GM-APD dark current will make them superior in both long and short exposure scenarios for extremely low flux. The efficiency of GM-APDs will likely always be less than EMCCDs, however, which is particularly disadvantageous for

  16. Gaseous photomultipliers for the readout of scintillators and detection Cherenkov radiation

    SciTech Connect

    Peskov, V.; Borovik-Romanov, A.

    1993-11-01

    The latest achievements in the development of gaseous detectors for registering UV and visible photons are described. Possible modifications of their design for some particular applications such as the readout of crystal scintillators. noble liquids, fibers and for large area Cherenkov detectors are discussed.

  17. The High-Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    Mostafá, Miguel A.

    2014-10-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array.

  18. The High Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    Mostafa, Miguel; HAWC Collaboration

    2016-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a continuously operated, wide field of view experiment comprised of an array of 300 water Cherenkov detectors (WCDs) to study transient and steady emission of TeV gamma and cosmic rays. Each 200000 l WCD is instrumented with 4 PMTs providing charge and timing information. The array covers ~22000 m2 at an altitude of 4100 m a.s.l. inside the Pico de Orizaba national park in Mexico. The high altitude, large active area, and optical isolation of the PMTs allows us to reliably estimate the energy and determine the arrival direction of gamma and cosmic rays with significant sensitivity over energies from several hundred GeV to a hundred TeV. Continuously observing 2 / 3 of the sky every 24 h, HAWC plays a significant role as a survey instrument for multi-wavelength studies. The performance of HAWC makes possible the detection of both transient and steady emissions, the study of diffuse emission and the measurement of the spectra of gamma-ray sources at TeV energies. HAWC is also sensitive to the emission from GRBs above 100 GeV. I will highlight the results from the first year of operation of the full HAWC array, and describe the ongoing site work to expand the array by a factor of 4 to explore the high energy range.

  19. Infrared light field imaging using single carbon nanotube detector

    NASA Astrophysics Data System (ADS)

    Xi, Ning; Chen, Liangliang; Zhou, Zhanxin; Yang, Ruiguo; Song, Bo; Sun, Zhiyong

    2014-06-01

    The conventional photographs only record the sum total of light rays of each point on image plane so that they tell little about the amount of light traveling along individual rays. The focus and lens aberration problems have challenged photographers since the very beginning therefore light field photography was proposed to solve these problems. Lens array and multiple camera systems are used to capture 4D light rays, by reordering the different views of scene from multiple directions. The coded aperture is another method to encode the angular information in frequency domain. However, infrared light field sensing is still widely opening to research. In the paper, we will propose micro plane mirror optics together with compressive sensing algorithm to record light field in infrared spectrum. The micro mirror reflects objects irradiation and forms a virtual image behind the plane in which the mirror lies. The Digital Micromirror (DMD) consists of millions microscale mirrors which work as CCD array in the camera and it is controlled separately so as to project linear combination of object image onto lens. Coded aperture could be utilized to control angular resolution of infrared light rays. The carbon nanotube based infrared detector, which has ultra high signal to noise ratio and ultra fast responsibility, will sum up all image information on it without image distortion. Based on a number of measurements, compressive sensing algorithm was used to recover images from distinct angles, which could compute different views of scene to reconstruct infrared light field scence. Two innovative applications of full image recovery using nano scale photodetector and DMD based synthetic aperture photography will also be discussed in this paper.

  20. The large-area hybrid-optics RICH detector for the CLAS12 spectrometer

    DOE PAGES

    Mirazita, M.; Angelini, G.; Balossino, I.; ...

    2017-01-16

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forwardmore » tracks) or after two mirror reflections (large angle tracks). Finally, the preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here.« less

  1. A piecewise-focused high DQE detector for MV imaging.

    PubMed

    Star-Lack, Josh; Shedlock, Daniel; Swahn, Dennis; Humber, Dave; Wang, Adam; Hirsh, Hayley; Zentai, George; Sawkey, Daren; Kruger, Isaac; Sun, Mingshan; Abel, Eric; Virshup, Gary; Shin, Mihye; Fahrig, Rebecca

    2015-09-01

    Electronic portal imagers (EPIDs) with high detective quantum efficiencies (DQEs) are sought to facilitate the use of the megavoltage (MV) radiotherapy treatment beam for image guidance. Potential advantages include high quality (treatment) beam's eye view imaging, and improved cone-beam computed tomography (CBCT) generating images with more accurate electron density maps with immunity to metal artifacts. One approach to increasing detector sensitivity is to couple a thick pixelated scintillator array to an active matrix flat panel imager (AMFPI) incorporating amorphous silicon thin film electronics. Cadmium tungstate (CWO) has many desirable scintillation properties including good light output, a high index of refraction, high optical transparency, and reasonable cost. However, due to the 0 1 0 cleave plane inherent in its crystalline structure, the difficulty of cutting and polishing CWO has, in part, limited its study relative to other scintillators such as cesium iodide and bismuth germanate (BGO). The goal of this work was to build and test a focused large-area pixelated "strip" CWO detector. A 361 × 52 mm scintillator assembly that contained a total of 28 072 pixels was constructed. The assembly comprised seven subarrays, each 15 mm thick. Six of the subarrays were fabricated from CWO with a pixel pitch of 0.784 mm, while one array was constructed from BGO for comparison. Focusing was achieved by coupling the arrays to the Varian AS1000 AMFPI through a piecewise linear arc-shaped fiber optic plate. Simulation and experimental studies of modulation transfer function (MTF) and DQE were undertaken using a 6 MV beam, and comparisons were made between the performance of the pixelated strip assembly and the most common EPID configuration comprising a 1 mm-thick copper build-up plate attached to a 133 mg/cm(2) gadolinium oxysulfide scintillator screen (Cu-GOS). Projection radiographs and CBCT images of phantoms were acquired. The work also introduces the use of a

  2. A piecewise-focused high DQE detector for MV imaging

    PubMed Central

    Star-Lack, Josh; Shedlock, Daniel; Swahn, Dennis; Humber, Dave; Wang, Adam; Hirsh, Hayley; Zentai, George; Sawkey, Daren; Kruger, Isaac; Sun, Mingshan; Abel, Eric; Virshup, Gary; Shin, Mihye; Fahrig, Rebecca

    2015-01-01

    Purpose: Electronic portal imagers (EPIDs) with high detective quantum efficiencies (DQEs) are sought to facilitate the use of the megavoltage (MV) radiotherapy treatment beam for image guidance. Potential advantages include high quality (treatment) beam’s eye view imaging, and improved cone-beam computed tomography (CBCT) generating images with more accurate electron density maps with immunity to metal artifacts. One approach to increasing detector sensitivity is to couple a thick pixelated scintillator array to an active matrix flat panel imager (AMFPI) incorporating amorphous silicon thin film electronics. Cadmium tungstate (CWO) has many desirable scintillation properties including good light output, a high index of refraction, high optical transparency, and reasonable cost. However, due to the 0 1 0 cleave plane inherent in its crystalline structure, the difficulty of cutting and polishing CWO has, in part, limited its study relative to other scintillators such as cesium iodide and bismuth germanate (BGO). The goal of this work was to build and test a focused large-area pixelated “strip” CWO detector. Methods: A 361  ×  52 mm scintillator assembly that contained a total of 28 072 pixels was constructed. The assembly comprised seven subarrays, each 15 mm thick. Six of the subarrays were fabricated from CWO with a pixel pitch of 0.784 mm, while one array was constructed from BGO for comparison. Focusing was achieved by coupling the arrays to the Varian AS1000 AMFPI through a piecewise linear arc-shaped fiber optic plate. Simulation and experimental studies of modulation transfer function (MTF) and DQE were undertaken using a 6 MV beam, and comparisons were made between the performance of the pixelated strip assembly and the most common EPID configuration comprising a 1 mm-thick copper build-up plate attached to a 133 mg/cm2 gadolinium oxysulfide scintillator screen (Cu-GOS). Projection radiographs and CBCT images of phantoms were acquired. The work

  3. Monte Carlo simulation of amorphous selenium imaging detectors

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Badal, Andreu; Allec, Nicholas; Karim, Karim S.; Badano, Aldo

    2010-04-01

    We present a Monte Carlo (MC) simulation method for studying the signal formation process in amorphous Selenium (a-Se) imaging detectors for design validation and optimization of direct imaging systems. The assumptions and limitations of the proposed and previous models are examined. The PENELOPE subroutines for MC simulation of radiation transport are used to model incident x-ray photon and secondary electron interactions in the photoconductor. Our simulation model takes into account applied electric field, atomic properties of the photoconductor material, carrier trapping by impurities, and bimolecular recombination between drifting carriers. The particle interaction cross-sections for photons and electrons are generated for Se over the energy range of medical imaging applications. Since inelastic collisions of secondary electrons lead to the creation of electron-hole pairs in the photoconductor, the electron inelastic collision stopping power is compared for PENELOPE's Generalized Oscillator Strength model with the established EEDL and NIST ESTAR databases. Sample simulated particle tracks for photons and electrons in Se are presented, along with the energy deposition map. The PENEASY general-purpose main program is extended with custom transport subroutines to take into account generation and transport of electron-hole pairs in an electromagnetic field. The charge transport routines consider trapping and recombination, and the energy required to create a detectable electron-hole pair can be estimated from simulations. This modular simulation model is designed to model complete image formation.

  4. Development of a Navigator and Imaging Techniques for the Cryogenic Dark Matter Search Detectors

    SciTech Connect

    Wilen, Chris; /Carleton Coll. /KIPAC, Menlo Park

    2011-06-22

    This project contributes to the detection of flaws in the germanium detectors for the Cryogenic Dark Matter Search (CDMS) experiment. Specifically, after imaging the detector surface with a precise imaging and measuring device, they developed software to stitch the resulting images together, applying any necessary rotations, offsets, and averaging, to produce a smooth image of the whole detector that can be used to detect flaws on the surface of the detector. These images were also tiled appropriately for the Google Maps API to use as a navigation tool, allowing viewers to smoothly zoom and pan across the detector surface. Automated defect identification can now be implemented, increasing the scalability of the germanium detector fabrication.

  5. Calibration of photon counting imaging microchannel plate detectors for EUV astronomy

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Vallerga, J.; Jelinsky, P.

    1986-01-01

    The calibration of photon counting imaging detectors for satellite based EUV astronomy is a complex process designed to ensure the validity of the data received 'in orbit'. The methods developed to accomplish calibration of microchannel plate detectors for the Extreme Ultraviolet Explorer are described and illustrated. The characterization of these detectors can be subdivided into three categories: stabilization, performance tests, and environmental tests.

  6. Calibration of photon counting imaging microchannel plate detectors for EUV astronomy

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Vallerga, J.; Jelinsky, P.

    1986-01-01

    The calibration of photon counting imaging detectors for satellite based EUV astronomy is a complex process designed to ensure the validity of the data received 'in orbit'. The methods developed to accomplish calibration of microchannel plate detectors for the Extreme Ultraviolet Explorer are described and illustrated. The characterization of these detectors can be subdivided into three categories: stabilization, performance tests, and environmental tests.

  7. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  8. X-Ray Detector for Digital Fluoroscopy and Digital Radiography in Medical Imaging

    NASA Astrophysics Data System (ADS)

    Saito, Keiichi

    Recently digital X-ray detectors are developed for medical imaging. By comparison with the structure of X-ray image intensifier system and X-ray flat panel detector (FPD), the dynamic of digital images is more superior and would result in enhanced diagnosis. Moreover the difference from the detective quantum efficiency (DQE) of X-ray image intensifier and FPD is shown as the significant index of X-ray image quality.

  9. Phasor imaging with a widefield photon-counting detector

    PubMed Central

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Weiss, Shimon

    2012-01-01

    Abstract. Fluorescence lifetime can be used as a contrast mechanism to distinguish fluorophores for localization or tracking, for studying molecular interactions, binding, assembly, and aggregation, or for observing conformational changes via Förster resonance energy transfer (FRET) between donor and acceptor molecules. Fluorescence lifetime imaging microscopy (FLIM) is thus a powerful technique but its widespread use has been hampered by demanding hardware and software requirements. FLIM data is often analyzed in terms of multicomponent fluorescence lifetime decays, which requires large signals for a good signal-to-noise ratio. This confines the approach to very low frame rates and limits the number of frames which can be acquired before bleaching the sample. Recently, a computationally efficient and intuitive graphical representation, the phasor approach, has been proposed as an alternative method for FLIM data analysis at the ensemble and single-molecule level. In this article, we illustrate the advantages of combining phasor analysis with a widefield time-resolved single photon-counting detector (the H33D detector) for FLIM applications. In particular we show that phasor analysis allows real-time subsecond identification of species by their lifetimes and rapid representation of their spatial distribution, thanks to the parallel acquisition of FLIM information over a wide field of view by the H33D detector. We also discuss possible improvements of the H33D detector’s performance made possible by the simplicity of phasor analysis and its relaxed timing accuracy requirements compared to standard time-correlated single-photon counting (TCSPC) methods. PMID:22352658

  10. sCMOS detector for imaging VNIR spectrometry

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Reulke, Ralf; Schwarzer, Horst; Venus, Holger; Neumann, Christian

    2013-09-01

    The facility Optical Information Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the scientific results of the institute of leading edge instruments and focal plane designs for EnMAP VIS/NIR spectrograph. EnMAP (Environmental Mapping and Analysis Program) is one of the selected proposals for the national German Space Program. The EnMAP project includes the technological design of the hyper spectral space borne instrument and the algorithms development of the classification. The EnMAP project is a joint response of German Earth observation research institutions, value-added resellers and the German space industry like Kayser-Threde GmbH (KT) and others to the increasing demand on information about the status of our environment. The Geo Forschungs Zentrum (GFZ) Potsdam is the Principal Investigator of EnMAP. DLR OS and KT were driving the technology of new detectors and the FPA design for this project, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generations of space borne sensor systems are focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high spectral resolution with intelligent synchronization control, fast-readout ADC chains and new focal-plane concepts open the door to new remote-sensing and smart deep space instruments. The paper gives an overview over the detector verification program at DLR on FPA level, new control possibilities for sCMOS detectors in global shutter mode and key parameters like PRNU, DSNU, MTF, SNR, Linearity, Spectral Response, Quantum Efficiency, Flatness and Radiation Tolerance will be discussed in detail.

  11. X-ray characterization of CMOS imaging detector with high resolution for fluoroscopic imaging application

    NASA Astrophysics Data System (ADS)

    Cha, Bo Kyung; Kim, Cho Rong; Jeon, Seongchae; Kim, Ryun Kyung; Seo, Chang-Woo; Yang, Keedong; Heo, Duchang; Lee, Tae-Bum; Shin, Min-Seok; Kim, Jong-Boo; Kwon, Oh-Kyung

    2013-12-01

    This paper introduces complementary metal-oxide semiconductor (CMOS) active pixel sensor (APS)-based X-ray imaging detectors with high spatial resolution for medical imaging application. In this study, our proposed X-ray CMOS imaging sensor has been fabricated by using a 0.35 μm 1 Poly 4 Metal CMOS process. The pixel size is 100 μm×100 μm and the pixel array format is 24×96 pixels, which provide a field-of-view (FOV) of 9.6 mm×2.4 mm. The 14.3-bit extend counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. Both thallium-doped CsI (CsI:Tl) and Gd2O2S:Tb scintillator screens were used as converters for incident X-rays to visible light photons. The optical property and X-ray imaging characterization such as X-ray to light response as a function of incident X-ray exposure dose, spatial resolution and X-ray images of objects were measured under different X-ray energy conditions. The measured results suggest that our developed CMOS-based X-ray imaging detector has the potential for fluoroscopic imaging and cone-beam computed tomography (CBCT) imaging applications.

  12. The GCT camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Brown, A. M.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; de Frondat, F.; Dournaux, J.-L.; Dumas, D.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jégouzo, I.; Jogler, T.; Kraus, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.

    2016-07-01

    The Gamma-ray Cherenkov Telescope (GCT) is proposed for the Small-Sized Telescope component of the Cherenkov Telescope Array (CTA). GCT's dual-mirror Schwarzschild-Couder (SC) optical system allows the use of a compact camera with small form-factor photosensors. The GCT camera is 0:4 m in diameter and has 2048 pixels; each pixel has a 0:2° angular size, resulting in a wide field-of-view. The design of the GCT camera is high performance at low cost, with the camera housing 32 front-end electronics modules providing full waveform information for all of the camera's 2048 pixels. The first GCT camera prototype, CHEC-M, was commissioned during 2015, culminating in the first Cherenkov images recorded by a SC telescope and the first light of a CTA prototype. In this contribution we give a detailed description of the GCT camera and present preliminary results from CHEC-M's commissioning.

  13. The design and performance of a prototype water Cherenkov optical time-projection chamber

    NASA Astrophysics Data System (ADS)

    Oberla, Eric; Frisch, Henry J.

    2016-04-01

    A first experimental test of tracking relativistic charged particles by 'drifting' Cherenkov photons in a water-based optical time-projection chamber (OTPC) has been performed at the Fermilab Test Beam Facility. The prototype OTPC detector consists of a 77 cm long, 28 cm diameter, 40 kg cylindrical water mass instrumented with a combination of commercial 5.1 × 5.1cm2 micro-channel plate photo-multipliers (MCP-PMT) and 6.7 × 6.7cm2 mirrors. Five MCP-PMTs are installed in two columns along the OTPC cylinder in a small-angle stereo configuration. A mirror is mounted opposite each MCP-PMT on the inner surface of the detector cylinder, effectively increasing the photo-detection efficiency and providing a time-resolved image of the Cherenkov light on the opposing wall. Each MCP-PMT is coupled to an anode readout consisting of thirty 50 Ω microstrips. A 180-channel data acquisition system digitizes the MCP-PMT signals on one end of the microstrips using the PSEC4 waveform sampling-and-digitizing chip operating at a sampling rate of 10.24 Gigasamples-per-second. The single-ended microstrip readout determines the time and position of a photon arrival at the face of the MCP-PMT by recording both the direct signal and the pulse reflected from the unterminated far end of the strip. The detector was installed on the Fermilab MCenter secondary beam-line behind a steel absorber where the primary flux is multi-GeV muons. Approximately 80 Cherenkov photons are detected for a through-going muon track in a total event duration of ~2 ns. By measuring the time-of-arrival and the position of individual photons at the surface of the detector to ≤ 100 ps and a few mm, respectively, we have measured a spatial resolution of ~15 mm for each MCP-PMT track segment, and, from linear fits over the entire track length of ~40 cm, an angular resolution on the track direction of ~60 mrad.

  14. The Gamma-ray Cherenkov Telescope, an end-to end Schwarzschild-Couder telescope prototype proposed for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, J. L.; Abchiche, A.; Allan, D.; Amans, J. P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Dangeon, L.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dumas, D.; Ernenwein, J. P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hameau, B.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J. M.; Jégouzo, I.; Jogler, T.; Kawashima, T.; Kraush, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.

    2016-08-01

    The GCT (Gamma-ray Cherenkov Telescope) is a dual-mirror prototype of Small-Sized-Telescopes proposed for the Cherenkov Telescope Array (CTA) and made by an Australian-Dutch-French-German-Indian-Japanese-UK-US consortium. The integration of this end-to-end telescope was achieved in 2015. On-site tests and measurements of the first Cherenkov images on the night sky began on November 2015. This contribution describes the telescope and plans for the pre-production and a large scale production within CTA.

  15. High-Energy Astrophysics with the High Altitude Water Cherenkov (HAWC) Observatory

    NASA Astrophysics Data System (ADS)

    Pretz, John; HAWC Collaboration

    2013-04-01

    The High Altitude Water Cherenkov (HAWC) observatory, under construction at Sierra Negra in the state of Puebla, Mexico, consists of a 22500 square meter area of water Cherenkov detectors: water tanks instrumented with light-sensitive photomultiplier tubes. The experiment is used to detect energetic secondary particles reaching the ground when a 50 GeV to 100 TeV cosmic ray or gamma ray interacts in the atmosphere above the experiment. By timing the arrival of particles on the ground, the direction of the original primary particle may be resolved with an error of between 1.0 (50 GeV) and 0.1 (10 TeV) degrees. Gamma-ray primaries may be distinguished from cosmic ray background by identifying the penetrating particles characteristic of a hadronic particle shower. The instrument is 10% complete and is performing as expected, with 30% of the channels anticipated by the summer of 2013. HAWC will complement existing Imaging Atmospheric Cherenkov Telescopes and space-based gamma-ray telescopes with its extreme high-energy sensitivity and its large field-of-view. The observatory will be used to study particle acceleration in Pulsar Wind Nebulae, Supernova Remnants, Active Galactic Nuclei and Gamma-ray Bursts. Additionally, the instrument can be used to probe dark matter annihilation in halo and sub-halos of the galaxy. We will present the sensitivity of the HAWC instrument in the context of the main science objectives. We will also present the status of the deployment including first data from the instrument and prospects for the future.

  16. EPR Imaging at a Few Megahertz Using SQUID Detectors

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Day, Peter; Penanen, Konstantin; Eom, Byeong Ho

    2010-01-01

    An apparatus being developed for electron paramagnetic resonance (EPR) imaging operates in the resonance-frequency range of about 1 to 2 MHz well below the microwave frequencies used in conventional EPR. Until now, in order to obtain sufficient signal-to-noise radios (SNRs) in conventional EPR, it has been necessary to place both detectors and objects to be imaged inside resonant microwave cavities. EPR imaging has much in common with magnetic resonance imaging (MRI), which is described briefly in the immediately preceding article. In EPR imaging as in MRI, one applies a magnetic pulse to make magnetic moments (in this case, of electrons) precess in an applied magnetic field having a known gradient. The magnetic moments precess at a resonance frequency proportional to the strength of the local magnetic field. One detects the decaying resonance-frequency magnetic- field component associated with the precession. Position is encoded by use of the known relationship between the resonance frequency and the position dependence of the magnetic field. EPR imaging has recently been recognized as an important tool for non-invasive, in vivo imaging of free radicals and reduction/oxidization metabolism. However, for in vivo EPR imaging of humans and large animals, the conventional approach is not suitable because (1) it is difficult to design and construct resonant cavities large enough and having the required shapes; (2) motion, including respiration and heartbeat, can alter the resonance frequency; and (3) most microwave energy is absorbed in the first few centimeters of tissue depth, thereby potentially endangering the subject and making it impossible to obtain adequate signal strength for imaging at greater depth. To obtain greater penetration depth, prevent injury to the subject, and avoid the difficulties associated with resonant cavities, it is necessary to use lower resonance frequencies. An additional advantage of using lower resonance frequencies is that one can use

  17. Fast photon detection for the COMPASS RICH detector

    NASA Astrophysics Data System (ADS)

    Abbon, P.; Alekseev, M.; Angerer, H.; Apollonio, M.; Birsa, R.; Bordalo, P.; Bradainante, F.; Bressan, A.; Busso, L.; Chiosso, M.; Ciliberti, P.; Colantoni, M. L.; Costa, S.; Dalla Torre, S.; Dafni, T.; Delagnes, E.; Deschamps, H.; Diaz, V.; Dibiase, N.; Duic, V.; Eyrich, W.; Faso, D.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Gerassimov, S.; Giorgi, M.; Gobbo, B.; Hagemann, R.; von Harrach, D.; Heinsius, F. H.; Joosten, R.; Ketzer, B.; Königsmann, K.; Kolosov, V. N.; Konorov, I.; Kramer, D.; Kunne, F.; Lehmann, A.; Levorato, S.; Maggiora, A.; Magnon, A.; Mann, A.; Martin, A.; Menon, G.; Mutter, A.; Nähle, O.; Nerling, F.; Neyret, D.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pesaro, G.; Polak, J.; Rebourgeard, P.; Robinet, F.; Rocco, E.; Schiavon, P.; Schill, C.; Schröder, W.; Silva, L.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Svec, M.; Tessarotto, F.; Teufel, A.; Wollny, H.

    2007-10-01

    Particle identification at high rates is a central aspect of many present and future experiments in high-energy particle physics. The COMPASS experiment at the SPS accelerator at CERN uses a large scale Ring Imaging CHerenkov detector (RICH) to identify pions, kaons and protons in a wide momentum range. For the data taking in 2006, the COMPASS RICH has been upgraded in the central photon detection area (25% of the surface) with a new technology to detect Cherenkov photons at very high count rates of several 10s per channel and a new dead-time free read-out system, which allows trigger rates up to 100 kHz. The Cherenkov photons are detected by an array of 576 visible and ultra-violet sensitive multi-anode photomultipliers with 16 channels each. Lens telescopes of fused silica lenses have been designed and built to focus the Cherenkov photons onto the individual photomultipliers. The read-out electronics of the PMTs is based on the MAD4 amplifier-discriminator chip and the dead-time free high resolution F1-TDC. The 120 ps time resolution of the digital card guarantees negligible background from uncorrelated physical events. In the outer part of the detector, where the particle rates are lower, the present multi-wire proportional chambers (MWPC) with Cesium Iodide photo-cathodes have been upgraded with a new read-out electronic system based on the APV preamplifier and shaper ASIC with analog pipeline and sampling ADCs. The project was fully designed and implemented in the period November 2004 until May 2006. The upgraded detector showed an excellent performance during the 2006 data taking: the number of detected Cherenkov photons per ring was increased from 14 to above 60 at saturation. The time resolution was improved from about 3 microseconds to about one nanosecond which allows an excellent suppression of the background photons from uncorrelated events.

  18. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy

    SciTech Connect

    Cortesi, M.; Prasser, H.-M.; Dangendorf, V.; Zboray, R.

    2014-07-15

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  19. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy.

    PubMed

    Cortesi, M; Dangendorf, V; Zboray, R; Prasser, H-M

    2014-07-01

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  20. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Cortesi, M.; Dangendorf, V.; Zboray, R.; Prasser, H.-M.

    2014-07-01

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  1. Image restoration for TV-scan moving images acquired through a semiconductor backscattered electron detector.

    PubMed

    Oho, Eisaku; Suzuki, Kazuhiko

    2009-01-01

    A semiconductor backscattered electron (BSE) detector has become popular in scanning electron microscopy session. However, detectors of semiconductor type have a serious disadvantage on the frequency characteristics. As a result, fast scan (e.g. TV-scan) BSE image should be blurred remarkably. It is the purpose of this study to restore this degradation by using digital image processing technology. In order to improve it practically, we have to settle several problems, such as noise, undesirable processing artifacts, and ease of use. Image processing techniques in an impromptu manner like a conventional mask processing are unhelpful for this study, because a complicated degradation of output signal affects severely the phase response as well as the amplitude response of our SEM system. Hence, based on the characteristics of an SEM signal obtained from the semiconductor BSE detector, a proper inverse filter in Fourier domain is designed successfully. Finally, the inverse filter is converted to a special convolution mask, which is skillfully designed, and applied for TV-scan moving BSE images. The improved BSE image is very effective in the work for finding important objects. (c) 2010 Wiley Periodicals, Inc.

  2. Imaging CO2 reservoirs using muons borehole detectors

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Bonal, N.; Lintereur, A.; Mellors, R. J.; Paulsson, B. N. P.; Rowe, C. A.; Varner, G. S.; Kouzes, R.; Flygare, J.; Mostafanezhad, I.; Yamaoka, J. A. K.; Guardincerri, E.; Chapline, G.

    2016-12-01

    Monitoring of the post-injection fate of CO2 in subsurface reservoirs is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We present a method of 4D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Although muon flux rapidly decreases with depth, preliminary analyses indicate that the muon technique is sufficiently sensitive to effectively map density variations caused by fluid displacement at depths consistent with proposed CO2reservoirs. The intensity of the muon flux is, to first order, inversely proportional to the density times the path length, with resolution increasing with measurement time. The primary technical challenge preventing deployment of this technology in subsurface locations is the lack of miniaturized muon-tracking detectors both capable of fitting in standard boreholes and that will be able to resist the harsh underground conditions (temperature, pressure, corrosion) for long periods of time. Such a detector with these capabilities has been developed through a collaboration supported by the U.S. Department of Energy. A prototype has been tested in underground laboratories during 2016. In particular, we will present results from a series of tests performed in a tunnel comparing efficiencies, and angular and position resolution to measurements collected at the same locations by large instruments developed by Los Alamos and Sandia National Laboratories. We will also present the results of simulations of muon detection for various CO2 reservoir situations and muon detector configurations. Finally, to improve imaging of 3D subsurface structures, a combination of seismic data, gravity data, and muons can be used. Because seismic waves, gravity anomalies, and muons are all sensitive to density, the combination of two or three of these measurements promises to be a powerful way to improve spatial

  3. Electronic noise in CT detectors: Impact on image noise and artifacts.

    PubMed

    Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H

    2013-10-01

    The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.

  4. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    SciTech Connect

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C.

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  5. Josephson-vortex Cherenkov radiation

    SciTech Connect

    Mints, R.G.; Snapiro, I.B.

    1995-10-01

    We predict the Josephson-vortex Cherenkov radiation of an electromagnetic wave. We treat a long one-dimensional Josephson junction. We consider the wavelength of the radiated electromagnetic wave to be much less than the Josephson penetration depth. We use for calculations the nonlocal Josephson electrodynamics. We find the expression for the radiated power and for the radiation friction force acting on a Josephson vortex and arising due to the Cherenkov radiation. We calculate the relation between the density of the bias current and the Josephson vortex velocity.

  6. The COMPASS RICH-1 detector upgrade

    NASA Astrophysics Data System (ADS)

    Abbon, P.; Alekseev, M.; Angerer, H.; Apollonio, M.; Birsa, R.; Bordalo, P.; Bradamante, F.; Bressan, A.; Busso, L.; Chiosso, M.; Ciliberti, P.; Colantoni, M. L.; Costa, S.; Dalla Torre, S.; Dafni, T.; Delagnes, E.; Deschamps, H.; Diaz, V.; Dibiase, N.; Duic, V.; Eyrich, W.; Faso, D.; Ferrero, A.; Finger, M.; Finger, M., Jr.; Fischer, H.; Gerassimov, S.; Giorgi, M.; Gobbo, B.; Hagemann, R.; von Harrach, D.; Heinsius, F. H.; Joosten, R.; Ketzer, B.; Königsmann, K.; Kolosov, V. N.; Konorov, I.; Kramer, D.; Kunne, F.; Lehmann, A.; Levorato, S.; Maggiora, A.; Magnon, A.; Mann, A.; Martin, A.; Menon, G.; Mutter, A.; Nähle, O.; Nerling, F.; Neyret, D.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pesaro, G.; Polak, J.; Rebourgeard, P.; Robinet, F.; Rocco, E.; Schiavon, P.; Schill, C.; Schröder, W.; Silva, L.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Svec, M.; Tessarotto, F.; Teufel, A.; Wollny, H.

    2008-08-01

    The COMPASS experiment at CERN provides hadron identification in a wide momentum range employing a large size gaseous Ring Imaging CHerenkov detector (RICH). The presence of large uncorrelated background in the COMPASS environment was limiting the efficiency of COMPASS RICH-1 in the very forward regime. A major upgrade of RICH-1 required a new technique for Cherenkov photon detection at count rates of several 106/s per channel in the central detector part, and a read-out system allowing for trigger rates of up to 100 kHz. To cope with these requirements, the photon detectors of the central region have been replaced with a fast photon detection system described here, while, in the peripheral regions, the existing multi-wire proportional chambers with CsI photo-cathodes have been equipped with a new read-out system based on APV preamplifiers and flash ADC chips. The new system consists of multi-anode photomultiplier tubes (MAPMTs) coupled to individual fused silica lens telescopes, and fast read-out electronics based on the MAD4 amplifier-discriminator and the dead-time free F1 TDC chip. The project was completely designed and implemented in less than two years: The upgraded detector is in operation since the 2006 CERN SPS run. We present the photon detection design, constructive aspects and test studies to characterise the single photon response of the MAPMTs coupled to the read-out system as well as the detector performance based on the 2006 data.

  7. Proposed helmet PET geometries with add-on detectors for high sensitivity brain imaging.

    PubMed

    Tashima, Hideaki; Yamaya, Taiga

    2016-10-07

    For dedicated brain PET, we can significantly improve sensitivity for the cerebrum region by arranging detectors in a compact hemisphere. The geometrical sensitivity for the top region of the hemisphere is increased compared with conventional cylindrical PET consisting of the same number of detectors. However, the geometrical sensitivity at the center region of the hemisphere is still low because the bottom edge of the field-of-view is open, the same as for the cylindrical PET. In this paper, we proposed a helmet PET with add-on detectors for high sensitivity brain PET imaging for both center and top regions. The key point is the add-on detectors covering some portion of the spherical surface in addition to the hemisphere. As the location of the add-on detectors, we proposed three choices: a chin detector, ear detectors, and a neck detector. For example, the geometrical sensitivity for the region-of-interest at the center was increased by 200% by adding the chin detector which increased the size by 12% of the size of the hemisphere detector. The other add-on detectors gave almost the same increased sensitivity effect as the chin detector did. Compared with standard whole-body-cylindrical PET, the proposed geometries can achieve 2.6 times higher sensitivity for brain region even with less than 1/4 detectors. In addition, we conducted imaging simulations for geometries with a diameter of 250 mm and with high resolution depth-of-interaction detectors. The simulation results showed that the proposed geometries increased image quality, and all of the add-on detectors were equivalently effective. In conclusion, the proposed geometries have high potential for widespread applications in high-sensitivity, high-resolution, and low-cost brain PET imaging.

  8. Proposed helmet PET geometries with add-on detectors for high sensitivity brain imaging

    NASA Astrophysics Data System (ADS)

    Tashima, Hideaki; Yamaya, Taiga

    2016-10-01

    For dedicated brain PET, we can significantly improve sensitivity for the cerebrum region by arranging detectors in a compact hemisphere. The geometrical sensitivity for the top region of the hemisphere is increased compared with conventional cylindrical PET consisting of the same number of detectors. However, the geometrical sensitivity at the center region of the hemisphere is still low because the bottom edge of the field-of-view is open, the same as for the cylindrical PET. In this paper, we proposed a helmet PET with add-on detectors for high sensitivity brain PET imaging for both center and top regions. The key point is the add-on detectors covering some portion of the spherical surface in addition to the hemisphere. As the location of the add-on detectors, we proposed three choices: a chin detector, ear detectors, and a neck detector. For example, the geometrical sensitivity for the region-of-interest at the center was increased by 200% by adding the chin detector which increased the size by 12% of the size of the hemisphere detector. The other add-on detectors gave almost the same increased sensitivity effect as the chin detector did. Compared with standard whole-body-cylindrical PET, the proposed geometries can achieve 2.6 times higher sensitivity for brain region even with less than 1/4 detectors. In addition, we conducted imaging simulations for geometries with a diameter of 250 mm and with high resolution depth-of-interaction detectors. The simulation results showed that the proposed geometries increased image quality, and all of the add-on detectors were equivalently effective. In conclusion, the proposed geometries have high potential for widespread applications in high-sensitivity, high-resolution, and low-cost brain PET imaging.

  9. Camera Development for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Moncada, Roberto Jose

    2017-01-01

    With the Cherenkov Telescope Array (CTA), the very-high-energy gamma-ray universe, between 30 GeV and 300 TeV, will be probed at an unprecedented resolution, allowing deeper studies of known gamma-ray emitters and the possible discovery of new ones. This exciting project could also confirm the particle nature of dark matter by looking for the gamma rays produced by self-annihilating weakly interacting massive particles (WIMPs). The telescopes will use the imaging atmospheric Cherenkov technique (IACT) to record Cherenkov photons that are produced by the gamma-ray induced extensive air shower. One telescope design features dual-mirror Schwarzschild-Couder (SC) optics that allows the light to be finely focused on the high-resolution silicon photomultipliers of the camera modules starting from a 9.5-meter primary mirror. Each camera module will consist of a focal plane module and front-end electronics, and will have four TeV Array Readout with GSa/s Sampling and Event Trigger (TARGET) chips, giving them 64 parallel input channels. The TARGET chip has a self-trigger functionality for readout that can be used in higher logic across camera modules as well as across individual telescopes, which will each have 177 camera modules. There will be two sites, one in the northern and the other in the southern hemisphere, for full sky coverage, each spanning at least one square kilometer. A prototype SC telescope is currently under construction at the Fred Lawrence Whipple Observatory in Arizona. This work was supported by the National Science Foundation's REU program through NSF award AST-1560016.

  10. Evaluation of Photo Multiplier Tube candidates for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Mirzoyan, R.; Müller, D.; Hanabata, Y.; Hose, J.; Menzel, U.; Nakajima, D.; Takahashi, M.; Teshima, M.; Toyama, T.; Yamamoto, T.

    2016-07-01

    Photo Multiplier Tubes (PMTs) are the most wide spread detectors for fast, faint light signals. Six years ago, an improvement program for the PMT candidates for the Cherenkov Telescope Array (CTA) project was started with the companies Hamamatsu Photonics K.K. and Electron Tubes Enterprises Ltd. (ETE). For maximizing the performance of the CTA imaging cameras we need PMTs with outstanding good quantum efficiency, high photoelectron collection efficiency, short pulse width, very low afterpulse probability and transit time spread. We will report on the measurements of PMT R-12992-100 from Hamamatsu as their final product and the PMT D573KFLSA as one of the latest test versions from ETE as candidate PMTs for the CTA project.

  11. Silica aerogel threshold Cherenkov counters for the JLab Hall A spectrometers: improvements and proposed modifications

    SciTech Connect

    Luigi Lagamba; Evaristo Cisbani; S. Colilli; R. Crateri; R. De Leo; Salvatore Frullani; Franco Garibaldi; F. Giuliani; M. Gricia; Mauro Iodice; Riccardo Iommi; A. Leone; M. Lucentini; A. Mostarda; E. Nappi; Roberto Perrino; L. Pierangeli; F. Santavenere; Guido M. Urciuoli

    2001-10-01

    Recently approved experiments at Jefferson Lab Hall A require a clean kaon identification in a large electron, pion, and proton background environment. To this end, improved performance is required of the silica aerogel threshold Cherenkov counters installed in the focal plane of the two Hall A spectrometers. In this paper we propose two strategies to improve the performance of the Cherenkov counters which presently use a hydrophilic aerogel radiator, and convey Cherenkov photons towards the photomultipliers by means of mirrors with a parabolic shape in one direction and flat in the other. The first strategy is aerogel baking. In the second strategy we propose a modification of the counter geometry by replacing the mirrors with a planar diffusing surface and by displacing in a different way the photomultipliers. Tests at CERN with a 5GeV/c multiparticle beam revealed that both the strategies are able to increase significantly the number of the detected Cherenkov photons and, therefore, the detector performance.

  12. A prototype of radiation imaging detector using silicon strip sensors

    NASA Astrophysics Data System (ADS)

    Ryu, S.; Hyun, H. J.; Kah, D. H.; Kang, H. D.; Kim, H. J.; Kim, Kyeryung; Kim, Y. I.; Park, H.; Son, D. H.

    2008-06-01

    The aim of this work is to evaluate the performance of a strip sensor with a single photon counting data acquisition system based on VA1 readout chips to study the feasibility of a silicon microstrip detector for medical application. The sensor is an AC-coupled single-sided microstrip sensor and the active area of the sensor is 32.0 mm×32.0 mm with a thickness of 380 μm. The sensor has 64 readout strips with a pitch of 500 μm. The sensor was biased at 45 V and the experiment was performed at room temperature. Two silicon strip sensors were mounted perpendicularly one another to get two-dimensional position information with a 5 mm space gap. Two low noise analog ASICs, VA1 chips, were used for signal readout of the strip sensor. The assembly of sensors and readout electronics was housed in an Al light-tight box. A CsI(Tl) scintillation crystal and a 2-in. photomultiplier tube were used to trigger signal events. The data acquisition system was based on a 64 MHz FADC and control softwares for the PC-Linux platform. Imaging tests were performed by using a lead phantom with a 90Sr radioactive source and a 45 MeV proton beam at Korea Institute of Radiological and Medical Science in Seoul, respectively. Results of the S/ N ratio measurement and phantom images are presented.

  13. Fast readout of GEM detectors for medical imaging

    NASA Astrophysics Data System (ADS)

    Bucciantonio, M.; Amaldi, U.; Kieffer, R.; Malakhov, N.; Sauli, F.; Watts, D.

    2013-08-01

    We describe the design and implementation of a fast data acquisition (DAQ) system for Gas Electron Multiplier (GEM) trackers applied to imaging and dosimetry in hadrontherapy. Within the AQUA project of the TERA foundation a prototype of Proton Range Radiography of 30×30 cm2 active area has been designed and built to provide in-beam integrated density images of the patient before treatment. It makes use of a pair of GEMs to record position and direction of protons emerging from the target. A fast data acquisition rate close to 1 MHz will allow obtaining a good resolution in-beam proton radiography in a few seconds. A dedicated fast front-end circuit for GEM detectors (GEMROC by AGH-Crakow University) is read by the FPGA based DAQ card (GR_DAQ), developed by the AQUA group. The same system is under evaluation (within the ENVISION European project) to realize the in-vivo dosimetry, based on detecting secondary light particles during the treatment of the patient.

  14. Characterization of CCD-based imaging x-ray detectors for diffraction experiments

    SciTech Connect

    Naday, I.; Ross, S.; Kanyo, M.; Westbrook, E.; Westbrook, M.

    1993-09-01

    High resolution CCD-based imaging detectors are successfully used in X-ray diffraction experiments. Some of the detectors are commercially available, others have been developed by research groups around the world. Reliable comparison of the performance must be based on through testing of all relevant characteristics of these detectors. We describe methods of measurements of detector parameters such as conversion gain, linearity, uniformity, point spread function, geometrical uniformity, dark current, and detective quantum efficiency. As an example for the characterization, test results of a single module fiberoptic taper/CCD X-ray detector will be presented. The projected performance of a large area, array detector consisting of 9 CCD`s and fiberoptic taper modules, will be given. This new detector (the ``Gold`` detector) will be installed on Beamline X8C at the Brookhaven National Laboratory at the NSLS Synchrotron.

  15. Monitoring of absolute mirror alignment at COMPASS RICH-1 detector

    NASA Astrophysics Data System (ADS)

    Alexeev, M.; Birsa, R.; Bradamante, F.; Bressan, A.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Denisov, O.; Duic, V.; Ferrero, A.; Finger, M.; Finger, M.; Gayde, J. Ch.; Giorgi, M.; Gobbo, B.; Levorato, S.; Maggiora, A.; Martin, A.; Menon, G.; Panzieri, D.; Pesaro, G.; Polak, J.; Rocco, E.; Sbrizzai, G.; Schiavon, P.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Takekawa, S.; Tessarotto, F.

    2014-12-01

    The gaseous COMPASS RICH-1 detector uses two spherical mirror surfaces, segmented into 116 individual mirrors, to focus the Cherenkov photons onto the detector plane. Any mirror misalignment directly affects the detector resolution. The on-line Continuous Line Alignment and Monitoring (CLAM) photogrammetry-based method has been implemented to measure the alignment of individual mirrors which can be characterized by the center of curvature. The mirror wall reflects a regular grid of retroreflective strips placed inside the detector vessel. Then, the position of each mirror is determined from the image of the grid reflection. The images are collected by four cameras. Any small mirror misalignment results in changes of the grid lines' positions in the image. The accuracy limits of the CLAM method were checked by laser interferometry and are below 0.1 mrad.

  16. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics.

    PubMed

    Cowen, A R; Kengyelics, S M; Davies, A G

    2008-05-01

    Solid-state, digital radiography (DR) detectors, designed specifically for standard projection radiography, emerged just before the turn of the millennium. This new generation of digital image detector comprises a thin layer of x-ray absorptive material combined with an electronic active matrix array fabricated in a thin film of hydrogenated amorphous silicon (a-Si:H). DR detectors can offer both efficient (low-dose) x-ray image acquisition plus on-line readout of the latent image as electronic data. To date, solid-state, flat-panel, DR detectors have come in two principal designs, the indirect-conversion (x-ray scintillator-based) and the direct-conversion (x-ray photoconductor-based) types. This review describes the underlying principles and enabling technologies exploited by these designs of detector, and evaluates their physical imaging characteristics, comparing performance both against each other and computed radiography (CR). In standard projection radiography indirect conversion DR detectors currently offer superior physical image quality and dose efficiency compared with direct conversion DR and modern point-scan CR. These conclusions have been confirmed in the findings of clinical evaluations of DR detectors. Future trends in solid-state DR detector technologies are also briefly considered. Salient innovations include WiFi-enabled, portable DR detectors, improvements in x-ray absorber layers and developments in alternative electronic media to a-Si:H.

  17. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  18. New Electronics for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Feinstein, F.; Bolmont, J.; Delagnes, E.; Gascón, D.; Glicenstein, J.-F.; Nayman, P.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.

    Very high energy gamma-ray astronomy is now bringing an invaluable contribution to the understanding of violent phenomena in the Universe, as well as the search for exotic physics such as indirect detection of dark matter or a test of Lorentz invariance violation. The current Imaging Arrays of Cherenkov Telescopes (IACT) show that this technique is mature. In Europe, the community is gathering around the Cherenkov Telescope Array consortium, to design and build the next generation ground-based array. It should reach an order of magnitude in sensitivity in a wide energy band, ranging from 10GeV to more than 100TeV. This goal can be achieved with an array of 50-100telescopes of various sizes at various spacings. With about 2000channels per camera, a specific effort has to be made to design front-end electronics with a lower cost and better performances. A gain in cost and performances can be obtained by maximising the integration of the front-end electronics in an ASIC. The amplifiers, analogue memories, digitization and first level buffering can be embedded in the same component. We present here the NECTAr project aiming at building a demonstrator element of a generic camera built around this component.

  19. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation.

    PubMed

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R; Esipova, Tatiana V; Vinogradov, Sergei; Gladstone, David J; Jarvis, Lesley A; Pogue, Brian W

    2016-05-21

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5

  20. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation

    NASA Astrophysics Data System (ADS)

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R.; Esipova, Tatiana V.; Vinogradov, Sergei; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-05-01

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5

  1. The next generation Cherenkov Telescope Array observatory: CTA

    NASA Astrophysics Data System (ADS)

    Vercellone, S.

    2014-12-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the very high-energy gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23 m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100 m. A larger number (about 25 units) of 12 m Medium Size Telescopes (MSTs, separated by about 150 m), will cover a larger area. The southern site will also include up to 24 Schwarzschild-Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5 m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To achieve the required sensitivity at high energies, a huge area on the ground needs to be covered by Small Size Telescopes (SSTs) with a field of view of about 10° and an angular resolution of about 0.2°, making the dual-mirror configuration very effective. The SST sub-array will be composed of 50-70 telescopes with a mirror area of about 5-10 m2 and about 300 m spacing, distributed across an area of about 10 km2. In this presentation we will focus on the innovative solution for the optical design of the medium and small size telescopes based on a dual-mirror configuration. This layout will allow us to reduce the dimension and the weight of the camera at the focal plane of the telescope, to adopt Silicon-based photo-multipliers as light detectors thanks to the reduced plate-scale, and to have an optimal imaging resolution on a wide field of view.

  2. High quantum efficiency megavoltage imaging with thick scintillator detectors for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Gopal, Arun

    In image guided radiation therapy (IGRT), imaging devices serve as guidance systems to aid patient set-up and tumor volume localization. Traditionally, 2-D megavoltage x-ray imagers, referred to as electronic portal imaging devices (EPIDs), have been used for planar target localization, and have recently been extended to perform 3-D volumetric reconstruction via cone-beam computed tomography (CBCT). However, current EPIDs utilize thin and inefficient phosphor screen detectors and are subsequently limited by poor soft tissue visualization, which limits their use for CBCT. Therefore, the use of thick scintillation media as megavoltage x-ray detectors for greater x-ray sensitivity and enhanced image quality has recently been of significant interest. In this research, two candidates for thick scintillators: CsI(Tl) and terbium doped scintillation glass were investigated in separate imaging configurations. In the first configuration, a thick scintillation crystal (TSC) consisting of a thick, monolithic slab of CsI(Tl) was coupled to a mirror-lens-camera system. The second configuration is based on a fiber-optic scintillation glass array (FOSGA), wherein the scintillation glass is drawn into long fiber-optic conduits, inserted into a grid-type housing constructed out of polymer-tungsten alloy, and coupled to an array of photodiodes for digital read-out. The imaging prototypes were characterized using theoretical studies and imaging measurements to obtain fundamental metrics of imaging performance. Spatial resolution was measured based on a modulation transfer function (MTF), noise was evaluated in terms of a noise power spectrum (NPS), and overall contrast was characterized in the form of detective quantum efficiency (DQE). The imaging studies were used to optimize the TSC and FOSGA imagers and propose prototype configurations for order-of-magnitude improvements in overall image quality. In addition, a fast and simple technique was developed to measure the MTF, NPS, and

  3. GEANT4 simulations of Cherenkov reaction history diagnostics

    SciTech Connect

    Rubery, M. S.; Horsfield, C. J.; Herrmann, H. W.; Kim, Y.; Mack, J. M.; Young, C. S.; Caldwell, S. E.; Evans, S. C.; Sedilleo, T. J.; McEvoy, A.; Miller, E. K.; Stoeffl, W.; Ali, Z.

    2010-10-15

    This paper compares the results from a GEANT4 simulation of the gas Cherenkov detector 1 (GCD1) with previous simulations and experimental data from the Omega laser facility. The GCD1 collects gammas emitted during a deuterium-tritium capsule implosion and converts them, through several processes, to Cherenkov light. Photon signals are recorded using subnanosecond photomultiplier tubes, producing burn reaction histories. The GEANT4 GCD1 simulation is first benchmarked against ACCEPT, an integrated tiger series code, with good agreement. The simulation is subsequently compared with data from the Omega laser facility, where experiments have been performed to measure the effects of Hohlraum materials on reaction history signals, in preparation for experiments at the National Ignition Facility.

  4. Optical Properties of the DIRC Fused Silica Cherenkov Radiator

    SciTech Connect

    Schwiening, Jochen

    2003-04-30

    The DIRC is a new type of Cherenkov detector that is successfully operating as the hadronic particle identification system for the BABAR experiment at SLAC. The fused silica bars that serve as the DIRC's Cherenkov radiators must transmit the light over long optical pathlengths with a large number of internal reflections. This imposes a number of stringent and novel requirements on the bar properties. This note summarizes a large amount of R&D that was performed both to develop specifications and production methods and to determine whether commercially produced bars could meet the requirements. One of the major outcomes of this R&D work is an understanding of methods to select radiation hard and optically uniform fused silica material. Others include measurement of the wavelength dependency of the internal reflection coefficient, and its sensitivity to surface contaminants, development of radiator support methods, and selection of good optical glue.

  5. Particle identification for the P¯ANDA detector

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Ahmed, G.; Britting, A.; Bühler, P.; Cowie, E.; Dodokhov, V. Kh.; Düren, M.; Dutta, D.; Eyrich, W.; Föhl, K.; Glazier, D. I.; Hayrapetyan, A.; Hoek, M.; Hohler, R.; Lehmann, A.; Lehmann, D.; Kaiser, R.; Keri, T.; Koch, P.; Kröck, B.; Marton, J.; Merle, O.; Montgomery, R.; Peters, K.; Reinicke, S.; Rosner, G.; Roy, B.; Schepers, G.; Schmitt, L.; Schwiening, J.; Seitz, B.; Sfienti, C.; Suzuki, K.; Uhlig, F.; Vodopianov, A. S.; Watts, D. P.; Yu, W.

    2011-05-01

    Cooled antiproton beams of unprecedented intensities in the momentum range of 1.5-15 GeV/ c will be used for the P¯ANDA experiment at FAIR to perform high precision experiments in the charmed quark sector. The proposed P¯ANDA detector is a 4π internal target spectrometer at the HESR allowing the detection and identification of neutral and charged particles generated within the total energy range of the antiproton annihilation products. The detector is divided in a forward spectrometer and a target spectrometer. The charged particle identification in the latter is performed by ring imaging Cherenkov counters employing the DIRC principle.

  6. The capacitive division image readout: a novel imaging device for microchannel plate detectors

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Conneely, T. M.; Leach, S. A.; Moore, L.

    2013-09-01

    The Capacitive Division Image Readout (C-DIR) is a simple and novel image readout for photon counting detectors offering major performance advantages. C-DIR is a charge centroiding device comprising three elements; (i) a resistive anode providing event charge localization, event current return path and electrical isolation from detector high voltage, (ii) a dielectric substrate which capacitively couples the event transient signal to the third element, (iii) the readout device; an array of capacitively coupled electrodes which divides the signal among the readout charge measurement nodes. The resistive anode and dielectric substrate constitute the rear interface of the detector and capacitively couple the signal to the external C-DIR readout device. The C-DIR device is a passive, multilayer printed circuit board type device comprising a matrix of isolated electrodes whose geometries define the capacitive network. C-DIR is manufactured using conventional PCB geometries and is straightforward and economical to construct. C-DIR's robustness and simplicity belie its performance advantages. Its capacitive nature avoids partition noise, the Poisson noise associated with collection of discrete charges. The dominant noise limiting position resolution is electronic noise. However C-DIR also presents a low input capacitance to the readout electronics, minimising this noise component thus maximising spatial resolution. Optimisation of the C-DIR pattern-edge geometry can provide ~90% linear dynamic range. We present data showing image resolution and linearity of the C-DIR device in a microchannel plate detector and describe various electronic charge measurement scheme designed to exploit the full performance potential of the C-DIR device.

  7. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    PubMed Central

    Giewekemeyer, Klaus; Philipp, Hugh T.; Wilke, Robin N.; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W.; Shanks, Katherine S.; Zozulya, Alexey V.; Salditt, Tim; Gruner, Sol M.; Mancuso, Adrian P.

    2014-01-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 108 8-keV photons pixel−1 s−1, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 1010 photons µm−2 s−1 within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described. PMID:25178008

  8. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector.

    PubMed

    Giewekemeyer, Klaus; Philipp, Hugh T; Wilke, Robin N; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W; Shanks, Katherine S; Zozulya, Alexey V; Salditt, Tim; Gruner, Sol M; Mancuso, Adrian P

    2014-09-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10(8) 8-keV photons pixel(-1) s(-1), and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10(10) photons µm(-2) s(-1) within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while `still' images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  9. Method for growing a back surface contact on an imaging detector used in conjunction with back illumination

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana (Inventor); Hoenk, Michael Eugene (Inventor); Nikzad, Shouleh (Inventor)

    2010-01-01

    A method is provided for growing a back surface contact on an imaging detector used in conjunction with back illumination. In operation, an imaging detector is provided. Additionally, a back surface contact (e.g. a delta-doped layer, etc.) is grown on the imaging detector utilizing a process that is performed at a temperature less than 450 degrees Celsius.

  10. Simulation Study of RICH Detector for Particle Identification in Forward Region at Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Wong, Cheuk-Ping

    2015-04-01

    eRD11 R&D program is focusing on the technology exploration for hadron particle identification in the forward region of Electron-Ion Collider (EIC) for studying quark and gluon distributions inside the nucleon. A modular Ring Imaging Cherenkov (RICH) detector has been extensively studied in Geant4-based simulation. The detector consists of a block of aerogel, Fresnel lens, four side mirrors and a photosensor plane. The simulated performance of this detector will be presented in this talk. For the eRD11 Collaboration.

  11. The BABAR Detector

    SciTech Connect

    Luth, Vera G

    2001-05-18

    BABAR, the detector for the SLAC PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the {Upsilon}(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  12. Three-dimensional photoacoustic imaging using fiber-based line detectors

    NASA Astrophysics Data System (ADS)

    Grün, Hubert; Berer, Thomas; Burgholzer, Peter; Nuster, Robert; Paltauf, Günther

    2010-03-01

    For photoacoustic imaging, usually point-like detectors are used. As a special sensing technology for photoacoustic imaging, integrating detectors have been investigated that integrate the acoustic pressure over an area or line that is larger than the imaged object. Different kinds of optical fiber-based detectors are compared regarding their sensitivity and resolution in three-dimensional photoacoustic tomography. In the same type of interferometer, polymer optical fibers yielded much higher sensitivity than glass fibers. Fabry-Pérot glass-fiber interferometers in turn gave higher sensitivity than Mach-Zehnder-type interferometers. Regarding imaging resolution, the single-mode glass fiber showed the best performance. Last, three-dimensional images of phantoms and insects using a glass-fiber-based Fabry-Pérot interferometer as integrating line detector are presented.

  13. Status and updates from the High Altitude Water Cherenkov (HAWC) Observatory

    NASA Astrophysics Data System (ADS)

    Baughman, B. M.

    2013-06-01

    The High Altitude Water Cherenkov Observatory (HAWC) is currently being deployed on the slopes of Volcan Sierra Negra, Puebla, Mexico. The HAWC observatory will consist of 300 Water Cherenkov Detectors totaling approximately 22,000 m of instrumented area. The water Cherenkov technique allows HAWC to have a nearly 100% duty cycle and large field of view, making the HAWC observatory an ideal instrument for the study of transient phenomena. With its large effective area, excellent angular and energy resolutions, and efficient gamma-hadron separation, HAWC will survey the TeV gamma ray sky, measure spectra of galactic sources from 1 TeV to beyond 100 TeV, and map galactic diffuse gamma ray emission. The science goals and performance of the HAWC observatory as well as how it will complement contemporaneous space and ground-based detectors will be presented.

  14. Extensive air showers and diffused Cherenkov light detection: The ULTRA experiment

    NASA Astrophysics Data System (ADS)

    Agnetta, G.; Assis, P.; Biondo, B.; Brogueira, P.; Cappa, A.; Catalano, O.; Chauvin, J.; D'Alí Staiti, G.; Dattoli, M.; Espirito-Santo, M. C.; Fava, L.; Galeotti, P.; Giarrusso, S.; Gugliotta, G.; La Rosa, G.; Lebrun, D.; Maccarone, M. C.; Mangano, A.; Melo, L.; Moreggia, S.; Pimenta, M.; Russo, F.; Saavedra, O.; Segreto, A.; Silva, J. C.; Stassi, P.; Tomè, B.; Vallania, P.; Vigorito, C.; ULTRA Collaboration

    2007-01-01

    The Uv Light Transmission and Reflection in the Atmosphere (ULTRA) experiment has been designed to provide quantitative measurements of the backscattered Cherenkov signal associated to the Extensive Air Showers (EAS) at the impact point on the Earth surface. The knowledge of such information will test the possibility to detect the diffused Cherenkov light spot from space within the Ultra high-energy cosmic ray observation. The Cherenkov signal is necessary to give an absolute reference for the track, allowing the measurement of the shower maximum and easing the separation between neutrino and hadronic showers. In this paper we discuss the experimental set-up with detailed information on the detection method; the in situ and laboratory calibrations; the simulation of the expected detector response and finally the preliminary results on the detector performance.

  15. Terahertz and Millimetre Wave Imaging with a Broadband Josephson Detector Working above 77 K

    NASA Astrophysics Data System (ADS)

    Du, Jia; Hellicar, A. D.; Hanham, S. M.; Li, L.; Macfarlane, J. C.; Leslie, K. E.; Foley, C. P.

    2011-05-01

    A high-Tc superconducting (HTS) broadband Josephson detector has been developed and applied to millimetre wave (mm-wave) and terahertz (THz) imaging. The detector is based on a YBa2Cu3O7-x (YBCO) step-edge Josephson junction, which is coupled to a thin-film log-periodic antenna, designed for operation at 200-600 GHz, and a hemispheric silicon lens. The junction parameters have been optimised to achieve a high IcRn value so that the detector responds well to the specified frequencies at liquid nitrogen temperature (77 K). Images at ˜200 GHz and ˜600 GHz were acquired with the same detector; each demonstrated their unique properties. The results demonstrate the potential of achieving a cheaper, compact and portable multi-spectral imager based on a HTS detector.

  16. Quantum structure based infrared detector research and development within Acreo’s centre of excellence IMAGIC

    NASA Astrophysics Data System (ADS)

    Andersson, J. Y.; Höglund, L.; Noharet, B.; Wang, Q.; Ericsson, P.; Wissmar, S.; Asplund, C.; Malm, H.; Martijn, H.; Hammar, M.; Gustafsson, O.; Hellström, S.; Radamson, H.; Holtz, P. O.

    2010-07-01

    Acreo has a long tradition of working with quantum structure based infrared (IR) detectors and arrays. This includes QWIP (quantum well infrared photodetector), QDIP (quantum dot infrared photodetector), and InAs/GaInSb based photon detectors of different structure and composition. It also covers R&D on uncooled microbolometers. The integrated thermistor material of such detectors is advantageously based on quantum structures that are optimised for high temperature coefficient and low noise. Especially the SiGe material system is preferred due to the compatibility with silicon technology. The R&D work on IR detectors is a prominent part of Acreo's centre of excellence "IMAGIC" on imaging detectors and systems for non-visible wavelengths. IMAGIC is a collaboration between Acreo, several industry partners and universities like the Royal Institute of Technology (KTH) and Linköping University.

  17. UCD-SPI: Un-Collimated Detector Single-Photon Imaging System for Small Animal and Plant Imaging

    NASA Astrophysics Data System (ADS)

    Walker, Katherine Leigh

    Medical imaging systems using single gamma-ray emitting radioisotopes implement collimators in order to form images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in "thin" objects such as mice, small plants, and well plates used for in vitro experiments. This flexible geometry un-collimated detector single-photon imaging (UCD-SPI) system consists of two large (5 cm x 10 cm), thin (3 mm and 5 mm), closely spaced, pixelated scintillation detectors of either NaI(Tl), CsI(Na), or BGO. The detectors are read out by two adjacent Hamamatsu H8500 multichannel photomultiplier tubes. The detector heads enable the interchange of scintillation detectors of different materials and thicknesses to optimize performance for a wide range of gamma-ray energies and imaging subjects. The detectors are horizontally oriented for animal imaging, and for plant imaging the system is rotated on its side to orient the detectors vertically. While this un-collimated detector system is unable to approach the sub-mm spatial resolution obtained by the most advanced preclinical pinhole SPECT systems, the high sensitivity could enable significant and new use in molecular imaging applications which do not require good spatial resolution- for example, screening applications for drug development (small animals), for material transport and sequestration studies for phytoremediation (plants), or for counting radiolabeled cells in vitro (well plates).

  18. Angular distribution of Cherenkov radiation from relativistic heavy ions taking into account deceleration in the radiator

    SciTech Connect

    Bogdanov, O. V. Fiks, E. I.; Pivovarov, Yu. L.

    2012-09-15

    Numerical methods are used to study the dependence of the structure and the width of the angular distribution of Vavilov-Cherenkov radiation with a fixed wavelength in the vicinity of the Cherenkov cone on the radiator parameters (thickness and refractive index), as well as on the parameters of the relativistic heavy ion beam (charge and initial energy). The deceleration of relativistic heavy ions in the radiator, which decreases the velocity of ions, modifies the condition of structural interference of the waves emitted from various segments of the trajectory; as a result, a complex distribution of Vavilov-Cherenkov radiation appears. The main quantity is the stopping power of a thin layer of the radiator (average loss of the ion energy), which is calculated by the Bethe-Bloch formula and using the SRIM code package. A simple formula is obtained to estimate the angular distribution width of Cherenkov radiation (with a fixed wavelength) from relativistic heavy ions taking into account the deceleration in the radiator. The measurement of this width can provide direct information on the charge of the ion that passes through the radiator, which extends the potentialities of Cherenkov detectors. The isotopic effect (dependence of the angular distribution of Vavilov-Cherenkov radiation on the ion mass) is also considered.

  19. Study of air-Cherenkov telescopes for harsh environments like the south pole with efficient air-shower detection below 100 TeV

    NASA Astrophysics Data System (ADS)

    Auffenberg, Jan; Bretz, Thomas

    2017-01-01

    Small Imaging air Cherenkov telescopes, designed with semi-conductor based photo sensors, have the potential to detect Cherenkov light emitted by cosmic-rays in the atmosphere. Such telescopes promise a high duty cycle and efficiency in remote and harsh environments. Due to the low costs and robustness of these instruments, this technology could prove interesting. For instant if deployed in large numbers with existing and future extended cosmic-ray and gamma ray detectors, including the Pierre Auger observatory, HAWC, IceCube and CTA, they may enhance the sensitivity of these instruments for the detection of high-energy gamma rays and cosmic-ray air showers. In addition, for neutrino telescopes such a technology could prove to be an efficient cosmic-ray veto on the surface. This contribution gives an update on the current design and the development of a SiPM based air Cherenkov telescope prototype that was deployed at the South Pole. The results of initial sensitivity studies, and the readiness of the system for first tests, are shown.

  20. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    USDA-ARS?s Scientific Manuscript database

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  1. Design and Fabrication of Cherenkov Counters for the Detection of SNM

    SciTech Connect

    Erickson, Anna S.; Lanza, Richard; Galaitsis, Anthony; Hynes, Michael; Blackburn, Brandon; Bernstein, Adam

    2011-12-13

    The need for large-size detectors for long-range active interrogation (AI) detection of SNM has generated interest in water-based detector technologies. Water Cherenkov Detectors (WCD) were selected for this research because of their transportability, scalability, and an inherent energy threshold. The detector design and analysis was completed using the Geant4 toolkit. It was demonstrated both computationally and experimentally that it is possible to use WCD to detect and characterize gamma rays. Absolute efficiency of the detector (with no energy cuts applied) was determined to be around 30% for a {sup 60}Co source.

  2. Scintillating-fiber imaging detector for 14-MeV neutrons

    SciTech Connect

    Ress, D.; Lerche, R.A.; Ellis, R.J.; Heaton, G.W.; Nelson, M.B.; Mant, G.; Lehr, D.E.

    1994-07-25

    The authors have created a detector to image the neutrons emitted by imploded inertial-confinement fusion targets. The 14-MeV neutrons, which are produced by deuterium-tritium fusion events in the target, pass through an aperture to create an image on the detector. The neutron radiation is converted to blue light (430 nm) with a 20-cm-square array of plastic scintillating fibers. Each fiber is 10-cm long with a 1-mm-square cross section; approximately 35-thousand fibers make up the array. The resulting blue-light image is reduced and amplified by a sequence of fiber-optic tapers and image intensifiers, then acquired by a CCD camera. The fiber-optic readout system was tested optically for overall throughput the resolution. The authors plan to characterize the scintillator array reusing an ion-beam neutron source as well as DT-fusion neutrons emitted by inertial confinement targets. Characterization experiments will measure the light-production efficiency, spatial resolution, and neutron scattering within the detector. Several neutron images of laser-fusion targets have been obtained with the detector. Several neutron images of laser-fusion targets have been obtained with the detector. They describe the detector and their characterization methods, present characterization results, and give examples of the neutron images.

  3. Multi-class geospatial object detection and geographic image classification based on collection of part detectors

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Han, Junwei; Zhou, Peicheng; Guo, Lei

    2014-12-01

    The rapid development of remote sensing technology has facilitated us the acquisition of remote sensing images with higher and higher spatial resolution, but how to automatically understand the image contents is still a big challenge. In this paper, we develop a practical and rotation-invariant framework for multi-class geospatial object detection and geographic image classification based on collection of part detectors (COPD). The COPD is composed of a set of representative and discriminative part detectors, where each part detector is a linear support vector machine (SVM) classifier used for the detection of objects or recurring spatial patterns within a certain range of orientation. Specifically, when performing multi-class geospatial object detection, we learn a set of seed-based part detectors where each part detector corresponds to a particular viewpoint of an object class, so the collection of them provides a solution for rotation-invariant detection of multi-class objects. When performing geographic image classification, we utilize a large number of pre-trained part detectors to discovery distinctive visual parts from images and use them as attributes to represent the images. Comprehensive evaluations on two remote sensing image databases and comparisons with some state-of-the-art approaches demonstrate the effectiveness and superiority of the developed framework.

  4. Applications of multi-spectral imaging: failsafe industrial flame detector

    NASA Astrophysics Data System (ADS)

    Wing Au, Kwong; Larsen, Christopher; Cole, Barry; Venkatesha, Sharath

    2016-05-01

    Industrial and petrochemical facilities present unique challenges for fire protection and safety. Typical scenarios include detection of an unintended fire in a scene, wherein the scene also includes a flare stack in the background. Maintaining a high level of process and plant safety is a critical concern. In this paper, we present a failsafe industrial flame detector which has significant performance benefits compared to current flame detectors. The design involves use of microbolometer in the MWIR and LWIR spectrum and a dual band filter. This novel flame detector can help industrial facilities to meet their plant safety and critical infrastructure protection requirements while ensuring operational and business readiness at project start-up.

  5. A large-area CMOS imager as an X-ray detector for synchrotron radiation experiments.

    PubMed

    Yagi, Naoto; Yamamoto, Masaki; Uesugi, Kentaro; Inoue, Katsuaki

    2004-07-01

    The performance of a CMOS flatpanel imager from Hamamatsu Photonics (C7942) has been tested in various synchrotron radiation experiments. This detector has a detection area of about 120 mm x 120 mm with 0.05 mm pixels, and a frame rate of 2 s(-1). The commercially available product was insensitive to X-rays with an energy lower than 15 keV, but slight modifications solved this problem. Images obtained in small-angle scattering, protein crystallography and medical imaging experiments were all of high quality. The fast readout and the large area are advantageous in real-time imaging. Although its noise level is higher than the area detectors that are currently used in synchrotron radiation experiments, it is particularly useful in experiments where other bulky detectors cannot be used. Its relatively low price (about 30,000 US dollars) makes it a unique option in the choice of detectors.

  6. Velocity map photoelectron-photoion coincidence imaging on a single detector.

    PubMed

    Lehmann, C Stefan; Ram, N Bhargava; Janssen, Maurice H M

    2012-09-01

    Here we report on a new simplified setup for velocity map photoelectron-photoion coincidence imaging using only a single particle detector. We show that both photoelectrons and photoions can be extracted toward the same micro-channel-plate delay line detector by fast switching of the high voltages on the ion optics. This single detector setup retains essentially all the features of a standard two-detector coincidence imaging setup, viz., the high spatial resolution for electron and ion imaging, while only slightly decreasing the ion time-of-flight mass resolution. The new setup paves the way to a significant cost reduction in building a coincidence imaging setup for experiments aiming to obtain the complete correlated three-dimensional momentum distribution of electrons and ions.

  7. Velocity map photoelectron-photoion coincidence imaging on a single detector

    SciTech Connect

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M.

    2012-09-15

    Here we report on a new simplified setup for velocity map photoelectron-photoion coincidence imaging using only a single particle detector. We show that both photoelectrons and photoions can be extracted toward the same micro-channel-plate delay line detector by fast switching of the high voltages on the ion optics. This single detector setup retains essentially all the features of a standard two-detector coincidence imaging setup, viz., the high spatial resolution for electron and ion imaging, while only slightly decreasing the ion time-of-flight mass resolution. The new setup paves the way to a significant cost reduction in building a coincidence imaging setup for experiments aiming to obtain the complete correlated three-dimensional momentum distribution of electrons and ions.

  8. Experimental and theoretical performance analysis for a CMOS-based high resolution image detector

    PubMed Central

    Jain, Amit; Bednarek, Daniel R.; Rudin, Stephen

    2014-01-01

    Increasing complexity of endovascular interventional procedures requires superior x-ray imaging quality. Present state-of-the-art x-ray imaging detectors may not be adequate due to their inherent noise and resolution limitations. With recent developments, CMOS based detectors are presenting an option to fulfill the need for better image quality. For this work, a new CMOS detector has been analyzed experimentally and theoretically in terms of sensitivity, MTF and DQE. The detector (Dexela Model 1207, Perkin-Elmer Co., London, UK) features 14-bit image acquisition, a CsI phosphor, 75 µm pixels and an active area of 12 cm × 7 cm with over 30 fps frame rate. This detector has two modes of operations with two different full-well capacities: high and low sensitivity. The sensitivity and instrumentation noise equivalent exposure (INEE) were calculated for both modes. The detector modulation-transfer function (MTF), noise-power spectra (NPS) and detective quantum efficiency (DQE) were measured using an RQA5 spectrum. For the theoretical performance evaluation, a linear cascade model with an added aliasing stage was used. The detector showed excellent linearity in both modes. The sensitivity and the INEE of the detector were found to be 31.55 DN/µR and 0.55 µR in high sensitivity mode, while they were 9.87 DN/µR and 2.77 µR in low sensitivity mode. The theoretical and experimental values for the MTF and DQE showed close agreement with good DQE even at fluoroscopic exposure levels. In summary, the Dexela detector's imaging performance in terms of sensitivity, linear system metrics, and INEE demonstrates that it can overcome the noise and resolution limitations of present state-of-the-art x-ray detectors. PMID:25300571

  9. Experimental and theoretical performance analysis for a CMOS-based high resolution image detector

    NASA Astrophysics Data System (ADS)

    Jain, Amit; Bednarek, Daniel R.; Rudin, Stephen

    2014-03-01

    Increasing complexity of endovascular interventional procedures requires superior x-ray imaging quality. Present stateof- the-art x-ray imaging detectors may not be adequate due to their inherent noise and resolution limitations. With recent developments, CMOS based detectors are presenting an option to fulfill the need for better image quality. For this work, a new CMOS detector has been analyzed experimentally and theoretically in terms of sensitivity, MTF and DQE. The detector (Dexela Model 1207, Perkin-Elmer Co., London, UK) features 14-bit image acquisition, a CsI phosphor, 75 μm pixels and an active area of 12 cm x 7 cm with over 30 fps frame rate. This detector has two modes of operations with two different full-well capacities: high and low sensitivity. The sensitivity and instrumentation noise equivalent exposure (INEE) were calculated for both modes. The detector modulation-transfer function (MTF), noise-power spectra (NPS) and detective quantum efficiency (DQE) were measured using an RQA5 spectrum. For the theoretical performance evaluation, a linear cascade model with an added aliasing stage was used. The detector showed excellent linearity in both modes. The sensitivity and the INEE of the detector were found to be 31.55 DN/μR and 0.55 μR in high sensitivity mode, while they were 9.87 DN/μR and 2.77 μR in low sensitivity mode. The theoretical and experimental values for the MTF and DQE showed close agreement with good DQE even at fluoroscopic exposure levels. In summary, the Dexela detector's imaging performance in terms of sensitivity, linear system metrics, and INEE demonstrates that it can overcome the noise and resolution limitations of present state-of-the-art x-ray detectors.

  10. Experimental and theoretical performance analysis for a CMOS-based high resolution image detector.

    PubMed

    Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2014-03-19

    Increasing complexity of endovascular interventional procedures requires superior x-ray imaging quality. Present state-of-the-art x-ray imaging detectors may not be adequate due to their inherent noise and resolution limitations. With recent developments, CMOS based detectors are presenting an option to fulfill the need for better image quality. For this work, a new CMOS detector has been analyzed experimentally and theoretically in terms of sensitivity, MTF and DQE. The detector (Dexela Model 1207, Perkin-Elmer Co., London, UK) features 14-bit image acquisition, a CsI phosphor, 75 µm pixels and an active area of 12 cm × 7 cm with over 30 fps frame rate. This detector has two modes of operations with two different full-well capacities: high and low sensitivity. The sensitivity and instrumentation noise equivalent exposure (INEE) were calculated for both modes. The detector modulation-transfer function (MTF), noise-power spectra (NPS) and detective quantum efficiency (DQE) were measured using an RQA5 spectrum. For the theoretical performance evaluation, a linear cascade model with an added aliasing stage was used. The detector showed excellent linearity in both modes. The sensitivity and the INEE of the detector were found to be 31.55 DN/µR and 0.55 µR in high sensitivity mode, while they were 9.87 DN/µR and 2.77 µR in low sensitivity mode. The theoretical and experimental values for the MTF and DQE showed close agreement with good DQE even at fluoroscopic exposure levels. In summary, the Dexela detector's imaging performance in terms of sensitivity, linear system metrics, and INEE demonstrates that it can overcome the noise and resolution limitations of present state-of-the-art x-ray detectors.

  11. High-resolution pulse-counting array detectors for imaging and spectroscopy at ultraviolet wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Bybee, Richard L.

    1986-01-01

    The performance characteristics of multianode microchannel array (MAMA) detector systems which have formats as large as 256 x 1024 pixels and which have application to imaging and spectroscopy at UV wavelengths are evaluated. Sealed and open-structure MAMA detector tubes with opaque CsI photocathodes can determine the arrival time of the detected photon to an accuracy of 100 ns or better. Very large format MAMA detectors with CsI and Cs2Te photocathodes and active areas of 52 x 52 mm (2048 x 2048 pixels) will be used as the UV solar blind detectors for the NASA STIS.

  12. Cherenkov and scintillation light separation on the TheiaR &D experiment

    NASA Astrophysics Data System (ADS)

    Caravaca, Javier; Land, Benjamin

    2016-03-01

    Identifying by separate the scintillation and Cherenkov light produced in a scintillation medium enables outstanding capabilities for future particle detectors, being the most relevant: allowing particle directionality information in a low energy threshold detector and improved particle identification. The TheiaR &D experiment uses an array of small and fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillation medium, based on the number of produced photoelectrons and the timing information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by <1ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WBLS) provides a medium with a tunable Cherenkov/Scintillation light yield ratio, enhancing the visibility of the dimer Cherenkov light in presence of the scintillation light. Description of the experiment, details of the analysis and preliminary results of the first months of running will be discussed.

  13. MUPPATS: a multiparticle 3D imaging detector system

    SciTech Connect

    Faibis, A.; Koenig, W.; Kanter, E.P.; Vager, Z.

    1985-08-27

    It has long been recognized that the foil-induced dissociation of fast molecular ions is a potentially powerful method to determine the stereochemical structures of the molecular projectiles. We have recently developed a detector system specifically designed for such experiments. The MUPPATS detector is a large-area multistep low pressure gas counter. The requirements of multiparticle detection with good position and time resolution leads to a rather complex data-readout and reduction scheme. The system relies on several state-of-the-art techniques, developed in high-energy physics during recent years, to dramatically reduce the cost of the MUPPATS detector. Preliminary results for several polyatomic molecular ions have already been obtained. Some new avenues of research opened up by this detector are also described.

  14. A Cherenkov viewing device for used-fuel verification

    NASA Astrophysics Data System (ADS)

    Attas, E. M.; Chen, J. D.; Young, G. J.

    1990-12-01

    A Cherenkov viewing device (CVD) has been developed to help verify declared inventories of used nuclear fuel stored in water bays. The device detects and amplifies the faint ultraviolet Cherenkov glow from the water surrounding the fuel, producing a real-time visible image on a phosphor screen. Quartz optics, a UV-pass filter and a microchannel-plate image-intensifier tube serve to form the image, which can be photographed or viewed directly through an eyepiece. Normal fuel bay lighting does not interfere with the Cherenkov light image. The CVD has been successfully used to detect anomalous PWR, BWR and CANDU (CANada Deuterium Uranium: registered trademark) fuel assemblies in the presence of normal-burnup assemblies stored in used-fuel bays. The latest version of the CVD, known as Mark IV, is being used by inspectors from the International Atomic Energy Agency for verification of light-water power-reactor fuel. Its design and operation are described, together with plans for further enhancements of the instrumentation.

  15. Review on the characteristics of radiation detectors for dosimetry and imaging

    NASA Astrophysics Data System (ADS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  16. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    PubMed

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P < 0.001), image noise was significantly lower (both P < 0.001), whereas volume CT dose index was unchanged (both P > 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  17. Photoconductive HgCdTe detector assemblies for the GOES imager and sounder instruments

    NASA Astrophysics Data System (ADS)

    Hartley, Jeanne M.; Reine, Marion B.; Terzis, C. L.; Verrilli, Anthony J.; Hassler, Richard A.; Lesondak, Edward P.

    1996-10-01

    The GOES Imager and Sounder instruments each utilize several HgCdTe photoconductive (PC) detectors and detector arrays for detection over the 6.5 to 14.7 micrometers region. These high performance detectors are integrated with germanium aplanat lenses and mounted in miniature hermetically sealed housings. There are demanding requirements on the radiometric performance of these detector assemblies. For LW Sounder detectors, the highest possible sensitivity achievable by a practical HgCdTe photoconductor at the operating temperatures of 100 to 105 K was required. Lockheed Martin designed, fabricated, tested, packaged, qualified, and delivered 7 of the 11 HgCdTe PC detector assemblies for GOES-8, and 9 of the 11 assemblies for GOES- 9. All the n-type HgCdTe starting material was grown at Lockheed Martin.

  18. Development of a cold-neutron imaging detector based on thick gaseous electron multiplier.

    PubMed

    Cortesi, M; Zboray, R; Kaestner, A; Prasser, H-M

    2013-02-01

    We present the results of our recent studies on a cold-neutron imaging detector prototype based on THick Gaseous Electron Multiplier (THGEM). The detector consists of a thin Boron layer, for neutron-to-charged particle conversion, coupled to two THGEM electrodes in cascade for charge amplification and a position-sensitive charge-readout anode. The detector operates in Ne∕(5%)CF4, at atmospheric pressure, in a stable condition at a gain of around 10(4). Due to the geometrical structure of the detector elements (THGEM geometry and charge read-out anode), the image of detector active area shows a large inhomogeneity, corrected using a dedicated flat-filed correction algorithm. The prototype provides a detection efficiency of 5% and an effective spatial resolution of the order of 1.3 mm.

  19. Neutron diffractometer for bio-crystallography (BIX) with an imaging plate neutron detector

    SciTech Connect

    Niimura, Nobuo

    1994-12-31

    We have constructed a dedicated diffractometer for neutron crystallography in biology (BIX) on the JRR-3M reactor at JAERI (Japan Atomic Energy Research Institute). The diffraction intensity from a protein crystal is weaker than that from most inorganic materials. In order to overcome the intensity problem, an elastically bent silicon monochromator and a large area detector system were specially designed. A preliminary result of diffraction experiment using BIX has been reported. An imaging plate neutron detector has been developed and a feasibility experiment was carried out on BIX. Results are reported. An imaging plate neutron detector has been developed and a feasibility test was carried out using BIX.

  20. Evaluation of XRI-UNO CdTe detector for nuclear medical imaging

    NASA Astrophysics Data System (ADS)

    Jambi, L. K.; Lees, J. E.; Bugby, S. L.; Tipper, S.; Alqahtani, M. S.; Perkins, A. C.

    2015-06-01

    Over the last two decades advances in semiconductor detector technology have reached the point where they are sufficiently sensitive to become an alternative to scintillators for high energy gamma ray detection for application in fields such as medical imaging. This paper assessed the Cadmium-Telluride (CdTe) XRI-UNO semiconductor detector produced by X-RAY Imatek for photon energies of interest in nuclear imaging. The XRI-UNO detector was found to have an intrinsic spatial resolution of <0.5mm and a high incident count rate capability up to at least 1680cps. The system spatial resolution, uniformity and sensitivity characteristics are also reported.

  1. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-11-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray computed tomography (CT) scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes overlooked for CT applications because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that silicon is a feasible material for CT detectors by showing energy-resolved CT images acquired with an 80 kVp x-ray tube spectrum using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. By using basis material decomposition we obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  2. Energy-resolved CT imaging with a photon-counting silicon-strip detector.

    PubMed

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-11-21

    Photon-counting detectors are promising candidates for use in the next generation of x-ray computed tomography (CT) scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes overlooked for CT applications because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that silicon is a feasible material for CT detectors by showing energy-resolved CT images acquired with an 80 kVp x-ray tube spectrum using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5×0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. By using basis material decomposition we obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  3. Application of GEM-based detectors in full-field XRF imaging

    NASA Astrophysics Data System (ADS)

    Dąbrowski, W.; Fiutowski, T.; Frączek, P.; Koperny, S.; Lankosz, M.; Mendys, A.; Mindur, B.; Świentek, K.; Wiącek, P.; Wróbel, P. M.

    2016-12-01

    X-ray fluorescence spectroscopy (XRF) is a commonly used technique for non-destructive elemental analysis of cultural heritage objects. It can be applied to investigations of provenance of historical objects as well as to studies of art techniques. While the XRF analysis can be easily performed locally using standard available equipment there is a growing interest in imaging of spatial distribution of specific elements. Spatial imaging of elemental distrbutions is usually realised by scanning an object with a narrow focused X-ray excitation beam and measuring characteristic fluorescence radiation using a high energy resolution detector, usually a silicon drift detector. Such a technique, called macro-XRF imaging, is suitable for investigation of flat surfaces but it is time consuming because the spatial resolution is basically determined by the spot size of the beam. Another approach is the full-field XRF, which is based on simultaneous irradiation and imaging of large area of an object. The image of the investigated area is projected by a pinhole camera on a position-sensitive and energy dispersive detector. The infinite depth of field of the pinhole camera allows one, in principle, investigation of non-flat surfaces. One of possible detectors to be employed in full-field XRF imaging is a GEM based detector with 2-dimensional readout. In the paper we report on development of an imaging system equipped with a standard 3-stage GEM detector of 10 × 10 cm2 equipped with readout electronics based on dedicated full-custom ASICs and DAQ system. With a demonstrator system we have obtained 2-D spatial resolution of the order of 100 μm and energy resolution at a level of 20% FWHM for 5.9 keV . Limitations of such a detector due to copper fluorescence radiation excited in the copper-clad drift electrode and GEM foils is discussed and performance of the detector using chromium-clad electrodes is reported.

  4. The New Maia Detector System: Methods For High Definition Trace Element Imaging Of Natural Material

    SciTech Connect

    Ryan, C. G.; Siddons, D. P.; Kuczewski, A.; Kirkham, R.; Dunn, P. A.; Hough, R. M.; Lintern, M. J.; Cleverley, J.; Moorhead, G.; De Geronimo, G.; Paterson, D. J.; Jonge, M. D. de; Howard, D. L.; Kappen, P.

    2010-04-06

    Motivated by the need for megapixel high definition trace element imaging to capture intricate detail in natural material, together with faster acquisition and improved counting statistics in elemental imaging, a large energy-dispersive detector array called Maia has been developed by CSIRO and BNL for SXRF imaging on the XFM beamline at the Australian Synchrotron. A 96 detector prototype demonstrated the capacity of the system for real-time deconvolution of complex spectral data using an embedded implementation of the Dynamic Analysis method and acquiring highly detailed images up to 77 M pixels spanning large areas of complex mineral sample sections.

  5. Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector.

    PubMed

    Fu, Chen; Arguello, Henry; Sadler, Brian M; Arce, Gonzalo R

    2015-11-01

    A compressive spectral and polarization imager based on a pixelized polarizer and colored patterned detector is presented. The proposed imager captures several dispersed compressive projections with spectral and polarization coding. Stokes parameter images at several wavelengths are reconstructed directly from 2D projections. Employing a pixelized polarizer and colored patterned detector enables compressive sensing over spatial, spectral, and polarization domains, reducing the total number of measurements. Compressive sensing codes are specially designed to enhance the peak signal-to-noise ratio in the reconstructed images. Experiments validate the architecture and reconstruction algorithms.

  6. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry

    SciTech Connect

    Winter, B.; King, S. J.; Vallance, C.; Brouard, M.

    2014-02-15

    The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photon conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.

  7. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry.

    PubMed

    Winter, B; King, S J; Brouard, M; Vallance, C

    2014-02-01

    The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photon conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.

  8. Simple method for modulation transfer function determination of digital imaging detectors from edge images

    NASA Astrophysics Data System (ADS)

    Buhr, Egbert; Guenther-Kohfahl, Susanne; Neitzel, Ulrich

    2003-06-01

    A simple variant of the edge method to determine the presampled modulation transfer function (MTF) of digital imaging detectors has been developed that produces sufficiently accurate MTF values for frequencies up to the Nyquist frequency limit of the detector with only a small amount of effort for alignment and computing. An oversampled edge spread function (ESF) is generated from the image of a slanted edge by rearranging the pixel data of N consecutive lines that correspond to a lateral shift of the edge of one pixel. The original data are used for the computational analysis without further data preprocessing. Since the number of lines leading to an edge shift of one pixel is generally a fractional number rather than an integer, a systematic error may be introduced in the MTF obtained. Simulations and theoretical investigations show that for all frequencies up to the Nyquist limit the relative error ΔMTF/MTF is below 1/(2N) and can thus be kept below a given threshold by a suitable choice of N. The method is especially useful for applications where the MTF is needed for frequencies up to the Nyquist frequency limit, like the determination of the detective quantum efficiency (DQE).

  9. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy.

    PubMed

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-07

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  10. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  11. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Wood, M.; Jogler, T.; Dumm, J.; Funk, S.

    2016-01-01

    We present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parameters including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies-Cotton (DC) and Schwarzchild-Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30-40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. We attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.

  12. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    DOE PAGES

    Wood, M. D.; Jogler, T.; Dumm, J.; ...

    2015-06-07

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less

  13. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    SciTech Connect

    Wood, M. D.; Jogler, T.; Dumm, J.; Funk, S.

    2015-06-07

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parameters including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analy