Science.gov

Sample records for imaging dopamine transmission

  1. Imaging dopamine transmission in schizophrenia. A review and meta-analysis.

    PubMed

    Laruelle, M

    1998-09-01

    Over the last ten years, several positron emission tomography (PET) and single photon computerized tomography (SPECT) studies of the dopamine (DA) system in patients with schizophrenia were performed to test the hypothesis that DA hyperactivity is associated with this illness. In this paper, we reviewed the results of fifteen brain imaging studies comparing indices of DA function in drug naive or drug free patients with schizophrenia and healthy controls: thirteen studies included measurement of DA D2 receptors density, two studies compared amphetamine-induced DA release, and two studies measured DOPA decarboxylase activity, an enzyme involved in DA synthesis. We conducted a meta-analysis of the studies measuring D2 receptor density parameters, under the assumption that all tracers labeled the same population of D2 receptors. This analysis revealed that, compared to healthy controls, patients with schizophrenia present a significant but mild elevation of D2 receptor density parameters and a significant larger variability of these indices. We found no statistical evidence that studies performed with radiolabeled butyrophenones detected a larger increase in D2 receptor density parameters than studies performed with other radioligands, such as benzamides. Studies of presynaptic activity revealed an increase in DA transmission response to amphetamine challenge, and an increase in DOPA decarboxylase activity. Together, these data are compatible with both pre- and post-synaptic alterations of DA transmission in schizophrenia. Future studies should aim at a better characterization of these alterations, and at defining their role in the pathophysiology of the illness.

  2. Decreased prefrontal cortical dopamine transmission in alcoholism.

    PubMed

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  3. Prefrontal cortical dopamine transmission is decreased in alcoholism

    PubMed Central

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L.; Douaihy, Antoine B.; Frankle, W. Gordon

    2014-01-01

    Objective Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such working memory, attention, inhibitory control and risk/reward decisions--all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies in alcoholics that have demonstrated less dopamine in the striatum, we hypothesized decreased dopamine transmission in the prefrontal cortex in alcoholism. To test this hypothesis, we used amphetamine and [11C]FLB 457 positron emission tomography (PET) to measure cortical dopamine transmission in a group of 21 recently abstinent alcoholics and matched healthy controls. Methods [11C]FLB 457 binding potential (BPND) was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg−1 of d-amphetamine. Results Amphetamine-induced displacement of [11C]FLB 457 binding potential (Δ BPND) was significantly smaller in the cortical regions in alcoholics compared to healthy controls. Cortical regions that demonstrated lower dopamine transmission in alcoholics included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex and medial temporal lobe. Conclusions The results of this study for the first time unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism. PMID:24874293

  4. HIV, Tat and dopamine transmission.

    PubMed

    Gaskill, Peter J; Miller, Douglas R; Gamble-George, Joyonna; Yano, Hideaki; Khoshbouei, Habibeh

    2017-09-01

    Human Immunodeficiency Virus (HIV) is a progressive infection that targets the immune system, affecting more than 37 million people around the world. While combinatorial antiretroviral therapy (cART) has lowered mortality rates and improved quality of life in infected individuals, the prevalence of HIV associated neurocognitive disorders is increasing and HIV associated cognitive decline remains prevalent. Recent research has suggested that HIV accessory proteins may be involved in this decline, and several studies have indicated that the HIV protein transactivator of transcription (Tat) can disrupt normal neuronal and glial function. Specifically, data indicate that Tat may directly impact dopaminergic neurotransmission, by modulating the function of the dopamine transporter and specifically damaging dopamine-rich regions of the CNS. HIV infection of the CNS has long been associated with dopaminergic dysfunction, but the mechanisms remain undefined. The specific effect(s) of Tat on dopaminergic neurotransmission may be, at least partially, a mechanism by which HIV infection directly or indirectly induces dopaminergic dysfunction. Therefore, precisely defining the specific effects of Tat on the dopaminergic system will help to elucidate the mechanisms by which HIV infection of the CNS induces neuropsychiatric, neurocognitive and neurological disorders that involve dopaminergic neurotransmission. Further, this will provide a discussion of the experiments needed to further these investigations, and may help to identify or develop new therapeutic approaches for the prevention or treatment of these disorders in HIV-infected individuals. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Label-Free Dopamine Imaging in Live Rat Brain Slices

    PubMed Central

    2014-01-01

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ∼ 270 nm, emission < 320 nm) for label-free imaging of native molecules in live tissue. PMID:24661118

  6. Blunted Dopamine Transmission in Addiction: Potential Mechanisms and Implications for Behavior.

    PubMed

    Trifilieff, Pierre; Ducrocq, Fabien; van der Veldt, Suzanne; Martinez, Diana

    2017-01-01

    Positron emission tomography (PET) imaging consistently shows blunted striatal dopamine release and decreased dopamine D2 receptor availability in addiction. Here, we review the preclinical and clinical studies indicating that this neurobiological phenotype is likely to be both a consequence of chronic drug consumption and a vulnerability factor in the development of addiction. We propose that, behaviorally, blunted striatal dopamine transmission could reflect the increased impulsivity and altered cost/benefit computations that are associated with addiction. The factors that influence blunted striatal dopamine transmission in addiction are unknown. Herein, we give an overview of various factors, genetic, environmental, and social, that are known to affect dopamine transmission and that have been associated with the vulnerability to develop addiction. Altogether, these data suggest that blunted dopamine transmission and decreased D2 receptor availability are biomarkers both for the development of addiction and resistance to treatment. These findings support the view that blunted dopamine reflects impulsive behavior and deficits in motivation, which lead to the escalation of drug use. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Kappa-Opioid Receptor Signaling in the Striatum as a Potential Modulator of Dopamine Transmission in Cocaine Dependence

    PubMed Central

    Trifilieff, Pierre; Martinez, Diana

    2013-01-01

    Cocaine addiction is accompanied by a decrease in striatal dopamine signaling, measured as a decrease in dopamine D2 receptor binding as well as blunted dopamine release in the striatum. These alterations in dopamine transmission have clinical relevance, and have been shown to correlate with cocaine-seeking behavior and response to treatment for cocaine dependence. However, the mechanisms contributing to the hypodopaminergic state in cocaine addiction remain unknown. Here we review the positron emission tomography (PET) imaging studies showing alterations in D2 receptor binding potential and dopamine transmission in cocaine abusers and their significance in cocaine-seeking behavior. Based on animal and human studies, we propose that the kappa receptor/dynorphin system, because of its impact on dopamine transmission and upregulation following cocaine exposure, could contribute to the hypodopaminergic state reported in cocaine addiction, and could thus be a relevant target for treatment development. PMID:23760592

  8. Imaging of Brain Dopamine Pathways

    PubMed Central

    Wang, Gene-Jack; Volkow, Nora D.; Thanos, Panayotis K.; Fowler, Joanna S.

    2011-01-01

    Obesity is typically associated with abnormal eating behaviors. Brain imaging studies in humans implicate the involvement of dopamine (DA)-modulated circuits in pathologic eating behavior(s). Food cues increase striatal extracellular DA, providing evidence for the involvement of DA in the nonhedonic motivational properties of food. Food cues also increase metabolism in the orbitofrontal cortex indicating the association of this region with the motivation for food consumption. Similar to drug-addicted subjects, striatal DA D2 receptor availability is reduced in obese subjects, which may predispose obese subjects to seek food as a means to temporarily compensate for understimulated reward circuits. Decreased DA D2 receptors in the obese subjects are also associated with decreased metabolism in prefrontal regions involved in inhibitory control, which may underlie their inability to control food intake. Gastric stimulation in obese subjects activates cortical and limbic regions involved with self-control, motivation, and memory. These brain regions are also activated during drug craving in drug-addicted subjects. Obese subjects have increased metabolism in the somatosensory cortex, which suggests an enhanced sensitivity to the sensory properties of food. The reduction in DA D2 receptors in obese subjects coupled with the enhanced sensitivity to food palatability could make food their most salient reinforcer putting them at risk for compulsive eating and obesity. The results from these studies suggest that multiple but similar brain circuits are disrupted in obesity and drug addiction and suggest that strategies aimed at improving DA function might be beneficial in the treatment and prevention of obesity. PMID:21603099

  9. Presynaptic Regulation of Dopamine Transmission in Schizophrenia

    PubMed Central

    Lyon, Gholson J.; Abi-Dargham, Anissa; Moore, Holly; Lieberman, Jeffrey A.; Javitch, Jonathan A.; Sulzer, David

    2011-01-01

    A role for dopamine (DA) release in the hallucinations and other positive symptoms associated with schizophrenia has long been inferred from the antipsychotic response to D2 DA receptor antagonists and because the DA releaser amphetamine can be psychotogenic. Recent studies suggest that patients with schizophrenia, including those never exposed to antipsychotic drugs, maintain high presynaptic DA accumulation in the striatum. New laboratory approaches are elucidating mechanisms that control the level of presynaptic DA stores, thus contributing to fundamental understanding of the basic pathophysiologic mechanism in schizophrenia. PMID:19525353

  10. Interaction between effects of genes coding for dopamine and glutamate transmission on striatal and parahippocampal function.

    PubMed

    Pauli, Andreina; Prata, Diana P; Mechelli, Andrea; Picchioni, Marco; Fu, Cynthia H Y; Chaddock, Christopher A; Kane, Fergus; Kalidindi, Sridevi; McDonald, Colm; Kravariti, Eugenia; Toulopoulou, Timothea; Bramon, Elvira; Walshe, Muriel; Ehlert, Natascha; Georgiades, Anna; Murray, Robin; Collier, David A; McGuire, Philip

    2013-09-01

    The genes for the dopamine transporter (DAT) and the D-Amino acid oxidase activator (DAOA or G72) have been independently implicated in the risk for schizophrenia and in bipolar disorder and/or their related intermediate phenotypes. DAT and G72 respectively modulate central dopamine and glutamate transmission, the two systems most robustly implicated in these disorders. Contemporary studies have demonstrated that elevated dopamine function is associated with glutamatergic dysfunction in psychotic disorders. Using functional magnetic resonance imaging we examined whether there was an interaction between the effects of genes that influence dopamine and glutamate transmission (DAT and G72) on regional brain activation during verbal fluency, which is known to be abnormal in psychosis, in 80 healthy volunteers. Significant interactions between the effects of G72 and DAT polymorphisms on activation were evident in the striatum, parahippocampal gyrus, and supramarginal/angular gyri bilaterally, the right insula, in the right pre-/postcentral and the left posterior cingulate/retrosplenial gyri (P < 0.05, FDR-corrected across the whole brain). This provides evidence that interactions between the dopamine and the glutamate system, thought to be altered in psychosis, have an impact in executive processing which can be modulated by common genetic variation. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  11. Cortical Dopamine Transmission as Measured with the [11C]FLB 457 – Amphetamine PET Imaging Paradigm Is Not Influenced by COMT Genotype

    PubMed Central

    Narendran, Rajesh; Tumuluru, Divya; May, Maureen A.; Chowdari, Kodavali V.; Himes, Michael L.; Fasenmyer, Kelli; Frankle, W. Gordon; Nimgaonkar, Vishwajit L.

    2016-01-01

    Basic investigations link a Val158Met polymorphism (rs4680) in the catechol-O-methyltransferase (COMT) gene to not only its enzymatic activity, but also to its dopaminergic tone in the prefrontal cortex. Previous PET studies have documented the relationship between COMT Val158Met polymorphism and D1 and D2/3 receptor binding potential (BP), and interpreted them in terms of dopaminergic tone. The use of baseline dopamine D1 and D2/3 receptor binding potential (BPND) as a proxy for dopaminergic tone is problematic because they reflect both endogenous dopamine levels (a change in radiotracer's apparent affinity) and receptor density. In this analysis of 31 healthy controls genotyped for the Val158Met polymorphism (Val/Val, Val/Met, and Met/Met), we used amphetamine-induced displacement of [11C]FLB 457 as a direct measure of dopamine release. Our analysis failed to show a relationship between COMT genotype status and prefrontal cortical dopamine release. COMT genotype was also not predictive of baseline dopamine D2/3 receptor BPND. PMID:27322568

  12. Inhibitory effects of dopamine on spinal synaptic transmission via dopamine D1-like receptors in neonatal rats

    PubMed Central

    Kawamoto, K; Otsuguro, K; Ishizuka, M; Ito, S

    2012-01-01

    BACKGROUND AND PURPOSE Dopamine released from the endings of descending dopaminergic nerve fibres in the spinal cord may be involved in modulating functions such as locomotion and nociception. Here, we examined the effects of dopamine on spinal synaptic transmissions in rats. EXPERIMENTAL APPROACH Spinal reflex potentials, monosynaptic reflex potential (MSR) and slow ventral root potential (sVRP), were measured in the isolated spinal cord of the neonatal rat. Dopamine release was measured by HPLC. KEY RESULTS Dopamine at lower concentrations (<1 µM) depressed sVRP, which is a C fibre-evoked polysynaptic response and believed to reflect nociceptive transmission. At higher concentrations (>1 µM), in addition to a potent sVRP depression, dopamine depolarized baseline potential and slightly depressed MSR. Depression of sVRP by dopamine was partially reversed by dopamine D1-like but not by D2-like receptor antagonists. SKF83959 and SKF81297, D1-like receptor agonists, and methamphetamine, an endogenous dopamine releaser, also caused the inhibition of sVRP. Methamphetamine also depressed MSR, which was inhibited by ketanserin, a 5-HT2A/2C receptor antagonist. Methamphetamine induced the release of dopamine and 5-HT from spinal cords, indicating that the release of endogenous dopamine and 5-HT depresses sVRP and MSR respectively. CONCLUSION AND IMPLICATIONS These results suggested that dopamine at lower concentrations preferentially inhibited sVRP, which is mediated via dopamine D1-like and other unidentified receptors. The dopamine-evoked depression is involved in modulating the spinal functions by the descending dopaminergic pathways. PMID:22168428

  13. Facilitatory effect of dopamine on neuromuscular transmission mediated via dopamine D1-like receptors and prospective interaction with nicotine.

    PubMed

    AlQot, H E; Elnozahi, N A; Mohy El-Din, M M; Bistawroos, A E; Abou Zeit-Har, M S

    2015-10-15

    The objective of this study is to probe the effects of dopamine and potential interactions with nicotine at the motor end plate. To accomplish this, we measured the amplitude of nerve-evoked muscle twitches of the isolated rat phrenic hemi-diaphragm preparation. Dopamine potentiated indirect muscle twitches in normal and gallamine-presensitized preparations amounting to a maximum of 31.14±0.71% and 69.23±1.96%, respectively. The dopamine-induced facilitation was well maintained in presence of 10 µM propranolol but greatly reduced in presence of 6 µM SCH 23390 or 3 µM dantrolene. In addition, SKF 81297 attained a plateau at 16 µM as opposed to 64 µM dopamine, with a percentage potentiation of 69.47±1.76. The facilitatory effect of dopamine was potentiated in nicotine treated rats. This study revealed for the first time that the facilitatory effect exerted by dopamine on neuromuscular transmission is mediated via the dopamine D1-like receptors. In addition, it highlighted the possible dependency of dopamine effects on intracellular calcium and signified potential interaction among dopamine and nicotine. Clinically, the findings generated by this study reveal potential targets for approaching motor deficit syndromes.

  14. Cortical Control of Striatal Dopamine Transmission via Striatal Cholinergic Interneurons

    PubMed Central

    Kosillo, Polina; Zhang, Yan-Feng; Threlfell, Sarah; Cragg, Stephanie J.

    2016-01-01

    Corticostriatal regulation of striatal dopamine (DA) transmission has long been postulated, but ionotropic glutamate receptors have not been localized directly to DA axons. Striatal cholinergic interneurons (ChIs) are emerging as major players in striatal function, and can govern DA transmission by activating nicotinic receptors (nAChRs) on DA axons. Cortical inputs to ChIs have historically been perceived as sparse, but recent evidence indicates that they strongly activate ChIs. We explored whether activation of M1/M2 corticostriatal inputs can consequently gate DA transmission, via ChIs. We reveal that optogenetic activation of channelrhodopsin-expressing corticostriatal axons can drive striatal DA release detected with fast-scan cyclic voltammetry and requires activation of nAChRs on DA axons and AMPA receptors on ChIs that promote short-latency action potentials. By contrast, DA release driven by optogenetic activation of intralaminar thalamostriatal inputs involves additional activation of NMDA receptors on ChIs and action potential generation over longer timescales. Therefore, cortical and thalamic glutamate inputs can modulate DA transmission by regulating ChIs as gatekeepers, through ionotropic glutamate receptors. The different use of AMPA and NMDA receptors by cortical versus thalamic inputs might lead to distinct input integration strategies by ChIs and distinct modulation of the function of DA and striatum. PMID:27566978

  15. Ethics of Preclinical Dopamine Transporter Imaging.

    PubMed

    Cochrane, Thomas I

    2016-08-01

    While dopamine transporter single-photon emission computed tomography (DAT-SPECT) imaging is sensitive and specific when performed in patients with signs or symptoms of parkinsonism, its predictive value is uncertain in healthy subjects, even with patients who have first-degree relatives affected by Parkinson disease. In deciding whether to honor a patient's request for a DAT-SPECT, neurologists must balance a patient's autonomy rights with beneficence and nonmaleficence and also consider the distributive justice implications of ordering the test. Generally speaking, the benefits of a DAT-SPECT will be too small to justify its use in an asymptomatic patient concerned about developing Parkinson disease.

  16. Alcohol effects on synaptic transmission in periaqueductal gray dopamine neurons

    PubMed Central

    Li, Chia; McCall, Nora M.; Lopez, Alberto J.; Kash, Thomas L.

    2014-01-01

    The role of dopamine (DA) signaling in regulating the rewarding properties of drugs, including alcohol, has been widely studied. The majority of these studies, however, have focused on the DA neurons located in the ventral tegmental area (VTA), and their projections to the nucleus accumbens. DA neurons within the ventral periaqueductal gray (vPAG) have been shown to regulate reward but little is known about the functional properties of these neurons, or how they are modified by drugs of abuse. This lack of knowledge is likely due to the highly heterogeneous cell composition of the vPAG, with both γ-amino-butyric acid (GABA) and glutamate neurons present in addition to DA neurons. In this study, we performed whole-cell recordings in a TH–eGFP transgenic mouse line to evaluate the properties of vPAG-DA neurons. Following this initial characterization, we examined how both acute and chronic alcohol exposure modify synaptic transmission onto vPAG-DA neurons. We found minimal effects of acute alcohol exposure on GABA transmission, but a robust enhancement of glutamatergic synaptic transmission in vPAG-DA. Consistent with this effect on excitatory transmission, we also found that alcohol caused an increase in firing rate. These data were in contrast to the effects of chronic intermittent alcohol exposure, which had no significant impact on either inhibitory or excitatory synaptic transmission on the vPAG-DA neurons. These data add to a growing body of literature that points to alcohol having both region-dependent and cell-type dependent effects on function. PMID:23597415

  17. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms.

    PubMed

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-10-05

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs.

  18. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    PubMed Central

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  19. Laptop image transmission equipment

    NASA Astrophysics Data System (ADS)

    Mocenter, Michael M.

    1991-12-01

    Imagery and other visual information have become a critical element in planning and performing modern military operations. The effectiveness of this imagery information is often directly tied to the time it takes to get from the collector of this imagery to the user of the imagery. Hard copy distribution of annotated imagery to the tactical commander is hampered by the lack of effective communications paths, and the tactical use of hand held imagery is restricted by the lack of film processing facilities. The military has begun to rely on electronic imagery and digital communications technology for answers, with some success. The new obstacles created by applied electronic imagery are interoperability standards and effective use of communications bandwidth in a tactical environment. New technological developments in computer hardware/software have changed this situation by allowing for the gathering, dissemination, and transfer of near-real-time information to various intelligence audiences at any location. The Naval Air Development Center (NAVAIRDEVCEN) has coupled commercial-off-the-shelf (COTS) technology with National Image Transmission Formats (NITF) Standards to develop a Secondary Imagery Dissemination System (SIDS) package that is designed to meet the flexibility challenge of the tactical military environment. This tailorable SIDS package is called Laptop Image Transmission Equipment (LITE). The LITE system is an extension of the Navy's existing Fleet Imagery Support Terminal (FIST) into the man-portable tactical environment. As such, LITE development is focused on developing flexible imagery input (from sources such as filmless cameras) and connectivity to tactical communications paths and ruggedization/miniaturization issues. The LITE system, in prototype form, has already found application through operational use in special operations, counter narcotics operations, and classic air/ground/sea military operations. This paper provides an overview of the

  20. RAPID DOPAMINE TRANSMISSION WITHIN THE NUCLEUS ACCUMBENS DRAMATICALLY DIFFERS FOLLOWING MORPHINE AND OXYCODONE DELIVERY

    PubMed Central

    Mabrouk, Omar S.; Lovic, Vedran; Singer, Bryan F.; Kennedy, Robert T.; Aragona, Brandon J.

    2014-01-01

    While most drugs of abuse increase dopamine neurotransmission, rapid neurochemical measurements show that different drugs evoke distinct dopamine release patterns within the nucleus accumbens. Rapid changes in dopamine concentration following psychostimulant administration have been well studied; however, such changes have never been examined following opioid delivery. Here, we provide novel measures of rapid dopamine release following intravenous infusion of two opioids, morphine and oxycodone, in drug naïve rats using fast-scan cyclic voltammetry and rapid (1 min) microdialysis coupled with mass spectrometry. In addition to measuring rapid dopamine transmission, microdialysis HPLC-MS measures changes in GABA, glutamate, monoamines, monoamine metabolites, and several other neurotransmitters. Although both opioids increased dopamine release in the nucleus accumbens, their patterns of drug-evoked dopamine transmission differed dramatically. Oxycodone evoked a robust and stable increase in dopamine concentration and a robust increase in the frequency and amplitude of phasic dopamine release events. Conversely, morphine evoked a brief (~ 1 min) increase in dopamine that was coincident with a surge in GABA concentration and then both transmitters returned to baseline levels. Thus, by providing rapid measures of neurotransmission, this study reveals previously unknown differences in opioid-induced neurotransmitter signaling. Investigating these differences may be essential for understanding how these two drugs of abuse could differentially usurp motivational circuitry and powerfully influence behavior. PMID:25208732

  1. Imaging dopamine receptors in the human brain by position tomography

    SciTech Connect

    Wagner, H.N. Jr.; Burns, H.D.; Dannals, R.F.; Wong, D.F.; Langstrom, B.; Duelfer, T.; Frost, J.J.; Ravert, H.T.; Links, J.M.; Rosenbloom, S.B.

    1983-01-01

    Neurotransmitter receptors may be involved in a number of neuropsychiatric disease states. The ligand 3-N-(/sup 11/C)methylspiperone, which preferentially binds to dopamine receptors in vivo, was used to image the receptors by positron emission tomography scanning in baboons and in humans. This technique holds promise for noninvasive clinical studies of dopamine receptors in humans.

  2. Transmission diamond imaging detector

    SciTech Connect

    Smedley, John Pinelli, Don; Gaoweia, Mengjia; Muller, Erik; Ding, Wenxiang; Zhou, Tianyi; Bohon, Jen

    2016-07-27

    Many modern synchrotron techniques are trending toward use of high flux beams and/or beams which require enhanced stability and precise understanding of beam position and intensity from the front end of the beamline all the way to the sample. For high flux beams, major challenges include heat load management in optics (including the vacuum windows) and a mechanism of real-time volumetric measurement of beam properties such as flux, position, and morphology. For beam stability in these environments, feedback from such measurements directly to control systems for optical elements or to sample positioning stages would be invaluable. To address these challenges, we are developing diamond-based instrumented vacuum windows with integrated volumetric x-ray intensity, beam profile and beam-position monitoring capabilities. A 50 µm thick single crystal diamond has been lithographically patterned to produce 60 µm pixels, creating a >1kilopixel free-standing transmission imaging detector. This device, coupled with a custom, FPGA-based readout, has been used to image both white and monochromatic x-ray beams and capture the last x-ray photons at the National Synchrotron Light Source (NSLS). This technology will form the basis for the instrumented end-station window of the x-ray footprinting beamline (XFP) at NSLS-II.

  3. Modulation of sympathetic transmission by neuronally-released dopamine.

    PubMed Central

    Hope, W.; Majewski, H.; McCulloch, M. W.; Rand, M. J.; Story, D. F.

    1979-01-01

    1 When rabbits were pretreated with Fla-63, there was a marked inhibition of dopamine-beta-hydroxylase such that, after incubation of the ear arteries with [3H]-dopamine 47.2% of the tritium in the tissue was retained as unchanged dopamine. 2 [3H]-dopamine was released by stimulation of the sympathetic nerves in ear arteries taken from rabbits pretreated with Fla-63 and incubated with [3H]-dopamine. 3 The dopamine antagonists metoclopramide (1.0 microM) and ergometrine (1.0 microM) enhanced the stimulation-induced efflux of tritium in ear arteries taken from rabbits pretreated with Fla-63 and incubated with [3H]-dopamine, but not when the arteries were incubated with [3H]-noradrenaline. 4. These results suggest that if dopamine is present in the transmitter stores, it can be released by stimulation of the sympathetic nerves, and if the amount is adequate, it can activate an inhibitory feedback loop where prejunctional dopamine receptors are present. PMID:227509

  4. Hypersensitivity of dopamine transmission in the rat striatum after treatment with the NMDA receptor antagonist amantadine.

    PubMed

    Peeters, Magali; Page, Guylène; Maloteaux, Jean-Marie; Hermans, Emmanuel

    2002-09-13

    Amantadine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist known to increase dopamine synthesis and release in the striatum, is frequently associated with L-DOPA in the treatment of Parkinson's disease. However, the biochemical mechanisms involved in the effect of amantadine and the consequences of its repetitive administration on the modulation of striatal dopamine transmission still need to be clarified. We have investigated the effects of short-term amantadine treatments on the expression of dopamine receptors and the functional coupling to G proteins in rat striatal membranes. Dopamine-induced stimulation of guanosine 5'-[gamma-35S]triphosphate ([35S]GTPgammaS) binding was significantly enhanced (40%) in striatum homogenates from rats treated for 4 days with amantadine (40 mg/kg, i.p.) compared to vehicle-treated animals. This effect was specific for dopamine receptors and was transient as no significant modifications were observed when animals were treated for either 2 or 7 days. Administration of amantadine did not directly affect the animal behaviour. However, treated animals exhibited hypersensitive dopamine transmission since rats treated for 4 days showed exacerbated responses to a single apomorphine administration (enhanced locomotor activity and reduced stereotypy). Since the effects of amantadine administration differ from those usually observed with direct dopamine receptor agonists or other NMDA receptor antagonists, we suggest that multiple biochemical mechanisms contribute to the modulation of dopamine transmission by amantadine.

  5. The impact of a parkinsonian lesion on dynamic striatal dopamine transmission depends on nicotinic receptor activation.

    PubMed

    Jennings, Katie A; Platt, Nicola J; Cragg, Stephanie J

    2015-10-01

    Dopamine function is disturbed in Parkinson's disease (PD), but whether and how release of dopamine from surviving neurons is altered has long been debated. Nicotinic acetylcholine receptors (nAChRs) on dopamine axons powerfully govern dopamine release and could be critical contributing factors. We revisited whether fundamental properties of dopamine transmission are changed in a parkinsonian brain and tested the potentially profound masking effects of nAChRs. Using real-time detection of dopamine in mouse striatum after a partial 6-hydroxydopamine lesion and under nAChR inhibition, we reveal that dopamine signals show diminished sensitivity to presynaptic activity. This effect manifested as diminished contrast between DA release evoked by the lowest versus highest frequencies. This reduced activity-dependence was underpinned by loss of short-term facilitation of dopamine release, consistent with an increase in release probability (Pr). With nAChRs active, the reduced activity-dependence of dopamine release after a parkinsonian lesion was masked. Consequently, moment-by-moment variation in activity of nAChRs may lead to dynamic co-variation in dopamine signal impairments in PD.

  6. Salsolinol Facilitates Glutamatergic Transmission to Dopamine Neurons in the Posterior Ventral Tegmental Area of Rats

    PubMed Central

    Xie, Guiqin; Ye, Jiang-Hong

    2012-01-01

    Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA) partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopamine D1 receptors (D1Rs). In this study, we tested the hypothesis that salsolinol stimulates dopamine neurons involving activation of D1Rs. By using whole-cell recordings on p-VTA-dopamine neurons in acute brain slices of rats, we found that salsolinol-induced increase in spike frequency of dopamine neurons was substantially attenuated by DL-2-amino-5-phosphono-valeric acid and 6, 7-dinitroquinoxaline-2, 3-dione, the antagonists of glutamatergic N-Methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, salsolinol increased the amplitude of evoked excitatory postsynaptic currents (EPSCs) and the frequency but not the amplitude of spontaneous EPSCs. Additionally, SKF83566, a D1R antagonist attenuated the salsolinol-induced facilitation of EPSCs and of spontaneous firing of dopamine neurons. Our data reveal that salsolinol enhances glutamatergic transmission onto dopamine neurons via activation of D1Rs at the glutamatergic afferents in dopamine neurons, which contributes to salsolinol's stimulating effect on p-VTA dopamine neurons. This appears to be a novel mechanism which contributes toward rewarding properties of salsolinol. PMID:22590592

  7. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism.

    PubMed

    Tanda, G; Pontieri, F E; Di Chiara, G

    1997-06-27

    The effects of the active ingredient of Cannabis, Delta9-tetrahydrocannabinol (Delta9-THC), and of the highly addictive drug heroin on in vivo dopamine transmission in the nucleus accumbens were compared in Sprague-Dawley rats by brain microdialysis. Delta9-THC and heroin increased extracellular dopamine concentrations selectively in the shell of the nucleus accumbens; these effects were mimicked by the synthetic cannabinoid agonist WIN55212-2. SR141716A, an antagonist of central cannabinoid receptors, prevented the effects of Delta9-THC but not those of heroin. Naloxone, a generic opioid antagonist, administered systemically, or naloxonazine, an antagonist of micro1 opioid receptors, infused into the ventral tegmentum, prevented the action of cannabinoids and heroin on dopamine transmission. Thus, Delta9-THC and heroin exert similar effects on mesolimbic dopamine transmission through a common mu1 opioid receptor mechanism located in the ventral mesencephalic tegmentum.

  8. Ultrasmall dopamine-coated nanogolds: preparation, characteristics, and CT imaging

    PubMed Central

    Yu, Yao; Wu, Youshen; Liu, JiaJun; Zhan, Yonghua; Wu, Daocheng

    2016-01-01

    ABSTRACT Water-dispersible ultrasmall nanogolds (WDU AuNPs) and their dopamine-coated nanogolds (WDU AuNPs@DPAs) were prepared by a reduction method with sodium borohydride as a reducing agent and a stabilised agent of 2-mercaptosuccinic acid in aqueous solution. The effects of these nanoparticles on computed tomography (CT) imaging were evaluated. The size distributions and Zeta potential of the nanoparticles were measured with a Malvern size analyser, and nanoparticle morphology was observed by transmission electron microscopy. These characteristics were confirmed by Fourier transform spectroscopy and ultraviolet/visible spectra. It was found that WDU AuNPs@DPAs were 5.4 nm in size with clear core–shell structure. The 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyltetrazolium bromide assay results showed that the WDU AuNPs and WDU AuNPs@DPAs were hypotoxic to different cells. The WDU AuNPs@DPAs showed a much longer circulation time and a larger CT attenuation coefficient than iohexol and could be excreted by the kidney and bladder. These nanoparticles showed considerable potential for future application in CT imaging. PMID:27366201

  9. Progressive transmission and compression images

    NASA Technical Reports Server (NTRS)

    Kiely, A. B.

    1996-01-01

    We describe an image data compression strategy featuring progressive transmission. The method exploits subband coding and arithmetic coding for compression. We analyze the Laplacian probability density, which closely approximates the statistics of individual subbands, to determine a strategy for ordering the compressed subband data in a way that improves rate-distortion performance. Results are presented for a test image.

  10. Alterations of dopamine and serotonin transmission in schizophrenia.

    PubMed

    Remington, Gary

    2008-01-01

    The present chapter outlines current thinking regarding serotonin and dopamine in schizophrenia. Each has individually been linked to theories regarding the illness' pathophysiology although the focus here is on their interactive role, a model that has driven drug development in the field for the last 10-15 years. With clozapine as a prototype, a new class of 'atypical' antipsychotics entered the clinical market, hinged predominantly on the notion that these agents were superior to conventional antipsychotics through their ratio of serotonin 5-HT(2)/dopamine D(2) binding. This model has since been challenged both clinically and theoretically, but interest in serotonin-dopamine interactions remains high in the face of a broader conceptualization of schizophrenia's symptom domains, in combination with a shift in the perceived role of dopamine vis-à-vis these different clinical features. At present, there is particular interest in the 5-HT(1A), 5-HT(2C), 5-HT(6) and 5-HT(7) receptors as the search for improved pharmacological treatments for schizophrenia continues.

  11. Kinetic diversity of dopamine transmission in the dorsal striatum.

    PubMed

    Taylor, I Mitch; Nesbitt, Kathryn M; Walters, Seth H; Varner, Erika L; Shu, Zhan; Bartlow, Kathleen M; Jaquins-Gerstl, Andrea S; Michael, Adrian C

    2015-05-01

    Dopamine (DA), a highly significant neurotransmitter in the mammalian central nervous system, operates on multiple time scales to affect a diverse array of physiological functions. The significance of DA in human health is heightened by its role in a variety of pathologies. Voltammetric measurements of electrically evoked DA release have brought to light the existence of a patchwork of DA kinetic domains in the dorsal striatum (DS) of the rat. Thus, it becomes necessary to consider how these domains might be related to specific aspects of DA's functions. Responses evoked in the fast and slow domains are distinct in both amplitude and temporal profile. Herein, we report that responses evoked in fast domains can be further classified into four distinct types, types 1-4. The DS, therefore, exhibits a total of at least five distinct evoked responses (four fast types and one slow type). All five response types conform to kinetic models based entirely on first-order rate expressions, which indicates that the heterogeneity among the response types arises from kinetic diversity within the DS terminal field. We report also that functionally distinct subregions of the DS express DA kinetic diversity in a selective manner. Thus, this study documents five response types, provides a thorough kinetic explanation for each of them, and confirms their differential association with functionally distinct subregions of this key DA terminal field. The dorsal striatum is composed of five significantly different dopamine domains (types 1-4 and slow, average ± SEM responses to medial forebrain bundle (MFB) stimulation are shown in the figure). Responses from each of these five domains exhibit significantly different ascending and descending kinetic profiles and return to a long lasting elevated dopamine state, termed the dopamine hang-up. All features of these responses are modeled with high correlation using first-order modeling as well as our recently published restricted diffusion

  12. Developmental imaging genetics: linking dopamine function to adolescent behavior

    PubMed Central

    Padmanabhan, Aarthi; Luna, Beatriz

    2014-01-01

    Adolescence is a period of development characterized by numerous neurobiological changes that significantly influence behavior and brain function. Adolescence is of particular interest due to the alarming statistics indicating that mortality rates increase two to three-fold during this time compared to childhood, due largely to a peak in risk-taking behaviors resulting from increased impulsivity and sensation seeking. Furthermore, there exists large unexplained variability in these behaviors that are in part mediated by biological factors. Recent advances in molecular genetics and functional neuroimaging have provided a unique and exciting opportunity to noninvasively study the influence of genetic factors on brain function in humans. While genes do not code for specific behaviors, they do determine the structure and function of proteins that are essential to the neuronal processes that underlie behavior. Therefore, studying the interaction of genotype with measures of brain function over development could shed light on critical time points when biologically mediated individual differences in complex behaviors emerge. Here we review animal and human literature examining the neurobiological basis of adolescent development related to dopamine neurotransmission. Dopamine is of critical importance because of (1) its role in cognitive and affective behaviors, (2) its role in the pathogenesis of major psychopathology, and (3) the protracted development of dopamine signaling pathways over adolescence. We will then focus on current research examining the role of dopamine-related genes on brain function. We propose the use of imaging genetics to examine the influence of genetically mediated dopamine variability on brain function during adolescence, keeping in mind the limitations of this approach. PMID:24139694

  13. Developmental imaging genetics: linking dopamine function to adolescent behavior.

    PubMed

    Padmanabhan, Aarthi; Luna, Beatriz

    2014-08-01

    Adolescence is a period of development characterized by numerous neurobiological changes that significantly influence behavior and brain function. Adolescence is of particular interest due to the alarming statistics indicating that mortality rates increase two to three-fold during this time compared to childhood, due largely to a peak in risk-taking behaviors resulting from increased impulsivity and sensation seeking. Furthermore, there exists large unexplained variability in these behaviors that are in part mediated by biological factors. Recent advances in molecular genetics and functional neuroimaging have provided a unique and exciting opportunity to non-invasively study the influence of genetic factors on brain function in humans. While genes do not code for specific behaviors, they do determine the structure and function of proteins that are essential to the neuronal processes that underlie behavior. Therefore, studying the interaction of genotype with measures of brain function over development could shed light on critical time points when biologically mediated individual differences in complex behaviors emerge. Here we review animal and human literature examining the neurobiological basis of adolescent development related to dopamine neurotransmission. Dopamine is of critical importance because of (1) its role in cognitive and affective behaviors, (2) its role in the pathogenesis of major psychopathology, and (3) the protracted development of dopamine signaling pathways over adolescence. We will then focus on current research examining the role of dopamine-related genes on brain function. We propose the use of imaging genetics to examine the influence of genetically mediated dopamine variability on brain function during adolescence, keeping in mind the limitations of this approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Enhanced serotonin and mesolimbic dopamine transmissions in a rat model of neuropathic pain.

    PubMed

    Sagheddu, Claudia; Aroni, Sonia; De Felice, Marta; Lecca, Salvatore; Luchicchi, Antonio; Melis, Miriam; Muntoni, Anna Lisa; Romano, Rosaria; Palazzo, Enza; Guida, Francesca; Maione, Sabatino; Pistis, Marco

    2015-10-01

    In humans, affective consequences of neuropathic pain, ranging from depression to anxiety and anhedonia, severely impair quality of life and are a major disease burden, often requiring specific medications. Depressive- and anxiety-like behaviors have also been observed in animal models of peripheral nerve injury. Dysfunctions in central nervous system monoamine transmission have been hypothesized to underlie depressive and anxiety disorders in neuropathic pain. To assess whether these neurons display early changes in their activity that in the long-term might lead to chronicization, maladaptive plasticity and affective consequences, we carried out in vivo extracellular single unit recordings from serotonin neurons in the dorsal raphe nucleus (DRN) and from dopamine neurons in ventral tegmental area (VTA) in the spared nerve injury (SNI) model of neuropathic pain in rats. Extracellular dopamine levels and the expression of dopamine D1, D2 receptors and tyrosine hydroxylase (TH) were measured in the nucleus accumbens. We report that, two weeks following peripheral nerve injury, discharge rate of serotonin DRN neurons and burst firing of VTA dopamine cells are enhanced, when compared with sham-operated animals. We also observed higher extracellular dopamine levels and reduced expression of D2, but not D1, receptors and TH in the nucleus accumbens. Our study confirms that peripheral neuropathy induces changes in the serotonin and dopamine systems that might be the early result of chronic maladaptation to persistent pain. The allostatic activation of these neural systems, which mirrors that already described as a consequence of stress, might lead to depression and anxiety previously observed in neuropathic animals but also an attempt to cope positively with the negative experience.

  15. Ethanol facilitates glutamatergic transmission to dopamine neurons in the ventral tegmental area.

    PubMed

    Xiao, Cheng; Shao, Xuesi Max; Olive, M Foster; Griffin, William C; Li, Ke-Yong; Krnjević, Kresimir; Zhou, Chunyi; Ye, Jiang-Hong

    2009-01-01

    The cellular mechanisms underlying alcohol addiction are poorly understood. In several brain areas, ethanol depresses glutamatergic excitatory transmission, but how it affects excitatory synapses on dopamine neurons of the ventral tegmental area (VTA), a crucial site for the development of drug addiction, is not known. We report here that in midbrain slices from rats, clinically relevant concentrations of ethanol (10-80 mM) increase the amplitude of evoked EPSCs and reduce their paired-pulse ratio in dopamine neurons in the VTA. The EPSCs were mediated by glutamate alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors. In addition, ethanol increases the frequency but not the amplitude of spontaneous EPSCs. Furthermore, ethanol increases extracellular glutamate levels in the VTA of midbrain slices. The effects of ethanol are mimicked by SKF 38393, a dopamine D(1) receptor agonist, and by GBR 12935, a dopamine reuptake inhibitor, and they are blocked by SKF 83566, a D(1) antagonist, or by reserpine, which depletes dopamine stores. The enhancement of sEPSC frequency reaches a peak with 40 mM ethanol and declines with concentrations >or=80 mM ethanol, which is quite likely a result of D(2) receptor activation as raclopride, a D(2) receptor blocker, significantly enhanced 80 mM ethanol-induced enhancement of sEPSCs. Finally, 6, 7-dinitroquinoxaline-2, 3-dione (DNQX), an AMPA receptor antagonist, attenuates ethanol-induced excitation of VTA DA neurons. We therefore conclude that, acting via presynaptic D(1) receptors, ethanol at low concentrations increases glutamate release in the VTA, thus raising somatodendritic dopamine release, which further activates the presynaptic D(1) receptors. Enhancement of this positive feedback loop may significantly contribute to the development of alcohol addiction.

  16. Ethanol Facilitates Glutamatergic Transmission to Dopamine Neurons in the Ventral Tegmental Area

    PubMed Central

    Xiao, Cheng; Shao, Xuesi Max; Olive, M Foster; Griffin, William C; Li, Ke-Yong; Krnjević, Kresimir; Zhou, Chunyi; Ye, Jiang-Hong

    2009-01-01

    The cellular mechanisms underlying alcohol addiction are poorly understood. In several brain areas, ethanol depresses glutamatergic excitatory transmission, but how it affects excitatory synapses on dopamine neurons of the ventral tegmental area (VTA), a crucial site for the development of drug addiction, is not known. We report here that in midbrain slices from rats, clinically relevant concentrations of ethanol (10–80 mM) increase the amplitude of evoked EPSCs and reduce their paired-pulse ratio in dopamine neurons in the VTA. The EPSCs were mediated by glutamate α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors. In addition, ethanol increases the frequency but not the amplitude of spontaneous EPSCs. Furthermore, ethanol increases extracellular glutamate levels in the VTA of midbrain slices. The effects of ethanol are mimicked by SKF 38393, a dopamine D1 receptor agonist, and by GBR 12935, a dopamine reuptake inhibitor, and they are blocked by SKF 83566, a D1 antagonist, or by reserpine, which depletes dopamine stores. The enhancement of sEPSC frequency reaches a peak with 40mM ethanol and declines with concentrations ≥80mM ethanol, which is quite likely a result of D2 receptor activation as raclopride, a D2 receptor blocker, significantly enhanced 80mM ethanol-induced enhancement of sEPSCs. Finally, 6, 7-dinitroquinoxaline-2, 3-dione (DNQX), an AMPA receptor antagonist, attenuates ethanol-induced excitation of VTA DA neurons. We therefore conclude that, acting via presynaptic D1 receptors, ethanol at low concentrations increases glutamate release in the VTA, thus raising somatodendritic dopamine release, which further activates the presynaptic D1 receptors. Enhancement of this positive feedback loop may significantly contribute to the development of alcohol addiction. PMID:18596684

  17. Disrupting Glutamate Co-transmission Does Not Affect Acquisition of Conditioned Behavior Reinforced by Dopamine Neuron Activation.

    PubMed

    Wang, Dong V; Viereckel, Thomas; Zell, Vivien; Konradsson-Geuken, Åsa; Broker, Carl J; Talishinsky, Aleksandr; Yoo, Ji Hoon; Galinato, Melissa H; Arvidsson, Emma; Kesner, Andrew J; Hnasko, Thomas S; Wallén-Mackenzie, Åsa; Ikemoto, Satoshi

    2017-03-14

    Dopamine neurons in the ventral tegmental area (VTA) were previously found to express vesicular glutamate transporter 2 (VGLUT2) and to co-transmit glutamate in the ventral striatum (VStr). This capacity may play an important role in reinforcement learning. Although it is known that activation of the VTA-VStr dopamine system readily reinforces behavior, little is known about the role of glutamate co-transmission in such reinforcement. By combining electrode recording and optogenetics, we found that stimulation of VTA dopamine neurons in vivo evoked fast excitatory responses in many VStr neurons of adult mice. Whereas conditional knockout of the gene encoding VGLUT2 in dopamine neurons largely eliminated fast excitatory responses, it had little effect on the acquisition of conditioned responses reinforced by dopamine neuron activation. Therefore, glutamate co-transmission appears dispensable for acquisition of conditioned responding reinforced by DA neuron activation.

  18. PET imaging of dopamine receptors in MPTP-induced parkinsonism

    SciTech Connect

    Larson, S.M.; DiChiro, G.; Burns, R.S.; Dannals, R.F.; Kopin, I.J.; Brooks, R.A.; Kessler, R.M.; Wagner, R.F.; Eckelman, W.C.; Margolin, R.A.

    1984-01-01

    MPTP(N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induces parkinsonism in animals and man by selectively destroying dopaminergic neurons in the pars compacta of the substantia nigra. The postsynaptic neurons (and presumably the dopamine receptors) are intact. The authors have imaged dopamine receptors in a patient with MPTP induced parkinsonism, using /sup 11/CMS (3-N(/sup 11/C) methylspiperone. Seven and 9 mCi's, respectively, were injected at one week intervals while the patient was first off, and then on, L-dopa. As measured by NeuroPET (NIH), putamen to cerebellum concentration ratios rose progressively to 5.5:1, by 90 min. after injection. At this time the concentration of /sup 11/CMS was 10 picomole/cc (off L-dopa), and 14 picomole/cc (on L-dopa). The Duvoisin scale was used to assess the severity of the patient's parkinsonism immediately prior and at the end of PET imaging. On both occasions, despite the small mass amount of /sup 11/CMS injected, (1.1 g/kg), a transient worsening of symptoms was seen. The effect of L-Dopa was almost completely reversed by the /sup 11/CMS. In contrast, off L-Dopa the patients severe basal state was worsened only slightly. The PET scans suggested that dopamine receptors are not reduced in MPTP-induced parkinsonism. The findings were consistent with the hypotheses that PET may identify patients who will benefit from L-Dopa, and that expression of parkinsonian symptoms reflects desaturation of dopamine receptors in striatum.

  19. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis

    PubMed Central

    Tritsch, Nicolas X; Oh, Won-Jong; Gu, Chenghua; Sabatini, Bernardo L

    2014-01-01

    Synaptic transmission between midbrain dopamine neurons and target neurons in the striatum is essential for the selection and reinforcement of movements. Recent evidence indicates that nigrostriatal dopamine neurons inhibit striatal projection neurons by releasing a neurotransmitter that activates GABAA receptors. Here, we demonstrate that this phenomenon extends to mesolimbic afferents, and confirm that the released neurotransmitter is GABA. However, the GABA synthetic enzymes GAD65 and GAD67 are not detected in midbrain dopamine neurons. Instead, these cells express the membrane GABA transporters mGAT1 (Slc6a1) and mGAT4 (Slc6a11) and inhibition of these transporters prevents GABA co-release. These findings therefore indicate that GABA co-release is a general feature of midbrain dopaminergic neurons that relies on GABA uptake from the extracellular milieu as opposed to de novo synthesis. This atypical mechanism may confer dopaminergic neurons the flexibility to differentially control GABAergic transmission in a target-dependent manner across their extensive axonal arbors. DOI: http://dx.doi.org/10.7554/eLife.01936.001 PMID:24843012

  20. Phasic Dopamine Transmission Reflects Initiation Vigor and Exerted Effort in an Action- and Region-Specific Manner

    PubMed Central

    Ko, Daijin

    2016-01-01

    Initiating a reward-seeking behavior involves deciding on an action, how fast to initiate the action (initiation vigor), as well as how much effort to exert. These processes are thought to involve the mesolimbic dopamine system. Dopamine levels in the ventral striatum rise before initiating a reliably reinforced behavior. However, it is unknown whether dopamine is similarly involved with unreinforced actions (inactive lever presses, premature food port entries, insufficient number of active lever presses). Furthermore, does the dopamine response when initiating an action reflect specific aspects of motivated behavior, such as initiation vigor and exerted effort? Here, we analyzed voltammetry recordings of dopamine levels in the nucleus accumbens (NAcc) core and shell in rats working for food under a progressive ratio reinforcement schedule. We examined dopamine levels when rats initiated distinct actions (active lever presses, inactive lever presses, food port entries) that were temporally separated from cue- and reward-evoked dopamine release. Active lever pressing bouts were preceded by elevated dopamine release in the NAcc shell, as well as in the NAcc core, although only when rats exhibited high initiation vigor. Dopamine levels were transiently reduced in the NAcc core following an unreinforced food port entry and were unchanged throughout the NAcc when initiating inactive lever presses. The effort exerted and vigor to initiate a bout of active lever presses were signaled by dopamine transmission in the NAcc core, but not in the NAcc shell. These results demonstrate that the dopamine response when initiating a behavior is both region- and action-specific. SIGNIFICANCE STATEMENT Exogenous activation of the mesolimbic dopamine system facilitates motivated behavior. However, a direct relationship has not been established between endogenous phasic dopamine transmission and measures of motivation, such as the vigor to initiate an action and the effort exerted in a

  1. Phasic Dopamine Transmission Reflects Initiation Vigor and Exerted Effort in an Action- and Region-Specific Manner.

    PubMed

    Ko, Daijin; Wanat, Matthew J

    2016-02-17

    Initiating a reward-seeking behavior involves deciding on an action, how fast to initiate the action (initiation vigor), as well as how much effort to exert. These processes are thought to involve the mesolimbic dopamine system. Dopamine levels in the ventral striatum rise before initiating a reliably reinforced behavior. However, it is unknown whether dopamine is similarly involved with unreinforced actions (inactive lever presses, premature food port entries, insufficient number of active lever presses). Furthermore, does the dopamine response when initiating an action reflect specific aspects of motivated behavior, such as initiation vigor and exerted effort? Here, we analyzed voltammetry recordings of dopamine levels in the nucleus accumbens (NAcc) core and shell in rats working for food under a progressive ratio reinforcement schedule. We examined dopamine levels when rats initiated distinct actions (active lever presses, inactive lever presses, food port entries) that were temporally separated from cue- and reward-evoked dopamine release. Active lever pressing bouts were preceded by elevated dopamine release in the NAcc shell, as well as in the NAcc core, although only when rats exhibited high initiation vigor. Dopamine levels were transiently reduced in the NAcc core following an unreinforced food port entry and were unchanged throughout the NAcc when initiating inactive lever presses. The effort exerted and vigor to initiate a bout of active lever presses were signaled by dopamine transmission in the NAcc core, but not in the NAcc shell. These results demonstrate that the dopamine response when initiating a behavior is both region- and action-specific. Exogenous activation of the mesolimbic dopamine system facilitates motivated behavior. However, a direct relationship has not been established between endogenous phasic dopamine transmission and measures of motivation, such as the vigor to initiate an action and the effort exerted in a bout of activity. The

  2. Species differences in somatodendritic dopamine transmission determine D2-autoreceptor mediated inhibition of ventral tegmental area neuron firing

    PubMed Central

    Courtney, Nicholas A; Mamaligas, Aphroditi A; Ford, Christopher P

    2012-01-01

    The somatodendritic release of dopamine within the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) activates inhibitory post-synaptic D2-receptors on dopaminergic neurons. The proposed mechanisms that regulate this form of transmission differ between electrochemical studies using rats and guinea pigs and electrophysiological studies using mice. This study examines the release and resulting dopamine D2-autoreceptor mediated inhibitory post-synaptic currents (D2-IPSCs) in the VTA of mouse, rat and guinea pig. Robust D2-IPSCs were observed in all recordings from neurons in slices taken from mouse, whereas in rat and guinea pig D2-IPSCs were observed less frequently and were significantly smaller in amplitude. In slices taken from guinea pig, dopamine release was more persistent under conditions of reduced extracellular calcium. The decline in the concentration of dopamine was also prolonged and not as sensitive to inhibition of reuptake by cocaine. This resulted in an increased duration of D2-IPSCs in the guinea pig. Therefore, unlike the mouse or the rat, the time course of dopamine in the extracellular space of the guinea pig determined the duration the D2-IPSC. Functionally, differences in D2-IPSCs resulted in inhibition of dopamine neuron firing only in slices from mouse. The results suggest that the mechanisms and functional consequences of somatodendritic dopamine transmission in the VTA vary among species. This highlights the complexity that underlies dopamine dependent transmission in one brain area. Differences in somatodendritic transmission would be expected in vivo to affect the downstream activity of the mesocorticolimbic dopamine system and subsequent terminal release. PMID:23015441

  3. Mapping Dopamine Function in Primates Using Pharmacologic Magnetic Resonance Imaging

    PubMed Central

    Sanchez-Pernaute, Rosario; Brownell, Anna-Liisa; Chen, Yin-Ching Iris; Isacson, Ole

    2008-01-01

    Dopamine (DA) receptors play a central role in such diverse pathologies as Parkinson's disease, schizophrenia, and drug abuse. We used an amphetamine challenge combined with pharmacologic magnetic resonance imaging (phMRI) to map DA-associated circuitry in nonhuman primates with high sensitivity and spatial resolution. Seven control cynomolgous monkeys and 10 MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated parkinsonian primates were studied longitudinally using both positron emission tomography (PET) and phMRI. Amphetamine challenge (2.5 mg/kg, i.v.) in control monkeys increased relative cerebral blood volume (rCBV) in a number of brain regions not described previously, such as parafascicular thalamus, precentral gyrus, and dentate nucleus of the cerebellum. With the high spatial resolution, we were also able to readily identify changes in rCBV in the anterior cingulate, substantia nigra, ventral tegmental area, caudate (tail and head), putamen, and nucleus accumbens. Amphetamine induced decreases in rCBV in occipital and posterior parietal cortices. Parkinsonian primates had a prominent loss of response to amphetamine, with relative sparing of the nucleus accumbens and parafascicular thalamus. There was a significant correlation between rCBV loss in the substantia nigra and both PET imaging of dopamine transporters and behavioral measures. Monkeys with partial lesions as defined by 2β-carbomethoxy-3β-(4-fluorophenyl) tropane binding to dopamine transporters showed recruitment of premotor and motor cortex after amphetamine stimulus similar to what has been noted in Parkinson's patients during motor tasks. These data indicate that phMRI is a powerful tool for assessment of dynamic changes associated with normal and dysfunctional DA brain circuitry in primates. PMID:15509742

  4. Long-lasting enhancement of corticostriatal transmission by taurine: role of dopamine and acetylcholine.

    PubMed

    Chepkova, A N; Sergeeva, O A; Haas, H L

    2005-06-01

    1. Taurine applied to mouse brain slices evokes a long-lasting enhancement (LLE) of corticostriatal synaptic transmission, LLE(TAU). 2. The occurrence of LLE(TAU) was significantly decreased in the presence of the specific antagonists at either D1 (SCH23390) or D2 (raclopride) dopamine (DA) receptors. 3. LLE(TAU) was prevented by scopolamine, a muscarinic antagonist, and significantly suppressed by the nicotinic antagonist mecamylamine. 4. Thus, dopaminergic and cholinergic mechanisms, in concert with the taurine transporter and glycine receptors, contribute critically to the induction of corticostriatal LLE(TAU).

  5. Low cost Image Transmission System

    SciTech Connect

    Skogmo, D.

    1994-06-01

    Throughout the Department of Energy (DOE) complex, sites protect themselves with intrusion detection systems. Some of these systems have sensors in remote areas. These sensors frequently alarm -- not because they have detected a terrorist skulking around the area, but because they have detected a horse, or a dog, or a bush moving in the breeze. Even though the local security force is 99% sure there is no real threat, they must assess each of these nuisance or false alarms. Generally, the procedure consists of dispatching an inspector to drive to the area and make an assessment. This is expensive in terms of manpower and the assessment is not timely. Often, by the time the inspector arrives, the cause of the alarm has vanished. A television camera placed to view the area protected by the sensor could be used to help in this assessment, but this requires the installation of high-quality cable, optical fiber, or a microwave link. Further, to be of use at the present time, the site must have had the foresight to have installed these facilities in the past and have them ready for use now. What is needed is a device to place between the television camera and a modem connecting to a low-bandwidth channel such as radio or a telephone line. This paper discusses the development of such a device: an Image Transmission System, or ITS.

  6. Enhanced GABA Transmission Drives Bradykinesia Following Loss of Dopamine D2 Receptor Signaling.

    PubMed

    Lemos, Julia C; Friend, Danielle M; Kaplan, Alanna R; Shin, Jung Hoon; Rubinstein, Marcelo; Kravitz, Alexxai V; Alvarez, Veronica A

    2016-05-18

    Bradykinesia is a prominent phenotype of Parkinson's disease, depression, and other neurological conditions. Disruption of dopamine (DA) transmission plays an important role, but progress in understanding the exact mechanisms driving slowness of movement has been impeded due to the heterogeneity of DA receptor distribution on multiple cell types within the striatum. Here we show that selective deletion of DA D2 receptors (D2Rs) from indirect-pathway medium spiny neurons (iMSNs) is sufficient to impair locomotor activity, phenocopying DA depletion models of Parkinson's disease, despite this mouse model having intact DA transmission. There was a robust enhancement of GABAergic transmission and a reduction of in vivo firing in striatal and pallidal neurons. Mimicking D2R signaling in iMSNs with Gi-DREADDs restored the level of tonic GABAergic transmission and rescued the motor deficit. These findings indicate that DA, through D2R activation in iMSNs, regulates motor output by constraining the strength of GABAergic transmission.

  7. Hippocampal cannabinoid transmission modulates dopamine neuron activity: impact on rewarding memory formation and social interaction.

    PubMed

    Loureiro, Michael; Renard, Justine; Zunder, Jordan; Laviolette, Steven R

    2015-05-01

    Disturbances in cannabinoid type 1 receptor (CB1R) signaling have been linked to emotional and cognitive deficits characterizing neuropsychiatric disorders, including schizophrenia. Thus, there is growing interest in characterizing the relationship between cannabinoid transmission, emotional processing, and dopamine (DA)-dependent behavioral deficits. The CB1R is highly expressed in the mammalian nervous system, particularly in the hippocampus. Activation of the ventral hippocampal subregion (vHipp) is known to increase both the activity of DAergic neurons located in the ventral tegmental area (VTA) and DA levels in reward-related brain regions, particularly the nucleus accumbens (NAc). However, the possible functional relationship between hippocampal CB1R transmission and VTA DA neuronal activity is not currently understood. In this study, using in vivo neuronal recordings in rats, we demonstrate that activation of CB1R in the vHipp strongly increases VTA DA neuronal firing and bursting activity, while simultaneously decreasing the activity of VTA non-DA neurons. Furthermore, using a conditioned place preference procedure and a social interaction test, we report that intra-vHipp CB1R activation potentiates the reward salience of normally sub-threshold conditioning doses of opiates and induces deficits in natural sociability and social recognition behaviors. Finally, these behavioral effects were prevented by directly blocking NAc DAergic transmission. Collectively, these findings identify hippocampal CB1R transmission as a critical modulator of the mesolimbic DA pathway and in the processing of reward and social-related behavioral phenomena.

  8. Reduced striatal dopamine transmission in REM sleep behavior disorder comorbid with depression.

    PubMed

    Wing, Yun Kwok; Lam, Siu Ping; Zhang, Jihui; Leung, Eric; Ho, Chi Lai; Chen, Sirong; Cheung, Man Ki; Li, Shirley Xin; Chan, Joey Wing Yan; Mok, Vincent; Tsoh, Joshua; Chan, Anne; Ho, Crover Kwok Wah

    2015-02-03

    To investigate dopamine transmission in patients with comorbid REM sleep behavior disorder (RBD) and major depressive disorder (MDD). This is a case-control study including 11 medicated patients with comorbid RBD and MDD (mean age 47.5 ± 8.2), 8 medicated patients with MDD only (mean age 47.9 ± 8.4), and 10 healthy participants (mean age 46.5 ± 10.6 years). They underwent clinical assessment, video-polysomnography, olfactory tests, and neuroimaging studies ((18)F-DOPA, (11)C-raclopride, and (18)F-FDG PET neuroimaging). Compared with the 2 control groups, patients with comorbid RBD and MDD had significantly lower (18)F-DOPA uptake at 60 minutes in the putamen and caudate after controlling for age and sex effect (p < 0.05). There were no significant differences for the (11)C-raclopride and (18)F-FDG-PET. The (18)F-DOPA uptake in putamens had significant inverse correlation with severity of RBD symptoms (p < 0.01) and REM-related tonic muscle activity (p < 0.01). The comorbid RBD and MDD group had more impairment in olfactory function. Patients with comorbid RBD and MDD had presynaptic dopamine dysfunction and impaired olfactory function. There is a distinct possibility that the development of RBD symptoms among patients with MDD may represent an early phase of α-synucleinopathy neurodegeneration instead of a merely antidepressant-induced condition. © 2015 American Academy of Neurology.

  9. Disruption of hippocampal-prefrontal cortex activity by dopamine D2R-dependent LTD of NMDAR transmission.

    PubMed

    Banks, Paul James; Burroughs, Amelia Caroline; Barker, Gareth Robert Isaac; Brown, Jon Thomas; Warburton, Elizabeth Clea; Bashir, Zafar Iqbal

    2015-09-01

    Functional connectivity between the hippocampus and prefrontal cortex (PFC) is essential for associative recognition memory and working memory. Disruption of hippocampal-PFC synchrony occurs in schizophrenia, which is characterized by hypofunction of NMDA receptor (NMDAR)-mediated transmission. We demonstrate that activity of dopamine D2-like receptors (D2Rs) leads selectively to long-term depression (LTD) of hippocampal-PFC NMDAR-mediated synaptic transmission. We show that dopamine-dependent LTD of NMDAR-mediated transmission profoundly disrupts normal synaptic transmission between hippocampus and PFC. These results show how dopaminergic activation induces long-term hypofunction of NMDARs, which can contribute to disordered functional connectivity, a characteristic that is a hallmark of psychiatric disorders such as schizophrenia.

  10. MR-DTI and PET multimodal imaging of dopamine release within subdivisions of basal ganglia

    NASA Astrophysics Data System (ADS)

    Tziortzi, A.; Searle, G.; Tsoumpas, C.; Long, C.; Shotbolt, P.; Rabiner, E.; Jenkinson, M.; Gunn, R. N.

    2011-09-01

    The basal ganglia is a group of anatomical nuclei, functionally organised into limbic, associative and sensorimotor regions, which plays a central role in dopamine related neurological and psychiatric disorders. In this study, we combine two imaging modalities to enable the measurement of dopamine release in functionally related subdivisions of the basal ganglia. [11C]-(+)-PHNO Positron Emission Tomography (PET) measurements in the living human brain pre- and post-administration of amphetamine allow for the estimation of regional dopamine release. Combined Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) data allows for the definition of functional territories of the basal ganglia from connectivity information. The results suggest that there is a difference in dopamine release among the connectivity derived functional subdivisions. Dopamine release is highest in the limbic area followed by the sensorimotor and then the associative area with this pattern reflected in both striatum and pallidum.

  11. Progressive Transmission and Compression of Images

    NASA Technical Reports Server (NTRS)

    Kiely, A. B.

    1996-01-01

    We describe an image data compression strategy featuring progressive transmission. The method exploits subband coding and arithmetic coding for compression. We analyze the Laplacian probability density, which closely approximates the statistics of individual subbands, to determine a strategy for ordering the compressed subband data in a way that improves rate-distortion performance. Results are presented for a test image.

  12. Nicotinic and opioid receptor regulation of striatal dopamine D2-receptor mediated transmission

    PubMed Central

    Mamaligas, Aphroditi A.; Cai, Yuan; Ford, Christopher P.

    2016-01-01

    In addition to dopamine neuron firing, cholinergic interneurons (ChIs) regulate dopamine release in the striatum via presynaptic nicotinic receptors (nAChRs) on dopamine axon terminals. Synchronous activity of ChIs is necessary to evoke dopamine release through this pathway. The frequency-dependence of disynaptic nicotinic modulation has led to the hypothesis that nAChRs act as a high-pass filter in the dopaminergic microcircuit. Here, we used optogenetics to selectively stimulate either ChIs or dopamine terminals directly in the striatum. To measure the functional consequence of dopamine release, D2-receptor synaptic activity was assessed via virally overexpressed potassium channels (GIRK2) in medium spiny neurons (MSNs). We found that nicotinic-mediated dopamine release was blunted at higher frequencies because nAChRs exhibit prolonged desensitization after a single pulse of synchronous ChI activity. However, when dopamine neurons alone were stimulated, nAChRs had no effect at any frequency. We further assessed how opioid receptors modulate these two mechanisms of release. Bath application of the κ opioid receptor agonist U69593 decreased D2-receptor activation through both pathways, whereas the μ opioid receptor agonist DAMGO decreased D2-receptor activity only as a result of cholinergic-mediated dopamine release. Thus the release of dopamine can be independently modulated when driven by either dopamine neurons or cholinergic interneurons. PMID:27886263

  13. Quadruplex Integrated DNA (QuID) Nanosensors for Monitoring Dopamine

    PubMed Central

    Morales, Jennifer M.; Skipwith, Christopher G.; Clark, Heather A.

    2015-01-01

    Dopamine is widely innervated throughout the brain and critical for many cognitive and motor functions. Imbalances or loss in dopamine transmission underlie various psychiatric disorders and degenerative diseases. Research involving cellular studies and disease states would benefit from a tool for measuring dopamine transmission. Here we show a Quadruplex Integrated DNA (QuID) nanosensor platform for selective and dynamic detection of dopamine. This nanosensor exploits DNA technology and enzyme recognition systems to optically image dopamine levels. The DNA quadruplex architecture is designed to be compatible in physically constrained environments (110 nm) with high flexibility, homogeneity, and a lower detection limit of 110 µM. PMID:26287196

  14. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  15. Evaluation of the Dopamine Hypothesis of ADHD with PET Brain Imaging

    SciTech Connect

    Swanson, James

    2010-04-28

    The Dopamine (DA) Hypothesis of ADHD (Wender, 1971; Levy, 1990) suggests that abnormalities in the synaptic mechanisms of DA transmission may be disrupted, and specific abnormalities in DA receptors and DA transporters (DAT) have been proposed (see Swanson et al, 1998). Early studies with small samples (e.g., n = 6, Dougherty et al, 1999) used single photon emission tomography (SPECT) and the radioligand (123I Altropane) to test a theory that ADHD may be caused by an over expression of DAT and reported 'a 70% increase in age-corrected dopamine transporter density in patients with attention deficit hyperactivity disorder compared with healthy controls' and suggested that treatment with stimulant medication decreased DAT density in ADHD patients and corrected an underlying abnormality (Krause et al, 2000). The potential importance of these findings was noted by Swanson (1999): 'If true, this is a major finding and points the way for new investigations of the primary pharmacological treatment for ADHD (with the stimulant drugs - e.g., methylphenidate), for which the dopamine transporter is the primary site of action. The potential importance of this finding demands special scrutiny'. This has been provided over the past decade using Positron Emission Tomography (PET). Brain imaging studies were conducted at Brookhaven National Laboratory (BNL) in a relatively large sample of stimulant-naive adults assessed for DAT (11C cocaine) density and DA receptors (11C raclopride) availability. These studies (Volkow et al, 2007; Volkow et al, 2009) do not confirm the hypothesis of increased DAT density and suggest the opposite (i.e., decreased rather than increased DAT density), and follow-up after treatment (Wang et al, 2010) does not confirm the hypothesis that therapeutic doses of methylphenidate decrease DAT density and suggests the opposite (i.e., increased rather than decreased DAT density). The brain regions implicated by these PET imaging studies also suggest that a

  16. Evaluation of the Dopamine Hypothesis of ADHD with PET Brain Imaging

    ScienceCinema

    Swanson, James [University of California, Irvine, California, United States

    2016-07-12

    The Dopamine (DA) Hypothesis of ADHD (Wender, 1971; Levy, 1990) suggests that abnormalities in the synaptic mechanisms of DA transmission may be disrupted, and specific abnormalities in DA receptors and DA transporters (DAT) have been proposed (see Swanson et al, 1998). Early studies with small samples (e.g., n = 6, Dougherty et al, 1999) used single photon emission tomography (SPECT) and the radioligand (123I Altropane) to test a theory that ADHD may be caused by an over expression of DAT and reported 'a 70% increase in age-corrected dopamine transporter density in patients with attention deficit hyperactivity disorder compared with healthy controls' and suggested that treatment with stimulant medication decreased DAT density in ADHD patients and corrected an underlying abnormality (Krause et al, 2000). The potential importance of these findings was noted by Swanson (1999): 'If true, this is a major finding and points the way for new investigations of the primary pharmacological treatment for ADHD (with the stimulant drugs - e.g., methylphenidate), for which the dopamine transporter is the primary site of action. The potential importance of this finding demands special scrutiny'. This has been provided over the past decade using Positron Emission Tomography (PET). Brain imaging studies were conducted at Brookhaven National Laboratory (BNL) in a relatively large sample of stimulant-naive adults assessed for DAT (11C cocaine) density and DA receptors (11C raclopride) availability. These studies (Volkow et al, 2007; Volkow et al, 2009) do not confirm the hypothesis of increased DAT density and suggest the opposite (i.e., decreased rather than increased DAT density), and follow-up after treatment (Wang et al, 2010) does not confirm the hypothesis that therapeutic doses of methylphenidate decrease DAT density and suggests the opposite (i.e., increased rather than decreased DAT density). The brain regions implicated by these PET imaging studies also suggest that a

  17. Evaluation of the Dopamine Hypothesis of ADHD with PET Brain Imaging

    SciTech Connect

    Swanson, James

    2010-04-28

    The Dopamine (DA) Hypothesis of ADHD (Wender, 1971; Levy, 1990) suggests that abnormalities in the synaptic mechanisms of DA transmission may be disrupted, and specific abnormalities in DA receptors and DA transporters (DAT) have been proposed (see Swanson et al, 1998). Early studies with small samples (e.g., n = 6, Dougherty et al, 1999) used single photon emission tomography (SPECT) and the radioligand (123I Altropane) to test a theory that ADHD may be caused by an over expression of DAT and reported 'a 70% increase in age-corrected dopamine transporter density in patients with attention deficit hyperactivity disorder compared with healthy controls' and suggested that treatment with stimulant medication decreased DAT density in ADHD patients and corrected an underlying abnormality (Krause et al, 2000). The potential importance of these findings was noted by Swanson (1999): 'If true, this is a major finding and points the way for new investigations of the primary pharmacological treatment for ADHD (with the stimulant drugs - e.g., methylphenidate), for which the dopamine transporter is the primary site of action. The potential importance of this finding demands special scrutiny'. This has been provided over the past decade using Positron Emission Tomography (PET). Brain imaging studies were conducted at Brookhaven National Laboratory (BNL) in a relatively large sample of stimulant-naive adults assessed for DAT (11C cocaine) density and DA receptors (11C raclopride) availability. These studies (Volkow et al, 2007; Volkow et al, 2009) do not confirm the hypothesis of increased DAT density and suggest the opposite (i.e., decreased rather than increased DAT density), and follow-up after treatment (Wang et al, 2010) does not confirm the hypothesis that therapeutic doses of methylphenidate decrease DAT density and suggests the opposite (i.e., increased rather than decreased DAT density). The brain regions implicated by these PET imaging studies also suggest that a

  18. MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity

    SciTech Connect

    Zhu Guoqi; Chen Ying; Huang Yuying; Li Qinglin; Behnisch, Thomas

    2011-08-01

    Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only at the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: > I.p. MPTP-injection mediates death of dopaminergic neurons. > I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. > I.p. MPTP-injection does not alter basal synaptic transmission. > Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. > Attenuation of NMDA-receptors mediated f

  19. L-DOPA inhibits excitatory synaptic transmission in the rat nucleus tractus solitarius through release of dopamine.

    PubMed

    Ohi, Y; Kodama, D; Haji, A

    2017-09-30

    The mode of action of L-DOPA on excitatory synaptic transmission in second-order neurons of the nucleus tractus solitarius (NTS) was studied using the rat brainstem slices. Superfusion of L-DOPA (10μM) reduced the frequency of miniature excitatory postsynaptic currents (mEPSCs) without any effect on the amplitude. A low concentration (1μM) was ineffective on the mEPSCs, and the highest concentration (100μM) exerted a stronger inhibitory effect. L-DOPA (10μM) decreased the amplitude of EPSCs (eEPSCs) evoked by electrical stimulation of the tractus solitarius and increased the paired-pulse ratio. The inhibitory effects of L-DOPA on mEPSCs and eEPSCs were similar to those of dopamine (100μM). The effects of L-DOPA were blocked by a competitive antagonist, L-DOPA methyl ester (100μM) and also by a D2 receptor antagonist, sulpiride (10μM), while those of dopamine were blocked by the latter but not by the former. In reserpine (5mg/kg, s.c.)-treated rats, the effects of L-DOPA on both mEPSCs and eEPSCs were completely abolished, but those of dopamine remained unchanged. The present results suggest a possibility that L-DOPA may induce the release of dopamine from the axon terminals in the NTS and the released dopamine suppresses the glutamatergic transmission through activation of the presynaptic D2 receptors. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. WWW interactive progressive local image transmission system

    NASA Astrophysics Data System (ADS)

    Liptay, Tiffany-Emil; Barron, John L.; Gargantini, Irene A.

    1999-12-01

    We present a JAVA-based Interactive Progressive Local Image Transmission (IPLIT) syste for viewing large images over the bandwidth-limited WWW in 'reasonable time'. One motivation behind this research is the need for medical specialists to remotely view medical imags, in reasonable time, over the WWW. In our IPLIT system, the user employs a JAVA-based Internet browser to view and browse a low resolution image. The identification of features or regions of interest before observing those regions in detail is performed by either selecting a particular region manually via mouse or by utilizing an automatic feature-detection mode. The automatic feature-detection displays high-resolution subimages along a trajectory determined by the user-specified feature of interest. Our program handles 3D image data as a sequence of 2D images. Our IPLIT system is tested on actual MRI, CT and Ultrasound medical images obtained from the Robarts Research Institute at the University of Western Ontario, Canada. One such image was used as the test image in this paper. A few test images were borrowed from the Human Visual Project.

  1. Radiotracer imaging of dopaminergic transmission in neuropsychiatric disorders.

    PubMed

    Verhoeff, N P

    1999-12-01

    This article will review the capabilities and accomplishments of radiotracer imaging with single photon emission computed tomography (SPECT) and positron emission tomography (PET) to measure pre-, post-, and "intra-synaptic" aspects of dopaminergic (DAergic) neurotransmission. The presynaptic site can be labeled with probes for the dopamine transporter (DAT) or the synthetic enzyme aromatic L-amino acid decarboxylase ("dopa decarboxylase"). The postsynaptic sites can be labeled with probes for either the dopamine D1 receptor (D1R) or the dopamine D2 receptor (D2R). The "synaptic" measurements are made indirectly by measurements of the interaction/displacement of receptor tracers by endogenous dopamine (DA). Agents are used which either release (e.g., amphetamine) or deplete (e.g., alpha-methyl-paratyrosine (AMPT), an inhibitor of tyrosine hydroxylase) tissue stores of DA. The application of these paradigms will be reviewed with special emphasis to neuropsychiatric diseases such as schizophrenia and idiopathic Parkinson's disease (IPD).

  2. Reboxetine enhances the olanzapine-induced antipsychotic-like effect, cortical dopamine outflow and NMDA receptor-mediated transmission.

    PubMed

    Marcus, Monica M; Jardemark, Kent; Malmerfelt, Anna; Björkholm, Carl; Svensson, Torgny H

    2010-08-01

    Preclinical data have shown that addition of the selective norepinephrine transporter (NET) inhibitor reboxetine increases the antipsychotic-like effect of the D(2/3) antagonist raclopride and, in parallel, enhances cortical dopamine output. Subsequent clinical results suggested that adding reboxetine to stable treatments with various antipsychotic drugs (APDs) may improve positive, negative and depressive symptoms in schizophrenia. In this study, we investigated in rats the effects of adding reboxetine to the second-generation APD olanzapine on: (i) antipsychotic efficacy, using the conditioned avoidance response (CAR) test, (ii) extrapyramidal side effect (EPS) liability, using a catalepsy test, (iii) dopamine efflux in the medial prefrontal cortex and the nucleus accumbens, using in vivo microdialysis in freely moving animals and (iv) cortical N-methyl-D-aspartate (NMDA) receptor-mediated transmission, using intracellular electrophysiological recording in vitro. Reboxetine (6 mg/kg) enhanced the suppression of CAR induced by a suboptimal dose (1.25 mg/kg), but not an optimal (2.5 mg/kg) dose of olanzapine without any concomitant catalepsy. Addition of reboxetine to the low dose of olanzapine also markedly increased cortical dopamine outflow and facilitated prefrontal NMDA receptor-mediated transmission. Our data suggest that adjunctive treatment with a NET inhibitor may enhance the therapeutic effect of low-dose olanzapine in schizophrenia without increasing EPS liability and add an antidepressant action, thus in principle allowing for a dose reduction of olanzapine with a concomitant reduction of dose-related side effects, such as EPS and weight gain.

  3. Sexual activity increases dopamine transmission in the nucleus accumbens and striatum of female rats.

    PubMed

    Pfaus, J G; Damsma, G; Wenkstern, D; Fibiger, H C

    1995-09-25

    In vivo microdialysis was used to monitor extracellular concentrations of dopamine (DA), and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens and dorsal striatum of sexually active female rats during tests of locomotor activity, exposure to a novel chamber, exposure to sex odors, the presentation of a sexually active male rat, and copulation. DA increased slightly but significantly in the nucleus accumbens when a sexually active male was placed behind a wire-mesh screen, and further during copulation. DA also increased significantly in the dorsal striatum during copulation; however, the magnitude of this effect was significantly lower than that observed in the nucleus accumbens. The metabolites DOPAC and HVA generally followed DA with a delay, and increased significantly during copulation in both regions. In contrast, forced locomotion on a rotating drum, exposure to a novel testing chamber, and exposure to sex odors did not increase DA significantly in either region, although forced locomotion increased DOPAC significantly in both regions, and HVA significantly in the nucleus accumbens. The magnitude of DA release in the nucleus accumbens was significantly greater during copulation than running, whereas no significant difference was detected for striatal DA release between these two behavioral conditions. These results indicate that novelty or locomotor activity alone do not account for the increase in DA observed in the nucleus accumbens of female rats during copulation, and suggest that DA transmission in the nucleus accumbens is associated with anticipatory and consummatory aspects of sexual activity, as it is in male rats. In the dorsal striatum, however, DA release during copulation may reflect an increase in locomotor activity associated with active pacing of the male.

  4. Aversive Stimuli Differentially Modulate Real-Time Dopamine Transmission Dynamics within the Nucleus Accumbens Core and Shell

    PubMed Central

    Badrinarayan, Aneesha; Wescott, Seth A.; Vander Weele, Caitlin M.; Saunders, Benjamin T.; Couturier, Brenann E.; Maren, Stephen

    2012-01-01

    Although fear directs adaptive behavioral responses, how aversive cues recruit motivational neural circuitry is poorly understood. Specifically, while it is known that dopamine (DA) transmission within the nucleus accumbens (NAc) is imperative for mediating appetitive motivated behaviors, its role in aversive behavior is controversial. It has been proposed that divergent phasic DA transmission following aversive events may correspond to segregated mesolimbic dopamine pathways; however, this prediction has never been tested. Here, we used fast-scan cyclic voltammetry to examine real-time DA transmission within NAc core and shell projection systems in response to a fear-evoking cue. In male Sprague Dawley rats, we first demonstrate that a fear cue results in decreased DA transmission within the NAc core, but increased transmission within the NAc shell. We examined whether these changes in DA transmission could be attributed to modulation of phasic transmission evoked by cue presentation. We found that cue presentation decreased the probability of phasic DA release in the core, while the same cue enhanced the amplitude of release events in the NAc shell. We further characterized the relationship between freezing and both changes in DA as well as local pH. Although we found that both analytes were significantly correlated with freezing in the NAc across the session, changes in DA were not strictly associated with freezing while basic pH shifts in the core more consistently followed behavioral expression. Together, these results provide the first real-time neurochemical evidence that aversive cues differentially modulate distinct DA projection systems. PMID:23136417

  5. Transmission line matrix model for ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Ciocan, Razvan; Ida, Nathan; Driscoll, Diana

    2002-06-01

    A transmission-line matrix (TLM) model was developed to simulate the ultrasound propagation in the multi-layer structures. The spatial resolution of the proposed model is better than tenth wavelength. The numerical modeling is carried-out for frequencies that are usually used in ultrasound imagery (3.5 - 25MHz). The acoustic impedance profile of multi-layer structures considered are similar to those found in nondestructive evaluation and in medical imaging. The structures modeled are: brazed joints, stomach and colon walls. Structures with artificial flaws are also modeled. A comparison between real images and numerical generated ones is provided for each considered structure. Both frequency and time domain responses are obtained from the structures under investigation. Both single and array transducer techniques are modeled and their performances are evaluated for the proposed structures. Different shapes for the incident pulse are considered in numerically generated images.

  6. Disruption of Akt signaling decreases dopamine sensitivity in modulation of inhibitory synaptic transmission in rat prefrontal cortex.

    PubMed

    Li, Yan-Chun; Yang, Sha-Sha; Gao, Wen-Jun

    2016-09-01

    Akt is a serine/threonine kinase, which is dramatically reduced in the prefrontal cortex (PFC) of patients with schizophrenia, and a deficiency in Akt1 results in PFC function abnormalities. Although the importance of Akt in dopamine (DA) transmission is well established, how impaired Akt signaling affects the DA modulation of synaptic transmission in the PFC has not been characterized. Here we show that Akt inhibitors significantly decreased receptor sensitivity to DA by shifting DA modulation of GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) in prefrontal cortical neurons. Akt inhibition caused a significant decrease in synaptic dopamine D2 receptor (D2R) levels with high-dose DA exposure. In addition, Akt inhibition failed to affect DA modulation of IPSCs after blockade of β-arrestin 2. β-arrestin 2-mediated interaction of clathrin with D2R was enhanced by co-application of a Akt inhibitor and DA. Taken together, the reduced response in DA modulation of inhibitory transmission mainly involved β-arrestin 2-dependent D2R desensitization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. PPARα modulation of mesolimbic dopamine transmission rescues depression-related behaviors.

    PubMed

    Scheggi, Simona; Melis, Miriam; De Felice, Marta; Aroni, Sonia; Muntoni, Anna Lisa; Pelliccia, Teresa; Gambarana, Carla; De Montis, Maria Graziella; Pistis, Marco

    2016-11-01

    Depressive disorders cause a substantial burden for the individual and the society. Key depressive symptoms can be modeled in animals and enable the development of novel therapeutic interventions. Chronic unavoidable stress disrupts rats' competence to escape noxious stimuli and self-administer sucrose, configuring a depression model characterized by escape deficit and motivational anhedonia associated to impaired dopaminergic responses to sucrose in the nucleus accumbens shell (NAcS). Repeated treatments that restore these responses also relieve behavioral symptoms. Ventral tegmental area (VTA) dopamine neurons encode reward and motivation and are implicated in the neuropathology of depressive-like behaviors. Peroxisome proliferator-activated receptors type-α (PPARα) acutely regulate VTA dopamine neuron firing via β2 subunit-containing nicotinic acetylcholine receptors (β2*nAChRs) through phosphorylation and this effect is predictive of antidepressant-like effects. Here, by combining behavioral, electrophysiological and biochemical techniques, we studied the effects of repeated PPARα stimulation by fenofibrate on mesolimbic dopamine system. We found decreased β2*nAChRs phosphorylation levels and a switch from tonic to phasic activity of dopamine cells in the VTA, and increased phosphorylation of dopamine and cAMP-regulated phosphoprotein Mr 32,000 (DARPP-32) in the NAcS. We then investigated whether long-term fenofibrate administration to stressed rats reinstated the decreased DARPP-32 response to sucrose and whether this effect translated into antidepressant-like properties. Fenofibrate restored dopaminergic responses to appetitive stimuli, reactivity to aversive stimuli and motivation to self-administer sucrose. Overall, this study suggests PPARα as new targets for antidepressant therapies endowed with motivational anti-anhedonic properties, further supporting the role of an unbalanced mesolimbic dopamine system in pathophysiology of depressive disorders

  8. Imaging addiction: D2 receptors and dopamine signaling in the striatum as biomarkers for impulsivity

    PubMed Central

    Trifilieff, Pierre; Martinez, Diana

    2014-01-01

    Dependence to drugs of abuse is closely associated with impulsivity, or the propensity to choose a lower, but immediate, reward over a delayed, but more valuable outcome. Here, we review clinical and preclinical studies showing that striatal dopamine signaling and D2 receptor levels – which have been shown to be decreased in addiction - directly impact impulsivity, which is itself predictive of drug self-administration. Based on these studies, we propose that the alterations in D2 receptor binding and dopamine release seen in imaging studies of addiction constitute neurobiological markers of impulsivity. Recent studies in animals also show that higher striatal dopamine signaling at the D2 receptor is associated with a greater willingness to expend effort to reach goals, and we propose that this same relationship applies to humans, particularly with respect to recovery from addiction. PMID:23851257

  9. Parallel transmission for ultrahigh‐field imaging

    PubMed Central

    Padormo, Francesco; Beqiri, Arian; Hajnal, Joseph V.

    2015-01-01

    The development of MRI systems operating at or above 7 T has provided researchers with a new window into the human body, yielding improved imaging speed, resolution and signal‐to‐noise ratio. In order to fully realise the potential of ultrahigh‐field MRI, a range of technical hurdles must be overcome. The non‐uniformity of the transmit field is one of such issues, as it leads to non‐uniform images with spatially varying contrast. Parallel transmission (i.e. the use of multiple independent transmission channels) provides previously unavailable degrees of freedom that allow full spatial and temporal control of the radiofrequency (RF) fields. This review discusses the many ways in which these degrees of freedom can be used, ranging from making more uniform transmit fields to the design of subject‐tailored RF pulses for both uniform excitation and spatial selection, and also the control of the specific absorption rate. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:25989904

  10. Experimental Investigations on Dopamine Transmission Can Provide Clues on the Mechanism of the Therapeutic Effect of Amphetamine and Methylphenidate in ADHD

    PubMed Central

    Carboni, Ezio; Silvagni, Alessandra

    2004-01-01

    The aim of this review is to compare the experimental evidence obtained from in vitro studies on the effect of amphetamine and methylphenidate on dopamine transmission with the results obtained in animal models of attention deficit hyperactivity disorder (ADHD). This comparison can extend the knowledge on the mechanism of action of the drugs used in the therapy of ADHD and provide insight into the etiology of ADHD. In particular, we considered the results obtained from in vitro methods, such as synaptosomes, cells in culture, and slices and from in vivo animal models of ADHD, such as spontaneous hypertensive rats (SHR) and the Naples high-excitability (NHE) rat lines. The different experimental approaches produce consonant results and suggest that in SHR rats, in contrast to Wistar Kyoto rats (WKY), amphetamine and depolarization by high K+ might release different pools of dopamine-containing vesicles. The pool depleted by amphetamine might represent dopamine that is stored in large dense core vesicles, whereas dopamine released by high K+ might be contained in small synaptic vesicles (SSV). The sustained dopamine transmission observed in the nucleus accumbens of SHR but not WKY rats can be supported by an elevated synthesis and release, which also might explain the stronger effect of methylphenidate on dopamine release in SHR but not in WKY rats. This hypothesis might enlighten the common therapeutic effect of these drugs, although their action takes place at different levels in catecholaminergic transmission. PMID:15303307

  11. Imaging analysis of clock neurons: light buffers the wake-promoting effect of dopamine

    PubMed Central

    Shang, Yuhua; Haynes, Paula; Pírez, Nicolás; Harrington, Kyle I.; Guo, Fang; Pollack, Jordan; Hong, Pengyu; Griffith, Leslie C.; Rosbash, Michael

    2012-01-01

    How animals maintain proper amounts of sleep yet still be flexible to changes in the environmental conditions remains unknown. Here we showed that environmental light suppresses the wake-promoting effects of dopamine in fly brains. A subset of clock neurons, the 10 large lateral-ventral neurons (l-LNvs), are wake-promoting and respond to dopamine, octopamine as well as light. Behavioral and imaging analyses suggested that dopamine is a stronger arousal signal than octopamine. Surprisingly, light exposure not only suppressed the l-LNv responses but also synchronized responses of neighboring l-LNvs. This regulation occured by distinct mechanisms: light-mediated suppression of octopamine responses is regulated by the circadian clock, whereas light regulation of dopamine responses occurs by upregulation of inhibitory dopamine receptors. Plasticity therefore alters the relative importance of diverse cues based on the environmental mix of stimuli. The regulatory mechanisms described here may contribute to the control of sleep stability while still allowing behavioral flexibility. PMID:21685918

  12. Synthesis and characterization of iodobenzamide analogues: Potential D-2 dopamine receptor imaging agents

    SciTech Connect

    Murphy, R.A.; Kung, H.F.; Kung, M.P.; Billings, J. )

    1990-01-01

    (S)-N-((1-Ethyl-2-pyrrolidinyl)methyl)-2-hydroxy-3-iodo-6- methoxybenzamide (({sup 123}I)IBZM) is a central nervous system (CNS) D-2 dopamine receptor imaging agent. In order to investigate the versatility of this parent structure in specific dopamine receptor localization and the potential for developing new dopamine receptor imaging agents, a series of new iodinated benzamides with fused ring systems, naphthalene (INAP) and benzofuran (IBF), was synthesized and radiolabeled, and the in vivo and in vitro biological properties were characterized. The best analogue of IBZM is IBF (21). The specific binding of ({sup 125}I)IBF (21) with rat striatal tissue preparation was found to be saturable and displayed a Kd of 0.106 {plus minus} 0.015 nM. Competition data of various receptor ligands for ({sup 125}I)IBF (21) binding show the following rank order of potency: spiperone greater than IBF (21) greater than IBZM greater than (+)-butaclamol greater than ({plus minus})-ADTN,6,7 greater than ketanserin greater than SCH-23390 much greater than propranolol. The in vivo biodistribution results confirm that ({sup 125}I)IBF (21) concentrated in the striatal area after iv injection into rats. The study demonstrates that ({sup 123}I)IBF (21) is a potential agent for imaging CNS D-2 dopamine receptors.

  13. Reboxetine Enhances the Olanzapine-Induced Antipsychotic-Like Effect, Cortical Dopamine Outflow and NMDA Receptor-Mediated Transmission

    PubMed Central

    Marcus, Monica M; Jardemark, Kent; Malmerfelt, Anna; Björkholm, Carl; Svensson, Torgny H

    2010-01-01

    Preclinical data have shown that addition of the selective norepinephrine transporter (NET) inhibitor reboxetine increases the antipsychotic-like effect of the D2/3 antagonist raclopride and, in parallel, enhances cortical dopamine output. Subsequent clinical results suggested that adding reboxetine to stable treatments with various antipsychotic drugs (APDs) may improve positive, negative and depressive symptoms in schizophrenia. In this study, we investigated in rats the effects of adding reboxetine to the second-generation APD olanzapine on: (i) antipsychotic efficacy, using the conditioned avoidance response (CAR) test, (ii) extrapyramidal side effect (EPS) liability, using a catalepsy test, (iii) dopamine efflux in the medial prefrontal cortex and the nucleus accumbens, using in vivo microdialysis in freely moving animals and (iv) cortical N-methyl--aspartate (NMDA) receptor-mediated transmission, using intracellular electrophysiological recording in vitro. Reboxetine (6 mg/kg) enhanced the suppression of CAR induced by a suboptimal dose (1.25 mg/kg), but not an optimal (2.5 mg/kg) dose of olanzapine without any concomitant catalepsy. Addition of reboxetine to the low dose of olanzapine also markedly increased cortical dopamine outflow and facilitated prefrontal NMDA receptor-mediated transmission. Our data suggest that adjunctive treatment with a NET inhibitor may enhance the therapeutic effect of low-dose olanzapine in schizophrenia without increasing EPS liability and add an antidepressant action, thus in principle allowing for a dose reduction of olanzapine with a concomitant reduction of dose-related side effects, such as EPS and weight gain. PMID:20463659

  14. Impulse radio ultra wideband wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry.

    PubMed

    Ebrazeh, Ali; Bozorgzadeh, Bardia; Mohseni, Pedram

    2015-01-01

    This paper demonstrates the feasibility of utilizing impulse radio ultra wideband (IR-UWB) signaling technique for reliable, wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) to address the problem of elevated data rates in high-channel-count neurochemical monitoring. Utilizing an FSCV-sensing chip fabricated in AMS 0.35μm 2P/4M CMOS, a 3-5-GHz, IR-UWB transceiver (TRX) chip fabricated in TSMC 90nm 1P/9M RF CMOS, and two off-chip, miniature, UWB antennae, wireless transfer of pseudo-random binary sequence (PRBS) data at 50Mbps over a distance of <;1m is first shown with bit-error rates (BER) <; 10(-3). Further, IR-UWB wireless transmission of dopamine concentration levels prerecorded with FSCV at a CFM during flow injection analysis (FIA) is also demonstrated with transmitter (TX) power dissipation of only ~4.4μW from 1.2V, representing two orders of magnitude reduction in TX power consumption compared to that of a conventional frequency-shift-keyed (FSK) link operating at ~433MHz.

  15. Therapeutic and Imaging Applications of Dopamine Receptors in Breast Cancer

    DTIC Science & Technology

    2016-09-01

    using a μPET scanner (Siemens Inveon). A CT scan was also acquired for anatomical reference, and was overlaid with PET images. Images were acquired...124I. Fig 11. PET / CT images of TISCH ligand within the striatum. 124I-labeled TISCH was injected to the tail vein in male rats. PET scan was...A systematic review of positron emission tomography ( PET ) and positron emission tomography/computed tomography ( PET / CT ) for the diagnosis of breast

  16. MR-PET image coregistration for quantitation of striatal dopamine D{sub 2} receptors

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Levy, A.V.

    1996-05-01

    Our goal was to assess the utility of MR-PET image coregistration to quantify dopamine D{sub 2} receptors in striatum. Twenty-nine normal subjects were investigated with PET and [{sup 11}C]raclopride and with MRI. D{sub 2} receptors were quantified using the ratio of the distribution volume in striatum to that in cerebellum. Measures obtained using regions selected directly from the PET images were compared with those obtained from MR images and then projected to coregistered PET images. There were no differences between measures selected from the PET images (3.9 {+-} 0.5) and those from the MR images (3.9 {+-} 0.65). The values for these two measures were significantly correlated and corresponded to r = 0.9, P < 0.0001. Regions of interest selected directly from PET images, where there is a large contrast between the region of interest and background, as for the case of dopamine D{sub 2} ligands, are almost identical to those obtained from coregistered MR images. 24 refs., 4 figs., 1 tab.

  17. Transmission Kikuchi diffraction and transmission electron forescatter imaging of electropolished and FIB manufactured TEM specimens

    SciTech Connect

    Zieliński, W. Płociński, T.; Kurzydłowski, K.J.

    2015-06-15

    We present a study of the efficiency of the utility of scanning electron microscope (SEM)-based transmission methods for characterizing grain structure in thinned bulk metals. Foils of type 316 stainless steel were prepared by two methods commonly used for transmission electron microscopy — double-jet electropolishing and focused ion beam milling. A customized holder allowed positioning of the foils in a configuration appropriate for both transmission electron forward scatter diffraction, and for transmission imaging by the use of a forescatter detector with two diodes. We found that both crystallographic orientation maps and dark-field transmitted images could be obtained for specimens prepared by either method. However, for both methods, preparation-induced artifacts may affect the quality or accuracy of transmission SEM data, especially those acquired by the use of transmission Kikuchi diffraction. Generally, the quality of orientation data was better for specimens prepared by electropolishing, due to the absence of ion-induced damage. - Highlights: • The transmission imaging and diffraction techniques are emerging in scanning electron microscopy (SEM) as promising new field of materials characterization. • The manuscript titled: “Transmission Kikuchi Diffraction and Transmission Electron Forescatter Imaging of Electropolished and FIB Manufactured TEM Specimens” documents how different specimen thinning procedures can effect efficiency of transmission Kikuchi diffraction and transmission electron forescatter imaging. • The abilities to make precision crystallographic orientation maps and dark-field images in transmission was studied on electropolished versus focus ion beam manufactured TEM specimens. • Depending on the need, electropolished and focused ion beam technique may produce suitable specimens for transmission imaging and diffraction in SEM.

  18. Water-soluble dopamine-based polymers for photoacoustic imaging.

    PubMed

    Repenko, Tatjana; Fokong, Stanley; De Laporte, Laura; Go, Dennis; Kiessling, Fabian; Lammers, Twan; Kuehne, Alexander J C

    2015-04-11

    Here we present a facile synthetic method yielding a linear form of polydopamine via Kumada-coupling, which can be converted into water-soluble melanin, generating high contrast in photoacoustic imaging.

  19. Imaging human intrasynaptic dopamine release by IV cocaine and amphetamine

    SciTech Connect

    Wong, D.F.; Hong, C.; Yokoi, F.

    1995-05-01

    Intrasynaptic dopamine (DA) release was measured with C-11 Raclopride (RAC) PET in 15 human subjects with two psychostimulant drugs, IV cocaine or IV amphetamine (AMPH). Eleven cocaine users received IV saline then cocaine with high specific activity (SA) tracer RAC by IV bolus. To determine the optimal timing of drug administration, subjects received 48mg cocaine at 0 min.(1 subject), 4 min.(3 subjects) or 10 min.(7 subjects) post injection (mpi). One received 32mg at 4 and 16mg at 10 mpi. In a separate paradigm, the effect of AMPH not only on the binding of Hi SA but also on the receptor density (B{sub max}) using Hi SA and low SA was examined. Four normals received 2 pairs of Hi SA and Low SA RAC PET scans, each pair separated by 1 week to estimate 2 B{sub max}`s, one affected by AMPH. Before the 2nd pair, 0.3mg/kg IV AMPH was given in the times corresponding to the AMPH times for the 1s B{sub max} measurement. All were scanned on a GE 4096WB+PET with 50 frames over 90 min with radial arterial plasma sampling and HPLC metabolite correction. Neuropsychological-endocrine testing was done concurrently. All subjects had a marked psychophysiological response for cocaine or AMPH (less with Low SA RAC). However, evidence of substantial DA release was not consistent with IV cocaine nor correlated with any timing of cocaine vs. RAC, except for an overall trend for RAC reduction with cocaine. The % change in k{sub 3}/k{sub 4} by graphical analysis ranged from +10 to -21%, with similar changes by other methods of quantification, such as k{sub 3}/k{sub 4} constrained to cerebellar K{sub 1}/k{sub 2}, and simple tissue ratios comparisons. IV AMPH showed DA release (19% {plus_minus} 2 (SEM) decrease) in all Hi SA RAC (k{sub 3}/k{sub 4}) by graphical analysis. The calculation of B{sub max} in putamen using Scatchard analysis (baseline B{sub max}29{plus_minus}2) showed 12 to 28% decreases following AMPH.

  20. Dynamic simulation for distortion image with turbulence atmospheric transmission effects

    NASA Astrophysics Data System (ADS)

    Du, Huijie; Fei, Jindong; Qing, Duzheng; Zhao, Hongming; Yu, Hong; Cheng, Chen

    2013-09-01

    The imaging through atmospheric turbulence is an inevitable problem encountered by infrared imaging sensors working in the turbulence atmospheric environment. Before light-rays enter the window of the imaging sensors, the atmospheric turbulence will randomly interfere with the transmission of the light waves came from the objects, causing the distribution of image intensity values on the focal plane to diffuse, the peak value to decrease, the image to get blurred, and the pixels to deviate, and making image identification very difficult. Owing to the fact of the long processing time and that the atmospheric turbulent flow field is unknown and hard to be described by mathematical models, dynamic simulation for distortion Image with turbulence atmospheric transmission effects is much more difficult and challenging in the world. This paper discusses the dynamic simulation for distortion Image of turbulence atmospheric transmission effect. First of all, with the data and the optical transmission model of the turbulence atmospheric, the ray-tracing method is applied to obtain the propagation path of optical ray which propagates through the high-speed turbulent flow field, and then to calculate the OPD from the reference wave to the reconverted wave front and obtain the point spread function (PSF). Secondly, infrared characteristics models of typical scene were established according to the theory of infrared physics and heat conduction, and then the dynamic infrared image was generated by OpenGL. The last step is to obtain the distortion Image with turbulence atmospheric transmission effects .With the data of atmospheric transmission computation, infrared simulation image of every frame was processed according to the theory of image processing and the real-time image simulation, and then the dynamic distortion simulation images with effects of blurring, jitter and shifting were obtained. Above-mentioned simulation method can provide the theoretical bases for recovering

  1. SPECT imaging of dopamine transporters with (99m)Tc-TRODAT-1 in major depression and Parkinson's disease.

    PubMed

    Wu, Hao; Lou, Cen; Huang, Zhongke; Shi, Guohua

    2011-01-01

    To investigate dopamine transporter in major depressive disorder and Parkinson's disease, the authors obtained single photon emission computed tomography (SPECT) brain images from 13 patients with major depression, 17 Parkinson's disease patients, and 10 healthy volunteers by using 99mTc-TRODAT-1. The authors found the 99mTc-TRODAT-1 radio signal in the striatum was reduced in the majority of patients with major depressive disorder, and this decrease was even more severe in patients with Parkinson's disease. The results support the hypothesis of dopamine hypofunction in major depressive disorder and suggest that deficient dopamine transporter may be involved in the etiology of severe major depressive disorder.

  2. Pharmacological involvement of the calcium channel blocker flunarizine in dopamine transmission at the striatum.

    PubMed

    Belforte, J E; Magariños-Azcone, C; Armando, I; Buño, W; Pazo, J H

    2001-09-01

    Single intrastriatal microinjections of 25, 50 and 100nmol/microl of flunarizine in normal rats produced a dose-dependent turning behavior toward the injected side when they were challenged with apomorphine (1mg/kg, s.c). This effect was seen at 1, 3 and 7 days following administration of the high dose of flunarizine, but had subsided by 24h after administration of the intermediate dose; the low dose was ineffective. However, intrastriatal injection of the high dose of flunarizine resulted in a local lesion and thereafter this dose was not used. A similar dose-response relationship was determined for nifedipine, an L-type calcium channel antagonist. Injection of this antagonist did not result in apomorphine-elicited rotational behavior, reflecting its lack of antidopaminergic action. Intrastriatal injections of haloperidol (5microg/microl), an antagonist of dopamine D(2) receptors, or the sodium channel blocker lidocaine (40microg/microl), were given in order to compare their effects to those observed with flunarizine. Intracerebral injection of haloperidol produced ipsilateral turning in response to systemic administration of apomorphine given 60min after. The same response was obtained with the injection of apomorphine 10min after the injection of intracerebral lidocaine. This effect was no longer apparent 24h after the microinjection of haloperidol and 60min after the injection of lidocaine. In rats rendered hemiparkinsionian by lesioning the nigrostriatal pathway with 6OHDA, intrastriatal microinjection of flunarizine (50nmol/microl) significantly reduced apomorphine (0.2mg/kg, s.c.)-elicited turning behavior towards the non-lesioned side. These results suggest an antidopaminergic effect of flunarizine mediated by antagonistic action of post-synaptic striatal dopamine receptors. However, an action of the drug on sodium channels may not be ruled out. These studies offer additional supporting evidence for the induction or aggravation of extrapyramidal side

  3. Changes in Dopamine Transmission in the Nucleus Accumbens Shell and Core during Ethanol and Sucrose Self-Administration.

    PubMed

    Bassareo, Valentina; Cucca, Flavia; Frau, Roberto; Di Chiara, Gaetano

    2017-01-01

    Ethanol, like other substances of abuse, preferentially increases dopamine (DA) transmission in the rat nucleus accumbens (NAc) following passive administration. It remains unclear, however, whether ethanol also increases NAc DA transmission following operant oral self-administration (SA). The NAc is made-up of a ventro-medial compartment, the shell and a dorso-lateral one, the core, where DA transmission responds differentially following exposure to drugs of abuse. Previous studies from our laboratory investigated changes in dialysate DA in the NAc shell and core of rats responding for sucrose pellets and for drugs of abuse. As a follow up to these studies, we recently investigated the changes in NAc shell and core DA transmission associated to oral SA of a 10% ethanol solution. For the purpose of comparison with literature studies utilizing sucrose + ethanol solutions, we also investigated the changes in dialysate DA associated to SA of 20% sucrose and 10% ethanol + 20% sucrose solutions. Rats were trained to acquire oral SA of the solutions under a Fixed Ratio 1 (FR1) schedule of nose-poking. After training, rats were monitored by microdialysis on three consecutive days under response contingent (active), reward omission (extinction trial) and response non-contingent (passive) presentation of ethanol, sucrose or ethanol + sucrose solutions. Active and passive ethanol administration produced a similar increase in dialysate DA in the two NAc subdivisions, while under extinction trial DA increased preferentially in the shell compared to the core. Conversely, under sucrose SA and extinction DA increased exclusively in the shell. These observations provide unequivocal evidence that oral SA of 10% ethanol increases dialysate DA in the NAc, and also suggest that stimuli conditioned to ethanol exposure contribute to the increase of dialysate DA observed in the NAc following ethanol SA. Comparison between the pattern of DA changes detected in the NAc subdivisions under

  4. Changes in Dopamine Transmission in the Nucleus Accumbens Shell and Core during Ethanol and Sucrose Self-Administration

    PubMed Central

    Bassareo, Valentina; Cucca, Flavia; Frau, Roberto; Di Chiara, Gaetano

    2017-01-01

    Ethanol, like other substances of abuse, preferentially increases dopamine (DA) transmission in the rat nucleus accumbens (NAc) following passive administration. It remains unclear, however, whether ethanol also increases NAc DA transmission following operant oral self-administration (SA). The NAc is made-up of a ventro-medial compartment, the shell and a dorso-lateral one, the core, where DA transmission responds differentially following exposure to drugs of abuse. Previous studies from our laboratory investigated changes in dialysate DA in the NAc shell and core of rats responding for sucrose pellets and for drugs of abuse. As a follow up to these studies, we recently investigated the changes in NAc shell and core DA transmission associated to oral SA of a 10% ethanol solution. For the purpose of comparison with literature studies utilizing sucrose + ethanol solutions, we also investigated the changes in dialysate DA associated to SA of 20% sucrose and 10% ethanol + 20% sucrose solutions. Rats were trained to acquire oral SA of the solutions under a Fixed Ratio 1 (FR1) schedule of nose-poking. After training, rats were monitored by microdialysis on three consecutive days under response contingent (active), reward omission (extinction trial) and response non-contingent (passive) presentation of ethanol, sucrose or ethanol + sucrose solutions. Active and passive ethanol administration produced a similar increase in dialysate DA in the two NAc subdivisions, while under extinction trial DA increased preferentially in the shell compared to the core. Conversely, under sucrose SA and extinction DA increased exclusively in the shell. These observations provide unequivocal evidence that oral SA of 10% ethanol increases dialysate DA in the NAc, and also suggest that stimuli conditioned to ethanol exposure contribute to the increase of dialysate DA observed in the NAc following ethanol SA. Comparison between the pattern of DA changes detected in the NAc subdivisions under

  5. Impact of varying transmission bandwidth on image quality.

    PubMed

    Broderick, T J; Harnett, B M; Merriam, N R; Kapoor, V; Doarn, C R; Merrell, R C

    2001-01-01

    The objective of this paper is to determine the effect of varying transmission bandwidth on image quality in laparoscopic surgery. Surgeons located in remote operating rooms connected through a telemedicine link must be able to transmit medical images for interaction. Image clarity and color fidelity are of critical importance in telementoring laparoscopic procedures. The clarity of laparoscopic images was measured by assessing visual acuity using a video image of a Snellen eye chart obtained with standard diameter laparoscopes (2, 5, and 10 mm). The clarity of the local image was then compared to that of remote images transmitted using various bandwidths and connection protocols [33.6 Kbps POTS (IP), 128 Kbps ISDN, 384 Kbps ISDN, 10 Mbps LAN (IP)]. The laparoscopes were subsequently used to view standard color placards. These color images were sent via similar transmission bandwidths and connection protocols. The local and remote images of the color placards were compared to determine the effect of the transmission protocols on color fidelity. Use of laparoscopes of different diameter does not significantly affect image clarity or color fidelity as long as the laparoscopes are positioned at their optimal working distance. Decreasing transmission bandwidth does not significantly affect image clarity or color fidelity when sufficient time is allowed for the algorithms to redraw the remote image. Remote telementoring of laparoscopic procedures is feasible. However, low bandwidth connections require slow and/or temporarily stopped camera movements for the quality of the remote video image to approximate that of the local video image.

  6. Dopamine D4 receptors regulate AMPA receptor trafficking and glutamatergic transmission in GABAergic interneurons of prefrontal cortex.

    PubMed

    Yuen, Eunice Y; Yan, Zhen

    2009-01-14

    GABAergic interneurons in prefrontal cortex (PFC) play a critical role in cortical circuits by providing feedforward and feedback inhibition and synchronizing neuronal activity. Impairments in GABAergic inhibition to PFC pyramidal neurons have been implicated in the abnormal neural synchrony and working memory disturbances in schizophrenia. The dopamine D(4) receptor, which is strongly linked to neuropsychiatric disorders, such as attention deficit-hyperactivity disorder (ADHD) and schizophrenia, is highly expressed in PFC GABAergic interneurons, while the physiological role of D(4) in these interneurons is largely unknown. In this study, we found that D(4) activation caused a persistent suppression of AMPAR-mediated synaptic transmission in PFC interneurons. This effect of D(4) receptors on AMPAR-EPSC was via a mechanism dependent on actin/myosin V motor-based transport of AMPA receptors, which was regulated by cofilin, a major actin depolymerizing factor. Moreover, we demonstrated that the major cofilin-specific phosphatase Slingshot, which was activated by calcineurin downstream of D(4) signaling, was required for the D(4) regulation of glutamatergic transmission. Thus, D(4) receptors, by using the unique calcineurin/Slingshot/cofilin signaling mechanism, regulate actin dynamics and AMPAR trafficking in PFC GABAergic interneurons. It provides a potential mechanism for D(4) receptors to control the excitatory synaptic strength in local-circuit neurons and GABAergic inhibition in the PFC network, which may underlie the role of D(4) receptors in normal cognitive processes and mental disorders.

  7. Striatal Dopamine Mediates the Interface between Motivational and Cognitive Control in Humans: Evidence from Genetic Imaging

    PubMed Central

    Aarts, Esther; Roelofs, Ardi; Franke, Barbara; Rijpkema, Mark; Fernández, Guillén; Helmich, Rick C; Cools, Roshan

    2010-01-01

    Dopamine has been hypothesized to provide the basis for the interaction between motivational and cognitive control. However, there is no evidence for this hypothesis in humans. We fill this gap by using fMRI, a novel behavioral paradigm and a common polymorphism in the DAT1 gene (SLC6A3). Carriers of the 9-repeat (9R) allele of a 40 base pair repeat polymorphism in the 3′ untranslated region of DAT1, associated with high striatal dopamine, showed greater activity in the ventromedial striatum during reward anticipation than homozygotes for the 10-repeat allele, replicating previous genetic imaging studies. The crucial novel finding is that 9R carriers also exhibited a greater influence of anticipated reward on switch costs, as well as greater activity in the dorsomedial striatum during task switching in anticipation of high reward relative to low reward. These data establish a crucial role for human striatal dopamine in the modulation of cognitive flexibility by reward anticipation, thus, elucidating the neurochemical mechanism of the interaction between motivation and cognitive control. PMID:20463658

  8. Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging.

    PubMed

    Aarts, Esther; Roelofs, Ardi; Franke, Barbara; Rijpkema, Mark; Fernández, Guillén; Helmich, Rick C; Cools, Roshan

    2010-08-01

    Dopamine has been hypothesized to provide the basis for the interaction between motivational and cognitive control. However, there is no evidence for this hypothesis in humans. We fill this gap by using fMRI, a novel behavioral paradigm and a common polymorphism in the DAT1 gene (SLC6A3). Carriers of the 9-repeat (9R) allele of a 40 base pair repeat polymorphism in the 3' untranslated region of DAT1, associated with high striatal dopamine, showed greater activity in the ventromedial striatum during reward anticipation than homozygotes for the 10-repeat allele, replicating previous genetic imaging studies. The crucial novel finding is that 9R carriers also exhibited a greater influence of anticipated reward on switch costs, as well as greater activity in the dorsomedial striatum during task switching in anticipation of high reward relative to low reward. These data establish a crucial role for human striatal dopamine in the modulation of cognitive flexibility by reward anticipation, thus, elucidating the neurochemical mechanism of the interaction between motivation and cognitive control.

  9. Image Transmission via Spread Spectrum Techniques

    DTIC Science & Technology

    1978-01-01

    Images From Remote Piloted Vehicles, Coding Techniques For RPV and SAR Images, Image Coding Techniques, Stochastic Image Models and Hybrid Coding...FAST COSINE TRANSFORM. . . 125 APPENDIX E: STUDY OF HUMAN FACTORS INVOLVED WITH VIEWING COMPRESSED IMAGES FROM REMOTE PILOTED VEHICLES...Program was accomplished in 1977. A complete flyable system was produced by RCA and delivered to Harris Corp for integration into an AQUILA remotely

  10. Transmission electron microscopy: Imaging of materials

    SciTech Connect

    Thomas, G.

    1988-10-01

    This report was an invited paper for a symposium and only covers general aspects of transmission electron microscopy. A history, and examples of work done on ceramics and alloys are covered. 6 refs., 44 figs. (JL)

  11. Parallel decrease in ω-conotoxin-sensitive transmission and dopamine-induced inhibition at the striatal synapse of developing rats

    PubMed Central

    Momiyama, Toshihiko

    2003-01-01

    Whole-cell patch-clamp recordings of GABAergic IPSCs were made from cholinergic interneurones in slices of striatum from developing rats aged 21–60 days postnatal. In addition, the Ca2+ channel subtypes involved in synaptic transmission, as well as dopamine (DA)-induced presynaptic inhibition, were investigated pharmacologically with development by bath application of Ca2+ channel blockers and DA receptor agonists. The IPSC amplitude was reduced by ω-conotoxin GVIA (ω-CgTX) or ω-agatoxin TK (ω-Aga-TK) across the whole age range, suggesting that multiple types of Ca2+ channels mediate transmission of the synapse. The IPSC fraction reduced by ω-CgTX significantly decreased, whereas that reduced by ω-Aga-TK remained unchanged with development. DA or quinpirole, a D2-like receptor agonist, presynaptically reduced the IPSC amplitude throughout development. The DA-induced inhibition decreased with age in parallel with the decrease in N-type Ca2+ channels. DA showed no further inhibition of IPSCs after the inhibitory effect of ω-CgTX had reached steady state throughout development. These results demonstrate that there is a functional link between presynaptic N-type Ca2+ channels and D2-like DA receptors at inhibitory synapses in the striatum. They also demonstrate that the suppression of GABAergic transmission by D2-like receptors is mediated by modulation of N-type Ca2+ channels and decreases in parallel with the developmental decline in the contribution of N-type Ca2+ channels to exocytosis. PMID:12527734

  12. Frequency-Dependent Gating of Synaptic Transmission and Plasticity by Dopamine

    PubMed Central

    Ito, Hiroshi T.; Schuman, Erin M.

    2007-01-01

    The neurotransmitter dopamine (DA) plays an important role in learning by enhancing the saliency of behaviorally relevant stimuli. How this stimulus selection is achieved on the cellular level, however, is not known. Here, in recordings from hippocampal slices, we show that DA acts specifically at the direct cortical input to hippocampal area CA1 (the temporoammonic (TA) pathway) to filter the excitatory drive onto pyramidal neurons based on the input frequency. During low-frequency patterns of stimulation, DA depressed excitatory TA inputs to both CA1 pyramidal neurons and local inhibitory GABAergic interneurons via presynaptic inhibition. In contrast, during high-frequency patterns of stimulation, DA potently facilitated the TA excitatory drive onto CA1 pyramidal neurons, owing to diminished feedforward inhibition. Analysis of DA's effects over a broad range of stimulus frequencies indicates that it acts as a high-pass filter, augmenting the response to high-frequency inputs while diminishing the impact of low-frequency inputs. These modulatory effects of DA exert a profound influence on activity-dependent forms of synaptic plasticity at both TA-CA1 and Schaffer-collateral (SC)-CA1 synapses. Taken together, our data demonstrate that DA acts as a gate on the direct cortical input to the hippocampus, modulating information flow and synaptic plasticity in a frequency-dependent manner. PMID:18946543

  13. Dopamine D1 Receptor-Mediated Transmission Maintains Information Flow Through the Cortico-Striato-Entopeduncular Direct Pathway to Release Movements.

    PubMed

    Chiken, Satomi; Sato, Asako; Ohta, Chikara; Kurokawa, Makoto; Arai, Satoshi; Maeshima, Jun; Sunayama-Morita, Tomoko; Sasaoka, Toshikuni; Nambu, Atsushi

    2015-12-01

    In the basal ganglia (BG), dopamine plays a pivotal role in motor control, and dopamine deficiency results in severe motor dysfunctions as seen in Parkinson's disease. According to the well-accepted model of the BG, dopamine activates striatal direct pathway neurons that directly project to the output nuclei of the BG through D1 receptors (D1Rs), whereas dopamine inhibits striatal indirect pathway neurons that project to the external pallidum (GPe) through D2 receptors. To clarify the exact role of dopaminergic transmission via D1Rs in vivo, we developed novel D1R knockdown mice in which D1Rs can be conditionally and reversibly regulated. Suppression of D1R expression by doxycycline treatment decreased spontaneous motor activity and impaired motor ability in the mice. Neuronal activity in the entopeduncular nucleus (EPN), one of the output nuclei of the rodent BG, was recorded in awake conditions to examine the mechanism of motor deficits. Cortically evoked inhibition in the EPN mediated by the cortico-striato-EPN direct pathway was mostly lost during suppression of D1R expression, whereas spontaneous firing rates and patterns remained unchanged. On the other hand, GPe activity changed little. These results suggest that D1R-mediated dopaminergic transmission maintains the information flow through the direct pathway to appropriately release motor actions.

  14. Image Resolution in Scanning Transmission Electron Microscopy

    SciTech Connect

    Pennycook, S. J.; Lupini, A.R.

    2008-06-26

    Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

  15. The problem of applying information theory to efficient image transmission.

    NASA Technical Reports Server (NTRS)

    Sakrison, D. J.

    1973-01-01

    The main ideas of Shannon's (1948, 1960) theory of source encoding with a fidelity constraint, more commonly known as rate distortion theory, are summarized. The theory was specifically intended to provide a theoretical basis for efficient transmission of information such as images. What the theory has to contribute to the problem is demonstrated. Difficulties that impeded application of the theory to image transmission, and current efforts to solve these difficulties are discussed.

  16. Flow imaging by high speed transmission tomography.

    PubMed

    Johansen, Geir Anton; Hampel, Uwe; Hjertaker, Bjørn Tore

    2010-01-01

    Fourth generation medical X-ray scanners using a gantry with a rotating X-ray source and a fixed circular detector array as sensor head, are too slow for imaging of the process dynamics for instance in multiphase flows. To avoid inconsistent measurements and motion blurring, all measurements need to be carried out in a short time compared to the time constants of the process dynamics. Two different high speed tomographic imaging systems are presented here demonstrating that image rates of several thousand images per second is possible. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Design of UAV high resolution image transmission system

    NASA Astrophysics Data System (ADS)

    Gao, Qiang; Ji, Ming; Pang, Lan; Jiang, Wen-tao; Fan, Pengcheng; Zhang, Xingcheng

    2017-02-01

    In order to solve the problem of the bandwidth limitation of the image transmission system on UAV, a scheme with image compression technology for mini UAV is proposed, based on the requirements of High-definition image transmission system of UAV. The video codec standard H.264 coding module and key technology was analyzed and studied for UAV area video communication. Based on the research of high-resolution image encoding and decoding technique and wireless transmit method, The high-resolution image transmission system was designed on architecture of Android and video codec chip; the constructed system was confirmed by experimentation in laboratory, the bit-rate could be controlled easily, QoS is stable, the low latency could meets most applied requirement not only for military use but also for industrial applications.

  18. Electrical stimulation of reward sites in the ventral tegmental area increases dopamine transmission in the nucleus accumbens of the rat.

    PubMed

    Fiorino, D F; Coury, A; Fibiger, H C; Phillips, A G

    1993-06-30

    In vivo microdialysis with HPLC-ED was used to measure dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in the nucleus accumbens of the rat, prior, during, and after 15-min periods of electrical brain stimulation at sites in the ventral tegmental area (VTA) that supported intracranial self-stimulation (ICSS). In the first experiment, both ICSS and yoked stimulation of the VTA evoked significant increases in extracellular concentrations of DA, its metabolites, and 5-HIAA. Comparable results from ICSS and yoked groups were interpreted as evidence that the rewarding properties of VTA stimulation were a causal factor in the elevated DA transmission in the nucleus accumbens, rather than intense operant behavior. Further evidence for this hypothesis came from a second set of data in which changes in extracellular DA levels during the measurement of rate/intensity functions for ICSS were positively correlated. 5-HIAA concentrations also increased during ICSS but these changes were not correlated with either ICSS rate or current intensity, suggesting that changes in serotonin metabolism were unlikely to subserve brain stimulation reward in the VTA. These results add to the growing body of evidence linking changes in extracellular DA in the mesolimbic DA system with both brain stimulation reward and the conditioned and unconditioned rewarding effects of biologically relevant stimuli.

  19. The Subthalamic Nucleus becomes a Generator of Bursts in the Dopamine-Depleted State. Its High Frequency Stimulation Dramatically Weakens Transmission to the Globus Pallidus

    PubMed Central

    Ammari, Rachida; Bioulac, Bernard; Garcia, Liliana; Hammond, Constance

    2011-01-01

    Excessive burst firing in the dopamine-depleted basal ganglia correlates with severe motor symptoms of Parkinson's disease that are attenuated by high frequency electrical stimulation of the subthalamic nucleus (STN). Here we test the hypothesis that pathological bursts in dopamine-deprived basal ganglia are generated within the STN and transmitted to globus pallidus neurons. To answer this question we recorded excitatory synaptic currents and potentials from subthalamic and pallidal neurons in the basal ganglia slice (BGS) from dopamine-depleted mice while continuously blocking GABAA receptors. In control mice, a single electrical stimulus delivered to the internal capsule or the rostral pole of the STN evoked a short duration, small amplitude, monosynaptic EPSC in subthalamic neurons. In contrast, in the dopamine-depleted BGS, this monosynaptic EPSC was amplified and followed by a burst of polysynaptic EPSCs that eventually reverberated three to seven times, providing a long lasting response that gave rise to bursts of EPSCs and spikes in GP neurons. Repetitive (10–120 Hz) stimulation delivered to the STN in the dopamine-depleted BGS attenuated STN-evoked bursts of EPSCs in pallidal neurons after several minutes of stimulation but only high frequency (90–120 Hz) stimulation replaced them with small amplitude EPSCs at 20 Hz. We propose that the polysynaptic pathway within the STN amplifies subthalamic responses to incoming excitation in the dopamine-depleted basal ganglia, thereby transforming the STN into a burst generator and entraining pallidal neurons in pathogenic bursting activities. High frequency stimulation of the STN prevents the transmission of this pathological activity to globus pallidus and imposes a new glutamatergic synaptic noise on pallidal neurons. PMID:21716635

  20. Nonhuman Primate Models of Addiction and PET Imaging: Dopamine System Dysregulation

    PubMed Central

    Gould, Robert W.; Porrino, Linda J.; Nader, Michael A.

    2013-01-01

    This chapter highlights the use of nonhuman primate models of cocaine addiction and the use of positron emission tomography (PET) imaging to study the role of individual differences in vulnerability and how environmental and pharmacological variables can impact cocaine abuse. The chapter will describe studies related to the dopamine (DA) neurotransmitter system, and focus primarily on the D2-like DA receptor, the DA transporter and the use of fluorodeoxyglucose to better understand the neuropharmacology of cocaine abuse. The use of nonhuman primates allows for within-subject, longitudinal studies that have provided insight into the human condition and serve as an ideal model of translational research. The combination of nonhuman primate behavior, pharmacology and state-of-the-art brain imaging using PET will provide the foundation for future studies aimed at developing behavioral and pharmacological treatments for drug addiction in humans. PMID:22020537

  1. How Imaging Glutamate, GABA, and Dopamine Can Inform the Clinical Treatment of Alcohol Dependence and Withdrawal

    PubMed Central

    Hillmer, Ansel T.; Mason, Graeme F.; Fucito, Lisa M.; O’Malley, Stephanie S.; Cosgrove, Kelly P.

    2015-01-01

    Neuroimaging studies have dramatically advanced our understanding of the neurochemical basis of alcohol dependence, a major public health issue. In this paper we review the research generated from neurochemical-specific imaging modalities including magnetic resonance spectrometry (MRS), positron emission tomography (PET), and single photon emission computed tomography (SPECT) in studies of alcohol dependence and withdrawal. We focus on studies interrogating γ-aminobutryic acid (GABA), glutamate, and dopamine, as these are prominent neurotransmitter systems implicated in alcohol dependence. Highlighted findings include diminished dopaminergic functioning and modulation of the GABA system by tobacco smoking during alcohol withdrawal. Then, we consider how these findings impact the clinical treatment of alcohol dependence and discuss directions for future experiments to address existing gaps in the literature, e.g., sex differences and smoking comorbidity. These and other considerations provide opportunities to build upon the current neurochemistry imaging literature of alcohol dependence and withdrawal, which may usher in improved therapeutic and relapse prevention strategies. PMID:26510169

  2. Nonhuman primate models of addiction and PET imaging: dopamine system dysregulation.

    PubMed

    Gould, Robert W; Porrino, Linda J; Nader, Michael A

    2012-01-01

    This chapter highlights the use of nonhuman primate models of cocaine addiction and the use of positron emission tomography (PET) imaging to study the role of individual differences in vulnerability and how environmental and pharmacological variables can impact cocaine abuse. The chapter will describe studies related to the dopamine (DA) neurotransmitter system, and focus primarily on the D2-like DA receptor, the DA transporter and the use of fluorodeoxyglucose to better understand the neuropharmacology of cocaine abuse. The use of nonhuman primates allows for within-subject, longitudinal studies that have provided insight into the human condition and serve as an ideal model of translational research. The combination of nonhuman primate behavior, pharmacology and state-of-the-art brain imaging using PET will provide the foundation for future studies aimed at developing behavioral and pharmacological treatments for drug addiction in humans.

  3. [Preliminary study of radiological image transmission with B-ISDN].

    PubMed

    Sugita, R; Haga, K; Hama, H; Yamada, T; Saito, H; Ishibashi, C; Takahashi, S; Sakamoto, K

    1996-03-01

    We evaluated the utility of image transmission using broad band ISDN (B-ISDN). The B-ISDN network links Tohoku University Hospital (TUH), interfaced with CDDI, and Tohoku University Department of Technology, interfaced with FDDI (including Tohoku University Computer Center interfaced with Ethernet), at 10km distance interfaced to a Unix workstation. Voluminous radiographic images like MRI 3-D images of the pelvic organs digitized at 5-20 megabytes were transmitted at mean data rates of 1.03Mbps (CDDI-Ethernet) and 30.1Mbps (FDDI-CDDI) with no image distortion. Initially the image data are transmitted to the Computer Center & Department of Technology, then processed and relayed to TUH. B-ISDN can provide fast, accurate image transmission.

  4. Edge Detection and Shape Recognition in Neutron Transmission Images

    SciTech Connect

    Sword, Eric D; McConchie, Seth M

    2012-01-01

    Neutron transmission measurements are a valuable tool for nondestructively imaging special nuclear materials. Analysis of these images, however, tends to require significant user interaction to determine the sizes, shapes, and likely compositions of measured objects. Computer vision (CV) techniques can be a useful approach to automatically extracting important information from either neutron transmission images or fission-site-mapping images. An automatable approach has been developed that processes an input image and, through recursive application of CV techniques, produces a set of basic shapes that define surfaces observed in the image. These shapes can then be compared to a library of known shape configurations to determine if the measured object matches its expected configuration, as could be done behind an information barrier for arms control treaty verification inspections.

  5. ENHANCEMENT OF CELL BOUNDARIES IN TRANSMISSION ELECTRON MICROSCOPY IMAGES

    PubMed Central

    Tasdizen, Tolga; Whitaker, Ross; Marc, Robert; Jones, Bryan

    2009-01-01

    Transmission electron microscopy (TEM) is an important modality for the analysis of cellular structures in neurobiology. The computational analysis of neurons entail their segmentation and reconstruction from TEM images. This problem is complicated by the heavily textured nature of cellular TEM images and typically low signal-to-noise ratios. In this paper, we propose a new partial differential equation for enhancing the contrast and continuity of cell membranes in TEM images. PMID:19169423

  6. [Effects of transmission counts on image quality during simultaneous emission/transmission scan].

    PubMed

    Inoue, Kazumasa; Oda, Keiichi; Fukushi, Masahiro

    2006-06-20

    We compared the pre-injection transmission scan with the simultaneous emission/transmission scan (SET) using a body phantom in positron emission tomography (PET) to study the factors affecting emission (EMIS) images with different transmission (TRAN) data. The results showed that total count, region, scan method, and EMIS component influenced the bias and noise statistics. This influence was further passed on to the EMIS data and affected the reconstructed image. However, the result of fixing EMIS scan time at 10 minutes was that the noise statistics of EMIS had a greater effect on image quality than TRAN. The optimal scan counts of SET in this study were 20 Mcounts, with a scan time of about 10 minutes (85.5 MBq, (68)Ge-(68)Ga radioactivity). In clinical use, optimal collection count differs, as radiation TRAN quantity depends on the size of the subject, even with fixed radioactivity of (68)Ge-(68)Ga.

  7. Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex

    PubMed Central

    Glovaci, Iulia; Chapman, C. Andrew

    2015-01-01

    The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI)-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3) receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36) completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is likely dependent

  8. Refining diagnosis of Parkinson's disease with deep learning-based interpretation of dopamine transporter imaging.

    PubMed

    Choi, Hongyoon; Ha, Seunggyun; Im, Hyung Jun; Paek, Sun Ha; Lee, Dong Soo

    2017-01-01

    Dopaminergic degeneration is a pathologic hallmark of Parkinson's disease (PD), which can be assessed by dopamine transporter imaging such as FP-CIT SPECT. Until now, imaging has been routinely interpreted by human though it can show interobserver variability and result in inconsistent diagnosis. In this study, we developed a deep learning-based FP-CIT SPECT interpretation system to refine the imaging diagnosis of Parkinson's disease. This system trained by SPECT images of PD patients and normal controls shows high classification accuracy comparable with the experts' evaluation referring quantification results. Its high accuracy was validated in an independent cohort composed of patients with PD and nonparkinsonian tremor. In addition, we showed that some patients clinically diagnosed as PD who have scans without evidence of dopaminergic deficit (SWEDD), an atypical subgroup of PD, could be reclassified by our automated system. Our results suggested that the deep learning-based model could accurately interpret FP-CIT SPECT and overcome variability of human evaluation. It could help imaging diagnosis of patients with uncertain Parkinsonism and provide objective patient group classification, particularly for SWEDD, in further clinical studies.

  9. Optical and Image Transmission through Desert Atmospheres

    DTIC Science & Technology

    1994-01-25

    McDonald, Principal Investigator and Professor of Electrical Engineering Graduate Students: Carlos Becera" Jesus Carbajal Gonzalo Romero * Carmen ...C McDonald, G. Romero , C. Ortiz, J. Carbajal. "Measurement of the aerosol component of the modulation transfer function in the desert atmospheres... Romero * Completed B.S.E.E. Completed M.S.E.E. 41 BIBLIOGRAPHY 1. N. S. Kopika, "Overview of imaging through the atmo- sphere," In proceedings of SPIE

  10. Peer-to-peer transmission of remote sensing image data using image subset block

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Hou, Zhitong; Du, Zhenhong; Liu, Renyi; Yan, Yiming

    2015-09-01

    The unprecedented amount and multiple applications of remote sensing image data have created a strong need for efficient data transmission. Commonly used in the transmission of various types of data, peer-to-peer (P2P) opens up new possibilities for the transmission of remote sensing image data. A considerable amount of work has been done toward the transmission of remote sensing data by using map tiles for fast online browsing. However, issues concerning the transmission of original image data require more volume and flexibility, which is indispensable in the application of remote sensing images. According to the spatial and band characteristics of remote sensing images, an approach using image subset blocks (ISBs) is proposed for P2P transmission of remote sensing image data. The method improves efficiency in two ways: transmitting ISBs on demand to reduce unnecessary transmission and using a P2P method to break the bandwidth bottleneck of the central server. The results of the performance evaluation reveal that compared with the traditional transmission method that uses the central server, the proposed method considerably enhances the efficiency to approach the level of general P2P file transmission.

  11. Investigation on 2.45-THz array transmission imaging

    NASA Astrophysics Data System (ADS)

    Yao, Rui; Li, Qi; Ding, Shenghui; Wang, Qi

    2009-07-01

    THz transmission imaging is considered as a promising detection measure and imaging method with wide application prospect in security inspection and counter-terrorism. And high-speed array imaging is a very important direction. In this paper, 2.45-THz transmission imaging experiments are made by applying a 124×124 array detector. The 2.45-THz CW CO2-pumped laser is used as illumination source and its output power is about 17mW. Some undersize articles (gasket, screw and nut) are chosen as objects. THz imaging experiments are respectively demonstrated through 1-2 pieces of paper and two kinds of envelopes to show the imaging effect. The original data is acquired and some image processing methods (5-frame average, median filtering, etc) are used to improve the image effect. Finally the THz images obtained are basically clear. The experimental results show that utilizing the setup designed for 2.45-THz imaging, the images are fast generated and objects' contours are clear through paper and envelop.

  12. Preparation of Silicon-Carbon-Based Dots@Dopamine and Its Application in Intracellular Ag(+) Detection and Cell Imaging.

    PubMed

    Jiang, Yuliang; Wang, Zhaoyin; Dai, Zhihui

    2016-02-17

    A novel nanocomposite, silicon-carbon-based dots@dopamine (Si-CDs@DA) was prepared using (3-aminopropyl) triethoxysilane, glycerol, and dopamine as raw materials via a rapid microwave-assisted irradiation. This type of Si-CDs@DA exhibited ultrabright fluorescence emission (quantum yield of 12.4%) and could response to Ag(+) selectively and sensitively. Moreover, the obtained Si-CDs@DA can be further applied in sensing intracellular Ag(+) and cell imaging, because of its photostability, salt stability, and low cytotoxicity. This study provides a simple and efficient approach for preparing novel Ag(+) fluorescent probes, which could expand the application of carbon nanomaterials in designing related biosensors.

  13. Persistent Drug-Induced Parkinsonism in Patients with Normal Dopamine Transporter Imaging

    PubMed Central

    Sunwoo, Mun Kyung; Oh, Jungsu S.; Kim, Jae Seung; Sohn, Young H.; Lee, Phil Hyu

    2016-01-01

    Functional neuroimaging for the dopamine transporter (DAT) is used to distinguish drug-induced parkinsonism (DIP) from subclinical Parkinson’s disease (PD). Although DIP patients who show a normal DAT image are expected to recover completely, some do not. We investigated whether these patients showed changes in striatal DAT activity using semi-quantitative analysis of 18F-FP-CIT PET data. DIP patients with visually normal DAT images were selected from medical records. The subjects were classified as patients who recovered partially (PR) or completely within 12 months (CR). The 18F-FP-CIT uptake in each striatal subregion was compared between the CR and the PR groups. In total, 41 and 9 patients of the CR and PR groups were assessed, respectively. The two patient groups were comparable in terms of clinical characteristics including age, sex, and severity of parkinsonism. From semi-quantitative analysis of the PET image, the PR patients showed a relatively lower ligand uptake in the ventral striatum, the anterior putamen and the posterior putamen compared with the CR patients. This result suggests that persistent DIP in patients with visually normal DAT imaging may be associated with subtle decrement of DAT activity. PMID:27294367

  14. Conjugated Polymer Nanoparticles for Fluorescence Imaging and Sensing of Neurotransmitter Dopamine in Living Cells and the Brains of Zebrafish Larvae.

    PubMed

    Qian, Cheng-Gen; Zhu, Sha; Feng, Pei-Jian; Chen, Yu-Lei; Yu, Ji-Cheng; Tang, Xin; Liu, Yun; Shen, Qun-Dong

    2015-08-26

    Nanoscale materials are now attracting a great deal of attention for biomedical applications. Conjugated polymer nanoparticles have remarkable photophysical properties that make them highly advantageous for biological fluorescence imaging. We report on conjugated polymer nanoparticles with phenylboronic acid tags on the surface for fluorescence detection of neurotransmitter dopamine in both living PC12 cells and brain of zebrafish larvae. The selective enrichment of dopamine and fluorescence signal amplification characteristics of the nanoparticles show rapid and high-sensitive probing such neurotransmitter with the detection limit of 38.8 nM, and minimum interference from other endogenous molecules. It demonstrates the potential of nanomaterials as a multifunctional nanoplatform for targeting, diagnosis, and therapy of dopamine-relative disease.

  15. Objective breast tissue image classification using Quantitative Transmission ultrasound tomography

    PubMed Central

    Malik, Bilal; Klock, John; Wiskin, James; Lenox, Mark

    2016-01-01

    Quantitative Transmission Ultrasound (QT) is a powerful and emerging imaging paradigm which has the potential to perform true three-dimensional image reconstruction of biological tissue. Breast imaging is an important application of QT and allows non-invasive, non-ionizing imaging of whole breasts in vivo. Here, we report the first demonstration of breast tissue image classification in QT imaging. We systematically assess the ability of the QT images’ features to differentiate between normal breast tissue types. The three QT features were used in Support Vector Machines (SVM) classifiers, and classification of breast tissue as either skin, fat, glands, ducts or connective tissue was demonstrated with an overall accuracy of greater than 90%. Finally, the classifier was validated on whole breast image volumes to provide a color-coded breast tissue volume. This study serves as a first step towards a computer-aided detection/diagnosis platform for QT. PMID:27934955

  16. Objective breast tissue image classification using Quantitative Transmission ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Malik, Bilal; Klock, John; Wiskin, James; Lenox, Mark

    2016-12-01

    Quantitative Transmission Ultrasound (QT) is a powerful and emerging imaging paradigm which has the potential to perform true three-dimensional image reconstruction of biological tissue. Breast imaging is an important application of QT and allows non-invasive, non-ionizing imaging of whole breasts in vivo. Here, we report the first demonstration of breast tissue image classification in QT imaging. We systematically assess the ability of the QT images’ features to differentiate between normal breast tissue types. The three QT features were used in Support Vector Machines (SVM) classifiers, and classification of breast tissue as either skin, fat, glands, ducts or connective tissue was demonstrated with an overall accuracy of greater than 90%. Finally, the classifier was validated on whole breast image volumes to provide a color-coded breast tissue volume. This study serves as a first step towards a computer-aided detection/diagnosis platform for QT.

  17. Nanoscale Imaging Technology for THz Frequency Transmission Microscopy

    DTIC Science & Technology

    2014-12-16

    Nanoscale Imaging Technology for THz Frequency Transmission Microscopy final progress report The views, opinions and/or findings contained in this...Irvine 5171 California Avenue, Suite 150 Irvine, CA 92697 -7600 30-Jun-2014 ABSTRACT Final Report: Nanoscale Imaging Technology for THz Frequency...Francisco, CA. 10. Peter Burke “Nanochannel Trap Arrays for Monitoring Single Mitochondrion Behavior”,NCI-NIBIB Point of Care Technologies for

  18. Image-based spectral transmission estimation using "sensitivity comparison".

    PubMed

    Nahavandi, Alireza Mahmoudi; Tehran, Mohammad Amani

    2017-01-20

    Although digital cameras have been used for spectral reflectance estimation, transmission measurement has rarely been considered in studies. This study presents a method named sensitivity comparison (SC) for spectral transmission estimation. The method needs neither a priori knowledge from the samples nor statistical information of a given reflectance dataset. As with spectrophotometers, the SC method needs one shot for calibration and another shot for measurement. The method exploits the sensitivity of the camera in the absence and presence of transparent colored objects for transmission estimation. 138 Kodak Wratten Gelatin filter transmissions were used for controlling the proposed method. Using modeling of the imaging system in different levels of noise, the performance of the proposed method was compared with a training-based Matrix R method. For checking the performance of the SC method in practice, 33 manmade colored transparent films were used in a conventional three-channel camera. The method generated promising results using different error metrics.

  19. Rate and power efficient image compressed sensing and transmission

    NASA Astrophysics Data System (ADS)

    Olanigan, Saheed; Cao, Lei; Viswanathan, Ramanarayanan

    2016-01-01

    This paper presents a suboptimal quantization and transmission scheme for multiscale block-based compressed sensing images over wireless channels. The proposed method includes two stages: dealing with quantization distortion and transmission errors. First, given the total transmission bit rate, the optimal number of quantization bits is assigned to the sensed measurements in different wavelet sub-bands so that the total quantization distortion is minimized. Second, given the total transmission power, the energy is allocated to different quantization bit layers based on their different error sensitivities. The method of Lagrange multipliers with Karush-Kuhn-Tucker conditions is used to solve both optimization problems, for which the first problem can be solved with relaxation and the second problem can be solved completely. The effectiveness of the scheme is illustrated through simulation results, which have shown up to 10 dB improvement over the method without the rate and power optimization in medium and low signal-to-noise ratio cases.

  20. Real-Time Ellipsometry-Based Transmission Ultrasound Imaging

    SciTech Connect

    Kallman, J S; Poco, J F; Ashby, A E

    2007-02-14

    Ultrasonic imaging is a valuable tool for non-destructive evaluation and medical diagnosis. Reflection mode is exclusively used for medical imaging, and is most frequently used for nondestructive evaluation (NDE) because of the relative speed of acquisition. Reflection mode imaging is qualitative, yielding little information about material properties, and usually only about material interfaces. Transmission imaging can be used in 3D reconstructions to yield quantitative information: sound speed and attenuation. Unfortunately, traditional scanning methods of acquiring transmission data are very slow, requiring on the order of 20 minutes per image. The sensing of acoustic pressure fields as optical images can significantly speed data acquisition. An entire 2D acoustic pressure field can be acquired in under a second. The speed of data acquisition for a 2D view makes it feasible to obtain multiple views of an object. With multiple views, 3D reconstruction becomes possible. A fast, compact (no big magnets or accelerators), inexpensive, 3D imaging technology that uses no ionizing radiation could be a boon to the NDE and medical communities. 2D transmission images could be examined in real time to give the ultrasonic equivalent of a fluoroscope, or accumulated in such a way as to acquire phase and amplitude data over multiple views for 3D reconstruction (for breast cancer imaging, for example). Composite panels produced for the aircraft and automobile industries could be inspected in near real time, and inspection of attenuating materials such as ceramics and high explosives would be possible. There are currently three optical-readout imaging transmission ultrasound technologies available. One is based on frustrated total internal reflection (FTIR) [1,2], one on Fabry-Perot interferometry [3], and another on critical angle modulation [4]. Each of these techniques has its problems. The FTIR based system cannot currently be scaled to large aperture sizes, the Fabry

  1. Surface NMR imaging with simultaneously energized transmission loops

    NASA Astrophysics Data System (ADS)

    Irons, T. P.; Kass, A.; Parsekian, A.

    2016-12-01

    Surface nuclear magnetic resonance (sNMR) is a unique geophysical technique which allows for the direct detection of liquid-phase water. In saturated media the sNMR response also provides estimates of hydrologic properties including porosity and permeability. The most common survey deployment consists of a single coincident loop performing both transmission and receiving. Because the sNMR method is relatively slow, tomography using coincident loops is time-intensive. Surveys using multiple receiver loops (but a single transmitter) provide additional sensitivity; however, they still require iterating transmission over the loops, and do not decrease survey acquisition time. In medical rotating frame imaging, arrays of transmitters are employed in order to decrease acquisition time, whilst optimizing image resolving power-a concept which we extend to earth's field imaging. Using simultaneously energized transmission loops decreases survey time linearly with the number of channels. To demonstrate the efficacy and benefits of multiple transmission loops, we deployed simultaneous sNMR transmission arrays using minimally coupled loops and a specially modified instrument at the Red Buttes Hydrogeophysics Experiment Site-a well-characterized location near Laramie, Wyoming. The proposed survey proved capable of acquiring multiple-channel imaging data with comparable noise levels to figure-eight configurations. Finally, the channels can be combined after acquisition or inverted simultaneously to provide composite datasets and images. This capability leverages the improved near surface resolving power of small loops but retains sensitivity to deep media through the use of synthetic aperature receivers. As such, simultaneously acquired loop arrays provide a great deal of flexibility.

  2. Challenges in the development of dopamine D2- and D3-selective radiotracers for PET imaging studies.

    PubMed

    Mach, Robert H; Luedtke, Robert R

    2017-08-31

    The dopamine D2-like receptors (ie, D2/3 receptors) have been the most extensively studied CNS receptor with Positron Emission Tomography (PET). The 3 different radiotracers that have been used in these studies are [(11) C]raclopride, [(18) F]fallypride, and [(11) C]PHNO. Because these radiotracers have a high affinity for both dopamine D2 and D3 receptors, the density of dopamine receptors in the CNS is reported as the D2/3 binding potential, which reflects a measure of the density of both receptor subtypes. Although the development of D2- and D3-selective PET radiotracers has been an active area of research for many years, this by and large presents an unmet need in the area of translational PET imaging studies. This article discusses some of the challenges that have inhibited progress in this area of research and the current status of the development of subtype selective radiotracers for imaging D3 and D2 dopamine receptors with PET. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Incident impulse control disorder symptoms and dopamine transporter imaging in Parkinson disease.

    PubMed

    Smith, Kara M; Xie, Sharon X; Weintraub, Daniel

    2016-08-01

    To describe the incidence of, and clinical and neurobiological risk factors for, new-onset impulse control disorder (ICD) symptoms and related behaviours in early Parkinson disease (PD). The Parkinson's Progression Markers Initiative is an international, multicenter, prospective study of de novo patients with PD untreated at baseline and assessed annually, including serial dopamine transporter imaging (DAT-SPECT) and ICD assessment (Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease short form, QUIP). Participants were included if they screened negative on the QUIP at baseline. Kaplan-Meier curves and generalised estimating equations examined frequency and predictors of incident ICD symptoms. Participants were seen at baseline (n=320), year 1 (n=284), year 2 (n=217) and year 3 (n=96). Estimated cumulative incident rates of ICD symptoms and related behaviours were 8% (year 1), 18% (year 2) and 25% (year 3) and increased each year in those on dopamine replacement therapy (DRT) and decreased in those not on DRT. In participants on DRT, risk factors for incident ICD symptoms were younger age (OR=0.97, p=0.05), a greater decrease in right caudate (OR=4.03, p=0.01) and mean striatal (OR=6.90, p=0.04) DAT availability over the first year, and lower right putamen (OR=0.06, p=0.01) and mean total striatal (OR=0.25, p=0.04) DAT availability at any post-baseline visit. The rate of incident ICD symptoms increases with time and initiation of DRT in early PD. In this preliminary study, a greater decrease or lower DAT binding over time increases risk of incident ICD symptoms, conferring additional risk to those taking DRT. NCT01141023. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Foucault imaging by using non-dedicated transmission electron microscope

    SciTech Connect

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-08-27

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  5. Foucault imaging by using non-dedicated transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-08-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  6. Dopamine Transporter Imaging Is Associated With Long-Term Outcomes in Parkinson’s Disease

    PubMed Central

    Ravina, Bernard; Marek, Kenneth; Eberly, Shirley; Oakes, David; Kurlan, Roger; Ascherio, Alberto; Beal, Flint; Beck, James; Flagg, Emily; Galpern, Wendy R.; Harman, Jennifer; Lang, Anthony E.; Schwarzschild, Michael; Tanner, Caroline; Shoulson, Ira

    2017-01-01

    Dopamine (DA) transporter (DAT) imaging has been studied as a diagnostic tool for degenerative parkinsonism. Our aim was to measure the prognostic value of imaging for motor and nonmotor outcomes in Parkinson’s disease (PD). We prospectively evaluated a Parkinson’s cohort after enrollment in a de novo clinical trial with a battery of motor (UPDRS), cognitive (Montreal Cognitive Assessment), and behavioral measures. DAT imaging with [123I][β]-CIT and single-photon emission computerized tomography (SPECT) was performed at baseline and after 22 months. In total, 491 (91%) of the 537 subjects had evidence of DA deficiency on their baseline scan, consistent with PD, and were included in the analyses. The cohort was followed for 5.5 (0.8) years, with a mean duration of diagnosis of 6.3 (1.2). Lower striatal binding at baseline was independently associated with higher risk for clinical milestones and measures of disease severity, including motor-related disability, falling and postural instability, cognitive impairment, psychosis, and clinically important depressive symptoms. Subjects in the bottom quartile for striatal binding, compared to the top quartile, had an odds ratio (95% confidence interval) of 3.3 (1.7, 6.7) for cognitive impairment and 12.9 (2.6, 62.4) for psychosis. Change from baseline in imaging after 22 months was also independently associated with motor, cognitive, and behavioral outcomes. DAT imaging with [123I][β]-CIT and SPECT, shortly after the diagnosis of PD, was independently associated with clinically important long-term motor and nonmotor outcomes. These results should be treated as hypothesis generating and require confirmation. PMID:22976926

  7. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging.

    PubMed

    Lee, Hyuk; Oh, Joo Hwan; Seung, Hong Min; Cho, Seung Hyun; Kim, Yoon Young

    2016-04-04

    Subwavelength imaging by metamaterials and extended work to pursue total transmission has been successfully demonstrated with electromagnetic and acoustic waves very recently. However, no elastic counterpart has been reported because earlier attempts suffer from considerable loss. Here, for the first time, we realize an elastic hyperbolic metamaterial lens and experimentally show total transmission subwavelength imaging with measured wave field inside the metamaterial lens. The main idea is to compensate for the decreased impedance in the perforated elastic metamaterial by utilizing extreme stiffness, which has not been independently actualized in a continuum elastic medium so far. The fabricated elastic lens is capable of directly transferring subwavelength information from the input to the output boundary. In the experiment, this intriguing phenomenon is confirmed by scanning the elastic structures inside the lens with laser scanning vibrometer. The proposed elastic metamaterial lens will bring forth significant guidelines for ultrasonic imaging techniques.

  8. Ensuring quality of service for image transmission: hybrid loss protection.

    PubMed

    Grangetto, Marco; Magli, Enrico; Olmo, Gabriella

    2004-06-01

    We present hybrid loss protection as a new channel coding and packetization scheme for image transmission over nonprioritized lossy packet networks. The scheme employs an interleaver-based structure, and attempts to maximize the expected peak signal-to-noise ratio (PSNR) at the receiver given the constraint that the probability of failure, i.e., the probability that the PSNR of the decoded image is below a given threshold, is upper-bounded by a user-defined value. A new code-allocation algorithm is proposed, which employs Gilbert-Elliot modeling of the network statistics. Experimental results are provided in the case of transmission of images encoded by SPIHT and JPEG 2000 over a wireline, as well as a wireless UMTS-based Internet connection.

  9. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging

    PubMed Central

    Lee, Hyuk; Oh, Joo Hwan; Seung, Hong Min; Cho, Seung Hyun; Kim, Yoon Young

    2016-01-01

    Subwavelength imaging by metamaterials and extended work to pursue total transmission has been successfully demonstrated with electromagnetic and acoustic waves very recently. However, no elastic counterpart has been reported because earlier attempts suffer from considerable loss. Here, for the first time, we realize an elastic hyperbolic metamaterial lens and experimentally show total transmission subwavelength imaging with measured wave field inside the metamaterial lens. The main idea is to compensate for the decreased impedance in the perforated elastic metamaterial by utilizing extreme stiffness, which has not been independently actualized in a continuum elastic medium so far. The fabricated elastic lens is capable of directly transferring subwavelength information from the input to the output boundary. In the experiment, this intriguing phenomenon is confirmed by scanning the elastic structures inside the lens with laser scanning vibrometer. The proposed elastic metamaterial lens will bring forth significant guidelines for ultrasonic imaging techniques. PMID:27040762

  10. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hyuk; Oh, Joo Hwan; Seung, Hong Min; Cho, Seung Hyun; Kim, Yoon Young

    2016-04-01

    Subwavelength imaging by metamaterials and extended work to pursue total transmission has been successfully demonstrated with electromagnetic and acoustic waves very recently. However, no elastic counterpart has been reported because earlier attempts suffer from considerable loss. Here, for the first time, we realize an elastic hyperbolic metamaterial lens and experimentally show total transmission subwavelength imaging with measured wave field inside the metamaterial lens. The main idea is to compensate for the decreased impedance in the perforated elastic metamaterial by utilizing extreme stiffness, which has not been independently actualized in a continuum elastic medium so far. The fabricated elastic lens is capable of directly transferring subwavelength information from the input to the output boundary. In the experiment, this intriguing phenomenon is confirmed by scanning the elastic structures inside the lens with laser scanning vibrometer. The proposed elastic metamaterial lens will bring forth significant guidelines for ultrasonic imaging techniques.

  11. Near-field thermoacoustic imaging with transmission line pulsers.

    PubMed

    Omar, Murad; Kellnberger, Stephan; Sergiadis, George; Razansky, Daniel; Ntziachristos, Vasilis

    2012-07-01

    Near-field radiofrequency thermoacoustic (NRT) tomography has been recently introduced for imaging electromagnetic (EM) properties of tissues using ultrawideband, high-energy impulses, which induce thermoacoustic responses. Operation in the near-field allows for more effective energy coupling into tissue, compared to using radiating sources, which in turn enables the use of shorter excitation pulses and leads to higher image resolution. This work aimed at investigating transmission lines as a method to generate excitation pulses to improve the NRT resolution over previous implementations without compromising the energy coupled into tissue. The authors implemented a number of custom-made transmission lines to overcome the challenges of the broadband nature of the impulse excitation required in NRT. The authors further constructed phantoms and investigated the performance of the lines in regard to the pulse duration, energy coupling and the resulting resolution, and image quality achieved. Finally, the authors employed mice in order to investigate the performance of the approach in tissue imaging. The authors found that the use of transmission lines resulted in the generation of RF impulses in the range of tens of nanoseconds and shorter. This performance resulted to resolution improvements over previous thermoacoustic imaging implementations, reaching 45 μm resolution, while retaining several tens to hundreds of milli-Joules of energy per pulse. This performance further allowed the visualization and clear differentiation of different mouse structures such as the heart, lung, or spinal cord. The use of transmission lines significantly improved the NRT performance leading to high thermoacoustic tomography imaging quality by coupling adequate amounts of energy within short times at a relatively low cost.

  12. Near-field thermoacoustic imaging with transmission line pulsers.

    PubMed

    Omar, Murad; Kellnberger, Stephan; Sergiadis, George; Razansky, Daniel; Ntziachristos, Vasilis

    2012-07-01

    Near-field radiofrequency thermoacoustic (NRT) tomography has been recently introduced for imaging electromagnetic (EM) properties of tissues using ultrawideband, high-energy impulses, which induce thermoacoustic responses. Operation in the near-field allows for more effective energy coupling into tissue, compared to using radiating sources, which in turn enables the use of shorter excitation pulses and leads to higher image resolution. This work aimed at investigating transmission lines as a method to generate excitation pulses to improve the NRT resolution over previous implementations without compromising the energy coupled into tissue. The authors implemented a number of custom-made transmission lines to overcome the challenges of the broadband nature of the impulse excitation required in NRT. The authors further constructed phantoms and investigated the performance of the lines in regard to the pulse duration, energy coupling and the resulting resolution, and image quality achieved. Finally, the authors employed mice in order to investigate the performance of the approach in tissue imaging. The authors found that the use of transmission lines resulted in the generation of RF impulses in the range of tens of nanoseconds and shorter. This performance resulted to resolution improvements over previous thermoacoustic imaging implementations, reaching 45 μm resolution, while retaining several tens to hundreds of milli-Joules of energy per pulse. This performance further allowed the visualization and clear differentiation of different mouse structures such as the heart, lung, or spinal cord. The use of transmission lines significantly improved the NRT performance leading to high thermoacoustic tomography imaging quality by coupling adequate amounts of energy within short times at a relatively low cost. © 2012 American Association of Physicists in Medicine.

  13. Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain.

    PubMed

    Shnitko, Tatiana A; Taylor, Sarah C; Stringfield, Sierra J; Zandy, Shannon L; Cofresí, Roberto U; Doherty, James M; Lynch, William B; Boettiger, Charlotte A; Gonzales, Rueben A; Robinson, Donita L

    2016-06-01

    Dopamine plays a critical role in striatal and cortical function, and depletion of the dopamine precursors phenylalanine and tyrosine is used in humans to temporarily reduce dopamine and probe the role of dopamine in behavior. This method has been shown to alter addiction-related behaviors and cognitive functioning presumably by reducing dopamine transmission, but it is unclear what specific aspects of dopamine transmission are altered. We performed this study to confirm that administration of an amino acid mixture omitting phenylalanine and tyrosine (Phe/Tyr[-]) reduces tyrosine tissue content in the prefrontal cortex (PFC) and nucleus accumbens (NAc), and to test the hypothesis that Phe/Tyr[-] administration reduces phasic dopamine release in the NAc. Rats were injected with a Phe/Tyr[-] amino acid mixture, a control amino acid mixture, or saline. High-performance liquid chromatography was used to determine the concentration of tyrosine, dopamine, or norepinephrine in tissue punches from the PFC and ventral striatum. In a separate group of rats, phasic dopamine release was measured with fast-scan cyclic voltammetry in the NAc core after injection with either the Phe/Tyr[-] mixture or the control amino acid solution. Phe/Tyr[-] reduced tyrosine content in the PFC and NAc, but dopamine and norepinephrine tissue content were not reduced. Moreover, Phe/Tyr[-] decreased the frequency of dopamine transients, but not their amplitude, in freely moving rats. These results indicate that depletion of tyrosine via Phe/Tyr[-] decreases phasic dopamine transmission, providing insight into the mechanism by which this method modifies dopamine-dependent behaviors in human imaging studies.

  14. COBRA: A prospective multimodal imaging study of dopamine, brain structure and function, and cognition.

    PubMed

    Nevalainen, N; Riklund, K; Andersson, M; Axelsson, J; Ögren, M; Lövdén, M; Lindenberger, U; Bäckman, L; Nyberg, L

    2015-07-01

    Cognitive decline is a characteristic feature of normal human aging. Previous work has demonstrated marked interindividual variability in onset and rate of decline. Such variability has been linked to factors such as maintenance of functional and structural brain integrity, genetics, and lifestyle. Still, few, if any, studies have combined a longitudinal design with repeated multimodal imaging and a comprehensive assessment of cognition as well as genetic and lifestyle factors. The present paper introduces the Cognition, Brain, and Aging (COBRA) study, in which cognitive performance and brain structure and function are measured in a cohort of 181 older adults aged 64 to 68 years at baseline. Participants will be followed longitudinally over a 10-year period, resulting in a total of three equally spaced measurement occasions. The measurement protocol at each occasion comprises a comprehensive set of behavioral and imaging measures. Cognitive performance is evaluated via computerized testing of working memory, episodic memory, perceptual speed, motor speed, implicit sequence learning, and vocabulary. Brain imaging is performed using positron emission tomography with [(11)C]-raclopride to assess dopamine D2/D3 receptor availability. Structural magnetic resonance imaging (MRI) is used for assessment of white and gray-matter integrity and cerebrovascular perfusion, and functional MRI maps brain activation during rest and active task conditions. Lifestyle descriptives are collected, and blood samples are obtained and stored for future evaluation. Here, we present selected results from the baseline assessment along with a discussion of sample characteristics and methodological considerations that determined the design of the study. This article is part of a Special Issue entitled SI: Memory & Aging.

  15. A Degree Distribution Optimization Algorithm for Image Transmission

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Yang, Junjie

    2016-09-01

    Luby Transform (LT) code is the first practical implementation of digital fountain code. The coding behavior of LT code is mainly decided by the degree distribution which determines the relationship between source data and codewords. Two degree distributions are suggested by Luby. They work well in typical situations but not optimally in case of finite encoding symbols. In this work, the degree distribution optimization algorithm is proposed to explore the potential of LT code. Firstly selection scheme of sparse degrees for LT codes is introduced. Then probability distribution is optimized according to the selected degrees. In image transmission, bit stream is sensitive to the channel noise and even a single bit error may cause the loss of synchronization between the encoder and the decoder. Therefore the proposed algorithm is designed for image transmission situation. Moreover, optimal class partition is studied for image transmission with unequal error protection. The experimental results are quite promising. Compared with LT code with robust soliton distribution, the proposed algorithm improves the final quality of recovered images obviously with the same overhead.

  16. Image resolution and sensitivity in an environmental transmission electron microscope.

    PubMed

    Jinschek, J R; Helveg, S

    2012-11-01

    An environmental transmission electron microscope provides unique means for the atomic-scale exploration of nanomaterials during the exposure to a reactive gas environment. Here we examine conditions to obtain such in situ observations in the high-resolution transmission electron microscopy (HRTEM) mode with an image resolution of 0.10nm. This HRTEM image resolution threshold is mapped out under different gas conditions, including gas types and pressures, and under different electron optical settings, including electron beam energies, doses and dose-rates. The 0.10nm resolution is retainable for H(2) at 1-10mbar. Even for N(2), the 0.10nm resolution threshold is reached up to at least 10mbar. The optimal imaging conditions are determined by the electron beam energy and the dose-rate as well as an image signal-to-noise (S/N) ratio that is consistent with Rose's criterion of S/N≥5. A discussion on the electron-gas interactions responsible for gas-induced resolution deterioration is given based on interplay with complementary electron diffraction (ED), scanning transmission electron microscopy (STEM) as well as electron energy loss spectroscopy (EELS) data.

  17. [Micro-wave local area network for radiological image transmission].

    PubMed

    Takizawa, M; Sone, S; Kasuga, T; Oguchi, K; Kondo, S; Fuwa, Y; Yamaura, I; Wako, T; Okazaki, Y; Maruyama, Y

    1994-10-25

    Shinshu University consists of five campuses in different locations, a situation that presents some problems in communication. To solve this problem, the Shinshu University Video and Data Network System (SUNS), which includes a high-speed audio-visual transfer function, has been developed and utilized for pre- and postgraduate education, administrative teleconferences, and local telephone (PBX) and Fax services. In 1988, a cooperative group for the study of radiographic image processing was organized, consisting of staff members of Shinshu University Hospital in Matsumoto, the Faculty of Engineering in Nagano (75 km from Matsumoto) and the Faculty of Textile Science and Technology in Ueda (45 km from Matsumoto). The system has been developed with a pair of personal computer (PC)-based interactive image workstations and high-speed digital telecommunication interfaces to the SUNS. A transmission time of 878 kbps has been attained, including the time needed for read/write onto the PC hard disk. Image data thus transferred from the hospital have been utilized for the study of image processing by researchers in the Faculty of Engineering, and the processed images have been sent back to the hospital for evaluation of clinical efficacy of the processing by diagnostic radiologists. This kind of microwave network is a promising alternative for high-speed data transmission for radiological images and their processing.

  18. Transmission of digital images within the NTSC analog format

    DOEpatents

    Nickel, George H.

    2004-06-15

    HDTV and NTSC compatible image communication is done in a single NTSC channel bandwidth. Luminance and chrominance image data of a scene to be transmitted is obtained. The image data is quantized and digitally encoded to form digital image data in HDTV transmission format having low-resolution terms and high-resolution terms. The low-resolution digital image data terms are transformed to a voltage signal corresponding to NTSC color subcarrier modulation with retrace blanking and color bursts to form a NTSC video signal. The NTSC video signal and the high-resolution digital image data terms are then transmitted in a composite NTSC video transmission. In a NTSC receiver, the NTSC video signal is processed directly to display the scene. In a HDTV receiver, the NTSC video signal is processed to invert the color subcarrier modulation to recover the low-resolution terms, where the recovered low-resolution terms are combined with the high-resolution terms to reconstruct the scene in a high definition format.

  19. Cerebral dopaminergic and glutamatergic transmission relate to different subjective responses of acute alcohol intake: an in vivo multimodal imaging study.

    PubMed

    Leurquin-Sterk, Gil; Ceccarini, Jenny; Crunelle, Cleo Lina; Weerasekera, Akila; de Laat, Bart; Himmelreich, Uwe; Bormans, Guy; Van Laere, Koen

    2017-09-08

    Converging preclinical evidence links extrastriatal dopamine release and glutamatergic transmission via the metabotropic glutamate receptor 5 (mGluR5) to the rewarding properties of alcohol. To date, human evidence is lacking on how and where in the brain these processes occur. Mesocorticolimbic dopamine release upon intravenous alcohol administration and mGluR5 availability were measured in 11 moderate social drinkers by single-session [(18) F]fallypride and [(18) F]FPEB positron emission tomography, respectively. Additionally, baseline and postalcohol glutamate and glutamine levels in the anterior cingulate cortex (ACC) were measured by using proton-magnetic resonance spectroscopy. To investigate differences in reward domains linked to both neurotransmitters, regional imaging data were related to subjective alcohol responses. Alcohol induced significant [(18) F]fallypride displacement in the prefrontal cortex (PFC), temporal and parietal cortices and thalamus (P < 0.05, corrected for multiple comparisons). Dopamine release in the ACC and orbitofrontal and ventromedial PFCs were correlated with subjective 'liking' and 'wanting' effects (P < 0.05). In contrast, baseline mGluR5 availability was positively correlated with the 'high' effect of alcohol in dorsolateral, ventrolateral and ventromedial PFCs and in the medial temporal lobe, thalamus and caudate nucleus (P < 0.05). Although neither proton-magnetic resonance spectroscopy glutamate nor glutamine levels were affected by alcohol, baseline ACC glutamate levels were negatively associated with the alcohol 'liking' effect (P < 0.003). These data reveal new mechanistic understanding and differential neurobiological underpinnings of the effects of acute alcohol consumption on human behavior. Specifically, prefrontal dopamine release may encode alcohol 'liking' and 'wanting' effects in specific areas underlying value processing and motivation, whereas mGluR5 availability in distinct prefrontal

  20. Dosimetry of an iodine-123-labeled tropane to image dopamine transporters

    SciTech Connect

    Mozley, P.D.; Stubbs, J.B.; Kim, H.J.

    1996-01-01

    N-(3-iodopropen-2-yl)-2{beta}-carbomethoxy-3{beta}(4-chlorophenyl)tropane (IPT) is an analog of cocaine that selectively binds the presynaptic dopamine transporter. The present study sought to measure the radiation dosimetry of IPT in seven healthy human volunteers. Dynamic renal scans were acquired immediately after the intravenous administration of 165 {+-} 16 MBq (4.45 {+-} 0.42 mCi) of [{sup 123}I]IPT. Between 7 and 12 sets of whole-body scans were acquired over the next 24 hr. The 24-hr renal excretion fractions were measured from conjugate emission scans of 7-11 discreet voided urine specimens. The fraction of the administered dose in 11 organs and each urine specimen was quantified from the attenuation-corrected geometric mean counts in opposing views. Subject-specific residence times were evaluated for each subject independently by fitting the time-activity curves to a multicompartmental model. The radiation doses were estimated with the MIRD technique from the residence times for each subject individually before any results were averaged. The findings showed that IPT was excreted rapidly by the renal system. There were no reservoirs of retained activity outside the basal ganglia, where SPECT images in these subjects showed that the mean ratio of caudate to calcarine cortex averaged 25:1 at 3 hr after injection (range 19.6-32 hr). The basal ganglia received a radiation dose of 0.028 mGy/MBq (0.10 rad/mCi). The dose-limiting organ in men was the stomach, which received an estimated 0.11 mGy/MBq (0.37 rad/mCi). In women, the critical organ was the urinary bladder at 0.14 mGy/MBq (0.51 rad/mCi). Relatively high-contrast images of the presynaptic dopamine transporters in the basal ganglia can be acquired with 185 MBq (5 mCi) of [{sup 123}I]IPT. The radiation exposure that results is significantly less than the maximum allowed by current safety guidelines for research volunteers. 33 refs., 4 figs., 3 tabs.

  1. Midbrain dopamine function in schizophrenia and depression: a post-mortem and positron emission tomographic imaging study.

    PubMed

    Howes, Oliver D; Williams, Matthew; Ibrahim, Kemal; Leung, Garret; Egerton, Alice; McGuire, Philip K; Turkheimer, Federico

    2013-11-01

    Elevated in vivo markers of presynaptic striatal dopamine activity have been a consistent finding in schizophrenia, and include a large effect size elevation in dopamine synthesis capacity. However, it is not known if the dopaminergic dysfunction is limited to the striatal terminals of dopamine neurons, or is also evident in the dopamine neuron cell bodies, which mostly originate in the substantia nigra. The aim of our studies was therefore to determine whether dopamine synthesis capacity is altered in the substantia nigra of people with schizophrenia, and how this relates to symptoms. In a post-mortem study, a semi-quantitative analysis of tyrosine hydroxylase staining was conducted in nigral dopaminergic cells from post-mortem tissue from patients with schizophrenia (n = 12), major depressive disorder (n = 13) and matched control subjects (n = 13). In an in vivo imaging study, nigral and striatal dopaminergic function was measured in patients with schizophrenia (n = 29) and matched healthy control subjects (n = 29) using (18)F-dihydroxyphenyl-L-alanine ((18)F-DOPA) positron emission tomography. In the post-mortem study we found that tyrosine hydroxylase staining was significantly increased in nigral dopaminergic neurons in schizophrenia compared with both control subjects (P < 0.001) and major depressive disorder (P < 0.001). There was no significant difference in tyrosine hydroxylase staining between control subjects and patients with major depressive disorder, indicating that the elevation in schizophrenia is not a non-specific indicator of psychiatric illness. In the in vivo imaging study we found that (18)F-dihydroxyphenyl-L-alanine uptake was elevated in both the substantia nigra and in the striatum of patients with schizophrenia (effect sizes = 0.85, P = 0.003 and 1.14, P < 0.0001, respectively) and, in the voxel-based analysis, was elevated in the right nigra (P < 0.05 corrected for family wise-error). Furthermore, nigral (18)F

  2. Atomic resolution imaging of graphene by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Robertson, Alex W.; Warner, Jamie H.

    2013-05-01

    The atomic structure of a material influences its electronic, chemical, magnetic and mechanical properties. Characterising carbon nanomaterials, such as fullerenes, nanotubes and graphene, at the atomic level is challenging due to their chemical reactivity and low atomic mass. Transmission electron microscopy and scanning probe microscopy are two of the leading methods for imaging graphene at the atomic level. Here, we report on recent advances in atomic resolution imaging of graphene using aberration-corrected high resolution transmission electron microscopy and how it has revealed many of the structural deviations from the pristine monolayer form. Structures in graphene such as vacancy defects, edges, grain boundaries, linear chains, impurity dopants, layer number, layer stacking and bond rotations are explored.

  3. Temporal filtering for Montgomery self-imaging under dispersive transmission.

    PubMed

    Cuadrado-Laborde, Christian; Costanzo-Caso, Pablo A; Duchowicz, Ricardo; Sicre, Enrique E

    2007-08-01

    We present what we believe is a new method to introduce self-imaging properties under dispersive transmission of single or multiple light pulses with different temporal characteristics. By properly performing a temporal filtering into a given input signal it can produce an output signal having a spectral content satisfying the Montgomery condition, thereby allowing self-imaging of this signal under further dispersive transmission. An array of fiber loops performs the filtering operation on the input signal. We show some numerical simulations with a single light pulse as an input signal to verify the feasibility of the method and demonstrate the effects of the several involved parameters on both the pulse shape and the noise level.

  4. A fast image simulation algorithm for scanning transmission electron microscopy.

    PubMed

    Ophus, Colin

    2017-01-01

    Image simulation for scanning transmission electron microscopy at atomic resolution for samples with realistic dimensions can require very large computation times using existing simulation algorithms. We present a new algorithm named PRISM that combines features of the two most commonly used algorithms, namely the Bloch wave and multislice methods. PRISM uses a Fourier interpolation factor f that has typical values of 4-20 for atomic resolution simulations. We show that in many cases PRISM can provide a speedup that scales with f(4) compared to multislice simulations, with a negligible loss of accuracy. We demonstrate the usefulness of this method with large-scale scanning transmission electron microscopy image simulations of a crystalline nanoparticle on an amorphous carbon substrate.

  5. Multiple actions of a D₃ dopamine receptor agonist, PD128907, on GABAergic inhibitory transmission between medium spiny neurons in mouse nucleus accumbens shell.

    PubMed

    Kohnomi, Shuntaro; Konishi, Shiro

    2015-07-23

    The nucleus accumbens (NAc) plays a crucial role in pathophysiological responses, such as reward-related behaviors, addiction, depression and schizophrenia, through activation of dopaminergic system in the midbrain area. Principal cells in the NAc are medium spiny neurons (MSNs), which constitute the majority (90-95%) of NAc neuron populations in rodents. MSNs are mutually connected to form networks of lateral inhibition. Our previous study showed that activation of D2-like receptors presynaptically inhibited GABAergic transmission between MSN-MSN connections in the NAc. D2-like receptors in MSNs have been reported to consist of D2 and D3 receptors, but their functional roles remain to be elucidated. This study, therefore, aimed at examining the effects of D3 receptor activation on MSN-MSN connections using PD128907, a preferential D3 dopamine receptor agonist, and whole cell recordings from MSNs in acute slices including the NAc. In more than half of cells tested, PD128907 reduced the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in a concentration-dependent manner. However, the agonist caused multiple actions, namely, decrease, increase and no significant changes, in the amplitude as well as the frequency of sIPSCs in individual cells. Our data, together with the results from previous studies, show that dopamine could suppress GABAergic transmission, i.e., lateral inhibition between some of MSNs, via activation of both D2 and D3 receptors.

  6. Performance analysis of an inexpensive Direct Imaging Transmission Ion Microscope

    NASA Astrophysics Data System (ADS)

    Barnes, Patrick; Pallone, Arthur

    2013-03-01

    A direct imaging transmission ion microscope (DITIM) is built from a modified webcam and a commercially available polonium-210 antistatic device mounted on an optics rail. The performance of the DITIM in radiographic mode is analyzed in terms of the line spread function (LSF) and modulation transfer function (MTF) for an opaque edge. Limitations of, potential uses for, and suggested improvements to the DITIM are also discussed. Faculty sponsor

  7. Segmentation of virus particle candidates in transmission electron microscopy images.

    PubMed

    Kylberg, G; Uppström, M; Hedlund, K-O; Borgefors, G; Sintorn, I-M

    2012-02-01

    In this paper, we present an automatic segmentation method that detects virus particles of various shapes in transmission electron microscopy images. The method is based on a statistical analysis of local neighbourhoods of all the pixels in the image followed by an object width discrimination and finally, for elongated objects, a border refinement step. It requires only one input parameter, the approximate width of the virus particles searched for. The proposed method is evaluated on a large number of viruses. It successfully segments viruses regardless of shape, from polyhedral to highly pleomorphic.

  8. Wavelength Coded Image Transmission and Holographic Optical Elements.

    DTIC Science & Technology

    1984-08-20

    K. Case DAAG 29-81-K-0033 9. PERFORMING ORGANIZATION NAME9 AND ADDRESS 10. PROGRAM ELEMENT. PROJECT . TASW Electrical Engineering Department AE OKUI...Am. 56, 523 of the wavelength-coding proces for image transmission (96. * trouh aerrtin m~ia.6. H. Kogelnik, "Holographic image projection through...andm then convective fog," Opt. Commun. 7,9R (1973). Airyg Rese a tficeAi orcet Ofc eD of d Sciec 12. A. W. Lohmann and H. Schmalfuss, "Holography

  9. Reliable medical imaging transmission for PACS over ATM networks

    NASA Astrophysics Data System (ADS)

    Wei, Wang; Subramanian, K. R.; Zhang, Liren

    2000-05-01

    In an ATM (Asynchronous Transfer Mode)-based PAC system, cell losses during the transmission might cause degradation on the quality of medical images. This in turn will affect the accuracy of the diagnosis. A three-step scheme to minimize the effect of cell losses on the quality of medical images is proposed in this paper. The first step is related to the medical imaging coding before it enters the network, in which, ROIs (Regions of Interest) of the medical imaging which are crucial to diagnosis are kept non-compressed and packetized with pixel-level inter-leaving. Non-compression can make the data of ROIs to be more robust to cell losses than any compression algorithms, while pixel-level inter-leaving is strong for bursty cell losses recovery combined with FEC (Forward Error Correction) at the receiver. The background part of the medical imaging will be compressed using fractal algorithm, which can get very high compression ratio to balance the large amount data of the ROIs. In the second step, the ROIs will be allocated the highest priority during transmission. While in the third step, FEC will be used to minimize the existed cell losses at the receiver. The balance and optimal of these three stages are discussed from the system-level point of view.

  10. Shear wave transmissivity measurement by color Doppler shear wave imaging

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamazaki, Mayuko; Kasahara, Toshihiro; Sunaguchi, Naoki; Yuminaka, Yasushi

    2016-07-01

    Shear wave elastography is a useful method for evaluating tissue stiffness. We have proposed a novel shear wave imaging method (color Doppler shear wave imaging: CD SWI), which utilizes a signal processing unit in ultrasound color flow imaging in order to detect the shear wave wavefront in real time. Shear wave velocity is adopted to characterize tissue stiffness; however, it is difficult to measure tissue stiffness with high spatial resolution because of the artifact produced by shear wave diffraction. Spatial average processing in the image reconstruction method also degrades the spatial resolution. In this paper, we propose a novel measurement method for the shear wave transmissivity of a tissue boundary. Shear wave wavefront maps are acquired by changing the displacement amplitude of the shear wave and the transmissivity of the shear wave, which gives the difference in shear wave velocity between two mediums separated by the boundary, is measured from the ratio of two threshold voltages required to form the shear wave wavefronts in the two mediums. From this method, a high-resolution shear wave amplitude imaging method that reconstructs a tissue boundary is proposed.

  11. Characteristics of dynamic magnetic resonance image enhancement in prolactinomas resistant to dopamine agonist therapy.

    PubMed

    Guo, Qinghua; Erickson, Bradley J; Chang, Alice Y; Erickson, Dana

    2015-03-01

    The objective of this study was to determine whether dynamic magnetic resonance imaging (dMRI) enhancement parameters could predict dopamine agonist (DA) resistance in prolactinomas. We retrospectively identified patients with prolactinomas who were treated with DA and underwent dMRI from 2001 through 2012 at Mayo Clinic (Rochester, MN). Intensities of the adenoma and pituitary gland were measured by drawing regions of interest on the images. Enhancement ratio, enhancement peak, prepeak slope (PPS), and enhancement time were compared between DA-resistant and DA-responsive groups, between DA-treated and DA-naive groups, and between the first and follow-up dMRIs. We identified 49 patients with prolactinomas, with 6 (12.2%) showing DA resistance. Thirty-seven patients (75.5%) underwent dMRI while receiving treatment, 12 (25.5%) underwent dMRI before starting therapy, and 10 (20.4%) had follow-up dMRI after DA therapy. The PPS of the tumor was higher in the treatment-resistant group versus the responsive group (mean [SD], 4.42 [3.19] vs 2.65 [1.59]; P = 0.03), whereas no difference was noted in the pituitary gland (5.79 [2.21] vs 4.06 [2.48]; P = 0.11). Logistic regression analysis indicated that tumor PPS was associated with DA resistance (odds ratio, 1.71; 95% confidence interval, 1.07-3.27; P = 0.02). Dynamic MRI with PPS analysis potentially can be used early in the treatment course to evaluate DA resistance in pituitary prolactinomas.

  12. Characteristics of Dynamic Magnetic Resonance Image Enhancement in Prolactinomas Resistant to Dopamine Agonist Therapy

    PubMed Central

    Guo, Qinghua; Erickson, Bradley J.; Chang, Alice Y.; Erickson, Dana

    2015-01-01

    Objective To determine whether dynamic magnetic resonance imaging (dMRI) enhancement parameters could predict dopamine agonist (DA) resistance in prolactinomas. Methods We retrospectively identified patients with prolactinomas who were treated with DA and underwent dMRI from 2001 through 2012 at Mayo Clinic (Rochester, Minnesota). Intensities of the adenoma and pituitary gland were measured by drawing regions of interest on the images. Enhancement ratio, enhancement peak, prepeak slope (PPS), and enhancement time were compared between DA-resistant and DA-responsive groups, between DA-treated and DA-naïve groups, and between the first and follow-up dMRIs. Results We identified 49 patients with prolactinomas, with 6 (12.2%) that showed DA resistance. Thirty-seven patients (75.5%) underwent dMRI while receiving treatment, 12 (25.5%) underwent dMRI before starting therapy, and 10 (20.4%) had follow-up dMRI after DA therapy. The PPS of the tumor was higher in the treatment-resistant group vs the responsive group (mean [SD], 4.42 [3.19] vs 2.65 [1.59]; P=.03), whereas no difference was noted in the pituitary gland (5.79 [2.21] vs 4.06 [2.48]; P=.11). Logistic regression analysis indicated that tumor PPS was associated with DA resistance (odds ratio, 1.71; 95% CI, 1.07-3.27; P=.02). Conclusions dMRI with PPS analysis potentially can be used early in the treatment course to evaluate DA resistance in pituitary prolactinomas. PMID:25551412

  13. Imaging domains in transmission electron microscopy (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.

    1987-04-01

    Magnetic domain walls and domains inside thin electron transparent specimens of ferromagnetic materials can be imaged using the Fresnel and Focault techniques in a transmission electron microscope. Combined with the diffraction, microstructural and microchemical capabilities of modern microscopes, Lorentz microscopy offers one of the most powerful tools to study structure-property relationships in magnetic materials. In addition, using this technique, it is possible to deduce the local magnetization distribution around inhomogeneities and complex Bloch and Néel walls. Lorentz images can be used to quantitatively measure domain wall thickness and estimate domain wall energy. With modified sample holders and pole pieces, one can study in situ domain wall motion and the interaction of domains with microstructural features such as second phases, grain boundaries, structural defects, etc. All these will be illustrated with examples of Lorentz images from soft and hard magnets with special emphasis on the Nd-Fe-B hard magnets. Finally, the limitations of the Lorentz imaging technique utilizing the deflected electron intensities will be outlined and a new technique which utilizes the phase changes in the electron beam as it passes through the material in a scanning transmission microscope will be reviewed.

  14. Simulation of transmission electron microscope images of biological specimens.

    PubMed

    Rullgård, H; Ofverstedt, L-G; Masich, S; Daneholt, B; Oktem, O

    2011-09-01

    We present a new approach to simulate electron cryo-microscope images of biological specimens. The framework for simulation consists of two parts; the first is a phantom generator that generates a model of a specimen suitable for simulation, the second is a transmission electron microscope simulator. The phantom generator calculates the scattering potential of an atomic structure in aqueous buffer and allows the user to define the distribution of molecules in the simulated image. The simulator includes a well defined electron-specimen interaction model based on the scalar Schrödinger equation, the contrast transfer function for optics, and a noise model that includes shot noise as well as detector noise including detector blurring. To enable optimal performance, the simulation framework also includes a calibration protocol for setting simulation parameters. To test the accuracy of the new framework for simulation, we compare simulated images to experimental images recorded of the Tobacco Mosaic Virus (TMV) in vitreous ice. The simulated and experimental images show good agreement with respect to contrast variations depending on dose and defocus. Furthermore, random fluctuations present in experimental and simulated images exhibit similar statistical properties. The simulator has been designed to provide a platform for development of new instrumentation and image processing procedures in single particle electron microscopy, two-dimensional crystallography and electron tomography with well documented protocols and an open source code into which new improvements and extensions are easily incorporated. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  15. Efficient block error concealment code for image and video transmission

    NASA Astrophysics Data System (ADS)

    Min, Jungki; Chan, Andrew K.

    1999-05-01

    Image and video compression standards such as JPEG, MPEG, H.263 are highly sensitive to error during transmission. Among typical error propagation mechanisms in video compression schemes, loss of block synchronization produces the worst image degradation. Even an error of a single bit in block synchronization may result in data to be placed in wrong positions that is caused by spatial shifts. Our proposed efficient block error concealment code (EBECC) virtually guarantees block synchronization and it improves coding efficiency by several hundred folds over the error resilient entropy code (EREC), proposed by N. G. Kingsbury and D. W. Redmill, depending on the image format and size. In addition, the EBECC produces slightly better resolution on the reconstructed images or video frames than those from the EREC. Another important advantage of the EBECC is that it does not require redundancy contrasting to the EREC that requires 2-3 percent of redundancy. Our preliminary results show the EBECC is 240 times faster than EREC for encoding and 330 times for decoding based on the CIF format of H.263 video coding standard. The EBECC can be used on most of the popular image and video compression schemes such as JPEG, MPEG, and H.263. Additionally, it is especially useful to wireless networks in which the percentage of image and video data is high.

  16. Fluorescence-integrated transmission electron microscopy images: integrating fluorescence microscopy with transmission electron microscopy.

    PubMed

    Sims, Paul A; Hardin, Jeff D

    2007-01-01

    This chapter describes high-pressure freezing (HPF) techniques for correlative light and electron microscopy on the same sample. Laser scanning confocal microscopy (LSCM) is exploited for its ability to collect fluorescent, as well as transmitted and back scattered light (BSL) images at the same time. Fluorescent information from a whole mount (preembedding) or from thin sections (post-embedding) can be displayed as a color overlay on transmission electron microscopy (TEM) images. Fluorescence-integrated TEM (F-TEM) images provide a fluorescent perspective to TEM images. The pre-embedding method uses a thin two-part agarose pad to immobilize live Caenorhabditis elegans embryos for LSCM, HPF, and TEM. Pre-embedding F-TEM images display fluorescent information collected from a whole mount of live embryos onto all thin sections collected from that sample. In contrast, the postembedding method uses HPF and freeze substitution with 1% paraformaldehyde in 95% ethanol followed by low-temperature embedding in methacrylate resin. This procedure preserves the structure and function of green fluorescent protein (GFP) as determined by immunogold labeling of GFP, when compared with GFP expression, both demonstrated in the same thin section.

  17. Multistate image restoration by transmission of bit-decomposed data.

    PubMed

    Tadaki, Takashi; Inoue, Jun-ichi

    2002-01-01

    We report on the restoration of gray-scale image when it is decomposed into a binary form before transmission. We assume that a gray-scale image expressed by a set of Q-Ising spins is first decomposed into an expression using Ising (binary) spins by means of the threshold division, namely, we produce (Q-1) binary Ising spins from a Q-Ising spin by the function F(sigma(i)-m)=1 if the input data sigma(i)in[0,...,Q-1] is sigma(i)> or =m and 0 otherwise, where m in [1,...,Q-1] is the threshold value. The effects of noise are different from the case where the raw Q-Ising values are sent. We investigate whether it is more effective to use the binary data for transmission, or to send the raw Q-Ising values. By using the mean-field model, we analyze the performance of our method quantitatively. In order to investigate what kind of original picture is efficiently restored by our method, the standard image in two dimensions is simulated by the mean-field annealing, and we compare the performance of our method with that using the Q-Ising form. We show that our method is more efficient than the one using the Q-Ising form when the original picture has large parts in which the nearest-neighboring pixels take close values.

  18. Detecting pits in tart cherries by hyperspectral transmission imaging

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Lu, Renfu

    2004-11-01

    The presence of pits in processed cherry products causes safety concerns for consumers and imposes potential liability for the food industry. The objective of this research was to investigate a hyperspectral transmission imaging technique for detecting the pit in tart cherries. A hyperspectral imaging system was used to acquire transmission images from individual cherry fruit for four orientations before and after pits were removed over the spectral region between 450 nm and 1,000 nm. Cherries of three size groups (small, intermediate, and large), each with two color classes (light red and dark red) were used for determining the effect of fruit orientation, size, and color on the pit detection accuracy. Additional cherries were studied for the effect of defect (i.e., bruises) on the pit detection. Computer algorithms were developed using the neural network (NN) method to classify the cherries with and without the pit. Two types of data inputs, i.e., single spectra and selected regions of interest (ROIs), were compared. The spectral region between 690 nm and 850 nm was most appropriate for cherry pit detection. The NN with inputs of ROIs achieved higher pit detection rates ranging from 90.6% to 100%, with the average correct rate of 98.4%. Fruit orientation and color had a small effect (less than 1%) on pit detection. Fruit size and defect affected pit detection and their effect could be minimized by training the NN with properly selected cherry samples.

  19. Scanning Transmission X-ray microscopy Imaging of Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Gilles, M. K.; Kilcoyne, A.; Tyliszczak, T.; Shuh, D. K.; Fakra, S.; Robinson, M.; Chase, K.

    2003-12-01

    Scanning transmission x-ray microscopes (STXM) are used to image a diversity of carbon and metal containing items such as biofilms in soils, magnetic materials, polymers and meteorites. Studies on particles collected on SiO2 filters from biomass burns in Flagstaff, Arizona and individual aerosols collected in South Africa on TEM grids are underway at beamlines 5.3.2 and 11.0.2 at the Advanced Light Source of Lawrence Berkeley National Laboratory. Sub micron particles are imaged in the transmission mode over the energy range of 280 - 1900 eV. Spectromicroscopic studies on individual particles using near edge x-ray absorption fine structure (NEXAFS) probe multiple species within or on the same particle. In (STXM) an X-ray beam is focused with a zone plate onto a sample and the transmitted radiation is detected. Since the signal is obtained in the transmission mode, optically thin samples are required. Hence, atmospheric aerosols with submicron thickness and diameter are well suited for this method. Near edge spectra of various elements were scanned in step sizes from 0.1-0.5 eV around characteristic absorption edges, creating 2 dimensional images at each energy. While STXM images are taken with a lower spatial resolution (currently 40 nm) than microscopies such as scanning electron microscopy, transmission electron microscopy, and atomic force microscopy, detailed chemical information with spatial distributions, and oxidation states is obtained. A particular focus of this work is to obtain more detailed information on the type of carbons, multiply, or singly bonded and whether or not carbon is bonded to oxygen. The ultimate goal is discrimination between organic and black carbon within individual aerosol particles and determining if organic carbon, black carbon, and metal species are distributed homogeneously throughout aerosol particles. Initial scans of the samples from Flagstaff show spectral evidence of aromatic carbon, without distinct C=O signatures. NEXAFS

  20. Cross-layer Energy Optimization Under Image Quality Constraints for Wireless Image Transmissions

    PubMed Central

    Yang, Na; Demirkol, Ilker; Heinzelman, Wendi

    2013-01-01

    Wireless image transmission is critical in many applications, such as surveillance and environment monitoring. In order to make the best use of the limited energy of the battery-operated cameras, while satisfying the application-level image quality constraints, cross-layer design is critical. In this paper, we develop an image transmission model that allows the application layer (e.g., the user) to specify an image quality constraint, and optimizes the lower layer parameters of transmit power and packet length, to minimize the energy dissipation in image transmission over a given distance. The effectiveness of this approach is evaluated by applying the proposed energy optimization to a reference ZigBee system and a WiFi system, and also by comparing to an energy optimization study that does not consider any image quality constraint. Evaluations show that our scheme outperforms the default settings of the investigated commercial devices and saves a significant amount of energy at middle-to-large transmission distances. PMID:23508852

  1. Agonist signalling properties of radiotracers used for imaging of dopamine D2/3 receptors

    PubMed Central

    2014-01-01

    Background Dopamine D2/3 receptor (D2/3R) agonist radiopharmaceuticals are considered superior to antagonists to detect dopamine release, e.g. induced by amphetamines. Agonists bind preferentially to the high-affinity state of the dopamine D2R, which has been proposed as the reason why agonists are more sensitive to detect dopamine release than antagonist radiopharmaceuticals, but this theory has been challenged. Interestingly, not all agonists similarly activate the classic cyclic adenosine mono phosphate (cAMP) and the ?-arrestin-2 pathway, some stimulate preferentially one of these pathways; a phenomenon called biased agonism. Because these pathways can be affected separately by pathologies or drugs (including dopamine releasers), it is important to know how agonist radiotracers act on these pathways. Therefore, we characterized the intracellular signalling of the well-known D2/3R agonist radiopharmaceuticals NPA and PHNO and of several novel D2/3R agonists. Methods cAMP accumulation and ?-arrestin-2 recruitment were measured on cells expressing human D2R. Results All tested agonists showed (almost) full agonism in both pathways. Conclusions The tested D2/3R agonist radiopharmaceuticals did not exhibit biased agonism in vitro. Consequently, it is likely that drugs (including psychostimulants like amphetamines) and/or pathologies that influence the cAMP and/or the ?-arrestin-2 pathway may influence the binding of these radiopharmaceuticals. PMID:25977878

  2. Modeling atomic-resolution scanning transmission electron microscopy images.

    PubMed

    Findlay, Scott D; Oxley, Mark P; Allen, Leslie J

    2008-02-01

    A real-space description of inelastic scattering in scanning transmission electron microscopy is derived with particular attention given to the implementation of the projected potential approximation. A hierarchy of approximations to expressions for inelastic images is presented. Emphasis is placed on the conditions that must hold in each case. The expressions that justify the most direct, visual interpretation of experimental data are also the most approximate. Therefore, caution must be exercised in selecting experimental parameters that validate the approximations needed for the analysis technique used. To make the most direct, visual interpretation of electron-energy-loss spectroscopic images from core-shell excitations requires detector improvements commensurate with those that aberration correction provides for the probe-forming lens. Such conditions can be relaxed when detailed simulations are performed as part of the analysis of experimental data.

  3. Gating of dopamine transmission by calcium and axonal N-, Q-, T- and L-type voltage-gated calcium channels differs between striatal domains

    PubMed Central

    Brimblecombe, Katherine R; Gracie, Caitlin J; Platt, Nicola J; Cragg, Stephanie J

    2015-01-01

    The axonal voltage-gated Ca2+ channels (VGCCs) that catalyse dopamine (DA) transmission are incompletely defined. Yet, they are critical to DA function and might prime subpopulations of DA neurons for parkinsonian degeneration. Previous studies of VGCCs will have encompassed those on striatal cholinergic interneurons, which strongly influence DA transmission. We identify which VGCCs on DA axons govern DA transmission, we determine their dynamic properties and reveal an underlying basis for differences between the caudate putamen (CPu) and nucleus accumbens (NAc). We detected DA release evoked electrically during nicotinic receptor blockade or optogenetically by light activation of channel rhodopsin-expressing DA axons in mouse striatal slices. Subtype-specific VGCC blockers indicated that N-, Q-, T- and L-VGCCs govern DA release in CPu, but in NAc, T and L-channels are relatively silent. The roles of the most dominant channels were inversely frequency-dependent, due to low-pass filtering of DA release by Ca2+-dependent relationships between initial release probability and short-term plasticity. Ca2+ concentration–response curves revealed that differences between CPu and NAc were due to greater underlying Ca2+ sensitivity of DA transmission from CPu axons. Functions for ‘silent’ L- and T-channels in NAc could be unmasked by elevating extracellular [Ca2+]. Furthermore, we identified a greater coupling between BAPTA-sensitive, fast Ca2+ transients and DA transmission in CPu axons, and evidence for endogenous fast buffering of Ca2+ in NAc. These data reveal that a range of VGCCs operate dynamically on DA axons, depending on local driving forces. Furthermore, they reveal dramatic differences in Ca2+ handling between axonal subpopulations that show different vulnerability to parkinsonian degeneration. PMID:25533038

  4. Correlation of individual differences in schizotypal personality traits with amphetamine-induced dopamine release in striatal and extrastriatal brain regions.

    PubMed

    Woodward, Neil D; Cowan, Ronald L; Park, Sohee; Ansari, M Sib; Baldwin, Ronald M; Li, Rui; Doop, Mikisha; Kessler, Robert M; Zald, David H

    2011-04-01

    Schizotypal personality traits are associated with schizophrenia spectrum disorders, and individuals with schizophrenia spectrum disorders demonstrate increased dopamine transmission in the striatum. The authors sought to determine whether individual differences in normal variation in schizotypal traits are correlated with dopamine transmission in the striatum and in extrastriatal brain regions. Sixty-three healthy volunteers with no history of psychiatric illness completed the Schizotypal Personality Questionnaire and underwent positron emission tomography imaging with [(18)F]fallypride at baseline and after administration of oral d-amphetamine (0.43 mg/kg). Dopamine release, quantified by subtracting each participant's d-amphetamine scan from his or her baseline scan, was correlated with Schizotypal Personality Questionnaire total and factor scores using region-of-interest and voxel-wise analyses. Dopamine release in the striatum was positively correlated with overall schizotypal traits. The association was especially robust in the associative subdivision of the striatum. Voxel-wise analyses identified additional correlations between dopamine release and schizotypal traits in the left middle frontal gyrus and left supramarginal gyrus. Exploratory analyses of Schizotypal Personality Questionnaire factor scores revealed correlations between dopamine release and disorganized schizotypal traits in the striatum, thalamus, medial prefrontal cortex, temporal lobe, insula, and inferior frontal cortex. The association between dopamine signaling and psychosis phenotypes extends to individual differences in normal variation in schizotypal traits and involves dopamine transmission in both striatal and extrastriatal brain regions. Amphetamine-induced dopamine release may be a useful endophenotype for investigating the genetic basis of schizophrenia spectrum disorders.

  5. Regional differences in mu-opioid receptor-dependent modulation of basal dopamine transmission in rat striatum.

    PubMed

    Campos-Jurado, Y; Martí-Prats, L; Zornoza, T; Polache, A; Granero, L; Cano-Cebrián, M J

    2017-01-18

    The nigrostriatal dopamine system is implicated in the regulation of reward and motor activity. Dopamine (DA) release in dorsal striatum (DS) is controlled by the firing rate of DA neurons in substantia nigra pars compacta. However, influences at terminal level, such as those involving activation of mu opioid receptors (MORs), can play a key role in determining DA levels in striatum. Nonetheless, published data also suggest that the effect of opioid drugs on DA levels may differ depending on the DS subregion analyzed. In this study, in vivo microdialysis in rats was used to explore this regional dependence. Changes in basal DA levels induced by local retrodialysis application of DAMGO (selective MORs agonist) in three different subregions of DS along the rostro-caudal axis were studied. Our results indicate that whereas administration of 10μM DAMGO into the rostral and caudal DS significantly reduced DA levels, in medial DS an increase in DA levels was observed. These data reveal a regional-dependent MOR modulation of DA release in DS, similar to that described in the ventral striatum. Our findings may lead to a better understanding of the nigrostriatal DA system regulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Image transmission in tactical radio frequency shared network propagation environments

    NASA Astrophysics Data System (ADS)

    White, Kent H.; Wagner, Kerry A.; O'Hanian, Scott

    1997-06-01

    The need to transmit images across tactical radio frequency (rf) links has been identified in army digitization applications. For example, military doctrine requires that tactical functions like identification of battlefield entities as potential targets and battle damage assessment be performed by the soldier. Currently, a key input to these processes is imagery. Therefore, the quality and timeliness of the image directly impact tactical performance. The military is investigating the employment of remote sensors and advanced communications systems to meet this requirement as part of its digitization effort. Army communications systems exist that partially meet this requirement. However, many existing solutions employ these legacy systems in the context of a point-to-point communications architecture. Solutions to the problem of transmitting images across a rf network have not been fully explored. The term network implies that the rf transmission media is common to and shared by multiple subscribers. It is a suite of capabilities that collectively manage media access and information transfer for its subscribers thus providing substantial improvements in effectiveness, efficiency, and robustness. This paper discusses the challenges of transmitting images using one army legacy communications system in a tactical rf network, presents a conceptual framework for attacking the problem, and discusses one solution.

  7. Transmission imaging for integrated PET-MR systems

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer L.; Fuin, Niccolò; Levine, Michael A.; Catana, Ciprian

    2016-08-01

    Attenuation correction for PET-MR systems continues to be a challenging problem, particularly for body regions outside the head. The simultaneous acquisition of transmission scan based μ-maps and MR images on integrated PET-MR systems may significantly increase the performance of and offer validation for new MR-based μ-map algorithms. For the Biograph mMR (Siemens Healthcare), however, use of conventional transmission schemes is not practical as the patient table and relatively small diameter scanner bore significantly restrict radioactive source motion and limit source placement. We propose a method for emission-free coincidence transmission imaging on the Biograph mMR. The intended application is not for routine subject imaging, but rather to improve and validate MR-based μ-map algorithms; particularly for patient implant and scanner hardware attenuation correction. In this study we optimized source geometry and assessed the method’s performance with Monte Carlo simulations and phantom scans. We utilized a Bayesian reconstruction algorithm, which directly generates μ-map estimates from multiple bed positions, combined with a robust scatter correction method. For simulations with a pelvis phantom a single torus produced peak noise equivalent count rates (34.8 kcps) dramatically larger than a full axial length ring (11.32 kcps) and conventional rotating source configurations. Bias in reconstructed μ-maps for head and pelvis simulations was  ⩽4% for soft tissue and  ⩽11% for bone ROIs. An implementation of the single torus source was filled with 18F-fluorodeoxyglucose and the proposed method quantified for several test cases alone or in comparison with CT-derived μ-maps. A volume average of 0.095 cm-1 was recorded for an experimental uniform cylinder phantom scan, while a bias of  <2% was measured for the cortical bone equivalent insert of the multi-compartment phantom. Single torus μ-maps of a hip implant phantom showed significantly less

  8. Transmission imaging for integrated PET-MR systems.

    PubMed

    Bowen, Spencer L; Fuin, Niccolò; Levine, Michael A; Catana, Ciprian

    2016-08-07

    Attenuation correction for PET-MR systems continues to be a challenging problem, particularly for body regions outside the head. The simultaneous acquisition of transmission scan based μ-maps and MR images on integrated PET-MR systems may significantly increase the performance of and offer validation for new MR-based μ-map algorithms. For the Biograph mMR (Siemens Healthcare), however, use of conventional transmission schemes is not practical as the patient table and relatively small diameter scanner bore significantly restrict radioactive source motion and limit source placement. We propose a method for emission-free coincidence transmission imaging on the Biograph mMR. The intended application is not for routine subject imaging, but rather to improve and validate MR-based μ-map algorithms; particularly for patient implant and scanner hardware attenuation correction. In this study we optimized source geometry and assessed the method's performance with Monte Carlo simulations and phantom scans. We utilized a Bayesian reconstruction algorithm, which directly generates μ-map estimates from multiple bed positions, combined with a robust scatter correction method. For simulations with a pelvis phantom a single torus produced peak noise equivalent count rates (34.8 kcps) dramatically larger than a full axial length ring (11.32 kcps) and conventional rotating source configurations. Bias in reconstructed μ-maps for head and pelvis simulations was  ⩽4% for soft tissue and  ⩽11% for bone ROIs. An implementation of the single torus source was filled with (18)F-fluorodeoxyglucose and the proposed method quantified for several test cases alone or in comparison with CT-derived μ-maps. A volume average of 0.095 cm(-1) was recorded for an experimental uniform cylinder phantom scan, while a bias of  <2% was measured for the cortical bone equivalent insert of the multi-compartment phantom. Single torus μ-maps of a hip implant phantom showed significantly

  9. Dopamine denervation does not alter in vivo /sup 3/H-spiperone binding in rat striatum: implications for external imaging of dopamine receptors in Parkinson's disease

    SciTech Connect

    Bennett, J.P. Jr.; Wooten, G.F.

    1986-04-01

    Striatal particulate preparations, both from rats with lesion-induced striatal dopamine (DA) loss and from some striatal dopamine (DA) loss and from some patients with Parkinson's disease, exhibit increased /sup 3/H-neuroleptic binding, which is interpreted to be the mechanism of denervation-induced behavioral supersensitivity to dopaminergic compounds. After intravenous /sup 3/H-spiperone (/sup 3/H-SP) administration to rats with unilateral nigral lesions, we found no differences in accumulation of total or particulate-bound /sup 3/H-SP in dopamine-denervated compared with intact striata. /sup 3/H-SP in vivo binds to less than 10% of striatal sites labeled by /sup 3/H-SP incubated with striatal particulate preparations in vitro. Quantitative autoradiography of /sup 3/H-SP binding to striatal sections in vitro also failed to reveal any effects of dopamine denervation. /sup 3/H-SP bound to striatal sites in vivo dissociates more slowly than that bound to striatal particulate preparations labeled in vitro. Striatal binding properties of /sup 3/H-SP administered in vivo are quite different from the same kinetic binding parameters estimated in vitro using crude membrane preparations of striatum. In addition, striatal binding of in vivo-administered 3H-SP is not affected by prior lesion of the substantia nigra, which results in profound ipsilateral striatal dopamine depletion. Thus, behavioral supersensitivity to dopaminergic compounds may not be associated with altered striatal binding properties for dopamine receptor ligands in vivo.

  10. Transmission Grating Imaging Spectrometer for Magnetically Confined Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Blagojevic, B.; Stutman, D.; Vero, R.; Finkenthal, M.; Moos, H. W.

    2001-10-01

    The Johns Hopkins Plasma Spectroscopy Group is developing a transmission grating (TG) based imaging spectrometer for the soft and ultrasoft X-ray (USXR) ranges. The spectrometer will be integrated into a multi-purpose impurity diagnostic package for Magnetically Confined Fusion experiments, which will provide time and space resolved information about radiation losses, Zeff profiles and particle transport. The package will also include 2-D filtered USXR diode arrays and atomic physics and impurity transport computational capability. The spectrometer has a very simple layout, consisting of two collimating and space resolving slits, a TG and a 2-D imaging detector. As detector we are developing phosphor (P45) coated fiber optic plates with CCD and intensified CCD image readout. The performance of a test 5000 l/mm, 2:1 bar to open area ratio TG has been evaluated in the laboratory using a K-alpha Manson source and the emission from a Penning Discharge. The incident and diffracted photon flux was recorded in the 10-300 Å range with a gas flow proportional counter. The measurements show that spectral resolution and efficiency agree well with the predicted values. A device optimized for spectral resolution and higher order suppression will be tested on the CDX-U and NSTX tokamak at Princeton Plasma Physics Laboratory. Work supported by DoE grant No. DE-FG02-86ER52314ATDoE

  11. The influence of different cellular environments on PET radioligand binding: an application to D2/3-dopamine receptor imaging.

    PubMed

    Quelch, Darren R; Withey, Sarah L; Nutt, David J; Tyacke, Robin J; Parker, Christine A

    2014-10-01

    Various D2/3 receptor PET radioligands are sensitive to endogenous dopamine release in vivo. The Occupancy Model is generally used to interpret changes in binding observed in in vivo competition binding studies; an Internalisation Hypothesis may also contribute to these changes in signal. Extension of in vivo competition imaging to other receptor systems has been relatively unsuccessful. A greater understanding of the cellular processes underlying signal changes following endogenous neurotransmitter release may help translate this imaging paradigm to other receptor systems. To investigate the Internalisation Hypothesis we assessed the effects of different cellular environments, representative of those experienced by a receptor following agonist-induced internalisation, on the binding of three D2/3 PET ligands with previously reported sensitivities to endogenous dopamine in vivo, namely [3H]spiperone, [3H]raclopride and [3H]PhNO. Furthermore, we determined the contribution of each cellular compartment to total striatal binding for these D2/3 ligands. These studies suggest that sensitivity to endogenous dopamine release in vivo is related to a decrease in affinity in the endosomal environment compared with those found at the cell surface. In agreement with these findings we also demonstrate that ∼25% of total striatal binding for [3H]spiperone originates from sub-cellular, microsomal receptors, whereas for [3H]raclopride and [3H]PhNO, this fraction is lower, representing ∼14% and 17%, respectively. This pharmacological approach is fully translatable to other receptor systems. Assessment of affinity shifts in different cellular compartments may play a crucial role for understanding if a radioligand is sensitive to endogenous release in vivo, for not just the D2/3, but other receptor systems.

  12. Chemical Imaging of Heterogeneous Muscle Foods Using Near-Infrared Hyperspectral Imaging in Transmission Mode.

    PubMed

    Wold, Jens Petter; Kermit, Martin; Segtnan, Vegard Herman

    2016-06-01

    Foods and biomaterials are, in general, heterogeneous and it is often a challenge to obtain spectral data which are representative for the chemical composition and distribution. This paper presents a setup for near-infrared (NIR) transmission imaging where the samples are completely trans-illuminated, probing the entire sample. The system measures falling samples at high speed and consists of an NIR imaging scanner covering the spectral range 760-1040 nm and a powerful line light source. The investigated samples were rather big: whole pork bellies of thickness up to 5 cm, salmon fillets with skin, and 3 cm thick model samples of ground pork meat. Partial least square regression models for fat were developed for ground pork and salmon fillet with high correlations (R = 0.98 and R = 0.95, respectively). The regression models were applied at pixel level in the hyperspectral transmission images and resulted in images of fat distribution where also deeply embedded fat clearly contributed to the result. The results suggest that it is possible to use transmission imaging for rapid, nondestructive, and representative sampling of very heterogeneous foods. The proposed system is suitable for industrial use. © The Author(s) 2016.

  13. Imaging dopamine release with Positron Emission Tomography (PET) and (11)C-raclopride in freely moving animals.

    PubMed

    Patel, Vinal D; Lee, Dianne E; Alexoff, David L; Dewey, Stephen L; Schiffer, Wynne K

    2008-07-01

    We investigated an imaging strategy that provides simultaneous measurements of radiotracer binding and behavior in awake, freely moving animals. In this strategy, animals are injected intravenously (i.v.) through a catheterized line and permitted to move freely for 30 min during uptake of the imaging agent, in this case 11C-raclopride. After this Awake Uptake period, animals are anesthetized and scanned for 25 min. We tested the utility of this strategy for measuring changes in striatal 11C-raclopride binding under control conditions (awake and freely moving in the home cage) and with several drug challenges: a loading dose of unlabeled raclopride, pretreatment with methamphetamine (METH) or pretreatment with gamma-vinyl-GABA [S+-GVG] followed by METH. An additional group of animals underwent a stress paradigm that we have previously shown increases brain dopamine. For drug challenge experiments, the change in 11C-raclopride binding was compared to data from animals that were anesthetized for the uptake period ("Anesthetized Uptake") and full time activity curves were used to calculate 11C-raclopride binding. Regardless of the drug treatment protocol, there was no difference in 11C-raclopride striatum to cerebellum ratio between the Awake versus the Anesthetized Uptake conditions. Awake and Anesthetized groups demonstrated over 90% occupancy of dopamine receptors with a loading dose of cold raclopride, both groups demonstrated approximately 30% reduction in 11C-raclopride binding from METH pretreatment and this effect was modulated to the same degree by GVG under both uptake conditions. Restraint during Awake Uptake decreased 11C-raclopride binding by 29%. These studies support a unique molecular imaging strategy in which radiotracer uptake occurs in freely moving animals, after which they are anesthetized and scanned. This imaging strategy extends the applicability of small animal PET to include functional neurotransmitter imaging and the neurochemical correlates

  14. Near-Field Terahertz Transmission Imaging at 0.210 Terahertz Using a Simple Aperture Technique

    DTIC Science & Technology

    2015-10-01

    diffraction-limited and near-field terahertz transmission imaging . The target is a 3-by-3 inch glass plate with a thin coating of chrome. The...TECHNICAL REPORT RDMR-WD-15-22 NEAR-FIELD TERAHERTZ TRANSMISSION IMAGING AT 0.210 TERAHERTZ USING A SIMPLE APERTURE TECHNIQUE...Final 4. TITLE AND SUBTITLE Near-Field Terahertz Transmission Imaging at 0.210 Terahertz Using a Simple Aperture Technique 5. FUNDING NUMBERS

  15. Imaging the Insertion of Superecliptic pHluorin-Labeled Dopamine D2 Receptor Using Total Internal Reflection Fluorescence Microscopy.

    PubMed

    Daly, Kathryn M; Li, Yun; Lin, Da-Ting

    2015-01-05

    A better understanding of mechanisms governing receptor insertion to the plasma membrane (PM) requires an experimental approach with excellent spatial and temporal resolutions. Here we present a strategy that enables dynamic visualization of insertion events for dopamine D2 receptors into the PM. This approach includes tagging a pH-sensitive GFP, superecliptic pHluorin, to the extracellular domain of the receptor. By imaging pHluorin-tagged receptors under total internal reflection fluorescence microscopy (TIRFM), we were able to directly visualize individual receptor insertion events into the PM in cultured neurons. This novel imaging approach can be applied to both secreted proteins and many membrane proteins with an extracellular domain labeled with superecliptic pHluorin, and will ultimately allow for detailed dissections of the key mechanisms governing secretion of soluble proteins or the insertion of different membrane proteins to the PM.

  16. Strain dependence of adolescent Cannabis influence on heroin reward and mesolimbic dopamine transmission in adult Lewis and Fischer 344 rats.

    PubMed

    Cadoni, Cristina; Simola, Nicola; Espa, Elena; Fenu, Sandro; Di Chiara, Gaetano

    2015-01-01

    Adolescent Cannabis exposure has been hypothesized to act as a gateway to opiate abuse. In order to investigate the role of genetic background in cannabinoid-opiate interactions, we studied the effect of Δ(9) -tetrahydrocannabinol (THC) exposure of adolescent Lewis and Fischer 344 rats on the responsiveness of accumbens shell and core dopamine (DA), as monitored by microdialysis, to THC and heroin at adulthood. Heroin reward and reinstatement by heroin priming were studied by conditioned place preference (CPP) and cognitive and emotional functions by object recognition, Y maze and elevated plus maze paradigms. THC stimulated shell DA in Lewis but not in Fischer 344 rats. Adolescent THC exposure potentiated DA stimulant effects of heroin in the shell and core of Lewis and only in the core of Fischer 344 rats. Control Lewis rats developed stronger CPP to heroin and resistance to extinction compared with Fischer 344 strain. In Lewis rats, THC exposure did not affect heroin CPP but potentiated the effect of heroin priming. In Fischer 344 rats, THC exposure increased heroin CPP and made it resistant to extinction. Lewis rats showed seeking reactions during extinction and hedonic reactions in response to heroin priming. Moreover, adolescent THC exposure affected emotional function only in Lewis rats. These observations suggest that long-term effects of Cannabis exposure on heroin addictive liability and emotionality are dependent on individual genetic background.

  17. The role of dopamine D1 receptor transmission in effort-related choice behavior: Effects of D1 agonists.

    PubMed

    Yohn, Samantha E; Santerre, Jessica L; Nunes, Eric J; Kozak, Rouba; Podurgiel, Samantha J; Correa, Mercè; Salamone, John D

    2015-08-01

    Mesolimbic dopamine (DA), particularly in the nucleus accumbens, is a critical component of the brain circuitry involved in behavioral activation and effort-related processes. Although much is known about the characteristics of DA D2 receptor antagonism on effort-related choice behavior, less is known about the effects of D1 antagonism, and agonist/antagonist interactions. The highly selective D1 antagonist ecopipam was studied for its effects on effort-related choice behavior using the concurrent fixed ratio (FR) 5/chow feeding choice and T-maze barrier choice procedures. In rats tested on the FR5/chow feeding choice task, ecopipam shifted choice behavior, decreasing lever pressing for preferred high carbohydrate pellets but increasing consumption of lab chow. Also, ecopipam decreased selection of the high effort option (i.e., climbing the barrier to obtain a larger reward) in rats tested on the T-maze task, but did not disrupt arm preference or discrimination when no barrier was present. The D1 agonists SKF38393, SKF81297 and A77636 were assessed for their ability to reverse the effects of ecopipam, and in each case the D1 agonist significantly attenuated the effects of ecopipam, typically with an inverted-u shaped dose/response curve. SKF81297 also was able to reverse the effects of the catecholamine depleting agent tetrabenazine on T-maze performance. In summary, the present results implicate DA D1 receptors in the regulation of behavioral activation and effort-related functions, and demonstrate the utility of using tests of effort-related choice behavior for assessing the effects of D1 agonists.

  18. Compound image compression for real-time computer screen image transmission.

    PubMed

    Lin, Tony; Hao, Pengwei

    2005-08-01

    We present a compound image compression algorithm for real-time applications of computer screen image transmission. It is called shape primitive extraction and coding (SPEC). Real-time image transmission requires that the compression algorithm should not only achieve high compression ratio, but also have low complexity and provide excellent visual quality. SPEC first segments a compound image into text/graphics pixels and pictorial pixels, and then compresses the text/graphics pixels with a new lossless coding algorithm and the pictorial pixels with the standard lossy JPEG, respectively. The segmentation first classifies image blocks into picture and text/graphics blocks by thresholding the number of colors of each block, then extracts shape primitives of text/graphics from picture blocks. Dynamic color palette that tracks recent text/graphics colors is used to separate small shape primitives of text/graphics from pictorial pixels. Shape primitives are also extracted from text/graphics blocks. All shape primitives from both block types are losslessly compressed by using a combined shape-based and palette-based coding algorithm. Then, the losslessly coded bitstream is fed into a LZW coder. Experimental results show that the SPEC has very low complexity and provides visually lossless quality while keeping competitive compression ratios.

  19. In vitro and in vivo evaluation of (/sup 123/I)IBZM: a potential CNS D-2 dopamine receptor imaging agent

    SciTech Connect

    Kung, H.F.; Pan, S.; Kung, M.P.; Billings, J.; Kasliwal, R.; Reilley, J.; Alavi, A.

    1989-01-01

    In vitro binding characteristics of a CNS dopamine D-2 receptor imaging agent, (S)-N-((1-ethyl-2-pyrrolidinyl)) methyl-2-hydroxy-3-iodo-6-methoxybenzamide ((/sup 125/I)IBZM), was carried out in rats. Also brain images, as well as organ biodistribution were determined in a monkey following the administration of /sup 123/I-labeled compound. The S-(-)-I(/sup 125/I)IBZM showed high specific dopamine D-2 receptor binding in rat striatum (Kd = 0.426 +/- 0.082 nM, Bmax = 480 +/- 22 fmol/mg of protein). Competition of various ligands for the IBZM binding displayed the following rank order of potency: spiperone greater than S(-)IBZM much greater than R(+)IBZM greater than or equal to S(-)BZM greater than dopamine greater than ketanserin greater than SCH-23390 much greater than propranolol, norepinephrine, serotonin. In vivo planar images of a monkey injected with (/sup 123/I)IBZM demonstrated a high concentration in basal ganglia of brain. The ratios of activity in the basal ganglia to cerebellum and the cortex to cerebellum in monkey brain were 4.93 and 1.44, respectively, at 120 min postinjection. These preliminary results indicate that (/sup 123/I)IBZM is a potentially promising imaging agent for the investigation of dopamine D-2 receptors in humans.

  20. A novel data transmission circuit for digital image sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Jiqing; Li, Zhengfen; Zhong, Shengyou; Yao, Libin

    2015-04-01

    A novel data transmission circuit for digital image sensors is presented. Large amounts of data are divided into m groups of n bits each. Each group of data is stored in an n-bit shift register. Under the control of a column scanner, at a time, only one group of data is selected to output serially to a common output line. Thus, as the scanner scans all the groups of data, the large amounts of data are serially output through the common line. A current-mode circuit transforms the output data into a low voltage swing signal which propagates over the common output line fast. A sense amplifier receives the low voltage swing signal and then recovers the full swing signal. Finally, a low-voltage differential signaling ( LVDS ) transmitter, which is fed with the full swing signal, transmits the data out chip. Because there is always only one of the m shift registers operating, the power consumption is greatly reduced. The simulation results show that the proposed circuit works correctly at a date rate of 400Mb/s. For n=14, and m=8, 32, 128, and 256, the power consumption of the prototype is as low as 1/4, 1/15, 1/50, and 1/80 that of the traditional serial link respectively.

  1. Imaging movement of malaria parasites during transmission by Anopheles mosquitoes.

    PubMed

    Frischknecht, Friedrich; Baldacci, Patricia; Martin, Béatrice; Zimmer, Christophe; Thiberge, Sabine; Olivo-Marin, Jean-Christophe; Shorte, Spencer L; Ménard, Robert

    2004-07-01

    Malaria is contracted when Plasmodium sporozoites are inoculated into the vertebrate host during the blood meal of a mosquito. In infected mosquitoes, sporozoites are present in large numbers in the secretory cavities of the salivary glands at the most distal site of the salivary system. However, how sporozoites move through the salivary system of the mosquito, both in resting and feeding mosquitoes, is unknown. Here, we observed fluorescent Plasmodium berghei sporozoites within live Anopheles stephensi mosquitoes and their salivary glands and ducts. We show that sporozoites move in the mosquito by gliding, a type of motility associated with their capacity to invade host cells. Unlike in vitro, sporozoite gliding inside salivary cavities and ducts is modulated in speed and motion pattern. Imaging of sporozoite discharge through the proboscis of salivating mosquitoes indicates that sporozoites need to locomote from cavities into ducts to be ejected and that their progression inside ducts favours their early ejection. These observations suggest that sporozoite gliding allows not only for cell invasion but also for parasite locomotion in host tissues, and that it may control parasite transmission.

  2. Dopamine D4 receptor transmission in the prefrontal cortex controls the salience of emotional memory via modulation of calcium calmodulin-dependent kinase II.

    PubMed

    Lauzon, Nicole M; Ahmad, Tasha; Laviolette, Steven R

    2012-11-01

    Dopamine (DA) signaling in the medial prefrontal cortex (mPFC) plays a critical role in the processing of emotional information and memory encoding. Activation of DA D4 receptors within the prelimbic (PLC) division of the mPFC bidirectionally modulates emotional memory by strongly potentiating the salience of normally nonsalient emotional memories but blocking the acquisition of suprathreshold emotionally salient fear memories. Previous in vitro studies have shown that activation of cortical DA D4 receptors can bidirectionally modulate levels of α-calcium calmodulin-dependent kinase II (α-CaMKII), a molecule essential for learning and memory. Using an olfactory fear conditioning procedure in rats combined with microinfusions into the mPFC, we examined the potential role of D4 receptor-mediated control of emotional memory salience through signaling via CaMKII, cAMP/protein kinase A (PKA), and protein phosphatase-1 (PP1) signaling. We report that CaMKII blockade prevents the ability of intra-mPFC DA D4 receptor activation to potentiate the salience of subthreshold fear memory. In contrast, blockade of either cAMP/PKA or PP1 signaling pathways rescued the blockade of suprathreshold fear memory via intra-mPFC D4 receptor activation. Our results demonstrate that modulation of emotional memory salience via intra-mPFC DA D4 receptor transmission depends upon downstream signaling via CaMKII, cAMP/PKA, and PP1 substrates.

  3. Linkage disequilibrium between an allele at the dopamine D4 receptor locus and Tourette syndrome, by the transmission-disequilibrium test

    SciTech Connect

    Grice, D.E.; Gelernter, J.; Leckman, J.F.; Pauls, D.L.

    1996-09-01

    Dopaminergic abnormalities are implicated in the pathogenesis of Tourette syndrome (TS) and chronic multiple tics. We used the transmission-disequilibrium test (TDT) method to test for linkage disequilibrium between a specific allele (the seven-repeat allele (DRD4*7R) of the exon 3 VNTR polymorphic site) at the D4 dopamine receptor locus (DRD4) and expression of chronic multiple tics and TS. This particular allele had been shown in functional studies to have different binding properties compared with the other common alleles in this DRD4 polymorphic system. We studied 64 family trios (consisting of an affected person and two parents, at least one heterozygous for DRD4*7R), including 12 nuclear family trios and 52 trios from four large TS kindreds. The DRD4*7R allele was transmitted significantly more frequently than expected ({chi}{sup 2}{sub TDT} ranging from 8.47 [P < .004] to 10.80 [P = .001], depending on breadth of disease definition and inclusion or exclusion of inferred genotypes). Confirmation of this finding will depend on either replication in other samples or the identification of a transmitted functional mutation within this sample. 56 refs., 2 figs., 3 tabs.

  4. Behavioral sensitization to delta 9-tetrahydrocannabinol and cross-sensitization with morphine: differential changes in accumbal shell and core dopamine transmission.

    PubMed

    Cadoni, Cristina; Valentini, Valentina; Di Chiara, Gaetano

    2008-08-01

    Although cannabinoid-induced behavioral sensitization and cross-sensitization with opiates has been recently demonstrated, no information is available on the associated state and responsiveness of dopamine (DA) transmission in the nucleus accumbens (NAc) shell and core. In this study we investigate by means of dual probe microdialysis, the effect of exposure to a sensitizing regimen of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and morphine on the extracellular concentrations of DA under basal conditions and after challenge with Delta(9)-THC and morphine in the NAc shell and core. Different groups of male Sprague-Dawley rats were administered twice daily for 3 days with increasing doses of Delta(9)-THC (2, 4, and 8 mg/kg i.p.), morphine (10, 20, and 40 mg/kg s.c.), and vehicle. After 14-20 days from the last injection, the animals were implanted with two microdialysis probes, one aimed at the NAc shell and the other at the core. The following day animals pre-treated with Delta(9)-THC and vehicle controls were challenged with 150 microg/kg i.v. of Delta(9)-THC or 0.5 mg/kg i.v. of morphine. Animals pre-treated with morphine and their vehicle controls were administered with 150 microg/kg i.v. of Delta(9)-THC. Rats pre-exposed to Delta(9)-THC showed behavioral sensitization associated with a reduced stimulation of DA transmission in the NAc shell and an increased stimulation in the NAc core in response to Delta(9)-THC challenge. Pre-exposure to Delta(9)-THC induced behavioral sensitization to morphine also, but only a reduced stimulation of DA transmission in the NAc shell was observed. Animals pre-treated with morphine showed behavioral sensitization and differential changes of DA in the NAc shell and core in response to Delta(9)-THC challenge with a decreased response in the shell and an increased response in the core. The results show that Delta(9)-THC-induced behavioral sensitization is associated with changes in the responsiveness of DA transmission in the NAc

  5. Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S.

    PubMed

    Li, Xianting; Patel, Jyoti C; Wang, Jing; Avshalumov, Marat V; Nicholson, Charles; Buxbaum, Joseph D; Elder, Gregory A; Rice, Margaret E; Yue, Zhenyu

    2010-02-03

    PARK8/LRRK2 (leucine-rich repeat kinase 2) was recently identified as a causative gene for autosomal dominant Parkinson's disease (PD), with LRRK2 mutation G2019S linked to the most frequent familial form of PD. Emerging in vitro evidence indicates that aberrant enzymatic activity of LRRK2 protein carrying this mutation can cause neurotoxicity. However, the physiological and pathophysiological functions of LRRK2 in vivo remain elusive. Here we characterize two bacterial artificial chromosome (BAC) transgenic mouse strains overexpressing LRRK2 wild-type (Wt) or mutant G2019S. Transgenic LRRK2-Wt mice had elevated striatal dopamine (DA) release with unaltered DA uptake or tissue content. Consistent with this result, LRRK2-Wt mice were hyperactive and showed enhanced performance in motor function tests. These results suggest a role for LRRK2 in striatal DA transmission and the consequent motor function. In contrast, LRRK2-G2019S mice showed an age-dependent decrease in striatal DA content, as well as decreased striatal DA release and uptake. Despite increased brain kinase activity, LRRK2-G2019S overexpression was not associated with loss of DAergic neurons in substantia nigra or degeneration of nigrostriatal terminals at 12 months. Our results thus reveal a pivotal role for LRRK2 in regulating striatal DA transmission and consequent control of motor function. The PD-associated mutation G2019S may exert pathogenic effects by impairing these functions of LRRK2. Our LRRK2 BAC transgenic mice, therefore, could provide a useful model for understanding early PD pathological events.

  6. Dual-source RF transmission in cardiac SSFP imaging at 3 T: systematic spatial evaluation of image quality improvement compared to conventional RF transmission.

    PubMed

    Rasper, Michael; Gramer, Bettina M; Settles, Marcus; Laugwitz, Karl-Ludwig; Ibrahim, Tareq; Rummeny, Ernst J; Huber, Armin

    2015-01-01

    The purpose of this investigation was to systematically evaluate the spatial distribution of image quality improvement with dual-source radiofrequency (RF) transmission in cardiac steady-state free precession sequences at 3.0 T. Imaging with and without dual-source RF transmission was performed in 30 patients. Contrast-to-noise ratio for the left ventricular myocardium was significantly higher using dual-source RF transmission, but improvement was not uniformly distributed. The posterior myocardium showed significantly less contrast-to-noise ratio gain than all other cardiac regions. Signal-to-noise ratio increase was higher in the right than in the left ventricle. Subjective image quality was significantly enhanced by parallel RF transmission.

  7. [¹¹C]-(+)-PHNO PET imaging of dopamine D(2/3) receptors in Parkinson's disease with impulse control disorders.

    PubMed

    Payer, Doris E; Guttman, Mark; Kish, Stephen J; Tong, Junchao; Strafella, Antonio; Zack, Martin; Adams, John R; Rusjan, Pablo; Houle, Sylvain; Furukawa, Yoshiaki; Wilson, Alan A; Boileau, Isabelle

    2015-02-01

    Dopamine agonist medications with high affinity for the D3 dopamine receptor are commonly used to treat Parkinson's disease, and have been associated with pathological behaviors categorized under the umbrella of impulse control disorders (ICD). The aim of this study was to investigate whether ICD in Parkinson's patients are associated with greater D3 dopamine receptor availability. We used positron emission tomography (PET) radioligand imaging with the D3 dopamine receptor preferring agonist [¹¹C]-(+)-propyl-hexahydro-naphtho-oxazin (PHNO) in Parkinson's patients with (n = 11) and without (n = 21) ICD, and age-, sex-, and education-matched healthy control subjects (n = 18). Contrary to hypotheses, [¹¹C]-(+)-PHNO binding in D3 -rich brain areas was not elevated in Parkinson's patients with ICD compared with those without; instead, [¹¹C]-(+)-PHNO binding in ventral striatum was 20% lower (P = 0.011), correlating with two measures of ICD severity (r = -0.8 and -0.9), which may reflect higher dopamine tone in ventral striatum. In dorsal striatum, where [¹¹C]-(+)-PHNO binding is associated with D2 receptor levels, [¹¹C]-(+)-PHNO binding was elevated across patients compared with controls. We conclude that although D3 dopamine receptors have been linked to the occurrence of ICD in Parkinson's patients. Our findings do not support the hypothesis that D3 receptor levels are elevated in Parkinson's patients with ICD. We also did not find ICD-related abnormalities in D2 receptor levels. Our findings argue against the possibility that differences in D2/3 receptor levels can account for the development of ICD in PD; however, we cannot rule out that differences in dopamine levels (particularly in ventral striatum) may be involved. © 2015 International Parkinson and Movement Disorder Society.

  8. Biodistribution and radiation dosimetry of radioiodinated-SCH 23982, a potential dopamine D-1 receptor imaging agent

    SciTech Connect

    Thonoor, C.M.; Couch, M.W.; Greer, D.M.; Thomas, K.D.; Williams, C.M.

    1988-10-01

    Radioiodinated-SCH 23982 is a potential agent for the imaging of dopamine D-1 receptors in the human brain. In vivo binding of (125I)SCH 23982 to D-1 receptors in rat brain was determined over 4 hr. The ratio of activity in striatum and frontal cortex to that in cerebellum increased over the first 2 hr to maximum values of 4.4:1 and 2.1:1, respectively. The percent injected dose in whole brain at 0.5 and 2 hr were 0.62 and 0.15, respectively. Administration of the antagonists propranolol (beta-1), prazosin (alpha-1), haloperidol (D-2) and ketanserin (5HT-2) did not significantly alter the striatum/cerebellum ratio; however, SCH 23390, a D-1 antagonist, totally blocked ligand uptake by striatum and frontal cortex. Biologic distribution data in the rat were determined after injection of 3 microCi of (125I)SCH 23982. 76% of the injected dose was excreted in 48 hr via the liver and kidneys. Internal radiation absorbed dose estimates to nine source organs, total body, the GI tract, gonads and red bone marrow were calculated for humans using the physical decay data for 123I. The critical organ was found to be the lower large intestine which received 1.1 rad/mCi of the administered dose. The total-body dose was 63 mrad/mCi. The data indicate that (123I)SCH 23982 should be a suitable agent for imaging the D-1 dopamine receptor in the human brain by single photon emission computed tomography.

  9. It's MORe exciting than mu: crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system.

    PubMed

    Chartoff, Elena H; Connery, Hilary S

    2014-01-01

    Opioids selective for the G protein-coupled mu opioid receptor (MOR) produce potent analgesia and euphoria. Heroin, a synthetic opioid, is considered one of the most addictive substances, and the recent exponential rise in opioid addiction and overdose deaths has made treatment development a national public health priority. Existing medications (methadone, buprenorphine, and naltrexone), when combined with psychosocial therapies, have proven efficacy in reducing aspects of opioid addiction. Unfortunately, these medications have critical limitations including those associated with opioid agonist therapies (e.g., sustained physiological dependence and opioid withdrawal leading to high relapse rates upon discontinuation), non-adherence to daily dosing, and non-renewal of monthly injection with extended-release naltrexone. Furthermore, current medications fail to ameliorate key aspects of addiction such as powerful conditioned associations that trigger relapse (e.g., cues, stress, the drug itself). Thus, there is a need for developing novel treatments that target neural processes corrupted with chronic opioid use. This requires a basic understanding of molecular and cellular mechanisms underlying effects of opioids on synaptic transmission and plasticity within reward-related neural circuits. The focus of this review is to discuss how crosstalk between MOR-associated G protein signaling and glutamatergic neurotransmission leads to immediate and long-term effects on emotional states (e.g., euphoria, depression) and motivated behavior (e.g., drug-seeking, relapse). Our goal is to integrate findings on how opioids modulate synaptic release of glutamate and postsynaptic transmission via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in the nucleus accumbens and ventral tegmental area with the clinical (neurobehavioral) progression of opioid dependence, as well as to identify gaps in knowledge that can be addressed in future studies.

  10. Design of infrared images high speed transmission technology based on fiber

    NASA Astrophysics Data System (ADS)

    Yang, Xing; Pan, Debin; Hong, Pu; Wang, Chensheng

    2010-11-01

    Due to the development of IR FPAs resolution and the transmission speed of the images, the requirement for the high speed IR images transmission becomes a significant part in the whole IR imaging system. The fiber based transmission method is proved to be a promising technique which can replace the traditional methods based on the electrical signals. This paper introduces the design of digital IR images transmission technique based on fiber, according to the characteristics of IR imaging data. This long wire transmission is accomplished utilizing the FPGA which is designed to control the data cushion synthesis process, receive the high speed imaging data and send out the real time VGA images. FPGA provides the reference clock signals to help the encoder convert the 16 bits parallel imaging data into the serial LVDS signals. Then the MAX9376 chip is introduced to convert the LVDS signals into the LVPECL signals, for only the LVPECL signals can be received by the laser diode. The receiving process is just opposite, where the LVPECL signals are finally converted into the parallel data. To verify this design, the VGA controller function is achieved by Verilog HDL programming in FPGA, so that the parallel IR imaging data can be converted into the high resolution images. The experiment images show that the effective resolution of the image in 64Mhz is 1024×800, and the transmission rate reaches 1.125Gb/s which is much higher than the traditional methods and fully satisfies the requirement for the long distance IR imaging data transmission.

  11. Parallel Information Processing (Image Transmission Via Fiber Bundle and Multimode Fiber

    NASA Technical Reports Server (NTRS)

    Kukhtarev, Nicholai

    2003-01-01

    Growing demand for visual, user-friendly representation of information inspires search for the new methods of image transmission. Currently used in-series (sequential) methods of information processing are inherently slow and are designed mainly for transmission of one or two dimensional arrays of data. Conventional transmission of data by fibers requires many fibers with array of laser diodes and photodetectors. In practice, fiber bundles are also used for transmission of images. Image is formed on the fiber-optic bundle entrance surface and each fiber transmits the incident image to the exit surface. Since the fibers do not preserve phase, only 2D intensity distribution can be transmitted in this way. Each single mode fiber transmit only one pixel of an image. Multimode fibers may be also used, so that each mode represent different pixel element. Direct transmission of image through multimode fiber is hindered by the mode scrambling and phase randomization. To overcome these obstacles wavelength and time-division multiplexing have been used, with each pixel transmitted on a separate wavelength or time interval. Phase-conjugate techniques also was tested in, but only in the unpractical scheme when reconstructed image return back to the fiber input end. Another method of three-dimensional imaging over single mode fibers was demonstrated in, using laser light of reduced spatial coherence. Coherence encoding, needed for a transmission of images by this methods, was realized with grating interferometer or with the help of an acousto-optic deflector. We suggest simple practical holographic method of image transmission over single multimode fiber or over fiber bundle with coherent light using filtering by holographic optical elements. Originally this method was successfully tested for the single multimode fiber. In this research we have modified holographic method for transmission of laser illuminated images over commercially available fiber bundle (fiber endoscope, or

  12. Feasibility of Computed Tomography-Guided Methods for Spatial Normalization of Dopamine Transporter Positron Emission Tomography Image

    PubMed Central

    Kim, Jin Su; Cho, Hanna; Choi, Jae Yong; Lee, Seung Ha; Ryu, Young Hoon; Lyoo, Chul Hyoung; Lee, Myung Sik

    2015-01-01

    -guided methods showed comparable capability with the MR-guided methods in separating PD patients from controls and showed better correlation between putaminal SUVR values and the parkinsonian motor severity than the PET-guided method. Conclusion CT-guided spatial normalization methods provided reliable striatal SUVR values comparable to those obtained with MR-guided methods. CT-guided methods can be useful for analyzing dopamine transporter PET images when MR images are unavailable. PMID:26147749

  13. Robust layered image transmission based on genetic programming for noisy channels

    NASA Astrophysics Data System (ADS)

    Hwang, Wen-Jyi; Lin, Ray-Shine; Wu, Chung-Kun

    2001-02-01

    We present a novel robust layered image transmission design algorithm for noisy channels. In the algorithm, the layered embedded zerotree wavelet coding technique is used to encode the images for the transmission of each layer. A new error protection allocation scheme based on genetic programming is then employed to determine the degree of protection for each layer so that the average distortion of the reconstructed images after transmission can be minimized. Simulation results show that, subject to the same amount of redundancy bits for error protection, the new algorithm outperforms other existing algorithms where equal- protection schemes are adopted.

  14. Transmission d'image en couleurs dans une seule fibre optique.

    PubMed

    Calatroni, J; Froehly, C; Al Mawie, H

    1987-06-01

    Two-dimensional color image transmission through a single multimode fiber using only passive spectroscopic components (echelette type diffraction gratings) will be demonstrated experimentally and discussed theoretically with two different performances: (a) nine image pixels, seven distinct colors per pixel; (b) about forty image pixels and three colors per pixel. The present technical limits will be discussed.

  15. Brominated and radioiodinated derivatives of methylphenidate (MP): Potential imaging agents for the dopamine (DA) transporter

    SciTech Connect

    Pan, D.; Gatley, S.J.; Dewey, S.L.

    1994-05-01

    MP (Ritalin) is a psychomotor stimulant used in the treatment of attention-deficit hyperactivity disorder. The therapeutic properties of MP are thought to be mediated by its binding to a site on the DA transporter, resulting in inhibition of DA reuptake and enhanced levels of synaptic dopamine. MP also inhibits reuptake of norepinephrine (NE) in vitro. MP has two chiral centers, but its pharmacological activity is believed due solely to the d-threo isomer. We have found that d,l-threo-C-11 MP has favorable properties for PET studies, and therefore examined the effects of incorporating halogen atoms into the phenyl ring of MP, with a view to preparing C-11 and I-123 MP analogs as potential PET/SPECT tracers. We synthesized the 2-, 3- and 4-bromo MP analogs from the corresponding bromophenylacetonitriles by modification of the original synthesis of MP. In in vitro binding assays all three d,l-threo bromo compounds had higher affinities than MP for DA transporter sites labeled with tritiated WIN 35,428 (3->4-, 2->MP). They also showed high activity with NE reuptake sites labeled with tritiated nisoxetine. They were active in vivo as demonstrated by inhibition of heart uptake of tritiated NE in the mouse, and elevation of striatal extracellular DA (microdialysis) and stimulation of locomotor activity in the rat.

  16. Transmission line galloping image monitoring system based on digital signal processor

    NASA Astrophysics Data System (ADS)

    Ren, Hai Peng; Ma, Zhan Feng

    2011-06-01

    An embedded image monitoring system based on TMS320DM642 Digital Signal Processor (DSP) is proposed for the transmission line monitoring. The system can detect galloping, ice or snow covering, and other abnormal status of the transmission line in a real time mode. The image detection algorithms are compared using the controlled experiment under the complex weather environment, thereby, a set of image processing algorithms is proposed for transmission lines image monitoring. The DSP/BOIS multi-threaded programming techniques are used to realize the algorithm in the DSPs' embedded software. A wireless communication based on General Packet Radio Service (GPRS) module is designed to transmit the detection results and the changed information of the image to the monitoring center, so that the operators can get the real time status of the transmission line. The application of the system will play an important role in the condition-based maintenance of power transmission lines and improve the reliability of power delivery system. Transmission line; Status monitoring; Complex weather factor; Image filtering and sharpening; Image segment; Morphological filtering; Wireless communication; Digital signal processor; Multi-threaded programming.

  17. Imaging the high-affinity state of the dopamine D2 receptor in vivo: Fact or fiction?

    PubMed Central

    Skinbjerg, Mette; Sibley, David R.; Javitch, Jonathan A.; Abi-Dargham, Anissa

    2013-01-01

    Positron Emission Tomography (PET) has been used for more than three decades to image and quantify dopamine D2 receptors (D2R) in vivo with antagonist radioligands but in the recent years agonist radioligands have also been employed. In vitro competition studies have demonstrated that agonists bind to both a high and a low-affinity state of the D2Rs, of which the high affinity state reflects receptors that are coupled to G-proteins and the low-affinity state reflects receptors uncoupled from G-proteins. In contrast, antagonists bind with uniform affinity to the total pool of receptors. Results of these studies led to the proposal that D2Rs exist in high and low-affinity states for agonists in vivo and sparked the development and use of agonist radioligands for PET imaging with the primary purpose of measuring the proportion of receptors in the high-affinity (activating) state. Although several lines of research support the presence of high and low-affinity states of D2Rs and their detection by in vivo imaging paradigms, a growing body of controversial data has now called this into question. These include both in vivo and ex vivo studies of anesthesia effects, rodent models with increased proportions of high-affinity state D2Rs as well as the molecular evidence for stable receptor–G-protein complexes. In this commentary we review these data and discuss the evidence for the in vivo existence of D2Rs configured in high and low-affinity states and whether or not the high-affinity state of the D2R can, in fact, be imaged in vivo with agonist radioligands. PMID:21945484

  18. Progressive transmission of secured images with authentication using decompositions into monovariate functions

    NASA Astrophysics Data System (ADS)

    Leni, Pierre-Emmanuel; Fougerolle, Yohan D.; Truchetet, Frédéric

    2014-05-01

    We propose a progressive transmission approach of an image authenticated using an overlapping subimage that can be removed to restore the original image. Our approach is different from most visible watermarking approaches that allow one to later remove the watermark, because the mark is not directly introduced in the two-dimensional image space. Instead, it is rather applied to an equivalent monovariate representation of the image. Precisely, the approach is based on our progressive transmission approach that relies on a modified Kolmogorov spline network, and therefore inherits its advantages: resilience to packet losses during transmission and support of heterogeneous display environments. The marked image can be accessed at any intermediate resolution, and a key is needed to remove the mark to fully recover the original image without loss. Moreover, the key can be different for every resolution, and the images can be globally restored in case of packet losses during the transmission. Our contributions lie in the proposition of decomposing a mark (an overlapping image) and an image into monovariate functions following the Kolmogorov superposition theorem; and in the combination of these monovariate functions to provide a removable visible "watermarking" of images with the ability to restore the original image using a key.

  19. Relation between Dopamine Synthesis Capacity and Cell-Level Structure in Human Striatum: A Multi-Modal Study with Positron Emission Tomography and Diffusion Tensor Imaging

    PubMed Central

    Kawaguchi, Hiroshi; Obata, Takayuki; Takano, Harumasa; Nogami, Tsuyoshi; Suhara, Tetsuya; Ito, Hiroshi

    2014-01-01

    Positron emission tomography (PET) study has shown that dopamine synthesis capacity varied among healthy individuals. This interindividual difference might be due to a difference in the cell-level structure of presynaptic dopaminergic neurons, i.e., cellular density and/or number. In this study, the relations between the dopamine synthesis capacity measured by PET and the parameter estimates in diffusion tensor imaging (DTI) in striatal subregions were investigated in healthy human subjects. DTI and PET studies with carbon-11 labeled L-DOPA were performed in ten healthy subjects. Age-related changes in the above parameters were also considered. Fractional anisotropy showed a significant positive correlation with age in the posterior caudate. There was significant negative correlation between dopamine synthesis capacity and mean diffusivity in the posterior caudate and putamen. Assuming that mean diffusivity reflects the density of wide-spreading axonal terminals in the striatum, the result suggests that dopamine synthesis may be related to the density of dopaminergic neuronal fibers. It is evident that PET/DTI combined measurements can contribute to investigations of the pathophysiology of neuropsychiatric diseases involving malfunction of dopaminergic neurons. PMID:24498218

  20. Dopamine D2 receptor imaging with SPECT: Studies in different neuropsychiatric disorders

    SciTech Connect

    Bruecke, T.P.; Podreka, I.; Angelberger, P.; Wenger, S.; Topitz, A.; Kuefferle, B.M.; Mueller, C.D.; Deecke, L. )

    1991-03-01

    The purpose of the present study is to visualize and quantify dopamine D2 receptors in the living human brain using an 123I-labeled ligand and the single photon emission computerized tomography (SPECT) technique. S-(-)-Iodobenzamide (S-(-)-IBZM) has been shown to be a highly selective ligand with high affinity for D2 receptors in experimental studies. Five millicuries (185 MBq) of 123I-labeled S-(-)-IBZM was administered intravenously to 12 control subjects, 22 parkinsonian patients under L-Dopa therapy, 12 parkinsonian patients without L-Dopa, 10 unmedicated patients with Huntington's disease, and 12 patients under different neuroleptics. Data collection with a rotating double-head scintillation camera started 1 h after injection and lasted for 50 min. In a semiquantitative approach, a ratio was calculated between mean counts per pixel in the striatum and a region in the lateral frontal cortex, which was 1.74 +/- 0.10 in the control group. A marked reduction of this ratio was found in patients with Huntington's disease (1.38 +/- 0.12; p = 0.0001), no significant changes in untreated parkinsonian patients (1.67 +/- 0.14), but a reduction in L-Dopa-treated cases (1.59 +/- 0.13; p = 0.0014). A curvilinear relationship was found between total daily dose of neuroleptics and the reduction of this ratio. Estimated receptor blockade under full neuroleptic treatment was 75-80%. S-(-)-IBZM binding was reduced with increasing age (p less than 0.01). Specific binding was reduced markedly when the racemic mixture of IBZM was used, and no specific binding was seen with the R-(+)-isomer, demonstrating the stereoselectivity of IBZM binding.

  1. Skylab 3 crew images taken from television transmission

    NASA Image and Video Library

    1973-09-19

    S73-34172 (August 1973) --- Scientist-astronaut Owen K. Garriott, Skylab 3 science pilot, watches a drink container spinning and tumbling in zero-gravity during a science demonstration television transmission from the Skylab space station in Earth orbit. Garriott is in the Orbital Workshop (OWS). Photo credit: NASA

  2. Fabrication of CdTe quantum dots-apoferritin arrays for detection of dopamine

    NASA Astrophysics Data System (ADS)

    Le, Thi Hoa; Kim, Ji Hyeon; Park, Sang Joon

    2017-06-01

    A method was proposed for detecting dopamine using a two-dimensional CdTe quantum dots (QDs)-apoferritin array fabricated on a modified silicon (Si) surface. First, CdTe QDs were synthesized in the cavity of horse spleen apoferritin (HsAFr). Then, the characterization of CdTe QDs in apoferritin was performed using photoluminescence (PL) spectroscopy. Transmission electron microscopy was used to analyze the size and structure of CdTe QDs. An atomic force microscopy image was obtained to evaluate the topography of the Si surface. In addition, the PL change resulting from the conjugation reaction of the CdTe QDs-apoferritin array with dopamine was investigated. When the array was linked to dopamine, a significant quenching of fluorescence was observed. Accordingly, the CdTe QDs-apoferritin arrays could be employed as useful sensing media for dopamine detection.

  3. Structure-Guided Directed Evolution of Highly Selective P450-based Magnetic Resonance Imaging Sensors for Dopamine and Serotonin

    PubMed Central

    Brustad, Eric M.; Lelyveld, Victor S.; Snow, Christopher D.; Crook, Nathan; Jung, Sang Taek; Martinez, Francisco M.; Scholl, Timothy J.; Jasanoff, Alan; Arnold, Frances H.

    2012-01-01

    New tools that allow dynamic visualization of molecular neural events are important for studying the basis of brain activity and disease. Sensors that permit ligand-sensitive magnetic resonance imaging (MRI) are useful reagents due to the non-invasive nature and good temporal and spatial resolution of MR methods. Paramagnetic metalloproteins can be effective MRI sensors due to the selectivity imparted by the protein active site and the ability to tune protein properties using techniques such as directed evolution. Here we show that structure-guided directed evolution of the active site of the cytochrome P450 BM3 heme domain (BM3h) produces highly selective MRI probes with sub-micromolar affinities for small molecules. We report a new, high affinity dopamine sensor as well as the first MRI reporter for serotonin, with which we demonstrate quantification of neurotransmitter release in vitro. We also present a detailed structural analysis of evolved BM3h lineages to systematically dissect the molecular basis of neurotransmitter binding affinity, selectivity, and enhanced MRI contrast activity in these engineered proteins. PMID:22659321

  4. [123I]beta-CIT SPECT imaging of dopamine transporter availability after mazindol administration in human cocaine addicts.

    PubMed

    Malison, R T; McCance, E; Carpenter, L L; Baldwin, R M; Seibyl, J P; Price, L H; Kosten, T R; Innis, R B

    1998-06-01

    The in vivo potency of mazindol for binding to striatal dopamine transporters (DAT) was assessed by [123I]beta-CIT ([123I]2beta-carbomethoxy-3beta-(4-iodophenyl)tropane) single photon emission computed tomography (SPECT). Cocaine-dependent subjects (n = 12) underwent three SPECT scans; one before, between, and after subchronic (1 week) administration of 2 mg/day and 4 mg/day mazindol. For each scan, subjects were injected with [123I]beta-CIT and imaged 24 h later under equilibrium conditions. Results showed a statistically significant main effect of mazindol dose (df = 2, F = 10.30, P < 0.001, repeated measures ANOVA) in reducing the specific to non-displaceable equilibrium partition coefficient, V3'' (a measure proportional to DAT binding potential). Regression analysis of the logit transformed data enabled estimation of the 50% displacement dose of mazindol (ED50 = 30mg/day). These data suggest that low doses of mazindol (i.e., 2-4 mg) occupy a small percentage (i.e., < 25%) of DAT in human cocaine abusers and that much higher, potentially intolerable doses (i.e., > or = 30 mg/day) may be required to antagonize significantly cocaine binding in vivo.

  5. Occupational exposure to PCBs reduces striatal dopamine transporter densities only in women: A β-CIT imaging study

    PubMed Central

    Seegal, Richard F.; Marek, Kenneth L.; Seibyl, John P.; Jennings, Danna L.; Molho, Eric S.; Higgins, Donald S.; Factor, Stewart A.; Fitzgerald, Edward F.; Hills, Elaine A.; Korrick, Susan A.; Wolff, Mary S.; Haase, Richard F.; Todd, Andrew C.; Parsons, Patrick; McCaffrey, Robert F.

    2010-01-01

    We hypothesize that occupational exposure to PCBs is associated with a reduction in central dopamine (DA) similar to changes previously seen in PCB exposed adult non-human primates. To test that hypothesis we used [123I]β-CIT SPECT imaging to estimate basal ganglia DA transporter density in former capacitor workers. Women, but not men, showed an inverse relationship between lipid-adjusted total serum PCB concentrations and DA transporter densities in the absence of differences in serum PCB concentrations. These sex differences may reflect age-related reductions in the levels of gonadal hormones since these hormones have been shown experimentally to alter response to DA neurotoxicants. These findings may aid in better understanding the roles that sex and age play in modifying central DA function following exposure, not only to PCBs, but also to other DA neurotoxicants as well as further elucidating the role of gonadal hormones in influencing the initiation and/or progression of neurodegenerative disorders. PMID:20096358

  6. Novel joint source-channel coding for wireless transmission of radiography images.

    PubMed

    Watanabe, Katsuhiro; Takizawa, Kenichi; Ikegami, Tetsushi

    2010-01-01

    A wireless technology is required to realize robust transmission of medical images like a radiography image over noisy environment. The use of error correction technique is essential for realizing such a reliable communication, in which a suitable channel coding is introduced to correct erroneous bits caused by passing through a noisy channel. However, the use of a channel code decreases its efficiency because redundancy bits are also transmitted with information bits. This paper presents a joint source-channel coding which maintains the channel efficiency during transmission of medical images like a radiography image. As medical images under the test, we use typical radiography images in this paper. The joint coding technique enjoys correlations between pixels of the radiography image. The results show that the proposed joint coding provides capability to correcting erroneous bits without increasing the redundancy of the codeword.

  7. Skylab 3 crew images taken from television transmission

    NASA Image and Video Library

    1973-09-19

    S73-34181 (July-September 1973) --- Astronaut Jack R. Lousma, Skylab 3 pilot, works at the S190A multispectral camera experiment in the Multiple Docking Adapter (MDA), seen from a color television transmission made by a TV camera aboard the Skylab space station cluster in Earth orbit. Lousma later used a small brush to clean the six lenses of the multispectral camera. Photo credit: NASA

  8. PET neuroimaging of extrastriatal dopamine receptors and prefrontal cortex functions.

    PubMed

    Takahashi, Hidehiko

    2013-12-01

    The role of prefrontal dopamine D1 receptors in prefrontal cortex (PFC) functions, including working memory, is widely investigated. However, human (healthy volunteers and schizophrenia patients) positron emission tomography (PET) studies about the relationship between prefrontal D1 receptors and PFC functions are somewhat inconsistent. We argued that several factors including an inverted U-shaped relationship between prefrontal D1 receptors and PFC functions might be responsible for these inconsistencies. In contrast to D1 receptors, relatively less attention has been paid to the role of D2 receptors in PFC functions. Several animal and human pharmacological studies have reported that the systemic administration of D2 receptor agonist/antagonist modulates PFC functions, although those studies do not tell us which region(s) is responsible for the effect. Furthermore, while prefrontal D1 receptors are primarily involved in working memory, other PFC functions such as set-shifting seem to be differentially modulated by dopamine. PET studies of extrastriatal D2 receptors including ours suggested that orchestration of prefrontal dopamine transmission and hippocampal dopamine transmission might be necessary for a broad range of normal PFC functions. In order to understand the complex effects of dopamine signaling on PFC functions, measuring a single index related to basic dopamine tone is not sufficient. For a better understanding of the meanings of PET indices related to neurotransmitters, comprehensive information (presynaptic, postsynaptic, and beyond receptor signaling) will be required. Still, an interdisciplinary approach combining molecular imaging techniques with cognitive neuroscience and clinical psychiatry will provide new perspectives for understanding the neurobiology of neuropsychiatric disorders and their innovative drug developments.

  9. Examination of a Method to Determine the Reference Region for Calculating the Specific Binding Ratio in Dopamine Transporter Imaging.

    PubMed

    Watanabe, Ayumi; Inoue, Yusuke; Asano, Yuji; Kikuchi, Kei; Miyatake, Hiroki; Tokushige, Takanobu

    The specific binding ratio (SBR) was first reported by Tossici-Bolt et al. for quantitative indicators for dopamine transporter (DAT) imaging. It is defined as the ratio of the specific binding concentration of the striatum to the non-specific binding concentration of the whole brain other than the striatum. The non-specific binding concentration is calculated based on the region of interest (ROI), which is set 20 mm inside the outer contour, defined by a threshold technique. Tossici-Bolt et al. used a 50% threshold, but sometimes we couldn't define the ROI of non-specific binding concentration (reference region) and calculate SBR appropriately with a 50% threshold. Therefore, we sought a new method for determining the reference region when calculating SBR. We used data from 20 patients who had undergone DAT imaging in our hospital, to calculate the non-specific binding concentration by the following methods, the threshold to define a reference region was fixed at some specific values (the fixing method) and reference region was visually optimized by an examiner at every examination (the visual optimization method). First, we assessed the reference region of each method visually, and afterward, we quantitatively compared SBR calculated based on each method. In the visual assessment, the scores of the fixing method at 30% and visual optimization method were higher than the scores of the fixing method at other values, with or without scatter correction. In the quantitative assessment, the SBR obtained by visual optimization of the reference region, based on consensus of three radiological technologists, was used as a baseline (the standard method). The values of SBR showed good agreement between the standard method and both the fixing method at 30% and the visual optimization method, with or without scatter correction. Therefore, the fixing method at 30% and the visual optimization method were equally suitable for determining the reference region.

  10. Temperature imaging with ultrasonic transmission tomography for treatment control

    NASA Astrophysics Data System (ADS)

    Chu, Zheqi; Pinter, Stephen. Z.; Yuan, Jie; Scarpelli, Matthew L.; Kripfgans, Oliver D.; Fowlkes, J. Brian; Duric, Neb; Carson, Paul L.

    2017-03-01

    Hyperthermia is a promising method to enhance chemo- or radiation therapy of breast cancer and the time-temperature profile in the target and surrounding areas is the primary monitoring method. Unlike with thermal ablation of lesions, in hyperthermia there are not good alternative treatment monitoring quantities. However, there is less problem with non-monotonic thermal coefficients of speed of sound used with ultrasonic imaging of temperature. This paper tests a long discussed but little investigated method of imaging temperature using speed of sound and proposes methods of reducing edge enhancement artifacts in the temperature image. Normally, when directly using the speed of sound to reconstruct the temperature image around the tumor, there will be an abnormal bipolar edge enhancement along the boundary between two materials with different speeds of sound at a given temperature. This due to partial volume effects and can be diminished by regularized, weighted deconvolution. An initial, manual deconvolution is shown, as well as an EMD (Empirical Mode Decomposition) method. Here we use the continuity and other constraints to choose the coefficient, reprocess the temperature field image and take the mean variations of the temperature in the adjacent pixels as the judgment criteria. Both methods effectively reduce the edge enhancement and produce a more precise image of temperature.

  11. Longitudinal imaging of the availability of dopamine transporter and D2 receptor in rat striatum following mild ischemia.

    PubMed

    Momosaki, Sotaro; Ito, Miwa; Yamato, Hiroko; Iimori, Hitoshi; Sumiyoshi, Hirokazu; Morimoto, Kenji; Imamoto, Natsumi; Watabe, Tadashi; Shimosegawa, Eku; Hatazawa, Jun; Abe, Kohji

    2017-02-01

    The changes in the availability of striatal dopamine transporter and dopamine D2 receptor after mild focal ischemia in rats were measured using a small animal positron emission tomography system. Mild focal ischemia was induced by 20-minute middle cerebral artery occlusion. [(11)C]PE2I binding to dopamine transporter was transiently increased on the ipsilateral side of the striatum at 2 days after middle cerebral artery occlusion. On day 7 and 14 after middle cerebral artery occlusion, [(11)C]PE2I binding levels were decreased. In contrast, [(11)C]raclopride binding to dopamine D2 receptor in the ipsilateral striatum had not changed at 2 days after middle cerebral artery occlusion. [(11)C]Raclopride binding was significantly decreased on the ischemic side of the striatum at 7 and 14 days after middle cerebral artery occlusion. Moreover, on day 1 and 2 after middle cerebral artery occlusion, significant circling behavior to the contralateral direction was induced by amphetamine challenge. This behavior disappeared at 7 days after middle cerebral artery occlusion. At 14 days, circling behavior to the ipsilateral direction (middle cerebral artery occlusion side) was significantly increased, and that to the contralateral direction also appeared again. The present study suggested that amphetamine-induced circling behavior indicated striatal dopaminergic alterations and that dopamine transporter and dopamine D2 receptor binding could be key markers for predicting motor dysfunction after mild focal ischemia.

  12. Information extraction and transmission techniques for spaceborne synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Frost, V. S.; Yurovsky, L.; Watson, E.; Townsend, K.; Gardner, S.; Boberg, D.; Watson, J.; Minden, G. J.; Shanmugan, K. S.

    1984-01-01

    Information extraction and transmission techniques for synthetic aperture radar (SAR) imagery were investigated. Four interrelated problems were addressed. An optimal tonal SAR image classification algorithm was developed and evaluated. A data compression technique was developed for SAR imagery which is simple and provides a 5:1 compression with acceptable image quality. An optimal textural edge detector was developed. Several SAR image enhancement algorithms have been proposed. The effectiveness of each algorithm was compared quantitatively.

  13. High Resolution Emission and Transmission Imaging Using the Same Detector.

    PubMed

    Panse, Ashish S; Jain, A; Wang, W; Yao, R; Bednarek, D R; Rudin, S

    2010-10-30

    We demonstrate the capability of one detector, the Micro-Angiographic Fluoroscope (MAF) detector, to image for two types of applications: nuclear medicine imaging and radiography. The MAF has 1024 × 1024 pixels with an effective pixel size of 35 microns and is capable of real-time imaging at 30 fps. It has a CCD camera coupled by a fiber-optic taper to a light image intensifier (LII) viewing a 300-micron thick CsI phosphor. The large variable gain of the LII provides quantum-limited operation with little additive instrumentation noise and enables operation in both energy-integrating (EI) and sensitive low-exposure single photon counting (SPC) modes. We used the EI mode to take a radiograph, and the SPC mode to image a custom phantom filled with 1 mCi of I-125. The phantom is made of hot rods with diameters ranging from 0.9 mm to 2.3 mm. A 1 mm diameter parallel hole, medium energy gamma camera collimator was placed between the phantom and the MAF and was moved multiple times at equal intervals in random directions to eliminate the grid pattern corresponding to the collimator septa. Data was acquired at 20 fps. Two algorithms to localize the events were used: 1) simple threshold and 2) a weighted centroid method. Although all the hot rods could be clearly identified, the image generated with the simple threshold method shows more blurring than that with the weighted centroid method. With the diffuse cluster of pixels from each single detection event localized to a single pixel, the weighted centroid method shows improved spatial resolution. A radiograph of the phantom was taken with the same MAF in EI mode without the collimator. It shows clear structural details of the rods. Compared to the radiograph, the sharpness of the emission image is limited by the collimator resolution and could be improved by optimized collimator design. This study demonstrated that the same MAF detector can be used in both radioisotope and x-ray imaging, combining the benefits of each.

  14. Wireless image-data transmission from an implanted image sensor through a living mouse brain by intra body communication

    NASA Astrophysics Data System (ADS)

    Hayami, Hajime; Takehara, Hiroaki; Nagata, Kengo; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    Intra body communication technology allows the fabrication of compact implantable biomedical sensors compared with RF wireless technology. In this paper, we report the fabrication of an implantable image sensor of 625 µm width and 830 µm length and the demonstration of wireless image-data transmission through a brain tissue of a living mouse. The sensor was designed to transmit output signals of pixel values by pulse width modulation (PWM). The PWM signals from the sensor transmitted through a brain tissue were detected by a receiver electrode. Wireless data transmission of a two-dimensional image was successfully demonstrated in a living mouse brain. The technique reported here is expected to provide useful methods of data transmission using micro sized implantable biomedical sensors.

  15. Progressive transmission of pseudo-color images. Appendix 1: Item 4. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hadenfeldt, Andrew C.

    1991-01-01

    The transmission of digital images can require considerable channel bandwidth. The cost of obtaining such a channel can be prohibitive, or the channel might simply not be available. In this case, progressive transmission (PT) can be useful. PT presents the user with a coarse initial image approximation, and then proceeds to refine it. In this way, the user tends to receive information about the content of the image sooner than if a sequential transmission method is used. PT finds application in image data base browsing, teleconferencing, medical and other applications. A PT scheme is developed for use with a particular type of image data, the pseudo-color or color mapped image. Such images consist of a table of colors called a colormap, plus a 2-D array of index values which indicate which colormap entry is to be used to display a given pixel. This type of image presents some unique problems for a PT coder, and techniques for overcoming these problems are developed. A computer simulation of the color mapped PT scheme is developed to evaluate its performance. Results of simulation using several test images are presented.

  16. Transmission

    SciTech Connect

    Sugano, K.

    1988-12-27

    A transmission is described which consists of: an input shaft; an output shaft; a first planetary gear set including a first sun gear selectively connectable by a first clutch to the input shaft, a first carrier selectively connectable by a second clutch to the input shaft and a first ring gear connected to the output shaft. The first sun gear selectively held stationary by a first brake, the first carrier is allowed to rotate in the same forward direction as the input shaft when the second clutch is engaged, but prevented from rotating in a reverse direction opposite to the forward direction by a first one-way clutch, the first carrier being selectively held stationary by a second brake; a second planetary gear set including a second sun gear connected to the input shaft, a second carrier connected to the first ring gear and also the the output shaft, and a second ring gear.

  17. In vivo MR imaging with simultaneous RF transmission and reception.

    PubMed

    Sohn, Sung-Min; Vaughan, J Thomas; Lagore, Russell L; Garwood, Michael; Idiyatullin, Djaudat

    2016-12-01

    To present a practical scheme of a simultaneous radiofrequency (RF) transmit (Tx) and receive (Rx) (STAR) system for MRI, discuss the challenges and solutions, and show preliminary in vivo MR images obtained with this new technique. A remotely controlled STAR system was built and tested with a transverse electromagnetic head coil on a 4T (Oxford, 90 cm-bore) MRI scanner equipped with an Agilent DirectDrive console (Agilent, Santa Clara, CA). In vivo head images have been acquired using continuous sweep excitation and acquisition. The bench test and MR experimental results show our STAR system to have high isolation (60 dB) between Tx and Rx, with insensitivity to load swings created by head motion. To acquire in vivo head images, ultralow RF peak power of 50 mW was used. A novel motion-insensitive STAR MRI technique was developed and experimentally tested. The first in vivo MR images using this method were acquired. Magn Reson Med 76:1932-1938, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Transmission line based thermoacoustic imaging of small animals

    NASA Astrophysics Data System (ADS)

    Omar, Murad; Kellnberger, Stephan; Sergiadis, George; Razansky, Daniel; Ntziachristos, Vasilis

    2013-06-01

    We have generated high resolution images of RF-Contrast in small animals using nearfield thermoacoustic system. This enables us to see some anatomical features of a mouse such as the heart, the spine and the boundary. OCIS codes: (000.0000) General; (000.0000) General [8-pt. type. For codes, see www.opticsinfobase.org/submit/ocis.

  19. X-ray Phase Imaging Microscopy using a Fresnel Zone Plate and a Transmission Grating

    SciTech Connect

    Yashiro, Wataru; Momose, Atsushi; Takeuchi, Akihisa; Suzuki, Yoshio

    2010-06-23

    We report on a hard X-ray phase imaging microscopy (a phase-difference microscopy) that consists of an objective and a transmission grating. The simple optical system provides a quantitative phase image, and does not need a wave field mostly coherent on the objective. Our method has a spatial resolution almost same as that of the absorption contrast microscope image obtained by removing the grating. We demonstrate how our approach provides a phase image from experimentally obtained images. Our approach is attractive for easily appending a quantitative phase-sensitive mode to normal X-ray microscopes, and has potentially broad applications in biology and material sciences.

  20. High-performance sub-terahertz transmission imaging system for food inspection

    PubMed Central

    Ok, Gyeongsik; Park, Kisang; Chun, Hyang Sook; Chang, Hyun-Joo; Lee, Nari; Choi, Sung-Wook

    2015-01-01

    Unlike X-ray systems, a terahertz imaging system can distinguish low-density materials in a food matrix. For applying this technique to food inspection, imaging resolution and acquisition speed ought to be simultaneously enhanced. Therefore, we have developed the first continuous-wave sub-terahertz transmission imaging system with a polygonal mirror. Using an f-theta lens and a polygonal mirror, beam scanning is performed over a range of 150 mm. For obtaining transmission images, the line-beam is incorporated with sample translation. The imaging system demonstrates that a pattern with 2.83 mm line-width at 210 GHz can be identified with a scanning speed of 80 mm/s. PMID:26137392

  1. Sub-wavelength transmission and reflection mode tabletop imaging with 13nm illumination via ptychography CDI

    NASA Astrophysics Data System (ADS)

    Tanksalvala, Michael; Porter, Christina L.; Gardner, Dennis F.; Gerrity, Michael; Mancini, Giulia F.; Zhang, Xiaoshi; Miley, Galen P.; Shanblatt, Elisabeth R.; Galloway, Benjamin R.; Bevis, Charles S.; Karl, Robert; Adams, Daniel A.; Kapteyn, Henry C.; Murnane, Margaret M.

    2017-03-01

    EUV lithography is promising for addressing upcoming, <10nm nodes for the semiconductor industry, but with this promise comes the need for reliable metrology techniques. In particular, there is a need for actinic mask inspection in which the imaging wavelength matches that of the intended lithography process, so that the most relevant defects are detected. Here, we demonstrate tabletop, ptychographic, coherent diffraction imaging (CDI) in reflection- and transmission-modes of extended samples, using a 13 nm high harmonic generation (HHG) source. We achieve the first sub-wavelength resolution EUV image (0.9λ) in transmission, the highest spatial resolution using any 13.5 nm source to date. We also present the first reflection-mode image obtained on a tabletop using 12.7 nm light. This work represents the first 12.7 nm reflection-mode image using any source of a general sample.

  2. Transmission (forward) mode, transcranial, noninvasive optoacoustic measurements for brain monitoring, imaging, and sensing

    NASA Astrophysics Data System (ADS)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Richardson, C. Joan; Fonseca, Rafael A.; Robertson, Claudia S.; Asokan, C. Vasantha; Agbor, Adaeze; Esenaliev, Rinat O.

    2016-03-01

    We proposed to use transmission (forward) mode for cerebral, noninvasive, transcranial optoacoustic monitoring, imaging, and sensing in humans. In the transmission mode, the irradiation of the tissue of interest and detection of optoacoustic signals are performed from opposite hemispheres, while in the reflection (backward) mode the irradiation of the tissue of interest and detection of optoacoustic signals are performed from the same hemisphere. Recently, we developed new, transmission-mode optoacoustic probes for patients with traumatic brain injury (TBI) and for neonatal patients. The transmission mode probes have two major parts: a fiber-optic delivery system and an acoustic transducer (sensor). To obtain optoacoustic signals in the transmission mode, in this study we placed the sensor on the forehead, while light was delivered to the opposite side of the head. Using a medical grade, multi-wavelength, OPObased optoacoustic system tunable in the near infrared spectral range (680-950 nm) and a novel, compact, fiber-coupled, multi-wavelength, pulsed laser diode-based system, we recorded optoacoustic signals generated in the posterior part of the head of adults with TBI and neonates. The optoacoustic signals had two distinct peaks: the first peak from the intracranial space and the second peak from the scalp. The first peak generated by cerebral blood was used to measure cerebral blood oxygenation. Moreover, the transmission mode measurements provided detection of intracranial hematomas in the TBI patients. The obtained results suggest that the transmission mode can be used for optoacoustic brain imaging, tomography, and mapping in humans.

  3. Magnetite nanocluster@poly(dopamine)-PEG@ indocyanine green nanobead with magnetic field-targeting enhanced MR imaging and photothermal therapy in vivo.

    PubMed

    Wu, Ming; Wang, Qingtang; Zhang, Da; Liao, Naishun; Wu, Lingjie; Huang, Aimin; Liu, Xiaolong

    2016-05-01

    Multifunctional nanomaterials with the magnetic resonance imaging (MRI) guided tumor photothermal ablation ability have been extensively applied in biomedical research as one of the most exciting and challenging strategies for cancer treatment. Nevertheless, most of these nanomaterials still suffer from low accumulation in tumor tissues and insufficient photothermal ablation of tumors so far. Here, we report a novel approach to overcome these limitations using a core-shell magnetite nanocluster@poly(dopamine)-PEG@ICG nanobead compositing of magnetite nanocluster core with coating of poly(dopamine), then further conjugating with polyethylene glycol (PEG) and adsorbing indocyanine green (ICG) on the surface. The adsorbed ICG in the nanobead displays a higher photostability and photothermal conversion ability than free ICG, as well as additional photothermal effect rather than magnetite nanocluster and poly(dopamine), which endow the nanobead with enhanced photothermal killing efficiency against cancer cells under near-infrared (NIR) laser irritation. Furthermore, it is proved that these nanobeads have excellent biocompatibility, T2-weighted MR imaging and magnetic field targeting ability. By applying an external magnetic field (MF) focused on the targeted tumor, a magnetic targeting mediated enhanced accumulation is observed at tumor site as proved by a darker T2-weighted MR image. Utilizing the magnetic targeting strategy, enhanced photothermal tumor ablation was achieved under laser irradiation in vivo, which is reflected by the degree of tumor tissue damage and tumor growth delay. Therefore, this nanobead integrates the abilities of magnetic field-targeting, MR imaging and photothermal cancer therapy, and might be a promising theranostic platform for tumor treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Orthogonal wavelets for image transmission and compression schemes: implementation and results

    NASA Astrophysics Data System (ADS)

    Ahmadian, Alireza; Bharath, Anil A.

    1996-10-01

    Diagnostic quality medical images consume vast amounts of network time, system bandwidth and disk storage in current computer architectures. There are many ways in which the use of system and network resources may be optimize without compromising diagnostic image quality. One of these is in the choice of image representation, both for storage and transfer. In this paper, we show how a particularly flexible method of image representation, based on Mallat's algorithm, leads to efficient methods of both lossy image compression and progressive image transmission. We illustrate the application of a progressive transmission scheme to medical images, and provide some examples of image refinement in a multiscale fashion. We show how thumbnail images created by a multiscale orthogonal decomposition can be optimally interpolated, in a minimum square error sense, based on a generalized Moore-Penrose inverse operator. In the final part of this paper, we show that the representation can provide a framework for lossy image compression, with signal/noise ratios far superior to those provided by a standard JPEG algorithm. The approach can also accommodate precision based progressive coding. We show the results of increasing the priority of encoding a selected region of interest in a bit-stream describing a multiresolution image representation.

  5. Simultaneous transmission for an encrypted image and a double random-phase encryption key.

    PubMed

    Yuan, Sheng; Zhou, Xin; Li, Da-hai; Zhou, Ding-fu

    2007-06-20

    We propose a method to simultaneously transmit double random-phase encryption key and an encrypted image by making use of the fact that an acceptable decryption result can be obtained when only partial data of the encrypted image have been taken in the decryption process. First, the original image data are encoded as an encrypted image by a double random-phase encryption technique. Second, a double random-phase encryption key is encoded as an encoded key by the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. Then the amplitude of the encrypted image is modulated by the encoded key to form what we call an encoded image. Finally, the encoded image that carries both the encrypted image and the encoded key is delivered to the receiver. Based on such a method, the receiver can have an acceptable result and secure transmission can be guaranteed by the RSA cipher system.

  6. Ultrafast imaging of plasmons in a transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Lummen, Tom T. A.; Berruto, Gabriele; Toma, Andrea; Lamb, Raymond J.; McGrouther, Damien; Carbone, Fabrizio

    2016-03-01

    Miniaturized plasmonic and photonic integrated circuits are generally considered as the core of future generations of optoelectronic devices, due to their potential to bridge the size-compatibility gap between photonics and electronics. However, as the nanoscale is approached in increasingly small plasmonic and photonic systems, experimentally observing their behavior involves ever more stringent requirements in terms of both temporal and spatial resolution. This talk focuses on the use of time-resolved Photon-Induced Near-Field Electron Microscopy (PINEM) to study the excitation, propagation, (self-)interference and dynamics of surface plasmon polaritons (SPPs) in various plasmonic nanostructures with both nanometer and ultrafast resolution in a transmission electron microscope. Using this field-ofview technique, we directly show how photo-excited plasmonic interference patterns are controlled through the combination of excitation polarization and nanostructure geometry. Moreover, we capture the propagation of the photoinduced self-interfering plasmonic wave, clearly demonstrating the effects of axial confinement in nanostructured plasmonic thin film stacks.

  7. Separate serotonin and dopamine receptors modulate the duration of post-tetanic potentiation at an Aplysia synapse without affecting other aspects of synaptic transmission.

    PubMed

    Newlin, S A; Schlapfer, W T; Barondes, S H

    1980-01-06

    We have studied the effect of the biogenic amines, serotonin and dopamine, on post-tetanic potentiation (PTP) at an identified synapse in the abdominal ganglion of Aplysia californica. We found that: (1) 10(-7) M perfused serotonin doubles the rate constant of decay of PTP. The effect is specific in that neither the size of the non-potentiated (isolated) EPSP nor the amplitude of PTP is affected. As reported previously, higher doses of serotonin will also increase the amplitude of PTP and decrease the size of the isolated EPSP; (2) 5 X 10(-7) M dopamine in the perfusate increases the rate constant of decay of PTP by about 50%. The effect is also specific in that neither PTP amplitude nor the size of the isolated EPSP is affected; (3) SQ10,631, a serotonin antagonist, blocks the effect of perfused serotonin on PTP decay rate. It does not antagonize the dopamine effect. SQ10,631 also slows the endogenous decay of PTP in some preparations which exhibit an unusually fast PTP decay rate, suggesting a naturally occurring source of serotonin within the ganglion capable of affecting the rate constant of PTP decay; (4) (+)-butaclamol, a dopamine antagonist, blocks the effect of dopamine on the rate constant of PTP decay, whereas (-)-butaclamol has little effect. Butaclamol does not block the effect of serotonin on the rate constant of PTP decay; (5) phosphodiesterase inhibitors potentiate the effect of serotonin on the rate constant of PTP decay, and cyclic AMP analogues mimic the effect of the biogenic amines, suggesting that the aminergic modulation of the rate of decay of PTP is coupled with activation of adenylate cyclase and accumulation of cyclic AMP; and (6) the evidence presented is consistent with the hypothesis that serotonin and dopamine are capable of specifically modifying the rate of change in the efficacy of transmitter release which underlies PTP. It also suggests that the two biogenic amines operate separately and in parallel via presynaptic receptor

  8. Review. Positron emission tomography imaging studies of dopamine receptors in primate models of addiction.

    PubMed

    Nader, Michael A; Czoty, Paul W; Gould, Robert W; Riddick, Natallia V

    2008-10-12

    Animal models have provided valuable information related to trait and state variables associated with vulnerability to drug addiction. Our brain imaging studies in monkeys have implicated D2 receptors in cocaine addiction. For example, an inverse relationship between D2 receptor availability and rates of cocaine self-administration has been documented. Moreover, environmental variables, such as those associated with formation of the social hierarchy, can impact receptor availability and sensitivity to the abuse-related effects of cocaine. Similarly, both D2 receptor availability and cocaine self-administration can be altered by chronic drug administration and fluctuations in hormone levels. In addition, cocaine self-administration can be altered in an orderly fashion by presentation of an acute stressor, such as acting as an intruder into an unfamiliar social group, which can shift the cocaine dose-response curve to the left in subordinate monkeys and to the right in dominant animals, suggesting an interaction between social variables and acute stressors. Conversely, irrespective of social rank, acute environmental enrichment, such as increasing the size of the living space, shifts the cocaine dose-response curve to the right. These findings highlight a pervasive influence of the environment in modifying the reinforcing effects of cocaine and strongly implicate brain D2 receptors.

  9. Dopamine transporter imaging deficit predicts early transition to synucleinopathy in idiopathic rapid eye movement sleep behavior disorder.

    PubMed

    Iranzo, Alex; Santamaría, Joan; Valldeoriola, Francesc; Serradell, Monica; Salamero, Manel; Gaig, Carles; Niñerola-Baizán, Aida; Sánchez-Valle, Raquel; Lladó, Albert; De Marzi, Roberto; Stefani, Ambra; Seppi, Klaus; Pavia, Javier; Högl, Birgit; Poewe, Werner; Tolosa, Eduard; Lomeña, Francisco

    2017-09-01

    To determine the usefulness of dopamine transporter (DAT) imaging to identify idiopathic rapid eye movement sleep behavior disorder (IRBD) patients at risk for short-term development of clinically defined synucleinopathy. Eighty-seven patients with polysomnography-confirmed IRBD underwent (123) I-FP-CIT DAT-SPECT. Results were compared to 20 matched controls without RBD who underwent DAT-SPECT. In patients, FP-CIT uptake was considered abnormal when values were two standard deviations below controls' mean uptake. After DAT-SPECT, patients were followed up during 5.7 ± 2.2 (range, 2.6-9.9) years. Baseline DAT deficit was found in 51 (58.6%) patients. During follow-up, 25 (28.7%) subjects developed clinically defined synucleinopathy (Parkinson's disease in 11, dementia with Lewy bodies in 13, and multiple system atrophy in 1) with mean latency of 3.2 ± 1.9 years from imaging. Kaplan-Meier survival analysis showed increased risk of incident synucleinopathy in patients with abnormal DAT-SPECT than with normal DAT-SPECT (20% vs 6% at 3 years, 33% vs 18% at 5 years; log rank test, p = 0.006). Receiver operating characteristics curve revealed that reduction of FP-CIT uptake in putamen greater than 25% discriminated patients with DAT deficit who developed synucleinopathy from patients with DAT deficit that remained disease free after 3 years of follow-up. At 5-year follow-up, DAT-SPECT had 75% sensitivity, 51% specificity, 44% positive predictive value, 80% negative predictive value, and likelihood ratio 1.54 to predict synucleinopathy. DAT-SPECT identifies IRBD patients at short-term risk for synucleinopathy. Decreased FP-CIT putamen uptake greater than 25% predicts synucleinopathy after 3 years' follow-up. These observations may be useful to select candidates for disease modification trials in IRBD. Ann Neurol 2017;82:419-428. © 2017 American Neurological Association.

  10. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas.

    PubMed

    Bowman, Tyler; El-Shenawee, Magda; Campbell, Lucas K

    2016-09-01

    This work presents experimental and analytical comparison of terahertz transmission and reflection imaging modes for assessing breast carcinoma in excised paraffin-embedded human breast tissue. Modeling for both transmission and reflection imaging is developed. The refractive index and absorption coefficient of the tissue samples are obtained. The reflection measurements taken at the system's fixed oblique angle of 30° are shown to be a hybridization of TE and TM modes. The models are validated with transmission spectroscopy at fixed points on fresh bovine muscle and fat tissues. Images based on the calculated absorption coefficient and index of refraction of bovine tissue are successfully compared with the terahertz magnitude and phase measured in the reflection mode. The validated techniques are extended to 20 and 30 μm slices of fixed human lobular carcinoma and infiltrating ductal carcinoma mounted on polystyrene microscope slides in order to investigate the terahertz differentiation of the carcinoma with non-cancerous tissue. Both transmission and reflection imaging show clear differentiation in carcinoma versus healthy tissue. However, when using the reflection mode, in the calculation of the thin tissue properties, the absorption is shown to be sensitive to small phase variations that arise due to deviations in slide and tissue thickness and non-ideal tissue adhesion. On the other hand, the results show that the transmission mode is much less sensitive to these phase variations. The results also demonstrate that reflection imaging provides higher resolution and more clear margins between cancerous and fibroglandular regions, cancerous and fatty regions, and fibroglandular and fatty tissue regions. In addition, more features consistent with high power pathology images are exhibited in the reflection mode images.

  11. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas

    PubMed Central

    Bowman, Tyler; El-Shenawee, Magda; Campbell, Lucas K.

    2016-01-01

    This work presents experimental and analytical comparison of terahertz transmission and reflection imaging modes for assessing breast carcinoma in excised paraffin-embedded human breast tissue. Modeling for both transmission and reflection imaging is developed. The refractive index and absorption coefficient of the tissue samples are obtained. The reflection measurements taken at the system’s fixed oblique angle of 30° are shown to be a hybridization of TE and TM modes. The models are validated with transmission spectroscopy at fixed points on fresh bovine muscle and fat tissues. Images based on the calculated absorption coefficient and index of refraction of bovine tissue are successfully compared with the terahertz magnitude and phase measured in the reflection mode. The validated techniques are extended to 20 and 30 μm slices of fixed human lobular carcinoma and infiltrating ductal carcinoma mounted on polystyrene microscope slides in order to investigate the terahertz differentiation of the carcinoma with non-cancerous tissue. Both transmission and reflection imaging show clear differentiation in carcinoma versus healthy tissue. However, when using the reflection mode, in the calculation of the thin tissue properties, the absorption is shown to be sensitive to small phase variations that arise due to deviations in slide and tissue thickness and non-ideal tissue adhesion. On the other hand, the results show that the transmission mode is much less sensitive to these phase variations. The results also demonstrate that reflection imaging provides higher resolution and more clear margins between cancerous and fibroglandular regions, cancerous and fatty regions, and fibroglandular and fatty tissue regions. In addition, more features consistent with high power pathology images are exhibited in the reflection mode images. PMID:27699136

  12. Normative data of dopaminergic neurotransmission functions in substantia nigra measured with MRI and PET: Neuromelanin, dopamine synthesis, dopamine transporters, and dopamine D2 receptors.

    PubMed

    Ito, Hiroshi; Kawaguchi, Hiroshi; Kodaka, Fumitoshi; Takuwa, Hiroyuki; Ikoma, Yoko; Shimada, Hitoshi; Kimura, Yasuyuki; Seki, Chie; Kubo, Hitoshi; Ishii, Shiro; Takano, Harumasa; Suhara, Tetsuya

    2017-09-01

    The central dopaminergic system is of major importance in the pathophysiology of Parkinson's disease, schizophrenia, and other neuropsychiatric disorders. In the present study, the normative data of dopaminergic neurotransmission functions in the midbrain, consisting of neuromelanin, dopamine synthesis, dopamine transporters and dopamine D2 receptors, were constructed using magnetic resonance (MR) imaging and positron emission tomography (PET). PET studies with L-[β-(11)C]DOPA, [(18)F]FE-PE2I and [(11)C]FLB457 and MRI studies were performed on healthy young men. Neuromelanin accumulation measured by MRI was compared with dopaminergic functions, dopamine synthesis capacity, dopamine transporter binding and dopamine D2 receptor binding measured by PET in the substantia nigra. Although neuromelanin is synthesized from DOPA and dopamine in dopaminergic neurons, neuromelanin accumulation did not correlate with dopamine synthesis capacity in young healthy subjects. The role of dopamine transporters in the substantia nigra is considered to be the transport of dopamine into neurons, and therefore dopamine transporter binding might be related to neuromelanin accumulation; however, no significant correlation was observed between them. A positive correlation between dopamine D2 receptor binding and neuromelanin accumulation was observed, indicating a feedback mechanism by dopaminergic autoreceptors. Discrepancies in regional distribution between neuromelanin accumulation and dopamine synthesis capacity, dopamine transporter binding or dopamine D2 receptor binding were observed in the substantia nigra. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Space/Frequency Conversions in Image Processing and Transmission.

    DTIC Science & Technology

    1981-11-01

    oil the’ re Iat ivi’ phase of the il u tminit ing Sglit spit va r iat ioins. driven it by sitausid at frequeiy Jilt. It) tlt.i ha-li Iocsal ilajnt of...ACOoSICI o(Wio s..~viCES APPLIED) TO IMAGE PROCESSING ko crvri Ice I1. Se ve ra I papers ill thiS pr ..... dings srsvisls ty~-is-dais infornial oki oil ...I1ttld. A A Fin. 4. F xamplIe,: r Ix~ rilatteI lllt I tV samjple atray and SCIIrt, I)f (I s nc I a ted I-Dfl tCdt wiltll dIvI lotm I lt 1i)l1exed sI

  14. Investigation of non-linear imaging in high-resolution transmission electron microscopy.

    PubMed

    Chang, Yunjie; Wang, Yumei; Cui, Yanxiang; Ge, Binghui

    2016-12-01

    Transmission cross-coefficient theory and pseudo-weak-phase object approximation theory were combined to investigate the non-linear imaging in high-resolution transmission electron microscopy (HRTEM). The analytical expressions of linear and non-linear imaging components in diffractogram were obtained and changes of linear and non-linear components over sample thickness were analyzed. Moreover, the linear and non-linear components are found to be an odd and even-function of the defocus and Cs, respectively. Based on this, a method for separating the linear and non-linear contrasts in Cs-corrected (non-zero Cs conditions included) HRTEM images was proposed, and its effectiveness was confirmed by image simulations with AlN as an example.

  15. Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts.

    PubMed

    Yankovich, Andrew B; Berkels, Benjamin; Dahmen, W; Binev, P; Sanchez, S I; Bradley, S A; Li, Ao; Szlufarska, Izabela; Voyles, Paul M

    2014-06-11

    Measuring picometre-scale shifts in the positions of individual atoms in materials provides new insight into the structure of surfaces, defects and interfaces that influence a broad variety of materials' behaviour. Here we demonstrate sub-picometre precision measurements of atom positions in aberration-corrected Z-contrast scanning transmission electron microscopy images based on the non-rigid registration and averaging of an image series. Non-rigid registration achieves five to seven times better precision than previous methods. Non-rigidly registered images of a silica-supported platinum nanocatalyst show pm-scale contraction of atoms at a (111)/(111) corner towards the particle centre and expansion of a flat (111) facet. Sub-picometre precision and standardless atom counting with <1 atom uncertainty in the same scanning transmission electron microscopy image provide new insight into the three-dimensional atomic structure of catalyst nanoparticle surfaces, which contain the active sites controlling catalytic reactions.

  16. Multichannel Double-Row Transmission Line Array for Human MR Imaging at Ultrahigh Fields.

    PubMed

    Yan, Xinqiang; Pedersen, Jan Ole; Wei, Long; Zhang, Xiaoliang; Xue, Rong

    2015-06-01

    In microstrip transmission line (MTL) transmit/receive (transceive) arrays used for ultrahigh field MRI, the array length is often constrained by the required resonant frequency, limiting the image coverage. The purpose of this study is to increase the imaging coverage and also improve its parallel imaging capability by utilizing a double-row design. A 16-channel double-row MTL transceive array was designed, constructed, and tested for human head imaging at 7 T. Array elements between two rows were decoupled by using the induced current elimination or magnetic wall decoupling technique. In vivo human head images were acquired, and g-factor results were calculated to evaluate the performance of this double-row array. Testing results showed that all coil elements were well decoupled with a better than -18 dB transmission coefficient between any two elements. The double-row array improves the imaging quality of the lower portion of the human head, and has low g-factors even at high acceleration rates. Compared with a regular single-row MTL array, the double-row array demonstrated a larger imaging coverage along the z-direction with improved parallel imaging capability. The proposed technique is particularly suitable for the design of large-sized transceive arrays with large channel counts, which ultimately benefits the imaging performance in human MRI.

  17. Multichannel Double-Row Transmission Line Array for Human MR Imaging at Ultrahigh Fields

    PubMed Central

    Yan, Xinqiang; Pedersen, Jan Ole; Wei, Long

    2017-01-01

    Objective In microstrip transmission line (MTL) transmit/receive (transceive) arrays used for ultrahigh field MRI, the array length is often constrained by the required resonant frequency, limiting the image coverage. The purpose of this study is to increase the imaging coverage and also improve its parallel imaging capability by utilizing a double-row design. Methods A 16-channel double-row MTL transceive array was designed, constructed, and tested for human head imaging at 7 T. Array elements between two rows were decoupled by using the induced current elimination or magnetic wall decoupling technique. In vivo human head images were acquired, and g-factor results were calculated to evaluate the performance of this double-row array. Results Testing results showed that all coil elements were well decoupled with a better than −18 dB transmission coefficient between any two elements. The double-row array improves the imaging quality of the lower portion of the human head, and has low g-factors even at high acceleration rates. Conclusion Compared with a regular single-row MTL array, the double-row array demonstrated a larger imaging coverage along the z-direction with improved parallel imaging capability. Significance The proposed technique is particularly suitable for the design of large-sized transceive arrays with large channel counts, which ultimately benefits the imaging performance in human MRI. PMID:25706499

  18. Integrated system for image storage, retrieval, and transmission using wavelet transform

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Liu, Yawen; Mu, Ray Y.; Yang, Shi-Qiang

    1998-12-01

    Currently, much work has been done in the area of image storage and retrieval. However, the overall performance has been far from practical. A highly integrated wavelet-based image management system is proposed in this paper. By integrating wavelet-based solutions for image compression and decompression, content-based retrieval and progressive transmission, much higher performance can be achieved. The multiresolution nature of the wavelet transform has been proven to be a powerful tool to represent images. The wavelet transform decomposes the image into a set of subimages with different resolutions. From here three solutions for key aspects of image management are reached. The content-based image retrieval (CBIR) features of our system include the color, contour, texture, sample, keyword and topic information of images. The first four features can be naturally extracted from the wavelet transform coefficients. By scoring the similarity of users' requests with images in the database, those who have higher scores are noted and the user receives feedback. Image compression and decompression. Assuming that details at high resolution and diagonal directions are less visible to the human eye, a good compression ratio can be achieved. In each subimage, the wavelet coefficients are vector quantized (VQ), using the LGB algorithm, which is improved in our approach to accelerate the process. Higher compression ratio can be achieved with DPCM and entropy coding method applied together. With YIQ representation, color images can also be effectively compressed. There is a very low load on the network bandwidth by transmitting compressed image data across the network. Progressive transmission is possible by employment of the multiresolution nature of the wavelet, which makes the system respond faster and the user-interface more friendly. The system shows a high overall performance by exploring the excellent features of wavelet, and integrating key aspects of image management. An

  19. Removal of Vesicle Structures From Transmission Electron Microscope Images

    PubMed Central

    Jensen, Katrine Hommelhoff; Sigworth, Fred J.; Brandt, Sami Sebastian

    2016-01-01

    In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruction. In our approach, we estimate the subspace of the vesicle structures and project the micrographs onto the orthogonal complement of this subspace. We construct a 2d statistical model of the vesicle structure, based on higher order singular value decomposition (HOSVD), by considering the structural symmetries of the vesicles in the polar coordinate plane. We then propose to lift the HOSVD model to a novel hierarchical model by summarizing the multidimensional HOSVD coefficients by their principal components. Along with the model, a solid vesicle normalization scheme and model selection criterion are proposed to make a compact and general model. The results show that the vesicle structures are accurately separated from the background by the HOSVD model that is also able to adapt to the asymmetries of the vesicles. This is a promising result and suggests even wider applicability of the proposed approach in learning and removal of statistical structures. PMID:26642456

  20. Robust image alignment for cryogenic transmission electron microscopy.

    PubMed

    McLeod, Robert A; Kowal, Julia; Ringler, Philippe; Stahlberg, Henning

    2017-03-01

    Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a long exposure is broken into a movie, permitting specimen drift to be registered and corrected. The typical approach for image registration, with high shot noise and low contrast, is multi-reference (MR) cross-correlation. Here we present the software package Zorro, which provides robust drift correction for dose fractionation by use of an intensity-normalized cross-correlation and logistic noise model to weight each cross-correlation in the MR model and filter each cross-correlation optimally. Frames are reliably registered by Zorro with low dose and defocus. Methods to evaluate performance are presented, by use of independently-evaluated even- and odd-frame stacks by trajectory comparison and Fourier ring correlation. Alignment of tiled sub-frames is also introduced, and demonstrated on an example dataset. Zorro source code is available at github.com/CINA/zorro. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Singles transmission in volume-imaging PET with a 137Cs source.

    PubMed

    Karp, J S; Muehllehner, G; Qu, H; Yan, X H

    1995-05-01

    The feasibility of a new method of attenuation correction in PET has been investigated, using a single-photon emitter for the transmission scan. The transmission scan is predicted to be more than a factor of ten faster with the singles method than the standard coincidence method, for comparable statistics. Thus, a transmission scan be completed in 1-2 min, rather than 10-20 min, as is common practice with the coincidence method. In addition, a potential advantage of using the single-photon source 137Cs, which has an energy of 662 keV, is that postinjection transmission studies can be performed using energy discrimination to separate the transmission from the emission data at 511 keV. In order to compensate for the energy difference of the attenuation coefficients at 662 keV compared to 511 keV, the transmission images are segmented into two compartments, tissue and lung, and known values (for 511 keV) of attenuation are inserted into these compartments. This technique also compensates for the higher amount of scatter present with the singles method, since it is not possible to use a position gate (based on collinearity of the source and two detector positions) as is commonly done with a positron-emitting source. We have demonstrated, with experimental phantom studies, that the singles transmission method combined with segmentation gives results equivalent both qualitatively and quantitatively to the coincidence method, but requires significantly less time.

  2. Optimization of Trade-offs in Error-free Image Transmission

    NASA Astrophysics Data System (ADS)

    Cox, Jerome R.; Moore, Stephen M.; Blaine, G. James; Zimmerman, John B.; Wallace, Gregory K.

    1989-05-01

    The availability of ubiquitous wide-area channels of both modest cost and higher transmission rate than voice-grade lines promises to allow the expansion of electronic radiology services to a larger community. The band-widths of the new services becoming available from the Integrated Services Digital Network (ISDN) are typically limited to 128 Kb/s, almost two orders of magnitude lower than popular LANs can support. Using Discrete Cosine Transform (DCT) techniques, a compressed approximation to an image may be rapidly transmitted. However, intensity or resampling transformations of the reconstructed image may reveal otherwise invisible artifacts of the approximate encoding. A progressive transmission scheme reported in ISO Working Paper N800 offers an attractive solution to this problem by rapidly reconstructing an apparently undistorted image from the DCT coefficients and then subse-quently transmitting the error image corresponding to the difference between the original and the reconstructed images. This approach achieves an error-free transmission without sacrificing the perception of rapid image delivery. Furthermore, subsequent intensity and resampling manipulations can be carried out with confidence. DCT coefficient precision affects the amount of error information that must be transmitted and, hence the delivery speed of error-free images. This study calculates the overall information coding rate for six radiographic images as a function of DCT coefficient precision. The results demonstrate that a minimum occurs for each of the six images at an average coefficient precision of between 0.5 and 1.0 bits per pixel (b/p). Apparently undistorted versions of these six images can be transmitted with a coding rate of between 0.25 and 0.75 b/p while error-free versions can be transmitted with an overall coding rate between 4.5 and 6.5 b/p.

  3. Quantitative Phase Imaging with a Scanning Transmission X-Ray Microscope

    PubMed Central

    de Jonge, M. D.; Hornberger, B.; Holzner, C.; Legnini, D.; Paterson, D.; McNulty, I.; Jacobsen, C.; Vogt, S.

    2010-01-01

    We obtain quantitative phase reconstructions from differential phase contrast images obtained with a scanning transmission x-ray microscope and 2.5 keV x rays. The theoretical basis of the technique is presented along with measurements and their interpretation. PMID:18518198

  4. Quantitative planar imaging method for measurement of renal activity by using a conjugate-emission image and transmission data.

    PubMed

    Kojima, A; Ohyama, Y; Tomiguchi, S; Kira, M; Matsumoto, M; Takahashi, M; Motomura, N; Ichihara, T

    2000-03-01

    We are proposing a method to accurately measure renal activity in renography using Tc-99m labeled tracers. This method uses a conjugate-view image and transmission data for attenuation correction, the triple energy window (TEW) method for scatter correction, and background correction techniques that consider the source volume for accurate background activity correction. To examine this method in planar imaging, we performed two renal phantom studies with various uniform background activity concentrations. One study used two ideal box-shaped kidney phantoms with a thickness of 2 or 4 cm in a water tank and the other study employed two real kidney-shaped phantoms in a fillable abdominal cavity. For these studies the kidney phantom-to-background activity concentration ratio (S) was changed from 5 to infinity. The transmission data were obtained with an external Tc-99m line array source. The anterior- and posterior-view emission images were acquired with a dual-headed gamma camera simultaneously and the TEW method was used to correct scatter for the emission and transmission images. The results showed that this method with both the accurate background correction and scatter correction could give depth-independent count rates and could estimate the true count rate with errors of less than 5% for all S values. However, if either accurate background correction or scatter correction was performed alone, the absolute error increased to about 50% for the smaller S values. Our proposed method allows one to accurately and simply measure the renal radioactivity by planar imaging using the conjugate-emission image and transmission data.

  5. Multiscale imaging characterization of dopamine transporter knockout mice reveals regional alterations in spine density of medium spiny neurons.

    PubMed

    Berlanga, M L; Price, D L; Phung, B S; Giuly, R; Terada, M; Yamada, N; Cyr, M; Caron, M G; Laakso, A; Martone, M E; Ellisman, M H

    2011-05-16

    The dopamine transporter knockout (DAT KO) mouse is a model of chronic hyperdopaminergia used to study a wide range of neuropsychiatric disorders such as schizophrenia, attention deficit hyperactivity disorder (ADHD), drug abuse, depression, and Parkinson's disease (PD). Early studies characterizing this mouse model revealed a subtle, but significant, decrease in the anterior striatal volume of DAT KO mice accompanied by a decrease in neuronal cell body numbers (Cyr et al., 2005). The present studies were conducted to examine medium spiny neuron (MSN) morphology by extending these earlier reports to include multiscale imaging studies using correlated light microscopy (LM) and electron microscopy (EM) techniques. Specifically, we set out to determine if chronic hyperdopaminergia results in quantifiable or qualitative changes in DAT KO mouse MSNs relative to wild-type (WT) littermates. Using Neurolucida Explorer's morphometric analysis, we measured spine density, dendritic length and synapse number at ages that correspond with the previously reported changes in striatal volume and progressive cell loss. Light microscopic analysis using Neurolucida tracings of photoconverted striatal MSNs revealed a highly localized loss of dendritic spines on the proximal portion of the dendrite (30 μm from the soma) in the DAT KO group. Next, thick sections containing MSN dendritic segments located at a distance of 20-60 μm from the cell soma, a region of the dendrite where spine density is reported to be the highest, were analyzed using electron microscope tomography (EMT). Because of the resolution limits of LM, the EM analysis was an extra measure taken to assure that our analysis included nearly all spines. Spine density measurements collected from the EMT data revealed only a modest decrease in the DAT KO group (n=3 mice) compared to age-matched WT controls (n=3 mice), a trend that supports the LM findings. Finally, a synaptic quantification using unbiased stereology did not

  6. Establishing the dopamine dependency of human striatal signals during reward and punishment reversal learning.

    PubMed

    van der Schaaf, Marieke E; van Schouwenburg, Martine R; Geurts, Dirk E M; Schellekens, Arnt F A; Buitelaar, Jan K; Verkes, Robbert Jan; Cools, Roshan

    2014-03-01

    Drugs that alter dopamine transmission have opposite effects on reward and punishment learning. These opposite effects have been suggested to depend on dopamine in the striatum. Here, we establish for the first time the neurochemical specificity of such drug effects, during reward and punishment learning in humans, by adopting a coadministration design. Participants (N = 22) were scanned on 4 occasions using functional magnetic resonance imaging, following intake of placebo, bromocriptine (dopamine-receptor agonist), sulpiride (dopamine-receptor antagonist), or a combination of both drugs. A reversal-learning task was employed, in which both unexpected rewards and punishments signaled reversals. Drug effects were stratified with baseline working memory to take into account individual variations in drug response. Sulpiride induced parallel span-dependent changes on striatal blood oxygen level-dependent (BOLD) signal during unexpected rewards and punishments. These drug effects were found to be partially dopamine-dependent, as they were blocked by coadministration with bromocriptine. In contrast, sulpiride elicited opposite effects on behavioral measures of reward and punishment learning. Moreover, sulpiride-induced increases in striatal BOLD signal during both outcomes were associated with behavioral improvement in reward versus punishment learning. These results provide a strong support for current theories, suggesting that drug effects on reward and punishment learning are mediated via striatal dopamine.

  7. Quantitative 3D high resolution transmission ultrasound tomography: creating clinically relevant images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wiskin, James; Klock, John; Iuanow, Elaine; Borup, Dave T.; Terry, Robin; Malik, Bilal H.; Lenox, Mark

    2017-03-01

    There has been a great deal of research into ultrasound tomography for breast imaging over the past 35 years. Few successful attempts have been made to reconstruct high-resolution images using transmission ultrasound. To this end, advances have been made in 2D and 3D algorithms that utilize either time of arrival or full wave data to reconstruct images with high spatial and contrast resolution suitable for clinical interpretation. The highest resolution and quantitative accuracy result from inverse scattering applied to full wave data in 3D. However, this has been prohibitively computationally expensive, meaning that full inverse scattering ultrasound tomography has not been considered clinically viable. Here we show the results of applying a nonlinear inverse scattering algorithm to 3D data in a clinically useful time frame. This method yields Quantitative Transmission (QT) ultrasound images with high spatial and contrast resolution. We reconstruct sound speeds for various 2D and 3D phantoms and verify these values with independent measurements. The data are fully 3D as is the reconstruction algorithm, with no 2D approximations. We show that 2D reconstruction algorithms can introduce artifacts into the QT breast image which are avoided by using a full 3D algorithm and data. We show high resolution gross and microscopic anatomic correlations comparing cadaveric breast QT images with MRI to establish imaging capability and accuracy. Finally, we show reconstructions of data from volunteers, as well as an objective visual grading analysis to confirm clinical imaging capability and accuracy.

  8. Horizontal cell gap junctions: single-channel conductance and modulation by dopamine.

    PubMed Central

    McHahon, D G; Knapp, A G; Dowling, J E

    1989-01-01

    Horizontal cells form an electrically coupled network for the transmission of inhibitory signals in the outer retina. In teleosts, horizontal cell coupling is modulated by the neurotransmitter dopamine. Using voltage-clamped pairs of teleost horizontal cells, we have examined the effects of dopamine on the conductance and gating properties of the cell-to-cell channels that mediate electrical synaptic transmission. Variance analysis of the junctional current noise showed that dopamine substantially reduced the open probability of gap junction channels, from 0.75 to 0.14. Direct observation of unitary junctional gating events in poorly coupled cell pairs indicated that these channels have a unitary conductance of 50-60 pS. The elementary conductance of channels in cell pairs treated with dopamine (48.7 +/- 6.6 pS) was statistically indistinguishable from channels in untreated cells (53.2 +/- 7.2 pS). Uncoupling with octanol also yielded a similar unitary conductance (61.1 +/- 11.1 pS). Our results suggest that dopamine reduces the open probability of gap junctional channels by decreasing their open duration. Images PMID:2477845

  9. Description of a prototype emission-transmission computed tomography imaging system

    NASA Technical Reports Server (NTRS)

    Lang, T. F.; Hasegawa, B. H.; Liew, S. C.; Brown, J. K.; Blankespoor, S. C.; Reilly, S. M.; Gingold, E. L.; Cann, C. E.

    1992-01-01

    We have developed a prototype imaging system that can perform simultaneous x-ray transmission CT and SPECT phantom studies. This system employs a 23-element high-purity-germanium detector array. The detector array is coupled to a collimator with septa angled toward the focal spot of an x-ray tube. During image acquisition, the x-ray fan beam and the detector array move synchronously along an arc pivoted at the x-ray source. Multiple projections are obtained by rotating the object, which is mounted at the center of rotation of the system. The detector array and electronics can count up to 10(6) cps/element with sufficient energy-resolution to discriminate between x-rays at 100-120 kVp and gamma rays from 99mTc. We have used this device to acquire x-ray CT and SPECT images of a three-dimensional Hoffman brain phantom. The emission and transmission images may be superimposed in order to localize the emission image on the transmission map.

  10. Description of a prototype emission-transmission computed tomography imaging system

    NASA Technical Reports Server (NTRS)

    Lang, T. F.; Hasegawa, B. H.; Liew, S. C.; Brown, J. K.; Blankespoor, S. C.; Reilly, S. M.; Gingold, E. L.; Cann, C. E.

    1992-01-01

    We have developed a prototype imaging system that can perform simultaneous x-ray transmission CT and SPECT phantom studies. This system employs a 23-element high-purity-germanium detector array. The detector array is coupled to a collimator with septa angled toward the focal spot of an x-ray tube. During image acquisition, the x-ray fan beam and the detector array move synchronously along an arc pivoted at the x-ray source. Multiple projections are obtained by rotating the object, which is mounted at the center of rotation of the system. The detector array and electronics can count up to 10(6) cps/element with sufficient energy-resolution to discriminate between x-rays at 100-120 kVp and gamma rays from 99mTc. We have used this device to acquire x-ray CT and SPECT images of a three-dimensional Hoffman brain phantom. The emission and transmission images may be superimposed in order to localize the emission image on the transmission map.

  11. Imaging of polarization rotation in transmission resonances of periodic plasmonic structures

    NASA Astrophysics Data System (ADS)

    Arora, Pankaj; Krishnan, Ananth

    2014-05-01

    We imaged polarization rotation of transmitted light in 1D Periodic Plasmonic Structures (PPS) fabricated on thin metal coated dielectric substrate. Several PPS of 50% duty cycle and extremely low aspect ratio (height to width ratio) of 0.1 were designed using rigorous coupled wave analysis to exhibit transmission plasmonic resonances at optical wavelengths (400 nm to 700 nm). PPS were fabricated using electron beam lithography, evaporation and lift-off process on glass substrates coated with thin metal. The PPS were characterized using normally incident broadband visible light and crossaxis Polarizer Analyzer setup, with the transmitted light imaged in direct and momentum space using a camera. When the cross axis Polarizer Analyzer were positioned at +45° & -45° respectively w.r.t. plane of incidence, bright emissions of Green, Yellow or Red colors corresponding to transmission plasmonic resonances of the PPS with different periods, were observed in both direct and Fourier planes, instead of completely dark images. From the measured emission momentum in Fourier plane images and spectra of collected light, the emissions were attributed to the excitations of surface plasmons and the reason for surface plasmon excitation in this arrangement is strong coupling of hybrid modes with each other caused by the anisotropy introduced by grating which strongly enhances the efficiency of Polarization rotation. The presented structures behave as frequency selective half wave plates in transmission configuration and could also be used to eliminate the effect of direct beam while imaging the coupling to surface plasmons in periodic structures.

  12. Implementation of Microfiche Image Transmission System (MITS): A multifaceted assessment of demonstration installation

    NASA Astrophysics Data System (ADS)

    Sheposh, J. P.; Hulton, V. N.

    1983-06-01

    A multifaceted approach was employed to evaluate the introduction and implementation of a technological system--the microfiche image transmission system (MITS). Four different aspects of the demonstration installation were investigated: (1) operators' perception of MITS, (2) the requesters' acceptance of the services provided, (3) image quality, and (4) management's evaluation of the MITS implementation. The results revealed that the operators' perceptions of MITS were positive, the requesters regarded MITS as highly satisfactory, the image quality of the facsimile input fiche was judged superior to the MITS output, and the managers and developers regarded the MITS implementation as a success. Issues concerning widespread application of MITS were seen as premature at this time.

  13. Direct Imaging of Single Cells and Tissue at Subcellular Spatial Resolution Using Transmission Geometry MALDI MS

    PubMed Central

    Zavalin, Andre; Todd, Erik M.; Rawhouser, Patrick D.; Yang, Junhai; Norris, Jeremy L.; Caprioli, Richard M.

    2012-01-01

    The need of cellular and sub-cellular spatial resolution in LDI / MALDI Imaging Mass Spectrometry (IMS) necessitates micron and sub-micron laser spot sizes at biologically relevant sensitivities, introducing significant challenges for MS technology. To this end we have developed a transmission geometry vacuum ion source that allows the laser beam to irradiate the back side of the sample. This arrangement obviates the mechanical / ion optic complications in the source by completely separating the optical lens and ion optic structures. We have experimentally demonstrated the viability of transmission geometry MALDI MS for imaging biological tissues and cells with sub-cellular spatial resolution. Furthermore, we demonstrate that in conjunction with new sample preparation protocols, the sensitivity of this instrument is sufficient to obtain molecular images at sub-micron spatial resolution. PMID:23147833

  14. Dual transmission grating based imaging radiometer for tokamak edge and divertor plasmas

    SciTech Connect

    Kumar, Deepak; Clayton, Daniel J.; Parman, Matthew; Stutman, Dan; Tritz, Kevin; Finkenthal, Michael

    2012-10-15

    The designs of single transmission grating based extreme ultraviolet (XUV) and vacuum ultraviolet (VUV) imaging spectrometers can be adapted to build an imaging radiometer for simultaneous measurement of both spectral ranges. This paper describes the design of such an imaging radiometer with dual transmission gratings. The radiometer will have an XUV coverage of 20-200 A with a {approx}10 A resolution and a VUV coverage of 200-2000 A with a {approx}50 A resolution. The radiometer is designed to have a spatial view of 16 Degree-Sign , with a 0.33 Degree-Sign resolution and a time resolution of {approx}10 ms. The applications for such a radiometer include spatially resolved impurity monitoring and electron temperature measurements in the tokamak edge and the divertor. As a proof of principle, the single grating instruments were used to diagnose a low temperature reflex discharge and the relevant data is also included in this paper.

  15. Application of USB2.0 in infrared sequence image transmission

    NASA Astrophysics Data System (ADS)

    Fan, Minge; Zhao, Yan

    2008-10-01

    The paper presents a practical system based on DSP and USB2.0 to realize the transmission of digital infrared sequence images. The hardware design of system is analyzed in detail, in which USB interface controller is described, moreover the development of DSP software and the application program on host PC is also introduced. The system interfaces PC with EZ-USB chip CY7C68001. It is based on bulk transmission with one frame image as a unit, and the chip is configured in Slave FIFO, asynchronous read/write operating mode. Experimental results show that the developed system can work properly and achieves the data transfer speed of 50 Mbps, thus it can meet the requirement for real time transfer of infrared sequence image sized 256×256×8 bits per frame at 100 frames per second.

  16. Transmission X-ray microscopy for full-field nano-imaging of biomaterials

    PubMed Central

    ANDREWS, JOY C; MEIRER, FLORIAN; LIU, YIJIN; MESTER, ZOLTAN; PIANETTA, PIERO

    2010-01-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. These techniques are discussed and compared in light of results from imaging of biological materials including microorganisms, bone and mineralized tissue and plants, with a focus on hard X-ray TXM at ≤ 40 nm resolution. PMID:20734414

  17. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE PAGES

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; ...

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  18. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    SciTech Connect

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for the analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.

  19. Secure Image Transmission over DFT-precoded OFDM-VLC systems based on Chebyshev Chaos scrambling

    NASA Astrophysics Data System (ADS)

    Wang, Zhongpeng; Qiu, Weiwei

    2017-08-01

    This paper proposes a physical layer image secure transmission scheme for discrete Fourier transform (DFT) precoded OFDM-based visible light communication systems by using Chebyshev chaos maps. In the proposed scheme, 256 subcarriers and QPSK modulation are employed. The transmitted digital signal of the image is encrypted with a Chebyshev chaos sequence. The encrypted signal is then transformed by a DFT precoding matrix to reduce the PAPR of the OFDM signal. After that, the encrypted and DFT-precoded OFDM are transmitted over a VLC channel. The simulation results show that the proposed image security transmission scheme can not only protect the DFT-precoded OFDM-based VLC from eavesdroppers but also improve BER performance.

  20. Tonpilz piezoelectric transducers with acoustic matching plates for underwater color image transmission.

    PubMed

    Inoue, T; Nada, T; Tsuchiya, T; Nakanishi, T; Miyama, T; Konno, M

    1993-01-01

    Tonpilz piezoelectric transducers with multiple acoustic matching plates are suitable for color image acoustic transmission, to achieve wideband low-ripple characteristics as well as high-efficiency high-power transmitting capability. The design method for the transducers was investigated on the basis of multiple-mode filter synthesis theory. For transducers with single, double, and triple matching plates, optimum specific acoustic impedances and lengths were calculated. Moreover, based on this design method, a 24 kHz array comprising nine identical transducers with single matching plates was built and evaluated. As a result, this array showed high-efficiency, low-ripple, and wideband characteristics. Excellent agreement between theoretical values and experimental results was obtained. A field test was carried out on color image transmission from a 3500 m sea depth, using the fabricated array, during which good color images were received.

  1. An Adaptive Source-Channel Coding with Feedback for Progressive Transmission of Medical Images

    PubMed Central

    Lo, Jen-Lung; Sanei, Saeid; Nazarpour, Kianoush

    2009-01-01

    A novel adaptive source-channel coding with feedback for progressive transmission of medical images is proposed here. In the source coding part, the transmission starts from the region of interest (RoI). The parity length in the channel code varies with respect to both the proximity of the image subblock to the RoI and the channel noise, which is iteratively estimated in the receiver. The overall transmitted data can be controlled by the user (clinician). In the case of medical data transmission, it is vital to keep the distortion level under control as in most of the cases certain clinically important regions have to be transmitted without any visible error. The proposed system significantly reduces the transmission time and error. Moreover, the system is very user friendly since the selection of the RoI, its size, overall code rate, and a number of test features such as noise level can be set by the users in both ends. A MATLAB-based TCP/IP connection has been established to demonstrate the proposed interactive and adaptive progressive transmission system. The proposed system is simulated for both binary symmetric channel (BSC) and Rayleigh channel. The experimental results verify the effectiveness of the design. PMID:19190770

  2. Synthesis and characterization of a novel series of agonist compounds as potential radiopharmaceuticals for imaging dopamine D₂/₃ receptors in their high-affinity state.

    PubMed

    van Wieringen, Jan-Peter; Shalgunov, Vladimir; Janssen, Henk M; Fransen, P Michel; Janssen, Anton G M; Michel, Martin C; Booij, Jan; Elsinga, Philip H

    2014-01-23

    Imaging of dopamine D2/3 receptors (D2/3R) can shed light on the nature of several neuropsychiatric disorders in which dysregulation of D2/3R signaling is involved. Agonist D2/3 tracers for PET/SPECT imaging are considered to be superior to antagonists because they are more sensitive to dopamine concentrations and may selectively label the high-affinity receptor state. Carbon-11-labeled D2/3R agonists have been developed, but these short-lived tracers can be used only in centers with a cyclotron. Here, we report the development of a series of novel D2R agonist compounds based on the 2-aminomethylchromane (AMC) scaffold that provides ample opportunities for the introduction of longer-lived [(18)F] or [(123)I]. Binding experiments showed that several AMC compounds have a high affinity and selectivity for D2/3R and act as agonists. Two fluorine-containing compounds were [(18)F]-labeled, and both displayed specific binding to striatal D2/3R in rat brain slices in vitro. These findings encourage further in vivo evaluations.

  3. Impact of dynamical scattering on quantitative contrast for aberration-corrected transmission electron microscope images.

    PubMed

    Wen, C; Smith, David J

    2016-10-01

    Aberration-corrected transmission electron microscope images taken under optimum-defocus conditions or processed offline can correctly reflect the projected crystal structure with atomic resolution. However, dynamical scattering, which will seriously influence image contrast, is still unavoidable. Here, the multislice image simulation approach was used to quantify the impact of dynamical scattering on the contrast of aberration-corrected images for a 3C-SiC specimen with changes in atomic occupancy and thickness. Optimum-defocus images with different spherical aberration (CS) coefficients, and structure images restored by deconvolution processing, were studied. The results show that atomic-column positions and the atomic occupancy for SiC 'dumbbells' can be determined by analysis of image contrast profiles only below a certain thickness limit. This limit is larger for optimum-defocus and restored structure images with negative CS coefficient than those with positive CS coefficient. The image contrast of C (or Si) atomic columns with specific atomic occupancy changes differently with increasing crystal thickness. Furthermore, contrast peaks for C atomic columns overlapping with neighboring peaks of Si atomic columns with varied Si atomic occupancy, which is enhanced with increasing crystal thickness, can be neglected in restored structure images, but the effect is substantial in optimum-defocus images. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Error protection and interleaving for wireless transmission of JPEG 2000 images and video.

    PubMed

    Baruffa, Giuseppe; Micanti, Paolo; Frescura, Fabrizio

    2009-02-01

    The transmission of JPEG 2000 images or video over wireless channels has to cope with the high probability and burstyness of errors introduced by Gaussian noise, linear distortions, and fading. At the receiver side, there is distortion due to the compression performed at the sender side, and to the errors introduced in the data stream by the channel. Progressive source coding can also be successfully exploited to protect different portions of the data stream with different channel code rates, based upon the relative importance that each portion has on the reconstructed image. Unequal Error Protection (UEP) schemes are generally adopted, which offer a close to the optimal solution. In this paper, we present a dichotomic technique for searching the optimal UEP strategy, which lends ideas from existing algorithms, for the transmission of JPEG 2000 images and video over a wireless channel. Moreover, we also adopt a method of virtual interleaving to be used for the transmission of high bit rate streams over packet loss channels, guaranteeing a large PSNR advantage over a plain transmission scheme. These two protection strategies can also be combined to maximize the error correction capabilities.

  5. The formation and interpretation of defect images from crystalline materials in a scanning transmission electron microscope.

    PubMed

    Maher, D M; Joy, D C

    1976-06-01

    The technique of scanning transmission electron microscopy (STEM) has been employed usefully in studies of amorphous materials, and the theory of image formation and interpretation in this case has been well developed. Less attention has been given to the practical and theoretical problems associated with the use of STEM for the examination of crystalline materials. In this case the contrast mechanisms are dominated by Bragg diffraction and so they are quite different from those occurring in amorphous substances. In this paper practical techniques for the observation and interpretation of contrast from defects in crystalline materials are discussed. It is shown that whilst images of defects are obtained readily under all typical STEM operating conditions, the form of the image and the information it contains varies with the angle subtended at the specimen by the detector. If this angle is too large significant image modifications relative to the "conventional" transmission electron microscope case may occur and the resolution of the image may degrade. If this angle is too small, then signal to noise considerations make an interpretation of the image difficult. In this paper we indicate how the detector angle may be chosen correctly, and also present techniques for setting up a STEM instrument for imaging a crystalline material containing lattice defects.

  6. Image formation in the scanning transmission electron microscope using object-conjugate detectors.

    PubMed

    Dwyer, C; Lazar, S; Chang, L Y; Etheridge, J

    2012-03-01

    This work presents a theoretical analysis of image formation in a scanning transmission electron microscope equipped with electron detectors in a plane conjugate to the specimen. This optical geometry encompasses both the three-dimensional imaging technique of scanning confocal electron microscopy (SCEM) and a recently developed atomic resolution imaging technique coined real-space scanning transmission electron microscopy (R-STEM). Image formation in this geometry is considered from the viewpoints of both wave optics and geometric optics, and the validity of the latter is analysed by means of Wigner distributions. Relevant conditions for the validity of a geometric interpretation of image formation are provided. For R-STEM, where a large detector is used, it is demonstrated that a geometric optics description of image formation provides an accurate approximation to wave optics, and that this description offers distinct advantages for interpretation and numerical implementation. The resulting description of R-STEM is also demonstrated to be in good agreement with experiment. For SCEM, it is emphasized that a geometric optics description of image formation is valid provided that higher-order aberrations can be ignored and the detector size is large enough to average out diffraction from the angle-limiting aperture.

  7. Applications of Microwave Antenna Array for Wireless Power Transmission and Radar Imaging in Complex Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Ce

    The focus of my research interests lies in the application of microwave antenna array system and array signal processing techniques to problems in wireless power transmission and radar imaging. The two research areas share the same underlying mathematical principle of time reversality of electromagnetic wave propagation. Based on this principle, the array antenna system and the associated signal processing algorithm are further improved to adapt to different scenarios. In my dissertation, the rest part presents an optimal algorithm for wireless power transmission with beamforming array. The optimal weight distribution on antenna array elements is found based on time reversal eigenmode technique. Our method is adaptive to the medium of the channel and can be applied to arbitrarily positioned antenna without degradation of efficiency. This novel method is analytically studied and verified with numerical electromagnetic simulations. The second part presents a new problem called "Hard-Wall Radar Imaging" (HWRI) has been proposed when the electromagnetic waves cannot penetrate the shielding walls (such as metallic walls). The research methodology involves algorithm development combined with experimental results to gain more insights into the real microwave imaging system. First, we implemented the imaging system with the conventional time reversal DORT (Decomposition of Time-Reversal Operator) imaging algorithm and adapted it into a new signal processing technique (multiplicative array technique) to obtain the image in the proposed scenario. Second, after having identified the drawbacks of the rest imaging system, the imaging system is improved to distributed MIMO radar configuration. The new imaging algorithm is also developed based on the techniques of Direction-of-Arrival(DoA) estimation and adaptive nulling. From this algorithm, the experimental results show that the new imaging system can localize two targets correctly. To resolve the problem of spurious clutter

  8. A Comparison of Image Quality Evaluation Techniques for Transmission X-Ray Microscopy

    SciTech Connect

    Bolgert, Peter J; /Marquette U. /SLAC

    2012-08-31

    Beamline 6-2c at Stanford Synchrotron Radiation Lightsource (SSRL) is capable of Transmission X-ray Microscopy (TXM) at 30 nm resolution. Raw images from the microscope must undergo extensive image processing before publication. Since typical data sets normally contain thousands of images, it is necessary to automate the image processing workflow as much as possible, particularly for the aligning and averaging of similar images. Currently we align images using the 'phase correlation' algorithm, which calculates the relative offset of two images by multiplying them in the frequency domain. For images containing high frequency noise, this algorithm will align noise with noise, resulting in a blurry average. To remedy this we multiply the images by a Gaussian function in the frequency domain, so that the algorithm ignores the high frequency noise while properly aligning the features of interest (FOI). The shape of the Gaussian is manually tuned by the user until the resulting average image is sharpest. To automatically optimize this process, it is necessary for the computer to evaluate the quality of the average image by quantifying its sharpness. In our research we explored two image sharpness metrics, the variance method and the frequency threshold method. The variance method uses the variance of the image as an indicator of sharpness while the frequency threshold method sums up the power in a specific frequency band. These metrics were tested on a variety of test images, containing both real and artificial noise. To apply these sharpness metrics, we designed and built a MATLAB graphical user interface (GUI) called 'Blur Master.' We found that it is possible for blurry images to have a large variance if they contain high amounts of noise. On the other hand, we found the frequency method to be quite reliable, although it is necessary to manually choose suitable limits for the frequency band. Further research must be performed to design an algorithm which

  9. 4D scanning transmission ultrafast electron microscopy: Single-particle imaging and spectroscopy.

    PubMed

    Ortalan, Volkan; Zewail, Ahmed H

    2011-07-20

    We report the development of 4D scanning transmission ultrafast electron microscopy (ST-UEM). The method was demonstrated in the imaging of silver nanowires and gold nanoparticles. For the wire, the mechanical motion and shape morphological dynamics were imaged, and from the images we obtained the resonance frequency and the dephasing time of the motion. Moreover, we demonstrate here the simultaneous acquisition of dark-field images and electron energy loss spectra from a single gold nanoparticle, which is not possible with conventional methods. The local probing capabilities of ST-UEM open new avenues for probing dynamic processes, from single isolated to embedded nanostructures, without being affected by the heterogeneous processes of ensemble-averaged dynamics. Such methodology promises to have wide-ranging applications in materials science and in single-particle biological imaging.

  10. Enhanced light element imaging in atomic resolution scanning transmission electron microscopy.

    PubMed

    Findlay, S D; Kohno, Y; Cardamone, L A; Ikuhara, Y; Shibata, N

    2014-01-01

    We show that an imaging mode based on taking the difference between signals recorded from the bright field (forward scattering region) in atomic resolution scanning transmission electron microscopy provides an enhancement of the detectability of light elements over existing techniques. In some instances this is an enhancement of the visibility of the light element columns relative to heavy element columns. In all cases explored it is an enhancement in the signal-to-noise ratio of the image at the light column site. The image formation mechanisms are explained and the technique is compared with earlier approaches. Experimental data, supported by simulation, are presented for imaging the oxygen columns in LaAlO₃. Case studies looking at imaging hydrogen columns in YH₂ and lithium columns in Al₃Li are also explored through simulation, particularly with respect to the dependence on defocus, probe-forming aperture angle and detector collection aperture angles. © 2013 Elsevier B.V. All rights reserved.

  11. Secured and progressive transmission of compressed images on the Internet: application to telemedicine

    NASA Astrophysics Data System (ADS)

    Babel, Marie; Parrein, Benoit; Deforges, Olivier; Normand, Nicolas; Guedon, Jean-Pierre; Ronsin, Joseph

    2005-01-01

    Within the framework of telemedicine, the amount of images leads first to use efficient lossless compression methods for the aim of storing information. Furthermore, multiresolution scheme including Region of Interest (ROI) processing is an important feature for a remote access to medical images. What is more, the securization of sensitive data (e.g. metadata from DICOM images) constitutes one more expected functionality: indeed the lost of IP packets could have tragic effects on a given diagnosis. For this purpose, we present in this paper an original scalable image compression technique (LAR method) used in association with a channel coding method based on the Mojette Transform, so that a hierarchical priority encoding system is elaborated. This system provides a solution for secured transmission of medical images through low-bandwidth networks such as the Internet.

  12. Secured and progressive transmission of compressed images on the Internet: application to telemedicine

    NASA Astrophysics Data System (ADS)

    Babel, Marie; Parrein, Benoît; Déforges, Olivier; Normand, Nicolas; Guédon, Jean-Pierre; Ronsin, Joseph

    2004-12-01

    Within the framework of telemedicine, the amount of images leads first to use efficient lossless compression methods for the aim of storing information. Furthermore, multiresolution scheme including Region of Interest (ROI) processing is an important feature for a remote access to medical images. What is more, the securization of sensitive data (e.g. metadata from DICOM images) constitutes one more expected functionality: indeed the lost of IP packets could have tragic effects on a given diagnosis. For this purpose, we present in this paper an original scalable image compression technique (LAR method) used in association with a channel coding method based on the Mojette Transform, so that a hierarchical priority encoding system is elaborated. This system provides a solution for secured transmission of medical images through low-bandwidth networks such as the Internet.

  13. Growth of dopamine crystals

    SciTech Connect

    Patil, Vidya Patki, Mugdha

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  14. Growth of dopamine crystals

    NASA Astrophysics Data System (ADS)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  15. Unit Title: Imaging the Insertion of Superecliptic pHluorin Labeled Dopamine D2 Receptor Using Total Internal Reflection Fluorescence Microscopy

    PubMed Central

    Daly, Kathryn M.; Li, Yun; Lin, Da-Ting

    2015-01-01

    A better understanding of mechanisms governing receptor insertion to the plasma membrane (PM) requires an experimental approach with excellent spatial and temporal resolutions. Here we present a strategy that enables dynamic visualization of insertion events for dopamine D2 receptors into the PM. This approach includes tagging a pH-sensitive GFP, superecliptic pHluorin, to the extracellular domain of the receptor. By imaging pHluorin-tagged receptors under total internal reflection fluorescence microscopy (TIRFM), we were able to directly visualize individual receptor insertion events into the PM in cultured neurons. This novel imaging approach can be applied to both secreted proteins and many membrane proteins with an extracellular domain labeled with superecliptic pHluorin, and will ultimately allow for detailed dissections of the key mechanisms governing secretion of soluble proteins or the insertion of different membrane proteins to the PM. PMID:25559003

  16. Comparison of transflection and transmission FTIR imaging measurements performed on differentially fixed tissue sections.

    PubMed

    Perez-Guaita, David; Heraud, Philip; Marzec, Katarzyna M; de la Guardia, Miguel; Kiupel, Matti; Wood, Bayden R

    2015-04-07

    The widespread and cost-effective use of transflection substrates in Fourier transform infrared (FTIR) imaging of clinical samples is affected by the presence of artefacts including the electric field standing wave (EFSW) and contributions from light dispersion. For IR-based diagnostics, the manifestation of undesirable artifacts can distort the spectra and lead to erroneous diagnosis. Nevertheless, there is no clear consensus in the literature about the degree of influence of these effects. The aim of this work is to contribute to this discussion by comparing transflection and transmission images of the same tissue. For this purpose two adjacent sections of the same tissue (lymphoma sample) were fixed onto a CaF2 window and a transflective slide for FTIR imaging. The samples in this case had a central area where based on morphology it was presumed the fixative did not penetrate to the same extent hence providing a comparable region for the two different substrates with a distinct physical/chemical difference. Transmission and transflection spectra from adjacent hyperspectral tissue images were combined in an extended dataset. Surprisingly, unsupervised hierarchical cluster analysis clustered together transflection and transmission spectra, being classified according to differences in tissue fixation instead of the geometry employed for the image acquisition. A more detailed examination of spectra from the peripheral zone of the tissue indicated that the main differences between the transflection and transmission spectra were: (1) a small shift of the amide I, (2) a larger "noise" component in the transflection spectra requiring more averaging to obtain representative spectra of tissue types, and (3) the phosphate bands were generally higher in absorbance in the transflection measurements compared to the transmission ones. The amide I shift and the larger spectral variance was consistent with results obtained in previous studies where the EFWS was present. The

  17. Dopamine receptor-interacting proteins: the Ca(2+) connection in dopamine signaling.

    PubMed

    Bergson, Clare; Levenson, Robert; Goldman-Rakic, Patricia S; Lidow, Michael S

    2003-09-01

    Abnormal activity of the dopamine system has been implicated in several psychiatric and neurological illnesses; however, lack of knowledge about the precise sites of dopamine dysfunction has compromised our ability to improve the efficacy and safety of dopamine-related drugs used in treatment modalities. Recent work suggests that dopamine transmission is regulated via the concerted efforts of a cohort of cytoskeletal, adaptor and signaling proteins called dopamine receptor-interacting proteins (DRIPs). The discovery that two DRIPs, calcyon and neuronal Ca(2+) sensor 1 (NCS-1), are upregulated in schizophrenia highlights the possibility that altered protein interactions and defects in Ca(2+) homeostasis might contribute to abnormalities in the brain dopamine system in neuropsychiatric diseases.

  18. Imaging flux vortices in type II superconductors with a commercial transmission electron microscope.

    PubMed

    Loudon, J C; Midgley, P A

    2009-05-01

    Flux vortices in superconductors can be imaged using transmission electron microscopy because the electron beam is deflected by the magnetic flux associated with the vortices. This technique has a better spatial and temporal resolution than many other imaging techniques and is sensitive to the magnetic flux density within each vortex, not simply the fields at the sample surface. Despite these advantages, only two groups have successfully employed the technique using specially adapted instruments. Here we demonstrate that vortices can be imaged with a modern, commercial transmission electron microscope operating at 300kV equipped with a field emission gun, Lorentz lens and a liquid helium cooled sample holder. We introduce superconductivity for non-specialists and discuss techniques for simulating and optimising images of flux vortices. Sample preparation is discussed in detail as the main difficulty with the technique is the requirement for samples with very large (>10microm), flat areas so that the image is not dominated by diffraction contrast. We have imaged vortices in superconducting Bi(2)Sr(2)CaCu(2)O(8-delta) and use correlation functions to investigate the ordered arrangements they adopt as a function of applied magnetic field.

  19. A CMOS One-chip Wireless Camera with Digital Image Transmission Function for Capsule Endoscopes

    NASA Astrophysics Data System (ADS)

    Itoh, Shinya; Kawahito, Shoji; Terakawa, Susumu

    This paper presents the design and implementation of a one-chip camera device for capsule endoscopes. This experimental chip integrates functional circuits required for capsule endoscopes and digital image transmission function. The integrated functional blocks include an image array, a timing generator, a clock generator, a voltage regulator, a 10b cyclic A/D converter, and a BPSK modulator. It can be operated autonomously with 3 pins (VDD, GND, and DATAOUT). A prototype image sensor chip which has 320x240 effective pixels was fabricated using 0.25μm CMOS image sensor process and the autonomous imaging was demonstrated. The chip size is 4.84mmx4.34mm. With a 2.0 V power supply, the analog part consumes 950μW and the total power consumption at 2 frames per second (fps) is 2.6mW. Error-free image transmission over a distance of 48cm at 2.5Mbps corresponding to 2fps has been succeeded with inductive coupling.

  20. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures.

    PubMed

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-04-12

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets.

  1. Packet based serial link realized in FPGA dedicated for high resolution infrared image transmission

    NASA Astrophysics Data System (ADS)

    Bieszczad, Grzegorz

    2015-05-01

    In article the external digital interface specially designed for thermographic camera built in Military University of Technology is described. The aim of article is to illustrate challenges encountered during design process of thermal vision camera especially related to infrared data processing and transmission. Article explains main requirements for interface to transfer Infra-Red or Video digital data and describes the solution which we elaborated based on Low Voltage Differential Signaling (LVDS) physical layer and signaling scheme. Elaborated link for image transmission is built using FPGA integrated circuit with built-in high speed serial transceivers achieving up to 2500Gbps throughput. Image transmission is realized using proprietary packet protocol. Transmission protocol engine was described in VHDL language and tested in FPGA hardware. The link is able to transmit 1280x1024@60Hz 24bit video data using one signal pair. Link was tested to transmit thermal-vision camera picture to remote monitor. Construction of dedicated video link allows to reduce power consumption compared to solutions with ASIC based encoders and decoders realizing video links like DVI or packed based Display Port, with simultaneous reduction of wires needed to establish link to one pair. Article describes functions of modules integrated in FPGA design realizing several functions like: synchronization to video source, video stream packeting, interfacing transceiver module and dynamic clock generation for video standard conversion.

  2. Dopamine transporter mutant animals: a translational perspective

    PubMed Central

    Efimova, Evgenia V.; Gainetdinov, Raul R.; Budygin, Evgeny A.; Sotnikova, Tatiana D.

    2016-01-01

    The dopamine transporter (DAT) plays an important homeostatic role in the control of both the extracellular and intraneuronal concentrations of dopamine, thereby providing effective control over activity of dopaminergic transmission. Since brain dopamine is known to be involved in numerous neuropsychiatric disorders, investigations using mice with genetically altered DAT function and thus intensity of dopamine-mediated signaling have provided numerous insights into the pathology of these disorders and highlight novel pathological mechanisms that could be targeted to provide new therapeutic approaches for these disorders. In this brief overview we discuss recent investigations involving animals with genetically altered DAT function, particularly focusing on translational studies providing new insights into pathology and pharmacology of dopamine-related disorders. Perspective applications of these and newly developed models of DAT dysfunction are also discussed. PMID:27276191

  3. Dopamine D-2 receptor imaging radiopharmaceuticals: synthesis, radiolabeling, and in vitro binding of (R)-(+)- and (S)-(-)-3-iodo-2-hydroxy-6-methoxy-N- ((1-ethyl-2-pyrrolidinyl)methyl)benzamide

    SciTech Connect

    Kung, H.F.; Kasliwal, R.; Pan, S.G.; Kung, M.P.; Mach, R.H.; Guo, Y.Z.

    1988-05-01

    In developing central nervous system (CNS) dopamine D-2 receptor imaging agents, enantiomers, R-(+) and S-(-) isomers, of 3-(/sup 125/I)iodo-2-hydroxy-6-methoxy-N-((1-ethyl-2- pyrrolidinyl)methyl)benzamide, (/sup 125/I)IBZM, were synthesized, and their in vitro binding characteristics were evaluated in rat striatum tissue preparation. The (S)-(-)-(/sup 125/I)IBZM showed high specific dopamine D-2 receptor binding (Kd = 0.43 nM, Bmax = 0.48 pmol/mg of protein). Competition data of various ligands for IBZM binding displayed the following rank order of potency: spiperone greater than (S)-(-)-IBZM greater than (+)-butaclamol much greater than (R)-(+)-IBZM greater than (S)-(-)-BZM greater than dopamine greater than ketanserin greater than SCH23390 much greater than propanolol. The results indicate that (/sup 125/I)IBZM binds specifically to the dopamine D-2-receptor with stereospecificity. The (/sup 125/I)IBZM is potentially useful as an imaging agent for the investigation of dopamine D-2 receptors in humans.

  4. Imaging and microanalysis of thin ionomer layers by scanning transmission electron microscopy

    SciTech Connect

    Cullen, David A; Koestner, Roland; Kukreja, Ratan; Minko, Sergiy; Trotsenko, Oleksandr; Tokarev, Alexander V; Guetaz, Laure; Meyer III, Harry M; Parish, Chad M; More, Karren Leslie

    2014-01-01

    Improved conditions for imaging and spectroscopic mapping of thin perfluorosulfonic acid (PFSA) ionomer layers in fuel cell electrodes by scanning transmission electron microscopy (STEM) have been investigated. These conditions are first identified on model systems of Nafion ionomer-coated nanostructured thin films and nanoporous Si. The optimized conditions are then applied in a quantitative study of the ionomer through-layer loading for two typical electrode catalyst coatings using electron energy loss and energy dispersive X-ray spectroscopy in the transmission electron microscope. The e-beam induced damage to the perfluorosulfonic acid (PFSA) ionomer is quantified by following the fluorine mass loss with electron exposure and is then mitigated by a few orders of magnitude using cryogenic specimen cooling and a higher incident electron voltage. Multivariate statistical analysis is also applied to the analysis of spectrum images for data denoising and unbiased separation of independent components related to the catalyst, ionomer, and support.

  5. Fast synchronization recovery for lossy image transmission with a suffix-rich Huffman code

    NASA Astrophysics Data System (ADS)

    Yang, Te-Chung; Kuo, C.-C. Jay

    1998-10-01

    A new entropy codec, which can recover quickly from the loss of synchronization due to the occurrence of transmission errors, is proposed and applied to wireless image transmission in this research. This entropy codec is designed based on the Huffman code with a careful choice of the assignment of 1's and 0's to each branch of the Huffman tree. The design satisfies the suffix-rich property, i.e. the number of a codeword to be the suffix of other codewords is maximized. After the Huffman coding tree is constructed, the source can be coded by using the traditional Huffman code. Thus, this coder does not introduce any overhead to sacrifice its coding efficiency. Statistically, the decoder can automatically recover the lost synchronization with the shortest error propagation length. Experimental results show that fast synchronization recovery reduces quality degradation on the reconstructed image while maintaining the same coding efficiency.

  6. Bandwidth compression of the digitized HDTV images for transmission via satellites

    NASA Technical Reports Server (NTRS)

    Al-Asmari, A. KH.; Kwatra, S. C.

    1992-01-01

    This paper investigates a subband coding scheme to reduce the transmission bandwidth of the digitized HDTV images. The HDTV signals are decomposed into seven bands. Each band is then independently encoded. The based band is DPCM encoded and the high bands are encoded by using nonuniform Laplacian quantizers with a dead zone. By selecting the dead zone on the basis of energy in the high bands an acceptable image quality is achieved at an average of 45 Mbits/sec (Mbps) rate. This rate is comparable to some very hardware intensive schemes of transform compression or vector quantization proposed in the literature. The subband coding scheme used in this study is considered to be of medium complexity. The 45 Mbps rate is suitable for transmission of HDTV signals via satellites.

  7. Spectral imaging of single molecules by transmission grating-based epi-fluorescencs microscopy

    SciTech Connect

    Han, Rui; Zhang, YeWang; Dong, Xiuling; Gai, Hongwei; Yeung, Edward S.

    2008-06-16

    A spectral imaging method of single protein molecules labeled with a single fluorophore is presented. The method is based on a transmission grating and a routine fluorescence microscope. The bovine serum albumin (BSA) and antiBSA molecules labeled with Alexa Fluor 488 and Alexa Fluor 594, respectively, are used as the model proteins. The fluorescence of single molecules is dispersed into zeroth-order spectrum and first-order spectrum by the transmission grating. Results show that the fluorescence emission spectrum of single molecule converted from the first-order spectral imaging is in good agreement with the bulk fluorescence spectrum. The spectral resolution of 2.4 nm/pixel is obtained, which is sufficient for identifying the molecular species in a multicomponent system.

  8. Transmission grating based extreme ultraviolet imaging spectrometer for time and space resolved impurity measurements.

    PubMed

    Kumar, Deepak; Stutman, Dan; Tritz, Kevin; Finkenthal, Michael; Tarrio, Charles; Grantham, Steven

    2010-10-01

    A free standing transmission grating based imaging spectrometer in the extreme ultraviolet range has been developed for the National Spherical Torus Experiment (NSTX). The spectrometer operates in a survey mode covering the approximate spectral range from 30 to 700 Å and has a resolving capability of δλ/λ on the order of 3%. Initial results from space resolved impurity measurements from NSTX are described in this paper.

  9. Equipment for Nonlinear Photonics Research - Light Control and Image Transmission in Specially-Designed Photonic

    DTIC Science & Technology

    2014-03-14

    AFRL-OSR-VA-TR-2014-0068 Equipment for Nonlinear Photonics Research Zhigang Chen SAN FRANCISCO STATE UNIVERSITY Final Report 03/14/2014 DISTRIBUTION...34Equipment for Nonlinear Photonics Research - Light control and image transmission in specially-designed photonic " Contract/Grant #: FA9550...project is to develop research programs at the frontier of nonlinear optics/ photonics that could lead to fundamental understandings in scientific

  10. Carbon Nanostructure Examined by Lattice Fringe Analysis of High Resolution Transmission Electron Microscopy Images

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Tomasek, Aaron J.; Street, Kenneth; Thompson, William K.

    2002-01-01

    The dimensions of graphitic layer planes directly affect the reactivity of soot towards oxidation and growth. Quantification of graphitic structure could be used to develop and test correlations between the soot nanostructure and its reactivity. Based upon transmission electron microscopy images, this paper provides a demonstration of the robustness of a fringe image analysis code for determining the level of graphitic structure within nanoscale carbon, i.e. soot. Results, in the form of histograms of graphitic layer plane lengths, are compared to their determination through Raman analysis.

  11. Carbon Nanostructure Examined by Lattice Fringe Analysis of High Resolution Transmission Electron Microscopy Images

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Tomasek, Aaron J.; Street, Kenneth; Thompson, William K.; Hull, David R.

    2003-01-01

    The dimensions of graphitic layer planes directly affect the reactivity of soot towards oxidation and growth. Quantification of graphitic structure could be used to develop and test correlations between the soot nanostructure and its reactivity. Based upon transmission electron microscopy images, this paper provides a demonstration of the robustness of a fringe image analysis code for determining the level of graphitic structure within nanoscale carbon, i.e., soot. Results, in the form of histograms of graphitic layer plane lengths, are compared to their determination through Raman analysis.

  12. Efficient elastic imaging of single atoms on ultrathin supports in a scanning transmission electron microscope.

    PubMed

    Hovden, Robert; Muller, David A

    2012-12-01

    Mono-atomic-layer membranes such as graphene offer new opportunities for imaging and detecting individual light atoms in transmission electron microscopes (TEM). For such applications where multiple scattering and diffraction effects are weak, we evaluate the detection efficiency and interpretability of single atom images for the most common detector geometries using quantitative quantum mechanical simulations. For well-resolved and atomically-thin specimens, the low angle annular dark field (LAADF) detector can provide a significant increase in signal-to-noise over other common detector geometries including annular bright field and incoherent bright field. This dramatically improves the visibility of organic specimens on atomic-layer membranes. Simulations of Adenosine Triphosphate (ATP) imaged under ideal conditions indicate the minimal dose requirements for elastic imaging by STEM or conventional TEM still exceed previously reported dose limits.

  13. Sound-speed image reconstruction in sparse-aperture 3-D ultrasound transmission tomography.

    PubMed

    Jirík, Radovan; Peterlík, Igor; Ruiter, Nicole; Fousek, Jan; Dapp, Robin; Zapf, Michael; Jan, Jirí

    2012-02-01

    The paper is focused on sound-speed image reconstruction in 3-D ultrasound transmission tomography. Along with ultrasound reflectivity and the attenuation coefficient, sound speed is an important parameter which is related to the type and pathological state of the imaged tissue. This is important in the intended application, breast cancer diagnosis. In contrast to 2-D ultrasound transmission tomography systems, a 3-D system can provide an isotropic spatial resolution in the x-, y-, and z-directions in reconstructed 3-D images of ultrasound parameters. Several challenges must, however, be addressed for 3-D systems-namely, a sparse transducer distribution, low signal-to-noise ratio, and higher computational complexity. These issues are addressed in terms of sound-speed image reconstruction, using edge-preserving regularized algebraic reconstruction in combination with synthetic aperture focusing. The critical points of the implementation are also discussed, because they are crucial to enable a complete 3-D image reconstruction. The methods were tested on a synthetic data set and on data sets measured with the Karlsruhe 3-D ultrasound computer tomography (USCT) I prototype using phantoms. The sound-speed estimates in the reconstructed volumes agreed with the reference values. The breast-phantom outlines and the lesion-mimicking objects were also detectable in the resulting sound-speed volumes.

  14. Anatomy-Correlated Breast Imaging and Visual Grading Analysis Using Quantitative Transmission Ultrasound™

    PubMed Central

    Iuanow, Elaine; Malik, Bilal; Obuchowski, Nancy A.; Wiskin, James

    2016-01-01

    Objectives. This study presents correlations between cross-sectional anatomy of human female breasts and Quantitative Transmission (QT) Ultrasound, does discriminate classifier analysis to validate the speed of sound correlations, and does a visual grading analysis comparing QT Ultrasound with mammography. Materials and Methods. Human cadaver breasts were imaged using QT Ultrasound, sectioned, and photographed. Biopsies confirmed microanatomy and areas were correlated with QT Ultrasound images. Measurements were taken in live subjects from QT Ultrasound images and values of speed of sound for each identified anatomical structure were plotted. Finally, a visual grading analysis was performed on images to determine whether radiologists' confidence in identifying breast structures with mammography (XRM) is comparable to QT Ultrasound. Results. QT Ultrasound identified all major anatomical features of the breast, and speed of sound calculations showed specific values for different breast tissues. Using linear discriminant analysis overall accuracy is 91.4%. Using visual grading analysis readers scored the image quality on QT Ultrasound as better than on XRM in 69%–90% of breasts for specific tissues. Conclusions. QT Ultrasound provides accurate anatomic information and high tissue specificity using speed of sound information. Quantitative Transmission Ultrasound can distinguish different types of breast tissue with high resolution and accuracy. PMID:27752261

  15. Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells.

    PubMed

    Peckys, Diana B; de Jonge, Niels

    2014-04-01

    Scanning transmission electron microscopy (STEM) of specimens in liquid, so-called Liquid STEM, is capable of imaging the individual subunits of macromolecular complexes in whole eukaryotic cells in liquid. This paper discusses this new microscopy modality within the context of state-of-the-art microscopy of cells. The principle of operation and equations for the resolution are described. The obtained images are different from those acquired with standard transmission electron microscopy showing the cellular ultrastructure. Instead, contrast is obtained on specific labels. Images can be recorded in two ways, either via STEM at 200 keV electron beam energy using a microfluidic chamber enclosing the cells, or via environmental scanning electron microscopy at 30 keV of cells in a wet environment. The first series of experiments involved the epidermal growth factor receptor labeled with gold nanoparticles. The labels were imaged in whole fixed cells with nanometer resolution. Since the cells can be kept alive in the microfluidic chamber, it is also feasible to detect the labels in unfixed, live cells. The rapid sample preparation and imaging allows studies of multiple whole cells.

  16. Evaluation of JPEG and wavelet compression of body CT images for direct digital teleradiologic transmission.

    PubMed

    Kalyanpur, A; Neklesa, V P; Taylor, C R; Daftary, A R; Brink, J A

    2000-12-01

    To determine acceptable levels of JPEG (Joint Photographic Experts Group) and wavelet compression for teleradiologic transmission of body computed tomographic (CT) images. A digital test pattern (Society of Motion Picture and Television Engineers, 512 x 512 matrix) was transmitted after JPEG or wavelet compression by using point-to-point and Web-based teleradiology, respectively. Lossless, 10:1 lossy, and 20:1 lossy ratios were tested. Images were evaluated for high- and low-contrast resolution, sensitivity to small signal differences, and misregistration artifacts. Three independent observers who were blinded to the compression scheme evaluated these image quality measures in 20 clinical cases with similar levels of compression. High-contrast resolution was not diminished with any tested level of JPEG or wavelet compression. With JPEG compression, low-contrast resolution was not lost with 10:1 lossy compression but was lost at 3% modulation with 20:1 lossy compression. With wavelet compression, there was loss of 1% modulation with 10:1 lossy compression and loss of 5% modulation with 20:1 lossy compression. Sensitivity to small signal differences (5% and 95% of the maximal signal) diminished only with 20:1 lossy wavelet compression. With 10:1 lossy compression, misregistration artifacts were mild and were equivalent with JPEG and wavelet compression. Qualitative clinical findings supported these findings. Lossy 10:1 compression is suitable for on-call electronic transmission of body CT images as long as original images are subsequently reviewed.

  17. Anatomy-Correlated Breast Imaging and Visual Grading Analysis Using Quantitative Transmission Ultrasound™.

    PubMed

    Klock, John C; Iuanow, Elaine; Malik, Bilal; Obuchowski, Nancy A; Wiskin, James; Lenox, Mark

    2016-01-01

    Objectives. This study presents correlations between cross-sectional anatomy of human female breasts and Quantitative Transmission (QT) Ultrasound, does discriminate classifier analysis to validate the speed of sound correlations, and does a visual grading analysis comparing QT Ultrasound with mammography. Materials and Methods. Human cadaver breasts were imaged using QT Ultrasound, sectioned, and photographed. Biopsies confirmed microanatomy and areas were correlated with QT Ultrasound images. Measurements were taken in live subjects from QT Ultrasound images and values of speed of sound for each identified anatomical structure were plotted. Finally, a visual grading analysis was performed on images to determine whether radiologists' confidence in identifying breast structures with mammography (XRM) is comparable to QT Ultrasound. Results. QT Ultrasound identified all major anatomical features of the breast, and speed of sound calculations showed specific values for different breast tissues. Using linear discriminant analysis overall accuracy is 91.4%. Using visual grading analysis readers scored the image quality on QT Ultrasound as better than on XRM in 69%-90% of breasts for specific tissues. Conclusions. QT Ultrasound provides accurate anatomic information and high tissue specificity using speed of sound information. Quantitative Transmission Ultrasound can distinguish different types of breast tissue with high resolution and accuracy.

  18. Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils

    DOEpatents

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2006-04-04

    Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.

  19. Ex Vivo Characterization of a Novel Iodine-123-Labelled Aminomethylchroman as a Potential Agonist Ligand for SPECT Imaging of Dopamine D2/3 Receptors.

    PubMed

    van Wieringen, Jan-Peter; de Bruin, Kora; Janssen, Henk M; Fransen, P Michel; Janssen, Anton G M; van Doremalen, Peter A; Michel, Martin C; Elsinga, Philip H; Booij, Jan

    2014-01-01

    For imaging of dopamine D2/3 receptors, agonist tracers are favoured over antagonists because they are more sensitive to detection of dopamine release and because they may selectively label the high-affinity receptor state. We have developed novel D2/3 receptor selective agonists that can be radiolabelled with [(123)I], which label is advantageous over most other labels, such as carbon-11, as it has a longer half-life. Particularly, we considered (R) N-[7-hydroxychroman-2-yl]-methyl 4-iodobenzyl amine (compound 1) as an attractive candidate for development as it shows high binding affinity to D2/3 receptors in vitro, and here we report on the characterization of this first [(123)I]-labelled D2/3 receptor agonist radiopharmaceutical intended for SPECT imaging. The appropriate tin precursor for [(123)I]-1 was developed and was successfully radiolabelled with iodine-123 giving a moderate yield (30-35%) and a good purity (>95%) for [(123)I]-1. In biodistribution experiments in Wistar rats intravenous injection of [(123)I]-1 resulted in a fast brain uptake, where the observed binding in the D2/3 receptor-rich striatum was slightly higher than that in the cerebellum 30 min to 4 h p.i. Storage phosphor imaging experiments, however, did not show specific D2/3 receptor binding. In conclusion, despite promising in vitro data for 1, neither specific ex vivo binding nor high signal-to-noise ratios were found in rodents for [(123)I]-1.

  20. Delusions, superstitious conditioning and chaotic dopamine neurodynamics.

    PubMed

    Shaner, A

    1999-02-01

    Excessive mesolimbic dopaminergic neurotransmission is closely related to the psychotic symptoms of schizophrenia. A mathematical model of dopamine neuron firing rates, developed by King and others, suggests a mechanism by which excessive dopaminergic transmission could produce psychotic symptoms, especially delusions. In this model, firing rates varied chaotically when the efficacy of dopaminergic transmission was enhanced. Such non-contingent changes in firing rates in mesolimbic reward pathways could produce delusions by distorting thinking in the same way that non-contingent reinforcement produces superstitious conditioning. Though difficult to test in humans, the hypothesis is testable as an explanation for a common animal model of psychosis--amphetamine stereotypy in rats. The hypothesis predicts that: (1) amphetamine will cause chaotic firing rates in mesolimbic dopamine neurons; (2) non-contingent brain stimulation reward will produce stereotypy; (3) non-contingent microdialysis of dopamine into reward areas will produce stereotypy; and (4) dopamine antagonists will block all three effects.

  1. Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms.

    PubMed

    Inada, H; Su, D; Egerton, R F; Konno, M; Wu, L; Ciston, J; Wall, J; Zhu, Y

    2011-06-01

    We report detailed investigation of high-resolution imaging using secondary electrons (SE) with a sub-nanometer probe in an aberration-corrected transmission electron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular dark-field (ADF) images both simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we studied the SE image intensity and contrast as functions of applied bias, atomic number, crystal tilt, and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. A possible mechanism for atomic-scale SE imaging is proposed. The ability to image both the surface and bulk of a sample at atomic-scale is unprecedented, and can have important applications in the field of electron microscopy and materials characterization.

  2. Secure transmission of images based on chaotic systems and cipher block chaining

    NASA Astrophysics Data System (ADS)

    Lakhani, Mahdieh Karimi; Behnam, Hamid; Karimi, Arash

    2013-01-01

    The ever-growing penetration of communication networks, digital and Internet technologies in our everyday lives has the transmission of text data, as well as multimedia data such as images and videos, possible. Digital images have a vast usage in a number of applications, including medicine and providing security authentication, for example. This applicability becomes evident when images, such as walking or people's facial features, are utilized in their identification. Considering the required security level and the properties of images, different algorithms may be used. After key generation using logistic chaos signals, a scrambling function is utilized for image agitation in both horizontal and vertical axes, and then a block-chaining mode of operation may be applied to encrypt the resultant image. The results demonstrate that using the proposed method drastically degrades the correlation between the image components and also the entropy is increased to an acceptable level. Therefore, the image will become greatly resistant to differential attacks. However, the increasing scrambling rounds and the decreasing number of bits of the blocks result in increasing the entropy and decreasing the correlation.

  3. Novel low-dose imaging technique for characterizing atomic structures through scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Su, Chia-Ping; Syu, Wei-Jhe; Hsiao, Chien-Nan; Lai, Ping-Shan; Chen, Chien-Chun

    2017-08-01

    To investigate dislocations or heterostructures across interfaces is now of great interest to condensed matter and materials scientists. With the advances in aberration-corrected electron optics, the scanning transmission electron microscope has demonstrated its excellent capability of characterizing atomic structures within nanomaterials, and well-resolved atomic-resolution images can be obtained through long-exposure data acquisition. However, the sample drifting, carbon contamination, and radiation damage hinder further analysis, such as deriving three-dimensional (3D) structures from a series of images. In this study, a method for obtaining atomic-resolution images with significantly reduced exposure time was developed, using which an original high-resolution image with approximately one tenth the electron dose can be obtained by combining a fast-scan high-magnification image and a slow-scan low-magnification image. The feasibility of obtaining 3D atomic structures using the proposed approach was demonstrated through multislice simulation. Finally, the feasibility and accuracy of image restoration were experimentally verified. This general method cannot only apply to electron microscopy but also benefit to image radiation-sensitive materials using various light sources.

  4. The link between dopamine function and apathy in cannabis users: an [18F]-DOPA PET imaging study.

    PubMed

    Bloomfield, Michael A P; Morgan, Celia J A; Kapur, Shitij; Curran, H Valerie; Howes, Oliver D

    2014-06-01

    Cannabis is the most widely used illicit drug in the world, and regular use has been associated with reduced motivation, i.e. apathy. Regular long-term cannabis use has been associated with reduced dopamine synthesis capacity. The mesolimbic dopaminergic system mediates the processing of incentive stimuli by modifying their motivational value, which in turn is modulated by endocannabinoid signalling. Thus, it has been proposed that dopaminergic dysfunction underlies the apathy associated with chronic cannabis use. The aim of this study was to examine the relationship between dopaminergic function and subjective apathy in cannabis users. We measured dopamine synthesis capacity (indexed as the influx rate constant K i(cer)) via 3,4-dihydroxy-6-[(18)F]-fluoro-l-phenylalanine positron emission tomography and subjective apathy using the self-rated Apathy Evaluation Scale (AES-S) in 14 regular cannabis users. All subjects scored in excess of 34 points on the AES-S (median [interquartile range] 59.5 [7.5]), indicative of significant apathy based on normative data. K i (cer) was inversely correlated to AES-S score in the whole striatum and its associative functional subdivision (Spearman's rho = -0.64, p = 0.015 [whole striatum]; rho = -0.69, p = 0.006 [associative]) but not in the limbic or sensorimotor striatal subdivisions. There were no significant relationships between AES-S and current cannabis consumption (rho = 0.28, p = 0.34) or age of first cannabis use (rho = 0.25, p = 0.40). These findings indicate that the reduction in striatal dopamine synthesis capacity associated with chronic cannabis use may underlie reduced reward sensitivity and a motivation associated with chronic cannabis use.

  5. Family of image compression algorithms which are robust to transmission errors

    NASA Astrophysics Data System (ADS)

    Creusere, Charles D.

    1996-10-01

    In this work, we present a new family of image compression algorithms derived from Shapiro's embedded zerotree wavelet (EZW) coder. These new algorithms introduce robustness to transmission errors into the bit stream while still preserving its embedded structure. This is done by partitioning the wavelet coefficients into groups, coding each group independently, and interleaving the bit streams for transmission, thus if one bit is corrupted, then only one of these bit streams will be truncated in the decoder. If each group of wavelet coefficients uniformly spans the entire image, then the objective and subjective qualities of the reconstructed image are very good. To illustrate the advantages of this new family, we compare it to the conventional EZW coder. For example, one variation has a peak signal to noise ratio (PSNR) slightly lower than that of the conventional algorithm when no errors occur, but when a single error occurs at bit 1000, the PSNR of the new coder is well over 5 dB higher for both test images. Finally, we note that the new algorithms do not increase the complexity of the overall system and, in fact, they are far more easily parallelized than the conventional EZW coder.

  6. Analysis of a transmission mode scanning microwave microscope for subsurface imaging at the nanoscale

    NASA Astrophysics Data System (ADS)

    Oladipo, A. O.; Lucibello, A.; Kasper, M.; Lavdas, S.; Sardi, G. M.; Proietti, E.; Kienberger, F.; Marcelli, R.; Panoiu, N. C.

    2014-09-01

    We present a comprehensive analysis of the imaging characteristics of a scanning microwave microscopy (SMM) system operated in the transmission mode. In particular, we use rigorous three-dimensional finite-element simulations to investigate the effect of varying the permittivity and depth of sub-surface constituents of samples, on the scattering parameters of probes made of a metallic nano-tip attached to a cantilever. Our results prove that one can achieve enhanced imaging sensitivity in the transmission mode SMM (TM-SMM) configuration, from twofold to as much as 5× increase, as compared to that attainable in the widely used reflection mode SMM operation. In addition, we demonstrate that the phase of the S21-parameter is much more sensitive to changes of the system parameters as compared to its magnitude, the scattering parameters being affected the most by variations in the conductivity of the substrate. Our analysis is validated by a good qualitative agreement between our modeling results and experimental data. These results suggest that TM-SMM systems can be used as highly efficient imaging tools with new functionalities, findings which could have important implications to the development of improved experimental imaging techniques.

  7. Multimodal Spectral Imaging of Cells Using a Transmission Diffraction Grating on a Light Microscope

    PubMed Central

    Isailovic, Dragan; Xu, Yang; Copus, Tyler; Saraswat, Suraj; Nauli, Surya M.

    2011-01-01

    A multimodal methodology for spectral imaging of cells is presented. The spectral imaging setup uses a transmission diffraction grating on a light microscope to concurrently record spectral images of cells and cellular organelles by fluorescence, darkfield, brightfield, and differential interference contrast (DIC) spectral microscopy. Initially, the setup was applied for fluorescence spectral imaging of yeast and mammalian cells labeled with multiple fluorophores. Fluorescence signals originating from fluorescently labeled biomolecules in cells were collected through triple or single filter cubes, separated by the grating, and imaged using a charge-coupled device (CCD) camera. Cellular components such as nuclei, cytoskeleton, and mitochondria were spatially separated by the fluorescence spectra of the fluorophores present in them, providing detailed multi-colored spectral images of cells. Additionally, the grating-based spectral microscope enabled measurement of scattering and absorption spectra of unlabeled cells and stained tissue sections using darkfield and brightfield or DIC spectral microscopy, respectively. The presented spectral imaging methodology provides a readily affordable approach for multimodal spectral characterization of biological cells and other specimens. PMID:21639978

  8. X-ray phase-contrast imaging: transmission functions separable in Cartesian coordinates.

    PubMed

    Cao, Guohua; Hamilton, Theron J; Rose-Petruck, Christoph; Diebold, Gerald J

    2007-04-01

    In-line, x-ray phase-contrast imaging is responsive to both phase changes and absorption as the x radiation traverses a body. Expressions are derived for phase-contrast imaging of objects having transmission functions separable in Cartesian coordinates. Starting from the Fresnel-Kirchhoff integral formula for image formation, an expression is found for the phase-contrast image produced by an x-ray source with nonvanishing dimensions. This expression is evaluated in limiting cases where the source-to-object distance is large, where the source acts as a point source, and where the weak phase approximation is valid. The integral expression for the image is evaluated for objects with simple geometrical shapes, showing the influence of the source dimensions on the visibility of phase-contrast features. The expressions derived here are evaluated for cases where the magnification is substantially greater than one as would be employed in biological imaging. Experiments are reported using the in-line phase-contrast imaging method with a microfocus x-ray source and a CCD camera.

  9. Dopamine and serotonin receptors measured in vivo in Huntington's Disease with C-11 n-methylspiperone PET imaging

    SciTech Connect

    Wong, D.F.; Links, J.M.; Wanger, H.N. Jr.; Folstein, S.E.; Suneja, S.; Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Tune, L.E.; Pearlson, G.

    1985-05-01

    Thirteen patients with the clinical diagnosis of Huntington's Disease (HD) and nine persons at risk to develop the disease were studied by positron emission tomography (PET) after administration of /sup 11/C-n-methylspiperone (NMSP), a tracer with a high affinity for D2 dopamine and, to a lesser degree, for S2 serotonin receptors. All subjects had an X-ray CT scan for positioning and to assess caudate size. Dopamine and serotonin receptor binding (D2 and S2) were estimated by the caudate/cerebellum activity ratio at 43 min. post injection (CA/CB), and frontal cortex/cerebellum (FR/CB), respectively. CA/CB's of HD pts. were lower than age and sex matched controls. However, when corrected by recovery coefficients (RC) for our PET using CT dimensions of the caudate, CA/CB's were higher than normal. The relative total number of D2 receptors (estimated by CA/CB x CT caudate volume) was lower than the controls without or with RC correction.

  10. High-Resolution Imaging and Spectroscopy at High Pressure: A Novel Liquid Cell for the Transmission Electron Microscope.

    PubMed

    Tanase, Mihaela; Winterstein, Jonathan; Sharma, Renu; Aksyuk, Vladimir; Holland, Glenn; Liddle, James A

    2015-12-01

    We demonstrate quantitative core-loss electron energy-loss spectroscopy of iron oxide nanoparticles and imaging resolution of Ag nanoparticles in liquid down to 0.24 nm, in both transmission and scanning transmission modes, in a novel, monolithic liquid cell developed for the transmission electron microscope (TEM). At typical SiN membrane thicknesses of 50 nm the liquid-layer thickness has a maximum change of only 30 nm for the entire TEM viewing area of 200×200 µm.

  11. Scan-rescan reproducibility of parallel transmission based amide proton transfer imaging of brain tumors.

    PubMed

    Togao, Osamu; Hiwatashi, Akio; Keupp, Jochen; Yamashita, Koji; Kikuchi, Kazufumi; Yoshiura, Takashi; Suzuki, Yuriko; Kruiskamp, Marijn J; Sagiyama, Koji; Takahashi, Masaya; Honda, Hiroshi

    2015-11-01

    To evaluate the reproducibility of amide proton transfer (APT) imaging of brain tumors using a parallel transmission-based technique. Thirteen patients with brain tumors (four low-grade gliomas, three glioblastoma multiforme, five meningiomas, and one malignant lymphoma) were included in the study. APT imaging was conducted at 3T using a 2-channel parallel transmission scheme with a saturation time of 2 seconds and B1 amplitude of 2 μT. A 2D fast spin-echo sequence with driven-equilibrium refocusing was used for imaging. Z-spectra were obtained at 25 frequency offsets from -6 to +6 ppm (step 0.5 ppm). A point-by-point B0 correction was performed with a B0 map. A scan-rescan reproducibility test was performed in two sessions on separate days for each patient. The interval between the two sessions was 4.8 ± 3.5 days. Regions-of-interest (ROIs) were placed to include the whole tumor for each case. A mean and 90-percentile value of APT signal for the whole tumor histogram was calculated for each session. The between-session and within-session reproducibility was evaluated using linear regression analysis, intraclass correlation coefficient (ICC), and a Bland-Altman plot. The mean and 90-percentile values of the APT signal for whole tumor ROI showed excellent agreements between the two sessions, with R(2) of 0.91 and 0.96 in the linear regression analysis and ICC of 0.95 and 0.97, respectively. Parallel transmission-based APT imaging of brain tumors showed good reproducibility. © 2015 Wiley Periodicals, Inc.

  12. Image transfer with spatial coherence for aberration corrected transmission electron microscopes.

    PubMed

    Hosokawa, Fumio; Sawada, Hidetaka; Shinkawa, Takao; Sannomiya, Takumi

    2016-08-01

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field's components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field's derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope.

  13. Scanning moiré fringe imaging by scanning transmission electron microscopy.

    PubMed

    Su, Dong; Zhu, Yimei

    2010-02-01

    A type of artificial contrast found in annular dark-field imaging is generated by spatial interference between the scanning grating of the electron beam and the specimen atomic lattice. The contrast is analogous to moiré fringes observed in conventional transmission electron microscopy. We propose using this scanning interference for retrieving information about the atomic lattice structure at medium magnifications. Compared with the STEM atomic imaging at high magnifications, this approach might have several advantages including easy observation of lattice discontinuities and reduction of image degradation from carbon contamination and beam damage. Application of the technique to reveal the Burgers vector of misfit dislocations at the interface of epitaxial films is demonstrated and its potential for studying strain fields is discussed.

  14. Through-transmission ultrasonic imaging of subsurface defects using non-contact laser techniques

    NASA Astrophysics Data System (ADS)

    Dewhurst, R. J.; Shan, Q.

    Through-transmission ultrasonic NDT measurements have been performed with a noncontact laser combination system. High power (about 2 MW) laser pulses were used for the generation of longitudinal pulses in metallic samples. On reaching the far surface, ultrasound was detected with a 50 cm confocal Fabry-Perot interferometer. The interferometer analysed speckle from backscattered laser light so that measurements could be made from samples with only a machine finish. Signal-to-noise ratios were sufficiently good for 2D scans to be performed, producing optical images of artificial defects. For improved image quality, signals were normalized taking into account changes in sample surface reflectivity. Median filtering was also used. Results show that images of 4-mm diameter drill holes can be obtained with resolutions of +/- 0.5 mm.

  15. Electrical resistivity imaging in transmission between surface and underground tunnel for fault characterization

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Boyle, A.; Grychtol, B.; Cabrera, J.; Marteau, J.; Adler, A.

    2016-05-01

    Electrical resistivity images supply information on sub-surface structures and are classically performed to characterize faults geometry. Here we use the presence of a tunnel intersecting a regional fault to inject electrical currents between surface and the tunnel to improve the image resolution at depth. We apply an original methodology for defining the inversion parametrization based on pilot points to better deal with the heterogeneous sounding of the medium. An increased region of high spatial resolution is shown by analysis of point spread functions as well as inversion of synthetics. Such evaluations highlight the advantages of using transmission measurements by transferring a few electrodes from the main profile to increase the sounding depth. Based on the resulting image we propose a revised structure for the medium surrounding the Cernon fault supported by geological observations and muon flux measurements.

  16. 3D elemental sensitive imaging using transmission X-ray microscopy.

    PubMed

    Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2012-09-01

    Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method.

  17. Independent transmission of sign language interpreter in DVB: assessment of image compression

    NASA Astrophysics Data System (ADS)

    Zatloukal, Petr; Bernas, Martin; Dvořák, LukáÅ.¡

    2015-02-01

    Sign language on television provides information to deaf that they cannot get from the audio content. If we consider the transmission of the sign language interpreter over an independent data stream, the aim is to ensure sufficient intelligibility and subjective image quality of the interpreter with minimum bit rate. The work deals with the ROI-based video compression of Czech sign language interpreter implemented to the x264 open source library. The results of this approach are verified in subjective tests with the deaf. They examine the intelligibility of sign language expressions containing minimal pairs for different levels of compression and various resolution of image with interpreter and evaluate the subjective quality of the final image for a good viewing experience.

  18. Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope.

    PubMed

    Peckys, Diana B; Veith, Gabriel M; Joy, David C; de Jonge, Niels

    2009-12-14

    Nanoscale imaging techniques are needed to investigate cellular function at the level of individual proteins and to study the interaction of nanomaterials with biological systems. We imaged whole fixed cells in liquid state with a scanning transmission electron microscope (STEM) using a micrometer-sized liquid enclosure with electron transparent windows providing a wet specimen environment. Wet-STEM images were obtained of fixed E. coli bacteria labeled with gold nanoparticles attached to surface membrane proteins. Mammalian cells (COS7) were incubated with gold-tagged epidermal growth factor and fixed. STEM imaging of these cells resulted in a resolution of 3 nm for the gold nanoparticles. The wet-STEM method has several advantages over conventional imaging techniques. Most important is the capability to image whole fixed cells in a wet environment with nanometer resolution, which can be used, e.g., to map individual protein distributions in/on whole cells. The sample preparation is compatible with that used for fluorescent microscopy on fixed cells for experiments involving nanoparticles. Thirdly, the system is rather simple and involves only minimal new equipment in an electron microscopy (EM) laboratory.

  19. Total variation optimization for imaging through turbid media with transmission matrix

    NASA Astrophysics Data System (ADS)

    Gong, Changmei; Shao, Xiaopeng; Wu, Tengfei; Liu, Jietao; Zhang, Jianqi

    2016-12-01

    With the transmission matrix (TM) of the whole optical system measured, the image of the object behind a turbid medium can be recovered from its speckle field by means of an image reconstruction algorithm. Instead of Tikhonov regularization algorithm (TRA), the total variation minimization by augmented Lagrangian and alternating direction algorithms (TVAL3) is introduced to recover object images. As a total variation (TV)-based approach, TVAL3 allows to effectively damp more noise and preserve more edges compared with TRA, thus providing more outstanding image quality. Different levels of detector noise and TM-measurement noise are successively added to analyze the antinoise performance of these two algorithms. Simulation results show that TVAL3 is able to recover more details and suppress more noise than TRA under different noise levels, thus providing much more excellent image quality. Furthermore, whether it be detector noise or TM-measurement noise, the reconstruction images obtained by TVAL3 at SNR=15 dB are far superior to those by TRA at SNR=50 dB.

  20. Reflective and transmissive CR ScanHead technology on needle image plates

    NASA Astrophysics Data System (ADS)

    Frankenberger, Jorg; Mair, Stephan; Herrmann, Clemens; Lamotte, Johan; Fasbender, Robert

    2005-04-01

    The image quality of needle-image-plate (NIP) Computed Radiography (CR) scanners based on ScanHead technology was optimized. In order to get the best image quality for different applications, the influence of the phosphor layer thickness on the detective quantum efficiency (DQE) for different beam qualities was investigated. We compared a cassette-based, reflective CR-NIP-scanner to a new, transmissive flat-panel CR scanner with fixed, mounted NIP. The image quality was analyzed by DQE- and modulation transfer function (MTF) measurements supported by an observer study. The NIP systems reached DQE values up to three times higher than that of high-quality, state of the art CR scanners independent of the scanning principle. This allows a dose reduction by a factor of two to three without loss of image quality for both scanning systems. For high tube voltages, the variation of the phosphor layer thickness results in a DQE maximum at relatively large thicknesses. For lower tube voltages the DQE is less dependent on the layer thickness, reaching excellent values already at considerably lower thicknesses. Consequently, CR scanners can be adapted to different applications by using NIPs with different thicknesses. This could be easily realized for the cassette based system, but not for the flat-panel system with fixed IP. The latter demands a compromise with respect to the phosphor thickness, to yield superior image quality for all applications.

  1. Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscopy

    SciTech Connect

    De Jonge, Niels; Peckys, Diana B; Veith, Gabriel M; Joy, David Charles

    2009-01-01

    Nanoscale imaging techniques are needed to investigate cellular function at the level of individual proteins and to study the interaction of nanomaterials with biological systems. We imaged whole fixed cells in liquid state with a scanning transmission electron microscope (STEM) using a micrometer-sized liquid enclosure with electron transparent windows providing a wet specimen environment. Wet-STEM images were obtained of fixed E. coli bacteria labeled with gold nanoparticles attached to surface membrane proteins. Mammalian cells (COS7) were incubated with gold-tagged epidermal growth factor and fixed. STEM imaging of these cells resulted in a resolution of 3 nm for the gold nanoparticles. The wet-STEM method has several advantages over conventional imaging techniques. Most important is the capability to image whole fixed cells in a wet environment with nanometer resolution, which can be used, e.g., to map individual protein distributions in/on whole cells. The sample preparation is compatible with that used for fluorescent microscopy on fixed cells for experiments involving nanoparticles. Thirdly, the system is rather simple and involves only minimal new equipment in an electron microscopy (EM) laboratory.

  2. Nanoscale Imaging of Whole Cells Using a Liquid Enclosure and a Scanning Transmission Electron Microscope

    PubMed Central

    Peckys, Diana B.; Veith, Gabriel M.; Joy, David C.; de Jonge, Niels

    2009-01-01

    Nanoscale imaging techniques are needed to investigate cellular function at the level of individual proteins and to study the interaction of nanomaterials with biological systems. We imaged whole fixed cells in liquid state with a scanning transmission electron microscope (STEM) using a micrometer-sized liquid enclosure with electron transparent windows providing a wet specimen environment. Wet-STEM images were obtained of fixed E. coli bacteria labeled with gold nanoparticles attached to surface membrane proteins. Mammalian cells (COS7) were incubated with gold-tagged epidermal growth factor and fixed. STEM imaging of these cells resulted in a resolution of 3 nm for the gold nanoparticles. The wet-STEM method has several advantages over conventional imaging techniques. Most important is the capability to image whole fixed cells in a wet environment with nanometer resolution, which can be used, e.g., to map individual protein distributions in/on whole cells. The sample preparation is compatible with that used for fluorescent microscopy on fixed cells for experiments involving nanoparticles. Thirdly, the system is rather simple and involves only minimal new equipment in an electron microscopy (EM) laboratory. PMID:20020038

  3. Transmission in near-infrared optical windows for deep brain imaging.

    PubMed

    Shi, Lingyan; Sordillo, Laura A; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    Near-infrared (NIR) radiation has been employed using one- and two-photon excitation of fluorescence imaging at wavelengths 650-950 nm (optical window I) for deep brain imaging; however, longer wavelengths in NIR have been overlooked due to a lack of suitable NIR-low band gap semiconductor imaging detectors and/or femtosecond laser sources. This research introduces three new optical windows in NIR and demonstrates their potential for deep brain tissue imaging. The transmittances are measured in rat brain tissue in the second (II, 1,100-1,350 nm), third (III, 1,600-1,870 nm), and fourth (IV, centered at 2,200 nm) NIR optical tissue windows. The relationship between transmission and tissue thickness is measured and compared with the theory. Due to a reduction in scattering and minimal absorption, window III is shown to be the best for deep brain imaging, and windows II and IV show similar but better potential for deep imaging than window I.

  4. Dead leaves and the dirty ground: Low-level image statistics in transmissive and occlusive imaging environments

    NASA Astrophysics Data System (ADS)

    Zylberberg, Joel; Pfau, David; DeWeese, Michael Robert

    2012-12-01

    The opacity of typical objects in the world results in occlusion, an important property of natural scenes that makes inference of the full three-dimensional structure of the world challenging. The relationship between occlusion and low-level image statistics has been hotly debated in the literature, and extensive simulations have been used to determine whether occlusion is responsible for the ubiquitously observed power-law power spectra of natural images. To deepen our understanding of this problem, we have analytically computed the two- and four-point functions of a generalized “dead leaves” model of natural images with parameterized object transparency. Surprisingly, transparency alters these functions only by a multiplicative constant, so long as object diameters follow a power-law distribution. For other object size distributions, transparency more substantially affects the low-level image statistics. We propose that the universality of power-law power spectra for both natural scenes and radiological medical images, formed by the transmission of x-rays through partially transparent tissue, stems from power-law object size distributions, independent of object opacity.

  5. Light focusing and two-dimensional imaging through scattering media using the photoacoustic transmission matrix with an ultrasound array.

    PubMed

    Chaigne, Thomas; Gateau, Jérôme; Katz, Ori; Bossy, Emmanuel; Gigan, Sylvain

    2014-05-01

    We implement the photoacoustic transmission matrix approach on a two-dimensional photoacoustic imaging system, using a 15 MHz linear ultrasound array. Using a black leaf skeleton as a complex absorbing structure, we demonstrate that the photoacoustic transmission matrix approach allows to reveal structural features that are invisible in conventional photoacoustic images, as well as to selectively control light focusing on absorbing targets, leading to a local enhancement of the photoacoustic signal.

  6. Choosing voluntary exercise over sucrose consumption depends upon dopamine transmission: effects of haloperidol in wild type and adenosine A₂AKO mice.

    PubMed

    Correa, Mercè; Pardo, Marta; Bayarri, Pilar; López-Cruz, Laura; San Miguel, Noemí; Valverde, Olga; Ledent, Catherine; Salamone, John D

    2016-02-01

    Mesolimbic dopamine (DA) regulates behavioral activation and effort-related decision-making in motivated behaviors. Mesolimbic DA D2 receptors are co-localized with adenosine A2A receptors, and they interact in an antagonistic manner. A T-maze task was developed to assess dopaminergic involvement in preference between a reinforcer that involves vigorous voluntary activity (running wheel) and a reinforcer that requires minimal behavioral activation (sucrose pellets). Haloperidol (D2 antagonist) was administered to adenosine A2A receptor knockout (A2AKO) and wild-type (WT) littermate controls to assess the involvement of these two receptors in the selection of running wheel activity versus sucrose consumption. Under control conditions, mice spent more time running and less time eating. In WT mice, haloperidol reduced time running but actually increased time-consuming sucrose. However, A2AKO mice did not show the haloperidol-induced shift from running wheel activity to sucrose intake. Prefeeding reduced sucrose consumption in the T-maze in both strains, indicating that this paradigm is sensitive to motivational devaluation. Haloperidol increased c-Fos immunoreactivity in anterior cingulate cortex (ACg) and nucleus accumbens (Acb) core of WT but not KO mice. These results indicate that after DA antagonism, the preference for vigorous physical activity is reduced, while palatable food selection increases. Adenosine A2A receptor deletion provides resistance to these effects of D2 receptor antagonism. These two receptors in Acb core and ACg seem to be involved in the regulation of the intrinsic reinforcing characteristics of voluntary exercise but not in the regulation of the primary reinforcing characteristics of palatable sedentary reinforcers.

  7. Contrasting effects of increased and decreased dopamine transmission on latent inhibition in ovariectomized rats and their modulation by 17beta-estradiol: an animal model of menopausal psychosis?

    PubMed

    Arad, Michal; Weiner, Ina

    2010-06-01

    Women with schizophrenia have later onset and better response to antipsychotic drugs (APDs) than men during reproductive years, but the menopausal period is associated with increased symptom severity and reduced treatment response. Estrogen replacement therapy has been suggested as beneficial but clinical data are inconsistent. Latent inhibition (LI), the capacity to ignore irrelevant stimuli, is a measure of selective attention that is disrupted in acute schizophrenia patients and in rats and humans treated with the psychosis-inducing drug amphetamine and can be reversed by typical and atypical APDs. Here we used amphetamine (1 mg/kg)-induced disrupted LI in ovariectomized rats to model low levels of estrogen along with hyperfunction of the dopaminergic system that may be occurring in menopausal psychosis, and tested the efficacy of APDs and estrogen in reversing disrupted LI. 17beta-Estradiol (50, 150 microg/kg), clozapine (atypical APD; 5, 10 mg/kg), and haloperidol (typical APD; 0.1, 0.3 mg/kg) effectively reversed amphetamine-induced LI disruption in sham rats, but were much less effective in ovariectomized rats; 17beta-estradiol and clozapine were effective only at high doses (150 microg/kg and 10 mg/kg, respectively), whereas haloperidol failed at both doses. Haloperidol and clozapine regained efficacy if coadministered with 17beta-estradiol (50 microg/kg, an ineffective dose). Reduced sensitivity to dopamine (DA) blockade coupled with spared/potentiated sensitivity to DA stimulation after ovariectomy may provide a novel model recapitulating the combination of increased vulnerability to psychosis with reduced response to APD treatment in female patients during menopause. In addition, our data show that 17beta-estradiol exerts antipsychotic activity.

  8. Striatal muscarinic receptors promote activity-dependence of dopamine transmission via distinct receptor subtypes on cholinergic interneurons in ventral versus dorsal striatum

    PubMed Central

    Threlfell, Sarah; Clements, Michael A.; Khodai, Tansi; Pienaar, Ilse S.; Exley, Richard; Wess, Jürgen; Cragg, Stephanie J.

    2010-01-01

    Striatal dopamine (DA) and acetylcholine (ACh) regulate motivated behaviors and striatal plasticity. Interactions between these neurotransmitters may be important, through synchronous changes in parent neuron activities and reciprocal presynaptic regulation of release. How DA signalling is regulated by striatal muscarinic receptors (mAChRs) is unresolved; contradictory reports indicate suppression or facilitation, implicating several mAChR-subtypes on various neurons. We investigated whether mAChR regulation of DA signaling varies with presynaptic activity, and identified the mAChRs responsible in sensorimotor- versus limbic-associated striatum. We detected DA in real-time at carbon-fiber microelectrodes in mouse striatal slices. Broad-spectrum mAChR agonists (oxotremorine-M, APET) decreased DA release evoked by low-frequency stimuli (1–10 Hz, 4 pulses) but increased the sensitivity of DA release to presynaptic activity, even enhancing release by high frequencies (e.g. >25 Hz for 4 pulses). These bidirectional effects depended upon ACh input to striatal nicotinic receptors (nAChRs) on DA axons but not GABA- or glutamate-input. In caudate-putamen (CPu), knockout of M2- or M4-mAChRs (not M5) prevented mAChR control of DA indicating that M2- and M4-mAChRs are required. In nucleus accumbens (NAc) core or shell, mAChR function was prevented in M4-knockouts, but not M2- or M5-knockouts. These data indicate that striatal mAChRs, by inhibiting ACh release from cholinergic interneurons and thus modifying nAChR activity, offer variable control of DA release probability that promotes how DA release reflects activation of dopaminergic axons. Furthermore, different coupling of striatal M2-/M4-mAChRs to the control of DA release in CPu versus NAc suggests targets to influence DA/ACh function differentially between striatal domains. PMID:20203199

  9. Magnetic Resonance Imaging Measurement of Transmission of Arterial Pulsation to the Brain on Propranolol Versus Amlodipine.

    PubMed

    Webb, Alastair J S; Rothwell, Peter M

    2016-06-01

    Cerebral arterial pulsatility is associated with leukoaraiosis and depends on central arterial pulsatility and arterial stiffness. The effect of antihypertensive drugs on transmission of central arterial pulsatility to the cerebral circulation is unknown, partly because of limited methods of assessment. In a technique-development pilot study, 10 healthy volunteers were randomized to crossover treatment with amlodipine and propranolol. At baseline and on each drug, we assessed aortic (Sphygmocor) and middle cerebral artery pulsatility (TCDtranscranial ultrasound). We also performed whole-brain, 3-tesla multiband blood-oxygen level dependent magnetic resonance imaging (multiband factor 6, repetition time=0.43s), concurrent with a novel method of continuous noninvasive blood pressure monitoring. Drug effects on relationships between cardiac cycle variation in blood pressure and blood-oxygen level dependent imaging were determined (fMRI Expert Analysis Tool, fMRIB Software Library [FEAT-FSL]). Aortic pulsatility was similar on amlodipine (27.3 mm Hg) and propranolol (27.9 mm Hg, P diff=0.33), while MCA pulsatility increased nonsignificantly more from baseline on propranolol (+6%; P=0.09) than amlodipine (+1.5%; P=0.58). On magnetic resonance imaging, cardiac frequency blood pressure variations were found to be significantly more strongly associated with blood-oxygen level dependent imaging on propranolol than amlodipine. We piloted a novel method of assessment of arterial pulsatility with concurrent high-frequency blood-oxygen level dependent magnetic resonance imaging and noninvasive blood pressure monitoring. This method was able to identify greater transmission of aortic pulsation on propranolol than amlodipine, which warrants further investigation. © 2016 American Heart Association, Inc.

  10. N-11C-Methyl-Dopamine PET Imaging of Sympathetic Nerve Injury in a Swine Model of Acute Myocardial Ischemia: A Comparison with 13N-Ammonia PET

    PubMed Central

    Zhou, Weina; Wang, Xiangcheng; He, Yulin; Nie, Yongzhen; Zhang, Guojian; Wang, Cheng; Wang, Chunmei; Wang, Xuemei

    2016-01-01

    Objective. Using a swine model of acute myocardial ischemia, we sought to validate N-11C-methyl-dopamine (11C-MDA) as an agent capable of imaging cardiac sympathetic nerve injury. Methods. Acute myocardial ischemia was surgically generated in Chinese minipigs. ECG and serum enzyme levels were used to detect the presence of myocardial ischemia. Paired 11C-MDA PET and 13N-ammonia PET scans were performed at baseline, 1 day, and 1, 3, and 6 months after surgery to relate cardiac sympathetic nerve injury to blood perfusion. Results. Seven survived the surgical procedure. The ECG-ST segment was depressed, and levels of the serum enzymes increased. Cardiac uptake of tracer was quantified as the defect volume. Both before and immediately after surgery, the images obtained with 11C-MDA and 13N-ammonia were similar. At 1 to 6 months after surgery, however, 11C-MDA postsurgical left ventricular myocardial defect volume was significantly greater compared to 13N-ammonia. Conclusions. In the Chinese minipig model of acute myocardial ischemia, the extent of the myocardial defect as visualized by 11C-MDA is much greater than would be suggested by blood perfusion images, and the recovery from myocardial sympathetic nerve injury is much slower than the restoration of blood perfusion. 11C-MDA PET may provide additional biological information during recovery from ischemic heart disease. PMID:27034950

  11. Secondary electron imaging of monolayer materials inside a transmission electron microscope

    SciTech Connect

    Cretu, Ovidiu Lin, Yung-Chang; Suenaga, Kazutomo

    2015-08-10

    A scanning transmission electron microscope equipped with a backscattered and secondary electron detector is shown capable to image graphene and hexagonal boron nitride monolayers. Secondary electron contrasts of the two lightest monolayer materials are clearly distinguished from the vacuum level. A signal difference between these two materials is attributed to electronic structure differences, which will influence the escape probabilities of the secondary electrons. Our results show that the secondary electron signal can be used to distinguish between the electronic structures of materials with atomic layer sensitivity, enhancing its applicability as a complementary signal in the analytical microscope.

  12. High-speed image transmission via the Advanced Communication Technology Satellite (ACTS)

    NASA Astrophysics Data System (ADS)

    Bazzill, Todd M.; Huang, H. K.; Thoma, George R.; Long, L. Rodney; Gill, Michael J.

    1996-05-01

    We are developing a wide area test bed network using the Advanced Communication Technology Satellite (ACTS) from NASA for high speed medical image transmission. The two test sites are the University of California, San Francisco, and the National Library of Medicine. The first phase of the test bed runs over a T1 link (1.544 Mbits/sec) using a Very Small Aperture Terminal. The second phase involves the High Data Rate Terminal via an ATM OC 3C (155 Mbits/sec) connection. This paper describes the experimental set up and some preliminary results from phase 1.

  13. Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquids

    NASA Astrophysics Data System (ADS)

    Schuh, Tobias; de Jonge, Niels

    2014-02-01

    Scanning transmission electron microscopy (STEM) of specimens in liquid is possible using a microfluidic chamber with thin silicon nitride windows. This paper includes an analytic equation of the resolution as a function of the sample thickness and the vertical position of an object in the liquid. The equipment for STEM of liquid specimen is briefly described. STEM provides nanometer resolution in micrometer-thick liquid layers with relevance for both biological research and materials science. Using this technique, we investigated tagged proteins in whole eukaryotic cells, and gold nanoparticles in liquid with time-lapse image series. Possibly future applications are discussed. xml:lang="fr"

  14. Gas mixing system for imaging of nanomaterials under dynamic environments by environmental transmission electron microscopy

    SciTech Connect

    Akatay, M. Cem; Zvinevich, Yury; Ribeiro, Fabio H. E-mail: estach@bnl.gov; Baumann, Philipp; Stach, Eric A. E-mail: estach@bnl.gov

    2014-03-15

    A gas mixing manifold system that is capable of delivering a stable pressure stream of a desired composition of gases into an environmental transmission electron microscope has been developed. The system is designed to provide a stable imaging environment upon changes of either the composition of the gas mixture or upon switching from one gas to another. The design of the system is described and the response of the pressure inside the microscope, the sample temperature, and sample drift in response to flow and composition changes of the system are reported.

  15. Ultraviolet and solar-blind spectral imaging with subwavelength transmission gratings

    NASA Astrophysics Data System (ADS)

    Lim, S. H.; Yu, E. T.

    2009-10-01

    Aluminum gratings with subwavelength slit widths were designed and analyzed for spectral filtering of ultraviolet (UV) light. Although schemes for optical wavelength filtering have been thoroughly studied, options for UV wavelength filtering are far more limited. We analyze the unique requirements for UV based imaging and evaluate the suitability of our structures by electromagnetic simulations and experimental measurements. Rayleigh-Wood anomalies are shown to lead to sharp drops in transmission at resonance wavelengths, producing a high finesse band reject filter. Finally, we show that the structures are effective for both TE and TM polarizations and easily integrated onto semiconductor photodetectors.

  16. Investigation of acoustic changes resulting from contrast enhancement in through-transmission ultrasonic imaging.

    PubMed

    Rothstein, Tamara; Gaitini, Diana; Gallimidi, Zahava; Azhari, Haim

    2010-09-01

    Through-transmitted ultrasonic waves can be used for computed projection imaging of the breast. The goal of this research was to analyze the acoustic properties changes associated with the propagation of ultrasonic waves through media before and after ultrasound contrast agent (UCA) injection and to study the feasibility of a new imaging method combining projection imaging and UCA. Two transmission techniques were examined: Gaussian pulses and pulse inversion. In the latter, three different double inverted pulses were studied: double Gaussian, double square and double sine. A computerized automatic ultrasonic scanning system was used for imaging. To simulate blood vessels, a phantom, consisting of a latex tube through which saline was circulated, was assembled. The phantom was placed within the scanner and sets of acoustic projection images were acquired. Then, a suspension of the UCA Definitely was added to the saline and a new set of images was obtained. The pre and postcontrast images were quantitatively compared in terms of amplitude and time-of-flight (TOF). In addition, nonlinearity was evaluated by comparing the relative alteration of the positive and negative parts of the signal. Statistically significant (p < 0.001) changes in the projection images resulting from the UCA injection were observed in wave amplitude (22% +/- 13%), TOF (7.9 ns +/- 6.3 ns) and nonlinear properties (35% +/- 32% and 56% +/- 17% for Gausian pulses and pulse inversion, respectively). One in vivo study of a female breast is also presented and its preliminary outcomes discussed. Together, these results indicate the technical feasibility of the suggested method and its potential to detect breast tumors.

  17. Design of catheter radio frequency coils using coaxial transmission line resonators for interventional neurovascular MR imaging

    PubMed Central

    Martin, Alastair; Jordan, Caroline; Lillaney, Prasheel; Losey, Aaron; Pang, Yong; Hu, Jeffrey; Wilson, Mark; Cooke, Daniel; Hetts, Steven W.

    2017-01-01

    Background It is technically challenging to design compact yet sensitive miniature catheter radio frequency (RF) coils for endovascular interventional MR imaging. Methods In this work, a new design method for catheter RF coils is proposed based on the coaxial transmission line resonator (TLR) technique. Due to its distributed circuit, the TLR catheter coil does not need any lumped capacitors to support its resonance, which simplifies the practical design and construction and provides a straightforward technique for designing miniature catheter-mounted imaging coils that are appropriate for interventional neurovascular procedures. The outer conductor of the TLR serves as an RF shield, which prevents electromagnetic energy loss, and improves coil Q factors. It also minimizes interaction with surrounding tissues and signal losses along the catheter coil. To investigate the technique, a prototype catheter coil was built using the proposed coaxial TLR technique and evaluated with standard RF testing and measurement methods and MR imaging experiments. Numerical simulation was carried out to assess the RF electromagnetic field behavior of the proposed TLR catheter coil and the conventional lumped-element catheter coil. Results The proposed TLR catheter coil was successfully tuned to 64 MHz for proton imaging at 1.5 T. B1 fields were numerically calculated, showing improved magnetic field intensity of the TLR catheter coil over the conventional lumped-element catheter coil. MR images were acquired from a dedicated vascular phantom using the TLR catheter coil and also the system body coil. The TLR catheter coil is able to provide a significant signal-to-noise ratio (SNR) increase (a factor of 200 to 300) over its imaging volume relative to the body coil. Conclusions Catheter imaging RF coil design using the proposed coaxial TLR technique is feasible and advantageous in endovascular interventional MR imaging applications. PMID:28516044

  18. Tele-transmission of stereoscopic images of the optic nerve head in glaucoma via Internet.

    PubMed

    Bergua, Antonio; Mardin, Christian Y; Horn, Folkert K

    2009-06-01

    The objective was to describe an inexpensive system to visualize stereoscopic photographs of the optic nerve head on computer displays and to transmit such images via the Internet for collaborative research or remote clinical diagnosis in glaucoma. Stereoscopic images of glaucoma patients were digitized and stored in a file format (joint photographic stereoimage [jps]) containing all three-dimensional information for both eyes on an Internet Web site (www.trizax.com). The size of jps files was between 0.4 to 1.4 MB (corresponding to a diagonal stereo image size between 900 and 1400 pixels) suitable for Internet protocols. A conventional personal computer system equipped with wireless stereoscopic LCD shutter glasses and a CRT-monitor with high refresh rate (120 Hz) can be used to obtain flicker-free stereo visualization of true-color images with high resolution. Modern thin-film transistor-LCD displays in combination with inexpensive red-cyan goggles achieve stereoscopic visualization with the same resolution but reduced color quality and contrast. The primary aim of our study was met to transmit stereoscopic images via the Internet. Additionally, we found that with both stereoscopic visualization techniques, cup depth, neuroretinal rim shape, and slope of the inner wall of the optic nerve head, can be qualitatively better perceived and interpreted than with monoscopic images. This study demonstrates high-quality and low-cost Internet transmission of stereoscopic images of the optic nerve head from glaucoma patients. The technique allows exchange of stereoscopic images and can be applied to tele-diagnostic and glaucoma research.

  19. Design of catheter radio frequency coils using coaxial transmission line resonators for interventional neurovascular MR imaging.

    PubMed

    Zhang, Xiaoliang; Martin, Alastair; Jordan, Caroline; Lillaney, Prasheel; Losey, Aaron; Pang, Yong; Hu, Jeffrey; Wilson, Mark; Cooke, Daniel; Hetts, Steven W

    2017-04-01

    It is technically challenging to design compact yet sensitive miniature catheter radio frequency (RF) coils for endovascular interventional MR imaging. In this work, a new design method for catheter RF coils is proposed based on the coaxial transmission line resonator (TLR) technique. Due to its distributed circuit, the TLR catheter coil does not need any lumped capacitors to support its resonance, which simplifies the practical design and construction and provides a straightforward technique for designing miniature catheter-mounted imaging coils that are appropriate for interventional neurovascular procedures. The outer conductor of the TLR serves as an RF shield, which prevents electromagnetic energy loss, and improves coil Q factors. It also minimizes interaction with surrounding tissues and signal losses along the catheter coil. To investigate the technique, a prototype catheter coil was built using the proposed coaxial TLR technique and evaluated with standard RF testing and measurement methods and MR imaging experiments. Numerical simulation was carried out to assess the RF electromagnetic field behavior of the proposed TLR catheter coil and the conventional lumped-element catheter coil. The proposed TLR catheter coil was successfully tuned to 64 MHz for proton imaging at 1.5 T. B1 fields were numerically calculated, showing improved magnetic field intensity of the TLR catheter coil over the conventional lumped-element catheter coil. MR images were acquired from a dedicated vascular phantom using the TLR catheter coil and also the system body coil. The TLR catheter coil is able to provide a significant signal-to-noise ratio (SNR) increase (a factor of 200 to 300) over its imaging volume relative to the body coil. Catheter imaging RF coil design using the proposed coaxial TLR technique is feasible and advantageous in endovascular interventional MR imaging applications.

  20. Phase-contrast imaging in aberration-corrected scanning transmission electron microscopy.

    PubMed

    Krumeich, F; Müller, E; Wepf, R A

    2013-06-01

    Although the presence of phase-contrast information in bright field images recorded with a scanning transmission electron microscope (STEM) has been known for a long time, its systematic exploitation for the structural characterization of materials began only with the availability of aberration-corrected microscopes that allow sufficiently large illumination angles. Today, phase-contrast STEM (PC-STEM) imaging represents an increasingly important alternative to the well-established HRTEM method. In both methods, the image contrast is coherently generated and thus depends not only on illumination and collection angles but on defocus and specimen thickness as well. By PC-STEM, a projection of the crystal potential is obtained in thin areas, with the scattering sites being represented either with dark or bright contrast at two different defocus values which are both close to Gaussian defocus. This imaging behavior can be further investigated by image simulations performed with standard HRTEM simulation software based on the principle of reciprocity. As examples for the application of this method, PC-STEM results obtained on metal nanoparticles and dodecagonal quasicrystals dd-(Ta,V)₁.₆Te are discussed.

  1. Reliable and robust transmission and storage techniques for medical images with patient information.

    PubMed

    Nergui, Myagmarbayar; Acharya, U Sripati; Acharya U, Rajendra; Yu, Wenwei

    2010-12-01

    There is an increased emphasis on the use of digital techniques in all aspects of human life today. Broadcast radio and television, cellular phone services, consumer and entertainment electronics etc are increasingly using digital signal processing techniques to improve the quality of service. Transmission and storage of documentation and images pertaining to patient records cannot remain an exception to this global trend. Hence, patient records (text and image information) are increasingly stored and processed in digital form. Currently, text and image information, which constitute two separate pieces of data are handled as different files. Thus, there is a possibility of the text and message information, pertaining to different patients, being interchanged and thus mishandled. This can be avoided by merging text and image information in such a manner that the two can be separated without perceptible damage to information contained in either file. Digital watermarking techniques can be used to interleave patient information with medical images. In this work, we have employed digital watermarking along with strong cryptographic protocols and powerful error correcting codes. This reduces the probability of sensitive patient information falling into the wrong hands and ensures information integrity when it is conveyed over noisy channels.

  2. Automated determination of size and morphology information from soot transmission electron microscope (TEM)-generated images

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Chan, Qing N.; Zhang, Renlin; Kook, Sanghoon; Hawkes, Evatt R.; Yeoh, Guan H.; Medwell, Paul R.

    2016-05-01

    The thermophoretic sampling of particulates from hot media, coupled with transmission electron microscope (TEM) imaging, is a combined approach that is widely used to derive morphological information. The identification and the measurement of the particulates, however, can be complex when the TEM images are of low contrast, noisy, and have non-uniform background signal level. The image processing method can also be challenging and time consuming, when the samples collected have large variability in shape and size, or have some degree of overlapping. In this work, a three-stage image processing sequence is presented to facilitate time-efficient automated identification and measurement of particulates from the TEM grids. The proposed processing sequence is first applied to soot samples that were thermophoretically sampled from a laminar non-premixed ethylene-air flame. The parameter values that are required to be set to facilitate the automated process are identified, and sensitivity of the results to these parameters is assessed. The same analysis process is also applied to soot samples that were acquired from an externally irradiated laminar non-premixed ethylene-air flame, which have different geometrical characteristics, to assess the morphological dependence of the proposed image processing sequence. Using the optimized parameter values, statistical assessments of the automated results reveal that the largest discrepancies that are associated with the estimated values of primary particle diameter, fractal dimension, and prefactor values of the aggregates for the tested cases, are approximately 3, 1, and 10 %, respectively, when compared with the manual measurements.

  3. Joint denoising and distortion correction of atomic scale scanning transmission electron microscopy images

    NASA Astrophysics Data System (ADS)

    Berkels, Benjamin; Wirth, Benedikt

    2017-09-01

    Nowadays, modern electron microscopes deliver images at atomic scale. The precise atomic structure encodes information about material properties. Thus, an important ingredient in the image analysis is to locate the centers of the atoms shown in micrographs as precisely as possible. Here, we consider scanning transmission electron microscopy (STEM), which acquires data in a rastering pattern, pixel by pixel. Due to this rastering combined with the magnification to atomic scale, movements of the specimen even at the nanometer scale lead to random image distortions that make precise atom localization difficult. Given a series of STEM images, we derive a Bayesian method that jointly estimates the distortion in each image and reconstructs the underlying atomic grid of the material by fitting the atom bumps with suitable bump functions. The resulting highly non-convex minimization problems are solved numerically with a trust region approach. Existence of minimizers and the model behavior for faster and faster rastering are investigated using variational techniques. The performance of the method is finally evaluated on both synthetic and real experimental data.

  4. Automated Detection of Synapses in Serial Section Transmission Electron Microscopy Image Stacks

    PubMed Central

    Kreshuk, Anna; Koethe, Ullrich; Pax, Elizabeth; Bock, Davi D.; Hamprecht, Fred A.

    2014-01-01

    We describe a method for fully automated detection of chemical synapses in serial electron microscopy images with highly anisotropic axial and lateral resolution, such as images taken on transmission electron microscopes. Our pipeline starts from classification of the pixels based on 3D pixel features, which is followed by segmentation with an Ising model MRF and another classification step, based on object-level features. Classifiers are learned on sparse user labels; a fully annotated data subvolume is not required for training. The algorithm was validated on a set of 238 synapses in 20 serial 7197×7351 pixel images (4.5×4.5×45 nm resolution) of mouse visual cortex, manually labeled by three independent human annotators and additionally re-verified by an expert neuroscientist. The error rate of the algorithm (12% false negative, 7% false positive detections) is better than state-of-the-art, even though, unlike the state-of-the-art method, our algorithm does not require a prior segmentation of the image volume into cells. The software is based on the ilastik learning and segmentation toolkit and the vigra image processing library and is freely available on our website, along with the test data and gold standard annotations (http://www.ilastik.org/synapse-detection/sstem). PMID:24516550

  5. Dopamine Transporter Regulation during Four Nights of REM Sleep Deprivation Followed by Recovery – An in vivo Molecular Imaging Study in Humans

    PubMed Central

    Martins, RCS; Andersen, ML; Garbuio, SA; Bittencourt, LR; Guindalini, C; Shih, MC; Hoexter, MQ; Bressan, RA; Castiglioni, MLV; Tufik, S

    2010-01-01

    ; Bressan RA; Castiglioni MLV; Tufik S. Dopamine transporter regulation during four nights of REM sleep deprivation followed by recovery – an in vivo molecular imaging study in humans. SLEEP 2010;33(2):243-251. PMID:20175408

  6. Atomic Resolution Imaging at an Ultralow Accelerating Voltage by a Monochromatic Transmission Electron Microscope.

    PubMed

    Morishita, Shigeyuki; Mukai, Masaki; Suenaga, Kazu; Sawada, Hidetaka

    2016-10-07

    Transmission electron microscopy using low-energy electrons would be very useful for atomic resolution imaging of specimens that would be damaged at higher energies. However, the resolution at low voltages is degraded because of geometrical and chromatic aberrations. In the present study, we diminish the effect of these aberrations by using a delta-type corrector and a monochromator. The dominant residual aberration in a delta-type corrector, which is the sixth-order three-lobe aberration, is counterbalanced by other threefold aberrations. Defocus spread caused by chromatic aberration is reduced by using a monochromated beam with an energy spread of 0.05 eV. We obtain images of graphene and demonstrate atomic resolution at an ultralow accelerating voltage of 15 kV.

  7. Numerical model for tomographic image formation in transmission x-ray microscopy.

    PubMed

    Bertilson, Michael; von Hofsten, Olov; Hertz, Hans M; Vogt, Ulrich

    2011-06-06

    We present a numerical image-formation model for investigating the influence of partial coherence, sample thickness and depth-of-focus on the accuracy of tomographic reconstructions in transmission x-ray microscopes. The model combines wave propagation through the object by finite difference techniques with Fourier methods. We include a ray-tracing model to analyse the origin of detrimental stray light in zone plate-based x-ray microscopes. These models allow optimization of x-ray microscopy systems for quantitative tomographic imaging of thick objects. Results show that both the depth-of-focus and the reconstructed local absorption coefficient are highly dependent on the degree of coherence of the optical system.

  8. Atomic Resolution Imaging at an Ultralow Accelerating Voltage by a Monochromatic Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Morishita, Shigeyuki; Mukai, Masaki; Suenaga, Kazu; Sawada, Hidetaka

    2016-10-01

    Transmission electron microscopy using low-energy electrons would be very useful for atomic resolution imaging of specimens that would be damaged at higher energies. However, the resolution at low voltages is degraded because of geometrical and chromatic aberrations. In the present study, we diminish the effect of these aberrations by using a delta-type corrector and a monochromator. The dominant residual aberration in a delta-type corrector, which is the sixth-order three-lobe aberration, is counterbalanced by other threefold aberrations. Defocus spread caused by chromatic aberration is reduced by using a monochromated beam with an energy spread of 0.05 eV. We obtain images of graphene and demonstrate atomic resolution at an ultralow accelerating voltage of 15 kV.

  9. PARAMETRIC IMAGING AND TEST-RETEST VARIABILITY OF 11C-(+)-PHNO BINDING TO D2/D3 DOPAMINE RECEPTORS IN HUMANS ON THE HRRT PET SCANNER

    PubMed Central

    Gallezot, Jean-Dominique; Zheng, Ming-Qiang; Lim, Keunpoong; Lin, Shu-fei; Labaree, David; Matuskey, David; Huang, Yiyun; Ding, Yu-Shin; Carson, Richard E.; Malison, Robert T.

    2014-01-01

    11C-(+)-PHNO is an agonist radioligand for imaging dopamine D2 and D3 receptors in the human brain with PET. In this study we evaluated the reproducibility of 11C-(+)-PHNO binding parameters using a within-day design and assessed parametric imaging methods. Methods Repeated studies were performed in eight subjects, with simultaneous measurement of the arterial input function and plasma free fraction. Two 11C-(+)-PHNO scans on the same subject were separated by 5.4±0.7 h. After evaluating compartment models, 11C-(+)-PHNO volumes of distribution VT and VT/fP and binding potentials BPND, BPP and BPF were quantified using the multilinear analysis MA1, with the cerebellum as reference region. Parametric images of BPND were also computed using SRTM and SRTM2. Results The test-retest variability of 11C-(+)-PHNO BPND was 9% in D2-rich regions (caudate and putamen). Among D3-rich regions, variability was low in pallidum (6%), but higher in substantia nigra (19%), thalamus (14%) and hypothalamus (21%). No significant mass carry-over effect was observed in D3-rich regions, although a trend in BPND was present in substantia nigra (−14±15%). Due to the relatively fast kinetics, low noise BPND parametric images were obtained with both SRTM and SRTM2 without spatial smoothing. Conclusion 11C-(+)-PHNO can be used to compute low noise parametric images in both D2 and D3 rich regions in humans. PMID:24732151

  10. Power Distortion Optimization for Uncoded Linear Transformed Transmission of Images and Videos.

    PubMed

    Xiong, Ruiqin; Zhang, Jian; Wu, Feng; Xu, Jizheng; Gao, Wen

    2017-01-01

    Recently, there is a resurgence of interest in uncoded transmission for wireless visual communication. While conventional coded systems suffer from cliff effect as the channel condition varies dynamically, uncoded linear-transformed transmission (ULT) provides elegant quality degradation for wide channel SNR range. ULT skips non-linear operations, such as quantization and entropy coding. Instead, it utilizes linear decorrelation transform and linear scaling power allocation to achieve optimized transmission. This paper presents a theoretical analysis for power-distortion optimization of ULT. In addition to the observation in our previous work that a decorrelation transform can bring significant performance gain, this paper reveals that exploiting the energy diversity in transformed signal is the key to achieve the full potential of decorrelation transform. In particular, we investigated the efficiency of ULT with exact or inexact signal statistics, highlighting the impact of signal energy modeling accuracy. Based on that, we further proposed two practical energy modeling schemes for ULT of visual signals. Experimental results show that the proposed schemes improve the quality of reconstructed images by 3~5 dB, while reducing the signal modeling overhead from hundreds or thousands of meta data to only a few meta data. The perceptual quality of reconstruction is significantly improved.

  11. Power-Distortion Optimization for Uncoded Linear-Transformed Transmission of Images and Videos.

    PubMed

    Xiong, Ruiqin; Zhang, Jian; Wu, Feng; Xu, Jizheng; Gao, Wen

    2016-10-26

    Recently there is a resurgence of interest in uncoded transmission for wireless visual communication. While conventional coded systems suffer from cliff effect as the channel condition varies dynamically, uncoded linear-transformed transmission (ULT) provides elegant quality degradation for wide channel SNR range. ULT skips non-linear operations such as quantization and entropy coding. Instead, it utilizes linear decorrelation transform and linear scaling power allocation to achieve optimized transmission. This paper presents a theoretical analysis for power-distortion optimization of ULT. In addition to the observation in our previous work that a decorrelation transform can bring significant performance gain, this work reveals that exploiting the energy diversity in transformed signal is the key to achieve the full potential of decorrelation transform. In particular, we investigated the efficiency of ULT with exact or inexact signal statistics, highlighting the impact of signal energy modeling accuracy. Based on that, we further proposed two practical energy modeling schemes for ULT of visual signals. Experimental results show that the proposed schemes improve the quality of reconstructed images by 3 5dB, while reducing the signal modeling overhead from hundreds or thousands of meta data to only a few meta data. The perceptual quality of reconstruction is significantly improved.

  12. Multi-line transmission combined with minimum variance beamforming in medical ultrasound imaging.

    PubMed

    Rabinovich, Adi; Feuer, Arie; Friedman, Zvi

    2015-05-01

    Increasing medical ultrasound imaging frame rate is important in several applications such as cardiac diagnostic imaging, where it is desirable to be able to examine the temporal behavior of fast phases in the cardiac cycle. This is particularly true in 3-D imaging, where current frame rate is still much slower than standard 2-D, B-mode imaging. Recently, a method that increases frame rate, labeled multi-line transmission (MLT), was reintroduced and analyzed. In MLT scanning, the transmission is simultaneously focused at several directions. This scan mode introduces artifacts that stem from the overlaps of the receive main lobe with the transmit side lobes of additional transmit directions besides the one of interest. Similar overlaps occur between the transmit main lobe with receive side lobes. These artifacts are known in the signal processing community as cross-talk. Previous studies have concentrated on proper transmit and receive apodization, as well as transmit directions arrangement in the transmit event, to reduce the cross-talk artifacts. This study examines the possibility of using adaptive beamforming, specifically, minimum variance (MV) and linearly constrained minimum variance (LCMV) beamforming, to reduce the cross-talk artifacts, and maintain or even improve image quality characteristics. Simulation results, as well as experimental phantom and in vivo cardiac data, demonstrate the feasibility of reducing cross-talk artifacts with MV beamforming. The MV and LCMV results achieve superior spatial resolution, not only over other MLT methods with data-independent apodization, but even over that of single-line transmission (SLT) without receive apodization. The MV beamformer is shown to be less sensitive to wider transmit profiles required to reduce the transmit crosstalk artifacts. MV beamforming, combined with the wider transmit profiles, can provide a good approach for MLT scanning with reduced cross-talk artifacts, without compromising spatial

  13. LineCast: line-based distributed coding and transmission for broadcasting satellite images.

    PubMed

    Wu, Feng; Peng, Xiulian; Xu, Jizheng

    2014-03-01

    In this paper, we propose a novel coding and transmission scheme, called LineCast, for broadcasting satellite images to a large number of receivers. The proposed LineCast matches perfectly with the line scanning cameras that are widely adopted in orbit satellites to capture high-resolution images. On the sender side, each captured line is immediately compressed by a transform-domain scalar modulo quantization. Without syndrome coding, the transmission power is directly allocated to quantized coefficients by scaling the coefficients according to their distributions. Finally, the scaled coefficients are transmitted over a dense constellation. This line-based distributed scheme features low delay, low memory cost, and low complexity. On the receiver side, our proposed line-based prediction is used to generate side information from previously decoded lines, which fully utilizes the correlation among lines. The quantized coefficients are decoded by the linear least square estimator from the received data. The image line is then reconstructed by the scalar modulo dequantization using the generated side information. Since there is neither syndrome coding nor channel coding, the proposed LineCast can make a large number of receivers reach the qualities matching their channel conditions. Our theoretical analysis shows that the proposed LineCast can achieve Shannon's optimum performance by using a high-dimensional modulo-lattice quantization. Experiments on satellite images demonstrate that it achieves up to 1.9-dB gain over the state-of-the-art 2D broadcasting scheme and a gain of more than 5 dB over JPEG 2000 with forward error correction.

  14. Atomic-Scale Imaging and Spectroscopy for In Situ Liquid Scanning Transmission Electron Microscopy

    SciTech Connect

    Jungjohann, K. L.; Evans, James E.; Aguiar, Jeff; Arslan, Ilke; Browning, Nigel D.

    2012-06-04

    Observation of growth, synthesis, dynamics and electrochemical reactions in the liquid state is an important yet largely unstudied aspect of nanotechnology. The only techniques that can potentially provide the insights necessary to advance our understanding of these mechanisms is simultaneous atomic-scale imaging and quantitative chemical analysis (through spectroscopy) under environmental conditions in the transmission electron microscope (TEM). In this study we describe the experimental and technical conditions necessary to obtain electron energy loss (EEL) spectra from a nanoparticle in colloidal suspension using aberration corrected scanning transmission electron microscopy (STEM) combined with the environmental liquid stage. At a fluid path length below 400 nm, atomic resolution images can be obtained and simultaneous compositional analysis can be achieved. We show that EEL spectroscopy can be used to quantify the total fluid path length around the nanoparticle, and demonstrate characteristic core-loss signals from the suspended nanoparticles can be resolved and analyzed to provide information on the local interfacial chemistry with the surrounding environment. The combined approach using aberration corrected STEM and EEL spectra with the in situ fluid stage demonstrates a plenary platform for detailed investigations of solution based catalysis and biological research.

  15. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    PubMed Central

    Lavenant, Gwendoline Thiery; Zavalin, Andrey I.; Caprioli, Richard M.

    2013-01-01

    Targeted multiplex Imaging Mass Spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This manuscript describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet. PMID:23397138

  16. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Thiery-Lavenant, Gwendoline; Zavalin, Andre I.; Caprioli, Richard M.

    2013-04-01

    Targeted multiplex imaging mass spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This article describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet.

  17. Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy.

    PubMed

    Jungjohann, Katherine L; Evans, James E; Aguiar, Jeffery A; Arslan, Ilke; Browning, Nigel D

    2012-06-01

    Observation of growth, synthesis, dynamics, and electrochemical reactions in the liquid state is an important yet largely unstudied aspect of nanotechnology. The only techniques that can potentially provide the insights necessary to advance our understanding of these mechanisms is simultaneous atomic-scale imaging and quantitative chemical analysis (through spectroscopy) under environmental conditions in the transmission electron microscope. In this study we describe the experimental and technical conditions necessary to obtain electron energy loss (EEL) spectra from a nanoparticle in colloidal suspension using aberration-corrected scanning transmission electron microscopy (STEM) combined with the environmental liquid stage. At a fluid path length below 400 nm, atomic resolution images can be obtained and simultaneous compositional analysis can be achieved. We show that EEL spectroscopy can be used to quantify the total fluid path length around the nanoparticle and demonstrate that characteristic core-loss signals from the suspended nanoparticles can be resolved and analyzed to provide information on the local interfacial chemistry with the surrounding environment. The combined approach using aberration-corrected STEM and EEL spectra with the in situ fluid stage demonstrates a plenary platform for detailed investigations of solution-based catalysis.

  18. Joint source/channel iterative arithmetic decoding with JPEG 2000 image transmission application

    NASA Astrophysics Data System (ADS)

    Zaibi, Sonia; Zribi, Amin; Pyndiah, Ramesh; Aloui, Nadia

    2012-12-01

    Motivated by recent results in Joint Source/Channel coding and decoding, we consider the decoding problem of Arithmetic Codes (AC). In fact, in this article we provide different approaches which allow one to unify the arithmetic decoding and error correction tasks. A novel length-constrained arithmetic decoding algorithm based on Maximum A Posteriori sequence estimation is proposed. The latter is based on soft-input decoding using a priori knowledge of the source-symbol sequence and the compressed bit-stream lengths. Performance in the case of transmission over an Additive White Gaussian Noise channel is evaluated in terms of Packet Error Rate. Simulation results show that the proposed decoding algorithm leads to significant performance gain while exhibiting very low complexity. The proposed soft input arithmetic decoder can also generate additional information regarding the reliability of the compressed bit-stream components. We consider the serial concatenation of the AC with a Recursive Systematic Convolutional Code, and perform iterative decoding. We show that, compared to tandem and to trellis-based Soft-Input Soft-Output decoding schemes, the proposed decoder exhibits the best performance/complexity tradeoff. Finally, the practical relevance of the presented iterative decoding system is validated under an image transmission scheme based on the JPEG 2000 standard and excellent results in terms of decoded image quality are obtained.

  19. A paradoxical regulation of the dopamine D3 receptor expression suggests the involvement of an anterograde factor from dopamine neurons.

    PubMed Central

    Lévesque, D; Martres, M P; Diaz, J; Griffon, N; Lammers, C H; Sokoloff, P; Schwartz, J C

    1995-01-01

    The effects of interruption of dopaminergic transmission or sustained blockade of dopamine receptors by neuroleptics on the dopamine D3 receptor in the shell of the nucleus accumbens were investigated in rats. In this brain area the D3 receptor is abundant and may mediate antipsychotic drug effects. The D3 receptor density and mRNA abundance were evaluated with 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin and by quantitative PCR or image analysis of in situ hybridization signals, respectively. Unilateral dopamine neuron degeneration by 6-hydroxydopamine or sections triggered, after a few days, a marked decrease (up to 50%) in D3 receptor binding and mRNA in the nucleus accumbens. In contrast, a 2-week treatment with the neuroleptic haloperidol (20 mg/kg) had no effect on D3 receptor density and mRNA but enhanced D2 receptor density and mRNA level by > 50%. In addition, tolerance to the haloperidol-induced change of neurotensin mRNA mediated by the D2 receptor developed, but there was no tolerance to the opposite change mediated by the D3 receptor. Reserpine, a monoamine-depleting drug with antipsychotic activity, did not modify D3 receptor mRNA. These observations reinforce the idea that the D3 receptor may be an important target for neuroleptics whose antipsychotic actions, but not extrapyramidal motor actions, do not display tolerance. The D3 receptor mRNA level was also decreased by a unilateral injection in dopamine cell body areas of colchicine, a drug blocking the anterograde axonal transport, or by baclofen, a type A gamma-aminobutyric acid receptor agonist reducing dopamine neuron activity, but not by sustained blockade of D1-like and D2-like, neurotensin, or cholecystokinin receptors. We therefore propose that an anterograde factor present in mesolimbic dopaminergic neurons, but distinct from dopamine and known peptide cotransmitters, plays a positive role on transcription of the D3 receptor gene. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:7878047

  20. Methamphetamine produces bidirectional, concentration-dependent effects on dopamine neuron excitability and dopamine-mediated synaptic currents

    PubMed Central

    Branch, Sarah Y.

    2012-01-01

    Amphetamine-like compounds are commonly used to enhance cognition and to treat attention deficit/hyperactivity disorder, but they also function as positive reinforcers and are self-administered at doses far exceeding clinical relevance. Many of these compounds (including methamphetamine) are substrates for dopamine reuptake transporters, elevating extracellular dopamine by inhibiting uptake and promoting reverse transport. This produces an increase in extracellular dopamine that inhibits dopamine neuron firing through autoreceptor activation and consequently blunts phasic dopamine neurotransmission, an important learning signal. However, these mechanisms do not explain the beneficial behavioral effects observed at clinically useful concentrations. In the present study, we have used patch-clamp electrophysiology in slices of mouse midbrain to show that, surprisingly, low concentrations of methamphetamine actually enhance dopamine neurotransmission and increase dopamine neuron firing through a dopamine transporter-mediated excitatory conductance. Both of these effects are reversed by higher concentrations of methamphetamine, which inhibit firing through dopamine D2 autoreceptor activation and decrease the peak amplitude of dopamine-mediated synaptic currents. These competing, concentration-dependent effects of methamphetamine suggest a mechanistic interplay by which lower concentrations of methamphetamine can overcome autoreceptor-mediated inhibition at the soma to increase phasic dopamine transmission. PMID:22592307

  1. Focal liver lesions at 3.0 T: lesion detectability and image quality with T2-weighted imaging by using conventional and dual-source parallel radiofrequency transmission.

    PubMed

    Kukuk, Guido M; Gieseke, Jürgen; Weber, Sebastian; Hadizadeh, Dariusch R; Nelles, Michael; Träber, Frank; Schild, Hans H; Willinek, Winfried A

    2011-05-01

    To prospectively compare T2-weighted single-shot turbo spin-echo (TSE) sequences performed with parallel and conventional radiofrequency (RF) transmission at 3.0 T for liver lesion detection, image quality, lesion conspicuity, and lesion contrast. After written informed consent and institutional review board approval, 52 consecutive patients (32 men, 20 women; mean age, 56.6 years ± 13.7 [standard deviation]) underwent routine magnetic resonance (MR) imaging with a clinical 3.0-T unit. Two independent readers reviewed images acquired with conventional and dual-source parallel RF transmission for detection of focal liver lesions, with separate reading of a third radiologist, including all available imaging findings, clinical history, and histopathologic findings, as reference. Image quality and lesion conspicuity were rated on five- and three-point evaluation scales, respectively. Contrast ratios between focal liver lesions and adjacent liver parenchyma were calculated. Significance was determined by using nonparametric Wilcoxon signed-rank and marginal homogeneity tests. With the reference standard, 106 index lesions were identified in 22 patients. Detection rate significantly improved from 87% (92 of 106) to 97% (103 of 106) (reader 1) and from 85% (90 of 106) to 96% (102 of 106) (reader 2) with parallel RF transmission (reader 1, P = .0078; reader 2, P = .002). Quality of parallel RF transmission images was assigned scores significantly higher, compared with quality of conventional RF transmission images (mean for reader 1, 2.88 ± 0.73 vs 4.04 ± 0.44; mean for reader 2, 2.81 ± 0.72 vs 4.04 ± 0.39; P < .0001 for both). Lesion conspicuity scores were significantly higher on parallel RF transmission images, compared with conventional RF transmission images (mean for reader 1, 2.02 ± 0.64 vs 2.92 ± 0.27; mean for reader 2, 2.06 ± 0.67 vs 2.90 ± 0.30; P < .0001 for both). Contrast ratios were significantly higher with parallel RF transmission (P < .05

  2. Image formation in a transmission electron microscope equipped with an environmental cell: Single-walled carbon nanotubes in source gases

    NASA Astrophysics Data System (ADS)

    Yoshida, H.; Takeda, S.

    2005-11-01

    We have outlined a theory of image formation in a transmission electron microscopy equipped with an environmental cell (E-TEM). We have applied the outlined theory to simulating high-resolution transmission electron microscopy (HRTEM) images of single-walled carbon nanotubes (SWNT’s) in source gases of ethanol at the actual growth condition: the pressure and the temperature of ethanol gas are equal to 5 Torr and 800 °C, respectively. It is noteworthy that the growth process can be reproduced in E-TEM’s. We have suggested that the diameter and chirality of SWNT’s are most likely determined in a Fourier transform of HRTEM images.

  3. Multislice simulation of transmission electron microscopy imaging of helium bubbles in Fe

    SciTech Connect

    Yao, Bo; Edwards, Danny J.; Kurtz, Richard J.; Odette, George R.; Yamamoto, Takuya

    2012-10-04

    Formation of nanoscale helium (He) bubbles in reduced activation ferritic/martensitic steels may lead to degradation of mechanical properties of materials. Transmission electron microscopy (TEM) has been commonly used to image the Fresnel contrast of He bubbles using a defocus of 0.5 µm ~ 1 µm. This paper presents our study of multislice simulation of the size correlation between imaged Fresnel rings and the actual He bubbles. It was found that for bubbles equal to or larger than 3 nm in diameter, the imaged bubble size, represented by its inner diameter of the first dark Fresnel ring (Din) in under-focused imaging conditions, increases with increasing electron-beam incoherency, but decreases with increasing defocus. The electron-beam accelerating voltage, bubble size, bubble position, and TEM sample thickness were found to have no significant influence on the deviation of Din from the actual bubble size (D0). For bubbles equal to or smaller than 2 nm, however, Din/Do increases dramatically with increasing defocus when it is above a threshold defocus. It was also suggested by this study that He bubbles can be differentiated from argon (Ar) bubbles by contrast differences.

  4. Detection of Shielded Special Nuclear Material With a Cherenkov-Based Transmission Imaging System

    NASA Astrophysics Data System (ADS)

    Rose, Paul; Erickson, Anna; Mayer, Michael; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material, SSNM, while in transit, offers a unique challenge. Typical cargo imaging systems are Bremsstrahlung-based and cause an abundance of unnecessary signal in the detectors and doses to the cargo contents and surroundings. Active interrogation with dual monoenergetic photons can unveil the illicit material when coupled with a high-contrast imaging system while imparting significantly less dose to the contents. Cherenkov detectors offer speed, resilience, inherent energy threshold rejection, directionality and scalability beyond the capability of most scintillators. High energy resolution is not a priority when using two well separated gamma rays, 4.4 and 15.1 MeV, generated from low energy nuclear reactions such as 11B(d,n- γ)12C. These gamma rays offer a measure of the effective atomic number, Z, of the cargo by taking advantage of the large difference in photon interaction cross sections, Compton scattering and pair production. This imaging system will be coupled to neutron detectors to provide unique signature of SNM by monitoring delayed neutrons. Our experiments confirm that the Cherenkov imaging system can be used with the monoenergetic source to relate transmission and atomic number of the scanned material.

  5. A progressive transmission image coder using linear phase uniform filterbanks as block transforms.

    PubMed

    Tran, T D; Nguyen, T Q

    1999-01-01

    This paper presents a novel image coding scheme using M-channel linear phase perfect reconstruction filterbanks (LPPRFBs) in the embedded zerotree wavelet (EZW) framework introduced by Shapiro (1993). The innovation here is to replace the EZWs dyadic wavelet transform by M-channel uniform-band maximally decimated LPPRFBs, which offer finer frequency spectrum partitioning and higher energy compaction. The transform stage can now be implemented as a block transform which supports parallel processing and facilitates region-of-interest coding/decoding. For hardware implementation, the transform boasts efficient lattice structures, which employ a minimal number of delay elements and are robust under the quantization of lattice coefficients. The resulting compression algorithm also retains all the attractive properties of the EZW coder and its variations such as progressive image transmission, embedded quantization, exact bit rate control, and idempotency. Despite its simplicity, our new coder outperforms some of the best image coders published previously in the literature, for almost all test images (especially natural, hard-to-code ones) at almost all bit rates.

  6. Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy.

    PubMed

    Mirsaidov, Utkur M; Zheng, Haimei; Casana, Yosune; Matsudaira, Paul

    2012-02-22

    We demonstrate an in situ transmission electron microscopy technique for imaging proteins in liquid water at room temperature. Liquid samples are loaded into a microfabricated environmental cell that isolates the sample from the vacuum with thin silicon nitride windows. We show that electron micrographs of acrosomal bundles in water are similar to bundles imaged in ice, and we determined the resolution to be at least 2.7 nm at doses of ∼35 e/Å(2). The resolution was limited by the thickness of the window and radiation damage. Surprisingly, we observed a smaller fall-off in the intensity of reflections in room-temperature water than in 98 K ice. Thus, our technique extends imaging of unstained and unlabeled macromolecular assemblies in water from the resolution of the light microscope to the nanometer resolution of the electron microscope. Our results suggest that real-time imaging of protein dynamics is conceptually feasible. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems.

    PubMed

    Pennycook, S J; Chisholm, M F; Lupini, A R; Varela, M; Borisevich, A Y; Oxley, M P; Luo, W D; van Benthem, K; Oh, S-H; Sales, D L; Molina, S I; García-Barriocanal, J; Leon, C; Santamaría, J; Rashkeev, S N; Pantelides, S T

    2009-09-28

    The new possibilities of aberration-corrected scanning transmission electron microscopy (STEM) extend far beyond the factor of 2 or more in lateral resolution that was the original motivation. The smaller probe also gives enhanced single atom sensitivity, both for imaging and for spectroscopy, enabling light elements to be detected in a Z-contrast image and giving much improved phase contrast imaging using the bright field detector with pixel-by-pixel correlation with the Z-contrast image. Furthermore, the increased probe-forming aperture brings significant depth sensitivity and the possibility of optical sectioning to extract information in three dimensions. This paper reviews these recent advances with reference to several applications of relevance to energy, the origin of the low-temperature catalytic activity of nanophase Au, the nucleation and growth of semiconducting nanowires, and the origin of the eight orders of magnitude increased ionic conductivity in oxide superlattices. Possible future directions of aberration-corrected STEM for solving energy problems are outlined.

  8. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    PubMed Central

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  9. Enhancement of resident education in sonography using high-speed PACS/ATM image transmission: work in progress

    NASA Astrophysics Data System (ADS)

    Duerinckx, Andre J.; Grant, Edward G.; Melany, Michelle; Narin, Sherelle L.; Hayrapetian, Alek S.; Valentino, Daniel J.

    1996-05-01

    Transmission of high quality images between hospitals would be of value by exposing residents at individual institutions to a greater mix of disease processes. This problem is particularly serious in ultrasound where individual hospitals may not perform the entire range of examinations. We undertook this study to assess the effectiveness of image transmission via a PACS/ATM global network in improving ultrasound education among residents at affiliated hospitals. Image management was performed by AGFA PACS; global network was Asynchronous Transfer Mode. Selected cases from the two hospitals (OB/GYN cases at one, vascular at the other) were transmitted. Readout/teaching sessions included cases performed at base hospital and those received via network. Evaluation forms were collected from participants at both institutions. No image degradation occurred with transmission. Residents' exposure to ultrasound cases increased at the two hospitals. The system was considered an excellent teaching tool by all faculty and residents surveyed.

  10. D3 dopamine receptor-preferring [11C]PHNO PET imaging in Parkinson patients with dyskinesia

    PubMed Central

    Payer, Doris E.; Guttman, Mark; Kish, Stephen J.; Tong, Junchao; Adams, John R.; Rusjan, Pablo; Houle, Sylvain; Furukawa, Yoshiaki; Wilson, Alan A.

    2016-01-01

    Objective: To investigate whether levodopa-induced dyskinesias (LID) are associated with D3 overexpression in levodopa-treated humans with Parkinson disease (PD). Methods: In this case-control study, we used PET with the D3-preferring radioligand [11C]-(+)-PHNO to estimate D2/3 receptor binding in patients with levodopa-treated PD with LID (n = 12) and without LID (n = 12), and healthy control subjects matched for age, sex, education, and mental status (n = 18). Results: Compared to nondyskinetic patients, those with LID showed heightened [11C]-(+)-PHNO binding in the D3-rich globus pallidus. Both PD groups also showed higher binding than controls in the sensorimotor division of the striatum. In contrast, D2/3 binding in the ventral striatum was lower in patients with LID than without, possibly reflecting higher dopamine levels. Conclusions: Dopaminergic abnormalities contributing to LID may include elevated D2/3 binding in globus pallidus, perhaps reflecting D3 receptor upregulation. The findings support therapeutic strategies that target and diminish activity at D3 to prevent LID. PMID:26718579

  11. In Vitro and In Vivo Characterization of Selected Fluorine-18 Labeled Radioligands for PET Imaging of the Dopamine D3 Receptor.

    PubMed

    Nebel, Natascha; Maschauer, Simone; Kuwert, Torsten; Hocke, Carsten; Prante, Olaf

    2016-08-29

    Cerebral dopamine D3 receptors seem to play a key role in the control of drug-seeking behavior. The imaging of their regional density with positron emission tomography (PET) could thus help in the exploration of the molecular basis of drug addiction. A fluorine-18 labeled D3 subtype selective radioligand would be beneficial for this purpose; however, as yet, there is no such tracer available. The three candidates [(18)F]1, [(18)F]2a and [(18)F]2b were chosen for in vitro and in vivo characterization as radioligands suitable for selective PET imaging of the D3 receptor. Their evaluation included the analysis of radiometabolites and the assessment of non-specific binding by in vitro rat brain autoradiography. While [(18)F]1 and [(18)F]2a revealed high non-specific uptake in in vitro rat brain autoradiography, the D3 receptor density was successfully determined on rat brain sections (n = 4) with the candidate [(18)F]2b offering a Bmax of 20.38 ± 2.67 pmol/g for the islands of Calleja, 19.54 ± 1.85 pmol/g for the nucleus accumbens and 16.58 ± 1.63 pmol/g for the caudate putamen. In PET imaging studies, the carboxamide 1 revealed low signal/background ratios in the rat brain and relatively low uptake in the pituitary gland, while the azocarboxamides [(18)F]2a and [(18)F]2b showed binding that was blockable by the D3 receptor ligand BP897 in the ventricular system and the pituitary gland in PET imaging studies in living rats.

  12. Designing an efficient LT-code with unequal error protection for image transmission

    NASA Astrophysics Data System (ADS)

    S. Marques, F.; Schwartz, C.; Pinho, M. S.; Finamore, W. A.

    2015-10-01

    The use of images from earth observation satellites is spread over different applications, such as a car navigation systems and a disaster monitoring. In general, those images are captured by on board imaging devices and must be transmitted to the Earth using a communication system. Even though a high resolution image can produce a better Quality of Service, it leads to transmitters with high bit rate which require a large bandwidth and expend a large amount of energy. Therefore, it is very important to design efficient communication systems. From communication theory, it is well known that a source encoder is crucial in an efficient system. In a remote sensing satellite image transmission, this efficiency is achieved by using an image compressor, to reduce the amount of data which must be transmitted. The Consultative Committee for Space Data Systems (CCSDS), a multinational forum for the development of communications and data system standards for space flight, establishes a recommended standard for a data compression algorithm for images from space systems. Unfortunately, in the satellite communication channel, the transmitted signal is corrupted by the presence of noise, interference signals, etc. Therefore, the receiver of a digital communication system may fail to recover the transmitted bit. Actually, a channel code can be used to reduce the effect of this failure. In 2002, the Luby Transform code (LT-code) was introduced and it was shown that it was very efficient when the binary erasure channel model was used. Since the effect of the bit recovery failure depends on the position of the bit in the compressed image stream, in the last decade many e orts have been made to develop LT-code with unequal error protection. In 2012, Arslan et al. showed improvements when LT-codes with unequal error protection were used in images compressed by SPIHT algorithm. The techniques presented by Arslan et al. can be adapted to work with the algorithm for image compression

  13. Digitization and remote transmission of magnetic resonance hard-copy images: a clinical comparison of orginal and soft-copy images

    NASA Astrophysics Data System (ADS)

    Wilson, Anthony J.; Totty, William G.; Senol, Evren; Pilgram, Thomas K.; Blaine, G. James

    1994-05-01

    This paper describes the evaluation of the clinical accuracy of a specific system for digitizing laser printed film (hard-copy) magnetic resonance images and transmitting them to a remote site for interpretation. The system tested is viable for digitization and transmission of hard- copy magnetic resonance images and subsequent interpretation on a remote soft-copy display station.

  14. Distinct roles of presynaptic dopamine receptors in the differential modulation of the intrinsic synapses of medium-spiny neurons in the nucleus accumbens

    PubMed Central

    Mizuno, Takeo; Schmauss, Claudia; Rayport, Stephen

    2007-01-01

    Background In both schizophrenia and addiction, pathological changes in dopamine release appear to induce alterations in the circuitry of the nucleus accumbens that affect coordinated thought and motivation. Dopamine acts principally on medium-spiny GABA neurons, which comprise 95% of accumbens neurons and give rise to the majority of inhibitory synapses in the nucleus. To examine dopamine action at single medium-spiny neuron synapses, we imaged Ca2+ levels in their presynaptic varicosities in the acute brain slice using two-photon microscopy. Results Presynaptic Ca2+ rises were differentially modulated by dopamine. The D1/D5 selective agonist SKF81297 was exclusively facilitatory. The D2/D3 selective agonist quinpirole was predominantly inhibitory, but in some instances it was facilitatory. Studies using D2 and D3 receptor knockout mice revealed that quinpirole inhibition was either D2 or D3 receptor-mediated, while facilitation was mainly D3 receptor-mediated. Subsets of varicosities responded to both D1 and D2 agonists, showing that there was significant co-expression of these receptor families in single medium-spiny neurons. Neighboring presynaptic varicosities showed strikingly heterogeneous responses to DA agonists, suggesting that DA receptors may be differentially trafficked to individual varicosities on the same medium-spiny neuron axon. Conclusion Dopamine receptors are present on the presynaptic varicosities of medium-spiny neurons, where they potently control GABAergic synaptic transmission. While there is significant coexpression of D1 and D2 family dopamine receptors in individual neurons, at the subcellular level, these receptors appear to be heterogeneously distributed, potentially explaining the considerable controversy regarding dopamine action in the striatum, and in particular the degree of dopamine receptor segregation on these neurons. Assuming that post-receptor signaling is restricted to the microdomains of medium-spiny neuron varicosities

  15. Elevated Dopamine D2/3 Receptor Availability in Obese Individuals: A PET Imaging Study with [(11)C](+)PHNO.

    PubMed

    Gaiser, Edward C; Gallezot, Jean-Dominique; Worhunsky, Patrick D; Jastreboff, Ania M; Pittman, Brian; Kantrovitz, Lauren; Angarita, Gustavo A; Cosgrove, Kelly P; Potenza, Marc N; Malison, Robert T; Carson, Richard E; Matuskey, David

    2016-12-01

    Most prior work with positron emission tomography (PET) dopamine subtype 2/3 receptor (D2/3R) non-selective antagonist tracers suggests that obese (OB) individuals exhibit lower D2/3Rs when compared with normal weight (NW) individuals. A D3-preferring D2/3R agonist tracer, [(11)C](+)PHNO, has demonstrated that body mass index (BMI) was positively associated with D2/3R availability within striatal reward regions. To date, OB individuals have not been studied with [(11)C](+)PHNO. We assessed D2/3R availability in striatal and extrastriatal reward regions in 14 OB and 14 age- and gender-matched NW individuals with [(11)C](+)PHNO PET utilizing a high-resolution research tomograph. Additionally, in regions where group D2/3R differences were observed, secondary analyses of 42 individuals that constituted an overweight cohort was done to study the linear association between BMI and D2/3R availability in those respective regions. A group-by-brain region interaction effect (F7, 182=2.08, p=0.047) was observed. Post hoc analyses revealed that OB individuals exhibited higher tracer binding in D3-rich regions: the substantia nigra/ventral tegmental area (SN/VTA) (+20%; p=0.02), ventral striatum (VST) (+14%; p<0.01), and pallidum (+11%; p=0.02). BMI was also positively associated with D2/3R availability in the SN/VTA (r=0.34, p=0.03), VST (r=0.36, p=0.02), and pallidum (r=0.30, p=0.05) across all subjects. These data suggest that individuals who are obese have higher D2/3R availability in brain reward regions densely populated with D3Rs, potentially identifying a novel pharmacologic target for the treatment of obesity.

  16. Positron emission tomography (PET) imaging of nicotine-induced dopamine release in squirrel monkeys using [(18)F]Fallypride.

    PubMed

    Naylor, Jennifer E; Hiranita, Takato; Matazel, Katelin S; Zhang, Xuan; Paule, Merle G; Goodwin, Amy K

    2017-10-01

    Nicotine, the principal psychoactive tobacco constituent, is thought to produce its reinforcing effects via actions within the mesolimbic dopamine (DA) system. The objective of the current study was to examine the effect of nicotine on DA D2/D3 receptor availability in the nonhuman primate brain with the use of the radioligand [(18)F]fallypride and positron emission tomography (PET). Ten adult male squirrel monkeys were used in the current study. Each subject underwent two PET scans, one with an injection (IV) of saline and subsequently one with an injection of nicotine (0.032mg/kg). The DA D2/D3 antagonist, [(18)F]fallypride, was delivered IV at the beginning of each scan, and nicotine or saline was delivered at 45min into the scan. Regions of interest (ROI) were drawn on specific brain regions and these were used to quantify standard uptake values (SUVs). The SUV is defined as the average concentration of radioactivity in the ROI x body weight/injected dose. Using the cerebellum as a reference region, SUV ratios (SUVROI/SUVcerebellum) were calculated to compare saline and nicotine effects in each ROI. Two-way repeated ANOVA revealed a significant decrease of SUV ratios in both striatal and extrastriatal regions following an injection of nicotine during the PET scans. Like other drugs of abuse, these results indicate that nicotine administration may produce DA release, as suggested by the decrease in [(18)F]fallypride signal in striatal regions. These findings from a nonhuman primate model provide further evidence that the mesolimbic DA system is affected by the use of products that contain nicotine. Published by Elsevier B.V.

  17. Dark field imaging of biological macromolecules with the scanning transmission electron microscope

    PubMed Central

    Ohtsuki, Mitsuo; Isaacson, Michael S.; Crewe, A. V.

    1979-01-01

    A scanning transmission electron microscope (STEM) equipped with a field emission gun has been employed for the examination of biological macromolecules at high resolution. The quality of micrographs obtained with the STEM is dependent upon the quality of the substrate used to support biological objects because the image contrast in dark field is proportional to the mass density of the specimen. In order to reduce deleterious effects of the substrates on the image quality, we have developed a method of fabricating substrates consisting of very thin, very clean carbon films supported on very clean fenestrated plastic films. These films are approximately 15 Å thick. Well-known biological macromolecules such as glutamine synthetase and tobacco mosaic virus (both stained) and low-density lipoprotein and ferritin (both unstained were placed on these substrates and examined with the STEM by using various modes of contrast. The micrographs obtained by using the dark field mode of contrast employing an annular detector were free from phase contrast, as expected. Using this contrast mode, we have been able to directly observe (in-focus) 2.5- to 4.4-Å lattice spacings in the ferritin core. The effect of electron radiation damage on the helical structure of tobacco mosaic virus was also examined. Micrographs as well as corresponding optical diffraction patterns obtained with moderately low doses showed very clear helical structure from both sides of the virus. In addition, the (11.5 Å)-1 layer lines indicated the effective resolution attained on these particles. Images PMID:35788

  18. Quantifying bone thickness, light transmission, and contrast interrelationships in transcranial photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Lediju Bell, Muyinatu A.; Ostrowski, Anastasia K.; Li, Ke; Kaanzides, Peter; Boctor, Emad

    2015-03-01

    We previously introduced photoacoustic imaging to detect blood vessels surrounded by bone and thereby eliminate the deadly risk of carotid artery injury during endonasal, transsphenoidal surgeries. Light would be transmitted through an optical fiber attached to the surgical drill, while a transcranial probe placed on the temporal region of the skull receives photoacoustic signals. This work quantifies changes in photoacoustic image contrast as the sphenoid bone is drilled. Frontal bone from a human adult cadaver skull was cut into seven 3 cm x 3 cm chips and sanded to thicknesses ranging 1-4 mm. For 700-940 nm wavelengths, the average optical transmission through these specimens increased from 19% to 44% as bone thickness decreased, with measurements agreeing with Monte Carlo simulations within 5%. These skull specimens were individually placed in the optical pathway of a 3.5 mm diameter, cylindrical, vessel-mimicking photoacoustic target, as the laser wavelength was varied between 700-940 nm. The mean optical insertion loss and photoacoustic image contrast loss due to the bone specimens were 56-80% and 46-79%, respectively, with the majority of change observed when the bone was <=2 mm thick. The decrease in contrast is directly proportional to insertion loss over this thickness range by factors of 0.8-1.1 when multiple wavelengths are considered. Results suggest that this proportional relationship may be used to determine the amount of bone that remains to be drilled when the thickness is 2 mm or less.

  19. Transmission imaging polarimetry for a linear birefringent medium using a carrier fringe method.

    PubMed

    Drobczynski, Slawomir; Bueno, Juan M; Artal, Pablo; Kasprzak, Henryk

    2006-08-01

    We present an imaging polarimeter in transmission mode that is based on a carrier frequency method and allows a spatially resolved polarimetric description of nondichroic linear birefringent media. The apparatus incorporates a generator of polarization states in the incoming pathway and a Wollaston prism and a linear polarizer as the analyzer unit. A series of two fringe pattern images of the birefringent sample under study, corresponding to two independent polarization states of the generator unit, were recorded. From these images and by using Fourier analysis, the 2D distribution of azimuth angle and retardation were calculated. Two alternative generator units were used: (i) a linear polarizer combined with a rotatory quarter-wave plate and (ii) a liquid-crystal variable retarder. A uniform quarter-wave plate at different orientations was measured with both generator units to demonstrate the effectiveness and the accuracy of the method. The mean absolute deviations were 1.8 degrees and 4.1 degrees for the azimuth and the retardation, respectively, with the first generator unit, and 2.9 degrees and 4.4 degrees for the second one. Moreover, some nonuniform birefringent samples presenting wider ranges of azimuth and retardation were also tested.

  20. Spatiotemporal Imaging of Glutamate-Induced Biophotonic Activities and Transmission in Neural Circuits

    PubMed Central

    Tang, Rendong; Dai, Jiapei

    2014-01-01

    The processing of neural information in neural circuits plays key roles in neural functions. Biophotons, also called ultra-weak photon emissions (UPE), may play potential roles in neural signal transmission, contributing to the understanding of the high functions of nervous system such as vision, learning and memory, cognition and consciousness. However, the experimental analysis of biophotonic activities (emissions) in neural circuits has been hampered due to technical limitations. Here by developing and optimizing an in vitro biophoton imaging method, we characterize the spatiotemporal biophotonic activities and transmission in mouse brain slices. We show that the long-lasting application of glutamate to coronal brain slices produces a gradual and significant increase of biophotonic activities and achieves the maximal effect within approximately 90 min, which then lasts for a relatively long time (>200 min). The initiation and/or maintenance of biophotonic activities by glutamate can be significantly blocked by oxygen and glucose deprivation, together with the application of a cytochrome c oxidase inhibitor (sodium azide), but only partly by an action potential inhibitor (TTX), an anesthetic (procaine), or the removal of intracellular and extracellular Ca2+. We also show that the detected biophotonic activities in the corpus callosum and thalamus in sagittal brain slices mostly originate from axons or axonal terminals of cortical projection neurons, and that the hyperphosphorylation of microtubule-associated protein tau leads to a significant decrease of biophotonic activities in these two areas. Furthermore, the application of glutamate in the hippocampal dentate gyrus results in increased biophotonic activities in its intrahippocampal projection areas. These results suggest that the glutamate-induced biophotonic activities reflect biophotonic transmission along the axons and in neural circuits, which may be a new mechanism for the processing of neural

  1. Spatiotemporal imaging of glutamate-induced biophotonic activities and transmission in neural circuits.

    PubMed

    Tang, Rendong; Dai, Jiapei

    2014-01-01

    The processing of neural information in neural circuits plays key roles in neural functions. Biophotons, also called ultra-weak photon emissions (UPE), may play potential roles in neural signal transmission, contributing to the understanding of the high functions of nervous system such as vision, learning and memory, cognition and consciousness. However, the experimental analysis of biophotonic activities (emissions) in neural circuits has been hampered due to technical limitations. Here by developing and optimizing an in vitro biophoton imaging method, we characterize the spatiotemporal biophotonic activities and transmission in mouse brain slices. We show that the long-lasting application of glutamate to coronal brain slices produces a gradual and significant increase of biophotonic activities and achieves the maximal effect within approximately 90 min, which then lasts for a relatively long time (>200 min). The initiation and/or maintenance of biophotonic activities by glutamate can be significantly blocked by oxygen and glucose deprivation, together with the application of a cytochrome c oxidase inhibitor (sodium azide), but only partly by an action potential inhibitor (TTX), an anesthetic (procaine), or the removal of intracellular and extracellular Ca(2+). We also show that the detected biophotonic activities in the corpus callosum and thalamus in sagittal brain slices mostly originate from axons or axonal terminals of cortical projection neurons, and that the hyperphosphorylation of microtubule-associated protein tau leads to a significant decrease of biophotonic activities in these two areas. Furthermore, the application of glutamate in the hippocampal dentate gyrus results in increased biophotonic activities in its intrahippocampal projection areas. These results suggest that the glutamate-induced biophotonic activities reflect biophotonic transmission along the axons and in neural circuits, which may be a new mechanism for the processing of neural

  2. Compressive sensing imaging through a drywall barrier at sub-THz and THz frequencies in transmission and reflection modes

    NASA Astrophysics Data System (ADS)

    Takan, Taylan; Özkan, Vedat A.; Idikut, Fırat; Yildirim, Ihsan Ozan; Şahin, Asaf B.; Altan, Hakan

    2014-10-01

    In this work sub-terahertz imaging using Compressive Sensing (CS) techniques for targets placed behind a visibly opaque barrier is demonstrated both experimentally and theoretically. Using a multiplied Schottky diode based millimeter wave source working at 118 GHz, metal cutout targets were illuminated in both reflection and transmission configurations with and without barriers which were made out of drywall. In both modes the image is spatially discretized using laser machined, 10 × 10 pixel metal apertures to demonstrate the technique of compressive sensing. The images were collected by modulating the source and measuring the transmitted flux through the apertures using a Golay cell. Experimental results were compared to simulations of the expected transmission through the metal apertures. Image quality decreases as expected when going from the non-obscured transmission case to the obscured transmission case and finally to the obscured reflection case. However, in all instances the image appears below the Nyquist rate which demonstrates that this technique is a viable option for Through the Wall Reflection Imaging (TWRI) applications.

  3. Imaging interfacial micro- and nano-bubbles by scanning transmission soft X-ray microscopy.

    PubMed

    Zhang, Lijuan; Zhao, Binyu; Xue, Lian; Guo, Zhi; Dong, Yaming; Fang, Haiping; Tai, Renzhong; Hu, Jun

    2013-05-01

    Synchrotron-based scanning transmission soft X-ray microscopy (STXM) with nanometer resolution was used to investigate the existence and behavior of interfacial gas nanobubbles confined between two silicon nitride windows. The observed nanobubbles of SF6 and Ne with diameters smaller than 2.5 µm were quite stable. However, larger bubbles became unstable and grew during the soft X-ray imaging, indicating that stable nanobubbles may have a length scale, which is consistent with a previous report using atomic force microscopy [Zhang et al. (2010), Soft Matter, 6, 4515-4519]. Here, it is shown that STXM is a promising technique for studying the aggregation of gases near the solid/water interfaces at the nanometer scale.

  4. Quantitative Z-contrast imaging in the scanning transmission electron microscope with size-selected clusters

    NASA Astrophysics Data System (ADS)

    Wang, Z. W.; Li, Z. Y.; Park, S. J.; Abdela, A.; Tang, D.; Palmer, R. E.

    2011-08-01

    This paper describes a new approach of quantification of annular-dark-field or Z-contrast image intensity as a function of inner acceptance angle of the detector in a scanning transmission electron microscope. By using size-selected nanoclusters of Pd (Z = 46) and Au (Z = 79), it is shown experimentally that the exponent in the power law I ˜ Zα varies strongly between 1.2 and 1.8 as the collection angle changes from 14 to 103 mrad. The result is discussed in line with existing theoretical models. Factors, such as cluster size, structure, and orientation as well as the detector geometry, are also discussed for potential use of the work.

  5. Microtubules in Plant Cells: Strategies and Methods for Immunofluorescence, Transmission Electron Microscopy and Live Cell Imaging

    PubMed Central

    Celler, Katherine; Fujita, Miki; Kawamura, Eiko; Ambrose, Chris; Herburger, Klaus; Wasteneys, Geoffrey O.

    2016-01-01

    Microtubules are required throughout plant development for a wide variety of processes, and different strategies have evolved to visualize and analyze them. This chapter provides specific methods that can be used to analyze microtubule organization and dynamic properties in plant systems and summarizes the advantages and limitations for each technique. We outline basic methods for preparing samples for immunofluorescence labelling, including an enzyme-based permeabilization method, and a freeze-shattering method, which generates microfractures in the cell wall to provide antibodies access to cells in cuticle-laden aerial organs such as leaves. We discuss current options for live cell imaging of MTs with fluorescently tagged proteins (FPs), and provide chemical fixation, high pressure freezing/freeze substitution, and post-fixation staining protocols for preserving MTs for transmission electron microscopy and tomography. PMID:26498784

  6. SOUND-SPEED AND ATTENUATION IMAGING OF BREAST TISSUE USING WAVEFORM TOMOGRAPHY OF TRANSMISSION ULTRASOUND DATA

    SciTech Connect

    HUANG, LIANJIE; PRATT, R. GERHARD; DURIC, NEB; LITTRUP, PETER

    2007-01-25

    Waveform tomography results are presented from 800 kHz ultrasound transmission scans of a breast phantom, and from an in vivo ultrasound breast scan: significant improvements are demonstrated in resolution over time-of-flight reconstructions. Quantitative reconstructions of both sound-speed and inelastic attenuation are recovered. The data were acquired in the Computed Ultrasound Risk Evaluation (CURE) system, comprising a 20 cm diameter solid-state ultrasound ring array with 256 active, non-beamforming transducers. Waveform tomography is capable of resolving variations in acoustic properties at sub-wavelength scales. This was verified through comparison of the breast phantom reconstructions with x-ray CT results: the final images resolve variations in sound speed with a spatial resolution close to 2 mm. Waveform tomography overcomes the resolution limit of time-of-flight methods caused by finite frequency (diffraction) effects. The method is a combination of time-of-flight tomography, and 2-D acoustic waveform inversion of the transmission arrivals in ultrasonic data. For selected frequency components of the waveforms, a finite-difference simulation of the visco-acoustic wave equation is used to compute synthetic data in the current model, and the data residuals are formed by subtraction. The residuals are used in an iterative, gradient-based scheme to update the sound-speed and attenuation model to produce a reduced misfit to the data. Computational efficiency is achieved through the use of time-reversal of the data residuals to construct the model updates. Lower frequencies are used first, to establish the long wavelength components of the image, and higher frequencies are introduced later to provide increased resolution.

  7. Sound-speed and attenuation imaging of breast tissue using waveform tomography of transmission ultrasound data

    NASA Astrophysics Data System (ADS)

    Pratt, R. Gerhard; Huang, Lianjie; Duric, Neb; Littrup, Peter

    2007-03-01

    Waveform tomography results are presented from 800 kHz ultrasound transmission scans of a breast phantom, and from an in vivo ultrasound breast scan: significant improvements are demonstrated in resolution over time-of-flight reconstructions. Quantitative reconstructions of both sound-speed and inelastic attenuation are recovered. The data were acquired in the Computed Ultrasound Risk Evaluation (CURE) system, comprising a 20 cm diameter solid-state ultrasound ring array with 256 active, non-beamforming transducers. Waveform tomography is capable of resolving variations in acoustic properties at sub-wavelength scales. This was verified through comparison of the breast phantom reconstructions with x-ray CT results: the final images resolve variations in sound speed with a spatial resolution close to 2 mm. Waveform tomography overcomes the resolution limit of time-of-flight methods caused by finite frequency (diffraction) effects. The method is a combination of time-of-flight tomography, and 2-D acoustic waveform inversion of the transmission arrivals in ultrasonic data. For selected frequency components of the waveforms, a finite-difference simulation of the visco-acoustic wave equation is used to compute synthetic data in the current model, and the data residuals are formed by subtraction. The residuals are used in an iterative, gradient-based scheme to update the sound-speed and attenuation model to produce a reduced misfit to the data. Computational efficiency is achieved through the use of time-reversal of the data residuals to construct the model updates. Lower frequencies are used first, to establish the long wavelength components of the image, and higher frequencies are introduced later to provide increased resolution.

  8. Efficiency in the transmission of information through digital imaging and communications in medicine using security mechanisms: tests with DISCUS.

    PubMed

    Pérez, Juan L; Servia, Francisco; Mato, Virginia; Vázquez, José Manuel; Pereira, Javier; Dorado, Julian; Díaz, Juan; Novoa, Francisco J; Pazos, Alejandro

    2010-06-01

    This article describes our experience in using a Picture Archiving and Communications System, known as Secure Medical Image Information System, based on the Digital Imaging and Communications in Medicine standard that supports the use of secure transmissions, from the point of view of how the use of secure sending methods has an effect on the efficiency in the transmission according to the network employed, to quantify productivity loss due to the encryption, the secure transmission, and the subsequent decryption. To test the Secure Medical Image Information System, a series of medical data transmission were conducted from A Coruña (Spain) to the Virgen de las Nieves Hospital, situated 1,000 km away, in Granada (Spain). Once we studied the networking infrastructure of the hospital and its available image generation devices, we subsequently carried out a series of measurements during the transmissions, which allowed us to analyze the behavior of the system with different network schemes and connection speeds. The results obtained from these investigations demonstrate that the impact of secure data-sending methods on the productivity of the system is higher in networks whose capacities are higher and it is not affected by sending data during different periods in the day. In this regard, the presented approach may serve as a model for other small, and possibly mid-sized, medical centers.

  9. Chemical Reactions of Molecules Promoted and Simultaneously Imaged by the Electron Beam in Transmission Electron Microscopy.

    PubMed

    Skowron, Stephen T; Chamberlain, Thomas W; Biskupek, Johannes; Kaiser, Ute; Besley, Elena; Khlobystov, Andrei N

    2017-08-15

    The main objective of this Account is to assess the challenges of transmission electron microscopy (TEM) of molecules, based on over 15 years of our work in this field, and to outline the opportunities in studying chemical reactions under the electron beam (e-beam). During TEM imaging of an individual molecule adsorbed on an atomically thin substrate, such as graphene or a carbon nanotube, the e-beam transfers kinetic energy to atoms of the molecule, displacing them from equilibrium positions. Impact of the e-beam triggers bond dissociation and various chemical reactions which can be imaged concurrently with their activation by the e-beam and can be presented as stop-frame movies. This experimental approach, which we term ChemTEM, harnesses energy transferred from the e-beam to the molecule via direct interactions with the atomic nuclei, enabling accurate predictions of bond dissociation events and control of the type and rate of chemical reactions. Elemental composition and structure of the reactant molecules as well as the operating conditions of TEM (particularly the energy of the e-beam) determine the product formed in ChemTEM processes, while the e-beam dose rate controls the reaction rate. Because the e-beam of TEM acts simultaneously as a source of energy for the reaction and as an imaging tool monitoring the same reaction, ChemTEM reveals atomic-level chemical information, such as pathways of reactions imaged for individual molecules, step-by-step and in real time; structures of illusive reaction intermediates; and direct comparison of catalytic activity of different transition metals filmed with atomic resolution. Chemical transformations in ChemTEM often lead to previously unforeseen products, demonstrating the potential of this method to become not only an analytical tool for studying reactions, but also a powerful instrument for discovery of materials that can be synthesized on preparative scale.

  10. Altered effect of dopamine transporter 3'UTR VNTR genotype on prefrontal and striatal function in schizophrenia.

    PubMed

    Prata, Diana P; Mechelli, Andrea; Picchioni, Marco M; Fu, Cynthia H Y; Toulopoulou, Timothea; Bramon, Elvira; Walshe, Muriel; Murray, Robin M; Collier, David A; McGuire, Philip

    2009-11-01

    The dopamine transporter plays a key role in the regulation of central dopaminergic transmission, which modulates cognitive processing. Disrupted dopamine function and impaired executive processing are robust features of schizophrenia. To examine the effect of a polymorphism in the dopamine transporter gene (the variable number of tandem repeats in the 3' untranslated region) on brain function during executive processing in healthy volunteers and patients with schizophrenia. We hypothesized that this variation would have a different effect on prefrontal and striatal activation in schizophrenia, reflecting altered dopamine function. Case-control study. Psychiatric research center. Eighty-five subjects, comprising 44 healthy volunteers (18 who were 9-repeat carriers and 26 who were 10-repeat homozygotes) and 41 patients with DSM-IV schizophrenia (18 who were 9-repeat carriers and 23 who were 10-repeat homozygotes). Regional brain activation during word generation relative to repetition in an overt verbal fluency task measured by functional magnetic resonance imaging. Main effects of genotype and diagnosis on activation and their interaction were estimated with analysis of variance in SPM5. Irrespective of diagnosis, the 10-repeat allele was associated with greater activation than the 9-repeat allele in the left anterior insula and right caudate nucleus. Trends for the same effect in the right insula and for greater deactivation in the rostral anterior cingulate cortex were also detected. There were diagnosis x genotype interactions in the left middle frontal gyrus and left nucleus accumbens, where the 9-repeat allele was associated with greater activation than the 10-repeat allele in patients but not controls. Insular, cingulate, and striatal function during an executive task is normally modulated by variation in the dopamine transporter gene. Its effect on activation in the dorsolateral prefrontal cortex and ventral striatum is altered in patients with schizophrenia

  11. Insulin resistance impairs nigrostriatal dopamine function.

    PubMed

    Morris, J K; Bomhoff, G L; Gorres, B K; Davis, V A; Kim, J; Lee, P-P; Brooks, W M; Gerhardt, G A; Geiger, P C; Stanford, J A

    2011-09-01

    Clinical studies have indicated a link between Parkinson's disease (PD) and Type 2 Diabetes. Although preclinical studies have examined the effect of high-fat feeding on dopamine function in brain reward pathways, the effect of diet on neurotransmission in the nigrostriatal pathway, which is affected in PD and parkinsonism, is less clear. We hypothesized that a high-fat diet, which models early-stage Type 2 Diabetes, would disrupt nigrostriatal dopamine function in young adult Fischer 344 rats. Rats were fed a high fat diet (60% calories from fat) or a normal chow diet for 12 weeks. High fat-fed animals were insulin resistant compared to chow-fed controls. Potassium-evoked dopamine release and dopamine clearance were measured in the striatum using in vivo electrochemistry. Dopamine release was attenuated and dopamine clearance was diminished in the high-fat diet group compared to chow-fed rats. Magnetic resonance imaging indicated increased iron deposition in the substantia nigra of the high fat group. This finding was supported by alterations in the expression of several proteins involved in iron metabolism in the substantia nigra in this group compared to chow-fed animals. The diet-induced systemic and basal ganglia-specific changes may play a role in the observed impairment of nigrostriatal dopamine function. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Penetration depth in tissue-mimicking phantoms from hyperspectral imaging in SWIR in transmission and reflection geometry

    NASA Astrophysics Data System (ADS)

    Zhang, Hairong; Salo, Daniel; Kim, David M.; Berezin, Mikhail Y.

    2016-03-01

    We explored the depth penetration in tissue-mimicking intralipid-based phantoms in SWIR (800-1650 nm) using a hyperspectral imaging system composed from a 2D CCD camera coupled to a microscope. Hyperspectral images in transmission and reflection geometries were collected with a spectral resolution of 5.27 nm and a total acquisition time of 3 minutes or less that minimized artifacts from sample drying. Michelson spatial contrast was used as a metric to evaluate light penetration. Results from both transmission and reflection geometries consistently revealed the highest spatial contrast in the wavelength range of 1300 to 1350 nm.

  13. Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging

    NASA Astrophysics Data System (ADS)

    Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-03-01

    The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system.

  14. Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging.

    PubMed

    Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-03-30

    The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system.

  15. Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging

    PubMed Central

    Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-01-01

    The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system. PMID:27025907

  16. Genetic variation and dopamine D2 receptor availability: a systematic review and meta-analysis of human in vivo molecular imaging studies

    PubMed Central

    Gluskin, B S; Mickey, B J

    2016-01-01

    The D2 dopamine receptor mediates neuropsychiatric symptoms and is a target of pharmacotherapy. Inter-individual variation of D2 receptor density is thought to influence disease risk and pharmacological response. Numerous molecular imaging studies have tested whether common genetic variants influence D2 receptor binding potential (BP) in humans, but demonstration of robust effects has been limited by small sample sizes. We performed a systematic search of published human in vivo molecular imaging studies to estimate effect sizes of common genetic variants on striatal D2 receptor BP. We identified 21 studies examining 19 variants in 11 genes. The most commonly studied variant was a single-nucleotide polymorphism in ANKK1 (rs1800497, Glu713Lys, also called ‘Taq1A'). Fixed- and random-effects meta-analyses of this variant (5 studies, 194 subjects total) revealed that striatal BP was significantly and robustly lower among carriers of the minor allele (Lys713) relative to major allele homozygotes. The weighted standardized mean difference was −0.57 under the fixed-effect model (95% confidence interval=(−0.87, −0.27), P=0.0002). The normal relationship between rs1800497 and BP was not apparent among subjects with neuropsychiatric diseases. Significant associations with baseline striatal D2 receptor BP have been reported for four DRD2 variants (rs1079597, rs1076560, rs6277 and rs1799732) and a PER2 repeat polymorphism, but none have yet been tested in more than two independent samples. Our findings resolve apparent discrepancies in the literature and establish that rs1800497 robustly influences striatal D2 receptor availability. This genetic variant is likely to contribute to important individual differences in human striatal function, neuropsychiatric disease risk and pharmacological response. PMID:26926883

  17. Combined use of dopamine transporter imaging (DAT-SPECT) and (123)I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy for diagnosing Parkinson's disease.

    PubMed

    Yoshii, Fumihito; Ryo, Masafuchi; Baba, Yasuhiko; Koide, Takashi; Hashimoto, Jun

    2017-04-15

    To examine whether combined use of (123)I-FP-CIT dopamine transporter single photon emission computed tomography (DAT-SPECT) and (123)I-MIBG myocardial scintigraphy (MIBG) is superior to either modality alone for diagnosing Parkinson's disease (PD). Patients with probable PD (n=120) who underwent both DAT-SPECT and MIBG myocardial scintigraphy within short intervals were enrolled. Specific binding ratio (SBR) of DAT-SPECT images and heart-to-mediastinum (H/M) ratio of MIBG images were used as quantitative measures. We classified patients into 4 groups based on SBR value and H/M ratio, or into two groups based on the striatal asymmetry index (SAI) of DAT-SPECT, and examined the clinical features of each group. We also investigated the characteristics of SWEDDs (scans without evidence of dopaminergic deficits) patients. Finally, we calculated the sensitivity and specificity of each method and the combined method. SBR value was significantly correlated with both early and delayed H/M ratio values. Motor complications and hallucinations were observed at high frequency in the group with both lower SBR and H/M ratio, and hallucinations appeared in the group with larger SAI. SWEDDs were observed 8.3% of patients. The sensitivity and specificity of diagnosing PD were 91.7% and 15.0% by SBR of DAT-SPECT, 78.3% and 90.0% by H/M ratio of MIBG uptake, and 74.2% and 95.0% by the combined modalities, respectively. Combined use of DAT-SPECT and MIBG myocardial scintigraphy increases the specificity of PD diagnosis, and is helpful for understanding the clinical features or predicting complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let's seek the balance.

    PubMed

    Rubí, Blanca; Maechler, Pierre

    2010-12-01

    In peripheral tissues, dopamine is released from neuronal cells and is synthesized within specific parenchyma. Dopamine released from sympathetic nerves predominantly contributes to plasma dopamine levels. Despite growing evidence for peripheral source and action of dopamine and the widespread expression of dopamine receptors in peripheral tissues, most studies have focused on functions of dopamine in the central nervous system. Symptoms of several brain disorders, including schizophrenia, Parkinson's disease, attention-deficit hyperactivity disorder, and depression, are alleviated by pharmacological modulation of dopamine transmission. Regarding systemic disorders, the role of dopamine is still poorly understood. Here we describe the pioneering and recent evidence for functional roles of peripheral dopamine. Peripheral and central dopamine systems are sensitive to environmental stress, such as a high-fat diet, suggesting a basis of covariance of peripheral and central actions of dopaminergic agents. Given the extended use of such medications, it is crucial to better understand the integrated effects of dopamine in the whole organism. Delineation of peripheral and central dopaminergic mechanisms would facilitate targeted and safer use of drugs modulating dopamine action. We discuss the increasing evidence for a link between peripheral dopamine and obesity. This review also describes the recently uncovered protective actions of dopamine on energy metabolism and proliferation in tumoral cells.

  19. Transmission x-ray microscopy at Diamond-Manchester I13 Imaging Branchline

    SciTech Connect

    Vila-Comamala, Joan Wagner, Ulrich; Bodey, Andrew J.; Garcia-Fernandez, Miryam; Rau, Christoph; Bosgra, Jeroen; David, Christian; Eastwood, David S.

    2016-01-28

    Full-field Transmission X-ray Microscopy (TXM) has been shown to be a powerful method for obtaining quantitative internal structural and chemical information from materials at the nanoscale. The installation of a Full-field TXM station will extend the current microtomographic capabilities of the Diamond-Manchester I13 Imaging Branchline at Diamond Light Source (UK) into the sub-100 nm spatial resolution range using photon energies from 8 to 14 keV. The dedicated Full-field TXM station will be built in-house with contributions of Diamond Light Source support divisions and via collaboration with the X-ray Optics Group of Paul Scherrer Institut (Switzerland) which will develop state-of-the-art diffractive X-ray optical elements. Preliminary results of the I13 Full-field TXM station are shown. The Full-field TXM will become an important Diamond Light Source direct imaging asset for material science, energy science and biology at the nanoscale.

  20. Transmission x-ray microscopy at Diamond-Manchester I13 Imaging Branchline

    NASA Astrophysics Data System (ADS)

    Vila-Comamala, Joan; Bosgra, Jeroen; Eastwood, David S.; Wagner, Ulrich; Bodey, Andrew J.; Garcia-Fernandez, Miryam; David, Christian; Rau, Christoph

    2016-01-01

    Full-field Transmission X-ray Microscopy (TXM) has been shown to be a powerful method for obtaining quantitative internal structural and chemical information from materials at the nanoscale. The installation of a Full-field TXM station will extend the current microtomographic capabilities of the Diamond-Manchester I13 Imaging Branchline at Diamond Light Source (UK) into the sub-100 nm spatial resolution range using photon energies from 8 to 14 keV. The dedicated Full-field TXM station will be built in-house with contributions of Diamond Light Source support divisions and via collaboration with the X-ray Optics Group of Paul Scherrer Institut (Switzerland) which will develop state-of-the-art diffractive X-ray optical elements. Preliminary results of the I13 Full-field TXM station are shown. The Full-field TXM will become an important Diamond Light Source direct imaging asset for material science, energy science and biology at the nanoscale.

  1. Penalized weighted least-squares image reconstruction for dual energy X-ray transmission tomography.

    PubMed

    Sukovic, P; Clinthorne, N H

    2000-11-01

    We present a dual-energy (DE) transmission computed tomography (CT) reconstruction method. It is statistically motivated and features nonnegativity constraints in the density domain. A penalized weighted least squares (PWLS) objective function has been chosen to handle the non-Poisson noise added by amorphous silicon (aSi:H) detectors. A Gauss-Seidel algorithm has been used to minimize the objective function. The behavior of the method in terms of bias/standard deviation tradeoff has been compared to that of a DE method that is based on filtered back projection (FBP). The advantages of the DE PWLS method are largest for high noise and/or low flux cases. Qualitative results suggest this as well. Also, the reconstructed images of an object with opaque regions are presented. Possible applications of the method are: attenuation correction for positron emission tomography (PET) images, various quantitative computed tomography (QCT) methods such as bone mineral densitometry (BMD), and the removal of metal streak artifacts.

  2. A microstrip transmission line volume coil for human head MR imaging at 4T.

    PubMed

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2003-04-01

    A high-frequency RF volume coil based on the use of microstrip transmission line (MTL) has been developed for in vivo 1H MR applications on the human head at 4T. This coil is characterized by major advantages: (i) completely distributed coil circuit, (ii) high-quality factor (Q), (iii) simple coil structure, and (iv) better sensitivity and less signal-intensity variation in the MR image of the human head compared with an RF shielded birdcage coil of similar coil size. The proposed MTL volume coil does not require additional RF shielding for preventing Q degradation from radiation losses due to the unique MTL structure; thus, it provides a maximal useable space inside the volume coil when compared with most volume coils available at high fields with the same overall coil size. The intrinsic B(1) distribution of the MTL volume coil effectively compensates for the dielectric resonance effect at 4T and improves the signal homogeneity in human head MR images in the transaxial planes. The results of this study demonstrate that the MTL volume coil design provides an efficient and simple solution to RF volume coil design for human MR studies at high fields.

  3. Progressive significance map and its application to error-resilient image transmission.

    PubMed

    Hu, Yang; Pearlman, William A; Li, Xin

    2012-07-01

    Set partition coding (SPC) has shown tremendous success in image compression. Despite its popularity, the lack of error resilience remains a significant challenge to the transmission of images in error-prone environments. In this paper, we propose a novel data representation called the progressive significance map (prog-sig-map) for error-resilient SPC. It structures the significance map (sig-map) into two parts: a high-level summation sig-map and a low-level complementary sig-map (comp-sig-map). Such a structured representation of the sig-map allows us to improve its error-resilient property at the price of only a slight sacrifice in compression efficiency. For example, we have found that a fixed-length coding of the comp-sig-map in the prog-sig-map renders 64% of the coded bitstream insensitive to bit errors, compared with 40% with that of the conventional sig-map. Simulation results have shown that the prog-sig-map can achieve highly competitive rate-distortion performance for binary symmetric channels while maintaining low computational complexity. Moreover, we note that prog-sig-map is complementary to existing independent packetization and channel-coding-based error-resilient approaches and readily lends itself to other source coding applications such as distributed video coding.

  4. Dislocation imaging for orthopyroxene using an atom-resolved scanning transmission electron microscopy.

    PubMed

    Kumamoto, Akihito; Kogure, Toshihiro; Raimbourg, Hugues; Ikuhara, Yuichi

    2014-11-01

    Dislocations, one-dimensional lattice defects, appear as a microscopic phenomenon while they are formed in silicate minerals by macroscopic dynamics of the earth crust such as shear stress. To understand ductile deformation mechanisms of silicates, atomic structures of the dislocations have been examined using transmission electron microscopy (TEM). Among them, it has been proposed that {100}<001> primary slip system of orthopyroxene (Opx) is dissociated into partial dislocations, and a stacking fault with the clinopyroxene (Cpx) structure is formed between the dislocations. This model, however, has not been determined completely due to the complex structures of silicates. Scanning transmission electron microscopy (STEM) has a potential to determine the structure of dislocations with single-atomic column sensitivity, particularly by using high-angle annular dark field (HAADF) and annular bright field (ABF) imaging with a probing aberration corrector.[1] Furthermore, successive analyses from light microscopy to atom-resolved STEM have been achieved by focused ion beam (FIB) sampling techniques.[2] In this study, we examined dislocation arrays at a low-angle grain boundary of ∼1° rotation about the b-axis in natural deformed Opx using a simultaneous acquisition of HAADF/ABF (JEM-ARM200F, JEOL) equipped with 100 mm2 silicon drift detector (SDD) for energy dispersive X-ray spectroscopy (EDS). Figure 1 shows averaged STEM images viewed along the b- axis of Opx extracted from repeating units. HAADF provides the cation-site arrangement, and ABF distinguishes the difference of slightly rotated SiO4 tetrahedron around the a- axis. This is useful to distinguish the change of stacking sequence between the partial dislocations. Two types of stacking faults with Cpx and protopyroxene (Ppx) structures were identified between three partial dislocations. Furthermore, Ca accumulation in M2 (Fe) site around the stacking faults was detected by STEM-EDS. Interestingly, Ca is

  5. Pathway-Specific Dopamine Abnormalities in Schizophrenia.

    PubMed

    Weinstein, Jodi J; Chohan, Muhammad O; Slifstein, Mark; Kegeles, Lawrence S; Moore, Holly; Abi-Dargham, Anissa

    2017-01-01

    In light of the clinical evidence implicating dopamine in schizophrenia and the prominent hypotheses put forth regarding alterations in dopaminergic transmission in this disease, molecular imaging has been used to examine multiple aspects of the dopaminergic system. We review the imaging methods used and compare the findings across the different molecular targets. Findings have converged to suggest early dysregulation in the striatum, especially in the rostral caudate, manifesting as excess synthesis and release. Recent data showed deficit extending to most cortical regions and even to other extrastriatal subcortical regions not previously considered to be "hypodopaminergic" in schizophrenia. These findings yield a new topography for the dopaminergic dysregulation in schizophrenia. We discuss the dopaminergic innervation within the individual projection fields to provide a topographical map of this dual dysregulation and explore potential cellular and circuit-based mechanisms for brain region-dependent alterations in dopaminergic parameters. This refined knowledge is essential to better guide translational studies and efforts in early drug development. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Salvinorin A Regulates Dopamine Transporter Function Via A Kappa Opioid Receptor and ERK1/2-Dependent Mechanism

    PubMed Central

    Kivell, Bronwyn; Uzelac, Zeljko; Sundaramurthy, Santhanalakshmi; Rajamanickam, Jeyaganesh; Ewald, Amy; Chefer, Vladimir; Jaligam, Vanaja; Bolan, Elizabeth; Simonson, Bridget; Annamalai, Balasubramaniam; Mannangatti, Padmanabhan; Prisinzano, Thomas; Gomes, Ivone; Devi, Lakshmi A.; Jayanthi, Lankupalle D.; Sitte, Harald H.; Ramamoorthy, Sammanda; Shippenberg, Toni S.

    2014-01-01

    Salvinorin A (SalA), a selective κ-opioid receptor (KOR) agonist, produces dysphoria and pro-depressant like effects. These actions have been attributed to inhibition of striatal dopamine release. The dopamine transporter (DAT) regulates dopamine transmission via uptake of released neurotransmitter. KORs are apposed to DAT in dopamine nerve terminals suggesting an additional target by which SalA modulates dopamine transmission. SalA produced a concentration-dependent, nor-binaltorphimine (BNI)- and pertussis toxin-sensitive increase of ASP+ accumulation in EM4 cells coexpressing myc-KOR and YFP-DAT, using live cell imaging and the fluorescent monoamine transporter substrate, trans 4-(4-(dimethylamino)-styryl)-N-methylpyridinium) (ASP+). Other KOR agonists also increased DAT activity that was abolished by BNI pretreatment. While SalA increased DAT activity, SalA treatment decreased serotonin transporter (SERT) activity and had no effect on norepinephrine transporter (NET) activity. In striatum, SalA increased the Vmax for DAT mediated DA transport and DAT surface expression. SalA up-regulation of DAT function is mediated by KOR activation and the KOR-linked extracellular signal regulated kinase-½ (ERK1/2) pathway. Co-immunoprecipitation and BRET studies revealed that DAT and KOR exist in a complex. In live cells, DAT and KOR exhibited robust FRET signals under basal conditions. SalA exposure caused a rapid and significant increase of the FRET signal. This suggests that the formation of KOR and DAT complexes is promoted in response to KOR activation. Together, these data suggest that enhanced DA transport and decreased DA release resulting in decreased dopamine signaling may contribute to the dysphoric and pro-depressant like effects of SalA and other KOR agonists. PMID:25107591

  7. Salvinorin A regulates dopamine transporter function via a kappa opioid receptor and ERK1/2-dependent mechanism.

    PubMed

    Kivell, Bronwyn; Uzelac, Zeljko; Sundaramurthy, Santhanalakshmi; Rajamanickam, Jeyaganesh; Ewald, Amy; Chefer, Vladimir; Jaligam, Vanaja; Bolan, Elizabeth; Simonson, Bridget; Annamalai, Balasubramaniam; Mannangatti, Padmanabhan; Prisinzano, Thomas E; Gomes, Ivone; Devi, Lakshmi A; Jayanthi, Lankupalle D; Sitte, Harald H; Ramamoorthy, Sammanda; Shippenberg, Toni S

    2014-11-01

    Salvinorin A (SalA), a selective κ-opioid receptor (KOR) agonist, produces dysphoria and pro-depressant like effects. These actions have been attributed to inhibition of striatal dopamine release. The dopamine transporter (DAT) regulates dopamine transmission via uptake of released neurotransmitter. KORs are apposed to DAT in dopamine nerve terminals suggesting an additional target by which SalA modulates dopamine transmission. SalA produced a concentration-dependent, nor-binaltorphimine (BNI)- and pertussis toxin-sensitive increase of ASP(+) accumulation in EM4 cells coexpressing myc-KOR and YFP-DAT, using live cell imaging and the fluorescent monoamine transporter substrate, trans 4-(4-(dimethylamino)-styryl)-N-methylpyridinium) (ASP(+)). Other KOR agonists also increased DAT activity that was abolished by BNI pretreatment. While SalA increased DAT activity, SalA treatment decreased serotonin transporter (SERT) activity and had no effect on norepinephrine transporter (NET) activity. In striatum, SalA increased the Vmax for DAT mediated DA transport and DAT surface expression. SalA up-regulation of DAT function is mediated by KOR activation and the KOR-linked extracellular signal regulated kinase-½ (ERK1/2) pathway. Co-immunoprecipitation and BRET studies revealed that DAT and KOR exist in a complex. In live cells, DAT and KOR exhibited robust FRET signals under basal conditions. SalA exposure caused a rapid and significant increase of the FRET signal. This suggests that the formation of KOR and DAT complexes is promoted in response to KOR activation. Together, these data suggest that enhanced DA transport and decreased DA release resulting in decreased dopamine signalling may contribute to the dysphoric and pro-depressant like effects of SalA and other KOR agonists.

  8. Imaging of seasonal affective disorder and seasonality effects on serotonin and dopamine function in the human brain.

    PubMed

    Praschak-Rieder, Nicole; Willeit, Matthaeus

    2012-01-01

    According to current knowledge, disturbances in brain monoamine transmission play a major role in many psychiatric disorders, and many of the radioligands used for investigating these disorders bind to targets within the brain monoamine systems. However, a phylogenetically ancient and prevailing function of monoamines is to mediate the adaptation of organisms and cells to rhythmical changes in light conditions, and to other environmental rhythms, such as changes in temperature, or the availability of energy resources throughout the seasons. The physiological systems mediating these changes are highly conserved throughout species, including humans. Here we review the literature on seasonal changes in binding of monoaminergic ligands in the human brain. Moreover, we argue for the importance of considering possible effects of season when investigating brain monoamines in healthy subjects and subjects with psychiatric disorders.

  9. Purification of brain D2 dopamine receptor.

    PubMed Central

    Williamson, R A; Worrall, S; Chazot, P L; Strange, P G

    1988-01-01

    D2 dopamine receptors have been extracted from bovine brain using the detergent cholate and purified approximately 20,000-fold by affinity chromatography on haloperidol-sepharose and wheat germ agglutinin-agarose columns. The purified preparation contains D2 dopamine receptors as judged by the pharmacological specificity of [3H]spiperone binding to the purified material. The sp. act. of [3H]spiperone binding in the purified preparation is 2.5 nmol/mg protein. The purified preparation shows a major diffuse band at Mr 95,000 upon SDS-polyacrylamide gel electrophoresis and there is evidence for microheterogeneity either at the protein or glycosylation level. Photoaffinity labelling of D2 dopamine receptors also shows a species of Mr 95,000. The D2 dopamine receptor therefore is a glycoprotein of Mr 95,000. Images PMID:3243275

  10. Multiple description distributed image coding with side information for mobile wireless transmission

    NASA Astrophysics Data System (ADS)

    Wu, Min; Song, Daewon; Chen, Chang Wen

    2005-03-01

    Multiple description coding (MDC) is a source coding technique that involves coding the source information into multiple descriptions, and then transmitting them over different channels in packet network or error-prone wireless environment to achieve graceful degradation if parts of descriptions are lost at the receiver. In this paper, we proposed a multiple description distributed wavelet zero tree image coding system for mobile wireless transmission. We provide two innovations to achieve an excellent error resilient capability. First, when MDC is applied to wavelet subband based image coding, it is possible to introduce correlation between the descriptions in each subband. We consider using such a correlation as well as potentially error corrupted description as side information in the decoding to formulate the MDC decoding as a Wyner Ziv decoding problem. If only part of descriptions is lost, however, their correlation information is still available, the proposed Wyner Ziv decoder can recover the description by using the correlation information and the error corrupted description as side information. Secondly, in each description, single bitstream wavelet zero tree coding is very vulnerable to the channel errors. The first bit error may cause the decoder to discard all subsequent bits whether or not the subsequent bits are correctly received. Therefore, we integrate the multiple description scalar quantization (MDSQ) with the multiple wavelet tree image coding method to reduce error propagation. We first group wavelet coefficients into multiple trees according to parent-child relationship and then code them separately by SPIHT algorithm to form multiple bitstreams. Such decomposition is able to reduce error propagation and therefore improve the error correcting capability of Wyner Ziv decoder. Experimental results show that the proposed scheme not only exhibits an excellent error resilient performance but also demonstrates graceful degradation over the packet

  11. Vibrodissociation of Neurons from Rodent Brain Slices to Study Synaptic Transmission and Image Presynaptic Terminals

    PubMed Central

    Jun, Sang Beom; Cuzon Carlson, Verginia; Ikeda, Stephen; Lovinger, David

    2011-01-01

    Mechanical dissociation of neurons from the central nervous system has the advantage that presynaptic boutons remain attached to the isolated neuron of interest. This allows for examination of synaptic transmission under conditions where the extracellular and postsynaptic intracellular environments can be well controlled. A vibration-based technique without the use of proteases, known as vibrodissociation, is the most popular technique for mechanical isolation. A micropipette, with the tip fire-polished to the shape of a small ball, is placed into a brain slice made from a P1-P21 rodent. The micropipette is vibrated parallel to the slice surface and lowered through the slice thickness resulting in the liberation of isolated neurons. The isolated neurons are ready for study within a few minutes of vibrodissociation. This technique has advantages over the use of primary neuronal cultures, brain slices and enzymatically isolated neurons including: rapid production of viable, relatively mature neurons suitable for electrophysiological and imaging studies; superior control of the extracellular environment free from the influence of neighboring cells; suitability for well-controlled pharmacological experiments using rapid drug application and total cell superfusion; and improved space-clamp in whole-cell recordings relative to neurons in slice or cell culture preparations. This preparation can be used to examine synaptic physiology, pharmacology, modulation and plasticity. Real-time imaging of both pre- and postsynaptic elements in the living cells and boutons is also possible using vibrodissociated neurons. Characterization of the molecular constituents of pre- and postsynaptic elements can also be achieved with immunological and imaging-based approaches. PMID:21654624

  12. Transpost: a novel approach to the display and transmission of 360 degrees-viewable 3D solid images.

    PubMed

    Otsuka, Rieko; Hoshino, Takeshi; Horry, Youichi

    2006-01-01

    Three-dimensional displays are drawing attention as next-generation devices. Some techniques which can reproduce three-dimensional images prepared in advance have already been developed. However, technology for the transmission of 3D moving pictures in real-time is yet to be achieved. In this paper, we present a novel method for 360-degrees viewable 3D displays and the Transpost system in which we implement the method. The basic concept of our system is to project multiple images of the object, taken from different angles, onto a spinning screen. The key to the method is projection of the images onto a directionally reflective screen with a limited viewing angle. The images are reconstructed to give the viewer a three-dimensional image of the object displayed on the screen. The display system can present images of computer-graphics pictures, live pictures, and movies. Furthermore, the reverse optical process of that in the display system can be used to record images of the subject from multiple directions. The images can then be transmitted to the display in real-time. We have developed prototypes of a 3D display and a 3D human-image transmission system. Our preliminary working prototypes demonstrate new possibilities of expression and forms of communication.

  13. Kinetic modeling of [{sup 99m}Tc]TRODAT-1: A novel compound for imaging the dopamine transporter

    SciTech Connect

    Kushner, S.A.; McElgin, W.T.; Kung, M.P.

    1997-05-01

    The purpose of this study was to characterize the in vivo binding potential and kinetic rate constants in baboons. A series of three SPECT scans were performed in each of two baboons with a mean bolus injection of 717 {+-} 78 Mbq (19.38 {+-} 2.12 mCi). Dynamic images of the brain were acquired over four hours using a triple-headed camera equipped with fan-beam collimators. Arterial and venous blood compartments were frequently sampled using a peristaltic pump throughout the duration of the study. SPECT images were reconstructed and corrected for attenuation. Regions of interest (ROIs) were placed on the corresponding MRI reference scan to which each functional image was coregistered. Arterial and venous blood samples were corrected for metabolism and converted to units of concentration in the reconstruction domain using experimentally measured calibration factors for the camera. Using analytical solutions to the three-compartment model with the Levenberg-Marquardt minimization technique, each study was individually fit to a kinetic parameter vector. Additionally within each subject the three corresponding studies were fit to a single parameter vector by constraining the binding potential, distribution volume, and dissociation rate constant to improve the identifiability of the convergent solutions. A Monte Carlo simulator provided covariance matrix estimates for parameter vectors. The results showed that [{sup 99m}Tc]TRODAT-1 localized in the basal ganglia. SPECT image analysis of the caudate yielded binding potential values of 2.16 and 2.91 in the first baboon and 3.30, 2.70, and 2.89 in the second baboon. The respective binding potential values for these subjects using the simultaneous fitting technique yielded values of 2.30 and 1.95. Similar values were obtained for the putamen.

  14. Reflection electron energy-loss spectroscopy and imaging for surface studies in transmission electron microscopes.

    PubMed

    Wang, Z L; Bentley, J

    1992-02-15

    A review is given on the techniques and applications of high-energy reflection electron energy-loss spectroscopy (REELS) and reflection electron microscopy (REM) for surface studies in scanning transmission electron microscopes (STEM) and conventional transmission electron microscopes (TEM). A diffraction method is introduced to identify a surface orientation in the geometry of REM. The surface dielectric response theory is presented and applied for studying alpha-alumina surfaces. Domains of the alpha-alumina (012) surface initially terminated with oxygen can be reduced by an intense electron beam to produce Al metal; the resistance to beam damage of surface domains initially terminated with Al+3 ions is attributed to the screening effect of adsorbed oxygen. Surface energy-loss near-edge structure (ELNES), extended energy-loss fine structure (EXELFS), and microanalysis using REELS are illustrated based on the studies of TiO2 and MgO. Effects of surface resonances (or channeling) on the REELS signal-to-background ratio are described. The REELS detection of a monolayer of oxygen adsorption on diamond (111) surfaces is reported. It is shown that phase contrast REM image content can be significantly increased with the use of a field emission gun (FEG). Phase contrast effects close to the core of a screw dislocation are discussed and the associated Fresnel fringes around a surface step are observed. Finally, an in situ REM experiment is described for studying atomic desorption and diffusion processes on alpha-alumina surfaces at temperatures of 1,300-1,400 degrees C.

  15. Dopamine agonists for cocaine dependence.

    PubMed

    Soares, B G; Lima, M S; Reisser, A A; Farrell, M

    2001-01-01

    Cocaine is a major drug of abuse. Cocaine dependence is a common and serious condition, which has become nowadays a substantial public health problem. There is a wide and well documented range of consequences associated to chronic use of this drug, such as medical, psychological and social problems, including the spread of infectious diseases (e.g. AIDS, hepatitis and tuberculosis), crime, violence and neonatal drug exposure. Therapeutic management of the cocaine addicts includes an initial period of abstinence from the drug. During this phase the subjects may experience, besides the intense craving for cocaine, symptoms such as depression, fatigue, irritability, anorexia, and sleep disturbances. It was demonstrated that the acute use of cocaine may enhance dopamine transmission and chronically it decreases dopamine concentrations in the brain. Pharmacological treatment that affects dopamine could theoretically reduce these symptoms and contribute to a more successful therapeutic approach. To evaluate the efficacy and acceptability of dopamine agonists for treating cocaine dependence. We searched: The Cochrane Controlled Trials Register (Cochrane Library, issue 4, 2000), MEDLINE (from 1966 - 2000), EMBASE (from 1980 - 2000), LILACS (from 1982 - 2000), PsycLIT (from 1974 - 2000), Biological Abstracts (1982 to 2000). Reference searching; personal communication; conference abstracts; unpublished trials from pharmaceutical industry; book chapters on treatment of cocaine dependence. The inclusion criteria for all randomised controlled trials were that they should focus on the use of dopamine agonists on the treatment of cocaine dependence. Trials including patients with additional diagnosis such as opiate dependence were also eligible. The reviewers extracted the data independently and Relative Risks, weighted mean difference and number needed to treat were estimated. The reviewers assumed that people who died or dropped out had no improvement and tested the sensitivity

  16. Dopamine agonists for cocaine dependence.

    PubMed

    Soares, B G O; Lima, M S; Reisser, A A P; Farrell, M

    2003-01-01

    Cocaine dependence is a common and serious condition, which has become nowadays a substantial public health problem. There is a wide and well documented range of consequences associated to chronic use of this drug, such as medical, psychological and social problems, including the spread of infectious diseases (e.g. AIDS, hepatitis and tuberculosis), crime, violence and neonatal drug exposure. Therapeutic management of the cocaine addicts includes an initial period of abstinence from the drug. During this phase the subjects may experience, besides the intense craving for cocaine, symptoms such as depression, fatigue, irritability, anorexia, and sleep disturbances. It was demonstrated that the acute use of cocaine may enhance dopamine transmission and chronically it decreases dopamine concentrations in the brain. Pharmacological treatment that affects dopamine could theoretically reduce these symptoms and contribute to a more successful therapeutic approach. To evaluate the efficacy and acceptability of dopamine agonists for treating cocaine dependence. Electronic searches of Cochrane Library, EMBASE, MEDLINE, PsycLIT, Biological Abstracts and LILACS; reference searching; personal communication; conference abstracts; unpublished trials from pharmaceutical industry; book chapters on treatment of cocaine dependence, was performed for the primary version of this review in 2001. Another search of the electronic databases was done in December of 2002 for this update. The specialised register of trials of the Cochrane Group on Drugs and Alcohol was searched until February 2003. The inclusion criteria for all randomised controlled trials were that they should focus on the use of dopamine agonists on the treatment of cocaine dependence. The reviewers extracted the data independently and Relative Risks, weighted mean difference and number needed to treat were estimated. The reviewers assumed that people who died or dropped out had no improvement and tested the sensitivity of

  17. Prefrontal and Striatal Glutamate Differently Relate to Striatal Dopamine: Potential Regulatory Mechanisms of Striatal Presynaptic Dopamine Function?

    PubMed

    Gleich, Tobias; Deserno, Lorenz; Lorenz, Robert Christian; Boehme, Rebecca; Pankow, Anne; Buchert, Ralph; Kühn, Simone; Heinz, Andreas; Schlagenhauf, Florian; Gallinat, Jürgen

    2015-07-01

    Theoretical and animal work has proposed that prefrontal cortex (PFC) glutamate inhibits dopaminergic inputs to the ventral striatum (VS) indirectly, whereas direct VS glutamatergic afferents have been suggested to enhance dopaminergic inputs to the VS. In the present study, we aimed to investigate relationships of glutamate and dopamine measures in prefrontostriatal circuitries of healthy humans. We hypothesized that PFC and VS glutamate, as well as their balance, are differently associated with VS dopamine. Glutamate concentrations in the left lateral PFC and left striatum were assessed using 3-Tesla proton magnetic resonance spectroscopy. Striatal presynaptic dopamine synthesis capacity was measured by fluorine-18-l-dihydroxyphenylalanine (F-18-FDOPA) positron emission tomography. First, a negative relationship was observed between glutamate concentrations in lateral PFC and VS dopamine synthesis capacity (n = 28). Second, a positive relationship was revealed between striatal glutamate and VS dopamine synthesis capacity (n = 26). Additionally, the intraindividual difference between PFC and striatal glutamate concentrations correlated negatively with VS dopamine synthesis capacity (n = 24). The present results indicate an involvement of a balance in PFC and striatal glutamate in the regulation of VS dopamine synthesis capacity. This notion points toward a potential mechanism how VS presynaptic dopamine levels are kept in a fine-tuned range. A disruption of this mechanism may account for alterations in striatal dopamine turnover as observed in mental diseases (e.g., in schizophrenia). The present work demonstrates complementary relationships between prefrontal and striatal glutamate and ventral striatal presynaptic dopamine using human imaging measures: a negative correlation between prefrontal glutamate and presynaptic dopamine and a positive relationship between striatal glutamate and presynaptic dopamine are revealed. The results may reflect a regulatory role

  18. Site-isolated iridium complexes on MgO powder: individual Ir atoms imaged by scanning transmission electron microscopy.

    PubMed

    Uzun, Alper; Ortalan, Volkan; Browning, Nigel D; Gates, Bruce C

    2009-08-21

    Iridium complexes were synthesized on MgO powder by adsorption of Ir(C(2)H(4))(2)(acac) [acac = acetonylacetonate]; images determined by aberration-corrected scanning transmission electron microscopy show individual Ir atoms, demonstrating that the supported complexes were site-isolated.

  19. Devices useful for vacuum ultraviolet beam characterization including a movable stage with a transmission grating and image detector

    DOEpatents

    Gessner, Oliver; Kornilov, Oleg A; Wilcox, Russell B

    2013-10-29

    The invention provides for a device comprising an apparatus comprising (a) a transmission grating capable of diffracting a photon beam into a diffracted photon output, and (b) an image detector capable of detecting the diffracted photon output. The device is useful for measuring the spatial profile and diffraction pattern of a photon beam, such as a vacuum ultraviolet (VUV) beam.

  20. Transmission of hologram data and 3D image reconstruction using white LED light

    NASA Astrophysics Data System (ADS)

    Sato, Koki; Tozuka, Masataka; Takano, Kunihiko; Ohki, Makoto

    2012-03-01

    Transmission of hologram is very important to realizing the holographic 3D TV. Transmission of Computer Generated Hologram(CGH) data using SSTV wire-less method was tried before and one frame with 76.8k bit data transmitted by 2kbbs was reported1-2). In this research we consider about more high speed transmission and more high resolution hologram data transmission and reconstruction using white LED.

  1. Validation of quantitative brain dopamine D2 receptor imaging with a conventional single-head SPET camera.

    PubMed

    Nikkinen, P; Liewendahl, K; Savolainen, S; Launes, J

    1993-08-01

    Phantom measurements were performed with a conventional single-head single-photon emission tomography (SPET) camera in order to validate the relevance of the basal ganglia/frontal cortex iodine-123 iodobenzamide (IBZM) uptake ratios measured in patients. Inside a cylindrical phantom (diameter 22 cm), two cylinders with a diameter of 3.3 cm were inserted. The activity concentrations of the cylinders ranged from 6.0 to 22.6 kBq/ml and the cylinder/background activity ratios varied from 1.4 to 3.8. From reconstructed SPET images the cylinder/background activity ratios were calculated using three different regions of interest (ROIs). A linear relationship between the measured activity ratio and the true activity ratio was obtained. In patient studies, basal ganglia/frontal cortex IBZM uptake ratios determined from the reconstructed slices using attenuation correction prior to reconstruction were 1.30 +/- 0.03 in idiopathic Parkinson's disease (n = 9), 1.33 +/- 0.09 in infantile and juvenile neuronal ceroid lipofuscinosis (n = 7) and 1.34 +/- 0.05 in narcolepsy (n = 8). Patients with Huntington's disease had significantly lower ratios (1.09 +/- 0.04, n = 5). The corrected basal ganglia/frontal cortex ratios, determined using linear regression, were about 80% higher. The use of dural-window scatter correction increased the measured ratios by about 10%. Although comprehensive correction methods can further improve the resolution in SPET images, the resolution of the SPET system used by us (1.5-2 cm) will determine what is achievable in basal ganglia D2 receptor imaging.

  2. Reduced insulin-receptor mediated modulation of striatal dopamine release by basal insulin as a possible contributing factor to hyperdopaminergia in schizophrenia.

    PubMed

    Caravaggio, Fernando; Hahn, Margaret; Nakajima, Shinichiro; Gerretsen, Philip; Remington, Gary; Graff-Guerrero, Ariel

    2015-10-01

    Schizophrenia is a severe and chronic neuropsychiatric disorder which affects 1% of the world population. Using the brain imaging technique positron emission tomography (PET) it has been demonstrated that persons with schizophrenia have greater dopamine transmission in the striatum compared to healthy controls. However, little progress has been made as to elucidating other biological mechanisms which may account for this hyperdopaminergic state in this disease. Studies in animals have demonstrated that insulin receptors are expressed on midbrain dopamine neurons, and that insulin from the periphery acts on these receptors to modify dopamine transmission in the striatum. This is pertinent given that several lines of evidence suggest that insulin receptor functioning may be abnormal in the brains of persons with schizophrenia. Post-mortem studies have shown that persons with schizophrenia have less than half the number of cortical insulin receptors compared to healthy persons. Moreover, these post-mortem findings are unlikely due to the effects of antipsychotic treatment; studies in cell lines and animals suggest antipsychotics enhance insulin receptor functioning. Further, hyperinsulinemia - even prior to antipsychotic use - seems to be related to less psychotic symptoms in patients with schizophrenia. Collectively, these data suggest that midbrain insulin receptor functioning may be abnormal in persons with schizophrenia, resulting in reduced insulin-mediated regulation of dopamine transmission in the striatum. Such a deficit may account for the hyperdopaminergic state observed in these patients and would help guide the development of novel treatment strategies. We hypothesize that, (i) insulin receptor expression and/or function is reduced in midbrain dopamine neurons in persons with schizophrenia, (ii) basal insulin should reduce dopaminergic transmission in the striatum via these receptors, and (iii) this modulation of dopaminergic transmission by basal insulin

  3. Robust image transmission using a new joint source channel coding algorithm and dual adaptive OFDM

    NASA Astrophysics Data System (ADS)

    Farshchian, Masoud; Cho, Sungdae; Pearlman, William A.

    2004-01-01

    In this paper we consider the problem of robust image coding and packetization for the purpose of communications over slow fading frequency selective channels and channels with a shaped spectrum like those of digital subscribe lines (DSL). Towards this end, a novel and analytically based joint source channel coding (JSCC) algorithm to assign unequal error protection is presented. Under a block budget constraint, the image bitstream is de-multiplexed into two classes with different error responses. The algorithm assigns unequal error protection (UEP) in a way to minimize the expected mean square error (MSE) at the receiver while minimizing the probability of catastrophic failure. In order to minimize the expected mean square error at the receiver, the algorithm assigns unequal protection to the value bit class (VBC) stream. In order to minimizes the probability of catastrophic error which is a characteristic of progressive image coders, the algorithm assigns more protection to the location bit class (LBC) stream than the VBC stream. Besides having the advantage of being analytical and also numerically solvable, the algorithm is based on a new formula developed to estimate the distortion rate (D-R) curve for the VBC portion of SPIHT. The major advantage of our technique is that the worst case instantaneous minimum peak signal to noise ratio (PSNR) does not differ greatly from the averge MSE while this is not the case for the optimal single stream (UEP) system. Although both average PSNR of our method and the optimal single stream UEP are about the same, our scheme does not suffer erratic behavior because we have made the probability of catastrophic error arbitarily small. The coded image is sent via orthogonal frequency division multiplexing (OFDM) which is a known and increasing popular modulation scheme to combat ISI (Inter Symbol Interference) and impulsive noise. Using dual adaptive energy OFDM, we use the minimum energy necessary to send each bit stream at a

  4. Imaging oxytocin × dopamine interactions: an epistasis effect of CD38 and COMT gene variants influences the impact of oxytocin on amygdala activation to social stimuli

    PubMed Central

    Sauer, Carina; Montag, Christian; Reuter, Martin; Kirsch, Peter

    2013-01-01

    Although oxytocin (OT) has become a major target for the investigation of positive social processes, it can be assumed that it exerts its effects in concert with other neurotransmitters. One candidate for such an interaction is dopamine (DA). For both systems, genetic variants have been identified that influence the availability of the particular substance. A variant of the gene coding for the transmembrane protein CD38 (rs3796863), which is engaged in OT secretion, has been associated with OT plasma level. The common catechol-O-methyltransferase (COMT) val158met polymorphism is known to influence COMT activity and therefore the degradation of DA. The present study aimed to investigate OT × DA interactions in the context of an OT challenge study. Hence, we tested the influence of the above mentioned genetic variants and their interaction on the activation of different brain regions (amygdala, VTA, ventral striatum and fusiform gyrus) during the presentation of social stimuli. In a pharmacological cross-over design 55 participants were investigated under OT and placebo (PLA) by means of fMRI. Brain imaging results revealed no significant effects for VTA or ventral striatum. Regarding the fusiform gyrus, we could not find any effects apart from those already described in Sauer et al. (2012). Analyses of amygdala activation resulted in no gene main effect, no gene × substance interaction but a significant gene × gene × substance interaction. While under PLA the effect of CD38 on bilateral amygdala activation to social stimuli was modulated by the COMT genotype, no such epistasis effect was found under OT. Our results provide evidence for an OT × DA interaction during responses to social stimuli. We postulate that the effect of central OT secretion on amygdala response is modulated by the availability of DA. Therefore, for an understanding of the effect of social hormones on social behavior, interactions of OT with other transmitter systems have to be taken into

  5. [Computer-assisted report generation and image transmission in bedside chest x-rays in intensive therapy units].

    PubMed

    Pirronti, T; Meduri, A; Natale, L; Sallustio, G; Salcuni, M; Giannecchini, S

    1991-11-01

    Since a few years ago, in our department the bedside chest X-rays of intensive care patients have been reported by means of a computer program which has also storing function. This computer program is a guideline for the radiologist and is organized in pages having a logical sequence. The program has proved very useful in learning the correct reporting of bedside chest X-rays. The nosographic data of the patients, the ventilatory and the technical data are stored for a better clinico-radiological correlation. The last four reports are displayed on the monitor to better understand the patient's history. The other reports become part of a "historical" archive. Most important is the cooperation with the referring physician: to make the most of it, a system has been implemented which sends the images from the Radiology Department to Intensive Care. The images are filmed with a camera and then digitalized on 1024 x 768 matrix with 16 million colors and 256 gray levels. Each workstation is composed of: AT286 computer with 60-MB hard disk, hardware or the digitalization and compression of images, a high-resolution monitor, an intercommunication system, and a modem. It is possible to zoom on the images, but a close-up on the image with the camera is better for improved spatial resolution. The images are stored on the hard disk: each image requires 3M bytes, but it can be compressed down to 25:1 with no detail loss. The images are transmitted via modem in at least 20 seconds/image. More images can be sent out-line. During transmission, it is possible to talk by the intercommunication system, pointing out structures on the monitor or drawing objects on both sides of the system. In our experience, image quality is good. We are therefore considering extending the network to other Departments and making the transmission of images of pathologic specimens possible. The natural evolution of this system is the teleconsult.

  6. Imaging heterostructured quantum dots in cultured cells with epifluorescence and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Rivera, Erin M.; Trujillo Provencio, Casilda; Steinbrueck, Andrea; Rastogi, Pawan; Dennis, Allison; Hollingsworth, Jennifer; Serrano, Elba

    2011-03-01

    Quantum dots (QDs) are semiconductor nanocrystals with extensive imaging and diagnostic capabilities, including the potential for single molecule tracking. Commercially available QDs offer distinct advantages over organic fluorophores, such as increased photostability and tunable emission spectra, but their cadmium selenide (CdSe) core raises toxicity concerns. For this reason, replacements for CdSe-based QDs have been sought that can offer equivalent optical properties. The spectral range, brightness and stability of InP QDs may comprise such a solution. To this end, LANL/CINT personnel fabricated moderately thick-shell novel InP QDs that retain brightness and emission over time in an aqueous environment. We are interested in evaluating how the composition and surface properties of these novel QDs affect their entry and sequestration within the cell. Here we use epifluorescence and transmission electron microscopy (TEM) to evaluate the structural properties of cultured Xenopus kidney cells (A6; ATCC) that were exposed either to commercially available CdSe QDs (Qtracker® 565, Invitrogen) or to heterostructured InP QDs (LANL). Epifluorescence imaging permitted assessment of the general morphology of cells labeled with fluorescent molecular probes (Alexa Fluor® ® phalloidin; Hoechst 33342), and the prevalence of QD association with cells. In contrast, TEM offered unique advantages for viewing electron dense QDs at higher resolution with regard to subcellular sequestration and compartmentalization. Preliminary results show that in the absence of targeting moieties, InP QDs (200 nM) can passively enter cells and sequester nonspecifically in cytosolic regions whereas commercially available targeted QDs principally associate with membranous structures within the cell. Supported by: NIH 5R01GM084702.

  7. Dopamine Receptors and Neurodegeneration

    PubMed Central

    Rangel-Barajas, Claudia; Coronel, Israel; Florán, Benjamín

    2015-01-01

    Dopamine (DA) is one of the major neurotransmitters and participates in a number of functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors (D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous system (CNS) and play an important role in not only in physiological conditions but also pathological scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis Parkinson’s disease (PD), however DA also participates in other neurodegenerative disorders such as Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of DAergic system has been observed and most of the times, those changes occur as a mechanism of compensation, but in some cases contributes to worsening the alterations. Here we review the changes that occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better understanding of the role of DA receptors in neuropathological conditions is crucial for development of novel therapeutic approaches to treat alterations related to neurodegenerative diseases. PMID:26425390

  8. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    PubMed

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction.

    PubMed

    Krause, F F; Rosenauer, A; Barthel, J; Mayer, J; Urban, K; Dunin-Borkowski, R E; Brown, H G; Forbes, B D; Allen, L J

    2017-10-01

    This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Direct imaging of light elements by annular dark-field aberration-corrected scanning transmission electron microscopy

    SciTech Connect

    Lotnyk, Andriy Poppitz, David; Gerlach, Jürgen W.; Rauschenbach, Bernd

    2014-02-17

    In this report, we show that an annular dark-field detector in an aberration-corrected scanning transmission electron microscope allows the direct observation of light element columns in crystalline lattices. At specific imaging conditions, an enhancement of the intensities of light element columns in the presence of heavy element columns is observed. Experimental results are presented for imaging the nitrogen and carbon atomic columns at the GaN-SiC interface and within the GaN and SiC compounds. The crystal polarity of GaN at the interface is identified. The obtained findings are discussed and are well supported by image simulations.

  11. Joint Source-Channel Coding of JPEG 2000 Image Transmission Over Two-Way Multi-Relay Networks.

    PubMed

    Bi, Chongyuan; Liang, Jie

    2017-05-03

    In this paper, we develop a two-way multi-relay scheme for JPEG 2000 image transmission. We adopt a modified time-division broadcast (TDBC) cooperative protocol, and derive its power allocation and relay selection under a fairness constraint. The symbol error probability of the optimal system configuration is then derived. After that, a joint source-channel coding (JSCC) problem is formulated to find the optimal number of JPEG 2000 quality layers for the image and the number of channel coding packets for each JPEG 2000 codeblock that can minimize the reconstructed image distortion for the two users, subject to a rate constraint. Two fast algorithms based on dynamic programming (DP) and branch and bound (BB) are then developed. Simulation demonstrates that the proposed JSCC scheme achieves better performance and lower complexity than other similar transmission systems.

  12. Refraction corrected transmission ultrasound computed tomography for application in breast imaging

    PubMed Central

    Li, Shengying; Jackowski, Marcel; Dione, Donald P.; Varslot, Trond; Staib, Lawrence H.; Mueller, Klaus

    2010-01-01

    Purpose: We present an iterative framework for CT reconstruction from transmission ultrasound data which accurately and efficiently models the strong refraction effects that occur in our target application: Imaging the female breast. Methods: Our refractive ray tracing framework has its foundation in the fast marching method (FNMM) and it allows an accurate as well as efficient modeling of curved rays. We also describe a novel regularization scheme that yields further significant reconstruction quality improvements. A final contribution is the development of a realistic anthropomorphic digital breast phantom based on the NIH Visible Female data set. Results: Our system is able to resolve very fine details even in the presence of significant noise, and it reconstructs both sound speed and attenuation data. Excellent correspondence with a traditional, but significantly more computationally expensive wave equation solver is achieved. Conclusions: Apart from the accurate modeling of curved rays, decisive factors have also been our regularization scheme and the high-quality interpolation filter we have used. An added benefit of our framework is that it accelerates well on GPUs where we have shown that clinical 3D reconstruction speeds on the order of minutes are possible. PMID:20527557

  13. Cryo transmission x-ray imaging of the malaria parasite, P. falciparum

    PubMed Central

    Hanssen, Eric; Knoechel, Christian; Klonis, Nectarios; Abu-Bakar, Nurhidanatasha; Deed, Samantha; LeGros, Mark; Larabell, Carolyn; Tilley, Leann

    2010-01-01

    Cryo transmission x-ray microscopy in the “water window” of photon energies has recently been introduced as a method that exploits the natural contrast of biological samples. We have used cryo tomographic x-ray imaging of the intraerythrocytic malaria parasite, Plasmodium falciparum, to undertake a survey of the cellular features of this important human pathogen. We examined whole hydrated cells at different stages of growth and defined some of the structures with different x-ray density, including the parasite nucleus, cytoplasm, digestive vacuole and the hemoglobin degradation product, hemozoin. As the parasite develops from an early cup-shaped morphology to a more rounded shape, puncta of hemozoin are formed; these coalesce in the mature trophozoite into a central compartment. In some trophozoite stage parasites we observed invaginations of the parasite surface and, using a selective permeabilization process, showed that these remain connected to the RBC cytoplasm. Some of these invaginations have large openings consistent with phagocytic structures and we observed independent endocytic vesicles in the parasite cytoplasm which appear to play a role in hemoglobin uptake. In schizont stage parasites staggered mitosis was observed and x-ray-dense lipid-rich structures were evident at their apical ends of the developing daughter cells. Treatment of parasites with the antimalarial drug artemisinin appears to affect parasite development and their ability to produce the hemoglobin breakdown product, hemozoin. PMID:20826218

  14. Scatter-to-primary based scatter fractions for transmission-dependent convolution subtraction of SPECT images.

    PubMed

    Larsson, Anne; Johansson, Lennart

    2003-11-21

    In single photon emission computed tomography (SPECT), transmission-dependent convolution subtraction has been shown to be useful when correcting for scattered events. The method is based on convolution subtraction, but includes a matrix of scatter fractions instead of a global scatter fraction. The method can be extended to iteratively improve the scatter estimate, but in this note we show that this requires a modification of the theory to use scatter-to-total scatter fractions for the first iteration only and scatter-to-primary fractions thereafter. To demonstrate this, scatter correction is performed on a Monte Carlo simulated image of a point source of activity in water. The modification of the theory is compared to corrections where the scatter fractions are based on the scatter-to-total ratio, using one and ten iterations. The resulting ratios of subtracted to original counts are compared to the true scatter-to-total ratio of the simulation and the most accurate result is found for our modification of the theory.

  15. STEM imaging of prior austenite grain boundaries[Scanning Transmission Electron Microscopy

    SciTech Connect

    Papworth, A.J.; Williams, D.B.

    2000-03-17

    The problem of temper embrittlement of low-alloy steels used in steam-turbine generators was thought to have been solved by the introduction of clean steels with low levels of certain impurities. However, even these steels exhibit temper embrittlement at turbine operation temperatures >400 C. Initial studies of temper embrittlement of clean steels used Auger electron spectrometry (AES) of fracture surfaces. The failure was found to occur along the prior austenite grain boundaries (PAGBs) where P segregation was found. A better way to relate P segregation to boundary crystallography is to use the analytical scanning transmission electron microscopy (STEM) since, in this technique, the boundaries are not fractured and direct comparison can be made between the boundary chemistry and the crystallography. Clean steels have a very large variation in precipitation densities often making density measurements impossible, diffraction contrast is poor in the STEM image and etching may change the boundary chemistry. This paper presents an alternative simple method to identify the PAGB in a STEM prior to chemical and crystallographic analysis.

  16. Low-energy transmission electron diffraction and imaging of large-area graphene.

    PubMed

    Zhao, Wei; Xia, Bingyu; Lin, Li; Xiao, Xiaoyang; Liu, Peng; Lin, Xiaoyang; Peng, Hailin; Zhu, Yuanmin; Yu, Rong; Lei, Peng; Wang, Jiangtao; Zhang, Lina; Xu, Yong; Zhao, Mingwen; Peng, Lianmao; Li, Qunqing; Duan, Wenhui; Liu, Zhongfan; Fan, Shoushan; Jiang, Kaili

    2017-09-01

    Two-dimensional (2D) materials have attracted interest because of their excellent properties and potential applications. A key step in realizing industrial applications is to synthesize wafer-scale single-crystal samples. Until now, single-crystal samples, such as graphene domains up to the centimeter scale, have been synthesized. However, a new challenge is to efficiently characterize large-area samples. Currently, the crystalline characterization of these samples still relies on selected-area electron diffraction (SAED) or low-energy electron diffraction (LEED), which is more suitable for characterizing very small local regions. This paper presents a highly efficient characterization technique that adopts a low-energy electrostatically focused electron gun and a super-aligned carbon nanotube (SACNT) film sample support. It allows rapid crystalline characterization of large-area graphene through a single photograph of a transmission-diffracted image at a large beam size. Additionally, the low-energy electron beam enables the observation of a unique diffraction pattern of adsorbates on the suspended graphene at room temperature. This work presents a simple and convenient method for characterizing the macroscopic structures of 2D materials, and the instrument we constructed allows the study of the weak interaction with 2D materials.

  17. Low-energy transmission electron diffraction and imaging of large-area graphene

    PubMed Central

    Zhao, Wei; Xia, Bingyu; Lin, Li; Xiao, Xiaoyang; Liu, Peng; Lin, Xiaoyang; Peng, Hailin; Zhu, Yuanmin; Yu, Rong; Lei, Peng; Wang, Jiangtao; Zhang, Lina; Xu, Yong; Zhao, Mingwen; Peng, Lianmao; Li, Qunqing; Duan, Wenhui; Liu, Zhongfan; Fan, Shoushan; Jiang, Kaili

    2017-01-01

    Two-dimensional (2D) materials have attracted interest because of their excellent properties and potential applications. A key step in realizing industrial applications is to synthesize wafer-scale single-crystal samples. Until now, single-crystal samples, such as graphene domains up to the centimeter scale, have been synthesized. However, a new challenge is to efficiently characterize large-area samples. Currently, the crystalline characterization of these samples still relies on selected-area electron diffraction (SAED) or low-energy electron diffraction (LEED), which is more suitable for characterizing very small local regions. This paper presents a highly efficient characterization technique that adopts a low-energy electrostatically focused electron gun and a super-aligned carbon nanotube (SACNT) film sample support. It allows rapid crystalline characterization of large-area graphene through a single photograph of a transmission-diffracted image at a large beam size. Additionally, the low-energy electron beam enables the observation of a unique diffraction pattern of adsorbates on the suspended graphene at room temperature. This work presents a simple and convenient method for characterizing the macroscopic structures of 2D materials, and the instrument we constructed allows the study of the weak interaction with 2D materials. PMID:28879233

  18. Simultaneous reconstruction and edge detection of transmission images in emission computed tomography

    NASA Astrophysics Data System (ADS)

    Lee, Soo-Jin

    2001-12-01

    This paper presents a Bayesian method for reconstructing transmission images, which provide attenuation correction factors for emission scans. In order to preserve the edges that bound anatomical regions, which are important especially for areas of non-uniform attenuation, we use the line-process model as a prior. Our prior model provides edge maps containing the anatomical boundary information as well as edge preserved reconstructions. To optimize our nonconvex objective function, we use our previously developed deterministic annealing algorithm, in which the energy function is approximated by a sequence of smooth functions that converges uniformly to the original energy function. To accelerate the convergence speed of our algorithm, we apply the ordered subsets principle to the deterministic annealing algorithm. We also show how the smoothing parameter can be adjusted to account for the effects of using ordered subsets so that the degree of smoothness can be retained for variations of the number of subsets. To validate the quantitative performance of our algorithm, we use the quantitation of bias/variance over noise trials. Our preliminary results indicate that, in some circumstances, our methods have advantages over conventional methods.

  19. Multivariate statistics applications in scanning transmission electron microscopy X-ray spectrum imaging

    SciTech Connect

    Parish, Chad M

    2011-01-01

    A modern scanning transmission electron microscope (STEM) fitted with an energy dispersive X-ray spectroscopy (EDS) system can quickly and easily produce spectrum image (SI) datasets containing so much information (hundreds to thousands of megabytes) that they cannot be comprehensively interrogated by a human analyst. Therefore, advanced mathematical techniques are needed to glean materials science and engineering insight into the processing-structure-properties relationship of the examined material from the SI data. This review will discuss recent advances in the application of multivariate statistical analysis (MVSA) methods to STEM-EDS SI experiments. In particular, the fundamental mathematics of principal component analysis (PCA) and related methods are reviewed, and advanced methods such as multivariate curve resolution (MCR) are discussed. The applications of PCA and MCR-based techniques to solve difficult materials science problems, such as the analysis of a particle fully embedded in a matrix phase are discussed, as well as confounding effects such as rank deficiency that can confuse the results of MVSA computations. Possible future advances and areas in need of study are also mentioned.

  20. (-)-N-[(11)C]propyl-norapomorphine: a positron-labeled dopamine agonist for PET imaging of D(2) receptors.

    PubMed

    Hwang, D R; Kegeles, L S; Laruelle, M

    2000-08-01

    Imaging neuroreceptors with radiolabeled agonists might provide valuable information on the in vivo agonist affinity states of receptors of interest. We report here the radiosynthesis, biodistribution in rodents, and imaging studies in baboons of [(11)C]-labeled (-)-N-propyl-norapomorphine [(-)-NPA]. (-)-[(11)C]NPA was prepared by reacting norapomorphine with [(11)C]propionyl chloride and a lithium aluminum hydride reduction. [(11)C]Propionyl chloride was prepared by reacting [(11)C]CO(2) with ethylmagnesium bromide, followed by reacting with phthaloyl chloride. The radiochemical yield of (-)-[(11)C]NPA was 2.5% at end of synthesis (EOS), and the synthesis time was 60 min. The specific activity was 1700+/-1900 mCi/micromol ( N=7; ranged 110-5200 mCi/micromol at EOS). Rodent biodistribution studies showed high uptake of [(11)C](-)-NPA in D(2) receptor-rich areas, and the striatum/cerebellum ratios were 1.7, 3.4, and 4.4 at 5 min, 30 min, and 60 min postinjection, respectively. Pretreating the animals with haloperidol (1 mg/kg) decreased the striatum/cerebellum ratio at 30 min postinjection to 1.3. (-)-[(11)C]NPA was also evaluated via baboon positron emission tomography (PET) studies. Under control conditions ( N=4), rapid uptake of the tracer was observed and the striatum/cerebellum ratio reached 2.86+/-0.15 at 45 min postinjection. Following haloperidol pretreatment (0.2 mg/kg IV), the striatum/cerebellum ratio was 1.29 at 45 min postinjection. The result demonstrated the existence of specific binding of this new tracer to the D(2) receptor. To our knowledge, the current finding of a striatum/cerebellum ratio of 2.8 in baboon was the highest reported with a radiolabeled D(2) agonist. (-)-[(11)C]NPA is a promising new D(2) agonist PET tracer for probing D(2) receptors in vivo using PET.

  1. Kinetic brain analysis and whole-body imaging in monkey of [11C]MNPA: a dopamine agonist radioligand.

    PubMed

    Seneca, Nicholas; Skinbjerg, Mette; Zoghbi, Sami S; Liow, Jeih-San; Gladding, Robert L; Hong, Jinsoo; Kannan, Pavitra; Tuan, Edward; Sibley, David R; Halldin, Christer; Pike, Victor W; Innis, Robert B

    2008-09-01

    With a view to future extension of the use of the agonist radioligand [(11)C]MNPA ([O-methyl-(11)C]2-methoxy-N-propylnorapomorphine) from animals to humans, we performed two positron emission tomography (PET) studies in monkeys. First, we assessed the ability to quantify the brain uptake of [(11)C]MNPA with compartmental modeling. Second, we estimated the radiation exposure of [(11)C]MNPA to human subjects based on whole-body imaging in monkeys. Brain PET scans were acquired for 90 min and included concurrent measurements of the plasma concentration of unchanged radioligand. Time-activity data from striatum and cerebellum were quantified with two methods, a reference tissue model and distribution volume. Whole-body PET scans were acquired for 120 min using four bed positions from head to mid thigh. Regions of interest were drawn on compressed planar whole-body images to identify organs with the highest radiation exposures. After injection of [(11)C]MNPA, the highest concentration of radioactivity in brain was in striatum, with lowest levels in cerebellum. Distribution volume was well identified with a two-tissue compartmental model and was quite stable from 60 to 90 min. Whole-body PET scans showed the organ with the highest radiation burden (muSv/MBq) was the urinary bladder wall (26.0), followed by lungs (22.5), gallbladder wall (21.9), and heart wall (16.1). With a 2.4-h voiding interval, the effective dose was 6.4 muSv/MBq (23.5 mrem/mCi). In conclusion, brain uptake of [(11)C]MNPA reflected the density of D(2/3) receptors, quantified relative to serial arterial measurements, and caused moderate to low radiation exposure.

  2. The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving.

    PubMed

    Grace, A A

    2000-08-01

    All drugs of abuse have been shown to act either directly or indirectly by increasing dopamine neurotransmission within the limbic system. Thus, alcohol has been shown to increase dopamine transmission primarily by activating dopamine cell spike activity, whereas psychostimulants increase dopamine transmission by inhibiting the removal of dopamine from the synaptic space after its release. The spike-dependent release of dopamine that is modulated by drugs of abuse to lead to their rewarding actions has been termed the phasic dopamine response. In contrast, with repeated drug administration, dopamine will also accumulate in the extracellular space of the nucleus accumbens in concentrations too low to stimulate postsynaptic receptors, but of sufficient magnitude to activate dopamine release-inhibiting autoreceptors. In addition, the level of extracellular dopamine is proposed to be under the regulatory influence of cortico-accumbens afferents. This steady-state level of extrasynaptic dopamine has been termed the tonic dopamine response. In this paper it is proposed that several of the aspects of drug addiction, withdrawal and craving associated with the continued use of these drugs can be explained on the basis of their effects on tonic versus phasic dopamine system function. Thus, the increase in tonic dopamine levels that occurs with repeated drug administration would serve to oppose phasic dopamine release via stimulation of dopamine terminal autoreceptors, causing the subject to increase drug administration to restore the phasic response. Moreover, after withdrawal from the drugs, exposure to priming doses of drug or to drug-related stimuli are proposed to increase tonic dopamine levels, again triggering drug-seeking behavior in order to restore balance between the tonic and phasic dopamine systems. Therefore, one consequence of continued drug use is that these parameters of dopamine system function that normally serve to keep the system stable will enter into a

  3. How Addictive Drugs Disrupt Presynaptic Dopamine Neurotransmission

    PubMed Central

    Sulzer, David

    2011-01-01

    The fundamental principle that unites addictive drugs appears to be that each enhances synaptic dopamine by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. This occurs via the modulation of synaptic mechanisms involved in learning, including enhanced excitation or disinhibition of dopamine neuron activity, blockade of dopamine reuptake, and altering the state of the presynaptic terminal to enhance evoked over basal transmission. Amphetamines offer an exception to such modulation in that they combine multiple effects to produce non-exocytic stimulation-independent release of neurotransmitter via reverse transport independent from normal presynaptic function. Questions on the molecular actions of addictive drugs, prominently including the actions of alcohol and solvents, remain unresolved, but their ability to co-opt normal presynaptic functions helps to explain why treatment for addiction has been challenging. PMID:21338876

  4. Selective modulation of excitatory and inhibitory microcircuits by dopamine

    NASA Astrophysics Data System (ADS)

    Gao, Wen-Jun; Goldman-Rakic, Patricia S.

    2003-03-01

    Dopamine plays an important role in the working memory functions of the prefrontal cortex, functions that are impacted in age-related memory decline, drug abuse, and a wide variety of disorders, including schizophrenia and Parkinson's disease. We have previously reported that dopamine depresses excitatory transmission between pyramidal neurons in the prefrontal cortex. Here, using paired recordings, we have investigated dopaminergic modulation of excitatory transmission from pyramidal neurons to fast-spiking (FS) interneurons. In contrast to its effect on recurrent excitation, dopamine was without effect on excitatory transmission to FS interneurons. However, dopamine has directly enhanced the excitability of the FS interneurons to the extent that even a single excitatory postsynaptic potential could initiate spiking with great temporal precision in some of them. These results indicate that dopamine's effects on excitatory transmission are target-specific and that the axon terminals of pyramidal neurons can be selectively regulated at the level of individual synapses. Thus, dopamine's net inhibitory effect on cortical function is remarkably constrained by the nature of the microcircuit elements on which it acts.

  5. Vegetation Height Estimation Near Power transmission poles Via satellite Stereo Images using 3D Depth Estimation Algorithms

    NASA Astrophysics Data System (ADS)

    Qayyum, A.; Malik, A. S.; Saad, M. N. M.; Iqbal, M.; Abdullah, F.; Rahseed, W.; Abdullah, T. A. R. B. T.; Ramli, A. Q.

    2015-04-01

    Monitoring vegetation encroachment under overhead high voltage power line is a challenging problem for electricity distribution companies. Absence of proper monitoring could result in damage to the power lines and consequently cause blackout. This will affect electric power supply to industries, businesses, and daily life. Therefore, to avoid the blackouts, it is mandatory to monitor the vegetation/trees near power transmission lines. Unfortunately, the existing approaches are more time consuming and expensive. In this paper, we have proposed a novel approach to monitor the vegetation/trees near or under the power transmission poles using satellite stereo images, which were acquired using Pleiades satellites. The 3D depth of vegetation has been measured near power transmission lines using stereo algorithms. The area of interest scanned by Pleiades satellite sensors is 100 square kilometer. Our dataset covers power transmission poles in a state called Sabah in East Malaysia, encompassing a total of 52 poles in the area of 100 km. We have compared the results of Pleiades satellite stereo images using dynamic programming and Graph-Cut algorithms, consequently comparing satellites' imaging sensors and Depth-estimation Algorithms. Our results show that Graph-Cut Algorithm performs better than dynamic programming (DP) in terms of accuracy and speed.

  6. Mapping Atomic Orbitals with the Transmission Electron Microscope: Images of Defective Graphene Predicted from First-Principles Theory

    NASA Astrophysics Data System (ADS)

    Pardini, Lorenzo; Löffler, Stefan; Biddau, Giulio; Hambach, Ralf; Kaiser, Ute; Draxl, Claudia; Schattschneider, Peter

    2016-07-01

    Transmission electron microscopy has been a promising candidate for mapping atomic orbitals for a long time. Here, we explore its capabilities by a first-principles approach. For the example of defected graphene, exhibiting either an isolated vacancy or a substitutional nitrogen atom, we show that three different kinds of images are to be expected, depending on the orbital character. To judge the feasibility of visualizing orbitals in a real microscope, the effect of the optics' aberrations is simulated. We demonstrate that, by making use of energy filtering, it should indeed be possible to map atomic orbitals in a state-of-the-art transmission electron microscope.

  7. Mapping Atomic Orbitals with the Transmission Electron Microscope: Images of Defective Graphene Predicted from First-Principles Theory.

    PubMed

    Pardini, Lorenzo; Löffler, Stefan; Biddau, Giulio; Hambach, Ralf; Kaiser, Ute; Draxl, Claudia; Schattschneider, Peter

    2016-07-15

    Transmission electron microscopy has been a promising candidate for mapping atomic orbitals for a long time. Here, we explore its capabilities by a first-principles approach. For the example of defected graphene, exhibiting either an isolated vacancy or a substitutional nitrogen atom, we show that three different kinds of images are to be expected, depending on the orbital character. To judge the feasibility of visualizing orbitals in a real microscope, the effect of the optics' aberrations is simulated. We demonstrate that, by making use of energy filtering, it should indeed be possible to map atomic orbitals in a state-of-the-art transmission electron microscope.

  8. [Multiple Dopamine Signals and Their Contributions to Reinforcement Learning].

    PubMed

    Matsumoto, Masayuki

    2016-10-01

    Midbrain dopamine neurons are activated by reward and sensory cue that predicts reward. Their responses resemble reward prediction error that indicates the discrepancy between obtained and expected reward values, which has been thought to play an important role as a teaching signal in reinforcement learning. Indeed, pharmacological blockade of dopamine transmission interferes with reinforcement learning. Recent studies reported, however, that not all dopamine neurons transmit the reward-related signal. They found that a subset of dopamine neurons transmits signals related to non-rewarding, salient experiences such as aversive stimulations and cognitively demanding events. How these signals contribute to animal behavior is not yet well understood. This article reviews recent findings on dopamine signals related to rewarding and non-rewarding experiences, and discusses their contributions to reinforcement learning.

  9. Pre- and post-synaptic dopamine imaging and its relation with frontostriatal cognitive function in Parkinson disease: PET studies with [11C]NNC 112 and [18F]FDOPA.

    PubMed

    Cropley, Vanessa L; Fujita, Masahiro; Bara-Jimenez, William; Brown, Amira K; Zhang, Xiang-Yang; Sangare, Janet; Herscovitch, Peter; Pike, Victor W; Hallett, Mark; Nathan, Pradeep J; Innis, Robert B

    2008-07-15

    Frontostriatal cognitive dysfunction is common in Parkinson disease (PD), but the explanation for its heterogeneous expressions remains unclear. This study examined the dopamine system within the frontostriatal circuitry with positron emission tomography (PET) to investigate pre- and post-synaptic dopamine function in relation to the executive processes in PD. Fifteen non-demented PD patients and 14 healthy controls underwent [(18)F]FDOPA (for dopamine synthesis) and [(11)C]NNC 112 (for D(1) receptors) PET scans and cognitive testing. Parametric images of [(18)F]FDOPA uptake (K(i)) and [(11)C]NNC 112 binding potential (BP(ND)) were calculated using reference tissue models. Group differences in K(i) and BP(ND) were assessed with both volume of interest and statistical parametric mapping, and were correlated with cognitive tests. Measurement of [(18)F]FDOPA uptake in cerebral cortex was questionable because of higher K(i) values in white than adjacent gray matter. These paradoxical results were likely to be caused by violations of the reference tissue model assumption rendering interpretation of cortical [(18)F]FDOPA uptake in PD difficult. We found no regional differences in D(1) receptor density between controls and PD, and no overall differences in frontostriatal performance. Although D(1) receptor density did not relate to frontostriatal cognition, K(i) decreases in the putamen predicted performance on the Wisconsin Card Sorting Test in PD only. These results suggest that striatal dopamine denervation may contribute to some frontostriatal cognitive impairment in moderate stage PD.

  10. Parallel Inhibition of Dopamine Amacrine Cells and Intrinsically Photosensitive Retinal Ganglion Cells in a Non-Image-Forming Visual Circuit of the Mouse Retina.

    PubMed

    Vuong, Helen E; Hardi, Claudia N; Barnes, Steven; Brecha, Nicholas C

    2015-12-02

    An inner retinal microcircuit composed of dopamine (DA)-containing amacrine cells and melanopsin-containing, intrinsically photosensitive retinal ganglion cells (M1 ipRGCs) process information about the duration and intensity of light exposures, mediating light adaptation, circadian entrainment, pupillary reflexes, and other aspects of non-image-forming vision. The neural interaction is reciprocal: M1 ipRGCs excite DA amacrine cells, and these, in turn, feed inhibition back onto M1 ipRGCs. We found that the neuropeptide somatostatin [somatotropin release inhibiting factor (SRIF)] also inhibits the intrinsic light response of M1 ipRGCs and postulated that, to tune the bidirectional interaction of M1 ipRGCs and DA amacrine cells, SRIF amacrine cells would provide inhibitory modulation to both cell types. SRIF amacrine cells, DA amacrine cells, and M1 ipRGCs form numerous contacts. DA amacrine cells and M1 ipRGCs express the SRIF receptor subtypes sst(2A) and sst4 respectively. SRIF modulation of the microcircuit was investigated with targeted patch-clamp recordings of DA amacrine cells in TH-RFP mice and M1 ipRGCs in OPN4-EGFP mice. SRIF increases K(+) currents, decreases Ca(2+) currents, and inhibits spike activity in both cell types, actions reproduced by the selective sst(2A) agonist L-054,264 (N-[(1R)-2-[[[(1S*,3R*)-3-(aminomethyl)cyclohexyl]methyl]amino]-1-(1H-indol-3-ylmethyl)-2-oxoethyl]spiro[1H-indene-1,4'-piperidine]-1'-carboxamide) in DA amacrine cells and the selective sst4 agonist L-803,087 (N(2)-[4-(5,7-difluoro-2-phenyl-1H-indol-3-yl)-1-oxobutyl]-L-arginine methyl ester trifluoroacetate) in M1 ipRGCs. These parallel actions of SRIF may serve to counteract the disinhibition of M1 ipRGCs caused by SRIF inhibition of DA amacrine cells. This allows the actions of SRIF on DA amacrine cells to proceed with adjusting retinal DA levels without destabilizing light responses by M1 ipRGCs, which project to non-image-forming targets in the brain. Copyright © 2015

  11. Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy

    PubMed Central

    Shibata, Naoya; Findlay, Scott D.; Sasaki, Hirokazu; Matsumoto, Takao; Sawada, Hidetaka; Kohno, Yuji; Otomo, Shinya; Minato, Ryuichiro; Ikuhara, Yuichi

    2015-01-01

    Precise measurement and characterization of electrostatic potential structures and the concomitant electric fields at nanodimensions are essential to understand and control the properties of modern materials and devices. However, directly observing and measuring such local electric field information is still a major challenge in microscopy. Here, differential phase contrast imaging in scanning transmission electron microscopy with segmented type detector is used to image a p-n junction in a GaAs compound semiconductor. Differential phase contrast imaging is able to both clearly visualize and quantify the projected, built-in electric field in the p-n junction. The technique is further shown capable of sensitively detecting the electric field variations due to dopant concentration steps within both p-type and n-type regions. Through live differential phase contrast imaging, this technique can potentially be used to image the electromagnetic field structure of new materials and devices even under working conditions. PMID:26067359

  12. Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy.

    PubMed

    Shibata, Naoya; Findlay, Scott D; Sasaki, Hirokazu; Matsumoto, Takao; Sawada, Hidetaka; Kohno, Yuji; Otomo, Shinya; Minato, Ryuichiro; Ikuhara, Yuichi

    2015-06-12

    Precise measurement and characterization of electrostatic potential structures and the concomitant electric fields at nanodimensions are essential to understand and control the properties of modern materials and devices. However, directly observing and measuring such local electric field information is still a major challenge in microscopy. Here, differential phase contrast imaging in scanning transmission electron microscopy with segmented type detector is used to image a p-n junction in a GaAs compound semiconductor. Differential phase contrast imaging is able to both clearly visualize and quantify the projected, built-in electric field in the p-n junction. The technique is further shown capable of sensitively detecting the electric field variations due to dopant concentration steps within both p-type and n-type regions. Through live differential phase contrast imaging, this technique can potentially be used to image the electromagnetic field structure of new materials and devices even under working conditions.

  13. Sex differences in striatal dopamine release in young adults after oral alcohol challenge: a PET imaging study with [11C]raclopride

    PubMed Central

    Urban, Nina B.L.; Kegeles, Lawrence S.; Slifstein, Mark; Xu, Xiaoyan; Martinez, Diana; Sakr, Ehab; Castillo, Felipe; Moadel, Tiffany; O’Malley, Stephanie S.; Krystal, John H.; Abi-Dargham, Anissa

    2010-01-01

    Objectives We used a Positron Emission Tomography (PET) paradigm with the D2/3 radiotracer [11C]raclopride and an alcohol challenge to examine the magnitude of alcohol induced dopamine release and compare it between young men and women. Methods Twenty-one non-alcohol dependent young social drinkers completed two PET scans on separate days following ingestion of a juice mix containing either ethanol (0.75 mg/kg body water) or trace ethanol only. The extent of dopamine released after alcohol was estimated by the percent difference in [11C]raclopride binding potential (ΔBPND) between days. Results Alcohol administration significantly displaced [11C]raclopride in all striatal subregions indicating dopamine release, with the largest effect observed in the ventral striatum. Linear mixed model analysis across all striatal subregions of regional ΔBPND with region of interest as repeated measure showed a highly significant effect of sex (p < 0.001). Ventrostriatal dopamine release in men, but not in women, showed a significant positive correlation to alcohol-induced measures of subjective activation. Furthermore, we found a significant negative correlation between the frequency of maximum alcohol consumption per 24 hours and ventrostriatal ΔBPND (r=0.739, p=0.009) in men. Conclusions This study provides definitive evidence that oral alcohol induces dopamine release in non-alcoholic human subjects, and shows sex differences in the magnitude of this effect. The ability of alcohol to stimulate dopamine release may contribute to its rewarding effects and, thereby, to its abuse liability in humans. Our report further suggests several biological mechanisms that may mediate the difference in vulnerability for alcoholism between men and women. PMID:20678752

  14. Dense sampled transmission matrix for high resolution angular spectrum imaging through turbid media via compressed sensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jang, Hwanchol; Yoon, Changhyeong; Choi, Wonshik; Eom, Tae Joong; Lee, Heung-No

    2016-03-01

    We provide an approach to improve the quality of image reconstruction in wide-field imaging through turbid media (WITM). In WITM, a calibration stage which measures the transmission matrix (TM), the set of responses of turbid medium to a set of plane waves with different incident angles, is preceded to the image recovery. Then, the TM is used for estimation of object image in image recovery stage. In this work, we aim to estimate highly resolved angular spectrum and use it for high quality image reconstruction. To this end, we propose to perform a dense sampling for TM measurement in calibration stage with finer incident angle spacing. In conventional approaches, incident angle spacing is made to be large enough so that the columns in TM are out of memory effect of turbid media. Otherwise, the columns in TM are correlated and the inversion becomes difficult. We employ compressed sensing (CS) for a successful high resolution angular spectrum recovery with dense sampled TM. CS is a relatively new information acquisition and reconstruction framework and has shown to provide superb performance in ill-conditioned inverse problems. We observe that the image quality metrics such as contrast-to-noise ratio and mean squared error are improved and the perceptual image quality is improved with reduced speckle noise in the reconstructed image. This results shows that the WITM performance can be improved only by executing dense sampling in the calibration stage and with an efficient signal reconstruction framework without elaborating the overall optical imaging systems.

  15. Image and diagnosis quality of X-ray image transmission via cell phone camera: a project study evaluating quality and reliability.

    PubMed

    Goost, Hans; Witten, Johannes; Heck, Andreas; Hadizadeh, Dariusch R; Weber, Oliver; Gräff, Ingo; Burger, Christof; Montag, Mareen; Koerfer, Felix; Kabir, Koroush

    2012-01-01

    Developments in telemedicine have not produced any relevant benefits for orthopedics and trauma surgery to date. For the present project study, several parameters were examined during assessment of x-ray images, which had been photographed and transmitted via cell phone. A total of 100 x-ray images of various body regions were photographed with a Nokia cell phone and transmitted via email or MMS. Next, the transmitted photographs were reviewed on a laptop computer by five medical specialists and assessed regarding quality and diagnosis. Due to their poor quality, the transmitted MMS images could not be evaluated and this path of transmission was therefore excluded. Mean size of transmitted x-ray email images was 394 kB (range: 265-590 kB, SD ± 59), average transmission time was 3.29 min ± 8 (CI 95%: 1.7-4.9). Applying a score from 1-10 (very poor - excellent), mean image quality was 5.8. In 83.2 ± 4% (mean value ± SD) of cases (median 82; 80-89%), there was agreement between final diagnosis and assessment by the five medical experts who had received the images. However, there was a markedly low concurrence ratio in the thoracic area and in pediatric injuries. While the rate of accurate diagnosis and indication for surgery was high with a concurrence ratio of 83%, considerable differences existed between the assessed regions, with lowest values for thoracic images. Teleradiology is a cost-effective, rapid method which can be applied wherever wireless cell phone reception is available. In our opinion, this method is in principle suitable for clinical use, enabling the physician on duty to agree on appropriate measures with colleagues located elsewhere via x-ray image transmission on a cell phone.

  16. [Non-destructive detection research for hollow heart of potato based on semi-transmission hyperspectral imaging and SVM].

    PubMed

    Huang, Tao; Li, Xiao-yu; Xu, Meng-ling; Jin, Rui; Ku, Jing; Xu, Sen-miao; Wu, Zhen-zhong

    2015-01-01

    The quality of potato is directly related to their edible value and industrial value. Hollow heart of potato, as a physiological disease occurred inside the tuber, is difficult to be detected. This paper put forward a non-destructive detection method by using semi-transmission hyperspectral imaging with support vector machine (SVM) to detect hollow heart of potato. Compared to reflection and transmission hyperspectral image, semi-transmission hyperspectral image can get clearer image which contains the internal quality information of agricultural products. In this study, 224 potato samples (149 normal samples and 75 hollow samples) were selected as the research object, and semi-transmission hyperspectral image acquisition system was constructed to acquire the hyperspectral images (390-1 040 nn) of the potato samples, and then the average spectrum of region of interest were extracted for spectral characteristics analysis. Normalize was used to preprocess the original spectrum, and prediction model were developed based on SVM using all wave bands, the accurate recognition rate of test set is only 87. 5%. In order to simplify the model competitive.adaptive reweighed sampling algorithm (CARS) and successive projection algorithm (SPA) were utilized to select important variables from the all 520 spectral variables and 8 variables were selected (454, 601, 639, 664, 748, 827, 874 and 936 nm). 94. 64% of the accurate recognition rate of test set was obtained by using the 8 variables to develop SVM model. Parameter optimization algorithms, including artificial fish swarm algorithm (AFSA), genetic algorithm (GA) and grid search algorithm, were used to optimize the SVM model parameters: penalty parameter c and kernel parameter g. After comparative analysis, AFSA, a new bionic optimization algorithm based on the foraging behavior of fish swarm, was proved to get the optimal model parameter (c=10. 659 1, g=0. 349 7), and the recognition accuracy of 10% were obtained for the AFSA

  17. Differentiating Siblings: The Case of Dopamine and Norepinephrine.

    PubMed

    Nakatsuka, Nako; Andrews, Anne M

    2017-02-15

    Monitoring dopamine and norepinephrine (or other structurally similar neurotransmitters) in the same brain region necessitates selective sensing. In this Viewpoint, we highlight electrochemical and optical strategies for advancing simultaneous real-time measurements of dopamine and norepinephrine transmission. The potential for DNA aptamers as recognition elements in the context of field-effect transistor sensing for selective and simultaneous neurotransmitter monitoring in vivo is also discussed.

  18. Transmission-less attenuation estimation from time-of-flight PET histo-images using consistency equations

    PubMed Central

    Li, Yusheng; Defrise, Michel; Metzler, Scott D; Matej, Samuel

    2015-01-01

    In positron emission tomography (PET) imaging, attenuation correction with accurate attenuation estimation is crucial for quantitative patient studies. Recent research showed that the attenuation sinogram can be determined up to a scaling constant utilizing the time-of-flight information. The TOF-PET data can be naturally and efficiently stored in a histo-image without information loss, and the radioactive tracer distribution can be efficiently reconstructed using the DIRECT approaches. In this paper, we explore transmission-less attenuation estimation from TOF-PET histo-images. We first present the TOF-PET histo-image formation and the consistency equations in the histo-image parameterization, then we derive a least-squares solution for estimating the directional derivatives of the attenuation factors from the measured emission histo-images. Finally, we present a fast solver to estimate the attenuation factors from their directional derivatives using the discrete sine transform and fast Fourier transform while considering the boundary conditions. We find that the attenuation histo-images can be uniquely determined from the TOF-PET histo-images by considering boundary conditions. Since the estimate of the attenuation directional derivatives can be inaccurate for LORs tangent to the patient boundary, external sources, e.g., a ring or annulus source, might be needed to give an accurate estimate of the attenuation gradient for such LORs. The attenuation estimation from TOF-PET emission histo-images is demonstrated using simulated 2D TOF-PET data. PMID:26267223

  19. Transmission-less attenuation estimation from time-of-flight PET histo-images using consistency equations

    NASA Astrophysics Data System (ADS)

    Li, Yusheng; Defrise, Michel; Metzler, Scott D.; Matej, Samuel

    2015-08-01

    In positron emission tomography (PET) imaging, attenuation correction with accurate attenuation estimation is crucial for quantitative patient studies. Recent research showed that the attenuation sinogram can be determined up to a scaling constant utilizing the time-of-flight information. The TOF-PET data can be naturally and efficiently stored in a histo-image without information loss, and the radioactive tracer distribution can be efficiently reconstructed using the DIRECT approaches. In this paper, we explore transmission-less attenuation estimation from TOF-PET histo-images. We first present the TOF-PET histo-image formation and the consistency equations in the histo-image parameterization, then we derive a least-squares solution for estimating the directional derivatives of the attenuation factors from the measured emission histo-images. Finally, we present a fast solver to estimate the attenuation factors from their directional derivatives using the discrete sine transform and fast Fourier transform while considering the boundary conditions. We find that the attenuation histo-images can be uniquely determined from the TOF-PET histo-images by considering boundary conditions. Since the estimate of the attenuation directional derivatives can be inaccurate for LORs tangent to the patient boundary, external sources, e.g. a ring or annulus source, might be needed to give an accurate estimate of the attenuation gradient for such LORs. The attenuation estimation from TOF-PET emission histo-images is demonstrated using simulated 2D TOF-PET data.

  20. Peripheral biomarkers of cognitive response to dopamine receptor agonist treatment.

    PubMed

    Ersche, Karen D; Roiser, Jonathan P; Lucas, Mark; Domenici, Enrico; Robbins, Trevor W; Bullmore, Edward T

    2011-04-01

    Using biological markers to objectively measure addiction severity or to identify individuals who might benefit most from pro-cognitive treatment could potentially revolutionize neuropsychopharmacology. We investigated the use of dopamine receptor mRNA levels in circulating blood cells as predictors of cognitive response following dopamine agonist treatment, and as biomarkers of the severity of stimulant drug dependence. We employed a double-blind, placebo-controlled cross-over design, administering a single dose of the selective dopamine D(2/3) receptor agonist pramipexole (0.5 mg) to increase dopamine transmission in one session and a placebo treatment in another session in 36 volunteers. Half the volunteers had a formal diagnosis of stimulant dependence, while half had no psychiatric history. Participants performed neurocognitive tests from the CANTAB battery on both occasions, and stimulant-dependent individuals rated drug craving using visual analog scales. Whole-blood mRNA levels were measured for three dopamine-related genes: DRD3 and DRD4 (dopamine receptors), and catechol-O-methyltransferase (COMT; a dopamine catabolic enzyme). Stimulant users performed worse than healthy volunteers on the cognitive tests. The variation in peripheral dopamine D(3) receptor mRNA expression explained over one quarter of the variation in response to pramipexole on the spatial working memory test across all participants. The severity of stimulant dependence was also significantly associated with peripheral COMT mRNA expression in stimulant users. Peripheral expression of dopamine-related genes may be useful as a biomarker of cognitive response to dopamine agonist drugs and of severity of addiction to dopamine-releasing stimulant drugs.

  1. WE-G-BRA-02: Visual Demonstrations of Medical Physics Concepts of Transmission Imaging for Resident Education.

    PubMed

    Sechopoulos, I

    2012-06-01

    To improve the radiology residents' understanding of medical physics concepts through visualization of physical phenomena. Several medical physics concepts in x-ray transmission imaging are relevant to many radiographic modalities, not only to planar radiography. Therefore, it is important that the diagnostic radiology residents obtain a good understanding of these concepts. However, standard PowerPoint slides or blackboard-based graphical representations are not always effective ways to communicate these novel concepts to the residents. To improve upon the understanding of these concepts, the computer, projector and screen in the lecture room are used as surrogates of an x-ray imaging system. The projector is the source of light (x-rays) with PowerPoint slides defining the pattern emitted (x-ray field) on to the projector screen (detector/monitor). Several different transparencies and acrylic objects are used to demonstrate varied medical physics phenomena relevant to transmission imaging, such as: straight-line travel of electromagnetic radiation; tissue superimposition; object, subject, image and display contrast; linear systems; point spread functions; frequency domain; contrast and modulation transfer functions; quantum and image noise; noise frequency and noise power spectrum; anatomical noise; magnification and geometric unsharpness; inverse square distance relationship; sampling and aliasing; and x-ray scatter. The residents' comprehension and ability to explain these concepts has substantially improved, in addition to their interest in these topics. This was reflected on improved test scores and on anonymous feedback surveys post- lectures. The use of demonstrations that mimic the conditions and physical phenomena found in transmission imaging by taking advantage of the projector and screen together with transparencies and other objects improves the residents' grasp of basic radiographic concepts and promotes live interactions between the residents and the

  2. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy