Science.gov

Sample records for imaging microscopy phosphorescence

  1. Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging.

    PubMed Central

    Marriott, G; Clegg, R M; Arndt-Jovin, D J; Jovin, T M

    1991-01-01

    An optical microscope capable of measuring time resolved luminescence (phosphorescence and delayed fluorescence) images has been developed. The technique employs two phase-locked mechanical choppers and a slow-scan scientific CCD camera attached to a normal fluorescence microscope. The sample is illuminated by a periodic train of light pulses and the image is recorded within a defined time interval after the end of each excitation period. The time resolution discriminates completely against light scattering, reflection, autofluorescence, and extraneous prompt fluorescence, which ordinarily decrease contrast in normal fluorescence microscopy measurements. Time resolved image microscopy produces a high contrast image and particular structures can be emphasized by displaying a new parameter, the ratio of the phosphorescence to fluorescence. Objects differing in luminescence decay rates are easily resolved. The lifetime of the long lived luminescence can be measured at each pixel of the microscope image by analyzing a series of images that differ by a variable time delay. The distribution of luminescence decay rates is displayed directly as an image. Several examples demonstrate the utility of the instrument and the complementarity it offers to conventional fluorescence microscopy. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:1723311

  2. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells

    PubMed Central

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-01-01

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution. PMID:26390855

  3. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells

    NASA Astrophysics Data System (ADS)

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-09-01

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution.

  4. Combined fluorescence and phosphorescence lifetime imaging

    SciTech Connect

    Shcheslavskiy, V. I.; Bukowiecki, R.; Dinter, F.

    2016-02-29

    We present a lifetime imaging technique that simultaneously records the fluorescence and phosphorescence lifetime images in confocal laser scanning systems. It is based on modulating a high-frequency pulsed laser synchronously with the pixel clock of the scanner, and recording the fluorescence and phosphorescence signals by multidimensional time-correlated single photon counting board. We demonstrate our technique on the recording of the fluorescence/phosphorescence lifetime images of human embryonic kidney cells at different environmental conditions.

  5. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  6. Photon counting phosphorescence lifetime imaging with TimepixCam

    DOE PAGES

    Hirvonen, Liisa M.; Fisher-Levine, Merlin; Suhling, Klaus; ...

    2017-01-12

    TimepixCam is a novel fast optical imager based on an optimized silicon pixel sensor with a thin entrance window, and read out by a Timepix ASIC. The 256 x 256 pixel sensor has a time resolution of 15 ns at a sustained frame rate of 10 Hz. We used this sensor in combination with an image intensifier for wide-field time-correlated single photon counting (TCSPC) imaging. We have characterised the photon detection capabilities of this detector system, and employed it on a wide-field epifluorescence microscope to map phosphorescence decays of various iridium complexes with lifetimes of about 1 μs in 200more » μm diameter polystyrene beads.« less

  7. Photon counting phosphorescence lifetime imaging with TimepixCam

    NASA Astrophysics Data System (ADS)

    Hirvonen, Liisa M.; Fisher-Levine, Merlin; Suhling, Klaus; Nomerotski, Andrei

    2017-01-01

    TimepixCam is a novel fast optical imager based on an optimized silicon pixel sensor with a thin entrance window and read out by a Timepix Application Specific Integrated Circuit. The 256 × 256 pixel sensor has a time resolution of 15 ns at a sustained frame rate of 10 Hz. We used this sensor in combination with an image intensifier for wide-field time-correlated single photon counting imaging. We have characterised the photon detection capabilities of this detector system and employed it on a wide-field epifluorescence microscope to map phosphorescence decays of various iridium complexes with lifetimes of about 1 μs in 200 μm diameter polystyrene beads.

  8. Frequency domain phosphorescence lifetime Imaging measurements and applications by ISS FastFLIM and multi pulse excitation

    NASA Astrophysics Data System (ADS)

    Coskun, Ulas C.; Lam, Sandra; Sun, Yuansheng; Liao, Shih-Chu Jeff; George, Steven C.; Barbieri, Beniamino

    2017-02-01

    Phosphorescence probes can have significantly long lifetimes, on the order of micro- to milli-seconds or longer. In addition, environmental changes can affect the lifetimes of these phosphorescence probes. Thus, Phosphorescence Lifetime Imaging Microscopy (PLIM) is a very useful tool to localize the phosphorescence probes based on their lifetimes to study the variance in the lifetimes due to the micro environmental changes. Since the probes respond to the biologically relevant parameters like oxygen concentration, they can be used to study various biologically relevant processes like cellular metabolism, protein interaction etc. In this case, we study the effects of oxygen on Oxyphor G4 with PLIM. Since The Oxyphor G4 can be quenched by O2, it is a good example of such a probe and has a lifetime around 250us. Here we present the digital frequency domain PLIM technique and study the lifetime of the Oxyphor G4 as a function of the O2 concentration. The lifetime data are successfully presented in a phasor plot for various O2 concentrations and are consistent with the time domain data. Overall, we can analyze the oxygen consumption of varying cells using this technique.

  9. Water-soluble triscyclometalated organoiridium complex: phosphorescent nanoparticle formation, nonlinear optics, and application for cell imaging.

    PubMed

    Fan, Yuanpeng; Zhao, Jingyi; Yan, Qifan; Chen, Peng R; Zhao, Dahui

    2014-03-12

    Two water-soluble triscyclometalated organoiridium complexes, 1 and 2, with polar side chains that form nanoparticles emitting bright-red phosphorescence in water were synthesized. The optimal emitting properties are related to both the triscyclometalated structure and nanoparticle-forming ability in aqueous solution. Nonlinear optical properties are also observed with the nanoparticles. Because of their proper cellular uptake in addition to high emission brightness and effective two-photon absorbing ability, cell imaging can be achieved with nanoparticles of 2 bearing quaternary ammonium side chains at ultra-low effective concentrations using NIR incident light via the multiphoton excitation phosphorescence process.

  10. Phosphorescent Imaging of Living Cells Using a Cyclometalated Iridium(III) Complex

    PubMed Central

    Ma, Dik-Lung; Zhong, Hai-Jing; Fu, Wai-Chung; Chan, Daniel Shiu-Hin; Kwan, Hiu-Yee; Fong, Wang-Fun; Chung, Lai-Hon; Wong, Chun-Yuen; Leung, Chung-Hang

    2013-01-01

    A cell permeable cyclometalated iridium(III) complex has been developed as a phosphorescent probe for cell imaging. The iridium(III) solvato complex [Ir(phq)2(H2O]2)] preferentially stains the cytoplasm of both live and dead cells with a bright luminescence. PMID:23457478

  11. Mitochondria-targeting phosphorescent iridium(III) complexes for living cell imaging.

    PubMed

    Zhang, Qingqing; Cao, Rui; Fei, Hao; Zhou, Ming

    2014-11-28

    Two phosphorescent iridium(III) complexes conjugated to a lipophilic triphenylphosphonium cation moiety, IrMitoOlivine and IrMitoNIR, were synthesized. The complexes show high mitochondria-specificity and relatively lower cytotoxicity. Time-lapse confocal imaging indicates that both complexes exhibit an excellent anti-photobleaching capability under continuous laser irradiation.

  12. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy

    PubMed Central

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure. PMID:26305777

  13. Multifunctional Phosphorescent Conjugated Polymer Dots for Hypoxia Imaging and Photodynamic Therapy of Cancer Cells

    PubMed Central

    Zhou, Xiaobo; Liang, Hua; Jiang, Pengfei; Zhang, Kenneth Yin; Liu, Shujuan; Yang, Tianshe; Yang, Lijuan; Lv, Wen; Yu, Qi

    2015-01-01

    Molecular oxygen (O2) plays a key role in many physiological processes, and becomes a toxicant to kill cells when excited to 1O2. Intracellular O2 levels, or the degree of hypoxia, are always viewed as an indicator of cancers. Due to the highly efficient cancer therapy ability and low side effect, photodynamic therapy (PDT) becomes one of the most promising treatments for cancers. Herein, an early‐stage diagnosis and therapy system is reported based on the phosphorescent conjugated polymer dots (Pdots) containing Pt(II) porphyrin as an oxygen‐responsive phosphorescent group and 1O2 photosensitizer. Intracellular hypoxia detection has been investigated. Results show that cells treated with Pdots display longer lifetimes under hypoxic conditions, and time‐resolved luminescence images exhibit a higher signal‐to‐noise ratio after gating off the short‐lived background fluorescence. Quantification of O2 is realized by the ratiometric emission intensity of phosphorescence/fluorescence and the lifetime of phosphorescence. Additionally, the PDT efficiency of Pdots is estimated by flow cytometry, MTT cell viability assay, and in situ imaging of PDT induced cell death. Interestingly, Pdots exhibit a high PDT efficiency and would be promising in clinical applications. PMID:27722081

  14. Imaging of oxygenation in 3D tissue models with multi-modal phosphorescent probes

    NASA Astrophysics Data System (ADS)

    Papkovsky, Dmitri B.; Dmitriev, Ruslan I.; Borisov, Sergei

    2015-03-01

    Cell-penetrating phosphorescence based probes allow real-time, high-resolution imaging of O2 concentration in respiring cells and 3D tissue models. We have developed a panel of such probes, small molecule and nanoparticle structures, which have different spectral characteristics, cell penetrating and tissue staining behavior. The probes are compatible with conventional live cell imaging platforms and can be used in different detection modalities, including ratiometric intensity and PLIM (Phosphorescence Lifetime IMaging) under one- or two-photon excitation. Analytical performance of these probes and utility of the O2 imaging method have been demonstrated with different types of samples: 2D cell cultures, multi-cellular spheroids from cancer cell lines and primary neurons, excised slices from mouse brain, colon and bladder tissue, and live animals. They are particularly useful for hypoxia research, ex-vivo studies of tissue physiology, cell metabolism, cancer, inflammation, and multiplexing with many conventional fluorophors and markers of cellular function.

  15. Rational design of NIR-emitting iridium(iii) complexes for multimodal phosphorescence imaging of mitochondria under two-photon excitation.

    PubMed

    Jin, Chengzhi; Guan, Ruilin; Wu, Jingheng; Yuan, Bo; Wang, Lili; Huang, Juanjuan; Wang, Hui; Ji, Liangnian; Chao, Hui

    2017-09-25

    A series of NIR-emitting iridium(iii) complexes were developed for multimodal phosphorescence imaging (NIR imaging, phosphorescence lifetime imaging and time-gated imaging) of mitochondria in living cells, 3D multicellular spheroids (MTCCs) and hippocampus slice under two-photon excitation.

  16. Protein Labelling with Versatile Phosphorescent Metal Complexes for Live Cell Luminescence Imaging.

    PubMed

    Connell, Timothy U; James, Janine L; White, Anthony R; Donnelly, Paul S

    2015-09-28

    To take advantage of the luminescent properties of d(6) transition metal complexes to label proteins, versatile bifunctional ligands were prepared. Ligands that contain a 1,2,3-triazole heterocycle were synthesised using Cu(I) catalysed azide-alkyne cycloaddition "click" chemistry and were used to form phosphorescent Ir(III) and Ru(II) complexes. Their emission properties were readily tuned, by changing either the metal ion or the co-ligands. The complexes were tethered to the metalloprotein transferrin using several conjugation strategies. The Ir(III)/Ru(II)-protein conjugates could be visualised in cancer cells using live cell imaging for extended periods without significant photobleaching. These versatile phosphorescent protein-labelling agents could be widely applied to other proteins and biomolecules and are useful alternatives to conventional organic fluorophores for several applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Photothermal imaging scanning microscopy

    DOEpatents

    Chinn, Diane; Stolz, Christopher J.; Wu, Zhouling; Huber, Robert; Weinzapfel, Carolyn

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  18. Applications of phosphorescent materials for in-vivo imaging of brain structure and function

    NASA Astrophysics Data System (ADS)

    Boverman, Gregory; Shi, Xiaolei; Cotero, Victoria E.; Filkins, Robert J.; Srivastava, Alok M.; Lorraine, Peter W.; Neculaes, Vasile B.; Ishaque, A. N.

    2016-03-01

    A number of approaches have been developed for in-vivo imaging of neural function at the time scale of action potentials and at the spatial resolution of individual neurons. Remarkable results have been obtained with optogenetics, although the need for genetic modification is an important limitation of these approaches. Similarly, voltage and ion-sensitive dyes allow for optical imaging of action potentials but toxicity remains a problem. Additionally, optical techniques are often only able to be used up to a limited depth. Our preliminary work has shown that nanoparticles of common phosphorescent materials, believed to be generally non-toxic, specifically lutetium oxide and strontium aluminate, can be utilized for cellular imaging, for tomographic imaging, and that the particles can be designed to adhere to neurons. Additionally, lutetium oxide has been shown to be highly X-ray luminescent, potentially allowing for imaging deep within the brain, if the particles can be targeted properly. In ex vivo experiments, we have shown that the phosphorescence of strontium aluminate particles is significantly affected by electric fields similar in strength to those found in the vicinity of the cellular membrane of a neuron. This phenomenon is consistent with early published reports in the electroluminescence literature, namely the Gudden-Pohl effect. We will show results of the ex vivo imaging and dynamic electrical stimulation experiments. We will also show some preliminary ex vivo cell culture results, and will describe plans for future research, focusing on potential in both cell cultures and in vivo for animal models.

  19. Fourier plane imaging microscopy

    SciTech Connect

    Dominguez, Daniel Peralta, Luis Grave de; Alharbi, Nouf; Alhusain, Mdhaoui; Bernussi, Ayrton A.

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  20. Singlet oxygen phosphorescence lifetime imaging based on a fluorescence lifetime imaging microscope.

    PubMed

    Tian, Wenming; Deng, Liezheng; Jin, Shengye; Yang, Heping; Cui, Rongrong; Zhang, Qing; Shi, Wenbo; Zhang, Chunlei; Yuan, Xiaolin; Sha, Guohe

    2015-04-09

    The feasibility of singlet oxygen phosphorescence (SOP) lifetime imaging microscope was studied on a modified fluorescence lifetime imaging microscope (FLIM). SOP results from the infrared radiative transition of O2(a(1)Δg → X(3)Σg(-)) and O2(a(1)Δg) was produced in a C60 powder sample via photosensitization process. To capture the very weak SOP signal, a dichroic mirror was placed between the objective and tube lens of the FLIM and used to divide the luminescence returning from the sample into two beams: the reflected SOP beam and the transmitted photoluminescence of C60 (C60-PL) beam. The C60-PL beam entered the scanner of the FLIM and followed the normal optical path of the FLIM, while the SOP steered clear of the scanner and directly entered a finely designed SOP detection channel. Confocal C60-PL images and nonconfocal SOP images were then simultaneously obtained by using laser-scanning mode. Experimental results show that (1) under laser-scanning mode, the obstacle to confocal SOP imaging is the infrared-incompatible scanner, which can be solved by using an infrared-compatible scanner. Confocal SOP imaging is also expected to be realized under stage-scanning mode when the laser beam is parked and meanwhile a pinhole is added into the SOP detection channel. (2) A great challenge to SOP imaging is its extraordinarily long imaging time, and selecting only a few interesting points from fluorescence images to measure their SOP time-dependent traces may be a correct compromise.

  1. Optical imaging. Expansion microscopy.

    PubMed

    Chen, Fei; Tillberg, Paul W; Boyden, Edward S

    2015-01-30

    In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. We discovered that by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labels located within the specimen directly to the polymer network, labels spaced closer than the optical diffraction limit can be isotropically separated and optically resolved, a process we call expansion microscopy (ExM). Thus, this process can be used to perform scalable superresolution microscopy with diffraction-limited microscopes. We demonstrate ExM with apparent ~70-nanometer lateral resolution in both cultured cells and brain tissue, performing three-color superresolution imaging of ~10(7) cubic micrometers of the mouse hippocampus with a conventional confocal microscope.

  2. Light microscopy digital imaging.

    PubMed

    Joubert, James; Sharma, Deepak

    2011-10-01

    This unit presents an overview of digital imaging hardware used in light microscopy. CMOS, CCD, and EMCCDs are the primary sensors used. The strengths and weaknesses of each define the primary applications for these sensors. Sensor architecture and formats are also reviewed. Color camera design strategies and sensor window cleaning are also described in the unit.

  3. Long-lived phosphorescent iridium(III) complexes conjugated with cationic polyfluorenes for heparin sensing and cellular imaging.

    PubMed

    Jiang, Jiayang; Zhang, Chuanqi; Lin, Wenpeng; Liu, Yahong; Liu, Shujuan; Xu, Yunjian; Zhao, Qiang; Huang, Wei

    2015-04-01

    The applications of conjugated polyelectrolytes in biosensing and bioimaging have attracted more and more research interests due to their excellent photophysical properties. In this work, a new series of conjugated polyelectrolytes containing long-lived phosphorescent Ir(III) complexes is designed and synthesized, which can be used for ratiometric and lifetime-based sensing of heparin utilizing the electrostatic interaction between cationic polymers and anionic heparin. By changing the ligand structures of Ir(III) complexes, the sensing performances of phosphorescent-conjugated polyelectrolytes (PCPEs) are optimized. In addition, the application of PCPEs in cellular imaging is carried out. These polymers can be applied for specific staining of cell membrane. Importantly, utilizing the long emission lifetime of phosphorescent signal of Ir(III) complexes, time-gated luminescent imaging is carried out, which can eliminate the short-lived background fluorescence interferences from the environment or biological samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Image Force Microscopy

    NASA Astrophysics Data System (ADS)

    Rajapaksa, Indrajith

    In this thesis we describe an enhancement to the Atomic force microscope (AFM) to simultaneously gather topographic features and spectroscopic information .Compared to the current state of the art of near-field excitation and far-field detection AFM imaging techniques our system uses a radical new approach near-field excitation and near-field detection. By placing the detector in the near-field we achieve high signal to noise and single molecular resolution. The origin of our near-field detector signal is the image force gradient due to the interaction of the stimulated molecular dipole with its image on the metal probe. We designed and built an optical and electronic system to capture this signal and simultaneously image nano-scale surface topography and optical image force gradient. By varying the wavelength of the excitation beam we measure the induced optical image force gradient spectra of molecules on surface. These spectra show good agreement with the absorption spectra of the bulk molecules measured by conventional absorption spectroscopy. We show that image force gradient is directly proportional to the optical absorption dipole strength. Using Finite Element 3D electromagnetic simulations and using Lorentz model for the excited molecular dipole we showed that the image force gradient has a decay length of 1nm, making the theoretical resolution of this microscopy technique approximately 1 nm. This rapid decay was measured experimentally .This resolution was seen by the high contrasting spectroscopic images of molecules on the surface. In follow on experiments this technique was extended to provide surface Raman spectroscopy and microscopy at molecular resolution. We create an image force gradient interaction through optical parametric down conversion between stimulated Raman excited molecules on a surface and a cantilevered nanometer scale probe brought very close to it. Spectroscopy and microscopy on clusters of molecules have been performed. Single

  5. Role of manganese in red long-lasting phosphorescence of manganese-doped diopside for in vivo imaging

    SciTech Connect

    Lecointre, A.; Bessière, A.; Priolkar, K.R.; Gourier, D.; Wallez, G.; Viana, B.

    2013-05-15

    Highlights: ► Long-lasting phosphorescence of CaMgSi{sub 2}O{sub 6}:Mn is studied for bioimaging application. ► CaMgSi{sub 2}O{sub 6}:Mn yields orange and red luminescence of Mn{sup II}{sub Ca} and Mn{sup II}{sub Mg}, respectively. ► Red Mn{sup II}{sub Mg} emission dominates long-lasting phosphorescence spectra. ► Mn mainly substitutes Mg. ► Mn{sup II}{sub Mg} plays the role of hole trap in the persistent luminescence mechanism. - Abstract: Materials with red long-lasting phosphorescence, such as Mn{sup II}-doped diopsides, can be used for small animal in vivo imaging. CaMgSi{sub 2}O{sub 6}:Mn powders with various amounts of Mn were prepared by sol–gel to investigate their long-lasting phosphorescence mechanism. X-ray diffraction, X-ray absorption fine and near-edge structure and electron paramagnetic resonance showed that manganese is quantitatively introduced in the structure as Mn{sup II}. Most of the Mn doping ions substitute Mg and possess a highly elongated octahedral environment. While photoluminescence and X-ray excited optical luminescence spectra show both orange (585 nm) and red (685 nm) {sup 4}T{sub 1} ({sup 4}G) → {sup 6}A{sub 1} ({sup 6}S) emission of Mn{sup II}{sub Ca} and Mn{sup II}{sub Mg}, respectively, Mn{sup II}{sub Mg} red emission dominates long-lasting phosphorescence and thermally stimulated luminescence spectra. These results point to Mn{sup II}{sub Mg} as the preferential hole trap and recombination center in the long-lasting phosphorescence mechanism. An intense persistent red emission suitable for in vivo imaging probes is obtained for the highest nominal Mn content (7.5%)

  6. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  7. Cyclometalated iridium(III) complexes for phosphorescence sensing of biological metal ions.

    PubMed

    You, Youngmin; Cho, Somin; Nam, Wonwoo

    2014-02-17

    using confocal laser scanning microscopy and photoluminescence lifetime imaging microscopy techniques. We hope that the significant knowledge gained from our studies will be of great help in the design of new molecules as phosphorescence sensors.

  8. Phosphorescent iridium(III) complexes as multicolor probes for specific mitochondrial imaging and tracking.

    PubMed

    Chen, Yu; Qiao, Liping; Ji, Liangnian; Chao, Hui

    2014-01-01

    In the present study, four phosphorescent iridium(III) complexes [Ir(C-N)2(PhenSe)](+) (Ir1-Ir4, in which C-N = 2-(2,4-difluorophenyl)pyridine (dfppy), dibenzo[f,h]quinoxaline (dbq), 2-phenylquinoline (2-pq) and 2-phenylpyridine (ppy), PhenSe = 1,10-phenanthrolineselenazole) with tunable emission colors were developed to image mitochondria and track the dynamics of the mitochondrial morphology. In comparison with commercially available mitochondrial trackers, Ir1-Ir4 possess high specificity to mitochondria in live and fixed cells without requiring prior membrane permeabilization or the replacement of the culture medium. Due to the high resistance of Ir1-Ir4 to the loss of mitochondrial membrane potential as well as the appreciable tolerance to environmental changes, these complexes are applicable for the imaging and tracking of the mitochondrial morphological changes over long periods of time. In addition, Ir2-Ir4 exhibited superior photostability compared to the commercially available mitochondrial trackers. These colorful iridium(III) complexes may contribute to the future development of staining agents for organelle-selective imaging in living cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Hypoxia-sensitive bis(2-(2'-benzothienyl)pyridinato-N,C3')iridium[poly(n-butyl cyanoacrylate]/chitosan nanoparticles and their phosphorescence tumor imaging in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Zeng, Yun; Zhang, Shaojuan; Jia, Menghui; Liu, Yang; Shang, Jin; Guo, Youmin; Xu, Jianhua; Wu, Daocheng

    2013-11-01

    A new hypoxia-sensitive coordination compound, bis(2-(2'-benzothienyl)pyridinato-N,C3')iridium[poly(n-butyl cyanoacrylate)], hereafter denoted as (btp)2Ir(PBCA), is synthesized and characterized by 13C nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). (btp)2Ir(PBCA)/chitosan [(btp)2Ir(PBCA)/CS] nanoparticles (NPs) with a core-shell structure are prepared by a two-step fabrication process. The size distributions of these NPs are measured with a Malvern size analyzer, and their morphology is observed by transmission electron microscopy (TEM). The functional groups on the surface are confirmed by FTIR. Phosphorescence spectra are obtained and lifetimes are determined with a spectrophotofluorometer and a time-correlated single photon counting (TCSPC) apparatus, respectively. HeLa and CT26 cell lines are used to examine the cytotoxicity by the MTT assay, as well as to determine the imaging capability of the samples in air and nitrogen atmospheres, respectively. Tumor-bearing mouse models of colon adenocarcinoma are used for tumor imaging in vivo, and the imaging effect is evaluated with a Maestro 2 fluorescence imaging system. Compared with the hypoxia-associated probe bis(2-(2'-benzothienyl)pyridinato-N,C3')iridium(acetylacetonate) (BTP), the phosphorescence lifetime of (btp)2Ir(PBCA)/CS NPs significantly decreases, but the hypoxia-sensitivity increases after preparation of NPs. Apart from the significantly lower cytotoxicity, (btp)2Ir(PBCA)/CS NPs also enhance the tumor imaging effect by more than 10 times, maintaining the phosphorescence signal in tumor tissue for over 24 h and significantly decreasing the phosphorescence signal in normal tissue in vivo compared with the BTP probe.A new hypoxia-sensitive coordination compound, bis(2-(2'-benzothienyl)pyridinato-N,C3')iridium[poly(n-butyl cyanoacrylate)], hereafter denoted as (btp)2Ir(PBCA), is synthesized and characterized by 13C nuclear magnetic resonance (NMR) and Fourier transform

  10. TH-C-17A-05: Cherenkov Excited Phosphorescence Oxygen (CEPhOx) Imaging During Multi-Beam Radiation Therapy

    SciTech Connect

    Zhang, R; Pogue, B; Holt, R; Esipova, T; Vinogradov, S; Gladstone, D

    2014-06-15

    Purpose: Cherenkov radiation is created during external beam radiation therapy that can excite phosphorescence in tissue from oxygen-sensitive, bio-compatible probes. Utilizing the known spatial information of the treatment plan with directed multiple beam angles, Cherenkov Excited Phosphorescence Oxygen (CEPhOx) imaging was realized from the reconstructions of Cherenkov excited phosphorescence lifetime. Methods: Platinum(II)-G4 (PtG4) was used as the oxygen-sensitive phosphorescent probe and added to a oxygenated cylindrical liquid phantom with a oxygenated/deoxygenated cylindrical anomaly. Cherenkov excited phosphorescence was imaged using a time-gated ICCD camera temporallysynchronized to the LINAC pulse output. Lifetime reconstruction was carried out in NIRFAST software. Multiple angles of the incident radiation beam was combined with the location of the prescribed treatment volume (PTV) to improve the tomographic recovery as a function of location. The tissue partial pressure of oxygen (pO2) in the background and PTV was calculated based on the recovered lifetime distribution and Stern-Volmer equation. Additionally a simulation study was performed to examine the accuracy of this technique in the setting of a human brain tumor. Results: Region-based pO2 values in the oxygenated background and oxygenated/deoxygenated PTV were correctly recovered, with the deoxygenated anomaly (15.4 mmHg) easily distinguished from the oxygenated background (143 mmHg). The data acquisition time could be achieved within the normal irradiation time for a human fractionated plan. The simulations indicated that CEPhOx would be a sufficient to sample tumor pO2 sensing from tumors which are larger than 2cm in diameter or within 23mm depth from the surface. Conclusion: CEPhOx could be a novel imaging tool for pO2 assessment during external radiation beam therapy. It is minimally invasive and should work within the established treatment plan of radiation therapy with multiple beams in

  11. Chip-scale microscopy imaging.

    PubMed

    Zheng, Guoan

    2012-08-01

    Chip-scale microscopy imaging platforms are pivotal for improving the efficiency of modern biomedical and bioscience experiments. Their integration with other lab-on-a-chip techniques would allow rapid, reliable and high-throughput sample analysis for applications in diverse disciplines. In typical chip-scale microscopy imaging platforms, the light path can be generalized to the following steps: photons leave the light source, interact with the sample and finally are detected by the sensor. Based on the light path of these platforms, the current review aims to provide some insights on design strategies for chip-scale microscopy. Specifically, we analyze current chip-scale microscopy approaches from three aspects: illumination design, sample manipulation and substrate/imager modification. We also discuss some opportunities for future developments of chip-scale microscopy, such as time multiplexed structured illumination and hydrodynamic focusing for high throughput sample manipulation.

  12. Digital image inpainting and microscopy imaging.

    PubMed

    Stanciu, Stefan G; Hristu, Radu; Stanciu, George A

    2011-11-01

    A considerable amount of image processing techniques known as inpainting techniques have been recently developed aiming to provide solutions for filling in missing or damaged regions in a digital image. Typical such techniques reconstruct a defined area by using information from its neighborhood, for example, by completing inside the missing region the isophote lines arriving at its boundaries. In this article, we show that inpainting techniques have considerable potential usefulness in microscopy imaging, even though experimenting and using them in this domain has been almost entirely neglected up until now. In this purpose, we experiment the "curvature-preserving" partial differential equations as a solution to inpainting regions in images collected by several optical and scanning probe microscopy techniques. The results achieved are presented along with a discussion on typical problematic scenarios of microscopy imaging for which this type of techniques can provide a viable solution. Copyright © 2011 Wiley Periodicals, Inc.

  13. Image Processing in Medical Microscopy

    PubMed Central

    Preston, Kendall

    1986-01-01

    Full automation in medical microscopy has been accomplished in the field of clinical determination of the white blood cell differential count. Manufacture of differential counting microscopes commenced in 1974, and approximately 1,000 of these robots are now in the field. They analyze images of human white blood cells, red blood cells, and platelets at the global rate of approximately 100,000 slides per day. This incredible throughout represents automated image analysis and pattern recognition at the rate of 5 billion images per year and represents a major accomplishments in the application of machine vision in medicine. In other areas, such as cytology and cytogenetics, automated computer vision is still in the research phase. This paper discusses the state of the art in blood smear analysis automation and in other related areas including multi-resolution microscopy where images are currently being generated over a 64:1 magnification containing from one-quarter megapixel to one gigapixel in full color.

  14. Phosphorescent ruthenium complexes with a nitroimidazole unit that image oxygen fluctuation in tumor tissue.

    PubMed

    Son, Aoi; Kawasaki, Atsushi; Hara, Daiki; Ito, Takeo; Tanabe, Kazuhito

    2015-02-02

    Understanding oxygen fluctuation in a cancerous tumor is important for effective treatment, especially during radiotherapy. In this paper, ruthenium complexes bearing a nitroimidazole group are shown to report the oxygen status in tumor tissue directly. The nitroimidazole group was known to be accumulated in hypoxic tumor tissues. On the other hand, the ruthenium complex showed strong phosphorescence around 600 nm. The emission of ruthenium is quenched instantaneously by molecular oxygen due to energy transfer between triplet states of oxygen and ruthenium complex, but the emission is then recovered by the removal of oxygen. Thus, we could observe oxygen fluctuation in tumor tissue in a real-time manner by monitoring the phosphorescence of the ruthenium complex. The versatility of the probe is demonstrated by monitoring oxygen fluctuation in living cells and tumor tissue planted in mice. The ruthenium complex promptly penetrated plasma membrane and accumulated in cells to emit its oxygen-dependent phosphorescence. In vivo experiments revealed that the oxygen level in tumor tissue seems to fluctuate at the sub-minute timescale. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Phosphorescent proteins for bio-imaging and site selective bio-conjugation of peptides and proteins with luminescent cyclometalated iridium(III) complexes.

    PubMed

    Shiu, Hoi-Yan; Chong, Hiu-Chi; Leung, Yun-Chung; Zou, Taotao; Che, Chi-Ming

    2014-04-28

    A new bio-conjugation reaction for site selective modification of proteins and peptides with phosphorescent iridium(III) complexes has been developed; the Ir(III)-modified proteins and peptides display long emission lifetimes and large Stoke shifts that can be used for bio-imaging studies.

  16. Dynamic imaging with electron microscopy

    ScienceCinema

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2016-07-12

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  17. Dynamic imaging with electron microscopy

    SciTech Connect

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-02-20

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  18. Boron Polylactide Nanoparticles Exhibiting Fluorescence and Phosphorescence in Aqueous Medium

    PubMed Central

    Pfister, Anne; Zhang, Guoqing; Zareno, Jessica; Horwitz, Alan F.; Fraser, Cassandra L.

    2008-01-01

    Difluoroboron dibenzoylmethane-polylactide, BF2dbmPLA, a biocompatible polymerluminophore conjugate was fabricated as nanoparticles. Spherical particles <100 nm in size were generated via nanoprecipitation. Intense blue fluorescence, two-photon absorption, and long-lived room temperature phosphorescence (RTP) are retained in aqueous suspension. The nanoparticles were internalized by cells and visualized by fluorescence microscopy. Luminescent boron biomaterials show potential for imaging and sensing. PMID:19081748

  19. Image scanning microscopy with radially polarized light

    NASA Astrophysics Data System (ADS)

    Xiao, Yun; Zhang, Yunhai; Wei, Tongda; Huang, Wei; Shi, Yaqin

    2017-03-01

    In order to improve the resolution of image scanning microscopy, we present a method based on image scanning microscopy and radially polarized light. According to the theory of image scanning microscopy, we get the effective point spread function of image scanning microscopy with the longitudinal component of radially polarized light and a 1 AU detection area, and obtain imaging results of the analyzed samples using this method. Results show that the resolution can be enhanced by 7% compared with that in image scanning microscopy with circularly polarized light, and is 1.54-fold higher than that in confocal microscopy with a pinhole of 1 AU. Additionally, the peak intensity of ISM is 1.54-fold higher than that of a confocal microscopy with a pinhole of 1 AU. In conclusion, the combination of the image scanning microscopy and the radially polarized light could improve the resolution, and it could realize high-resolution and high SNR imaging at the same time.

  20. Spectroscopic imaging in electron microscopy

    SciTech Connect

    Pennycook, Stephen J; Colliex, C.

    2012-01-01

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  1. A Convenient Approach To Synthesize o-Carborane-Functionalized Phosphorescent Iridium(III) Complexes for Endocellular Hypoxia Imaging.

    PubMed

    Li, Xiang; Tong, Xiao; Yan, Hong; Lu, Changsheng; Zhao, Qiang; Huang, Wei

    2016-11-21

    The structure-property relationship of carborane-modified iridium(III) complexes was investigated. Firstly, an efficient approach for the synthesis of o-carborane-containing pyridine ligands a-f in high yields was developed by utilizing stable and cheap B10 H10 (Et4 N)2 as the starting material. By using these ligands, iridium(III) complexes I-VII were efficiently prepared. In combination with DFT calculations, the photophysical and electrochemical properties of these complexes were studied. The hydrophilic nido-o-carborane-based iridium(III) complex VII showed the highest phosphorescence efficiency (abs. ϕP =0.48) among known water-soluble homoleptic cyclometalated iridium(III) complexes and long emission lifetime (τ=1.24 μs) in aqueous solution. Both of them are sensitive to O2 , and thus endocellular hypoxia imaging of complex VII was realized by time-resolved luminescence imaging (TRLI). This is the first example of applying TRLI in endocellular oxygen detection with a water-soluble nido-carborane functionalized iridium(III) complex.

  2. Fidelity imaging for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ghosal, Sayan; Salapaka, Murti

    2015-01-01

    Atomic force microscopy is widely employed for imaging material at the nanoscale. However, real-time measures on image reliability are lacking in contemporary atomic force microscopy literature. In this article, we present a real-time technique that provides an image of fidelity for a high bandwidth dynamic mode imaging scheme. The fidelity images define channels that allow the user to have additional authority over the choice of decision threshold that facilitates where the emphasis is desired, on discovering most true features on the sample with the possible detection of high number of false features, or emphasizing minimizing instances of false detections. Simulation and experimental results demonstrate the effectiveness of fidelity imaging.

  3. Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy

    PubMed Central

    Chung, Chao-Yu; Boik, John; Potma, Eric O.

    2014-01-01

    Optical imaging with spectroscopic vibrational contrast is a label-free solution for visualizing, identifying, and quantifying a wide range of biomolecular compounds in biological materials. Both linear and nonlinear vibrational microscopy techniques derive their imaging contrast from infrared active or Raman allowed molecular transitions, which provide a rich palette for interrogating chemical and structural details of the sample. Yet nonlinear optical methods, which include both second-order sum-frequency generation (SFG) and third-order coherent Raman scattering (CRS) techniques, offer several improved imaging capabilities over their linear precursors. Nonlinear vibrational microscopy features unprecedented vibrational imaging speeds, provides strategies for higher spatial resolution, and gives access to additional molecular parameters. These advances have turned vibrational microscopy into a premier tool for chemically dissecting live cells and tissues. This review discusses the molecular contrast of SFG and CRS microscopy and highlights several of the advanced imaging capabilities that have impacted biological and biomedical research. PMID:23245525

  4. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy

    PubMed Central

    Davis, Brynmor. J.; Marks, Daniel. L.; Ralston, Tyler. S.; Carney, P. Scott; Boppart, Stephen. A.

    2008-01-01

    Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM) allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT), utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR). In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR. PMID:20948975

  5. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy.

    PubMed

    Davis, Brynmor J; Marks, Daniel L; Ralston, Tyler S; Carney, P Scott; Boppart, Stephen A

    2008-06-01

    Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM) allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT), utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR). In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR.

  6. Microscopy image segmentation tool: robust image data analysis.

    PubMed

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K

    2014-03-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  7. Microscopy image segmentation tool: Robust image data analysis

    SciTech Connect

    Valmianski, Ilya Monton, Carlos; Schuller, Ivan K.

    2014-03-15

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  8. Coherent nonlinear optical imaging: beyond fluorescence microscopy.

    PubMed

    Min, Wei; Freudiger, Christian W; Lu, Sijia; Xie, X Sunney

    2011-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy (including stimulated Raman scattering and two-photon absorption) and pump-probe microscopy (including excited-state absorption, stimulated emission, and ground-state depletion), provides new image contrasts for nonfluorescent species. Thanks to the high-frequency modulation transfer scheme, these imaging techniques exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles and excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques.

  9. Scanning Electron Microscopy Sample Preparation and Imaging.

    PubMed

    Nguyen, Jenny Ngoc Tran; Harbison, Amanda M

    2017-01-01

    Scanning electron microscopes allow us to reach magnifications of 20-130,000× and resolve compositional and topographical images with intense detail. These images are created by bombarding a sample with electrons in a focused manner to generate a black and white image from the electrons that bounce off of the sample. The electrons are detected using positively charged detectors. Scanning electron microscopy permits three-dimensional imaging of desiccated specimens or wet cells and tissues by using variable pressure chambers. SEM ultrastructural analysis and intracellular imaging supplement light microscopy for molecular profiling of prokaryotes, plants, and mammals. This chapter demonstrates how to prepare and image samples that are (a) desiccated and conductive, (b) desiccated and nonconductive but coated with an electron conductive film using a gold sputter coater, and (c) wet and maintained in a hydrated state using a Deben Coolstage.

  10. Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy

    PubMed Central

    Min, Wei; Freudiger, Christian W.; Lu, Sijia; Xie, X. Sunney

    2012-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy, including stimulated Raman scattering and two photon absorption, and pump-probe microscopy, including stimulated emission, excited state absorption and ground state depletion, provide distinct and powerful image contrasts for non-fluorescent species. Thanks to high-frequency modulation transfer scheme, they exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles, excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques. PMID:21453061

  11. Phase imaging with intermodulation atomic force microscopy.

    PubMed

    Platz, Daniel; Tholén, Erik A; Hutter, Carsten; von Bieren, Arndt C; Haviland, David B

    2010-05-01

    Intermodulation atomic force microscopy (IMAFM) is a dynamic mode of atomic force microscopy (AFM) with two-tone excitation. The oscillating AFM cantilever in close proximity to a surface experiences the nonlinear tip-sample force which mixes the drive tones and generates new frequency components in the cantilever response known as intermodulation products (IMPs). We present a procedure for extracting the phase at each IMP and demonstrate phase images made by recording this phase while scanning. Amplitude and phase images at intermodulation frequencies exhibit enhanced topographic and material contrast.

  12. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-10-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  13. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-11-22

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  14. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2017-04-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  15. Microscopy imaging device with advanced imaging properties

    SciTech Connect

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  16. Image Quality Ranking Method for Microscopy

    PubMed Central

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.

    2016-01-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics. PMID:27364703

  17. Image Quality Ranking Method for Microscopy

    NASA Astrophysics Data System (ADS)

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.

    2016-07-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics.

  18. Improvement of image quality in holographic microscopy.

    PubMed

    Budhiraja, C J; Som, S C

    1981-05-15

    A novel technique of noise reduction in holographic microscopy has been experimentally studied. It has been shown that significant improvement in the holomicroscopic images of actual low-contrast continuous tone biological objects can be achieved without trade off in image resolution. The technique makes use of holographically produced multidirectional phase gratings used as diffusers and the continuous addition of subchannel holograms. It has been shown that the self-imaging property of this type of diffuser makes the use of these diffusers ideal for microscopic objects. Experimental results have also been presented to demonstrate real-time image processing capability of this technique.

  19. Image Correlation Microscopy for Uniform Illumination

    PubMed Central

    Gaborski, Thomas R.; Sealander, Michael N.; Ehrenberg, Morton; Waugh, Richard E.; McGrath, James L.

    2011-01-01

    Image cross-correlation microscopy (ICM) is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. ICM has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy (FCS). In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy (UI-ICM). Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning ICM, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function (SACF). Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function (TACF) depends strongly on particle size and not particle shape. In this report, we establish the relationships between the SACF feature size, TACF characteristic time and the diffusion coefficient for UI-ICM using analytical, Monte-Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate UI-ICM analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils. PMID:20055917

  20. Quantitative imaging of bilirubin by photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2013-03-01

    Noninvasive detection of both bilirubin concentration and its distribution is important for disease diagnosis. Here we implemented photoacoustic microscopy (PAM) to detect bilirubin distribution. We first demonstrate that our PAM system can measure the absorption spectra of bilirubin and blood. We also image bilirubin distributions in tissuemimicking samples, both without and with blood mixed. Our results show that PAM has the potential to quantitatively image bilirubin in vivo for clinical applications.

  1. Multidepth imaging by chromatic dispersion confocal microscopy

    NASA Astrophysics Data System (ADS)

    Olsovsky, Cory A.; Shelton, Ryan L.; Saldua, Meagan A.; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.

    2012-03-01

    Confocal microscopy has shown potential as an imaging technique to detect precancer. Imaging cellular features throughout the depth of epithelial tissue may provide useful information for diagnosis. However, the current in vivo axial scanning techniques for confocal microscopy are cumbersome, time-consuming, and restrictive when attempting to reconstruct volumetric images acquired in breathing patients. Chromatic dispersion confocal microscopy (CDCM) exploits severe longitudinal chromatic aberration in the system to axially disperse light from a broadband source and, ultimately, spectrally encode high resolution images along the depth of the object. Hyperchromat lenses are designed to have severe and linear longitudinal chromatic aberration, but have not yet been used in confocal microscopy. We use a hyperchromat lens in a stage scanning confocal microscope to demonstrate the capability to simultaneously capture information at multiple depths without mechanical scanning. A photonic crystal fiber pumped with a 830nm wavelength Ti:Sapphire laser was used as a supercontinuum source, and a spectrometer was used as the detector. The chromatic aberration and magnification in the system give a focal shift of 140μm after the objective lens and an axial resolution of 5.2-7.6μm over the wavelength range from 585nm to 830nm. A 400x400x140μm3 volume of pig cheek epithelium was imaged in a single X-Y scan. Nuclei can be seen at several depths within the epithelium. The capability of this technique to achieve simultaneous high resolution confocal imaging at multiple depths may reduce imaging time and motion artifacts and enable volumetric reconstruction of in vivo confocal images of the epithelium.

  2. Deep Imaging: the next frontier in microscopy.

    PubMed

    Roukos, Vassilis; Misteli, Tom

    2014-08-01

    The microscope is the quintessential tool for discovery in cell biology. From its earliest incarnation as a tool to make the unseen visible, microscopes have been at the center of most revolutionizing developments in cell biology, histology and pathology. Major quantum leaps in imaging involved the dramatic improvements in resolution to see increasingly smaller structures, methods to visualize specific molecules inside of cells and tissues, and the ability to peer into living cells to study dynamics of molecules and cellular structures. The latest revolution in microscopy is Deep Imaging-the ability to look at very large numbers of samples by high-throughput microscopy at high spatial and temporal resolution. This approach is rooted in the development of fully automated high-resolution microscopes and the application of advanced computational image analysis and mining methods. Deep Imaging is enabling two novel, powerful approaches in cell biology: the ability to image thousands of samples with high optical precision allows every discernible morphological pattern to be used as a read-out in large-scale imaging-based screens, particularly in conjunction with RNAi-based screening technology; in addition, the capacity to capture large numbers of images, combined with advanced computational image analysis methods, has also opened the door to detect and analyze very rare cellular events. These two applications of Deep Imaging are revolutionizing cell biology.

  3. Confocal microscopy imaging of solid tissue

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer acquired images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ...

  4. Multiphoton microscopy imaging of developing tooth germs.

    PubMed

    Pan, Pei-Yu; Chen, Rung-Shu; Ting, Chih-Liang; Chen, Wei-Liang; Dong, Chen-Yuan; Chen, Min-Huey

    2014-01-01

    Traditionally, tooth germ is observed by histological investigation with hematoxylin and eosin stain and information may loss during the process. The purpose of this study is to use multiphoton laser fluorescence microscopy to observe the developing tooth germs of mice for building up the database of the images of tooth germs and compare with those from conventional histological analysis. Tooth germs were isolated from embryonic and newborn mice with age of Embryonic Day 14.5 and Postnatal Days 1, 3, 5, and 7. Comparison of the images of tooth germ sections in multiphoton microscopy with the images of histology was performed for investigating the molar tooth germs. It was found that various signals arose from different structures of tooth germs. Pre-dentin and dentin have strong second-harmonic generation signals, while ameloblasts and enamel tissues were shown with strong autofluorescence signals. In this study, a novel multiphoton microscopy database of images from developing tooth germs in mice was set up. We confirmed that multiphoton laser microscopy is a powerful tool for investigating the development of tooth germ and is worthy for further application in the study of tooth regeneration. Copyright © 2012. Published by Elsevier B.V.

  5. Confocal microscopy imaging of solid tissue

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer acquired images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ...

  6. Decreasing luminescence lifetime of evaporating phosphorescent droplets

    NASA Astrophysics Data System (ADS)

    van der Voort, D. D.; Dam, N. J.; Sweep, A. M.; Kunnen, R. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.; van de Water, W.

    2016-12-01

    Laser-induced phosphorescence has been used extensively to study spray dynamics. It is important to understand the influence of droplet evaporation in the interpretation of such measurements, as it increases luminescence quenching. By suspending a single evaporating n-heptane droplet in an acoustic levitator, the properties of lanthanide-complex europium-thenoyltrifluoroacetone-trioctylphosphine oxide (Eu-TTA-TOPO) phosphorescence are determined through high-speed imaging. A decrease was found in the measured phosphorescence decay coefficient (780 → 200 μs) with decreasing droplet volumes (10-9 → 10-11 m3) corresponding to increasing concentrations (10-4 → 10-2 M). This decrease continues up to the point of shell-formation at supersaturated concentrations. The diminished luminescence is shown not to be attributable to triplet-triplet annihilation, quenching between excited triplet-state molecules. Instead, the pure exponential decays found in the measurements show that a non-phosphorescent quencher, such as free TTA/TOPO, can be attributable to this decay. The concentration dependence of the phosphorescence lifetime can therefore be used as a diagnostic of evaporation in sprays.

  7. Stimulated Raman scattering microscopy for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Min, Wei; Freudiger, Christian W.; Lu, Sijia; He, Chengwei; Kang, Jing X.; Xie, X. Sunney

    2009-02-01

    Label-free chemical contrast is highly desirable in biomedical imaging. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. Here we report a 3D multi-photon vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS is significantly greater than that of spontaneous Raman scattering, and is further enhanced by high-frequency (MHz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-free and easily interpretable chemical contrast. We show a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast.

  8. Orientation imaging microscopy of polycrystalline sodium chloride

    SciTech Connect

    Staiger, M.P.; Kolbeinsson, I.; Newman, J.; Woodfield, T.; Sato, T.

    2010-04-15

    A novel preparation technique is described that makes possible grain size analysis of polycrystalline NaCl using orientation imaging microscopy via electron backscatter diffraction (EBSD). The preparation methodology is specifically developed to overcome difficulties in preparing microporous NaCl for microscopy. The grain size and crystallographic texture of polycrystalline NaCl samples, prepared via solution pressure and sintered in the range of 650-780 deg. C, were able to be measured successfully with EBSD. The limitations of the preparation technique for EBSD analysis of NaCl are also discussed.

  9. Image simulation for biological microscopy: microlith

    PubMed Central

    Mehta, Shalin B.; Oldenbourg, Rudolf

    2014-01-01

    Image simulation remains under-exploited for the most widely used biological phase microscopy methods, because of difficulties in simulating partially coherent illumination. We describe an open-source toolbox, microlith (https://code.google.com/p/microlith), which accurately predicts three-dimensional images of a thin specimen observed with any partially coherent imaging system, as well as images of coherently illuminated and self-luminous incoherent specimens. Its accuracy is demonstrated by comparing simulated and experimental bright-field and dark-field images of well-characterized amplitude and phase targets, respectively. The comparison provides new insights about the sensitivity of the dark-field microscope to mass distributions in isolated or periodic specimens at the length-scale of 10nm. Based on predictions using microlith, we propose a novel approach for detecting nanoscale structural changes in a beating axoneme using a dark-field microscope. PMID:24940543

  10. Image Restoration in Cryo-electron Microscopy

    PubMed Central

    Penczek, Pawel A.

    2011-01-01

    Image restoration techniques are used to obtain, given experimental measurements, the best possible approximation of the original object within the limits imposed by instrumental conditions and noise level in the data. In molecular electron microscopy, we are mainly interested in linear methods that preserve the respective relationships between mass densities within the restored map. Here, we describe the methodology of image restoration in structural electron microscopy, and more specifically, we will focus on the problem of the optimum recovery of Fourier amplitudes given electron microscope data collected under various defocus settings. We discuss in detail two classes of commonly used linear methods, the first of which consists of methods based on pseudoinverse restoration, and which is further subdivided into mean-square error, chi-square error, and constrained based restorations, where the methods in the latter two subclasses explicitly incorporates non-white distribution of noise in the data. The second class of methods is based on the Wiener filtration approach. We show that the Wiener filter-based methodology can be used to obtain a solution to the problem of amplitude correction (or “sharpening”) of the electron microscopy map that makes it visually comparable to maps determined by X-ray crystallography, and thus amenable to comparable interpretation. Finally, we present a semi-heuristic Wiener filter-based solution to the problem of image restoration given sets of heterogeneous solutions. We conclude the chapter with a discussion of image restoration protocols implemented in commonly used single particle software packages. PMID:20888957

  11. Oxygen measurements via phosphorescence.

    PubMed

    Shaban, Sami; Marzouqi, Farida; Al Mansouri, Aysha; Penefsky, Harvey S; Souid, Abdul-Kader

    2010-12-01

    Accurate measurements of dissolved O(2) as a function of time have numerous chemical and biological applications. The Pd (II) complex of meso-tetra-(4-sulfonatophenyl)-tetrabenzoporphyrin (Pd phosphor) was used for this purpose. Detection is based on the principle that the phosphorescence of this oxygen probe is inversely related to dissolved O(2) (O(2) quenches the phosphorescence). Biologic samples containing the Pd phosphor were flashed (10/s) with a peak output of 625nm; emitted light was detected at 800nm. Amplified pulses of phosphorescence were digitized at 1-2MHz using an analog/digital converter (PCI-DAS 4020/12 I/O Board) with outputs ranging from 1 to 20MHz. Assessment revealed a customized program was necessary. Pulses were captured using a developed software at 0.1-4MHz, depending on the speed of the computer. O(2) concentration was calculated by fitting to an exponential the decay of the phosphorescence. Twelve tasks were identified, which allowed full control and customization of the data acquisition, storage and analysis. The program used Microsoft Visual Basic 6 (VB6), Microsoft Access Database 2007, and a Universal Library component that allowed direct reading from the PCI-DAS 4020/12 I/O Board. It involved a relational database design to store experiments, pulses and pulse metadata, including phosphorescence decay rates. The method permitted reliable measurements of cellular O(2) consumption over several hours. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Fluorescence-integrated transmission electron microscopy images: integrating fluorescence microscopy with transmission electron microscopy.

    PubMed

    Sims, Paul A; Hardin, Jeff D

    2007-01-01

    This chapter describes high-pressure freezing (HPF) techniques for correlative light and electron microscopy on the same sample. Laser scanning confocal microscopy (LSCM) is exploited for its ability to collect fluorescent, as well as transmitted and back scattered light (BSL) images at the same time. Fluorescent information from a whole mount (preembedding) or from thin sections (post-embedding) can be displayed as a color overlay on transmission electron microscopy (TEM) images. Fluorescence-integrated TEM (F-TEM) images provide a fluorescent perspective to TEM images. The pre-embedding method uses a thin two-part agarose pad to immobilize live Caenorhabditis elegans embryos for LSCM, HPF, and TEM. Pre-embedding F-TEM images display fluorescent information collected from a whole mount of live embryos onto all thin sections collected from that sample. In contrast, the postembedding method uses HPF and freeze substitution with 1% paraformaldehyde in 95% ethanol followed by low-temperature embedding in methacrylate resin. This procedure preserves the structure and function of green fluorescent protein (GFP) as determined by immunogold labeling of GFP, when compared with GFP expression, both demonstrated in the same thin section.

  13. Edge detection in microscopy images using curvelets

    PubMed Central

    Gebäck, Tobias; Koumoutsakos, Petros

    2009-01-01

    Background Despite significant progress in imaging technologies, the efficient detection of edges and elongated features in images of intracellular and multicellular structures acquired using light or electron microscopy is a challenging and time consuming task in many laboratories. Results We present a novel method, based on the discrete curvelet transform, to extract a directional field from the image that indicates the location and direction of the edges. This directional field is then processed using the non-maximal suppression and thresholding steps of the Canny algorithm to trace along the edges and mark them. Optionally, the edges may then be extended along the directions given by the curvelets to provide a more connected edge map. We compare our scheme to the Canny edge detector and an edge detector based on Gabor filters, and show that our scheme performs better in detecting larger, elongated structures possibly composed of several step or ridge edges. Conclusion The proposed curvelet based edge detection is a novel and competitive approach for imaging problems. We expect that the methodology and the accompanying software will facilitate and improve edge detection in images available using light or electron microscopy. PMID:19257905

  14. Classification of microscopy images of Langerhans islets

    NASA Astrophysics Data System (ADS)

    Å vihlík, Jan; Kybic, Jan; Habart, David; Berková, Zuzana; Girman, Peter; Kříž, Jan; Zacharovová, Klára

    2014-03-01

    Evaluation of images of Langerhans islets is a crucial procedure for planning an islet transplantation, which is a promising diabetes treatment. This paper deals with segmentation of microscopy images of Langerhans islets and evaluation of islet parameters such as area, diameter, or volume (IE). For all the available images, the ground truth and the islet parameters were independently evaluated by four medical experts. We use a pixelwise linear classifier (perceptron algorithm) and SVM (support vector machine) for image segmentation. The volume is estimated based on circle or ellipse fitting to individual islets. The segmentations were compared with the corresponding ground truth. Quantitative islet parameters were also evaluated and compared with parameters given by medical experts. We can conclude that accuracy of the presented fully automatic algorithm is fully comparable with medical experts.

  15. Surface Plasmon Coupled Phosphorescence (SPCP)

    PubMed Central

    Previte, Michael J. R.; Aslan, Kadir; Zhang, Yongxia; Geddes, Chris D.

    2009-01-01

    We report the first observation of surface plasmon coupled phosphorescence (SPCP) for PtOEP (2,3,7,8,12,17,18-octaethyl-21H,23H-porphyrin platinum II) immobilized in polyvinyl chloride (PVC) films on continuous gold films of 47 nm thickness. We confirm the observation of SPCP by comparing the spectra and lifetimes for plasmon coupled phosphorescence with the free space isotropic phosphorescence emission. Due to the directional emission inherent to plasmon coupled phosphorescence, we believe that SPCP can facilitate the study of phosphorescence in biological applications, such as protein dynamics and alkaline phosphatase studies, whose signal intensities are inherently weak and nearly always isotropic. PMID:19562099

  16. Surface plasmon coupled phosphorescence (SPCP)

    NASA Astrophysics Data System (ADS)

    Previte, Michael J. R.; Aslan, Kadir; Zhang, Yongxia; Geddes, Chris D.

    2006-12-01

    We report the first observation of surface plasmon coupled phosphorescence (SPCP) for PtOEP (2,3,7,8,12,17,18-octaethyl-21H,23H-porphyrin platinum II) immobilized in polyvinyl chloride films on continuous gold films of 47 nm thickness. We confirm the observation of SPCP by comparing the spectra and lifetimes for plasmon coupled phosphorescence with the free space isotropic phosphorescence emission. Due to the directional emission inherent to plasmon coupled phosphorescence, we believe that SPCP can facilitate the study of phosphorescence in biological applications, such as protein dynamics and alkaline phosphatase studies, whose signal intensities are inherently weak and nearly always isotropic.

  17. Surface Plasmon Coupled Phosphorescence (SPCP).

    PubMed

    Previte, Michael J R; Aslan, Kadir; Zhang, Yongxia; Geddes, Chris D

    2006-12-11

    We report the first observation of surface plasmon coupled phosphorescence (SPCP) for PtOEP (2,3,7,8,12,17,18-octaethyl-21H,23H-porphyrin platinum II) immobilized in polyvinyl chloride (PVC) films on continuous gold films of 47 nm thickness. We confirm the observation of SPCP by comparing the spectra and lifetimes for plasmon coupled phosphorescence with the free space isotropic phosphorescence emission. Due to the directional emission inherent to plasmon coupled phosphorescence, we believe that SPCP can facilitate the study of phosphorescence in biological applications, such as protein dynamics and alkaline phosphatase studies, whose signal intensities are inherently weak and nearly always isotropic.

  18. Image segmentation for integrated multiphoton microscopy and reflectance confocal microscopy imaging of human skin in vivo

    PubMed Central

    Chen, Guannan; Lui, Harvey

    2015-01-01

    Background Non-invasive cellular imaging of the skin in vivo can be achieved in reflectance confocal microscopy (RCM) and multiphoton microscopy (MPM) modalities to yield complementary images of the skin based on different optical properties. One of the challenges of in vivo microscopy is the delineation (i.e., segmentation) of cellular and subcellular architectural features. Methods In this work we present a method for combining watershed and level-set models for segmentation of multimodality images obtained by an integrated MPM and RCM imaging system from human skin in vivo. Results Firstly, a segmentation model based on watershed is introduced for obtaining the accurate structure of cell borders from the RCM image. Secondly,, a global region based energy level-set model is constructed for extracting the nucleus of each cell from the MPM image. Thirdly, a local region-based Lagrange Continuous level-set approach is used for segmenting cytoplasm from the MPM image. Conclusions Experimental results demonstrated that cell borders from RCM image and boundaries of cytoplasm and nucleus from MPM image can be obtained by our segmentation method with better accuracy and effectiveness. We are planning to use this method to perform quantitative analysis of MPM and RCM images of in vivo human skin to study the variations of cellular parameters such as cell size, nucleus size and other mophormetric features with skin pathologies. PMID:25694949

  19. Fast image analysis in polarization SHG microscopy.

    PubMed

    Amat-Roldan, Ivan; Psilodimitrakopoulos, Sotiris; Loza-Alvarez, Pablo; Artigas, David

    2010-08-02

    Pixel resolution polarization-sensitive second harmonic generation (PSHG) imaging has been recently shown as a promising imaging modality, by largely enhancing the capabilities of conventional intensity-based SHG microscopy. PSHG is able to obtain structural information from the elementary SHG active structures, which play an important role in many biological processes. Although the technique is of major interest, acquiring such information requires long offline processing, even with current computers. In this paper, we present an approach based on Fourier analysis of the anisotropy signature that allows processing the PSHG images in less than a second in standard single core computers. This represents a temporal improvement of several orders of magnitude compared to conventional fitting algorithms. This opens up the possibility for fast PSHG information with the subsequent benefit of potential use in medical applications.

  20. Nanoscale imaging of RNA with expansion microscopy.

    PubMed

    Chen, Fei; Wassie, Asmamaw T; Cote, Allison J; Sinha, Anubhav; Alon, Shahar; Asano, Shoh; Daugharthy, Evan R; Chang, Jae-Byum; Marblestone, Adam; Church, George M; Raj, Arjun; Boyden, Edward S

    2016-08-01

    The ability to image RNA identity and location with nanoscale precision in intact tissues is of great interest for defining cell types and states in normal and pathological biological settings. Here, we present a strategy for expansion microscopy of RNA. We developed a small-molecule linker that enables RNA to be covalently attached to a swellable polyelectrolyte gel synthesized throughout a biological specimen. Then, postexpansion, fluorescent in situ hybridization (FISH) imaging of RNA can be performed with high yield and specificity as well as single-molecule precision in both cultured cells and intact brain tissue. Expansion FISH (ExFISH) separates RNAs and supports amplification of single-molecule signals (i.e., via hybridization chain reaction) as well as multiplexed RNA FISH readout. ExFISH thus enables super-resolution imaging of RNA structure and location with diffraction-limited microscopes in thick specimens, such as intact brain tissue and other tissues of importance to biology and medicine.

  1. Computer assisted analysis of microscopy images

    NASA Astrophysics Data System (ADS)

    Sawicki, M.; Munhutu, P.; DaPonte, J.; Caragianis-Broadbridge, C.; Lehman, A.; Sadowski, T.; Garcia, E.; Heyden, C.; Mirabelle, L.; Benjamin, P.

    2009-01-01

    The use of Transmission Electron Microscopy (TEM) to characterize the microstructure of a material continues to grow in importance as technological advancements become increasingly more dependent on nanotechnology1 . Since nanoparticle properties such as size (diameter) and size distribution are often important in determining potential applications, a particle analysis is often performed on TEM images. Traditionally done manually, this has the potential to be labor intensive, time consuming, and subjective2. To resolve these issues, automated particle analysis routines are becoming more widely accepted within the community3. When using such programs, it is important to compare their performance, in terms of functionality and cost. The primary goal of this study was to apply one such software package, ImageJ to grayscale TEM images of nanoparticles with known size. A secondary goal was to compare this popular open-source general purpose image processing program to two commercial software packages. After a brief investigation of performance and price, ImageJ was identified as the software best suited for the particle analysis conducted in the study. While many ImageJ functions were used, the ability to break agglomerations that occur in specimen preparation into separate particles using a watershed algorithm was particularly helpful4.

  2. Live cell imaging by multifocal multiphoton microscopy.

    PubMed

    Straub, M; Lodemann, P; Holroyd, P; Jahn, R; Hell, S W

    2000-10-01

    Multifocal multiphoton microscopy (MMM) permits parallel multiphoton excitation by scanning an array of high numerical aperture foci across a plane in the sample. MMM is particularly suitable for live cell investigations since it combines advantages of standard multiphoton microscopy such as optical sectioning and suppression of out-of-focus phototoxicity with high recording speeds. Here we describe several applications of MMM to live cell imaging using the neuroendocrine cell line PC12 and bovine chromaffin cells. Stainings were performed with the acidophilic dye acridine orange and the lipophilic dyes FM1-43 and Fast DiA as well as by transfection of the cells with GFP. In both bovine chromaffin and PC12 cells structural elements of nuclear chromatin and the 3-D distribution of acidic organelles inside the cells were visualized. In PC12 cells differentiated by nerve growth factor examples of neurites were monitored. Stainings of membranes were used to reconstruct the morphology of cells and neurites in three dimensions by volume-rendering and by isosurface plots. 3-D reconstructions were composed from stacks of about 50 images each with a diameter of 30-100 microm that were acquired within a few seconds. We conclude that MMM proves to be a technically simple and very effective method for fast 3-D live cell imaging at high resolution.

  3. [Mobile phone based wireless microscopy imaging technology].

    PubMed

    Yuan, Yucheng; Liu, Jing

    2011-03-01

    This article proposes a new device named "Wireless Cellscope" that combining mobile phone and optical microscope together. The established wireless microscope platform consists of mobile phone, network monitor, miniaturized microscope or high resolution microscope etc. A series of conceptual experiments were performed on microscopic observation of ordinary objects and mice tumor tissue slices. It was demonstrated that, the new method could acquire microscopy images via a wireless way, which is spatially independent. With small size and low cost, the device thus developed has rather wide applicability in non-disturbing investigation of cell/tissue culture and long distance observation of dangerous biological sample etc.

  4. Difluoroboron β-Diketonate Materials with Long-Lived Phosphorescence Enable Lifetime Based Oxygen Imaging with a Portable Cost Effective Camera.

    PubMed

    Mathew, Alexander S; DeRosa, Christopher A; Demas, James N; Fraser, Cassandra L

    2016-04-21

    Lifetime-based oxygen imaging is useful in many biological applications but instrumentation can be stationary, expensive, and complex. Herein, we present a portable, cost effective, simple alternative with high spatiotemporal resolution that uses a complementary metal oxide silicon (CMOS) camera to measure oxygen sensitive lifetimes on the millisecond scale. We demonstrate its compatibility with difluoroboron β-diketonate poly(lactic acid) (BF2bdkPLA) polymers which are nontoxic and exhibit long-lived oxygen sensitive phosphorescence. Spatially resolved lifetimes of four BF2bdkPLA variants are measured using nonlinear least squares (NLS) and rapid lifetime determination (RLD) both of which are shown to be accurate and precise. Real-time imaging in a dynamic environment is demonstrated by determining lifetime pixel-wise. The setup costs less than $5000, easily fits into a backpack, and can operate on battery power alone. This versatility combined with the inherent utility of lifetime measurements make this system a useful tool for a wide variety of oxygen sensing applications. This study serves as an important foundation for the development of dual mode real time lifetime plus ratiometric imaging with bright, long lifetime difluoroboron β-diketonate probes.

  5. Imaging without fluorescence: nonlinear optical microscopy for quantitative cellular imaging.

    PubMed

    Streets, Aaron M; Li, Ang; Chen, Tao; Huang, Yanyi

    2014-09-02

    Quantitative single-cell analysis enables the characterization of cellular systems with a level of detail that cannot be achieved with ensemble measurement. In this Feature we explore quantitative cellular imaging applications with nonlinear microscopy techniques. We first offer an introductory tutorial on nonlinear optical processes and then survey a range of techniques that have proven to be useful for quantitative live cell imaging without fluorescent labels.

  6. Smart responsive phosphorescent materials for data recording and security protection.

    PubMed

    Sun, Huibin; Liu, Shujuan; Lin, Wenpeng; Zhang, Kenneth Yin; Lv, Wen; Huang, Xiao; Huo, Fengwei; Yang, Huiran; Jenkins, Gareth; Zhao, Qiang; Huang, Wei

    2014-04-07

    Smart luminescent materials that are responsive to external stimuli have received considerable interest. Here we report ionic iridium (III) complexes simultaneously exhibiting mechanochromic, vapochromic and electrochromic phosphorescence. These complexes share the same phosphorescent iridium (III) cation with a N-H moiety in the N^N ligand and contain different anions, including hexafluorophosphate, tetrafluoroborate, iodide, bromide and chloride. The anionic counterions cause a variation in the emission colours of the complexes from yellow to green by forming hydrogen bonds with the N-H proton. The electronic effect of the N-H moiety is sensitive towards mechanical grinding, solvent vapour and electric field, resulting in mechanochromic, vapochromic and electrochromic phosphorescence. On the basis of these findings, we construct a data-recording device and demonstrate data encryption and decryption via fluorescence lifetime imaging and time-gated luminescence imaging techniques. Our results suggest that rationally designed phosphorescent complexes may be promising candidates for advanced data recording and security protection.

  7. Digital imaging microscopy: the marriage of spectroscopy and the solid state CCD camera

    NASA Astrophysics Data System (ADS)

    Jovin, Thomas M.; Arndt-Jovin, Donna J.

    1991-12-01

    Biological samples have been imaged using microscopes equipped with slow-scan CCD cameras. Examples are presented of studies based on the detection of light emission signals in the form of fluorescence and phosphorescence. They include applications in the field of cell biology: (a) replication and topology of mammalian cell nuclei; (b) cytogenetic analysis of human metaphase chromosomes; and (c) time-resolved measurements of DNA-binding dyes in cells and on isolated chromosomes, as well as of mammalian cell surface antigens, using the phosphorescence of acridine orange and fluorescence resonance energy transfer of labeled lectins, respectively.

  8. Light Microscopy Module Imaging Tested and Demonstrated

    NASA Technical Reports Server (NTRS)

    Gati, Frank

    2004-01-01

    The Fluids Integrated Rack (FIR), a facility-class payload, and the Light Microscopy Module (LMM), a subrack payload, are integrated research facilities that will fly in the U.S. Laboratory module, Destiny, aboard the International Space Station. Both facilities are being engineered, designed, and developed at the NASA Glenn Research Center by Northrop Grumman Information Technology. The FIR is a modular, multiuser scientific research facility that is one of two racks that make up the Fluids and Combustion Facility (the other being the Combustion Integrated Rack). The FIR has a large volume dedicated for experimental hardware; easily reconfigurable diagnostics, power, and data systems that allow for unique experiment configurations; and customizable software. The FIR will also provide imagers, light sources, power management and control, command and data handling for facility and experiment hardware, and data processing and storage. The first payload in the FIR will be the LMM. The LMM integrated with the FIR is a remotely controllable, automated, on-orbit microscope subrack facility, with key diagnostic capabilities for meeting science requirements--including video microscopy to observe microscopic phenonema and dynamic interactions, interferometry to make thin-film measurements with nanometer resolution, laser tweezers to manipulate micrometer-sized particles, confocal microscopy to provide enhanced three-dimensional visualization of structures, and spectrophotometry to measure the photonic properties of materials. Vibration disturbances were identified early in the LMM development phase as a high risk for contaminating the science microgravity environment. An integrated FIR-LMM test was conducted in Glenn's Acoustics Test Laboratory to assess mechanical sources of vibration and their impact to microscopic imaging. The primary purpose of the test was to characterize the LMM response at the sample location, the x-y stage within the microscope, to vibration

  9. Image analysis applied to luminescence microscopy

    NASA Astrophysics Data System (ADS)

    Maire, Eric; Lelievre-Berna, Eddy; Fafeur, Veronique; Vandenbunder, Bernard

    1998-04-01

    We have developed a novel approach to study luminescent light emission during migration of living cells by low-light imaging techniques. The equipment consists in an anti-vibration table with a hole for a direct output under the frame of an inverted microscope. The image is directly captured by an ultra low- light level photon-counting camera equipped with an image intensifier coupled by an optical fiber to a CCD sensor. This installation is dedicated to measure in a dynamic manner the effect of SF/HGF (Scatter Factor/Hepatocyte Growth Factor) both on activation of gene promoter elements and on cell motility. Epithelial cells were stably transfected with promoter elements containing Ets transcription factor-binding sites driving a luciferase reporter gene. Luminescent light emitted by individual cells was measured by image analysis. Images of luminescent spots were acquired with a high aperture objective and time exposure of 10 - 30 min in photon-counting mode. The sensitivity of the camera was adjusted to a high value which required the use of a segmentation algorithm dedicated to eliminate the background noise. Hence, image segmentation and treatments by mathematical morphology were particularly indicated in these experimental conditions. In order to estimate the orientation of cells during their migration, we used a dedicated skeleton algorithm applied to the oblong spots of variable intensities emitted by the cells. Kinetic changes of luminescent sources, distance and speed of migration were recorded and then correlated with cellular morphological changes for each spot. Our results highlight the usefulness of the mathematical morphology to quantify kinetic changes in luminescence microscopy.

  10. Imaging quantum transport using scanning gate microscopy

    NASA Astrophysics Data System (ADS)

    Hackens, Benoit

    2014-03-01

    Quantum transport in nanodevices is usually probed thanks to measurements of the electrical resistance or conductance, which lack the spatial resolution necessary to probe electron behaviour inside the devices. In this talk, we will show that scanning gate microscopy (SGM) yields real-space images of quantum transport phenomena inside archetypal mesoscopic devices such as quantum point contacts and quantum rings. We will first discuss the SGM technique, which is based on mapping the electrical conductance of a device as an electrically-biased sharp metallic tip scans in its vicinity. With SGM, we demonstrated low temperature imaging of the electron probability density and interferences in embedded mesoscopic quantum rings [B. Hackens et al., Nat. Phys. 2, 826 (2006)]. At high magnetic field, thanks to the SGM conductance maps, one can decrypt complex transport phenomena such as tunneling between quantum Hall edge state, either direct or through localized states [B. Hackens et al., Nat. Comm. 1, 39 (2010)]. Moreover, the technique also allows to perform local spectroscopy of electron transport through selected localized states [F. Martins et al., New J. of Phys. 15, 013049 (2013); F. Martins et al., Sci. Rep. 3, 1416 (2013)]. Overall, these examples show that scanning gate microscopy is a powerful tool for imaging charge carrier behavior inside devices fabricated from a variety of materials, and opens the way towards a more intimate manipulation of charge and quasiparticle transport. This work was performed in collaboration with F. Martins, S. Faniel, B. Brun, M. Pala, X. Wallart, L. Desplanque, B. Rosenow, T. Ouisse, H. Sellier, S. Huant and V. Bayot.

  11. Nonlinear Polarimetric Microscopy for Biomedical Imaging

    NASA Astrophysics Data System (ADS)

    Samim, Masood

    A framework for the nonlinear optical polarimetry and polarimetric microscopy is developed. Mathematical equations are derived in terms of linear and nonlinear Stokes Mueller formalism, which comprehensively characterize the polarization properties of the incoming and outgoing radiations, and provide structural information about the organization of the investigated materials. The algebraic formalism developed in this thesis simplifies many predictions for a nonlinear polarimetry study and provides an intuitive understanding of various polarization properties for radiations and the intervening medium. For polarimetric microscopy experiments, a custom fast-scanning differential polarization microscope is developed, which is also capable of real-time three-dimensional imaging. The setup is equipped with a pair of high-speed resonant and galvanometric scanning mirrors, and supplemented by advanced adaptive optics and data acquisition modules. The scanning mirrors when combined with the adaptive optics deformable mirror enable fast 3D imaging. Deformable membrane mirrors and genetic algorithm optimization routines are employed to improve the imaging conditions including correcting the optical aberrations, maximizing signal intensities, and minimizing point-spread-functions of the focal volume. A field-programmable-gate array (FPGA) chip is exploited to rapidly acquire and process the multidimensional data. Using the nonlinear optical polarimetry framework and the home-built polarization microscope, a few biologically important tissues are measured and analyzed to gain insight as to their structure and dynamics. The structure and distribution of muscle sarcomere myosins, connective tissue collagen, carbohydrate-rich starch, and fruit fly eye retinal molecules are characterized with revealing polarization studies. In each case, using the theoretical framework, polarization sensitive data are analyzed to decipher the molecular orientations and nonlinear optical

  12. Nanoscale Imaging of RNA with Expansion Microscopy

    PubMed Central

    Chen, Fei; Wassie, Asmamaw T.; Cote, Allison J.; Sinha, Anubhav; Alon, Shahar; Asano, Shoh; Daugharthy, Evan R.; Chang, Jae-Byum; Marblestone, Adam; Church, George M.; Raj, Arjun; Boyden, Edward S.

    2016-01-01

    The ability to image RNA identity and location with nanoscale precision in intact tissues is of great interest for defining cell types and states in normal and pathological biological settings. Here, we present a strategy for expansion microscopy (ExM) of RNA. We developed a small molecule linker that enables RNA to be covalently attached to a swellable polyelectrolyte gel synthesized throughout a biological specimen. Then, post-expansion, fluorescent in situ hybridization (FISH) imaging of RNA can be performed with high yield and specificity, with single molecule precision, in both cultured cells and intact brain tissue. Expansion FISH (ExFISH) de-crowds RNAs and supports amplification of single molecule signals (i.e., via hybridization chain reaction (HCR)) as well as multiplexed RNA FISH readout. ExFISH thus enables super-resolution imaging of RNA structure and location with diffraction-limited microscopes in thick specimens, such as intact brain tissue and other tissues of importance to biology and medicine. PMID:27376770

  13. Imaging White Adipose Tissue With Confocal Microscopy

    PubMed Central

    Martinez-Santibañez, Gabriel; Cho, Kae Won; Lumeng, Carey N.

    2014-01-01

    Adipose tissue is composed of a variety of cell types that include mature adipocytes, endothelial cells, fibroblasts, adipocyte progenitors, and a range of inflammatory leukocytes. These cells work in concert to promote nutrient storage in adipose tissue depots and vary widely based on location. In addition, overnutrition and obesity impart significant changes in the architecture of adipose tissue that are strongly associated with metabolic dysfunction. Recent studies have called attention to the importance of adipose tissue microenvironments in regulating adipocyte function and therefore require techniques that preserve cellular interactions and permit detailed analysis of three-dimensional structures in fat. This chapter summarizes our experience with the use of laser scanning confocal microscopy for imaging adipose tissue in rodents. PMID:24480339

  14. Intravital multiphoton microscopy for imaging hepatobiliary function

    NASA Astrophysics Data System (ADS)

    Li, Feng-Chieh; Sun, Tzu-Lin; Lee, Hsuan-Shu; Yang, Shu-Mei; Dong, Chen-Yuan

    2007-07-01

    Liver is the chemical factory in body responsible for important functions such as metabolism and detoxification. When liver can not be regenerated in time to amend damages that has occurred, failure of hepatic functions can result. Traditionally, the study of liver pathology has depended on histological techniques, but such methods are limited to ex-vivo observation. In order to study hepatic metabolism in vivo, we have designed a hepatic imaging chamber made of biocompatible titanium alloy (6V4Al-Ti, ELI grade). In combination with multiphoton and second harmonic generation microscopy, our approach allows the intravital observation of hepatic intravital activities to be achieved. Processes such as hepatic metabolism and disease progression can be studied using this methodology.

  15. Imaging white adipose tissue with confocal microscopy.

    PubMed

    Martinez-Santibañez, Gabriel; Cho, Kae Won; Lumeng, Carey N

    2014-01-01

    Adipose tissue is composed of a variety of cell types that include mature adipocytes, endothelial cells, fibroblasts, adipocyte progenitors, and a range of inflammatory leukocytes. These cells work in concert to promote nutrient storage in adipose tissue depots and vary widely based on location. In addition, overnutrition and obesity impart significant changes in the architecture of adipose tissue that are strongly associated with metabolic dysfunction. Recent studies have called attention to the importance of adipose tissue microenvironments in regulating adipocyte function and therefore require techniques that preserve cellular interactions and permit detailed analysis of three-dimensional structures in fat. This chapter summarizes our experience with the use of laser scanning confocal microscopy for imaging adipose tissue in rodents. © 2014 Elsevier Inc. All rights reserved.

  16. Multiple frequency fluorescence lifetime imaging microscopy.

    PubMed

    Squire, A; Verveer, P J; Bastiaens, P I

    2000-02-01

    The experimental configuration and the computational algorithms for performing multiple frequency fluorescence lifetime imaging microscopy (mfFLIM) are described. The mfFLIM experimental set-up enables the simultaneous homodyne detection of fluorescence emission modulated at a set of harmonic frequencies. This was achieved in practice by using monochromatic laser light as an excitation source modulated at a harmonic set of frequencies. A minimum of four frequencies were obtained by the use of two standing wave acousto-optic modulators placed in series. Homodyne detection at each of these frequencies was performed simultaneously by mixing with matching harmonics present in the gain characteristics of a microchannel plate (MCP) image intensifier. These harmonics arise as a natural consequence of applying a high frequency sinusoidal voltage to the photocathode of the device, which switches the flow of photoelectrons 'on' and 'off' as the sinus voltage swings from negative to positive. By changing the bias of the sinus it was possible to control the duration of the 'on' state of the intensifier relative to its 'off' state, enabling the amplitude of the higher harmonic content in the gain to be controlled. Relative modulation depths of 400% are theoretically possible from this form of square-pulse modulation. A phase-dependent integrated image is formed by the sum of the mixed frequencies on the phosphor of the MCP. Sampling this signal over a full period of the fundamental harmonic enables each harmonic to be resolved, provided that the Nyquist sampling criterion is satisfied for the highest harmonic component in the signal. At each frequency both the phase and modulation parameters can be estimated from a Fourier analysis of the data. These parameters enable the fractional populations and fluorescence lifetimes of individual components of a complex fluorescence decay to be resolved on a pixel-by-pixel basis using a non-linear fit to the dispersion relationships. The

  17. Imaging soft materials with scanning tunneling microscopy.

    PubMed

    Woodward, J T; Zasadzinski, J A

    1996-01-01

    By modifying freeze-fracture replication, a standard electron microscopy fixation technique, for use with the scanning tunneling microscope (STM), a variety of soft, non-conductive biomaterials can be imaged at high resolution in three dimensions. Metal replicas make near ideal samples for STM in comparison to the original biological materials. Modifications include a 0.1 micron backing layer of silver and mounting the replicas on a fine-mesh silver filters to enhance the rigidity of the metal replica. This is required unless STM imaging is carried out in vacuum; otherwise, a liquid film of contamination physically connects the STM tip with the sample. This mechanical coupling leads to exaggerated height measurements; the enhanced rigidity of the thicker replica eliminates much of the height amplification. Further improvement was obtained by imaging in a dry nitrogen atmosphere. Calibration and reproducibility were tested with replicas of well characterized bilayers of cadmium arachidate on mica that provide regular 5.5 nm steps. We have used the STM/replica technique to examine the ripple shape and amplitude in the P beta phase of dimyristoylphosphatidyl-choline (DMPC) in water. STM images were analyzed using a cross-correlation averaging program to eliminate the effects of noise and the finite size and shapes of the metal grains that make up the replica. The correlation averaging allowed us to develop a composite ripple profile averaged over hundreds of individual ripples and different samples. The STM/replica technique is sufficiently general that it can be used to examine a variety of hydrated lipid and protein samples at a lateral resolution of about 1 nm and a vertical resolution of about 0.3 nm.

  18. Nanoscale chemical imaging by photoinduced force microscopy

    PubMed Central

    Nowak, Derek; Morrison, William; Wickramasinghe, H. Kumar; Jahng, Junghoon; Potma, Eric; Wan, Lei; Ruiz, Ricardo; Albrecht, Thomas R.; Schmidt, Kristin; Frommer, Jane; Sanders, Daniel P.; Park, Sung

    2016-01-01

    Correlating spatial chemical information with the morphology of closely packed nanostructures remains a challenge for the scientific community. For example, supramolecular self-assembly, which provides a powerful and low-cost way to create nanoscale patterns and engineered nanostructures, is not easily interrogated in real space via existing nondestructive techniques based on optics or electrons. A novel scanning probe technique called infrared photoinduced force microscopy (IR PiFM) directly measures the photoinduced polarizability of the sample in the near field by detecting the time-integrated force between the tip and the sample. By imaging at multiple IR wavelengths corresponding to absorption peaks of different chemical species, PiFM has demonstrated the ability to spatially map nm-scale patterns of the individual chemical components of two different types of self-assembled block copolymer films. With chemical-specific nanometer-scale imaging, PiFM provides a powerful new analytical method for deepening our understanding of nanomaterials. PMID:27051870

  19. Imaging Cytoskeleton Components by Electron Microscopy

    PubMed Central

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers—actin filaments, microtubules, and intermediate filaments—are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell. PMID:26498781

  20. Imaging Cytoskeleton Components by Electron Microscopy.

    PubMed

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell.

  1. Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna.

    PubMed

    Briñas, Raymond P; Troxler, Thomas; Hochstrasser, Robin M; Vinogradov, Sergei A

    2005-08-24

    Imaging oxygen in 3D with submicron spatial resolution can be made possible by combining phosphorescence quenching technique with multiphoton laser scanning microscopy. Because Pt and Pd porphyrin-based phosphorescent dyes, traditionally used as phosphors in biological oxygen measurements, exhibit extremely low two-photon absorption (2PA) cross-sections, we designed a nanosensor for oxygen, in which a 2P absorbing antenna is coupled to a metalloporphyrin core via intramolecular energy transfer (ET) with the purpose of amplifying the 2PA induced phosphorescence of the metalloporphyrin. The central component of the device is a polyfunctionalized Pt porphyrin, whose triplet state emission at ambient temperatures is strong, occurs in the near infrared and is sensitive to O2. The 2PA chromophores are chosen in such a way that their absorption is maximal in the near infrared (NIR) window of tissue (e.g., 700-900 nm), while their fluorescence is overlapped with the absorption band(s) of the core metalloporphyrin, ensuring an efficient antenna-core resonance ET. The metalloporphyrin-antenna construct is embedded inside the protecting dendritic jacket, which isolates the core from interactions with biological macromolecules, controls diffusion of oxygen and makes the entire sensor water-soluble. Several Pt porphyrin-coumarin based sensors were synthesized and their photophyics studied to evaluate the proposed design.

  2. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes.

  3. Multi-modal registration for correlative microscopy using image analogies.

    PubMed

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-08-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Multi-modal Registration for Correlative Microscopy using Image Analogies

    PubMed Central

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943

  5. Restoration of uneven illumination in light sheet microscopy images.

    PubMed

    Uddin, Mohammad Shorif; Lee, Hwee Kuan; Preibisch, Stephan; Tomancak, Pavel

    2011-08-01

    Light microscopy images suffer from poor contrast due to light absorption and scattering by the media. The resulting decay in contrast varies exponentially across the image along the incident light path. Classical space invariant deconvolution approaches, while very effective in deblurring, are not designed for the restoration of uneven illumination in microscopy images. In this article, we present a modified radiative transfer theory approach to solve the contrast degradation problem of light sheet microscopy (LSM) images. We confirmed the effectiveness of our approach through simulation as well as real LSM images.

  6. Fully Hydrated Yeast Cells Imaged with Electron Microscopy

    PubMed Central

    Peckys, Diana B.; Mazur, Peter; Gould, Kathleen L.; de Jonge, Niels

    2011-01-01

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccaromyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. PMID:21575587

  7. Fully hydrated yeast cells imaged with electron microscopy.

    PubMed

    Peckys, Diana B; Mazur, Peter; Gould, Kathleen L; de Jonge, Niels

    2011-05-18

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccharomyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Bioluminescence microscopy using a short focal-length imaging lens.

    PubMed

    Ogoh, K; Akiyoshi, R; May-Maw-Thet; Sugiyama, T; Dosaka, S; Hatta-Ohashi, Y; Suzuki, H

    2014-03-01

    Bioluminescence from cells is so dim that bioluminescence microscopy is performed using an ultra low-light imaging camera. Although the image sensor of such cameras has been greatly improved over time, such improvements have not been made commercially available for microscopes until now. Here, we customized the optical system of a microscope for bioluminescence imaging. As a result, bioluminescence images of cells could be captured with a conventional objective lens and colour imaging camera. As bioluminescence microscopy requires no excitation light, it lacks the photo-toxicity associated with fluorescence imaging and permits the long-term, nonlethal observation of living cells. Thus, bioluminescence microscopy would be a powerful tool in cellular biology that complements fluorescence microscopy.

  9. Bioluminescence microscopy using a short focal-length imaging lens

    PubMed Central

    Ogoh, K; Akiyoshi, R; May-Maw-Thet; Sugiyama, T; Dosaka, S; Hatta-Ohashi, Y; Suzuki, H

    2014-01-01

    Bioluminescence from cells is so dim that bioluminescence microscopy is performed using an ultra low-light imaging camera. Although the image sensor of such cameras has been greatly improved over time, such improvements have not been made commercially available for microscopes until now. Here, we customized the optical system of a microscope for bioluminescence imaging. As a result, bioluminescence images of cells could be captured with a conventional objective lens and colour imaging camera. As bioluminescence microscopy requires no excitation light, it lacks the photo-toxicity associated with fluorescence imaging and permits the long-term, nonlethal observation of living cells. Thus, bioluminescence microscopy would be a powerful tool in cellular biology that complements fluorescence microscopy. PMID:24386879

  10. Transmission electron microscopy: Imaging of materials

    SciTech Connect

    Thomas, G.

    1988-10-01

    This report was an invited paper for a symposium and only covers general aspects of transmission electron microscopy. A history, and examples of work done on ceramics and alloys are covered. 6 refs., 44 figs. (JL)

  11. Imaging DNA Structure by Atomic Force Microscopy.

    PubMed

    Pyne, Alice L B; Hoogenboom, Bart W

    2016-01-01

    Atomic force microscopy (AFM) is a microscopy technique that uses a sharp probe to trace a sample surface at nanometre resolution. For biological applications, one of its key advantages is its ability to visualize substructure of single molecules and molecular complexes in an aqueous environment. Here, we describe the application of AFM to determine superstructure and secondary structure of surface-bound DNA. The method is also readily applicable to probe DNA-DNA interactions and DNA-protein complexes.

  12. Biological imaging with coherent Raman scattering microscopy: a tutorial

    PubMed Central

    Alfonso-García, Alba; Mittal, Richa; Lee, Eun Seong; Potma, Eric O.

    2014-01-01

    Abstract. Coherent Raman scattering (CRS) microscopy is gaining acceptance as a valuable addition to the imaging toolset of biological researchers. Optimal use of this label-free imaging technique benefits from a basic understanding of the physical principles and technical merits of the CRS microscope. This tutorial offers qualitative explanations of the principles behind CRS microscopy and provides information about the applicability of this nonlinear optical imaging approach for biological research. PMID:24615671

  13. Biological imaging with coherent Raman scattering microscopy: a tutorial

    NASA Astrophysics Data System (ADS)

    Alfonso-García, Alba; Mittal, Richa; Lee, Eun Seong; Potma, Eric O.

    2014-07-01

    Coherent Raman scattering (CRS) microscopy is gaining acceptance as a valuable addition to the imaging toolset of biological researchers. Optimal use of this label-free imaging technique benefits from a basic understanding of the physical principles and technical merits of the CRS microscope. This tutorial offers qualitative explanations of the principles behind CRS microscopy and provides information about the applicability of this nonlinear optical imaging approach for biological research.

  14. A highly selective phosphorescence probe for histidine in living bodies.

    PubMed

    Gao, Quankun; Song, Bo; Ye, Zhiqiang; Yang, Liu; Liu, Ruoyang; Yuan, Jingli

    2015-11-14

    In this work, we designed and synthesized a heterobimetallic ruthenium(ii)-nickel(ii) complex, [Ru(bpy)2(phen-DPA)Ni](PF6)4 (Ru-Ni), as a highly selective phosphorescence probe for histidine. The probe exhibited weak emission at 603 nm because the phosphorescence of the Ru(ii) complex can be strongly quenched by the paramagnetic Ni(2+) ion. In the presence of histidine, reaction of Ru-Ni with histidine resulted in the release of nickel(ii) and an enhancement in the phosphorescence intensity at 603 nm. Ru-Ni showed high selectivity for histidine even in the presence of other amino acids and cellular abundant species. Cell imaging experimental results demonstrated that Ru-Ni is membrane permeable, and can be applied for visualizing histidine in live cells. More interestingly, Ru-Ni also can act as a novel reaction-based nuclear staining agent for visualizing exclusively the nuclei of living cells with a significant phosphorescence enhancement. In addition, the potential of the probe for biological applications was confirmed by employing it for phosphorescence imaging of histidine in larval zebrafish and Daphnia magna. These results demonstrated that Ru-Ni would be a useful tool for physiological and pathological studies involving histidine.

  15. Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors.

    PubMed

    Woo, Hana; Cho, Somin; Han, Yejee; Chae, Weon-Sik; Ahn, Dae-Ro; You, Youngmin; Nam, Wonwoo

    2013-03-27

    Despite the promising photofunctionalities, phosphorescent probes have been examined only to a limited extent, and the molecular features that provide convenient handles for controlling the phosphorescence response have yet to be identified. We synthesized a series of phosphorescence zinc sensors based on a cyclometalated heteroleptic Ir(III) complex. The sensor construct includes two anionic cyclometalating ligands and a neutral diimine ligand that tethers a di(2-picolyl)amine (DPA) zinc receptor. A series of cyclometalating ligands with a range of electron densities and band gap energies were used to create phosphorescence sensors. The sensor series was characterized by variable-temperature steady-state and transient photoluminescence spectroscopy studies, electrochemical measurements, and quantum chemical calculations based on time-dependent density functional theory. The studies demonstrated that the suppression of nonradiative photoinduced electron transfer (PeT) from DPA to the photoexcited Ir(IV) species provided the underlying mechanism that governed the phosphorescent response to zinc ions. Importantly, the Coulombic barrier, which was located on either the cyclometalating ligand or the diimine ligand, negligibly influenced the PeT process. Phosphorescence modulation by PeT strictly obeyed the Rehm-Weller principle, and the process occurred in the Marcus-normal region. These findings provide important guidelines for improving sensing performance; an efficient phosphorescence sensor should include a cyclometalating ligand with a wide band gap energy and a deep oxidation potential. Finally, the actions of the sensor were demonstrated by visualizing the intracellular zinc ion distribution in HeLa cells using a confocal laser scanning microscope and a photoluminescence lifetime imaging microscope.

  16. 3D super-resolution imaging by localization microscopy.

    PubMed

    Magenau, Astrid; Gaus, Katharina

    2015-01-01

    Fluorescence microscopy is an important tool in all fields of biology to visualize structures and monitor dynamic processes and distributions. Contrary to conventional microscopy techniques such as confocal microscopy, which are limited by their spatial resolution, super-resolution techniques such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) have made it possible to observe and quantify structure and processes on the single molecule level. Here, we describe a method to image and quantify the molecular distribution of membrane-associated proteins in two and three dimensions with nanometer resolution.

  17. Bacterial cell identification in differential interference contrast microscopy images.

    PubMed

    Obara, Boguslaw; Roberts, Mark A J; Armitage, Judith P; Grau, Vicente

    2013-04-23

    Microscopy image segmentation lays the foundation for shape analysis, motion tracking, and classification of biological objects. Despite its importance, automated segmentation remains challenging for several widely used non-fluorescence, interference-based microscopy imaging modalities. For example in differential interference contrast microscopy which plays an important role in modern bacterial cell biology. Therefore, new revolutions in the field require the development of tools, technologies and work-flows to extract and exploit information from interference-based imaging data so as to achieve new fundamental biological insights and understanding. We have developed and evaluated a high-throughput image analysis and processing approach to detect and characterize bacterial cells and chemotaxis proteins. Its performance was evaluated using differential interference contrast and fluorescence microscopy images of Rhodobacter sphaeroides. Results demonstrate that the proposed approach provides a fast and robust method for detection and analysis of spatial relationship between bacterial cells and their chemotaxis proteins.

  18. Image Resolution in Scanning Transmission Electron Microscopy

    SciTech Connect

    Pennycook, S. J.; Lupini, A.R.

    2008-06-26

    Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

  19. Translation Microscopy (TRAM) for super-resolution imaging

    PubMed Central

    Qiu, Zhen; Wilson, Rhodri S; Liu, Yuewei; R Dun, Alison; Saleeb, Rebecca S; Liu, Dongsheng; Rickman, Colin; Frame, Margaret; Duncan, Rory R; Lu, Weiping

    2016-01-01

    Super-resolution microscopy is transforming our understanding of biology but accessibility is limited by its technical complexity, high costs and the requirement for bespoke sample preparation. We present a novel, simple and multi-color super-resolution microscopy technique, called translation microscopy (TRAM), in which a super-resolution image is restored from multiple diffraction-limited resolution observations using a conventional microscope whilst translating the sample in the image plane. TRAM can be implemented using any microscope, delivering up to 7-fold resolution improvement. We compare TRAM with other super-resolution imaging modalities, including gated stimulated emission deletion (gSTED) microscopy and atomic force microscopy (AFM). We further developed novel ‘ground-truth’ DNA origami nano-structures to characterize TRAM, as well as applying it to a multi-color dye-stained cellular sample to demonstrate its fidelity, ease of use and utility for cell biology. PMID:26822455

  20. New Approaches in Renal Microscopy: Volumetric Imaging and Super-resolution Microscopy

    PubMed Central

    Kim, Alfred H.J.; Suleiman, Hani; Shaw, Andrey S.

    2016-01-01

    Purpose of review Histologic and electron microscopic analysis of the kidney has provided tremendous insight into structures such as the glomerulus and nephron. Recent advances in imaging, such as deep volumetric approaches and super-resolution microscopy, have the capacity to dramatically enhance our current understanding of the structure and function of the kidney. Volumetric imaging can generate images millimeters below the surface of the intact kidney. Super-resolution microscopy breaks the diffraction barrier inherent in traditional light microscopy, enabling for the visualization of fine structures. Here, we describe new approaches to deep volumetric and super-resolution microscopy of the kidney. Recent findings Rapid advances in lasers, microscopic objectives, and tissue preparation have transformed our ability to deep volumetric image the kidney. Innovations in sample preparation have allowed for super-resolution imaging with electron microscopy correlation, providing unprecedented insight into the structures within the glomerulus. Summary Technological advances in imaging have revolutionized our capacity to image both large volumes of tissue and the finest structural details of a cell. These new advances have the potential to provide additional profound observations into the normal and pathologic functions of the kidney. PMID:27023834

  1. Classifying and segmenting microscopy images with deep multiple instance learning

    PubMed Central

    Kraus, Oren Z.; Ba, Jimmy Lei; Frey, Brendan J.

    2016-01-01

    Motivation: High-content screening (HCS) technologies have enabled large scale imaging experiments for studying cell biology and for drug screening. These systems produce hundreds of thousands of microscopy images per day and their utility depends on automated image analysis. Recently, deep learning approaches that learn feature representations directly from pixel intensity values have dominated object recognition challenges. These tasks typically have a single centered object per image and existing models are not directly applicable to microscopy datasets. Here we develop an approach that combines deep convolutional neural networks (CNNs) with multiple instance learning (MIL) in order to classify and segment microscopy images using only whole image level annotations. Results: We introduce a new neural network architecture that uses MIL to simultaneously classify and segment microscopy images with populations of cells. We base our approach on the similarity between the aggregation function used in MIL and pooling layers used in CNNs. To facilitate aggregating across large numbers of instances in CNN feature maps we present the Noisy-AND pooling function, a new MIL operator that is robust to outliers. Combining CNNs with MIL enables training CNNs using whole microscopy images with image level labels. We show that training end-to-end MIL CNNs outperforms several previous methods on both mammalian and yeast datasets without requiring any segmentation steps. Availability and implementation: Torch7 implementation available upon request. Contact: oren.kraus@mail.utoronto.ca PMID:27307644

  2. Comparison of scanning ion conductance microscopy with atomic force microscopy for cell imaging.

    PubMed

    Rheinlaender, Johannes; Geisse, Nicholas A; Proksch, Roger; Schäffer, Tilman E

    2011-01-18

    We present the first direct comparison of scanning ion conductance microscopy (SICM) with atomic force microscopy (AFM) for cell imaging. By imaging the same fibroblast or myoblast cell with both technologies in series, we highlight their advantages and disadvantages with respect to cell imaging. The finite imaging force applied to the sample in AFM imaging results in a coupling of mechanical sample properties into the measured sample topography. For soft samples such as cells this leads to artifacts in the measured topography and to elastic deformation, which we demonstrate by imaging whole fixed cells and cell extensions at high resolution. SICM imaging, on the other hand, has a noncontact character and can provide the true topography of soft samples at a comparable resolution.

  3. Multispectral imaging fluorescence microscopy for living cells.

    PubMed

    Hiraoka, Yasushi; Shimi, Takeshi; Haraguchi, Tokuko

    2002-10-01

    Multispectral imaging technologies have been widely used in fields of astronomy and remote sensing. Interdisciplinary approaches developed in, for example, the National Aeronautics and Space Administration (NASA, USA), the Jet Propulsion Laboratory (JPL, USA), or the Communications Research Laboratory (CRL, Japan) have extended the application areas of these technologies from planetary systems to cellular systems. Here we overview multispectral imaging systems that have been devised for microscope applications. We introduce these systems with particular interest in live cell imaging. Finally we demonstrate examples of spectral imaging of living cells using commercially available systems with no need for user engineering.

  4. Ferritin protein imaging and detection by magnetic force microscopy.

    PubMed

    Hsieh, Chiung-Wen; Zheng, Bin; Hsieh, Shuchen

    2010-03-14

    Magnetic force microscopy was used to image and detect ferritin proteins and the strength of the magnetic signal is discussed, revealing a large workable lift height between the magnetic tip and the ferritin sample.

  5. Phosphorescence bioimaging using cyclometalated Ir(III) complexes.

    PubMed

    You, Youngmin

    2013-08-01

    Recent advances in the development of the phosphorescent Ir(III) complexes have made it possible to implement the phosphorescence modality in bioimaging applications. A variety of phosphorescent Ir(III) complexes have been synthesized and assessed in the context of in vitro and in vivo imaging, especially in subcellular organelle staining and the sensing of biologically important analytes. The examples presented here demonstrate that Ir(III) complexes provide attractive alternatives to fluorescent organic compounds in the construction of biolabels and biosensors. The complexes are particularly advantageous with respect to fluorescent compounds in their compatibility with time-gated bioimaging techniques that completely eliminate background signals due to autofluorescence. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A multistaged automatic restoration of noisy microscopy cell images.

    PubMed

    Xu, Jinwei; Hu, Jiankun; Jia, Xiuping

    2015-01-01

    Automated cell segmentation for microscopy cell images has recently become an initial step for further image analysis in cell biology. However, microscopy cell images are easily degraded by noise during the readout procedure via optical-electronic imaging systems. Such noise degradations result in low signal-to-noise ratio (SNR) and poor image quality for cell identification. In order to improve SNR for subsequent segmentation and image-based quantitative analysis, the commonly used state-of-art restoration techniques are applied but few of them are suitable for corrupted microscopy cell images. In this paper, we propose a multistaged method based on a novel integration of trend surface analysis, quantile-quantile plot, bootstrapping, and the Gaussian spatial kernel for the restoration of noisy microscopy cell images. We show this multistaged approach achieves higher performance compared with other state-of-art restoration techniques in terms of peak signal-to-noise ratio and structure similarity in synthetic noise experiments. This paper also reports an experiment on real noisy microscopy data which demonstrated the advantages of the proposed restoration method for improving segmentation performance.

  7. Image scanning microscopy using a SPAD detector array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Castello, Marco; Tortarolo, Giorgio; Buttafava, Mauro; Tosi, Alberto; Sheppard, Colin J. R.; Diaspro, Alberto; Vicidomini, Giuseppe

    2017-02-01

    The use of an array of detectors can help overcoming the traditional limitation of confocal microscopy: the compromise between signal and theoretical resolution. Each element independently records a view of the sample and the final image can be reconstructed by pixel reassignment or by inverse filtering (e.g. deconvolution). In this work, we used a SPAD array of 25 detectors specifically designed for this goal and our scanning microscopy control system (Carma) to acquire the partial images and to perform online image processing. Further work will be devoted to optimize the image reconstruction step and to improve the fill-factor of the detector.

  8. Image correction in magneto-optical microscopy

    NASA Astrophysics Data System (ADS)

    Paturi, P.; Larsen, B. Hvolbæk; Jacobsen, B. A.; Andersen, N. H.

    2003-06-01

    An image-processing procedure that assures correct determination of the magnetic field distribution of magneto-optical images is presented. The method remedies image faults resulting from sources that are proportional to the incident light intensity, such as different types of defects in the indicator film and unevenness of light, as well as additive signals from detector bias, external light sources, etc. When properly corrected a better measurement of the local magnetic field can be made, even in the case of heavily damaged films. For superconductors the magnetic field distributions may be used for accurate determination of the current distributions without the spurious current loops associated with defects in the films.

  9. Microscopy

    Treesearch

    Patricia A. Moss; Les Groom

    2001-01-01

    Microscopy is the study and interpretation of images produced by a microscope. "Interpretation" is the keyword, because the microscope enables one to see structures that are too small or too close together to be resolved by the unaided eye. (The human eye cannot separate two points or lines that are closer together than 0.1 mm.) it is important to...

  10. PSF engineering in multifocus microscopy for increased depth volumetric imaging

    PubMed Central

    Hajj, Bassam; El Beheiry, Mohamed; Dahan, Maxime

    2016-01-01

    Imaging and localizing single molecules with high accuracy in a 3D volume is a challenging task. Here we combine multifocal microscopy, a recently developed volumetric imaging technique, with point spread function engineering to achieve an increased depth for single molecule imaging. Applications in 3D single molecule localization-based super-resolution imaging is shown over an axial depth of 4 µm as well as for the tracking of diffusing beads in a fluid environment over 8 µm. PMID:27231584

  11. TOPICAL REVIEW: Fluorescence lifetime imaging microscopy in life sciences

    NASA Astrophysics Data System (ADS)

    Willem Borst, Jan; Visser, Antonie J. W. G.

    2010-10-01

    Fluorescence lifetime imaging microscopy (FLIM) and fluorescence anisotropy imaging microscopy (FAIM) are versatile tools for the investigation of the molecular environment of fluorophores in living cells. Owing to nanometre-scale interactions via Förster resonance energy transfer (FRET), FLIM and FAIM are powerful microscopy methods for the detection of conformational changes and protein-protein interactions reflecting the biochemical status of live cells. This review provides an overview of recent advances in photonics techniques, quantitative data analysis methods and applications in the life sciences.

  12. Multiple fluorescence microscopy and optoelectronic imaging: possibilities and limits

    NASA Astrophysics Data System (ADS)

    Gundlach, Heinz

    1997-12-01

    The last 20 years have seen an unexpected great renaissance and a partial revolution in light microscopy. This recent progress is due to new design in optics and instrumentation as well as improvement of optical contrast enhancement techniques. Recent progress in fluorescence microscopy is achieved by multiparameter fluorescence techniques, by improvement of conventional photomicrography as well as by optoelectronic imaging, confocal laser scanning microscopy, image processing and analysis. Due to the increase in number of fluorescence dyes, double and triple bandpass filter sets permit a rapid changeover between different fluorochromes simultaneously.

  13. Super-resolution Microscopy in Plant Cell Imaging.

    PubMed

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted.

  14. Live-Animal Imaging of Renal Function by Multiphoton Microscopy

    PubMed Central

    Dunn, Kenneth W.; Sutton, Timothy A.; Sandoval, Ruben M.

    2015-01-01

    Intravital microscopy, microscopy of living animals, is a powerful research technique that combines the resolution and sensitivity found in microscopic studies of cultured cells with the relevance and systemic influences of cells in the context of the intact animal. The power of intravital microscopy has recently been extended with the development of multiphoton fluorescence microscopy systems capable of collecting optical sections from deep within the kidney at subcellular resolution, supporting high-resolution characterizations of the structure and function of glomeruli, tubules, and vasculature in the living kidney. Fluorescent probes are administered to an anesthetized, surgically prepared animal, followed by image acquisition for up to 3 hr. Images are transferred via a high-speed network to specialized computer systems for digital image analysis. This general approach can be used with different combinations of fluorescent probes to evaluate processes such as glomerular permeability, proximal tubule endocytosis, microvascular flow, vascular permeability, mitochondrial function, and cellular apoptosis/necrosis. PMID:23042524

  15. 3D fluorescence anisotropy imaging using selective plane illumination microscopy

    PubMed Central

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-01-01

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein. PMID:26368202

  16. Simulating realistic imaging conditions for in situ liquid microscopy

    SciTech Connect

    Welch, David A.; Faller, Roland; Evans, James E.; Browning, Nigel D.

    2013-12-01

    In situ transmission electron microscopy enables the imaging of biological cells, macromolecular protein complexes, nanoparticles, and other systems in a near-native environment. In order to improve interpretation of image contrast features and also predict ideal imaging conditions ahead of time, new virtual electron microscopic techniques are needed. A technique for virtual fluid-stage high-angle annular dark-field scanning transmission electron microscopy with the multislice method is presented that enables the virtual imaging of model fluid-stage systems composed of millions of atoms. The virtual technique is exemplified by simulating images of PbS nanoparticles under different imaging conditions and the results agree with previous experimental findings. General insight is obtained on the influence of the effects of fluid path length, membrane thickness, nanoparticle position, defocus and other microscope parameters on attainable image quality.

  17. Imaging highly absorbing nanoparticles using photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lussier, Simon-Alexandre; Moradi, Hamid; Price, Alain; Murugkar, Sangeeta

    2015-03-01

    Gold nanoparticles (NPs) have tremendous potential in biomedicine. They can be used as absorbing labels inside living cells for the purpose of biomedical imaging, biosensing as well as for photothermal therapy. We demonstrate photothermal imaging of highly-absorbing particles using a pump-probe setup. The photothermal signal is recovered by heterodyne detection, where the excitation pump laser is at 532 nm and the probe laser is at 638 nm. The sample is moved by a scanning stage. Proof of concept images of red polystyrene microspheres and gold nanoparticles are obtained with this home-built multimodal microscope. The increase in temperature at the surface of the gold NPs, due to the pump laser beam, can be directly measured by means of this photothermal microscope and then compared with the results from theoretical predictions. This technique will be useful for characterization of nanoparticles of different shapes, sizes and materials that are used in cancer diagnosis and therapy.

  18. Atomic force microscopy imaging of macromolecular complexes.

    PubMed

    Santos, Sergio; Billingsley, Daniel; Thomson, Neil

    2013-01-01

    This chapter reviews amplitude modulation (AM) AFM in air and its applications to high-resolution imaging and interpretation of macromolecular complexes. We discuss single DNA molecular imaging and DNA-protein interactions, such as those with topoisomerases and RNA polymerase. We show how relative humidity can have a major influence on resolution and contrast and how it can also affect conformational switching of supercoiled DNA. Four regimes of AFM tip-sample interaction in air are defined and described, and relate to water perturbation and/or intermittent mechanical contact of the tip with either the molecular sample or the surface. Precise control and understanding of the AFM operational parameters is shown to allow the user to switch between these different regimes: an interpretation of the origins of topographical contrast is given for each regime. Perpetual water contact is shown to lead to a high-resolution mode of operation, which we term SASS (small amplitude small set-point) imaging, and which maximizes resolution while greatly decreasing tip and sample wear and any noise due to perturbation of the surface water. Thus, this chapter provides sufficient information to reliably control the AFM in the AM AFM mode of operation in order to image both heterogeneous samples and single macromolecules including complexes, with high resolution and with reproducibility. A brief introduction to AFM, its versatility and applications to biology is also given while providing references to key work and general reviews in the field.

  19. Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy

    PubMed Central

    Hajj, Bassam; Wisniewski, Jan; El Beheiry, Mohamed; Chen, Jiji; Revyakin, Andrey; Wu, Carl; Dahan, Maxime

    2014-01-01

    Single molecule-based superresolution imaging has become an essential tool in modern cell biology. Because of the limited depth of field of optical imaging systems, one of the major challenges in superresolution imaging resides in capturing the 3D nanoscale morphology of the whole cell. Despite many previous attempts to extend the application of photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) techniques into three dimensions, effective localization depths do not typically exceed 1.2 µm. Thus, 3D imaging of whole cells (or even large organelles) still demands sequential acquisition at different axial positions and, therefore, suffers from the combined effects of out-of-focus molecule activation (increased background) and bleaching (loss of detections). Here, we present the use of multifocus microscopy for volumetric multicolor superresolution imaging. By simultaneously imaging nine different focal planes, the multifocus microscope instantaneously captures the distribution of single molecules (either fluorescent proteins or synthetic dyes) throughout an ∼4-µm-deep volume, with lateral and axial localization precisions of ∼20 and 50 nm, respectively. The capabilities of multifocus microscopy to rapidly image the 3D organization of intracellular structures are illustrated by superresolution imaging of the mammalian mitochondrial network and yeast microtubules during cell division. PMID:25422417

  20. Scanning Tunneling Microscopy methods for spectroscopic imaging of subsurface interfaces

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Kaiser, W. J.

    1988-01-01

    A new method for spatially-resolved, spectroscopic investigation of subsurface interface structure has been developed. The method, Ballistic Electron Emission Microscopy (BEEM), is based on Scanning Tunneling Microscopy (STM) techniques. BEEM combines STM vacuum tunneling with unique ballistic electron spectroscopy capabilities. BEEM enables, for the first time, direct imaging of subsurface interface electronic properties with nanometer spatial resolution. STM topographic images of surface structure and BEEM images of subsurface properties are obtained simultaneously. BEEM capabilities are demonstrated by investigation of important metal-semiconductor interfaces.

  1. Scanning Tunneling Microscopy methods for spectroscopic imaging of subsurface interfaces

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Kaiser, W. J.

    1988-01-01

    A new method for spatially-resolved, spectroscopic investigation of subsurface interface structure has been developed. The method, Ballistic Electron Emission Microscopy (BEEM), is based on Scanning Tunneling Microscopy (STM) techniques. BEEM combines STM vacuum tunneling with unique ballistic electron spectroscopy capabilities. BEEM enables, for the first time, direct imaging of subsurface interface electronic properties with nanometer spatial resolution. STM topographic images of surface structure and BEEM images of subsurface properties are obtained simultaneously. BEEM capabilities are demonstrated by investigation of important metal-semiconductor interfaces.

  2. Unconventional methods of imaging: computational microscopy and compact implementations

    NASA Astrophysics Data System (ADS)

    McLeod, Euan; Ozcan, Aydogan

    2016-07-01

    In the past two decades or so, there has been a renaissance of optical microscopy research and development. Much work has been done in an effort to improve the resolution and sensitivity of microscopes, while at the same time to introduce new imaging modalities, and make existing imaging systems more efficient and more accessible. In this review, we look at two particular aspects of this renaissance: computational imaging techniques and compact imaging platforms. In many cases, these aspects go hand-in-hand because the use of computational techniques can simplify the demands placed on optical hardware in obtaining a desired imaging performance. In the first main section, we cover lens-based computational imaging, in particular, light-field microscopy, structured illumination, synthetic aperture, Fourier ptychography, and compressive imaging. In the second main section, we review lensfree holographic on-chip imaging, including how images are reconstructed, phase recovery techniques, and integration with smart substrates for more advanced imaging tasks. In the third main section we describe how these and other microscopy modalities have been implemented in compact and field-portable devices, often based around smartphones. Finally, we conclude with some comments about opportunities and demand for better results, and where we believe the field is heading.

  3. Microscopy mineral image enhancement through center operator construction.

    PubMed

    Bai, Xiangzhi

    2015-05-20

    Enhancing a microscopy mineral image to produce clear and rich details is important for mineral analysis. To enhance effectively, an algorithm utilizing the constructed center operator is proposed in this paper. First, the center operator is constructed from the opening and closing based toggle operator. Second, the mineral image features are extracted by using the constructed center operator. Third, the multiscale mineral features are extracted through multiscale morphological theory using the multiscale structuring elements. Fourth, the final features for mineral image enhancement are calculated from the extracted multiscale features based on the weight strategy. Finally, the mineral image is effectively enhanced through importing the final features into the original mineral image. Experimental results on various microscopy mineral images verified that the proposed algorithm performed well for enhancement and had competing performance compared with some existing algorithms.

  4. Imaging mechanisms of force detected FMR microscopy

    SciTech Connect

    Midzor, M. M.; Wigen, P. E.; Pelekhov, D.; Chen, W.; Hammel, P. C.; Roukes, M. L.

    2000-05-01

    We demonstrate spatial resolution of ferromagnetic resonance in a microscopic sample of YIG using ferromagnetic resonance force microscopy (FMRFM). Measurements were performed on a small single crystal YIG film grown on a GGG substrate, roughly rectangular in shape 20 {mu}mx{approx}150 {mu}m and 3 {mu}m thick. The perpendicular and parallel force geometries of FMRFM, in conjunction with an external bias field both parallel and perpendicular to the film, were used to scan the sample. This enabled the detection of strong signals, even at atmospheric pressure and room temperature. The fundamental and higher-order magnetostatic modes were observed to have 26-29 Gauss separation. The intensity of these modes exhibited spatial variation as the magnetic tip was scanned over the sample, and this behavior is qualitatively explained by DE theory. An improved fabrication method for magnet on cantilever was employed, which yielded a spatial resolution of 15 {mu}m. These results demonstrate the potential of FMRFM for investigating the spatial dependence of ferromagnetic resonance, and for studying the anisotropy fields and exchange coupling effects within multilayer films and small magnetic systems. (c) 2000 American Institute of Physics.

  5. Scanning electron microscopy image representativeness: morphological data on nanoparticles.

    PubMed

    Odziomek, Katarzyna; Ushizima, Daniela; Oberbek, Przemyslaw; Kurzydłowski, Krzysztof Jan; Puzyn, Tomasz; Haranczyk, Maciej

    2017-01-01

    A sample of a nanomaterial contains a distribution of nanoparticles of various shapes and/or sizes. A scanning electron microscopy image of such a sample often captures only a fragment of the morphological variety present in the sample. In order to quantitatively analyse the sample using scanning electron microscope digital images, and, in particular, to derive numerical representations of the sample morphology, image content has to be assessed. In this work, we present a framework for extracting morphological information contained in scanning electron microscopy images using computer vision algorithms, and for converting them into numerical particle descriptors. We explore the concept of image representativeness and provide a set of protocols for selecting optimal scanning electron microscopy images as well as determining the smallest representative image set for each of the morphological features. We demonstrate the practical aspects of our methodology by investigating tricalcium phosphate, Ca3 (PO4 )2 , and calcium hydroxyphosphate, Ca5 (PO4 )3 (OH), both naturally occurring minerals with a wide range of biomedical applications. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  6. Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    PubMed Central

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-01-01

    Background Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Methods Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). Results We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. Conclusion The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes. PMID:18627634

  7. ENHANCEMENT OF CELL BOUNDARIES IN TRANSMISSION ELECTRON MICROSCOPY IMAGES

    PubMed Central

    Tasdizen, Tolga; Whitaker, Ross; Marc, Robert; Jones, Bryan

    2009-01-01

    Transmission electron microscopy (TEM) is an important modality for the analysis of cellular structures in neurobiology. The computational analysis of neurons entail their segmentation and reconstruction from TEM images. This problem is complicated by the heavily textured nature of cellular TEM images and typically low signal-to-noise ratios. In this paper, we propose a new partial differential equation for enhancing the contrast and continuity of cell membranes in TEM images. PMID:19169423

  8. Comparison of image reconstruction methods for structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Lukeš, Tomas; Hagen, Guy M.; Křížek, Pavel; Švindrych, Zdeněk.; Fliegel, Karel; Klíma, Miloš

    2014-05-01

    Structured illumination microscopy (SIM) is a recent microscopy technique that enables one to go beyond the diffraction limit using patterned illumination. The high frequency information is encoded through aliasing into the observed image. By acquiring multiple images with different illumination patterns aliased components can be separated and a highresolution image reconstructed. Here we investigate image processing methods that perform the task of high-resolution image reconstruction, namely square-law detection, scaled subtraction, super-resolution SIM (SR-SIM), and Bayesian estimation. The optical sectioning and lateral resolution improvement abilities of these algorithms were tested under various noise level conditions on simulated data and on fluorescence microscopy images of a pollen grain test sample and of a cultured cell stained for the actin cytoskeleton. In order to compare the performance of the algorithms, the following objective criteria were evaluated: Signal to Noise Ratio (SNR), Signal to Background Ratio (SBR), circular average of the power spectral density and the S3 sharpness index. The results show that SR-SIM and Bayesian estimation combine illumination patterned images more effectively and provide better lateral resolution in exchange for more complex image processing. SR-SIM requires one to precisely shift the separated spectral components to their proper positions in reciprocal space. High noise levels in the raw data can cause inaccuracies in the shifts of the spectral components which degrade the super-resolved image. Bayesian estimation has proven to be more robust to changes in noise level and illumination pattern frequency.

  9. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM.

  10. Phosphorescence lifetime based oxygen micro-sensing using a digital micromirror device.

    PubMed

    Chao, Shih-Hui; Holl, Mark R; McQuaide, Sarah C; Ren, Timothy T H; Gales, Steven A; Meldrum, Deirdre R

    2007-08-20

    A digital light modulation microscope (DLMM) that utilizes a digital micromirror device (DMD) on an epifluorescence microscope has been developed to modulate excitation light in spatial and temporal domains for phosphorescence lifetime detection. Local O2 concentration can be inferred through the detected lifetime around an O2-quenching phosphorescent porphyrin microsensor. Combined with microsensor arrays, the DLMM can sequentially address light to each microsensor element to construct a discrete lifetime image or O2 distribution. In contrast to conventional phosphorescence lifetime imaging, the new method eliminates the need for a pulsed light source and a time-gated camera. To demonstrate O2 sensing with lab-on-a-chip devices, an array of 150-mum-diameter micro-wells coated with phosphorescent porphyrin were observed. The locations of the sensor elements were automatically identified though image analysis. The goal of this platform is to measure the O2 consumption of individual cells trapped in the microwells.

  11. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    SciTech Connect

    Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

    2011-01-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  12. Imaging Local Electric Field Distribution by Plasmonic Impedance Microscopy.

    PubMed

    Wang, Yixian; Shan, Xiaonan; Wang, Shaopeng; Tao, Nongjian; Blanchard, Pierre-Yves; Hu, Keke; Mirkin, Michael V

    2016-02-02

    We report on imaging of local electric field on an electrode surface with plasmonic electrochemical impedance microscopy (P-EIM). The local electric field is created by putting an electrode inside a micropipet positioned over the electrode and applying a voltage between the two electrodes. We show that the distribution of the surface charge as well as the local electric field at the electrode surface can be imaged with P-EIM. The spatial distribution and the dependence of the local charge density and electric field on the distance between the micropipet and the surface are measured, and the results are compared with the finite element calculations. The work also demonstrates the possibility of integrating plasmonic imaging with scanning ion conductance microscopy (SICM) and other scanning probe microscopies.

  13. Imaging Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron Microscopy

    SciTech Connect

    Dohnalkova, Alice; Marshall, Matthew J.; Arey, Bruce W.; Williams, Kenneth H.; Buck, Edgar C.; Fredrickson, Jim K.

    2011-02-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryo-electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in the collapse of hydrated gel-like EPS into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  14. Imaging Cytometry of Human Leukocytes with Third Harmonic Generation Microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Ham; Wang, Tzung-Dau; Hsieh, Chia-Hung; Huang, Shih-Hung; Lin, Jong-Wei; Hsu, Szu-Chun; Wu, Hau-Tieng; Wu, Yao-Ming; Liu, Tzu-Ming

    2016-11-01

    Based on third-harmonic-generation (THG) microscopy and a k-means clustering algorithm, we developed a label-free imaging cytometry method to differentiate and determine the types of human leukocytes. According to the size and average intensity of cells in THG images, in a two-dimensional scatter plot, the neutrophils, monocytes, and lymphocytes in peripheral blood samples from healthy volunteers were clustered into three differentiable groups. Using these features in THG images, we could count the number of each of the three leukocyte types both in vitro and in vivo. The THG imaging-based counting results agreed well with conventional blood count results. In the future, we believe that the combination of this THG microscopy-based imaging cytometry approach with advanced texture analysis of sub-cellular features can differentiate and count more types of blood cells with smaller quantities of blood.

  15. Imaging Cytometry of Human Leukocytes with Third Harmonic Generation Microscopy

    PubMed Central

    Wu, Cheng-Ham; Wang, Tzung-Dau; Hsieh, Chia-Hung; Huang, Shih-Hung; Lin, Jong-Wei; Hsu, Szu-Chun; Wu, Hau-Tieng; Wu, Yao-Ming; Liu, Tzu-Ming

    2016-01-01

    Based on third-harmonic-generation (THG) microscopy and a k-means clustering algorithm, we developed a label-free imaging cytometry method to differentiate and determine the types of human leukocytes. According to the size and average intensity of cells in THG images, in a two-dimensional scatter plot, the neutrophils, monocytes, and lymphocytes in peripheral blood samples from healthy volunteers were clustered into three differentiable groups. Using these features in THG images, we could count the number of each of the three leukocyte types both in vitro and in vivo. The THG imaging-based counting results agreed well with conventional blood count results. In the future, we believe that the combination of this THG microscopy-based imaging cytometry approach with advanced texture analysis of sub-cellular features can differentiate and count more types of blood cells with smaller quantities of blood. PMID:27845443

  16. A water-soluble and highly phosphorescent cyclometallated iridium complex with versatile sensing capability.

    PubMed

    Yang, Zhen; Zhao, Yuan; Wang, Chan; Song, Qijun; Pang, Qingfeng

    2017-05-01

    A water-soluble and highly phosphorescent cyclometallated iridium complex [(pq)2Ir(bpy-COOK)](+)Cl(-) (where pq=2-phenylquinoline, bpy-COOK= potassium 2,2'-bipyridine-4,4'-dicarboxylate) (Ir) has been synthesized and characterized. Its phosphorescence can be sensitively and selectively quenched by tryptophan through a photoinduced electron-transfer (PET) process. Furthermore, the phosphorescence of Ir is drastically increased upon binding with bovine serum albumin (BSA), and the enhanced signal is effectively quenched in the presence of Cu(2+). Thus, Ir can be used as a multifunctional chemosensor for tryptophan, BSA, and Cu(2+) determination as well as for cell imaging.

  17. Non-linear image scanning microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gregor, Ingo; Ros, Robert; Enderlein, Jörg

    2017-02-01

    Nowadays, multiphoton microscopy can be considered as a routine method for the observation of living cells, organs, up to whole organisms. Second-harmonics generation (SHG) imaging has evolved to a powerful qualitative and label-free method for studying fibrillar structures, like collagen networks. However, examples of super-resolution non-linear microscopy are rare. So far, such approaches require complex setups and advanced synchronization of scanning elements limiting the image acquisition rates. We describe theory and realization of a super-resolution image scanning microscope [1, 2] using two-photon excited fluorescence as well as second-harmonic generation. It requires only minor modifications compared to a classical two-photon laser-scanning microscope and allows image acquisition at the high frame rates of a resonant galvo-scanner. We achieve excellent sensitivity and high frame-rate in combination with two-times improved lateral resolution. We applied this method to fixed cells, collagen hydrogels, as well as living fly embryos. Further, we proofed the excellent image quality of our setup for deep tissue imaging. 1. Müller C.B. and Enderlein J. (2010) Image scanning microscopy. Phys. Rev. Lett. 104(19), 198101. 2. Sheppard C.J.R. (1988) Super-resolution in confocal imaging. Optik (Stuttg) 80 53-54.

  18. Segmentation and learning in the quantitative analysis of microscopy images

    NASA Astrophysics Data System (ADS)

    Ruggiero, Christy; Ross, Amy; Porter, Reid

    2015-02-01

    In material science and bio-medical domains the quantity and quality of microscopy images is rapidly increasing and there is a great need to automatically detect, delineate and quantify particles, grains, cells, neurons and other functional "objects" within these images. These are challenging problems for image processing because of the variability in object appearance that inevitably arises in real world image acquisition and analysis. One of the most promising (and practical) ways to address these challenges is interactive image segmentation. These algorithms are designed to incorporate input from a human operator to tailor the segmentation method to the image at hand. Interactive image segmentation is now a key tool in a wide range of applications in microscopy and elsewhere. Historically, interactive image segmentation algorithms have tailored segmentation on an image-by-image basis, and information derived from operator input is not transferred between images. But recently there has been increasing interest to use machine learning in segmentation to provide interactive tools that accumulate and learn from the operator input over longer periods of time. These new learning algorithms reduce the need for operator input over time, and can potentially provide a more dynamic balance between customization and automation for different applications. This paper reviews the state of the art in this area, provides a unified view of these algorithms, and compares the segmentation performance of various design choices.

  19. Single-shell carbon nanotubes imaged by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Höper, Ralf; Workman, Richard K.; Chen, Dong; Sarid, Dror; Yadav, Tapesh; Withers, James C.; Loutfy, Raouf O.

    1994-05-01

    Single-shell carbon nanotubes, approximately 1 nm in diameter, have been imaged for the first time by atomic force microscopy operating in both the contact and tapping modes. For the contact mode, the height of the imaged nanotubes has been calibrated using the atomic steps of the silicon substrate on which the nanotubes were deposited. For the tapping mode, the calibration was performed using an industry-standard grating. The paper discusses substrate and sample preparation methods for the characterization by scanning probe microscopy of nanotubes deposited on a substrate.

  20. Beam tests of phosphorescent screens

    SciTech Connect

    Seeman, J.T.; Luth, V.; Ross, M.; Sheppard, J.

    1985-03-05

    Twelve phosphorescent screens were beam tested for linearity, uniformity, low radiation damage and a suitable emitted wavelength for use with television cameras. One screen was chosen for the construction of several intercepting profile monitors which were used during the SLC Ten Sector Tests to measure the emittance and wakefield effects of a damped electron beam.

  1. Detecting overlapping instances in microscopy images using extremal region trees.

    PubMed

    Arteta, Carlos; Lempitsky, Victor; Noble, J Alison; Zisserman, Andrew

    2016-01-01

    In many microscopy applications the images may contain both regions of low and high cell densities corresponding to different tissues or colonies at different stages of growth. This poses a challenge to most previously developed automated cell detection and counting methods, which are designed to handle either the low-density scenario (through cell detection) or the high-density scenario (through density estimation or texture analysis). The objective of this work is to detect all the instances of an object of interest in microscopy images. The instances may be partially overlapping and clustered. To this end we introduce a tree-structured discrete graphical model that is used to select and label a set of non-overlapping regions in the image by a global optimization of a classification score. Each region is labeled with the number of instances it contains - for example regions can be selected that contain two or three object instances, by defining separate classes for tuples of objects in the detection process. We show that this formulation can be learned within the structured output SVM framework and that the inference in such a model can be accomplished using dynamic programming on a tree structured region graph. Furthermore, the learning only requires weak annotations - a dot on each instance. The candidate regions for the selection are obtained as extremal region of a surface computed from the microscopy image, and we show that the performance of the model can be improved by considering a proxy problem for learning the surface that allows better selection of the extremal regions. Furthermore, we consider a number of variations for the loss function used in the structured output learning. The model is applied and evaluated over six quite disparate data sets of images covering: fluorescence microscopy, weak-fluorescence molecular images, phase contrast microscopy and histopathology images, and is shown to exceed the state of the art in performance.

  2. Localizing and extracting filament distributions from microscopy images.

    PubMed

    Basu, S; Liu, C; Rohde, G K

    2015-04-01

    Detailed quantitative measurements of biological filament networks represent a crucial step in understanding architecture and structure of cells and tissues, which in turn explain important biological events such as wound healing and cancer metastases. Microscopic images of biological specimens marked for different structural proteins constitute an important source for observing and measuring meaningful parameters of biological networks. Unfortunately, current efforts at quantitative estimation of architecture and orientation of biological filament networks from microscopy images are predominantly limited to visual estimation and indirect experimental inference. Here, we describe a new method for localizing and extracting filament distributions from 2D microscopy images of different modalities. The method combines a filter-based detection of pixels likely to contain a filament with a constrained reverse diffusion-based approach for localizing the filaments centrelines. We show with qualitative and quantitative experiments, using both simulated and real data, that the new method can provide more accurate centreline estimates of filament in comparison to other approaches currently available. In addition, we show the algorithm is more robust with respect to variations in the initial filter-based filament detection step often used. We demonstrate the application of the method in extracting quantitative parameters from confocal microscopy images of actin filaments and atomic force microscopy images of DNA fragments.

  3. Seeing the invisible in differential interference contrast microscopy images.

    PubMed

    Jiang, Wenchao; Yin, Zhaozheng

    2016-12-01

    Automated microscopy image restoration, especially in Differential Interference Contrast (DIC) imaging modality, has attracted increasing attentions since it greatly facilitates long-term living cell analysis without staining. Although the previous work on DIC image restoration is able to restore the nuclei regions of living cells, it is still challenging to reconstruct the unnoticeable cytoplasm details in DIC images. In this paper, we propose to extract the tiny movement information of living cells in DIC images and reveal the hidden details in DIC images by magnifying the cells' motion as well as attenuating the intensity variation from the background. From our restored images, we can clearly observe the previously-invisible details in DIC images. Experiments on two DIC image datasets show that the motion-based restoration method can reveal the hidden details of living cells. In addition, we demonstrate our restoration method can also be applied to other imaging modalities such as the phase contrast microscopy to enhance cells' details. Furthermore, based on the pixel-level restoration results, we can obtain the object-level segmentation by leveraging a label propagation approach, providing promising results on facilitating the cell shape and behavior analysis. The proposed algorithm can be a software module to enhance the visualization capability of microscopes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. GPU-based image registration in aperture correlation microscopy, and reflection mode correlation microscopy

    NASA Astrophysics Data System (ADS)

    Fafchamps, Lionel J.; Neil, Mark A. A.; Juskaitis, Rimas

    2013-02-01

    Aperture Correlation Microscopy (ACM) is a fluorescence microscopy technique capable of depth resolved imaging and enhanced lateral resolution at real-time acquisition rates. It relies on the subtraction of 2 separate images from different cameras which must be registered to the sub-pixel level. In order to achieve real-time registration and subtraction, the graphics processing unit (GPU) is used to apply a transformation from one frame to the other, resulting in a system capable of processing over 200 frames per second on modest hardware (GeForce 330M). Currently, this rate is limited by camera acquision to 16fps. Additionally, a novel reflection mode correlation microscope is introduced which functions on similar principles as the fluorescent system but can be used to examine reflective samples. Images and z-stacks taken with this system are presented here.

  5. Reconstruction of complementary images in second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Jin, Lei; Xue, Ping; Xu, Jun; Wang, Yi; Ma, Hui; Chen, Dieyan

    2006-05-01

    Second harmonic generation microscopy(SHGM) has become widely used to image biological samples. Due to the complexity of biological samples, more and more effort has been put on polarization imaging in SHGM technology to uncover their structures. In this work, we put forward a novel stitching method based on careful mathematical calculation, and accomplish it by rotating laser polarization. We first show its validity in imaging a perfectly synthesized bio-origin polymer poly (3-hyroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). Then, we test its power by getting a true image of fibrillar collagen structure of rat-tail tendon.

  6. Droplet Epitaxy Image Contrast in Mirror Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    2017-01-01

    Image simulation methods are applied to interpret mirror electron microscopy (MEM) images obtained from a movie of GaAs droplet epitaxy. Cylindrical symmetry of structures grown by droplet epitaxy is assumed in the simulations which reproduce the main features of the experimental MEM image contrast, demonstrating that droplet epitaxy can be studied in real-time. It is therefore confirmed that an inner ring forms at the droplet contact line and an outer ring (or skirt) occurs outside the droplet periphery. We believe that MEM combined with image simulations will be increasingly used to study the formation and growth of quantum structures.

  7. Biological imaging by soft x-ray diffraction microscopy

    SciTech Connect

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; Sayre, D.

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

  8. Imaging Nanotherapeutics in Inflamed Vasculature by Intravital Microscopy

    PubMed Central

    Wang, Zhenjia

    2016-01-01

    Intravital microscopy (IVM) is the application of light microscopy to real time study biology of live animal tissues in intact and physiological conditions with the high spatial and temporal resolution. Advances in imaging systems, genetic animal models and imaging probes, IVM has offered quantitative and dynamic insight into cell biology, immunology, neurobiology and cancer. In this review, we will focus on the targeting of nanotherapeutics to inflamed vasculature. We will introduce the basic concept and principle of IVM and demonstrate that IVM is a powerful tool used to quantitatively determine the molecular mechanisms of interactions between nanotherapeutics and neutrophils or endothelium in living mice. In the future, it is needed to develop new imaging systems and novel imaging contrast agents to better understand molecular mechanisms of tissue processing of nanotherapeutics in vivo. PMID:27877245

  9. Biological imaging by soft x-ray diffraction microscopy

    DOE PAGES

    Shapiro, D.; Thibault, P.; Beetz, T.; ...

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore » microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  10. A Parallel Imaging Approach to Wide-field MR Microscopy

    PubMed Central

    McDougall, Mary Preston; Wright, Steven M.

    2011-01-01

    Magnetic resonance microscopy (MRM), suggested in the earliest papers on MRI, has always been limited by the low signal-to-noise ratio (SNR) resulting from the small voxel size. MRM has largely been enabled by the use of microcoils which provide the SNR improvement required to overcome this limitation. Concomitant with the small coils is a small field-of-view, which limits the use of MRM as a histological tool or for imaging large regions in general. This paper describes initial results in wide field-of-view MR microscopy using a large array of narrow, parallel coils, which provides an SNR enhancement as well as the ability to use parallel imaging techniques. Comparison images made between a volume coil and the proposed technique demonstrate reductions in imaging time of over 100 with no loss in SNR or resolution. PMID:22139858

  11. Volumetric chemical imaging by stimulated Raman projection microscopy and tomography

    PubMed Central

    Chen, Xueli; Zhang, Chi; Lin, Peng; Huang, Kai-Chih; Liang, Jimin; Tian, Jie; Cheng, Ji-Xin

    2017-01-01

    Volumetric imaging allows global understanding of three-dimensional (3D) complex systems. Light-sheet fluorescence microscopy and optical projection tomography have been reported to image 3D volumes with high resolutions and at high speeds. Such methods, however, usually rely on fluorescent labels for chemical targeting, which could perturb the biological functionality in living systems. We demonstrate Bessel-beam-based stimulated Raman projection (SRP) microscopy and tomography for label-free volumetric chemical imaging. Our SRP microscope enables fast quantitation of chemicals in a 3D volume through a two-dimensional lateral scan. Furthermore, combining SRP and sample rotation, we demonstrate the SRP tomography that can reconstruct the 3D distribution of chemical compositions with optical spatial resolution at a higher speed than the Gaussian-beam-based stimulated Raman scattering sectioning imaging can. We explore the potential of our SRP technology by mapping polymer particles in 3D volumes and lipid droplets in adipose cells. PMID:28436473

  12. Volumetric chemical imaging by stimulated Raman projection microscopy and tomography

    NASA Astrophysics Data System (ADS)

    Chen, Xueli; Zhang, Chi; Lin, Peng; Huang, Kai-Chih; Liang, Jimin; Tian, Jie; Cheng, Ji-Xin

    2017-04-01

    Volumetric imaging allows global understanding of three-dimensional (3D) complex systems. Light-sheet fluorescence microscopy and optical projection tomography have been reported to image 3D volumes with high resolutions and at high speeds. Such methods, however, usually rely on fluorescent labels for chemical targeting, which could perturb the biological functionality in living systems. We demonstrate Bessel-beam-based stimulated Raman projection (SRP) microscopy and tomography for label-free volumetric chemical imaging. Our SRP microscope enables fast quantitation of chemicals in a 3D volume through a two-dimensional lateral scan. Furthermore, combining SRP and sample rotation, we demonstrate the SRP tomography that can reconstruct the 3D distribution of chemical compositions with optical spatial resolution at a higher speed than the Gaussian-beam-based stimulated Raman scattering sectioning imaging can. We explore the potential of our SRP technology by mapping polymer particles in 3D volumes and lipid droplets in adipose cells.

  13. High-speed synthetic aperture microscopy for live cell imaging

    PubMed Central

    Kim, Moonseok; Choi, Youngwoon; Fang-Yen, Christopher; Sung, Yongjin; Dasari, Ramachandra R.; Feld, Michael S.; Choi, Wonshik

    2011-01-01

    We present a high-speed synthetic aperture microscopy for quantitative phase imaging of live biological cells. We measure 361 complex amplitude images of an object with various directions of illumination covering an NA of 0.8 in less than one-thirteenth of a second and then combine the images with a phase-referencing method to create a synthesized phase image. Because of the increased depth selectivity, artifacts from diffraction that are typically present in coherent imaging are significantly suppressed, and lateral resolution of phase imaging is improved. We use the instrument to demonstrate high-quality phase imaging of live cells, both static and dynamic, and thickness measurements of a nanoscale cholesterol helical ribbon. PMID:21263482

  14. Cytology 3D structure formation based on optical microscopy images

    NASA Astrophysics Data System (ADS)

    Pronichev, A. N.; Polyakov, E. V.; Shabalova, I. P.; Djangirova, T. V.; Zaitsev, S. M.

    2017-01-01

    The article the article is devoted to optimization of the parameters of imaging of biological preparations in optical microscopy using a multispectral camera in visible range of electromagnetic radiation. A model for the image forming of virtual preparations was proposed. The optimum number of layers was determined for the object scan in depth and holistic perception of its switching according to the results of the experiment.

  15. Super-resolution Microscopy Approaches for Live Cell Imaging

    PubMed Central

    Godin, Antoine G.; Lounis, Brahim; Cognet, Laurent

    2014-01-01

    By delivering optical images with spatial resolutions below the diffraction limit, several super-resolution fluorescence microscopy techniques opened new opportunities to study biological structures with details approaching molecular structure sizes. They have now become methods of choice for imaging proteins and their nanoscale dynamic organizations in live cells. In this mini-review, we describe and compare the main far-field super-resolution approaches that allow studying endogenous or overexpressed proteins in live cells. PMID:25418158

  16. Nanoscale Imaging Technology for THz Frequency Transmission Microscopy

    DTIC Science & Technology

    2014-12-16

    Nanoscale Imaging Technology for THz Frequency Transmission Microscopy final progress report The views, opinions and/or findings contained in this...Irvine 5171 California Avenue, Suite 150 Irvine, CA 92697 -7600 30-Jun-2014 ABSTRACT Final Report: Nanoscale Imaging Technology for THz Frequency...Francisco, CA. 10. Peter Burke “Nanochannel Trap Arrays for Monitoring Single Mitochondrion Behavior”,NCI-NIBIB Point of Care Technologies for

  17. Embryonic Heart Morphogenesis from Confocal Microscopy Imaging and Automatic Segmentation

    PubMed Central

    Gribble, Megan; Pertsov, Arkady M.; Shi, Pengcheng

    2013-01-01

    Embryonic heart morphogenesis (EHM) is a complex and dynamic process where the heart transforms from a single tube into a four-chambered pump. This process is of great biological and clinical interest but is still poorly understood for two main reasons. On the one hand, the existing imaging modalities for investigating EHM suffered from either limited penetration depth or limited spatial resolution. On the other hand, current works typically adopted manual segmentation, which was tedious, subjective, and time consuming considering the complexity of developing heart geometry and the large size of images. In this paper, we propose to utilize confocal microscopy imaging with tissue optical immersion clearing technique to image the heart at different stages of development for EHM study. The imaging method is able to produce high spatial resolution images and achieve large penetration depth at the same time. Furthermore, we propose a novel convex active contour model for automatic image segmentation. The model has the ability to deal with intensity fall-off in depth which is characterized by confocal microscopy images. We acquired the images of embryonic quail hearts from day 6 to day 14 of incubation for EHM study. The experimental results were promising and provided us with an insight view of early heart growth pattern and also paved the road for data-driven heart growth modeling. PMID:24454530

  18. Atomic resolution imaging of graphene by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Robertson, Alex W.; Warner, Jamie H.

    2013-05-01

    The atomic structure of a material influences its electronic, chemical, magnetic and mechanical properties. Characterising carbon nanomaterials, such as fullerenes, nanotubes and graphene, at the atomic level is challenging due to their chemical reactivity and low atomic mass. Transmission electron microscopy and scanning probe microscopy are two of the leading methods for imaging graphene at the atomic level. Here, we report on recent advances in atomic resolution imaging of graphene using aberration-corrected high resolution transmission electron microscopy and how it has revealed many of the structural deviations from the pristine monolayer form. Structures in graphene such as vacancy defects, edges, grain boundaries, linear chains, impurity dopants, layer number, layer stacking and bond rotations are explored.

  19. Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot

    PubMed Central

    Shen, Yajing; Wan, Wenfeng; Zhang, Lijun; Yong, Li; Lu, Haojian; Ding, Weili

    2015-01-01

    Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV) of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale. PMID:26694391

  20. Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot.

    PubMed

    Shen, Yajing; Wan, Wenfeng; Zhang, Lijun; Yong, Li; Lu, Haojian; Ding, Weili

    2015-12-15

    Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV) of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.

  1. X-ray holographic microscopy: Improved images of zymogen granules

    SciTech Connect

    Jacobsen, C.; Howells, M.; Kirz, J.; McQuaid, K.; Rothman, S.

    1988-10-01

    Soft x-ray holography has long been considered as a technique for x-ray microscopy. It has been only recently, however, that sub-micron resolution has been obtained in x-ray holography. This paper will concentrate on recent progress we have made in obtaining reconstructed images of improved quality. 15 refs., 6 figs.

  2. Confocal microscopy for astrocyte in vivo imaging: Recycle and reuse in microscopy

    PubMed Central

    Pérez-Alvarez, Alberto; Araque, Alfonso; Martín, Eduardo D.

    2013-01-01

    In vivo imaging is one of the ultimate and fundamental approaches for the study of the brain. Two-photon laser scanning microscopy (2PLSM) constitutes the state-of-the-art technique in current neuroscience to address questions regarding brain cell structure, development and function, blood flow regulation and metabolism. This technique evolved from laser scanning confocal microscopy (LSCM), which impacted the field with a major improvement in image resolution of live tissues in the 1980s compared to widefield microscopy. While nowadays some of the unparalleled features of 2PLSM make it the tool of choice for brain studies in vivo, such as the possibility to image deep within a tissue, LSCM can still be useful in this matter. Here we discuss the validity and limitations of LSCM and provide a guide to perform high-resolution in vivo imaging of the brain of live rodents with minimal mechanical disruption employing LSCM. We describe the surgical procedure and experimental setup that allowed us to record intracellular calcium variations in astrocytes evoked by sensory stimulation, and to monitor intact neuronal dendritic spines and astrocytic processes as well as blood vessel dynamics. Therefore, in spite of certain limitations that need to be carefully considered, LSCM constitutes a useful, convenient, and affordable tool for brain studies in vivo. PMID:23658537

  3. Imaging of nucleic acids with atomic force microscopy

    PubMed Central

    Lyubchenko, Yuri L.; Shlyakhtenko, Luda S.; Ando, Toshio

    2011-01-01

    Atomic force microscopy (AFM) is a key tool of nanotechnology with great importance in applications to DNA nanotechnology and to the recently emerging field of RNA nanotechnology. Advances in the methodology of AFM now enable reliable and reproducible imaging of DNA of various structures, topologies, and DNA and RNA nanostructures. These advances are reviewed here with emphasis on methods utilizing modification of mica to prepare the surfaces enabling reliable and reproducible imaging of DNA and RNA nanostructures. Since the AFM technology for DNA is more mature, AFM imaging of DNA is introduced in this review to provide experience and background for the improvement of AFM imaging of RNA. Examples of imaging different structures of RNA and DNA are discussed and illustrated. Special attention is given to the potential use of AFM to image the dynamics of nucleic acids at the nanometer scale. As such, we review recent advances with the use of time-lapse AFM. PMID:21310240

  4. Quantification of photoacoustic microscopy images for ovarian cancer detection

    NASA Astrophysics Data System (ADS)

    Wang, Tianheng; Yang, Yi; Alqasemi, Umar; Kumavor, Patrick D.; Wang, Xiaohong; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2014-03-01

    In this paper, human ovarian tissues with malignant and benign features were imaged ex vivo by using an opticalresolution photoacoustic microscopy (OR-PAM) system. Several features were quantitatively extracted from PAM images to describe photoacoustic signal distributions and fluctuations. 106 PAM images from 18 human ovaries were classified by applying those extracted features to a logistic prediction model. 57 images from 9 ovaries were used as a training set to train the logistic model, and 49 images from another 9 ovaries were used to test our prediction model. We assumed that if one image from one malignant ovary was classified as malignant, it is sufficient to classify this ovary as malignant. For the training set, we achieved 100% sensitivity and 83.3% specificity; for testing set, we achieved 100% sensitivity and 66.7% specificity. These preliminary results demonstrate that PAM could be extremely valuable in assisting and guiding surgeons for in vivo evaluation of ovarian tissue.

  5. In-line digital holographic imaging in volume holographic microscopy.

    PubMed

    Zhai, Xiaomin; Lin, Wei-Tang; Chen, Hsi-Hsun; Wang, Po-Hao; Yeh, Li-Hao; Tsai, Jui-Chang; Singh, Vijay Raj; Luo, Yuan

    2015-12-01

    A dual-plane in-line digital holographic imaging method incorporating volume holographic microscopy (VHM) is presented to reconstruct objects in a single shot while eliminating zero-order and twin-image diffracted waves. The proposed imaging method is configured such that information from different axial planes is acquired simultaneously using multiplexed volume holographic imaging gratings, as used in VHM, and recorded as in-line holograms where the corresponding reference beams are generated in the fashion of Gabor's in-line holography. Unlike conventional VHM, which can take axial intensity information only at focal depths, the proposed method digitally reconstructs objects at any axial position. Further, we demonstrate the proposed imaging technique's ability to effectively eliminate zero-order and twin images for single-shot three-dimensional object reconstruction.

  6. Contrast mechanisms and image formation in helium ion microscopy.

    PubMed

    Bell, David C

    2009-04-01

    The helium ion microscope is a unique imaging instrument. Based on an atomic level imaging system using the principle of field ion microscopy, the helium ion source has been shown to be incredibly stable and reliable, itself a remarkable engineering feat. Here we show that the image contrast is fundamentally different to other microscopes such as the scanning electron microscope (SEM), although showing many operational similarities due to the physical ion interaction mechanisms with the sample. Secondary electron images show enhanced surface contrast due the small surface interaction volume as well as elemental contrast differences, such as for nanowires imaged on a substrate. We present images of nanowires and nanoparticles for comparison with SEM imaging. Applications of Rutherford backscattered ion imaging as a unique and novel imaging mechanism are described. The advantages of the contrast mechanisms offered by this instrument for imaging nanomaterials are clearly apparent due to the high resolution and surface sensitivity afforded in the images. Future developments of the helium ion microscope should yield yet further improvements in imaging and provide a platform for continued advances in microscope science and nanoscale research.

  7. Three dimensional image restoration in fluorescence lifetime imaging microscopy.

    PubMed

    Squire, A; Bastiaens, P I

    1999-01-01

    A microscope set-up and numerical methods are described which enable the measurement and reconstruction of three-dimensional nanosecond fluorescence lifetime images in every voxel. The frequency domain fluorescence lifetime imaging microscope (FLIM) utilizes phase detection of high-frequency modulated light by homodyne mixing on a microchannel plate image intensifier. The output signal at the image intensifier's phosphor screen is integrated on a charge coupled device camera. A scanning stage is employed to obtain a series of phase-dependent intensity images at equally separated depths in a specimen. The Fourier transform of phase-dependent data gives three-dimensional (3D) images of the Fourier coefficients. These images are deblurred using an Iterative Constrained Tikhonov-Miller (ICTM) algorithm in conjunction with a measured point spread function. The 3D reconstruction of fluorescence lifetimes are calculated from the deblurred images of the Fourier coefficients. An improved spatial and temporal resolution of fluorescence lifetimes was obtained using this approach to the reconstruction of simulated 3D FLIM data. The technique was applied to restore 3D FLIM data of a live cell specimen expressing two green fluorescent protein fusion constructs having distinct fluorescence lifetimes which localized to separate cellular compartments.

  8. Fractal descriptors for discrimination of microscopy images of plant leaves

    NASA Astrophysics Data System (ADS)

    Silva, N. R.; Florindo, J. B.; Gómez, M. C.; Kolb, R. M.; Bruno, O. M.

    2014-03-01

    This study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images.

  9. Imaging bacterial spores by soft-x-ray microscopy

    SciTech Connect

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  10. Imaging nonmelanoma skin cancers with combined ultrasound-photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Sunar, Ulas; Rohrbach, Daniel J.; Morgan, Janet; Zeitouni, Natalie

    2013-03-01

    PDT has become a treatment of choice especially for the cases with multiple sites and large areas. However, the efficacy of PDT is limited for thicker and deeper tumors. Depth and size information as well as vascularity can provide useful information to clinicians for planning and evaluating PDT. High-resolution ultrasound and photoacoustic imaging can provide information regarding skin structure and vascularity. We utilized combined ultrasound-photoacoustic microscopy for imaging a basal cell carcinoma (BCC) tumor pre-PDT and the results indicate that combined ultrasound-photoacoustic imaging can be useful tool for PDT planning by providing both structural and functional contrasts.

  11. SEGMENTATION OF MITOCHONDRIA IN ELECTRON MICROSCOPY IMAGES USING ALGEBRAIC CURVES

    PubMed Central

    Seyedhosseini, Mojtaba; Ellisman, Mark H.; Tasdizen, Tolga

    2014-01-01

    High-resolution microscopy techniques have been used to generate large volumes of data with enough details for understanding the complex structure of the nervous system. However, automatic techniques are required to segment cells and intracellular structures in these multi-terabyte datasets and make anatomical analysis possible on a large scale. We propose a fully automated method that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy (EM) images. The main idea is to use algebraic curves to extract shape features together with texture features from image patches. Then, these powerful features are used to learn a random forest classifier, which can predict mitochondria locations precisely. Finally, the algebraic curves together with regional information are used to segment the mitochondria at the predicted locations. We demonstrate that our method outperforms the state-of-the-art algorithms in segmentation of mitochondria in EM images. PMID:25132915

  12. Divided-aperture differential confocal fast-imaging microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Qiu, Lirong; Zhao, Xiangye; Zhao, Weiqian

    2017-03-01

    A new method, laser divided-aperture differential confocal microscopy (DDCM), is proposed to achieve high-resolution 3D imaging of microstructures of large-scale sample surfaces. This method uses a divided-aperture confocal structure to significantly improve the axial resolution of confocal microscopy and keep a long working distance simultaneously; uses two radically offset point detectors to achieve differential detection to further improve the axial response sensitivity and realize fast imaging of a large-scale sample surface with a big axial scan-step interval. Theoretical analyses and experimental results show that the DDCM can reach an axial resolution of 5 nm with a 3.1 mm working distance with a 3 times imaging speed of a confocal system with the same resolution.

  13. Elemental imaging of cartilage by scanning x-ray microscopy

    SciTech Connect

    Buckley, C.J.; Foster, G.F.; Burge, R.E. ); Ali, S.Y.; Scotchford, C.A. , Royal National Orthopaedic Hospital, Stanmore, Middlesex ); Kirz, J. ); Rivers, M.L. )

    1992-01-01

    Elemental imaging via scanning transmission x-ray microscopy (STXM) and scanning fluorescence x-ray microscopy (SFXM) has been used to image calcium deposits in cartilage. In the case of STXM, 0.1 {mu}m thick sections were imaged to investigate the proximity of calcium deposits in relation to chondrocyte cells. The resolution available was 0.5 {mu}m, and field widths of up to 25 {mu}m were used at this resolution. The resolution available in SFXM was 10 {mu}m, and field widths of up to 2 mm were used at this resolution on 5-{mu}m thick specimens. Together these techniques were used to map calcium deposits at the cellular level, and at the full tissue size level.

  14. Two-photon absorbing porphyrins for oxygen microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Esipova, Tatiana V.; Vinogradov, Sergei A.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is invaluable for many areas of the biomedical science, including ophthalmology, neuroscience, cancer and stem biology. An optical method based on oxygen-dependent quenching of phosphorescence is being developed, that allows quantitative minimally invasive real-time imaging of partial pressure of oxygen (pO2) in tissue. In the past, dendritically protected phosphorescent oxygen probes with controllable quenching parameters and defined bio-distributions have been developed. More recently our probe strategy has extended to encompass two-photon excitable oxygen probes, which brought about first demonstrations of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new valuable information for neuroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as low brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. Here we present an approach to new bright phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to novel proves for 2PLM. In addition to substantial increase in performance, the new probes can be synthesized by much more efficient methods, thereby greatly reducing the cost of the synthesis and making the technique accessible to a broader range of researchers across different fields.

  15. Stable blue phosphorescent organic light emitting devices

    SciTech Connect

    Forrest, Stephen R.; Thompson, Mark; Giebink, Noel

    2014-08-26

    Novel combination of materials and device architectures for organic light emitting devices is provided. An organic light emitting device, is provided, having an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes a host and a phosphorescent emissive dopant having a peak emissive wavelength less than 500 nm, and a radiative phosphorescent lifetime less than 1 microsecond. Preferably, the phosphorescent emissive dopant includes a ligand having a carbazole group.

  16. Imaging melanin by two-photon absorption microscopy

    NASA Astrophysics Data System (ADS)

    Ye, Tong; Yurtsever, Gunay; Fischer, Martin; Simon, John D.; Warren, Warren S.

    2006-02-01

    Multiphoton excitation fluorescence microscopy has proven to be a powerful method for non-invasive, in vivo, thick tissue imaging with molecular specificity. However, many important endogenous biomolecules do not fluoresce (NAD) or fluoresce with low efficiency (Melanin). In this report femtosecond pulse shaping methods are used to measure two-photon absorption (TPA) directly with very high sensitivity. Combining with the laser scanning microscope, this Two-photon Absorption Microscopy (TPAM) retains the penetration and localization advantages of two-photon fluorescence microscopy and permits direct observation of important endogenous molecular markers (melanin or hemoglobin) which are invisible in multiphoton fluorescence microscopy. We have demonstrated here for the first time that TPAM can successfully and more efficiently image melanoma cells and tissues and provide a good melanin contrast in optical sectioning of the melanoma lesions which are comparable to pathological histology. Combining with the two-photon fluorescence images acquired simultaneously, the distribution patterns of the melanocytes and their intratissue behavior could be studied without cutting the lesions from patients. TPAM will undoubtedly find the applications in the clinical diagnosis and biomedical research.

  17. High-speed atomic force microscopy: imaging and force spectroscopy.

    PubMed

    Eghiaian, Frédéric; Rico, Felix; Colom, Adai; Casuso, Ignacio; Scheuring, Simon

    2014-10-01

    Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding.

  18. Lanthanide-based laser-induced phosphorescence for spray diagnostics.

    PubMed

    van der Voort, D D; Maes, N C J; Lamberts, T; Sweep, A M; van de Water, W; Kunnen, R P J; Clercx, H J H; van Heijst, G J F; Dam, N J

    2016-03-01

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.

  19. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    SciTech Connect

    Voort, D. D. van der Water, W. van de; Kunnen, R. P. J.; Clercx, H. J. H.; Heijst, G. J. F. van; Maes, N. C. J.; Sweep, A. M.; Dam, N. J.; Lamberts, T.

    2016-03-15

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.

  20. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    NASA Astrophysics Data System (ADS)

    van der Voort, D. D.; Maes, N. C. J.; Lamberts, T.; Sweep, A. M.; van de Water, W.; Kunnen, R. P. J.; Clercx, H. J. H.; van Heijst, G. J. F.; Dam, N. J.

    2016-03-01

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (˜1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.

  1. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    PubMed

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  2. Electromechanical imaging of biomaterials by scanning probe microscopy.

    PubMed

    Rodriguez, B J; Kalinin, S V; Shin, J; Jesse, S; Grichko, V; Thundat, T; Baddorf, A P; Gruverman, A

    2006-02-01

    The majority of calcified and connective tissues possess complex hierarchical structure spanning the length scales from nanometers to millimeters. Understanding the biological functionality of these materials requires reliable methods for structural imaging on the nanoscale. Here, we demonstrate an approach for electromechanical imaging of the structure of biological samples on the length scales from tens of microns to nanometers using piezoresponse force microscopy (PFM), which utilizes the intrinsic piezoelectricity of biopolymers such as proteins and polysaccharides as the basis for high-resolution imaging. Nanostructural imaging of a variety of protein-based materials, including tooth, antler, and cartilage, is demonstrated. Visualization of protein fibrils with sub-10nm spatial resolution in a human tooth is achieved. Given the near-ubiquitous presence of piezoelectricity in biological systems, PFM is suggested as a versatile tool for micro- and nanostructural imaging in both connective and calcified tissues.

  3. Electromechanical Imaging of Biomaterials by Scanning Probe Microscopy

    SciTech Connect

    Rodriguez, Brian J; Kalinin, Sergei V; Shin, Junsoo; Jesse, Stephen; Grichko, V.; Thundat, Thomas George; Baddorf, Arthur P; Gruverman, A.

    2006-01-01

    The majority of calcified and connective tissues possess complex hierarchical structure spanning the length scales from nanometers to millimeters. Understanding the biological functionality of these materials requires reliable methods for structural imaging on the nanoscale. Here, we demonstrate an approach for electromechanical imaging of the structure of biological samples on the length scales from tens of microns to nanometers using piezoresponse force microscopy (PFM), which utilizes the intrinsic piezoelectricity of biopolymers such as proteins and polysaccharides as the basis for high-resolution imaging. Nanostructural imaging of a variety of protein-based materials, including tooth, antler, and cartilage, is demonstrated. Visualization of protein fibrils with sub-10 nm spatial resolution in a human tooth is achieved. Given the near-ubiquitous presence of piezoelectricity in biological systems, PFM is suggested as a versatile tool for micro- and nanostructural imaging in both connective and calcified tissues.

  4. In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Hao F.; Maslov, Konstantin; Li, Meng-Lin; Stoica, George; Wang, Lihong V.

    2006-10-01

    Photoacoustic microscopy was developed to achieve volumetric imaging of the anatomy and functions of the subcutaneous microvasculature in both small animals and humans in vivo with high spatial resolution and high signal-to-background ratio. By following the skin contour in raster scanning, the ultrasonic transducer maintains focusing in the region of interest. Furthermore, off-focus lateral resolution is improved by using a synthetic-aperture focusing technique based on the virtual point detector concept. Structural images are acquired in both rats and humans, whereas functional images representing hemoglobin oxygen saturation are acquired in rats. After multiscale vesselness filtering, arterioles and venules in the image are separated based on the imaged oxygen saturation levels. Detailed structural information, such as vessel depth and spatial orientation, are revealed by volume rendering.

  5. Size-Invariant Detection of Cell Nuclei in Microscopy Images.

    PubMed

    Ram, Sundaresh; Rodriguez, Jeffrey J

    2016-07-01

    Accurate detection of individual cell nuclei in microscopy images is an essential and fundamental task for many biological studies. In particular, multivariate fluorescence microscopy is used to observe different aspects of cells in cultures. Manual detection of individual cell nuclei by visual inspection is time consuming, and prone to induce subjective bias. This makes automatic detection of cell nuclei essential for large-scale, objective studies of cell cultures. Blur, clutter, bleed-through, imaging noise and touching and partially overlapping nuclei with varying sizes and shapes make automated detection of individual cell nuclei a challenging task using image analysis. In this paper we propose a new automated method for fast and robust detection of individual cell nuclei based on their radial symmetric nature in fluorescence in-situ hybridization (FISH) images obtained via confocal microscopy. The main contributions are two-fold. 1) This work presents a more accurate cell nucleus detection system using the fast radial symmetry transform (FRST). 2) The proposed cell nucleus detection system is robust against most occlusions and variations in size and moderate shape deformations. We evaluate the performance of the proposed algorithm using precision/recall rates, Fβ-score and root-mean-squared distance (RMSD) and show that our algorithm provides improved detection accuracy compared to existing algorithms.

  6. Imaging intracellular protein dynamics by spinning disk confocal microscopy

    PubMed Central

    Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten

    2012-01-01

    The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541

  7. Low energy electron point source microscopy: beyond imaging.

    PubMed

    Beyer, André; Gölzhäuser, Armin

    2010-09-01

    Low energy electron point source (LEEPS) microscopy has the capability to record in-line holograms at very high magnifications with a fairly simple set-up. After the holograms are numerically reconstructed, structural features with the size of about 2 nm can be resolved. The achievement of an even higher resolution has been predicted. However, a number of obstacles are known to impede the realization of this goal, for example the presence of electric fields around the imaged object, electrostatic charging or radiation induced processes. This topical review gives an overview of the achievements as well as the difficulties in the efforts to shift the resolution limit of LEEPS microscopy towards the atomic level. A special emphasis is laid on the high sensitivity of low energy electrons to electrical fields, which limits the structural determination of the imaged objects. On the other hand, the investigation of the electrical field around objects of known structure is very useful for other tasks and LEEPS microscopy can be extended beyond the task of imaging. The determination of the electrical resistance of individual nanowires can be achieved by a proper analysis of the corresponding LEEPS micrographs. This conductivity imaging may be a very useful application for LEEPS microscopes.

  8. Digital image enhancement for in vivo laser scanning microscopy.

    PubMed

    Gruber, Martin J; Wackernagel, Alexandra; Richtig, Erika; Koller, Silvia; Kerl, Helmut; Smolle, Josef

    2005-11-01

    In vivo confocal laser scanning microscopy (CLSM) is a new method that provides skin images in horizontal plane at a level of resolution that allows to view microanatomic structures. This study examines whether certain digital image-processing steps can increase the visibility of various structures in CLSM. Fifty images were taken from normal skin of 25 probands, and 39 image enhancement procedures were created. Eight procedures that seemed to provide some quality enhancement were deliberately selected for further evaluation. Subsequently, a collection of random pairs of the original image and an image submitted to any of the eight selected procedures was rated by five independent observers. In three of the eight procedures tested, the modified image was significantly preferred to the original image (chi2-test,: P< or =0.001). In particular, smoothing, shading correction, delineate and grey-level normalization in various combinations were helpful in showing the characteristic honeycomb pattern, pigmented basal cell layer, cell borders and the nuclei more clearly. Digital image processing may help to increase visibility of in vivo CLSM images.

  9. Designing Image Analysis Pipelines in Light Microscopy: A Rational Approach.

    PubMed

    Arganda-Carreras, Ignacio; Andrey, Philippe

    2017-01-01

    With the progress of microscopy techniques and the rapidly growing amounts of acquired imaging data, there is an increased need for automated image processing and analysis solutions in biological studies. Each new application requires the design of a specific image analysis pipeline, by assembling a series of image processing operations. Many commercial or free bioimage analysis software are now available and several textbooks and reviews have presented the mathematical and computational fundamentals of image processing and analysis. Tens, if not hundreds, of algorithms and methods have been developed and integrated into image analysis software, resulting in a combinatorial explosion of possible image processing sequences. This paper presents a general guideline methodology to rationally address the design of image processing and analysis pipelines. The originality of the proposed approach is to follow an iterative, backwards procedure from the target objectives of analysis. The proposed goal-oriented strategy should help biologists to better apprehend image analysis in the context of their research and should allow them to efficiently interact with image processing specialists.

  10. Spatial compound imaging for fiber-bundle optic microscopy

    NASA Astrophysics Data System (ADS)

    Cheon, Gyeong Woo; Cha, Jaepyeong; Kang, Jin U.

    2014-02-01

    Coherent fiber bundles with high core density give both flexibility and high resolution to microscopy. Despite of these advantages, fiber bundles inevitably have uncovered region between adjacent cores. The region results in structural artifact known as pixelation effect. Many kinds of image processing techniques have been introduced to remove this pixelation artifact such as frequency domain filter and Gaussian filter. However, these methods fundamentally have limitation because they use the information of adjacent pixels to make up for these uncovered area; therefore, they cannot avoid blurring effect as a result. To overcome this problem, we introduce spatial compound imaging method to overcome this pixelation artifact. The method uses multiple frames taken with small deviation of position. Some parts of these images include information which is devoid of in other images. The total amount of information increase as more images are added up and we can expect the improvement of resolution in the final images. At the same time, the duplicated parts among these images can be averaged to improve SNR ratio. For these improvements, we essentially need sophisticated registration algorithm. The pixelation artifact is troublesome again in registration process because its structural artifacts are strong features shared with whole images. However, we can solve this problem by using reference image and divide the sample images into two parts: effective and ineffective regions. We used effective regions for registration. We used USAF target to evaluate our method and we could get a result that SNR and resolution are both critically increase.

  11. Volume scanning electron microscopy for imaging biological ultrastructure.

    PubMed

    Titze, Benjamin; Genoud, Christel

    2016-11-01

    Electron microscopy (EM) has been a key imaging method to investigate biological ultrastructure for over six decades. In recent years, novel volume EM techniques have significantly advanced nanometre-scale imaging of cells and tissues in three dimensions. Previously, this had depended on the slow and error-prone manual tasks of cutting and handling large numbers of sections, and imaging them one-by-one with transmission EM. Now, automated volume imaging methods mostly based on scanning EM (SEM) allow faster and more reliable acquisition of serial images through tissue volumes and achieve higher z-resolution. Various software tools have been developed to manipulate the acquired image stacks and facilitate quantitative analysis. Here, we introduce three volume SEM methods: serial block-face electron microscopy (SBEM), focused ion beam SEM (FIB-SEM) and automated tape-collecting ultramicrotome SEM (ATUM-SEM). We discuss and compare their capabilities, provide an overview of the full volume SEM workflow for obtaining 3D datasets and showcase different applications for biological research.

  12. Scanning electron microscopy: preparation and imaging for SEM.

    PubMed

    Jones, Chris G

    2012-01-01

    Scanning electron microscopy (SEM) has been almost universally applied for the surface examination and characterization of both natural and man-made objects. Although an invasive technique, developments in electron microscopy over the years has given the microscopist a much clearer choice in how invasive the technique will be. With the advent of low vacuum SEM in the 1970s (The environmental cold stage, 1970) and environmental SEM in the late 1980s (J Microsc 160(pt. 1):9-19, 1989), it is now possible in some circumstances to examine samples without preparation. However, for the examination of biological tissue and cells it is still advisable to chemically fix, dehydrate, and coat samples for SEM imaging and analysis. This chapter aims to provide an overview of SEM as an imaging tool, and a general introduction to some of the methods applied for the preparation of samples.

  13. Intermodulation electrostatic force microscopy for imaging surface photo-voltage

    SciTech Connect

    Borgani, Riccardo Forchheimer, Daniel; Thorén, Per-Anders; Haviland, David B.; Bergqvist, Jonas; Inganäs, Olle

    2014-10-06

    We demonstrate an alternative to Kelvin Probe Force Microscopy for imaging surface potential. The open-loop, single-pass technique applies a low-frequency AC voltage to the atomic force microscopy tip while driving the cantilever near its resonance frequency. Frequency mixing due to the nonlinear capacitance gives intermodulation products of the two drive frequencies near the cantilever resonance, where they are measured with high signal to noise ratio. Analysis of this intermodulation response allows for quantitative reconstruction of the contact potential difference. We derive the theory of the method, validate it with numerical simulation and a control experiment, and we demonstrate its utility for fast imaging of the surface photo-voltage on an organic photo-voltaic material.

  14. A fast image simulation algorithm for scanning transmission electron microscopy.

    PubMed

    Ophus, Colin

    2017-01-01

    Image simulation for scanning transmission electron microscopy at atomic resolution for samples with realistic dimensions can require very large computation times using existing simulation algorithms. We present a new algorithm named PRISM that combines features of the two most commonly used algorithms, namely the Bloch wave and multislice methods. PRISM uses a Fourier interpolation factor f that has typical values of 4-20 for atomic resolution simulations. We show that in many cases PRISM can provide a speedup that scales with f(4) compared to multislice simulations, with a negligible loss of accuracy. We demonstrate the usefulness of this method with large-scale scanning transmission electron microscopy image simulations of a crystalline nanoparticle on an amorphous carbon substrate.

  15. Infrared spectroscopic imaging microscopy: Applications to biological systems

    SciTech Connect

    Kidder, Linda H.; Levin, Ira W.; Lewis, E. Neil

    1998-06-01

    The coupling of imaging modalities with spectroscopic techniques adds additional dimensions to sample analysis in both the spectroscopic and spatial domains. The particular ability of infrared (IR) imaging to explore the spatial distribution of chemically distinct species on length scales ranging from microns to kilometers demonstrates the versatility and diversity of spectroscopic imaging. In this paper, we focus on the further development of our Fourier-transform (FT) based mid-IR spectroscopic imaging technique which combines the analytical capabilities of mid-IR spectroscopy with the morphological information obtained from optical imaging. The seamless combination of spectroscopy for molecular analysis with the power of visualization represents the future of infrared microscopy. Our spectroscopic imaging instrument integrates several infrared focal-plane arrays with a Michelson step-scan interferometer, generating high-fidelity and high spectral resolution mid-infrared spectroscopic images. The instrumentation produces multidimensional, chemically specific images, while simultaneously obtaining high resolution spectra for each detector pixel. The spatial resolution of the images approaches the diffraction limit for mid-infrared wavelengths, while the spectral resolution is determined by the interferometer, and can be 4 cm{sup -1} or higher. Data derived from a variety of materials, particularly biological samples, illustrate the capabilities of the technique for readily visualizing chemical complexity and for providing statistical data on sample heterogeneity.

  16. Hybrid Imaging for Extended Depth of Field Microscopy

    NASA Astrophysics Data System (ADS)

    Zahreddine, Ramzi Nicholas

    An inverse relationship exists in optical systems between the depth of field (DOF) and the minimum resolvable feature size. This trade-off is especially detrimental in high numerical aperture microscopy systems where resolution is pushed to the diffraction limit resulting in a DOF on the order of 500 nm. Many biological structures and processes of interest span over micron scales resulting in significant blurring during imaging. This thesis explores a two-step computational imaging technique known as hybrid imaging to create extended DOF (EDF) microscopy systems with minimal sacrifice in resolution. In the first step a mask is inserted at the pupil plane of the microscope to create a focus invariant system over 10 times the traditional DOF, albeit with reduced contrast. In the second step the contrast is restored via deconvolution. Several EDF pupil masks from the literature are quantitatively compared in the context of biological microscopy. From this analysis a new mask is proposed, the incoherently partitioned pupil with binary phase modulation (IPP-BPM), that combines the most advantageous properties from the literature. Total variation regularized deconvolution models are derived for the various noise conditions and detectors commonly used in biological microscopy. State of the art algorithms for efficiently solving the deconvolution problem are analyzed for speed, accuracy, and ease of use. The IPP-BPM mask is compared with the literature and shown to have the highest signal-to-noise ratio and lowest mean square error post-processing. A prototype of the IPP-BPM mask is fabricated using a combination of 3D femtosecond glass etching and standard lithography techniques. The mask is compared against theory and demonstrated in biological imaging applications.

  17. Structured illumination microscopy for vibrational molecular imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Watanabe, Kozue; Palonpon, Almar F.; Smith, Nicholas I.; Chiu, Liang-da; Kasai, Atsushi; Hashimoto, Hitoshi; Kawata, Satoshi; Fujita, Katsumasa

    2016-09-01

    Raman microscopy is a powerful tool for analytical imaging. The wavelength shift of Raman scattering corresponds to molecular vibrational energy. Therefore, we can access rich chemical information, such as distribution, concentration, and chemical environment of sample molecules. Despite these strengths of Raman microscopy, the spatial resolution has been a limiting factor for many practical applications. In this study, we developed a large-area, high-resolution Raman microscope by utilizing structured illumination microscopy (SIM) to overcome the spatial resolution limit. A structured line-illumination (SLI) Raman microscope was constructed. The structured illumination is introduced along the line direction by the interference of two line-shaped beams. In SIM, the spatial frequency mixing between structured illumination and Raman scattering from the sample allows access to the high spatial frequency information beyond the conventional cut-off. As a result, the FWHM of 40-nm fluorescence particle images showed a clear resolution enhancement in the line direction: 366 nm in LI and 199 nm in SLI microscope. Using the developed microscope, we successfully demonstrated high-resolution Raman imaging of various kinds of specimens, such as few-layer graphene, graphite, mouse brain tissue, and polymer nanoparticles. The high resolution Raman images showed the capability to extract original spectral features from the mixed Raman spectra of a multi-component sample because of the enhanced spatial resolution, which is advantageous in observing complex spectral features. The Raman microscopy technique reported here enables us to see the detailed chemical structures of chemical, biological, and medical samples with a spatial resolution smaller than 200 nm.

  18. Preparation of silver tips for scanning tunneling microscopy imaging

    NASA Astrophysics Data System (ADS)

    Iwami, M.; Uehara, Y.; Ushioda, S.

    1998-11-01

    A simple reliable preparation method of silver tips for scanning tunneling microscopy imaging with atomic resolution is presented. The procedure is based on two-step electrochemical processing; ac electropolishing and subsequent dc electroetching. The quality of the tip is improved by applying high bias voltage pulses while the tip is within tunneling range. This indicates that the end of the tips are sharpened by field evaporation of silver ions.

  19. Microstructure imaging of human rectal mucosa using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liu, N. R.; Chen, G.; Chen, J. X.; Yan, J.; Zhuo, S. M.; Zheng, L. Q.; Jiang, X. S.

    2011-01-01

    Multiphoton microscopy (MPM) has high resolution and sensitivity. In this study, MPM was used to image microstructure of human rectal mucosa. The morphology and distribution of the main components in mucosa layer, absorptive cells and goblet cells in the epithelium, abundant intestinal glands in the lamina propria and smooth muscle fibers in the muscularis mucosa were clearly monitored. The variations of these components were tightly relevant to the pathology in gastrointestine system, especially early rectal cancer. The obtained images will be helpful for the diagnosis of early colorectal cancer.

  20. Chromatin Imaging with Time-Lapse Atomic Force Microscopy

    PubMed Central

    Lyubchenko, Yuri L.; Shlyakhtenko, Luda S.

    2016-01-01

    Time-lapse atomic force microscopy (AFM) is widely used for direct visualization of the nanoscale dynamics of various biological systems. The advent of high-speed AFM instrumentation made it possible to image the dynamics of proteins and protein-DNA complexes within millisecond time range. This chapter describes protocols for studies of structure and dynamics of nucleosomes with time-lapse AFM including the high-speed AFM instrument. The necessary specifics for the preparation of chromatin samples for imaging with AFM including the protocols for the surface preparation are provided. PMID:25827873

  1. Segmentation of virus particle candidates in transmission electron microscopy images.

    PubMed

    Kylberg, G; Uppström, M; Hedlund, K-O; Borgefors, G; Sintorn, I-M

    2012-02-01

    In this paper, we present an automatic segmentation method that detects virus particles of various shapes in transmission electron microscopy images. The method is based on a statistical analysis of local neighbourhoods of all the pixels in the image followed by an object width discrimination and finally, for elongated objects, a border refinement step. It requires only one input parameter, the approximate width of the virus particles searched for. The proposed method is evaluated on a large number of viruses. It successfully segments viruses regardless of shape, from polyhedral to highly pleomorphic.

  2. Image enhancement with two-photon laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Ming

    1998-07-01

    Although confocal microscopy provides an efficient means of fluorescence imaging, many obstacles including extensive photobleaching and limited penetration depths limit its application. Emergence of two-photon laser scanning microscopy (TPLSM), with limited excitation volume, successfully overcomes those difficulties. Not only is TPLSM shown to have much less photobleaching and better penetration depths than CLSM, but also it is capable of doing UV imaging without using special UV optical elements. Several different aspects of TPLSM are discussed in the dissertation. The progress of 3-D fluorescence microscopy, a historical retrospective of two-photon excitation, the physics of two-photon excitation and our instrument setup are discussed in the first chapter. In chapter II, a qualitative and quantitative confirmation of two-photon excitation, optical transfer efficiency, point spread function and resolution, signal-to-noise ratio, and two-photon excitation spectrum are presented. Chapter III shows the comparison between TPLSM and CLSM. Although CLSM has slightly better resolution than TPLSM, TPLSM has much less photobleaching and toxicity, greater penetration depth, less signal cross talk, and better signal collecting efficiency. Image deconvolution techniques with CLSM and TPLSM are discussed in chapter IV. Using this image processing methods and acquired PSF, we improved the resolution of CLSM and TPLSM dramatically. These deblurring techniques were applied to study the positions of proteins in the pre- and postsynaptic compartments of rat hippocampal culture cells. The improved resolution enabled us to distinguish the positions of Synapsin I, CaM Kinase II, and PSD-95, which could only be done with electron microscopy before. In chapter V, image degradation due to brain tissue scattering is discussed. Emission signals with long wavelengths were shown to have better resolution and image contrast because of less tissue scattering. This result shows the necessity

  3. Localized charge imaging with scanning Kelvin probe microscopy

    NASA Astrophysics Data System (ADS)

    Orihuela, M. F.; Somoza, A. M.; Colchero, J.; Ortuño, M.; Palacios-Lidón, E.

    2017-01-01

    In this work, we propose an intuitive and easily implementable approach to model and interpret scanning Kelvin probe microscopy images of insulating samples with localized charges. The method, based on the image charges method, has been validated by a systematic comparison of its predictions with experimental measurements performed on charge domains of different sizes, injected in polymethyl methacrylate discontinuous films. The agreement between predictions and experimental lateral profiles, as well as with spectroscopy tip-sample distance curves, supports its consistency. The proposed procedure allows obtaining quantitative information such as total charge and the size of a charge domain and allows estimating the most adequate measurement parameters.

  4. Combined Multidimensional Microscopy as a Histopathology Imaging Tool.

    PubMed

    Shami, Gerald J; Cheng, Delfine; Braet, Filip

    2017-02-01

    Herein, we present a highly versatile bioimaging workflow for the multidimensional imaging of biological structures across vastly different length scales. Such an approach allows for the optimised preparation of samples in one go for consecutive X-ray micro-computed tomography, bright-field light microscopy and backscattered scanning electron microscopy, thus, facilitating the disclosure of combined structural information ranging from the gross tissue or cellular level, down to the nanometre scale. In this current study, we characterize various aspects of the hepatic vasculature, ranging from such large vessels as branches of the hepatic portal vein and hepatic artery, down to the smallest sinusoidal capillaries. By employing high-resolution backscattered scanning electron microscopy, we were able to further characterize the subcellular features of a range of hepatic sinusoidal cells including, liver sinusoidal endothelial cells, pit cells and Kupffer cells. Above all, we demonstrate the capabilities of a specimen manipulation workflow that can be applied and adapted to a plethora of functional and structural investigations and experimental models. Such an approach harnesses the fundamental advantages inherent to the various imaging modalities presented herein, and when combined, offers information not currently available by any single imaging platform. J. Cell. Physiol. 232: 249-256, 2017. © 2016 Wiley Periodicals, Inc.

  5. Comparative analysis of imaging configurations and objectives for Fourier microscopy.

    PubMed

    Kurvits, Jonathan A; Jiang, Mingming; Zia, Rashid

    2015-11-01

    Fourier microscopy is becoming an increasingly important tool for the analysis of optical nanostructures and quantum emitters. However, achieving quantitative Fourier space measurements requires a thorough understanding of the impact of aberrations introduced by optical microscopes that have been optimized for conventional real-space imaging. Here we present a detailed framework for analyzing the performance of microscope objectives for several common Fourier imaging configurations. To this end, we model objectives from Nikon, Olympus, and Zeiss using parameters that were inferred from patent literature and confirmed, where possible, by physical disassembly. We then examine the aberrations most relevant to Fourier microscopy, including the alignment tolerances of apodization factors for different objective classes, the effect of magnification on the modulation transfer function, and vignetting-induced reductions of the effective numerical aperture for wide-field measurements. Based on this analysis, we identify an optimal objective class and imaging configuration for Fourier microscopy. In addition, the Zemax files for the objectives and setups used in this analysis have been made publicly available as a resource for future studies.

  6. Imaging carious dental tissues with multiphoton fluorescence lifetime imaging microscopy

    PubMed Central

    Lin, Po-Yen; Lyu, Hong-Chou; Hsu, Chin-Ying Stephen; Chang, Chia-Seng; Kao, Fu-Jen

    2011-01-01

    In this study, multiphoton excitation was utilized to image normal and carious dental tissues noninvasively. Unique structures in dental tissues were identified using the available multimodality (second harmonic, autofluorescence, and fluorescence lifetime analysis) without labeling. The collagen in dentin exhibits a strong second harmonic response. Both dentin and enamel emit strong autofluorescence that reveals in detail morphological features (such as dentinal tubules and enamel rods) and, despite their very similar spectral profiles, can be differentiated by lifetime analysis. Specifically, the carious dental tissue exhibits a greatly reduced autofluorescence lifetime, which result is consistent with the degree of demineralization, determined by micro-computed tomography. Our findings suggest that two-photon excited fluorescence lifetime imaging may be a promising tool for diagnosing and monitoring dental caries. PMID:21326645

  7. Biological imaging with 4D ultrafast electron microscopy.

    PubMed

    Flannigan, David J; Barwick, Brett; Zewail, Ahmed H

    2010-06-01

    Advances in the imaging of biological structures with transmission electron microscopy continue to reveal information at the nanometer length scale and below. The images obtained are static, i.e., time-averaged over seconds, and the weak contrast is usually enhanced through sophisticated specimen preparation techniques and/or improvements in electron optics and methodologies. Here we report the application of the technique of photon-induced near-field electron microscopy (PINEM) to imaging of biological specimens with femtosecond (fs) temporal resolution. In PINEM, the biological structure is exposed to single-electron packets and simultaneously irradiated with fs laser pulses that are coincident with the electron pulses in space and time. By electron energy-filtering those electrons that gained photon energies, the contrast is enhanced only at the surface of the structures involved. This method is demonstrated here in imaging of protein vesicles and whole cells of Escherichia coli, both are not absorbing the photon energy, and both are of low-Z contrast. It is also shown that the spatial location of contrast enhancement can be controlled via laser polarization, time resolution, and tomographic tilting. The high-magnification PINEM imaging provides the nanometer scale and the fs temporal resolution. The potential of applications is discussed and includes the study of antibodies and immunolabeling within the cell.

  8. Biological imaging with 4D ultrafast electron microscopy

    PubMed Central

    Flannigan, David J.; Barwick, Brett; Zewail, Ahmed H.

    2010-01-01

    Advances in the imaging of biological structures with transmission electron microscopy continue to reveal information at the nanometer length scale and below. The images obtained are static, i.e., time-averaged over seconds, and the weak contrast is usually enhanced through sophisticated specimen preparation techniques and/or improvements in electron optics and methodologies. Here we report the application of the technique of photon-induced near-field electron microscopy (PINEM) to imaging of biological specimens with femtosecond (fs) temporal resolution. In PINEM, the biological structure is exposed to single-electron packets and simultaneously irradiated with fs laser pulses that are coincident with the electron pulses in space and time. By electron energy-filtering those electrons that gained photon energies, the contrast is enhanced only at the surface of the structures involved. This method is demonstrated here in imaging of protein vesicles and whole cells of Escherichia coli, both are not absorbing the photon energy, and both are of low-Z contrast. It is also shown that the spatial location of contrast enhancement can be controlled via laser polarization, time resolution, and tomographic tilting. The high-magnification PINEM imaging provides the nanometer scale and the fs temporal resolution. The potential of applications is discussed and includes the study of antibodies and immunolabeling within the cell. PMID:20479261

  9. Superresolved multiphoton microscopy with spatial frequency-modulated imaging

    PubMed Central

    Field, Jeffrey J.; Wernsing, Keith A.; Domingue, Scott R.; Allende Motz, Alyssa M.; DeLuca, Keith F.; Levi, Dean H.; DeLuca, Jennifer G.; Young, Michael D.; Squier, Jeff A.; Bartels, Randy A.

    2016-01-01

    Superresolved far-field microscopy has emerged as a powerful tool for investigating the structure of objects with resolution well below the diffraction limit of light. Nearly all superresolution imaging techniques reported to date rely on real energy states of fluorescent molecules to circumvent the diffraction limit, preventing superresolved imaging with contrast mechanisms that occur via virtual energy states, including harmonic generation (HG). We report a superresolution technique based on spatial frequency-modulated imaging (SPIFI) that permits superresolved nonlinear microscopy with any contrast mechanism and with single-pixel detection. We show multimodal superresolved images with two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) from biological and inorganic media. Multiphoton SPIFI (MP-SPIFI) provides spatial resolution up to 2η below the diffraction limit, where η is the highest power of the nonlinear intensity response. MP-SPIFI can be used to provide enhanced resolution in optically thin media and may provide a solution for superresolved imaging deep in scattering media. PMID:27231219

  10. Superresolved multiphoton microscopy with spatial frequency-modulated imaging

    SciTech Connect

    Field, Jeffrey J.; Wernsing, Keith A.; Domingue, Scott R.; Allende Motz, Alyssa M.; DeLuca, Keith F.; Levi, Dean H.; DeLuca, Jennifer G.; Young, Michael D.; Squier, Jeff A.; Bartels, Randy A.

    2016-05-26

    Superresolved far-field microscopy has emerged as a powerful tool for investigating the structure of objects with resolution well below the diffraction limit of light. Nearly all superresolution imaging techniques reported to date rely on real energy states of fluorescent molecules to circumvent the diffraction limit, preventing superresolved imaging with contrast mechanisms that occur via virtual energy states, including harmonic generation (HG). We report a superresolution technique based on spatial frequency-modulated imaging (SPIFI) that permits superresolved nonlinear microscopy with any contrast mechanism and with single-pixel detection. We show multimodal superresolved images with two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) from biological and inorganic media. Multiphoton SPIFI (MP-SPIFI) provides spatial resolution up to 2..eta.. below the diffraction limit, where ..eta.. is the highest power of the nonlinear intensity response. MP-SPIFI can be used to provide enhanced resolution in optically thin media and may provide a solution for superresolved imaging deep in scattering media.

  11. Corneal imaging by second and third harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Brocas, Arnaud; Jay, Louis; Mottay, Eric; Brunette, Isabelle; Ozaki, Tsuneyuki

    2008-02-01

    Advanced imaging methods are essential tools for improved outcome of refractive surgery. Second harmonic generation (SHG) and third harmonic generation (THG) microscopy are noninvasive high-resolution imaging methods, which can discriminate the different layers of the cornea, thus having strong impact on the outcome of laser surgery. In this work, we use an Ytterbium femtosecond laser as the laser source, the longer wavelength of which reduces scattering, and allows simultaneous SHG and THG imaging. We present SHG and THG images and profiles of pig corneas that clearly show the anterior surface of the cornea, the entry in the stroma and its end, and the posterior surface of the cornea. These observations allow localizing the epithelium, the stroma and the endothelium. Other experiments give information about the structure and cytology of the corneal layers.

  12. Local dimensionality determines imaging speed in localization microscopy

    NASA Astrophysics Data System (ADS)

    Fox-Roberts, Patrick; Marsh, Richard; Pfisterer, Karin; Jayo, Asier; Parsons, Maddy; Cox, Susan

    2017-01-01

    Localization microscopy allows biological samples to be imaged at a length scale of tens of nanometres. Live-cell super-resolution imaging is rare, as it is generally assumed to be too slow for dynamic samples. The speed of data acquisition can be optimized by tuning the density of activated fluorophores in each time frame. Here, we show that the maximum achievable imaging speed for a particular structure varies by orders of magnitude, depending on the sample dimensionality (that is, whether the sample is more like a point, a strand or an extended structure such as a focal adhesion). If too high an excitation density is used, we demonstrate that the analysis undergoes silent failure, resulting in reconstruction artefacts. We are releasing a tool to allow users to identify areas of the image in which the activation density was too high and correct for them, in both live- and fixed-cell experiments.

  13. Local dimensionality determines imaging speed in localization microscopy

    PubMed Central

    Fox-Roberts, Patrick; Marsh, Richard; Pfisterer, Karin; Jayo, Asier; Parsons, Maddy; Cox, Susan

    2017-01-01

    Localization microscopy allows biological samples to be imaged at a length scale of tens of nanometres. Live-cell super-resolution imaging is rare, as it is generally assumed to be too slow for dynamic samples. The speed of data acquisition can be optimized by tuning the density of activated fluorophores in each time frame. Here, we show that the maximum achievable imaging speed for a particular structure varies by orders of magnitude, depending on the sample dimensionality (that is, whether the sample is more like a point, a strand or an extended structure such as a focal adhesion). If too high an excitation density is used, we demonstrate that the analysis undergoes silent failure, resulting in reconstruction artefacts. We are releasing a tool to allow users to identify areas of the image in which the activation density was too high and correct for them, in both live- and fixed-cell experiments. PMID:28079054

  14. Super-Resolution Real Imaging in Microsphere-Assisted Microscopy

    PubMed Central

    Wang, Feifei; Li, Yi; Jia, Boliang; Liu, Lianqing; Li, Wen Jung

    2016-01-01

    Microsphere-assisted microscopy has received a lot of attention recently due to its simplicity and its capability to surpass the diffraction limit. However, to date, sub-diffraction-limit features have only been observed in virtual images formed through the microspheres. We show that it is possible to form real, super-resolution images using high-refractive index microspheres. Also, we report on how changes to a microsphere’s refractive index and size affect image formation and planes. The relationship between the focus position and the additional magnification factor is also investigated using experimental and theoretical methods. We demonstrate that such a real imaging mode, combined with the use of larger microspheres, can enlarge sub-diffraction-limit features up to 10 times that of wide-field microscopy’s magnification with a field-of-view diameter of up to 9 μm. PMID:27768774

  15. Color normalization for robust evaluation of microscopy images

    NASA Astrophysics Data System (ADS)

    Švihlík, Jan; Kybic, Jan; Habart, David

    2015-09-01

    This paper deals with color normalization of microscopy images of Langerhans islets in order to increase robustness of the islet segmentation to illumination changes. The main application is automatic quantitative evaluation of the islet parameters, useful for determining the feasibility of islet transplantation in diabetes. First, background illumination inhomogeneity is compensated and a preliminary foreground/background segmentation is performed. The color normalization itself is done in either lαβ or logarithmic RGB color spaces, by comparison with a reference image. The color-normalized images are segmented using color-based features and pixel-wise logistic regression, trained on manually labeled images. Finally, relevant statistics such as the total islet area are evaluated in order to determine the success likelihood of the transplantation.

  16. Super-Resolution Microscopy Approaches to Nuclear Nanostructure Imaging.

    PubMed

    Cremer, Christoph; Szczurek, Aleksander; Schock, Florian; Gourram, Amine; Birk, Udo

    2017-04-05

    The human genome has been decoded, but we are still far from understanding the regulation of all gene activities. A largely unexplained role in these regulatory mechanisms is played by the spatial organization of the genome in the cell nucleus which has far-reaching functional consequences for gene regulation. Until recently, it appeared to be impossible to study this problem on the nanoscale by light microscopy. However, novel developments in optical imaging technology have radically surpassed the limited resolution of conventional far-field fluorescence microscopy (ca. 200 nm). After a brief review of available super-resolution microscopy (SRM) methods, we focus on a specific SRM approach to study nuclear genome structure at the single cell/single molecule level, Spectral Precision Distance/Position Determination Microscopy (SPDM). SPDM, a variant of localization microscopy, makes use of conventional fluorescent proteins or single standard organic fluorophores in combination with standard (or only slightly modified) specimen preparation conditions; in its actual realization mode, the same laser frequency can be used for both photoswitching and fluorescence read out. Presently, the SPDM method allows us to image nuclear genome organization in individual cells down to few tens of nanometer (nm) of structural resolution, and to perform quantitative analyses of individual small chromatin domains; of the nanoscale distribution of histones, chromatin remodeling proteins, and transcription, splicing and repair related factors. As a biomedical research application, using dual-color SPDM, it became possible to monitor in mouse cardiomyocyte cells quantitatively the effects of ischemia conditions on the chromatin nanostructure (DNA). These novel "molecular optics" approaches open an avenue to study the nuclear landscape directly in individual cells down to the single molecule level and thus to test models of functional genome architecture at unprecedented resolution.

  17. Nuclear uptake of ultrasmall gold-doxorubicin conjugates imaged by fluorescence lifetime imaging microscopy (FLIM) and electron microscopy.

    PubMed

    Zhang, Xuan; Shastry, Sathvik; Bradforth, Stephen E; Nadeau, Jay L

    2015-01-07

    Fluorescence lifetime imaging microscopy (FLIM) has been used to image free and encapsulated doxorubicin (Dox) uptake into cells, since interaction of Dox with DNA leads to a characteristic lifetime change. However, none of the reported Dox conjugates were able to enter cell nuclei. In this work, we use FLIM to show nuclear uptake of 2.7 nm mean diameter Au nanoparticles conjugated to Dox. The pattern of labelling differed substantially from what was seen with free Dox, with slower nuclear entry and stronger cytoplasmic labelling at all time points. As the cells died, the pattern of labelling changed further as intracellular structures disintegrated, consistent with association of Au-Dox to membranes. The patterns of Au distribution and intracellular structure changes were confirmed using electron microscopy, and indicate different mechanisms of cytotoxicity with stable Au-Dox conjugates compared to Dox alone. Such conjugates are promising tools for overcoming resistance in Dox-resistant cancers.

  18. Using Light Sheet Fluorescence Microscopy to Image Zebrafish Eye Development

    PubMed Central

    Sidhaye, Jaydeep; Tomancak, Pavel; Preibisch, Stephan; Norden, Caren

    2016-01-01

    Light sheet fluorescence microscopy (LSFM) is gaining more and more popularity as a method to image embryonic development. The main advantages of LSFM compared to confocal systems are its low phototoxicity, gentle mounting strategies, fast acquisition with high signal to noise ratio and the possibility of imaging samples from various angles (views) for long periods of time. Imaging from multiple views unleashes the full potential of LSFM, but at the same time it can create terabyte-sized datasets. Processing such datasets is the biggest challenge of using LSFM. In this protocol we outline some solutions to this problem. Until recently, LSFM was mostly performed in laboratories that had the expertise to build and operate their own light sheet microscopes. However, in the last three years several commercial implementations of LSFM became available, which are multipurpose and easy to use for any developmental biologist. This article is primarily directed to those researchers, who are not LSFM technology developers, but want to employ LSFM as a tool to answer specific developmental biology questions. Here, we use imaging of zebrafish eye development as an example to introduce the reader to LSFM technology and we demonstrate applications of LSFM across multiple spatial and temporal scales. This article describes a complete experimental protocol starting with the mounting of zebrafish embryos for LSFM. We then outline the options for imaging using the commercially available light sheet microscope. Importantly, we also explain a pipeline for subsequent registration and fusion of multiview datasets using an open source solution implemented as a Fiji plugin. While this protocol focuses on imaging the developing zebrafish eye and processing data from a particular imaging setup, most of the insights and troubleshooting suggestions presented here are of general use and the protocol can be adapted to a variety of light sheet microscopy experiments. PMID:27167079

  19. Correlative light and volume electron microscopy: using focused ion beam scanning electron microscopy to image transient events in model organisms.

    PubMed

    Bushby, Andrew J; Mariggi, Giovanni; Armer, Hannah E J; Collinson, Lucy M

    2012-01-01

    The study of a biological event within a live model organism has become routine through the use of fluorescent labeling of specific proteins in conjunction with laser confocal imaging. These methods allow 3D visualization of temporal events that can elucidate biological function but cannot resolve the tissue organization, extracellular and subcellular details of the tissues. Here, we present a method for correlating electron microscopy image data with the light microscopy data from the same sample volume to reveal the 3D structural information: "correlative light and volume electron microscopy." The methods for live video confocal microscopy, fixation and embedding of the tissue for electron microscopy, the focused ion beam scanning electron microscopy method for sequentially slicing and imaging the volume of interest, and the treatment of the resulting 3D dataset are presented. The method is illustrated with data collected during the angiogenesis of blood vessels in a transgenic zebrafish embryo. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Registration and 3D visualization of large microscopy images

    NASA Astrophysics Data System (ADS)

    Mosaliganti, Kishore; Pan, Tony; Sharp, Richard; Ridgway, Randall; Iyengar, Srivathsan; Gulacy, Alexandra; Wenzel, Pamela; de Bruin, Alain; Machiraju, Raghu; Huang, Kun; Leone, Gustavo; Saltz, Joel

    2006-03-01

    Inactivation of the retinoblastoma gene in mouse embryos causes tissue infiltrations into critical sections of the placenta, which has been shown to affect fetal survivability. Our collaborators in cancer genetics are extremely interested in examining the three dimensional nature of these infiltrations given a stack of two dimensional light microscopy images. Three sets of wildtype and mutant placentas was sectioned serially and digitized using a commercial light microscopy scanner. Each individual placenta dataset consisted of approximately 1000 images totaling 700 GB in size, which were registered into a volumetric dataset using National Library of Medicine's (NIH/NLM) Insight Segmentation and Registration Toolkit (ITK). This paper describes our method for image registration to aid in volume visualization of tissue level intermixing for both wildtype and Rb - specimens. The registration process faces many challenges arising from the large image sizes, damages during sectioning, staining gradients both within and across sections, and background noise. These issues limit the direct application of standard registration techniques due to frequent convergence to local solutions. In this work, we develop a mixture of automated and semi-automated enhancements with ground-truth validation for the mutual information-based registration algorithm. Our final volume renderings clearly show tissue intermixing differences between both wildtype and Rb - specimens which are not obvious prior to registration.

  1. Imaging articular cartilage using second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Mansfield, Jessica C.; Winlove, C. Peter; Knapp, Karen; Matcher, Stephen J.

    2006-02-01

    Sub cellular resolution images of equine articular cartilage have been obtained using both second harmonic generation microscopy (SHGM) and two-photon fluorescence microscopy (TPFM). The SHGM images clearly map the distribution of the collagen II fibers within the extracellular matrix while the TPFM images show the distribution of endogenous two-photon fluorophores in both the cells and the extracellular matrix, highlighting especially the pericellular matrix and bright 2-3μm diameter features within the cells. To investigate the source of TPF in the extracellular matrix experiments have been carried out to see if it may originate from the proteoglycans. Pure solutions of the following proteoglycans hyaluronan, chondroitin sulfate and aggrecan have been imaged, only the aggrecan produced any TPF and here the intensity was not great enough to account for the TPF in the extracellular matrix. Also cartilage samples were subjected to a process to remove proteoglycans and cellular components. After this process the TPF from the samples had decreased by a factor of two, with respect to the SHG intensity.

  2. Coherent imaging with incoherent light in digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Chmelik, Radim

    2012-01-01

    Digital holographic microscope (DHM) allows for imaging with a quantitative phase contrast. In this way it becomes an important instrument, a completely non-invasive tool for a contrast intravital observation of living cells and a cell drymass density distribution measurement. A serious drawback of current DHMs is highly coherent illumination which makes the lateral resolution worse and impairs the image quality by a coherence noise and a parasitic interference. An uncompromising solution to this problem can be found in the Leith concept of incoherent holography. An off-axis hologram can be formed with arbitrary degree of light coherence in systems equipped with an achromatic interferometer and thus the resolution and the image quality typical for an incoherent-light wide-field microscopy can be achieved. In addition, advanced imaging modes based on limited coherence can be utilized. The typical example is a coherence-gating effect which provides a finite axial resolution and makes DHM image similar to that of a confocal microscope. These possibilities were described theoretically using the formalism of three-dimensional coherent transfer functions and proved experimentally by the coherence-controlled holographic microscope which is DHM based on the Leith achromatic interferometer. Quantitative-phase-contrast imaging is demonstrated with incoherent light by the living cancer cells observation and their motility evaluation. The coherence-gating effect was proved by imaging of model samples through a scattering layer and living cells inside an opalescent medium.

  3. In vivo imaging of small animal models by photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Ye, Shuoqi; Yang, Ran; Xiong, Jingwei; Shung, K. Kirk; Zhou, Qifa; Li, Changhui; Ren, Qiushi

    2012-02-01

    Small animal models, such as zebrafish, drosophila, C. elegan, is considered to be important models in comparative biology and diseases researches. Traditional imaging methods primarily employ several optical microscopic imaging modalities that rely on fluorescence labeling, which may have potential to affect the natural physiological progress. Thus a label-free imaging method is desired. Photoacoustic (PA) microscopy (PAM) is an emerging biomedical imaging method that combines optical contrast with ultrasonic detection, which is highly sensitive to the optical absorption contrast of living tissues, such as pigments, the vasculature and other optically absorbing organs. In this work, we reported the whole body label-free imaging of zebrafish larvae and drosophila pupa by PAM. Based on intrinsic optical absorption contrast, high resolution images of pigments, microvasculature and several other major organs have been obtained in vivo and non-invasively, and compared with their optical counterparts. We demonstrated that PAM has the potential to be a powerful non-invasive imaging method for studying larvae and pupa of various animal models.

  4. Acoustic and photoacoustic microscopy imaging of single leukocytes

    NASA Astrophysics Data System (ADS)

    Strohm, Eric M.; Moore, Michael J.; Kolios, Michael C.

    2016-03-01

    An acoustic/photoacoustic microscope was used to create micrometer resolution images of stained cells from a blood smear. Pulse echo ultrasound images were made using a 1000 MHz transducer with 1 μm resolution. Photoacoustic images were made using a fiber coupled 532 nm laser, where energy losses through stimulated Raman scattering enabled output wavelengths from 532 nm to 620 nm. The laser was focused onto the sample using a 20x objective, and the laser spot co-aligned with the 1000 MHz transducer opposite the laser. The blood smear was stained with Wright-Giemsa, a common metachromatic dye that differentially stains the cellular components for visual identification. A neutrophil, lymphocyte and a monocyte were imaged using acoustic and photoacoustic microscopy at two different wavelengths, 532 nm and 600 nm. Unique features in each imaging modality enabled identification of the different cell types. This imaging method provides a new way of imaging stained leukocytes, with applications towards identifying and differentiating cell types, and detecting disease at the single cell level.

  5. Investigations in optoelectronic image processing in scanning laser microscopy

    NASA Astrophysics Data System (ADS)

    Chaliha, Hiranya Kumar

    A considerable amount of work has been done on scann-ing laser microscopy since its applications were first pointed out by Roberts and Young[1], Minsky [2] and Davidovits et al [3]. The advent of laser has made it possible to focus an intense beam of laser light in a scanning optical microscope (SOM) [4, 5] and hence explore regions of microscopy[6] uncovered by conven-tional microscopy. In the simple SOM [7, 8, 9], the upper spatial frequency in amplitude transmittance or reflectance of an object for which transfer function is nonzero is same as that in a conventional optical microscope. However, in Type II SOM [7] or confocal SOM that employs a coherent or a point detector, the spatial frequency bandwidth is twice that obtained in a conventional microscope. Besides this confocal set-up is found to be very useful in optical sectioning and consequently in 3-D image processing[10, 11, 12] specially of biological specimens. Such systems are also suitable for studies of semiconductor materials [13], super-resolution [14] and various imaginative ways of image processing[15, 16, 17] including phase imaging[18]. A brief survey of related advances in scanning optical microscopy has been covered in the chapter 1 of the thesis. The performance of SOM may be investigated by concent-rating also on signal derived by one dimensional scan of the object specimen. This simplified mode may also be adapted to give wealth of information for biological and semiconductor specimens. Hence we have investigated the design of a scanning laser system suited specifically for studies of line scan image signals of microscopic specimens when probed through a focused laser spot. An electro-mechanical method of scanning of the object specimen has been designed with this aim in mind. Chapter 2, Part A of the thesis deals with the design consider-ations of such a system. For analysis of scan signals at a later instant of time so as to facilitate further processing, an arrangement of microprocessor

  6. Electron microscopy imaging of proteins on gallium phosphide semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Hjort, Martin; Bauer, Mikael; Gunnarsson, Stefan; Mårsell, Erik; Zakharov, Alexei A.; Karlsson, Gunnel; Sanfins, Elodie; Prinz, Christelle N.; Wallenberg, Reine; Cedervall, Tommy; Mikkelsen, Anders

    2016-02-01

    We have imaged GaP nanowires (NWs) incubated with human laminin, serum albumin (HSA), and blood plasma using both cryo-transmission electron microscopy and synchrotron based X-ray photoemission electron microscopy. This extensive imaging methodology simultaneously reveals structural, chemical and morphological details of individual nanowires and the adsorbed proteins. We found that the proteins bind to NWs, forming coronas with thicknesses close to the proteins' hydrodynamic diameters. We could directly image how laminin is extending from the NWs, maximizing the number of proteins bound to the NWs. NWs incubated with both laminin and HSA show protein coronas with a similar appearance to NWs incubated with laminin alone, indicating that the presence of HSA does not affect the laminin conformation on the NWs. In blood plasma, an intermediate sized corona around the NWs indicates a corona with a mixture of plasma proteins. The ability to directly visualize proteins on nanostructures in situ holds great promise for assessing the conformation and thickness of the protein corona, which is key to understanding and predicting the properties of engineered nanomaterials in a biological environment.We have imaged GaP nanowires (NWs) incubated with human laminin, serum albumin (HSA), and blood plasma using both cryo-transmission electron microscopy and synchrotron based X-ray photoemission electron microscopy. This extensive imaging methodology simultaneously reveals structural, chemical and morphological details of individual nanowires and the adsorbed proteins. We found that the proteins bind to NWs, forming coronas with thicknesses close to the proteins' hydrodynamic diameters. We could directly image how laminin is extending from the NWs, maximizing the number of proteins bound to the NWs. NWs incubated with both laminin and HSA show protein coronas with a similar appearance to NWs incubated with laminin alone, indicating that the presence of HSA does not affect the

  7. In vivo imaging of subcutaneous structures using functional photoacoustic microscopy.

    PubMed

    Zhang, Hao F; Maslov, Konstantin; Wang, Lihong V

    2007-01-01

    Functional photoacoustic microscopy (fPAM) is a hybrid technology that permits noninvasive imaging of the optical absorption contrast in subcutaneous biological tissues. fPAM uses a focused ultrasonic transducer to detect high-frequency photoacoustic (PA) signals. Volumetric images of biological tissues can be formed by two-dimensional raster scanning, and functional parameters can be further extracted from spectral measurements. fPAM is safe and applicable to animals as well as humans. This protocol provides guidelines for parameter selection, system alignment, imaging operation, laser safety and data processing for in vivo fPAM. It currently takes approximately 100 min to carry out this protocol, including approximately 50 min for data acquisition using a 10-Hz pulse-repetition-rate laser system. The data acquisition time, however, can be significantly reduced by using a laser system with a higher pulse repetition rate.

  8. Deconvolved spatial light interference microscopy for live cell imaging.

    PubMed

    Haldar, Justin P; Wang, Zhuo; Popescu, Gabriel; Liang, Zhi-Pei

    2011-09-01

    Spatial light interference microscopy (SLIM) is a recently developed method for the label-free imaging of live cells, using the quantitative optical path length through the sample as an endogenous source of contrast. In conventional SLIM, spatial resolution is limited by diffraction and aberrations. This paper describes a novel constrained deconvolution method for improving resolution in SLIM. Constrained deconvolution is enabled by experimental measurement of the system point-spread function and the modeling of coherent image formation in SLIM. Results using simulated and experimental data demonstrate that the proposed method leads to significant improvements in the resolution and contrast of SLIM images. The proposed method should prove useful for high-resolution label-free studies of biological cells and subcellular processes.

  9. Imaging non-fluorescent nanoparticles in living cells with wavelength-dependent differential interference contrast microscopy and planar illumination microscopy.

    PubMed

    Sun, Wei; Xiao, Lehui; Fang, Ning

    2013-01-01

    Optical microscopy is a simple yet robust strategy to study live cellular processes. By changing the wavelength of the illumination light, different non-fluorescent nanoparticle probes can be identified and tracked dynamically inside crowded living cells with either differential interference contrast (DIC) microscopy or planar illumination microscopy (PIM). The translational and rotational dynamics of anisotropic nanoparticles can be readily extracted via the modified DIC microscope and the home-built PIM. In this protocol, the optimization procedures for DIC microscopy and PIM imaging are explained, and the sample preparation procedures to image non-fluorescent nanoparticles in living cells are described.

  10. Circularly polarised phosphorescent photoluminescence and electroluminescence of iridium complexes

    NASA Astrophysics Data System (ADS)

    Li, Tian-Yi; Jing, Yi-Ming; Liu, Xuan; Zhao, Yue; Shi, Lin; Tang, Zhiyong; Zheng, You-Xuan; Zuo, Jing-Lin

    2015-10-01

    Nearly all the neutral iridium complexes widely used as dopants in PhOLEDs are racemic mixtures; however, this study observed that these complexes can be separated into stable optically active Λ and ∆ isomers and that their chirality is an intrinsic property. The circularly polarised phosphorescent photoluminescence (CPPPL) signals of Λ/Δ isomers are perfect mirror images with opposite polarisation and equal intensity exhibiting a “handedness” for the polarisation. For the first time, we applied the Λ/Δ iridium isomers as emitters in OLEDs, and the circularly polarised phosphorescent electroluminescence (CPPEL) spectra reveal completely positive or negative broad peaks consistent with the CPPPL spectra. The results demonstrate that the Λ/Δ isomers have potential application for 3D OLEDs because they can exhibit high efficiency and luminance, and 3D display technology based on circularly polarised light is the most comfortable for the eyes.

  11. CARS and non-linear microscopy imaging of brain tumors

    NASA Astrophysics Data System (ADS)

    Galli, Roberta; Uckermann, Ortrud; Tamosaityte, Sandra; Geiger, Kathrin; Schackert, Gabriele; Steiner, Gerald; Koch, Edmund; Kirsch, Matthias

    2013-06-01

    Nonlinear optical microscopy offers a series of techniques that have the potential to be applied in vivo, for intraoperative identification of tumor border and in situ pathology. By addressing the different content of lipids that characterize the tumors with respect to the normal brain tissue, CARS microscopy enables to discern primary and secondary brain tumors from healthy tissue. A study performed in mouse models shows that the reduction of the CARS signal is a reliable quantity to identify brain tumors, irrespective from the tumor type. Moreover it enables to identify tumor borders and infiltrations at a cellular resolution. Integration of CARS with autogenous TPEF and SHG adds morphological and compositional details about the tissue. Examples of multimodal CARS imaging of different human tumor biopsies demonstrate the ability of the technique to retrieve information useful for histopathological diagnosis.

  12. Imaging plasmodesmata with high-resolution scanning electron microscopy.

    PubMed

    Barton, Deborah A; Overall, Robyn L

    2015-01-01

    High-resolution scanning electron microscopy (HRSEM) is an effective tool to investigate the distribution of plasmodesmata within plant cell walls as well as to probe their complex, three-dimensional architecture. It is a useful alternative to traditional transmission electron microscopy (TEM) in which plasmodesmata are sectioned to reveal their internal substructures. Benefits of adopting an HRSEM approach to studies of plasmodesmata are that the specimen preparation methods are less complex and time consuming than for TEM, many plasmodesmata within a large region of tissue can be imaged in a single session, and three-dimensional information is readily available without the need for reconstructing TEM serial sections or employing transmission electron tomography, both of which are lengthy processes. Here we describe methods to prepare plant samples for HRSEM using pre- or postfixation extraction of cellular material in order to visualize plasmodesmata embedded within plant cell walls.

  13. Drive frequency dependent phase imaging in piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Bo, Huifeng; Kan, Yi; Lu, Xiaomei; Liu, Yunfei; Peng, Song; Wang, Xiaofei; Cai, Wei; Xue, Ruoshi; Zhu, Jinsong

    2010-08-01

    The drive frequency dependent piezoresponse (PR) phase signal in near-stoichiometric lithium niobate crystals is studied by piezoresponse force microscopy. It is clearly shown that the local and nonlocal electrostatic forces have a great contribution to the PR phase signal. The significant PR phase difference of the antiparallel domains are observed at the contact resonances, which is related to the electrostatic dominated electromechanical interactions of the cantilever and tip-sample system. Moreover, the modulation voltage induced frequency shift at higher eigenmodes could be attributed to the change of indention force depending on the modulation amplitude with a piezoelectric origin. The PR phase of the silicon wafer is also measured for comparison. It is certificated that the electrostatic interactions are universal in voltage modulated scanning probe microscopy and could be extended to other phase imaging techniques.

  14. Automated microscopy and image analysis for androgen receptor function.

    PubMed

    Hartig, Sean M; Newberg, Justin Y; Bolt, Michael J; Szafran, Adam T; Marcelli, Marco; Mancini, Michael A

    2011-01-01

    Systems-level approaches have emerged that rely on analytical, microscopy-based technology for the discovery of novel drug targets and the mechanisms driving AR signaling, transcriptional activity, and ligand independence. Single cell behavior can be quantified by high-throughput microscopy methods through analysis of endogenous protein levels and localization or creation of biosensor cell lines that can simultaneously detect both acute and latent responses to known and unknown androgenic stimuli. The cell imaging and analytical protocols can be automated to discover agonist/antagonist response windows for nuclear translocation, reporter gene activity, nuclear export, and subnuclear transcription events, facilitating access to a multiplex model system that is inherently unavailable through classic biochemical approaches. In this chapter, we highlight the key steps needed for developing, conducting, and analyzing high-throughput screens to identify effectors of AR signaling.

  15. 3D Image Analysis of Geomaterials using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Mulukutla, G.; Proussevitch, A.; Sahagian, D.

    2009-05-01

    Confocal microscopy is one of the most significant advances in optical microscopy of the last century. It is widely used in biological sciences but its application to geomaterials lingers due to a number of technical problems. Potentially the technique can perform non-invasive testing on a laser illuminated sample that fluoresces using a unique optical sectioning capability that rejects out-of-focus light reaching the confocal aperture. Fluorescence in geomaterials is commonly induced using epoxy doped with a fluorochrome that is impregnated into the sample to enable discrimination of various features such as void space or material boundaries. However, for many geomaterials, this method cannot be used because they do not naturally fluoresce and because epoxy cannot be impregnated into inaccessible parts of the sample due to lack of permeability. As a result, the confocal images of most geomaterials that have not been pre-processed with extensive sample preparation techniques are of poor quality and lack the necessary image and edge contrast necessary to apply any commonly used segmentation techniques to conduct any quantitative study of its features such as vesicularity, internal structure, etc. In our present work, we are developing a methodology to conduct a quantitative 3D analysis of images of geomaterials collected using a confocal microscope with minimal amount of prior sample preparation and no addition of fluorescence. Two sample geomaterials, a volcanic melt sample and a crystal chip containing fluid inclusions are used to assess the feasibility of the method. A step-by-step process of image analysis includes application of image filtration to enhance the edges or material interfaces and is based on two segmentation techniques: geodesic active contours and region competition. Both techniques have been applied extensively to the analysis of medical MRI images to segment anatomical structures. Preliminary analysis suggests that there is distortion in the

  16. Nonlinear optical microscopy and ultrasound imaging of human cervical structure

    NASA Astrophysics Data System (ADS)

    Reusch, Lisa M.; Feltovich, Helen; Carlson, Lindsey C.; Hall, Gunnsteinn; Campagnola, Paul J.; Eliceiri, Kevin W.; Hall, Timothy J.

    2013-03-01

    The cervix softens and shortens as its collagen microstructure rearranges in preparation for birth, but premature change may lead to premature birth. The global preterm birth rate has not decreased despite decades of research, likely because cervical microstructure is poorly understood. Our group has developed a multilevel approach to evaluating the human cervix. We are developing quantitative ultrasound (QUS) techniques for noninvasive interrogation of cervical microstructure and corroborating those results with high-resolution images of microstructure from second harmonic generation imaging (SHG) microscopy. We obtain ultrasound measurements from hysterectomy specimens, prepare the tissue for SHG, and stitch together several hundred images to create a comprehensive view of large areas of cervix. The images are analyzed for collagen orientation and alignment with curvelet transform, and registered with QUS data, facilitating multiscale analysis in which the micron-scale SHG images and millimeter-scale ultrasound data interpretation inform each other. This novel combination of modalities allows comprehensive characterization of cervical microstructure in high resolution. Through a detailed comparative study, we demonstrate that SHG imaging both corroborates the quantitative ultrasound measurements and provides further insight. Ultimately, a comprehensive understanding of specific microstructural cervical change in pregnancy should lead to novel approaches to the prevention of preterm birth.

  17. Quantitative analysis of in vivo confocal microscopy images: a review.

    PubMed

    Patel, Dipika V; McGhee, Charles N

    2013-01-01

    In vivo confocal microscopy (IVCM) is a non-invasive method of examining the living human cornea. The recent trend towards quantitative studies using IVCM has led to the development of a variety of methods for quantifying image parameters. When selecting IVCM images for quantitative analysis, it is important to be consistent regarding the location, depth, and quality of images. All images should be de-identified, randomized, and calibrated prior to analysis. Numerous image analysis software are available, each with their own advantages and disadvantages. Criteria for analyzing corneal epithelium, sub-basal nerves, keratocytes, endothelium, and immune/inflammatory cells have been developed, although there is inconsistency among research groups regarding parameter definition. The quantification of stromal nerve parameters, however, remains a challenge. Most studies report lower inter-observer repeatability compared with intra-observer repeatability, and observer experience is known to be an important factor. Standardization of IVCM image analysis through the use of a reading center would be crucial for any future large, multi-centre clinical trials using IVCM.

  18. Managing multiple image stacks from confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Zerbe, Joerg; Goetze, Christian H.; Zuschratter, Werner

    1999-05-01

    A major goal in neuroanatomy is to obtain precise information about the functional organization of neuronal assemblies and their interconnections. Therefore, the analysis of histological sections frequently requires high resolution images in combination with an overview about the structure. To overcome this conflict we have previously introduced a software for the automatic acquisition of multiple image stacks (3D-MISA) in confocal laser scanning microscopy. Here, we describe a Windows NT based software for fast and easy navigation through the multiple images stacks (MIS-browser), the visualization of individual channels and layers and the selection of user defined subregions. In addition, the MIS browser provides useful tools for the visualization and evaluation of the datavolume, as for instance brightness and contrast corrections of individual layers and channels. Moreover, it includes a maximum intensity projection, panning and zoom in/out functions within selected channels or focal planes (x/y) and tracking along the z-axis. The import module accepts any tiff-format and reconstructs the original image arrangement after the user has defined the sequence of images in x/y and z and the number of channels. The implemented export module allows storage of user defined subregions (new single image stacks) for further 3D-reconstruction and evaluation.

  19. Imaging biological structures with fluorescence photoactivation localization microscopy

    PubMed Central

    Gould, Travis J; Verkhusha, Vladislav V; Hess, Samuel T

    2010-01-01

    Fluorescence photoactivation localization microscopy (FPALM) images biological structures with subdiffraction-limited resolution. With repeated cycles of activation, readout and bleaching, large numbers of photoactivatable probes can be precisely localized to obtain a map (image) of labeled molecules with an effective resolution of tens of nanometers. FPALM has been applied to a variety of biological imaging applications, including membrane, cytoskeletal and cytosolic proteins in fixed and living cells. Molecular motions can be quantified. FPALM can also be applied to nonbiological samples, which can be labeled with photoactivatable probes. With emphasis on cellular imaging, we describe here the adaptation of a conventional widefield fluorescence microscope for FPALM and present step-by-step procedures to successfully obtain and analyze FPALM images. The fundamentals of this protocol may also be applicable to users of similar imaging techniques that apply localization of photoactivatable probes to achieve super-resolution. Once alignment of the setup has been completed, data acquisitions can be obtained in approximately 1–30 min and analyzed in approximately 0.5–4 h. PMID:19214181

  20. Nonlinear optical microscopy and ultrasound imaging of human cervical structure

    PubMed Central

    Reusch, Lisa M.; Feltovich, Helen; Carlson, Lindsey C.; Hall, Gunnsteinn; Campagnola, Paul J.; Eliceiri, Kevin W.

    2013-01-01

    Abstract. The cervix softens and shortens as its collagen microstructure rearranges in preparation for birth, but premature change may lead to premature birth. The global preterm birth rate has not decreased despite decades of research, likely because cervical microstructure is poorly understood. Our group has developed a multilevel approach to evaluating the human cervix. We are developing quantitative ultrasound (QUS) techniques for noninvasive interrogation of cervical microstructure and corroborating those results with high-resolution images of microstructure from second harmonic generation imaging (SHG) microscopy. We obtain ultrasound measurements from hysterectomy specimens, prepare the tissue for SHG, and stitch together several hundred images to create a comprehensive view of large areas of cervix. The images are analyzed for collagen orientation and alignment with curvelet transform, and registered with QUS data, facilitating multiscale analysis in which the micron-scale SHG images and millimeter-scale ultrasound data interpretation inform each other. This novel combination of modalities allows comprehensive characterization of cervical microstructure in high resolution. Through a detailed comparative study, we demonstrate that SHG imaging both corroborates the quantitative ultrasound measurements and provides further insight. Ultimately, a comprehensive understanding of specific microstructural cervical change in pregnancy should lead to novel approaches to the prevention of preterm birth. PMID:23412434

  1. Imaging biological structures with fluorescence photoactivation localization microscopy.

    PubMed

    Gould, Travis J; Verkhusha, Vladislav V; Hess, Samuel T

    2009-01-01

    Fluorescence photoactivation localization microscopy (FPALM) images biological structures with subdiffraction-limited resolution. With repeated cycles of activation, readout and bleaching, large numbers of photoactivatable probes can be precisely localized to obtain a map (image) of labeled molecules with an effective resolution of tens of nanometers. FPALM has been applied to a variety of biological imaging applications, including membrane, cytoskeletal and cytosolic proteins in fixed and living cells. Molecular motions can be quantified. FPALM can also be applied to nonbiological samples, which can be labeled with photoactivatable probes. With emphasis on cellular imaging, we describe here the adaptation of a conventional widefield fluorescence microscope for FPALM and present step-by-step procedures to successfully obtain and analyze FPALM images. The fundamentals of this protocol may also be applicable to users of similar imaging techniques that apply localization of photoactivatable probes to achieve super-resolution. Once alignment of the setup has been completed, data acquisitions can be obtained in approximately 1-30 min and analyzed in approximately 0.5-4 h.

  2. Directional bilateral filters for smoothing fluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Venkatesh, Manasij; Mohan, Kavya; Seelamantula, Chandra Sekhar

    2015-08-01

    Images obtained through fluorescence microscopy at low numerical aperture (NA) are noisy and have poor resolution. Images of specimens such as F-actin filaments obtained using confocal or widefield fluorescence microscopes contain directional information and it is important that an image smoothing or filtering technique preserve the directionality. F-actin filaments are widely studied in pathology because the abnormalities in actin dynamics play a key role in diagnosis of cancer, cardiac diseases, vascular diseases, myofibrillar myopathies, neurological disorders, etc. We develop the directional bilateral filter as a means of filtering out the noise in the image without significantly altering the directionality of the F-actin filaments. The bilateral filter is anisotropic to start with, but we add an additional degree of anisotropy by employing an oriented domain kernel for smoothing. The orientation is locally adapted using a structure tensor and the parameters of the bilateral filter are optimized for within the framework of statistical risk minimization. We show that the directional bilateral filter has better denoising performance than the traditional Gaussian bilateral filter and other denoising techniques such as SURE-LET, non-local means, and guided image filtering at various noise levels in terms of peak signal-to-noise ratio (PSNR). We also show quantitative improvements in low NA images of F-actin filaments.

  3. Fluorescence lifetime imaging microscopy for the characterization of atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Phipps, Jennifer; Sun, Yinghua; Saroufeem, Ramez; Hatami, Nisa; Marcu, Laura

    2009-02-01

    Atherosclerotic plaque composition has been associated with plaque instability and rupture. This study investigates the use of fluorescence lifetime imaging microscopy (FLIM) for mapping plaque composition and assessing features of vulnerability. Measurements were conducted in atherosclerotic human aortic samples using an endoscopic FLIM system (spatial resolution of 35 µm temporal resolution 200 ps) developed in our lab which allows mapping in one measurement the composition within a volume of 4 mm diameter x 250 µm depth. Each pixel in the image represents a corresponding fluorescence lifetime value; images are formed through a flexible 0.6 mm side-viewing imaging bundle which allows for further intravascular applications. Based on previously recorded spectra of human atherosclerotic plaque, fluorescence emission was collected through two filters: f1: 377/50 and f2: 460/60 (center wavelength/bandwidth), which together provides the greatest discrimination between intrinsic fluorophores related to plaque vulnerability. We have imaged nine aortas and lifetime images were retrieved using a Laguerre expansion deconvolution technique and correlated with histopathology. Early results demonstrate discrimination using fluorescence lifetime between early, lipid-rich, and collagen-rich lesions which are consistent with previously reported time-resolved atherosclerotic plaque measurements.

  4. Single particle maximum likelihood reconstruction from superresolution microscopy images

    PubMed Central

    Verdier, Timothée; Gunzenhauser, Julia; Manley, Suliana; Castelnovo, Martin

    2017-01-01

    Point localization superresolution microscopy enables fluorescently tagged molecules to be imaged beyond the optical diffraction limit, reaching single molecule localization precisions down to a few nanometers. For small objects whose sizes are few times this precision, localization uncertainty prevents the straightforward extraction of a structural model from the reconstructed images. We demonstrate in the present work that this limitation can be overcome at the single particle level, requiring no particle averaging, by using a maximum likelihood reconstruction (MLR) method perfectly suited to the stochastic nature of such superresolution imaging. We validate this method by extracting structural information from both simulated and experimental PALM data of immature virus-like particles of the Human Immunodeficiency Virus (HIV-1). MLR allows us to measure the radii of individual viruses with precision of a few nanometers and confirms the incomplete closure of the viral protein lattice. The quantitative results of our analysis are consistent with previous cryoelectron microscopy characterizations. Our study establishes the framework for a method that can be broadly applied to PALM data to determine the structural parameters for an existing structural model, and is particularly well suited to heterogeneous features due to its single particle implementation. PMID:28253349

  5. Single particle maximum likelihood reconstruction from superresolution microscopy images.

    PubMed

    Verdier, Timothée; Gunzenhauser, Julia; Manley, Suliana; Castelnovo, Martin

    2017-01-01

    Point localization superresolution microscopy enables fluorescently tagged molecules to be imaged beyond the optical diffraction limit, reaching single molecule localization precisions down to a few nanometers. For small objects whose sizes are few times this precision, localization uncertainty prevents the straightforward extraction of a structural model from the reconstructed images. We demonstrate in the present work that this limitation can be overcome at the single particle level, requiring no particle averaging, by using a maximum likelihood reconstruction (MLR) method perfectly suited to the stochastic nature of such superresolution imaging. We validate this method by extracting structural information from both simulated and experimental PALM data of immature virus-like particles of the Human Immunodeficiency Virus (HIV-1). MLR allows us to measure the radii of individual viruses with precision of a few nanometers and confirms the incomplete closure of the viral protein lattice. The quantitative results of our analysis are consistent with previous cryoelectron microscopy characterizations. Our study establishes the framework for a method that can be broadly applied to PALM data to determine the structural parameters for an existing structural model, and is particularly well suited to heterogeneous features due to its single particle implementation.

  6. Nanoscale cellular imaging with scanning angle interference microscopy.

    PubMed

    DuFort, Christopher; Paszek, Matthew

    2014-01-01

    Fluorescence microscopy is among the most widely utilized tools in cell and molecular biology due to its ability to noninvasively obtain time-resolved images of live cells with molecule-specific contrast. In this chapter, we describe a simple high-resolution technique, scanning angle interference microscopy (SAIM), for the imaging and localization of fluorescent molecules with nanometer precision along the optical axis. In SAIM, samples above a reflective surface are sequentially scanned with an excitation laser at varying angles of incidence. Interference patterns generated between the incident and reflected lights result in an emission intensity that depends on the height of a fluorophore above the silicon surface and the angle of the incident radiation. The measured fluorescence intensities are then fit to an optical model to localize the labeled molecules along the z-axis with 5-10 nm precision and diffraction-limited lateral resolution. SAIM is easily implemented on widely available commercial total internal reflection fluorescence microscopes, offering potential for widespread use in cell biology. Here, we describe the setup of SAIM and its application for imaging cellular structures near (<1 μm) the sample substrate. © 2014 Elsevier Inc. All rights reserved.

  7. Validation of image processing tools for 3-D fluorescence microscopy.

    PubMed

    Dieterlen, Alain; Xu, Chengqi; Gramain, Marie-Pierre; Haeberlé, Olivier; Colicchio, Bruno; Cudel, Christophe; Jacquey, Serge; Ginglinger, Emanuelle; Jung, Georges; Jeandidier, Eric

    2002-04-01

    3-D optical fluorescent microscopy becomes nowadays an efficient tool for volumic investigation of living biological samples. Using optical sectioning technique, a stack of 2-D images is obtained. However, due to the nature of the system optical transfer function and non-optimal experimental conditions, acquired raw data usually suffer from some distortions. In order to carry out biological analysis, raw data have to be restored by deconvolution. The system identification by the point-spread function is useful to obtain the knowledge of the actual system and experimental parameters, which is necessary to restore raw data. It is furthermore helpful to precise the experimental protocol. In order to facilitate the use of image processing techniques, a multi-platform-compatible software package called VIEW3D has been developed. It integrates a set of tools for the analysis of fluorescence images from 3-D wide-field or confocal microscopy. A number of regularisation parameters for data restoration are determined automatically. Common geometrical measurements and morphological descriptors of fluorescent sites are also implemented to facilitate the characterisation of biological samples. An example of this method concerning cytogenetics is presented.

  8. Nuclear uptake of ultrasmall gold-doxorubicin conjugates imaged by fluorescence lifetime imaging microscopy (FLIM) and electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Shastry, Sathvik; Bradforth, Stephen E.; Nadeau, Jay L.

    2014-11-01

    Fluorescence lifetime imaging microscopy (FLIM) has been used to image free and encapsulated doxorubicin (Dox) uptake into cells, since interaction of Dox with DNA leads to a characteristic lifetime change. However, none of the reported Dox conjugates were able to enter cell nuclei. In this work, we use FLIM to show nuclear uptake of 2.7 nm mean diameter Au nanoparticles conjugated to Dox. The pattern of labelling differed substantially from what was seen with free Dox, with slower nuclear entry and stronger cytoplasmic labelling at all time points. As the cells died, the pattern of labelling changed further as intracellular structures disintegrated, consistent with association of Au-Dox to membranes. The patterns of Au distribution and intracellular structure changes were confirmed using electron microscopy, and indicate different mechanisms of cytotoxicity with stable Au-Dox conjugates compared to Dox alone. Such conjugates are promising tools for overcoming resistance in Dox-resistant cancers.Fluorescence lifetime imaging microscopy (FLIM) has been used to image free and encapsulated doxorubicin (Dox) uptake into cells, since interaction of Dox with DNA leads to a characteristic lifetime change. However, none of the reported Dox conjugates were able to enter cell nuclei. In this work, we use FLIM to show nuclear uptake of 2.7 nm mean diameter Au nanoparticles conjugated to Dox. The pattern of labelling differed substantially from what was seen with free Dox, with slower nuclear entry and stronger cytoplasmic labelling at all time points. As the cells died, the pattern of labelling changed further as intracellular structures disintegrated, consistent with association of Au-Dox to membranes. The patterns of Au distribution and intracellular structure changes were confirmed using electron microscopy, and indicate different mechanisms of cytotoxicity with stable Au-Dox conjugates compared to Dox alone. Such conjugates are promising tools for overcoming resistance in

  9. Scanning Transmission X-ray microscopy Imaging of Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Gilles, M. K.; Kilcoyne, A.; Tyliszczak, T.; Shuh, D. K.; Fakra, S.; Robinson, M.; Chase, K.

    2003-12-01

    Scanning transmission x-ray microscopes (STXM) are used to image a diversity of carbon and metal containing items such as biofilms in soils, magnetic materials, polymers and meteorites. Studies on particles collected on SiO2 filters from biomass burns in Flagstaff, Arizona and individual aerosols collected in South Africa on TEM grids are underway at beamlines 5.3.2 and 11.0.2 at the Advanced Light Source of Lawrence Berkeley National Laboratory. Sub micron particles are imaged in the transmission mode over the energy range of 280 - 1900 eV. Spectromicroscopic studies on individual particles using near edge x-ray absorption fine structure (NEXAFS) probe multiple species within or on the same particle. In (STXM) an X-ray beam is focused with a zone plate onto a sample and the transmitted radiation is detected. Since the signal is obtained in the transmission mode, optically thin samples are required. Hence, atmospheric aerosols with submicron thickness and diameter are well suited for this method. Near edge spectra of various elements were scanned in step sizes from 0.1-0.5 eV around characteristic absorption edges, creating 2 dimensional images at each energy. While STXM images are taken with a lower spatial resolution (currently 40 nm) than microscopies such as scanning electron microscopy, transmission electron microscopy, and atomic force microscopy, detailed chemical information with spatial distributions, and oxidation states is obtained. A particular focus of this work is to obtain more detailed information on the type of carbons, multiply, or singly bonded and whether or not carbon is bonded to oxygen. The ultimate goal is discrimination between organic and black carbon within individual aerosol particles and determining if organic carbon, black carbon, and metal species are distributed homogeneously throughout aerosol particles. Initial scans of the samples from Flagstaff show spectral evidence of aromatic carbon, without distinct C=O signatures. NEXAFS

  10. Mueller matrix signature in advanced fluorescence microscopy imaging

    NASA Astrophysics Data System (ADS)

    Mazumder, Nirmal; Qiu, Jianjun; Kao, Fu-Jen; Diaspro, Alberto

    2017-02-01

    We have demonstrated the measurement and characterization of the polarization properties of a fluorescence signal using four-channel photon counting based Stokes-Mueller polarization microscopy. Thus, Lu-Chipman decomposition was applied to extract the critical polarization properties such as depolarization, linear retardance and the optical rotation of collagen type I fiber. We observed the spatial distribution of anisotropic and helical molecules of collagen from the reconstructed 2D Mueller images based on the fluorescence signal in a pixel-by-pixel manner.

  11. Femtosecond digital lensless holographic microscopy to image biological samples.

    PubMed

    Mendoza-Yero, Omel; Calabuig, Alejandro; Tajahuerce, Enrique; Lancis, Jesús; Andrés, Pedro; Garcia-Sucerquia, Jorge

    2013-09-01

    The use of femtosecond laser radiation in digital lensless holographic microscopy (DLHM) to image biological samples is presented. A mode-locked Ti:Sa laser that emits ultrashort pulses of 12 fs intensity FWHM, with 800 nm mean wavelength, at 75 MHz repetition rate is used as a light source. For comparison purposes, the light from a light-emitting diode is also used. A section of the head of a drosophila melanogaster fly is studied with both light sources. The experimental results show very different effects of the pinhole size on the spatial resolution with DLHM. Unaware phenomena on the field of the DLHM are analyzed.

  12. Multiphoton microscopy as a diagnostic imaging modality for lung cancer

    NASA Astrophysics Data System (ADS)

    Pavlova, Ina; Hume, Kelly R.; Yazinski, Stephanie A.; Peters, Rachel M.; Weiss, Robert S.; Webb, Watt W.

    2010-02-01

    Lung cancer is the leading killer among all cancers for both men and women in the US, and is associated with one of the lowest 5-year survival rates. Current diagnostic techniques, such as histopathological assessment of tissue obtained by computed tomography guided biopsies, have limited accuracy, especially for small lesions. Early diagnosis of lung cancer can be improved by introducing a real-time, optical guidance method based on the in vivo application of multiphoton microscopy (MPM). In particular, we hypothesize that MPM imaging of living lung tissue based on twophoton excited intrinsic fluorescence and second harmonic generation can provide sufficient morphologic and spectroscopic information to distinguish between normal and diseased lung tissue. Here, we used an experimental approach based on MPM with multichannel fluorescence detection for initial discovery that MPM spectral imaging could differentiate between normal and neoplastic lung in ex vivo samples from a murine model of lung cancer. Current results indicate that MPM imaging can directly distinguish normal and neoplastic lung tissues based on their distinct morphologies and fluorescence emission properties in non-processed lung tissue. Moreover, we found initial indication that MPM imaging differentiates between normal alveolar tissue, inflammatory foci, and lung neoplasms. Our long-term goal is to apply results from ex vivo lung specimens to aid in the development of multiphoton endoscopy for in vivo imaging of lung abnormalities in various animal models, and ultimately for the diagnosis of human lung cancer.

  13. Multispectral imaging fluorescence microscopy for lymphoid tissue analysis

    NASA Astrophysics Data System (ADS)

    Monici, Monica; Agati, Giovanni; Fusi, Franco; Mazzinghi, Piero; Romano, Salvatore; Pratesi, Riccardo; Alterini, Renato; Bernabei, Pietro A.; Rigacci, Luigi

    1999-01-01

    Multispectral imaging autofluorescence microscopy (MIAM) is used here for the analysis of lymphatic tissues. Lymph node biopsies, from patients with lympthoadenopathy of different origin have been examined. Natural fluorescence (NF) images of 3 micrometers sections were obtained using three filters peaked at 450, 550 and 680 nm with 50 nm bandpass. Monochrome images were combined together in a single RGB image. NF images of lymph node tissue sections show intense blue-green fluorescence of the connective stroma. Normal tissue shows follicles with faintly fluorescent lymphocytes, as expected fro the morphologic and functional characteristics of these cells. Other more fluorescent cells (e.g., plasma cells and macrophages) are evidenced. Intense green fluorescence if localized in the inner wall of the vessels. Tissues coming from patients affected by Hodgkin's lymphoma show spread fluorescence due to connective infiltration and no evidence of follicle organization. Brightly fluorescent large cells, presumably Hodgkin cells, are also observed. These results indicate that MIAM can discriminate between normal and pathological tissues on the basis of their natural fluorescence pattern, and, therefore, represent a potentially useful technique for diagnostic applications. Analysis of the fluorescence spectra of both normal and malignant lymphoid tissues resulted much less discriminatory than MIAM.

  14. Modeling of optical quadrature microscopy for imaging mouse embryos

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2008-02-01

    Optical quadrature microscopy (OQM) has been shown to provide the optical path difference through a mouse embryo, and has led to a novel method to count the total number of cells further into development than current non-toxic imaging techniques used in the clinic. The cell counting method has the potential to provide an additional quantitative viability marker for blastocyst transfer during in vitro fertilization. OQM uses a 633 nm laser within a modified Mach-Zehnder interferometer configuration to measure the amplitude and phase of the signal beam that travels through the embryo. Four cameras preceded by multiple beamsplitters record the four interferograms that are used within a reconstruction algorithm to produce an image of the complex electric field amplitude. Here we present a model for the electric field through the primary optical components in the imaging configuration and the reconstruction algorithm to calculate the signal to noise ratio when imaging mouse embryos. The model includes magnitude and phase errors in the individual reference and sample paths, fixed pattern noise, and noise within the laser and detectors. This analysis provides the foundation for determining the imaging limitations of OQM and the basis to optimize the cell counting method in order to introduce additional quantitative viability markers.

  15. Image recombination transform algorithm for superresolution structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Xing; Lei, Ming; Dan, Dan; Yao, Baoli; Yang, Yanlong; Qian, Jia; Chen, Guangde; Bianco, Piero R.

    2016-09-01

    Structured illumination microscopy (SIM) is an attractive choice for fast superresolution imaging. The generation of structured illumination patterns made by interference of laser beams is broadly employed to obtain high modulation depth of patterns, while the polarizations of the laser beams must be elaborately controlled to guarantee the high contrast of interference intensity, which brings a more complex configuration for the polarization control. The emerging pattern projection strategy is much more compact, but the modulation depth of patterns is deteriorated by the optical transfer function of the optical system, especially in high spatial frequency near the diffraction limit. Therefore, the traditional superresolution reconstruction algorithm for interference-based SIM will suffer from many artifacts in the case of projection-based SIM that possesses a low modulation depth. Here, we propose an alternative reconstruction algorithm based on image recombination transform, which provides an alternative solution to address this problem even in a weak modulation depth. We demonstrated the effectiveness of this algorithm in the multicolor superresolution imaging of bovine pulmonary arterial endothelial cells in our developed projection-based SIM system, which applies a computer controlled digital micromirror device for fast fringe generation and multicolor light-emitting diodes for illumination. The merit of the system incorporated with the proposed algorithm allows for a low excitation intensity fluorescence imaging even less than 1 W/cm2, which is beneficial for the long-term, in vivo superresolved imaging of live cells and tissues.

  16. Total variation versus wavelet-based methods for image denoising in fluorescence lifetime imaging microscopy.

    PubMed

    Chang, Ching-Wei; Mycek, Mary-Ann

    2012-05-01

    We report the first application of wavelet-based denoising (noise removal) methods to time-domain box-car fluorescence lifetime imaging microscopy (FLIM) images and compare the results to novel total variation (TV) denoising methods. Methods were tested first on artificial images and then applied to low-light live-cell images. Relative to undenoised images, TV methods could improve lifetime precision up to 10-fold in artificial images, while preserving the overall accuracy of lifetime and amplitude values of a single-exponential decay model and improving local lifetime fitting in live-cell images. Wavelet-based methods were at least 4-fold faster than TV methods, but could introduce significant inaccuracies in recovered lifetime values. The denoising methods discussed can potentially enhance a variety of FLIM applications, including live-cell, in vivo animal, or endoscopic imaging studies, especially under challenging imaging conditions such as low-light or fast video-rate imaging.

  17. Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy.

    PubMed

    Senapati, Subhadip; Lindsay, Stuart

    2016-03-15

    Atomic force microscopy (AFM) is an extremely powerful tool in the field of bionanotechnology because of its ability to image single molecules and make measurements of molecular interaction forces with piconewton sensitivity. It works in aqueous media, enabling studies of molecular phenomenon taking place under physiological conditions. Samples can be imaged in their near-native state without any further modifications such as staining or tagging. The combination of AFM imaging with the force measurement added a new feature to the AFM technique, that is, molecular recognition imaging. Molecular recognition imaging enables mapping of specific interactions between two molecules (one attached to the AFM tip and the other to the imaging substrate) by generating simultaneous topography and recognition images (TREC). Since its discovery, the recognition imaging technique has been successfully applied to different systems such as antibody-protein, aptamer-protein, peptide-protein, chromatin, antigen-antibody, cells, and so forth. Because the technique is based on specific binding between the ligand and receptor, it has the ability to detect a particular protein in a mixture of proteins or monitor a biological phenomenon in the native physiological state. One key step for recognition imaging technique is the functionalization of the AFM tips (generally, silicon, silicon nitrides, gold, etc.). Several different functionalization methods have been reported in the literature depending on the molecules of interest and the material of the tip. Polyethylene glycol is routinely used to provide flexibility needed for proper binding as a part of the linker that carries the affinity molecule. Recently, a heterofunctional triarm linker has been synthesized and successfully attached with two different affinity molecules. This novel linker, when attached to AFM tip, helped to detect two different proteins simultaneously from a mixture of proteins using a so-called "two

  18. Watershed Merge Tree Classification for Electron Microscopy Image Segmentation

    SciTech Connect

    Liu, TIng; Jurrus, Elizabeth R.; Seyedhosseini, Mojtaba; Ellisman, Mark; Tasdizen, Tolga

    2012-11-11

    Automated segmentation of electron microscopy (EM) images is a challenging problem. In this paper, we present a novel method that utilizes a hierarchical structure and boundary classification for 2D neuron segmentation. With a membrane detection probability map, a watershed merge tree is built for the representation of hierarchical region merging from the watershed algorithm. A boundary classifier is learned with non-local image features to predict each potential merge in the tree, upon which merge decisions are made with consistency constraints in the sense of optimization to acquire the final segmentation. Independent of classifiers and decision strategies, our approach proposes a general framework for efficient hierarchical segmentation with statistical learning. We demonstrate that our method leads to a substantial improvement in segmentation accuracy.

  19. Fluorescence lifetime imaging microscopy of nanodiamonds in vivo

    NASA Astrophysics Data System (ADS)

    Kuo, Yung; Hsu, Tsung-Yuan; Wu, Yi-Chun; Hsu, Jui-Hung; Chang, Huan-Cheng

    2013-03-01

    The negatively charged nitrogen-vacancy (NV-) center in bulk diamond is a photostable fluorophore with a radiative lifetime of 11.6 ns at room temperature. The lifetime substantially increases to ~20 ns for diamond nanoparticles (size ~ 100 nm) suspended in water due to the change in refractive index of the surrounding medium of the NV- centers. This fluorescence decay time is much longer than that (typically 1 - 4 ns) of endogenous and exogenous fluorophores commonly used in biological imaging, making it possible to detect NV--containing nanodiamonds in vivo at the single particle level by fluorescence lifetime imaging microscopy (FLIM). We demonstrate the feasibility of this approach using Caenorhabditis elegans (C. elegans) as a model organism.

  20. Imaging ballistic carrier trajectories in graphene using scanning gate microscopy

    SciTech Connect

    Morikawa, Sei; Masubuchi, Satoru; Dou, Ziwei; Wang, Shu-Wei; Smith, Charles G.; Connolly, Malcolm R.; Watanabe, Kenji; Taniguchi, Takashi; Machida, Tomoki

    2015-12-14

    We use scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and subject to a weak magnetic field. We employ a magnetic focusing geometry to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local electric field generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector.

  1. Modeling atomic-resolution scanning transmission electron microscopy images.

    PubMed

    Findlay, Scott D; Oxley, Mark P; Allen, Leslie J

    2008-02-01

    A real-space description of inelastic scattering in scanning transmission electron microscopy is derived with particular attention given to the implementation of the projected potential approximation. A hierarchy of approximations to expressions for inelastic images is presented. Emphasis is placed on the conditions that must hold in each case. The expressions that justify the most direct, visual interpretation of experimental data are also the most approximate. Therefore, caution must be exercised in selecting experimental parameters that validate the approximations needed for the analysis technique used. To make the most direct, visual interpretation of electron-energy-loss spectroscopic images from core-shell excitations requires detector improvements commensurate with those that aberration correction provides for the probe-forming lens. Such conditions can be relaxed when detailed simulations are performed as part of the analysis of experimental data.

  2. Atomic force microscopy images of lyotropic lamellar phases.

    PubMed

    Garza, C; Thieghi, L T; Castillo, R

    2007-02-07

    For the very first time, atomic force microscope images of lamellar phases were observed combined with a freeze fracture technique that does not involve the use of replicas. Samples are rapidly frozen, fractured, and scanned directly with atomic force microscopy, at liquid nitrogen temperature and in high vacuum. This procedure can be used to investigate micro-structured liquids. The lamellar phases in Sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water and in C12E5/water systems were used to asses this new technique. Our observations were compared with x-ray diffraction measurements and with other freeze fracture methods reported in the literature. Our results show that this technique is useful to image lyotropic lamellar phases and the estimated repeat distances for lamellar periodicity are consistent with those obtained by x-ray diffraction.

  3. FT-IR microscopy imaging on oral cavity tumours, II

    NASA Astrophysics Data System (ADS)

    Conti, C.; Giorgini, E.; Pieramici, T.; Rubini, C.; Tosi, G.

    2005-06-01

    Changes in the biochemistry of oral cavity tissues have been studied by FT-IR microscopy. Various aspects of squamous cell carcinomas of cheek mucosa, of tongue, of gingiva, and of the floor of the mouth have been analyzed through FT-IR imaging with the aim to relate spectral patterns with histopathological results. In particular, changes in frequency and intensity of proteins, connective and nucleic acids vibrational modes as well as the visualization of biochemical single wavenumber or band ratio images allowed a quali- and quantitative evaluation of the changes in the proliferating activity from displastic to neoplastic states. 'Supervised' and 'unsupervised' procedures of data handling afforded a satisfactory degree of accordance between spectroscopic and histological findings.

  4. Microscopy and chemical imaging of Behcet brain tissue

    NASA Astrophysics Data System (ADS)

    Aranyosiova, Monika; Michalka, Miroslav; Kopani, Martin; Rychly, Boris; Jakubovsky, Jan; Velic, Dusan

    2008-12-01

    Chemical composition and distribution of molecules and elements in a human brain tissue of Behcet diseased patient are of interest. Behcet disease is a multi-system disorder of which pathogenesis and chemical causality are still uncertain. Time-of-flight secondary ion mass spectrometry is used along with scanning electron microscopy and energy dispersive X-ray analysis providing complex composition in Behcet disease and control tissues. Determined organic compounds are represented by fragments of carbohydrates, phospholipids, amino acids, and peptides. The distributions of inorganic species are well represented by heavy trace elements and by oxides in positive and negative polarities of time-of-flight secondary ion mass spectrometry, respectively. Organic and inorganic compounds are qualitatively determined in both samples, Behcet and control, providing complementary chemical images. The complementary chemical images interestingly change with the quantitative regression of organic compounds distribution, characteristic for the healthy control, towards inorganic compounds distribution, characteristic for Behcet tissue.

  5. Fluorescence microscopy imaging of electroperturbation in mammalian cells

    NASA Astrophysics Data System (ADS)

    Sun, Yinghua; Vernier, P. Thomas; Behrend, Matthew; Wang, Jingjing; Thu, Mya Mya; Gundersen, Martin A.; Marcu, Laura

    2006-03-01

    We report the design, integration, and validation of a fluorescence microscopy system for imaging of electroperturbation-the effects of nanosecond, megavolt-per-meter pulsed electric fields on biological cells and tissues. Such effects have potential applications in cancer therapy, gene regulation, and biophysical research by noninvasively disrupting intracellular compartments and inducing apoptosis in malignant cells. As the primary observing platform, an epifluorescence microscope integrating a nanosecond high-voltage pulser and a micrometer electrode chamber enable in situ imaging of the intracellular processes triggered by high electric fields. Using specific fluorescence molecular probes, the dynamic biological responses of Jurkat T lymphocytes to nanosecond electric pulses (nanoelectropulses) are studied with this system, including calcium bursts, the polarized translocation of phosphatidylserine (PS), and nuclear enlargement and chromatin/DNA structural changes.

  6. Fast Neuronal Imaging using Objective Coupled Planar Illumination Microscopy

    NASA Astrophysics Data System (ADS)

    Tarantino, Walter

    Complex computations performed by the brain are produced by activities of neuronal populations. There is a large diversity in the functions of each individual neuron, and neuronal activities occur in the time scale of milliseconds. In order to gain a fundamental understanding of the neuronal populations, one has to measure activity of each neuron at high temporal resolution, while investigating enough neurons to encapsulate the neuronal diversity. Traditional neurotechniques such as electrophysiology and optical imaging are constrained by the number of neurons whose activities can be simultaneously measured or the speed of measuring such activities. We have developed a novel light-sheet based technique called Objective Coupled Planar Illumination (OCPI) microscopy which is capable of measuring simultaneous activities of thousands of neurons at high speeds. In this thesis I pursue the following two aims: · Improve OCPI microscopy by enhancing the spatial resolution deeper in tissue. Tissue inhomogeneity and refractive index mismatch at the surface of the tissue lead to optical aberrations. We have compensated for such aberrations by (1) miniaturizing the OCPI illumination optics, so as to enable more vertical imaging of the tissue, (2) correcting for the angular defocus caused by the refraction at the immersion fluid/tissue interface, and (3) applying adaptive optics to correct for higher order optical aberrations. The improvement in the depth at which one can image tissue will enable the measurement of activities of neuronal populations in cortical areas. · Measure the diversity in the expression pattern of VSNs responsive to sulfated steroids. Nodari et al. have identified sulfated steroids as a novel family of ligands which activate vomeronasal sensory neurons (VSNs). Due to the experimental constraints, it has not been possible to obtain a comprehensive understanding of the number, location and functional characteristics of the sulfated steroid responsive VSNs

  7. Phosphorescent iridium(III) complexes: toward high phosphorescence quantum efficiency through ligand control.

    PubMed

    You, Youngmin; Park, Soo Young

    2009-02-28

    Phosphorescent Ir(III) complexes attract enormous attention because they allow highly efficient electrophosphorescence. In pursuing the development of Ir(III) complexes during the last decade, significant progress has been made in terms of the colour-tunability, thermal- and photo-stability, phase homogeneity, and phosphorescence efficiency. By far, extensive synthetic efforts have been focused on the molecular design of ligands to achieve a wide range of phosphorescence colour that is compatible with organic light-emitting device (OLED) applications. In contrast, less has been known about a collective structure-property relationship for phosphorescence quantum efficiency. In fact, a few rule-of-thumbs for high phosphorescence quantum efficiency have been occasionally reported, but a collective rationale is yet to be investigated. In this article, we provide a comprehensive review of 8 different methods reported so far to achieve high phosphorescence quantum efficiency from Ir(III) complexes. The methods included herein are limited to the cases of intramolecular controls, and thus are discussed in terms of variations in ligand structures: (1) geometric isomer control, (2) rigid structure and restricted intramolecular motion, (3) larger mixing of 1MLCT and 3LC states, (4) de-stabilizing a thermally accessible non-emissive state, (5) introducing dendrimer structures, (6) control in substituents of ligands, (7) confining the phosphorescent region of a mixed ligand Ir(III) complex and (8) sensitized phosphorescence by using attached energy donors. Each method is closely related to intramolecular excited state interactions, which strongly affect radiative or non-radiative transitions. A comprehensive understanding of these methods leads us to conclude that the modulation in ligand structures has a profound effect on both the phosphorescence colour and phosphorescence quantum efficiency. Thus, the judicious selection of ligand structures and their chelate disposition

  8. Coupling EELS/EFTEM Imaging with Environmental Fluid Cell Microscopy

    SciTech Connect

    Unocic, Raymond R; Baggetto, Loic; Veith, Gabriel M; Dudney, Nancy J; More, Karren Leslie

    2012-01-01

    Insight into dynamically evolving electrochemical reactions and mechanisms encountered in electrical energy storage (EES) and conversion technologies (batteries, fuel cells, and supercapacitors), materials science (corrosion and oxidation), and materials synthesis (electrodeposition) remains limited due to the present lack of in situ high-resolution characterization methodologies. Electrochemical fluid cell microscopy is an emerging in-situ method that allows for the direct, real-time imaging of electrochemical processes within a fluid environment. This technique is facilitated by the use of MEMS-based biasing microchip platforms that serve the purpose of sealing the highly volatile electrolyte between two electron transparent SiNx membranes and interfacing electrodes to an external potentiostat for controlled nanoscale electrochemislly experiments [!]. In order to elucidate both stmctural and chemical changes during such in situ electrochemical experiments, it is impmtant to first improve upon the spatial resolution by utilizing energy-filtered transmission electron microscopy (EFTEM) (to minimize chromatic aben ation), then to detennine the chemical changes via electron energy loss spectroscopy (EELS). This presents a formidable challenge since the overall thickness through which electrons are scattered through the multiple layers of the cell can be on the order of hundreds of nanometers to microns, scattering through which has the deleterious effect of degrading image resolution and decreasing signal-to noise for spectroscopy [2].

  9. Segmentation of fluorescence microscopy cell images using unsupervised mining.

    PubMed

    Du, Xian; Dua, Sumeet

    2010-05-28

    The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using fluorescence cell stains, and segmentation is often the first step in such approaches. Due to the complex nature of cell issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the segmentation of cells. In this study, we have developed and evaluated the performance of multiple unsupervised data mining techniques in cell image segmentation. We adapt four distinctive, yet complementary, methods for unsupervised learning, including those based on k-means clustering, EM, Otsu's threshold, and GMAC. Validation measures are defined, and the performance of the techniques is evaluated both quantitatively and qualitatively using synthetic and recently published real data. Experimental results demonstrate that k-means, Otsu's threshold, and GMAC perform similarly, and have more precise segmentation results than EM. We report that EM has higher recall values and lower precision results from under-segmentation due to its Gaussian model assumption. We also demonstrate that these methods need spatial information to segment complex real cell images with a high degree of efficacy, as expected in many medical informatics applications.

  10. Three dimensional reconstruction of neuron morphology from confocal microscopy images

    NASA Astrophysics Data System (ADS)

    Fanti, Zian; Martinez-Perez, M. Elena

    2010-05-01

    In recent years it has been more common to see 3D visualization of objects applied in many different areas. In neuroscience research, 3D visualization of neurons acquired at different depth views (i.e. image stacks) by means of confocal microscopy are of increase use. However in the best case, these visualizations only help to have a qualitative description of the neuron shape. Since it is well know that neuronal function is intimately related to its morphology. Having a precise characterization of neuronal structures such as axons and dendrites is critical to perform a quantitative analysis and thus it allows to design neuronal functional models based on neuron morphology. Currently there exists different commercial software to reconstruct neuronal arbors, however these processes are labor intensive since in most of the cases they are manually made. In this paper we propose a new software capable to reconstruct 3D neurons from confocal microscopy views in a more efficient way, with minimal user intervention. The propose algorithm is based on finding the tubular structures present in the stack of images using a modify version of the minimal graph cut algorithm. The model is generated from the segmented stack with a modified version of the Marching Cubes algorithm to generate de 3D isosurface. Herein we describe the principles of our 3D segmentation technique and the preliminary results.

  11. Two-photon optical microscopy imaging of endothelial keratoplasty grafts.

    PubMed

    Lombardo, Marco; Parekh, Mohit; Serrao, Sebastiano; Ruzza, Alessandro; Ferrari, Stefano; Lombardo, Giuseppe

    2017-03-01

    To investigate the microstructure of endothelial keratoplasty grafts using two-photon optical microscopy. Six endothelial keratoplasty grafts obtained from human donor corneoscleral tissues and prepared by submerged hydrodissection technique were imaged by two-photon optical microscopy. In each graft, two liquid bubbles were created in order to investigate the presence of a conserved cleavage plane regardless of the volume of posterior stroma that remained attached to Descemet's membrane (DM); the first bubble (bubble A) was generated under DM and the second bubble (bubble B) injection was done in order to obtain a layer of deep stroma that kept the two bubbles separated. Six human donor corneoscleral tissues were used as controls. Second harmonic generation and two-photon emitted fluorescence signals were collected from each specimen. Dissection of stroma occurred along the posterior collagen lamellae at variable distance from DM, which ranged between 3 and 16 μm in bubble A and between 23 and 41 μm in bubble B. The residual stroma included, anteriorly, bands of collagen lamellae, and thin bundles of stromal collagen fibrils, posteriorly, which were tightly intertwining with the underlying DM. There was no anatomically distinct plane of separation between these pre-Descemetic stromal collagen bundles and the overlying collagen lamellae with this hydrodissection technique. Two-photon optical microscopy provided label-free high-resolution imaging of endothelial keratoplasty grafts, showing that the most posterior stroma changes organization at approximately 10 μm above the DM. The pre-Descemetic stromal collagen fibrils form an intertwined complex with DM, which cannot be separated using hydrodissection.

  12. Segmenting Microscopy Images of Multi-Well Plates Based on Image Contrast.

    PubMed

    Chen, Weiyang; Liao, Bo; Li, Weiwei; Dong, Xiangjun; Flavel, Matthew; Jois, Markandeya; Li, Guojun; Xian, Bo

    2017-10-01

    Image segmentation is a key process in analyzing biological images. However, it is difficult to detect the differences between foreground and background when the image is unevenly illuminated. The unambiguous segmenting of multi-well plate microscopy images with various uneven illuminations is a challenging problem. Currently, no publicly available method adequately solves these various problems in bright-field multi-well plate images. Here, we propose a new method based on contrast values which removes the need for illumination correction. The presented method is effective enough to distinguish foreground and therefore a model organism (Caenorhabditis elegans) from an unevenly illuminated microscope image. In addition, the method also can solve a variety of problems caused by different uneven illumination scenarios. By applying this methodology across a wide range of multi-well plate microscopy images, we show that our approach can consistently analyze images with uneven illuminations with unparalleled accuracy and successfully solve various problems associated with uneven illumination. It can be used to process the microscopy images captured from multi-well plates and detect experimental subjects from an unevenly illuminated background.

  13. Vibrational spectroscopic imaging and multiphoton microscopy of spinal cord injury.

    PubMed

    Galli, Roberta; Uckermann, Ortrud; Winterhalder, Martin J; Sitoci-Ficici, Kerim H; Geiger, Kathrin D; Koch, Edmund; Schackert, Gabriele; Zumbusch, Andreas; Steiner, Gerald; Kirsch, Matthias

    2012-10-16

    Spinal cord injury triggers a series of complex biochemical alterations of nervous tissue. Up to now, such cellular events could not be studied without conventional tissue staining. The development of optical, label-free imaging techniques could provide powerful monitoring tools with the potential to be applied in vivo. In this work, we assess the ability of vibrational spectroscopy to generate contrast at molecular level between normal and altered regions in a rat model of spinal cord injury. Using tissue sections, we demonstrate that Fourier transform infrared (FT-IR) spectroscopy and spontaneous Raman spectroscopy are able to identify the lesion, the surrounding scar, and unharmed normal tissue, delivering insight into the biochemical events induced by the injury and allowing mapping of tissue degeneration. The FT-IR and Raman spectroscopic imaging provides the basis for fast multimodal nonlinear optical microscopy (coherent anti-Stokes Raman scattering, endogenous two-photon fluorescence, and second harmonic generation). The latter proves to be a fast tool for imaging of the lesion on unstained tissue samples, based on the alteration in lipid content, extracellular matrix composition, and microglia/macrophages distribution pattern. The results establish these technologies in the field of regeneration in central nervous system, with the long-term goal to extend them to intravital use, where fast and nonharmful imaging is required.

  14. Imaging domains in transmission electron microscopy (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.

    1987-04-01

    Magnetic domain walls and domains inside thin electron transparent specimens of ferromagnetic materials can be imaged using the Fresnel and Focault techniques in a transmission electron microscope. Combined with the diffraction, microstructural and microchemical capabilities of modern microscopes, Lorentz microscopy offers one of the most powerful tools to study structure-property relationships in magnetic materials. In addition, using this technique, it is possible to deduce the local magnetization distribution around inhomogeneities and complex Bloch and Néel walls. Lorentz images can be used to quantitatively measure domain wall thickness and estimate domain wall energy. With modified sample holders and pole pieces, one can study in situ domain wall motion and the interaction of domains with microstructural features such as second phases, grain boundaries, structural defects, etc. All these will be illustrated with examples of Lorentz images from soft and hard magnets with special emphasis on the Nd-Fe-B hard magnets. Finally, the limitations of the Lorentz imaging technique utilizing the deflected electron intensities will be outlined and a new technique which utilizes the phase changes in the electron beam as it passes through the material in a scanning transmission microscope will be reviewed.

  15. Automated imaging of extended tissue volumes using confocal microscopy.

    PubMed

    Sands, Gregory B; Gerneke, Dane A; Hooks, Darren A; Green, Colin R; Smaill, Bruce H; Legrice, Ian J

    2005-08-01

    Confocal microscopy enables constitutive elements of cells and tissues to be viewed at high resolution and reconstructed in three dimensions, but is constrained by the limited extent of the volumes that can be imaged. We have developed an automated technique that enables serial confocal images to be acquired over large tissue areas and volumes. The computer-controlled system, which integrates a confocal microscope and an ultramill using a high-precision translation stage, inherently preserves specimen registration, and the user control interface enables flexible specification of imaging protocols over a wide range of scales and resolutions. With this system it is possible to reconstruct specified morphological features in three dimensions and locate them accurately throughout a tissue sample. We have successfully imaged various samples at 1-mum voxel resolution on volumes up to 4 mm3 and on areas up to 75 mm2. Used in conjunction with appropriate embedding media and immuno-histochemical probes, the techniques described in this paper make it possible to routinely map the distributions of key intracellular structures over much larger tissue domains than has been easily achievable in the past. (c) 2005 Wiley-Liss, Inc.

  16. Humidity effects on scanning polarization force microscopy imaging

    NASA Astrophysics Data System (ADS)

    Shen, Yue; Zhou, Yuan; Sun, Yanxia; Zhang, Lijuan; Wang, Ying; Hu, Jun; Zhang, Yi

    2017-08-01

    Scanning polarization force microscopy (SPFM) is a useful surface characterization technique to visually characterize and distinguish nanomaterial with different local dielectric properties at nanometer scale. In this paper, taking the individual one-atom-thick graphene oxide (GO) and reduced graphene oxide (rGO) sheets on mica as examples, we described the influences of environmental humidity on SPFM imaging. We found that the apparent heights (AHs) or contrast of SPFM imaging was influenced significantly by relative humidity (RH) at a response time of a few seconds. And this influence rooted in the sensitive dielectric constant of mica surface to the RH change. While dielectric properties of GO and rGO sheets were almost immune to the humidity change. In addition, we gave the method to determine the critical humidity at which the contrast conversion happened under different conditions. And this is important to the contrast control and repeatable imaging of SPFM through RH adjusting. These findings suggest a strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM, which is critically important for further distinguishment, manipulation, electronic applications, etc.

  17. Partial nephrectomy margin imaging using structured illumination microscopy.

    PubMed

    Wang, Mei; Tulman, David B; Sholl, Andrew B; Mandava, Sree H; Maddox, Michael M; Lee, Benjamin R; Brown, J Quincy

    2017-08-21

    Partial nephrectomy (PN) is the recommended procedure over radical nephrectomy (RN) for patients with renal masses < 4 cm in diameter (Stage T1a). Patients with > 4 cm renal masses can also be treated with PN, but have a higher risk for positive surgical margins. Positive surgical margins (PSM), when present, are indicative of poor clinical outcomes. The current gold-standard histopathology method is not well-suited for the identification of PSM intra-operatively due to processing time and destructive nature. Here, video-rate structured illumination microscopy (VR-SIM) was investigated as a potential tool for PSM detection during PN. A clinical image atlas assembled from ex vivo renal biopsies provided diagnostically useful images of benign and malignant kidney, similar to permanent histopathology. VR-SIM was then used to image entire parenchymal margins of tumor resection covering up to >1,800× more margin surface area than standard histology. Aided by the image atlas, the study pathologist correctly classified all parenchymal margins as negative for PSM with VR-SIM, compared to standard post-operative pathology. The ability to evaluate large surgical margins in a short timeframe with VR-SIM may allow it to be used intra-operatively as a "safety net" for PSM detection, allowing more patients to undergo PN over RN. This article is protected by copyright. All rights reserved.

  18. Residual Deconvolutional Networks for Brain Electron Microscopy Image Segmentation.

    PubMed

    Fakhry, Ahmed; Zeng, Tao; Ji, Shuiwang

    2017-02-01

    Accurate reconstruction of anatomical connections between neurons in the brain using electron microscopy (EM) images is considered to be the gold standard for circuit mapping. A key step in obtaining the reconstruction is the ability to automatically segment neurons with a precision close to human-level performance. Despite the recent technical advances in EM image segmentation, most of them rely on hand-crafted features to some extent that are specific to the data, limiting their ability to generalize. Here, we propose a simple yet powerful technique for EM image segmentation that is trained end-to-end and does not rely on prior knowledge of the data. Our proposed residual deconvolutional network consists of two information pathways that capture full-resolution features and contextual information, respectively. We showed that the proposed model is very effective in achieving the conflicting goals in dense output prediction; namely preserving full-resolution predictions and including sufficient contextual information. We applied our method to the ongoing open challenge of 3D neurite segmentation in EM images. Our method achieved one of the top results on this open challenge. We demonstrated the generality of our technique by evaluating it on the 2D neurite segmentation challenge dataset where consistently high performance was obtained. We thus expect our method to generalize well to other dense output prediction problems.

  19. Imaging Drug Delivery to Skin with Stimulated Raman Scattering Microscopy

    PubMed Central

    Saar, Brian G.; Contreras-Rojas, L. Rodrigo; Xie, X. Sunney; Guy, Richard H.

    2011-01-01

    Efficient drug delivery to the skin is essential for the treatment of major dermatologic diseases, such as eczema, psoriasis and acne. However, many compounds penetrate the skin barrier poorly and require optimized formulations to ensure their bioavailability. Here, stimulated Raman scattering (SRS) microscopy, a recently-developed, label-free chemical imaging tool, is used to acquire high resolution images of multiple chemical components of a topical formulation as it penetrates into mammalian skin. This technique uniquely provides label-free, non-destructive, three-dimensional images with high spatiotemporal resolution. It reveals novel features of (trans)dermal drug delivery in the tissue environment: different rates of drug penetration via hair follicles as compared to the intercellular pathway across the stratum corneum are directly observed, and the precipitation of drug crystals on the skin surface is visualized after the percutaneous penetration of the co-solvent excipient in the formulation. The high speed three-dimensional imaging capability of SRS thus reveals features that cannot be seen with other techniques, providing both kinetic information and mechanistic insight into the (trans)dermal drug delivery process. PMID:21548600

  20. Imaging red blood cell dynamics by quantitative phase microscopy.

    PubMed

    Popescu, Gabriel; Park, YoungKeun; Choi, Wonshik; Dasari, Ramachandra R; Feld, Michael S; Badizadegan, Kamran

    2008-01-01

    Red blood cells (RBCs) play a crucial role in health and disease, and structural and mechanical abnormalities of these cells have been associated with important disorders such as Sickle cell disease and hereditary cytoskeletal abnormalities. Although several experimental methods exist for analysis of RBC mechanical properties, optical methods stand out as they enable collecting mechanical and dynamic data from live cells without physical contact and without the need for exogenous contrast agents. In this report, we present quantitative phase microscopy techniques that enable imaging RBC membrane fluctuations with nanometer sensitivity at arbitrary time scales from milliseconds to hours. We further provide a theoretical framework for extraction of membrane mechanical and dynamical properties using time series of quantitative phase images. Finally, we present an experimental approach to extend quantitative phase imaging to 3-dimensional space using tomographic methods. By providing non-invasive methods for imaging mechanics of live cells, these novel techniques provide an opportunity for high-throughput analysis and study of RBC mechanical properties in health and disease.

  1. 3D imaging of neutron tracks using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4

  2. Post-processing strategies in image scanning microscopy.

    PubMed

    McGregor, J E; Mitchell, C A; Hartell, N A

    2015-10-15

    Image scanning microscopy (ISM) coupled with pixel reassignment offers a resolution improvement of √2 over standard widefield imaging. By scanning point-wise across the specimen and capturing an image of the fluorescent signal generated at each scan position, additional information about specimen structure is recorded and the highest accessible spatial frequency is doubled. Pixel reassignment can be achieved optically in real time or computationally a posteriori and is frequently combined with the use of a physical or digital pinhole to reject out of focus light. Here, we simulate an ISM dataset using a test image and apply standard and non-standard processing methods to address problems typically encountered in computational pixel reassignment and pinholing. We demonstrate that the predicted improvement in resolution is achieved by applying standard pixel reassignment to a simulated dataset and explore the effect of realistic displacements between the reference and true excitation positions. By identifying the position of the detected fluorescence maximum using localisation software and centring the digital pinhole on this co-ordinate before scaling around translated excitation positions, we can recover signal that would otherwise be degraded by the use of a pinhole aligned to an inaccurate excitation reference. This strategy is demonstrated using experimental data from a multiphoton ISM instrument. Finally we investigate the effect that imaging through tissue has on the positions of excitation foci at depth and observe a global scaling with respect to the applied reference grid. Using simulated and experimental data we explore the impact of a globally scaled reference on the ISM image and, by pinholing around the detected maxima, recover the signal across the whole field of view. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Host compounds for red phosphorescent OLEDs

    DOEpatents

    Xia, Chuanjun; Cheon, Kwang -Ohk

    2015-08-25

    Novel compounds containing a triphenylene moiety linked to an .alpha..beta. connected binaphthyl ring system are provided. These compounds have surprisingly good solubility in organic solvents and are useful as host compounds in red phosphorescent OLEDs.

  4. Improved sampling and analysis of images in corneal confocal microscopy.

    PubMed

    Schaldemose, E L; Fontain, F I; Karlsson, P; Nyengaard, J R

    2017-10-01

    Corneal confocal microscopy (CCM) is a noninvasive clinical method to analyse and quantify corneal nerve fibres in vivo. Although the CCM technique is in constant progress, there are methodological limitations in terms of sampling of images and objectivity of the nerve quantification. The aim of this study was to present a randomized sampling method of the CCM images and to develop an adjusted area-dependent image analysis. Furthermore, a manual nerve fibre analysis method was compared to a fully automated method. 23 idiopathic small-fibre neuropathy patients were investigated using CCM. Corneal nerve fibre length density (CNFL) and corneal nerve fibre branch density (CNBD) were determined in both a manual and automatic manner. Differences in CNFL and CNBD between (1) the randomized and the most common sampling method, (2) the adjusted and the unadjusted area and (3) the manual and automated quantification method were investigated. The CNFL values were significantly lower when using the randomized sampling method compared to the most common method (p = 0.01). There was not a statistical significant difference in the CNBD values between the randomized and the most common sampling method (p = 0.85). CNFL and CNBD values were increased when using the adjusted area compared to the standard area. Additionally, the study found a significant increase in the CNFL and CNBD values when using the manual method compared to the automatic method (p ≤ 0.001). The study demonstrated a significant difference in the CNFL values between the randomized and common sampling method indicating the importance of clear guidelines for the image sampling. The increase in CNFL and CNBD values when using the adjusted cornea area is not surprising. The observed increases in both CNFL and CNBD values when using the manual method of nerve quantification compared to the automatic method are consistent with earlier findings. This study underlines the importance of improving the analysis of the

  5. Rapid global fitting of large fluorescence lifetime imaging microscopy datasets.

    PubMed

    Warren, Sean C; Margineanu, Anca; Alibhai, Dominic; Kelly, Douglas J; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Katan, Matilda; Dunsby, Chris; French, Paul M W

    2013-01-01

    Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell

  6. Single nuclear pores visualized by confocal microscopy and image processing.

    PubMed Central

    Kubitscheck, U; Wedekind, P; Zeidler, O; Grote, M; Peters, R

    1996-01-01

    How nuclear pore complexes, mediating the transport of nucleic acids, proteins, and metabolites between cell nucleus and cytoplasm, are arranged in the nuclear envelope is essentially unknown. Here we describe a method combining high-resolution confocal imaging with image processing and pattern recognition to visualize single nuclear pore complexes (120 nm diameter), determine their relative positions with nanometer accuracy, and analyze their distribution in situ. The method was tested by means of a model system in which the very same sample areas could be imaged by confocal and electron microscopy. It was thus found that single fluorescent beads of 105 nm nominal diameter could be localized with a lateral accuracy of <20 nm and an axial accuracy of approximately 20 nm. The method was applied to digitonin-permeabilized 3T3 cells, whose nuclear pore complexes were fluorescently labeled with the anti-nucleoporin antibody mAb414. Stacks of optical sections were generated by confocal imaging at high resolution. Herein the nuclear pore complexes appeared as bright diffraction-limited spots whose centers were localized by fitting them by three-dimensional gaussians. The nearest-neighbor distribution function and the pair correlation function were calculated and found to agree well with those of randomly distributed hard cylinders of 138 +/- 17 nm diameter, but not with those of randomly distributed points or nonrandomly distributed cylinders. This was supported by a cluster analysis. Implications for the direct observation of the transport of single particles and molecules through individual nuclear pore complexes are discussed. Images FIGURE 1 FIGURE 2 FIGURE 4 PMID:9172731

  7. Brain tumor classification of microscopy images using deep residual learning

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yota; Washiya, Kiyotada; Aoki, Kota; Nagahashi, Hiroshi

    2016-12-01

    The crisis rate of brain tumor is about one point four in ten thousands. In general, cytotechnologists take charge of cytologic diagnosis. However, the number of cytotechnologists who can diagnose brain tumors is not sufficient, because of the necessity of highly specialized skill. Computer-Aided Diagnosis by computational image analysis may dissolve the shortage of experts and support objective pathological examinations. Our purpose is to support a diagnosis from a microscopy image of brain cortex and to identify brain tumor by medical image processing. In this study, we analyze Astrocytes that is a type of glia cell of central nerve system. It is not easy for an expert to discriminate brain tumor correctly since the difference between astrocytes and low grade astrocytoma (tumors formed from Astrocyte) is very slight. In this study, we present a novel method to segment cell regions robustly using BING objectness estimation and to classify brain tumors using deep convolutional neural networks (CNNs) constructed by deep residual learning. BING is a fast object detection method and we use pretrained BING model to detect brain cells. After that, we apply a sequence of post-processing like Voronoi diagram, binarization, watershed transform to obtain fine segmentation. For classification using CNNs, a usual way of data argumentation is applied to brain cells database. Experimental results showed 98.5% accuracy of classification and 98.2% accuracy of segmentation.

  8. Digital holographic microscopy and focusing methods based on image sharpness.

    PubMed

    İlhan, Hazar A; Doğar, Mert; Özcan, Merıç

    2014-09-01

    Digital holographic microscope allows imaging of opaque and transparent specimens without staining. A digitally recorded hologram must be reconstructed numerically at the actual depth of the object to obtain a focused image. We have developed a high-resolution digital holographic microscope for imaging amplitude and phase objects with autofocusing capability. If the actual depth of an object is not known a priori, it is estimated by comparing the sharpness of several reconstructions at different distances, which is very demanding in means of computational power when the recorded hologram is large. In this paper, we present 11 different sharpness metrics for estimating the actual focus depths of objects. The speed performance of focusing is discussed, and a scaling technique is introduced where the speed of autofocusing increases on the order of square of the scale ratio. We measured the performance of scaling on computer-generated holograms and on recorded holograms of a biological sample. We show that simulations are in good agreement with the experimental results. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  9. Theory and Calculation of the Phosphorescence Phenomenon.

    PubMed

    Baryshnikov, Gleb; Minaev, Boris; Ågren, Hans

    2017-05-10

    Phosphorescence is a phenomenon of delayed luminescence that corresponds to the radiative decay of the molecular triplet state. As a general property of molecules, phosphorescence represents a cornerstone problem of chemical physics due to the spin prohibition of the underlying triplet-singlet emission and because its analysis embraces a deep knowledge of electronic molecular structure. Phosphorescence is the simplest physical process which provides an example of spin-forbidden transformation with a characteristic spin selectivity and magnetic field dependence, being the model also for more complicated chemical reactions and for spin catalysis applications. The bridging of the spin prohibition in phosphorescence is commonly analyzed by perturbation theory, which considers the intensity borrowing from spin-allowed electronic transitions. In this review, we highlight the basic theoretical principles and computational aspects for the estimation of various phosphorescence parameters, like intensity, radiative rate constant, lifetime, polarization, zero-field splitting, and spin sublevel population. Qualitative aspects of the phosphorescence phenomenon are discussed in terms of concepts like structure-activity relationships, donor-acceptor interactions, vibronic activity, and the role of spin-orbit coupling under charge-transfer perturbations. We illustrate the theory and principles of computational phosphorescence by highlighting studies of classical examples like molecular nitrogen and oxygen, benzene, naphthalene and their azaderivatives, porphyrins, as well as by reviewing current research on systems like electrophosphorescent transition metal complexes, nucleobases, and amino acids. We furthermore discuss modern studies of phosphorescence that cover topics of applied relevance, like the design of novel photofunctional materials for organic light-emitting diodes (OLEDs), photovoltaic cells, chemical sensors, and bioimaging.

  10. Phosphorescence of vitreous 2-bromobenzophenone

    NASA Astrophysics Data System (ADS)

    Buravtseva, L. M.; Pyshkin, O. S.; Strzhemechny, M. A.; Avdeenko, A. A.

    2008-06-01

    Spectroscopic studies of vitreous 2-bromobenzophenone have been carried out over the respective domain of its stability. Glassy 2-bromobenzophenone samples were obtained by abrupt cooling of the melt by cold helium vapor. Quantum yield measurements allowed us to establish that the upper boundary of stable glass is slightly above 100K, while at about 220K the glass melts. Phosphorescence measurements at 4.2K showed that even at this low temperature the emission contains a strong excimer component. The energy position and shape (two bands) of the excimer emission are close to those observed in the crystal of 2-bromobenzophenone at higher temperatures. Contrary to findings in the crystal, the monomeric emission of the glass contains only one C =O stretch series, every band of which is substantially broader than in the crystal. As the temperature is raised, the monomeric emission intensity falls, disappearing completely above 70K.

  11. Multiphoton fluorescence and second harmonic generation microscopy for imaging keratoconus

    NASA Astrophysics Data System (ADS)

    Sun, Yen; Lo, Wen; Lin, Sung-Jan; Lin, Wei-Chou; Jee, Shiou-Hwa; Tan, Hsin-Yuan; Dong, Chen-Yuan

    2006-02-01

    The purpose of this study is to assess the possible application of multiphoton fluorescence and second harmonic generation (SHG) microscopy for imaging the structural features of keratoconus cornea and to evaluate its potential as being a clinical in vivo monitoring technique. Using the near-infrared excitation source from a titanium-sapphire laser pumped by a diode-pumped, solid state (DPSS) laser system, we can induce and simultaneously acquire multiphoton autofluorescence and SHG signals from the cornea specimens with keratoconus. A home-modified commercial microscope system with specified optical components is used for optimal signal detection. Keratoconus cornea button from patient with typical clinical presentation of keratoconus was obtained at the time of penetrating keratoplasty. The specimen was also sent for the histological examination as comparison. In all samples of keratoconus, destruction of lamellar structure with altered collagen fiber orientation was observed within whole layer of the diseased stromal area. In addition, the orientation of the altered collagen fibers within the cone area shows a trend directing toward the apex of the cone, which might implicate the biomechanical response of the keratoconus stroma to the intraocular pressure. Moreover, increased autofluorescent cells were also found in the cone area, with increased density as one approaches the apical area. In conclusion, multiphoton autofluorescence and SHG microscopy non-invasively demonstrated the morphological features of keratoconus cornea, especially the structural alternations of the stromal lamellae. We believe that in the future the multiphoton microscopy can be applied in vivo as an effective, non-invasive diagnostic and monitoring technique for keratoconus.

  12. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy.

    PubMed

    Chen, Weili; Long, Kenneth D; Yu, Hojeong; Tan, Yafang; Choi, Ji Sun; Harley, Brendan A; Cunningham, Brian T

    2014-11-21

    We demonstrate photonic crystal enhanced fluorescence (PCEF) microscopy as a surface-specific fluorescence imaging technique to study the adhesion of live cells by visualizing variations in cell-substrate gap distance. This approach utilizes a photonic crystal surface incorporated into a standard microscope slide as the substrate for cell adhesion, and a microscope integrated with a custom illumination source as the detection instrument. When illuminated with a monochromatic light source, angle-specific optical resonances supported by the photonic crystal enable efficient excitation of surface-confined and amplified electromagnetic fields when excited at an on-resonance condition, while no field enhancement occurs when the same photonic crystal is illuminated in an off-resonance state. By mapping the fluorescence enhancement factor for fluorophore-tagged cellular components between on- and off-resonance states and comparing the results to numerical calculations, the vertical distance of labelled cellular components from the photonic crystal substrate can be estimated, providing critical and quantitative information regarding the spatial distribution of the specific components of cells attaching to a surface. As an initial demonstration of the concept, 3T3 fibroblast cells were grown on fibronectin-coated photonic crystals with fluorophore-labelled plasma membrane or nucleus. We demonstrate that PCEF microscopy is capable of providing information about the spatial distribution of cell-surface interactions at the single-cell level that is not available from other existing forms of microscopy, and that the approach is amenable to large fields of view, without the need for coupling prisms, coupling fluids, or special microscope objectives.

  13. Imaging doped silicon test structures using low energy electron microscopy.

    SciTech Connect

    Nakakura, Craig Yoshimi; Anderson, Meredith Lynn; Kellogg, Gary Lee

    2010-01-01

    This document is the final SAND Report for the LDRD Project 105877 - 'Novel Diagnostic for Advanced Measurements of Semiconductor Devices Exposed to Adverse Environments' - funded through the Nanoscience to Microsystems investment area. Along with the continuous decrease in the feature size of semiconductor device structures comes a growing need for inspection tools with high spatial resolution and high sample throughput. Ideally, such tools should be able to characterize both the surface morphology and local conductivity associated with the structures. The imaging capabilities and wide availability of scanning electron microscopes (SEMs) make them an obvious choice for imaging device structures. Dopant contrast from pn junctions using secondary electrons in the SEM was first reported in 1967 and more recently starting in the mid-1990s. However, the serial acquisition process associated with scanning techniques places limits on the sample throughput. Significantly improved throughput is possible with the use of a parallel imaging scheme such as that found in photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM). The application of PEEM and LEEM to device structures relies on contrast mechanisms that distinguish differences in dopant type and concentration. Interestingly, one of the first applications of PEEM was a study of the doping of semiconductors, which showed that the PEEM contrast was very sensitive to the doping level and that dopant concentrations as low as 10{sup 16} cm{sup -3} could be detected. More recent PEEM investigations of Schottky contacts were reported in the late 1990s by Giesen et al., followed by a series of papers in the early 2000s addressing doping contrast in PEEM by Ballarotto and co-workers and Frank and co-workers. In contrast to PEEM, comparatively little has been done to identify contrast mechanisms and assess the capabilities of LEEM for imaging semiconductor device strictures. The one exception is the

  14. Magnetic resonance microscopy of prostate tissue: How basic science can inform clinical imaging development

    SciTech Connect

    Bourne, Roger

    2013-03-15

    This commentary outlines how magnetic resonance imaging (MRI) microscopy studies of prostate tissue samples and whole organs have shed light on a number of clinical imaging mysteries and may enable more effective development of new clinical imaging methods.

  15. Hyperspectral enhanced dark field microscopy for imaging blood cells.

    PubMed

    Verebes, Giulia Sacco; Melchiorre, Michele; Garcia-Leis, Adianez; Ferreri, Carla; Marzetti, Carla; Torreggiani, Armida

    2013-12-01

    In this work, a novel methodology based on hyperspectral imagery with enhanced Darkfield microscopy for probing and characterizing changes in blood cell components was tested. Two main categories of blood cells were analyzed, red and white blood cells. Unique spectral signatures of ordinary and most common deformed morphologies of red blood cells were identified. Moreover, examination of white blood cells allowed to characterize and differentiate active from inactive cells. The findings indicate the ability of this technique to detect changes in light scattering property of blood cells due to their morphological properties Since pathological states can alterate the discocyte shape, this preliminary, but promising application of the hyperspectral analysis to blood cells can be useful to evaluate significant correlations of blood cell spectral features in healthy and pathological conditions. The combination of the quali- and quantitative spectral signatures of hyperspectral imaging microscopy with the information of the subject health conditions may provide a new tool for clinical applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Microscopy image resolution improvement by deconvolution of complex fields.

    PubMed

    Cotte, Yann; Toy, M Fatih; Pavillon, Nicolas; Depeursinge, Christian

    2010-09-13

    Based on truncated inverse filtering, a theory for deconvolution of complex fields is studied. The validity of the theory is verified by comparing with experimental data from digital holographic microscopy (DHM) using a high-NA system (NA=0.95). Comparison with standard intensity deconvolution reveals that only complex deconvolution deals correctly with coherent cross-talk. With improved image resolution, complex deconvolution is demonstrated to exceed the Rayleigh limit. Gain in resolution arises by accessing the objects complex field - containing the information encoded in the phase - and deconvolving it with the reconstructed complex transfer function (CTF). Synthetic (based on Debye theory modeled with experimental parameters of MO) and experimental amplitude point spread functions (APSF) are used for the CTF reconstruction and compared. Thus, the optical system used for microscopy is characterized quantitatively by its APSF. The role of noise is discussed in the context of complex field deconvolution. As further results, we demonstrate that complex deconvolution does not require any additional optics in the DHM setup while extending the limit of resolution with coherent illumination by a factor of at least 1.64.

  17. Multiphoton, confocal, and lifetime microscopy for molecular imaging in cartilage

    NASA Astrophysics Data System (ADS)

    Wachsmann-Hogiu, Sebastian; Krakow, Deborah; Kirilova, Veneta T.; Cohn, Daniel H.; Bertolotto, Cristina; Acuna, Dora; Fang, Qiyin; Krivorov, Nikola; Farkas, Daniel L.

    2005-03-01

    It has recently been shown that mutations in Filamin A and B genes produce a large spectrum of skeletal disorders in developing fetuses. However, high-resolution optical microscopy in cartilage growth plate using fluorescent antibody assays, which should elucidate molecular aspects of these disorders, is extremely difficult due to the high level of autofluoresce in this tissue. We apply multiphoton, confocal, lifetime and spectral microscopy to (i) image and characterize autofluorophores in chondrocytes and subtract their contributions to obtain a corrected antibody-marker fluorescence signal, and (ii) measure the interaction between Filamin A and B proteins by detecting the fluorescence resonance energy transfer (FRET) between markers of the two proteins. Taking advantage of the different fluorescence spectra of the endogenous and exogenous markers, we can significantly reduce the autofluorescence background. Preliminary results of the FRET experiments suggest no interaction between Filamin A and B proteins. However, developing of new antibodies targeting the carboxy-terminal immunoglobulin-like domain may be necessary to confirm this result.

  18. Band Excitation in Scanning Probe Microscopy: Recognition and Functional Imaging

    NASA Astrophysics Data System (ADS)

    Jesse, S.; Vasudevan, R. K.; Collins, L.; Strelcov, E.; Okatan, M. B.; Belianinov, A.; Baddorf, A. P.; Proksch, R.; Kalinin, S. V.

    2014-04-01

    Field confinement at the junction between a biased scanning probe microscope's tip and solid surface enables local probing of various bias-induced transformations, such as polarization switching, ionic motion, and electrochemical reactions. The nanoscale size of the biased region, smaller or comparable to that of features such as grain boundaries and dislocations, potentially allows for the study of kinetics and thermodynamics at the level of a single defect. In contrast to classical statistically averaged approaches, this approach allows one to link structure to functionality and deterministically decipher associated mesoscopic and atomistic mechanisms. Furthermore, responses measured as a function of frequency and bias can serve as a fingerprint of local material functionality, allowing for local recognition imaging of inorganic and biological systems. This article reviews current progress in multidimensional scanning probe microscopy techniques based on band excitation time and voltage spectroscopies, including discussions on data acquisition, dimensionality reduction, and visualization, along with future challenges and opportunities for the field.

  19. Second harmonic generation imaging microscopy of cellular structure and function

    NASA Astrophysics Data System (ADS)

    Millard, Andrew C.; Jin, Lei; Loew, Leslie M.

    2005-03-01

    Second harmonic generation (SHG) imaging microscopy is an important emerging technique for biological research, with many advantages over existing one- or two-photon fluorescence techniques. A non-linear phenomenon employing mode-locked Ti:sapphire or fiber-based lasers, SHG results in intrinsic optical sectioning without the need for a confocal aperture. Furthermore, as a second-order process SHG is confined to loci lacking a center of symmetry. Many important structural proteins such as collagen and cellulose show intrinsic SHG, thus providing access to sub-resolution information on symmetry. However, we are particularly interested here in "resonance-enhanced" SHG from styryl dyes. In general SHG is a combination of a true second-order process and a third-order process dependent on a static electric field, such that SHG from membrane-bound dyes depends on a cell's trans-membrane potential. With simultaneous patch-clamping and non-linear imaging of cells, we have found that SHG is a sensitive probe of trans-membrane potential with sensitivities that are up to four times better than those obtained under optimal conditions using one-photon fluorescence imaging. With the sensitivity of SHG to local electric fields from other sources such as the membrane dipole potential as well as the quadratic dependence of SHG on concentration, we have found that SHG imaging of styryl dyes is also a powerful technique for the investigation of lipid phases and rafts and for the visualization of the dynamics of membrane-vesicle fusion following fertilization of an ovum.

  20. 3D image reconstruction algorithms for cryo-electron-microscopy images of virus particles

    NASA Astrophysics Data System (ADS)

    Doerschuk, Peter C.; Johnson, John E.

    2000-11-01

    A statistical model for the object and the complete image formation process in cryo electron microscopy of viruses is presented. Using this model, maximum likelihood reconstructions of the 3D structure of viruses are computed using the expectation maximization algorithm and an example based on Cowpea mosaic virus is provided.

  1. Imaging leukocytes in vivo with third harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Kun; Chen, Chien-Kuo; Chen, Yu-Shing; Wu, Pei-Chun; Hsieh, Tsung-Yuan; Liu, Han-Wen; Yeh, Chiou-Yueh; Lin, Win-Li; Chia, Jean-San; Liu, Tzu-Ming

    2013-02-01

    Without a labeling, we demonstrated that lipid granules in leukocytes have distinctive third harmonic generation (THG) contrast. Excited by a 1230nm femtosecond laser, THG signals were generated at a significantly higher level in neutrophils than other mononuclear cells, whereas signals in agranular lymphocytes were one order smaller. These characteristic THG features can also be observed in vivo to trace the newly recruited leukocytes following lipopolysaccharide (LPS) challenge. Furthermore, using video-rate THG microscopy, we also captured images of blood cells in human capillaries. Quite different from red-blood-cells, every now and then, round and granule rich blood cells with strong THG contrast appeared in circulation. The corresponding volume densities in blood, evaluated from their frequencies of appearance and the velocity of circulation, fall within the physiological range of human white blood cell counts. These results suggested that labeling-free THG imaging may provide timely tracing of leukocyte movement and hematology inspection without disturbing the normal cellular or physiological status.

  2. Rapid microscopy measurement of very large spectral images.

    PubMed

    Lindner, Moshe; Shotan, Zav; Garini, Yuval

    2016-05-02

    The spectral content of a sample provides important information that cannot be detected by the human eye or by using an ordinary RGB camera. The spectrum is typically a fingerprint of the chemical compound, its environmental conditions, phase and geometry. Thus measuring the spectrum at each point of a sample is important for a large range of applications from art preservation through forensics to pathological analysis of a tissue section. To date, however, there is no system that can measure the spectral image of a large sample in a reasonable time. Here we present a novel method for scanning very large spectral images of microscopy samples even if they cannot be viewed in a single field of view of the camera. The system is based on capturing information while the sample is being scanned continuously 'on the fly'. Spectral separation implements Fourier spectroscopy by using an interferometer mounted along the optical axis. High spectral resolution of ~5 nm at 500 nm could be achieved with a diffraction-limited spatial resolution. The acquisition time is fairly high and takes 6-8 minutes for a sample size of 10mm x 10mm measured under a bright-field microscope using a 20X magnification.

  3. Label-free imaging of cortical structures with multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Shu; Chen, Xiuqiang; Wu, Weilin; Chen, Zhida; Lin, Ruolan; Lin, Peihua; Wang, Xingfu; Fu, Yu Vincent; Chen, Jianxin

    2017-02-01

    Cortical structures in the central nervous system exhibit an ordered laminar organization. Defined cell layers are significant to our understanding of brain structure and function. In this work, multiphoton microscopy (MPM) based on second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), which was applied for qualitatively visualizing the structure of cerebral and cerebellar cortex from the fresh, unfixed, and unstained specimen. MPM is able to effectively identify neurons and neurites in cerebral cortex, as well as glial cells, Purkinje cells, and granule cells in cerebellar cortex at subcellular resolution. In addition, the use of automated image processing algorithms can quantify the circularity of neurons and the density distribution of neurites based on the intrinsic nonlinear optical contrast, further providing quantitative characteristics for automatically analyzing the laminar structure of cortical structures. These results suggest that with the development of the feasibility of two-photon fiberscopes and microendoscope probes, the combined MPM and image analysis holds potential to provide supplementary information to augment the diagnostic accuracy of neuropathology and in vivo identification of various neurological illnesses in clinic.

  4. Ultrasound Backscatter Microscopy for Imaging of Oral Carcinoma

    PubMed Central

    Lam, Matthew; Chaudhari, Abhijit J.; Sun, Yang; Zhou, Feifei; Dobbie, Allison; Gandour-Edwards, Regina F.; Tinling, Steve P.; Farwell, D. Gregory; Monsky, Wayne L.; Shung, K. Kirk; Marcu, Laura

    2013-01-01

    Objectives Ultrasound backscatter microscopy (UBM), or ultrasound biomicroscopy, is a noninvasive, label-free, and ionizing radiation–free technique allowing high-resolution 3-dimensional structural imaging. The goal of this study was to evaluate UBM for resolving anatomic features associated with squamous cell carcinoma of the oral cavity. Methods The study was conducted in a hamster buccal pouch model. A carcinogen was topically applied to cheeks of 14 golden Syrian hamsters. Six additional hamsters served as healthy controls. A high-frequency (41 MHz, 6-mm focal depth, lateral and axial resolutions of 65 and 37 μm, respectively) UBM system was used for scanning the oral cavity after 14 weeks of carcinogen application. Histologic analyses were conducted on scanned regions. Results The histologic structure of buccal tissue and microvasculature networks could be visualized from the UBM images. Epithelial and mucosal hypertrophy and neoplastic changes were identified in animals subjected to the carcinogen. In animals with invasive squamous cell carcinoma, lesion development and destruction of the structural integrity of tissue layers were noted. Conclusions In this pilot study, UBM generated sufficient contrast for morphologic features associated with oral carcinoma compared to healthy tissue. This modality may present a practical technique for detection of oral neoplasms that is potentially translatable to humans. PMID:24065260

  5. Quantitative determination of maximal imaging depth in all-NIR multiphoton microscopy images of thick tissues

    NASA Astrophysics Data System (ADS)

    Sarder, Pinaki; Akers, Walter J.; Sudlow, Gail P.; Yazdanfar, Siavash; Achilefu, Samuel

    2014-02-01

    We report two methods for quantitatively determining maximal imaging depth from thick tissue images captured using all-near-infrared (NIR) multiphoton microscopy (MPM). All-NIR MPM is performed using 1550 nm laser excitation with NIR detection. This method enables imaging more than five-fold deep in thick tissues in comparison with other NIR excitation microscopy methods. In this study, we show a correlation between the multiphoton signal along the depth of tissue samples and the shape of the corresponding empirical probability density function (pdf) of the photon counts. Histograms from this analysis become increasingly symmetric with the imaging depth. This distribution transitions toward the background distribution at higher imaging depths. Inspired by these observations, we propose two independent methods based on which one can automatically determine maximal imaging depth in the all-NIR MPM images of thick tissues. At this point, the signal strength is expected to be weak and similar to the background. The first method suggests the maximal imaging depth corresponds to the deepest image plane where the ratio between the mean and median of the empirical photon-count pdf is outside the vicinity of 1. The second method suggests the maximal imaging depth corresponds to the deepest image plane where the squared distance between the empirical photon-count mean obtained from the object and the mean obtained from the background is greater than a threshold. We demonstrate the application of these methods in all-NIR MPM images of mouse kidney tissues to study maximal depth penetration in such tissues.

  6. All-optically integrated multimodality imaging system: combined photoacoustic microscopy, optical coherence tomography, and fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhongjiang; Yang, Sihua; Xing, Da

    2016-10-01

    We have developed a multimodality imaging system by optically integrating all-optical photoacoustic microscopy (AOPAM), optical coherence tomography (OCT) and fluorescence microscopy (FLM) to provide complementary information including optical absorption, optical back-scattering and fluorescence contrast of biological tissue. By sharing the same low-coherence Michelson interferometer, AOPAM and OCT could be organically optically combined to obtain the absorption and scattering information of the biological tissues. Also, owing to using the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence signals are obtained to present the radiative and nonradiative transition process of absorption. Simultaneously photoacoustic angiography, tissue structure and fluorescence molecular in vivo images of mouse ear were acquired to demonstrate the capabilities of the optically integrated trimodality imaging system, which can present more information to study tumor angiogenesis, vasculature, anatomical structure and microenvironments in vivo.

  7. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    PubMed Central

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Background Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. Methods We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. Results In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. Conclusion In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary. PMID:18215290

  8. Total variation based image deconvolution for extended depth-of-field microscopy images

    NASA Astrophysics Data System (ADS)

    Hausser, F.; Beckers, I.; Gierlak, M.; Kahraman, O.

    2015-03-01

    One approach for a detailed understanding of dynamical cellular processes during drug delivery is the use of functionalized biocompatible nanoparticles and fluorescent markers. An appropriate imaging system has to detect these moving particles so as whole cell volumes in real time with high lateral resolution in a range of a few 100 nm. In a previous study Extended depth-of-field microscopy (EDF-microscopy) has been applied to fluorescent beads and tradiscantia stamen hair cells and the concept of real-time imaging has been proved in different microscopic modes. In principle a phase retardation system like a programmable space light modulator or a static waveplate is incorporated in the light path and modulates the wavefront of light. Hence the focal ellipsoid is smeared out and images seem to be blurred in a first step. An image restoration by deconvolution using the known point-spread-function (PSF) of the optical system is necessary to achieve sharp microscopic images of an extended depth-of-field. This work is focused on the investigation and optimization of deconvolution algorithms to solve this restoration problem satisfactorily. This inverse problem is challenging due to presence of Poisson distributed noise and Gaussian noise, and since the PSF used for deconvolution exactly fits in just one plane within the object. We use non-linear Total Variation based image restoration techniques, where different types of noise can be treated properly. Various algorithms are evaluated for artificially generated 3D images as well as for fluorescence measurements of BPAE cells.

  9. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    SciTech Connect

    Lansåker, Pia C. Niklasson, Gunnar A.; Granqvist, Claes G.; Hallén, Anders

    2014-10-15

    Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness d{sub g}—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM) combined with image analysis as well as by atomic force microscopy (AFM). The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for d{sub g} were obtained by SEM with image analysis and by AFM.

  10. In vivo reflectance confocal microscopy imaging of melanocytic skin lesions: consensus terminology glossary and illustrative images.

    PubMed

    Scope, Alon; Benvenuto-Andrade, Cristiane; Agero, Anna-Liza C; Malvehy, Josep; Puig, Susana; Rajadhyaksha, Milind; Busam, Klaus J; Marra, Diego E; Torres, Abel; Propperova, Iva; Langley, Richard G; Marghoob, Ashfaq A; Pellacani, Giovanni; Seidenari, Stefania; Halpern, Allan C; Gonzalez, Salvador

    2007-10-01

    Reflectance confocal microscopy (RCM) has been used for over 10 years for in vivo skin imaging. However, to date no standard RCM terminology has been published. To establish a glossary of terms for RCM evaluation of melanocytic lesions. Prominent RCM researchers were presented with RCM images of melanocytic lesions. Reviewers evaluated RCM images for image quality, lesion architecture, and cellular details. Reviewers could utilize published descriptors or contribute unpublished terminology to describe lesion attributes. An online meeting was conducted to reach consensus that integrates and defines existing and new RCM descriptive terms. We present a glossary with descriptors of image quality, normal skin morphology, lesion architecture, and cellular details for RCM evaluation of melanocytic lesions. Usefulness of the glossary in RCM diagnosis of melanocytic lesions needs to be assessed. Standardization of terminology is important toward implementation of RCM in the clinical setting.

  11. Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer

    PubMed Central

    Jabbour, Joey M.; Cheng, Shuna; Malik, Bilal H.; Cuenca, Rodrigo; Jo, Javier A.; Wright, John; Cheng, Yi-Shing Lisa

    2013-01-01

    Abstract. Optical imaging techniques using a variety of contrast mechanisms are under evaluation for early detection of epithelial precancer; however, tradeoffs in field of view (FOV) and resolution may limit their application. Therefore, we present a multiscale multimodal optical imaging system combining macroscopic biochemical imaging of fluorescence lifetime imaging (FLIM) with subcellular morphologic imaging of reflectance confocal microscopy (RCM). The FLIM module images a 16×16  mm2 tissue area with 62.5 μm lateral and 320 ps temporal resolution to guide cellular imaging of suspicious regions. Subsequently, coregistered RCM images are acquired at 7 Hz with 400 μm diameter FOV, <1  μm lateral and 3.5 μm axial resolution. FLIM-RCM imaging was performed on a tissue phantom, normal porcine buccal mucosa, and a hamster cheek pouch model of oral carcinogenesis. While FLIM is sensitive to biochemical and macroscopic architectural changes in tissue, RCM provides images of cell nuclear morphology, all key indicators of precancer progression. PMID:23595826

  12. Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer.

    PubMed

    Jabbour, Joey M; Cheng, Shuna; Malik, Bilal H; Cuenca, Rodrigo; Jo, Javier A; Wright, John; Cheng, Yi-Shing Lisa; Maitland, Kristen C

    2013-04-01

    Optical imaging techniques using a variety of contrast mechanisms are under evaluation for early detection of epithelial precancer; however, tradeoffs in field of view (FOV) and resolution may limit their application. Therefore, we present a multiscale multimodal optical imaging system combining macroscopic biochemical imaging of fluorescence lifetime imaging (FLIM) with subcellular morphologic imaging of reflectance confocal microscopy (RCM). The FLIM module images a 16×16 mm² tissue area with 62.5 μm lateral and 320 ps temporal resolution to guide cellular imaging of suspicious regions. Subsequently, coregistered RCM images are acquired at 7 Hz with 400 μm diameter FOV, <1  μm lateral and 3.5 μm axial resolution. FLIM-RCM imaging was performed on a tissue phantom, normal porcine buccal mucosa, and a hamster cheek pouch model of oral carcinogenesis. While FLIM is sensitive to biochemical and macroscopic architectural changes in tissue, RCM provides images of cell nuclear morphology, all key indicators of precancer progression.

  13. Imaging electronic states on topological semimetals using scanning tunneling microscopy

    DOE PAGES

    Gyenis, András; Inoue, Hiroyuki; Jeon, Sangjun; ...

    2016-10-18

    Following the intense studies on topological insulators, significant efforts have recently been devoted to the search for gapless topological systems. These materials not only broaden the topological classification of matter but also provide a condensed matter realization of various relativistic particles and phenomena previously discussed mainly in high energy physics. Weyl semimetals host massless, chiral, low-energy excitations in the bulk electronic band structure, whereas a symmetry protected pair of Weyl fermions gives rise to massless Dirac fermions.Weemployed scanning tunneling microscopy/spectroscopy to explore the behavior of electronic states both on the surface and in the bulk of topological semimetal phases. Bymore » mapping the quasiparticle interference (QPI) and emerging Landau levels at high magnetic field in Dirac semimetals Cd3As2 and Na3Bi, we observed extended Dirac-like bulk electronic bands. QPI imaged on Weyl semimetal TaAs demonstrated the predicted momentum dependent delocalization of Fermi arc surface states in the vicinity of the surface projected Weyl nodes.« less

  14. Systematic and general method for quantifying localization in microscopy images

    PubMed Central

    Sheng, Huanjie; Stauffer, Weston

    2016-01-01

    ABSTRACT Quantifying the localization of molecules with respect to other molecules, cell structures and intracellular regions is essential to understanding their regulation and actions. However, measuring localization from microscopy images is often difficult with existing metrics. Here, we evaluate a metric for quantifying localization termed the threshold overlap score (TOS), and show it is simple to calculate, easy to interpret, able to be used to systematically characterize localization patterns, and generally applicable. TOS is calculated by: (i) measuring the overlap of pixels that are above the intensity thresholds for two signals; (ii) determining whether the overlap is more, less, or the same as expected by chance, i.e. colocalization, anti-colocalization, or non-colocalization; and (iii) rescaling to allow comparison at different thresholds. The above is repeated at multiple threshold combinations to generate a TOS matrix to systematically characterize the relationship between localization and signal intensities. TOS matrices were used to identify and distinguish localization patterns of different proteins in various simulations, cell types and organisms with greater specificity and sensitivity than common metrics. For all the above reasons, TOS is an excellent first line metric, particularly for cells with mixed localization patterns. PMID:27979831

  15. Nanometric depth resolution from multi-focal images in microscopy

    PubMed Central

    Dalgarno, Heather I. C.; Dalgarno, Paul A.; Dada, Adetunmise C.; Towers, Catherine E.; Gibson, Gavin J.; Parton, Richard M.; Davis, Ilan; Warburton, Richard J.; Greenaway, Alan H.

    2011-01-01

    We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels. PMID:21247948

  16. Image processing pipeline for synchrotron-radiation-based tomographic microscopy.

    PubMed

    Hintermüller, C; Marone, F; Isenegger, A; Stampanoni, M

    2010-07-01

    With synchrotron-radiation-based tomographic microscopy, three-dimensional structures down to the micrometer level can be visualized. Tomographic data sets typically consist of 1000 to 1500 projections of 1024 x 1024 to 2048 x 2048 pixels and are acquired in 5-15 min. A processing pipeline has been developed to handle this large amount of data efficiently and to reconstruct the tomographic volume within a few minutes after the end of a scan. Just a few seconds after the raw data have been acquired, a selection of reconstructed slices is accessible through a web interface for preview and to fine tune the reconstruction parameters. The same interface allows initiation and control of the reconstruction process on the computer cluster. By integrating all programs and tools, required for tomographic reconstruction into the pipeline, the necessary user interaction is reduced to a minimum. The modularity of the pipeline allows functionality for new scan protocols to be added, such as an extended field of view, or new physical signals such as phase-contrast or dark-field imaging etc.

  17. Imaging electronic states on topological semimetals using scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Gyenis, András; Inoue, Hiroyuki; Jeon, Sangjun; Zhou, Brian B.; Feldman, Benjamin E.; Wang, Zhijun; Li, Jian; Jiang, Shan; Gibson, Quinn D.; Kushwaha, Satya K.; Krizan, Jason W.; Ni, Ni; Cava, Robert J.; Bernevig, B. Andrei; Yazdani, Ali

    2016-10-01

    Following the intense studies on topological insulators, significant efforts have recently been devoted to the search for gapless topological systems. These materials not only broaden the topological classification of matter but also provide a condensed matter realization of various relativistic particles and phenomena previously discussed mainly in high energy physics. Weyl semimetals host massless, chiral, low-energy excitations in the bulk electronic band structure, whereas a symmetry protected pair of Weyl fermions gives rise to massless Dirac fermions. We employed scanning tunneling microscopy/spectroscopy to explore the behavior of electronic states both on the surface and in the bulk of topological semimetal phases. By mapping the quasiparticle interference (QPI) and emerging Landau levels at high magnetic field in Dirac semimetals Cd3As2 and Na3Bi, we observed extended Dirac-like bulk electronic bands. QPI imaged on Weyl semimetal TaAs demonstrated the predicted momentum dependent delocalization of Fermi arc surface states in the vicinity of the surface-projected Weyl nodes.

  18. Extracting twins from orientation imaging microscopy scan data.

    PubMed

    Wright, S I; Larsen, R J

    2002-03-01

    Automated electron backscatter diffraction or orientation imaging microscopy (OIM) provides spatially specific measurements of crystallographic orientation. These measurements are typically collected on regular grids. By inspecting the misorientation between neighbouring measurements on the grid, potential twin boundaries can be identified. If the misorientation is within some given tolerance of a specified twin misorientation, the boundary separating the two measurements may be identified as a potential twin boundary. In addition, for a coherent twin, the twinning planes must be coincident with the grain boundary plane. As OIM scans are inherently two-dimensional, the scan data provide only limited information on the boundary plane. Thus, it is not possible to ascertain definitively whether the twinning planes are coincident with the boundary plane. Nonetheless, the alignment of the surface traces of the twinning planes with the trace of the boundary provides a partial indication of coincidence. An automated approach has been developed that allows data concerning both twin criterion to be extracted from OIM scans. Application of the methodology to deformed zirconium suggests that the twinning planes remain coherent during deformation. The methodology was also used to improve grain size distributions measured by OIM. These results more closely match those obtained by conventional metallography.

  19. Robust image alignment for cryogenic transmission electron microscopy.

    PubMed

    McLeod, Robert A; Kowal, Julia; Ringler, Philippe; Stahlberg, Henning

    2017-03-01

    Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a long exposure is broken into a movie, permitting specimen drift to be registered and corrected. The typical approach for image registration, with high shot noise and low contrast, is multi-reference (MR) cross-correlation. Here we present the software package Zorro, which provides robust drift correction for dose fractionation by use of an intensity-normalized cross-correlation and logistic noise model to weight each cross-correlation in the MR model and filter each cross-correlation optimally. Frames are reliably registered by Zorro with low dose and defocus. Methods to evaluate performance are presented, by use of independently-evaluated even- and odd-frame stacks by trajectory comparison and Fourier ring correlation. Alignment of tiled sub-frames is also introduced, and demonstrated on an example dataset. Zorro source code is available at github.com/CINA/zorro. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Understanding the Phase Contrast Optics to Restore Artifact-free Microscopy Images for Segmentation

    PubMed Central

    Yin, Zhaozheng; Kanade, Takeo; Chen, Mei

    2012-01-01

    Phase contrast, a noninvasive microscopy imaging technique, is widely used to capture time-lapse images to monitor the behavior of transparent cells without staining or altering them. Due to the optical principle, phase contrast microscopy images contain artifacts such as the halo and shade-off that hinder image segmentation, a critical step in automated microscopy image analysis. Rather than treating phase contrast microscopy images as general natural images and applying generic image processing techniques on them, we propose to study the optical properties of the phase contrast microscope to model its image formation process. The phase contrast imaging system can be approximated by a linear imaging model. Based on this model and input image properties, we formulate a regularized quadratic cost function to restore artifact-free phase contrast images that directly correspond to the specimen's optical path length. With artifacts removed, high quality segmentation can be achieved by simply thresholding the restored images. The imaging model and restoration method are quantitatively evaluated on microscopy image sequences with thousands of cells captured over several days. We also demonstrate that accurate restoration lays the foundation for high performance in cell detection and tracking. PMID:22386070

  1. Hybrid wide-field and scanning microscopy for high-speed 3D imaging.

    PubMed

    Duan, Yubo; Chen, Nanguang

    2015-11-15

    Wide-field optical microscopy is efficient and robust in biological imaging, but it lacks depth sectioning. In contrast, scanning microscopic techniques, such as confocal microscopy and multiphoton microscopy, have been successfully used for three-dimensional (3D) imaging with optical sectioning capability. However, these microscopic techniques are not very suitable for dynamic real-time imaging because they usually take a long time for temporal and spatial scanning. Here, a hybrid imaging technique combining wide-field microscopy and scanning microscopy is proposed to accelerate the image acquisition process while maintaining the 3D optical sectioning capability. The performance was demonstrated by proof-of-concept imaging experiments with fluorescent beads and zebrafish liver.

  2. Intravital Microscopy Imaging Approaches for Image-Guided Drug Delivery Systems

    PubMed Central

    Kirui, Dickson K.; Ferrari, Mauro

    2016-01-01

    Rapid technical advances in the field of non-linear microscopy have made intravital microscopy a vital pre-clinical tool for research and development of imaging-guided drug delivery systems. The ability to dynamically monitor the fate of macromolecules in live animals provides invaluable information regarding properties of drug carriers (size, charge, and surface coating), physiological, and pathological processes that exist between point-of-injection and the projected of site of delivery, all of which influence delivery and effectiveness of drug delivery systems. In this Review, we highlight how integrating intravital microscopy imaging with experimental designs (in vitro analyses and mathematical modeling) can provide unique information critical in the design of novel disease-relevant drug delivery platforms with improved diagnostic and therapeutic indexes. The Review will provide the reader an overview of the various applications for which intravital microscopy has been used to monitor the delivery of diagnostic and therapeutic agents and discuss some of their potential clinical applications. PMID:25901526

  3. Confocal imaging at the nanoscale with two-color STED microscopy

    NASA Astrophysics Data System (ADS)

    Gugel, Hilmar; Giske, Arnold; Dyba, Marcus; Sieber, Jochen

    2011-03-01

    STED microscopy enables confocal imaging of biological samples with a resolution that is not limited by diffraction. It provides new insights in various fields of biology, such as membrane biology, neurobiology and physiology. Its three dimensional sectioning ability allows the acquisition of high resolution image stacks. Furthermore, STED microscopy enables the recording of dynamic processes and live cell images. We present two-color imaging in confocal STED microscopy with a single STED wavelength. Pulsed and continuous wave lasers in the visible and near infra-red wavelengths range are used for stimulated emission. The resolution enhancement is demonstrated in comparison to confocal imaging with biological specimens.

  4. Luminescence quenching of a phosphorescent conjugated polyelectrolyte.

    PubMed

    Haskins-Glusac, Ksenija; Pinto, Mauricio R; Tan, Chunyan; Schanze, Kirk S

    2004-11-17

    The photophysical and luminescence quenching properties of a platinum(II) acetylide-based conjugated polyelectrolyte, Pt-p, which features carboxylic acid solubilizing groups are reported. The Pt-acetylide polymer is water soluble, and it exhibits phosphorescence from a triplet pi,pi exciton based on the conjugated backbone. The phosphorescence from Pt-p is quenched by viologens with different charges (MV(+), MV(2+), and MV(4+)), and in each case the quenching is dominated by a dynamic (diffusional) mechanism. Comparison of the Stern-Volmer quenching properties of Pt-p with those of a structurally analogous fluorescent organic polyelectrolyte leads to the conclusion that the amplified quenching effect, which is commonly observed for fluorescent conjugated polyelectrolytes, is not important for the platinum acetylide phosphorescent conjugated polyelectrolyte.

  5. Principles of phosphorescent organic light emitting devices.

    PubMed

    Minaev, Boris; Baryshnikov, Gleb; Agren, Hans

    2014-02-07

    Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.

  6. Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging

    PubMed Central

    Husvogt, Lennart; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Hornegger, Joachim; Connolly, James L.; Fujimoto, James G.

    2016-01-01

    We derive a physically realistic model for the generation of virtual transillumination, white light microscopy images using epi-fluorescence measurements from thick, unsectioned tissue. We demonstrate this technique by generating virtual transillumination H&E images of unsectioned human breast tissue from epi-fluorescence multiphoton microscopy data. The virtual transillumination algorithm is shown to enable improved contrast and color accuracy compared with previous color mapping methods. Finally, we present an open source implementation of the algorithm in OpenGL, enabling real-time GPU-based generation of virtual transillumination microscopy images using conventional fluorescence microscopy systems. PMID:27500636

  7. Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging.

    PubMed

    Giacomelli, Michael G; Husvogt, Lennart; Vardeh, Hilde; Faulkner-Jones, Beverly E; Hornegger, Joachim; Connolly, James L; Fujimoto, James G

    2016-01-01

    We derive a physically realistic model for the generation of virtual transillumination, white light microscopy images using epi-fluorescence measurements from thick, unsectioned tissue. We demonstrate this technique by generating virtual transillumination H&E images of unsectioned human breast tissue from epi-fluorescence multiphoton microscopy data. The virtual transillumination algorithm is shown to enable improved contrast and color accuracy compared with previous color mapping methods. Finally, we present an open source implementation of the algorithm in OpenGL, enabling real-time GPU-based generation of virtual transillumination microscopy images using conventional fluorescence microscopy systems.

  8. Towards Building Computerized Image Analysis Framework for Nucleus Discrimination in Microscopy Images of Diffuse Glioma

    PubMed Central

    Kong, Jun; Cooper, Lee; Kurc, Tahsin; Brat, Daniel; Saltz, Joel

    2012-01-01

    As an effort to build an automated and objective system for pathologic image analysis, we present, in this paper, a computerized image processing method for identifying nuclei, a basic biological unit of diagnostic utility, in microscopy images of glioma tissue samples. The complete analysis includes multiple processing steps, involving mode detection with color and spatial information for pixel clustering, background normalization leveraging morphological operations, boundary refinement with deformable models, and clumped nuclei separation using watershed. In aggregate, our validation dataset includes 220 nuclei from 11 distinct tissue regions selected at random by an experienced neuropathologist. Computerized nuclei detection results are in good concordance with human markups by both visual appraisement and quantitative measures. We compare the performance of the proposed analysis algorithm with that of CellProfiler, a classical analysis software for cell image process, and present the superiority of our method to CellProfiler. PMID:22255853

  9. Magnetic Force Microscopy Images of Magnetic Garnet With Thin-Film Magnetic Tip

    NASA Technical Reports Server (NTRS)

    Wadas, A.; Moreland, J.; Rice, P.; Katti, R.

    1993-01-01

    We present magnetic force microscopy images of YGdTmGa/YSmTmGa magnetic garnet, usinga thin Fe film deposited on Si_3N_5 tips. We have found correlations between the topography andthe magnetic domain structure. We have observed the domain wall contrast with a iron thin-film tip. We report on domain wall imaging of garnet with magnetic force microscopy.

  10. Immobilization Techniques of Bacteria for Live Super-resolution Imaging Using Structured Illumination Microscopy.

    PubMed

    Bottomley, Amy L; Turnbull, Lynne; Whitchurch, Cynthia B; Harry, Elizabeth J

    2017-01-01

    Advancements in optical microscopy technology have allowed huge progression in the ability to understand protein structure and dynamics in live bacterial cells using fluorescence microscopy. Paramount to high-quality microscopy is good sample preparation to avoid bacterial cell movement that can result in motion blur during image acquisition. Here, we describe two techniques of sample preparation that reduce unwanted cell movement and are suitable for application to a number of bacterial species and imaging methods.

  11. Enhancing microscopy images of minerals through morphological center operator-based feature extraction.

    PubMed

    Bai, Xiangzhi

    2013-02-01

    To well enhance the mineral image and image details obtained by microscopes, an effective mineral image enhancement algorithm through feature extraction using the morphological center operator is proposed in this work. First, mineral image feature extraction based on the morphological center operator is proposed and discussed. Second, the multiscale extension of the mineral image feature extraction is given by using the multiscale structuring elements. Third, the important mineral image features at multiscales of image are extracted and used to construct the final mineral features for mineral image enhancement. Finally, the original mineral image is well enhanced through importing the extracted final mineral image features into the original mineral image. Experimental results on different types of microscopy images of minerals verified the effective performance of the proposed algorithm for microscopy mineral image enhancement. Copyright © 2012 Wiley Periodicals, Inc.

  12. A fast image registration approach of neural activities in light-sheet fluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Meng, Hui; Hui, Hui; Hu, Chaoen; Yang, Xin; Tian, Jie

    2017-03-01

    The ability of fast and single-neuron resolution imaging of neural activities enables light-sheet fluorescence microscopy (LSFM) as a powerful imaging technique in functional neural connection applications. The state-of-art LSFM imaging system can record the neuronal activities of entire brain for small animal, such as zebrafish or C. elegans at single-neuron resolution. However, the stimulated and spontaneous movements in animal brain result in inconsistent neuron positions during recording process. It is time consuming to register the acquired large-scale images with conventional method. In this work, we address the problem of fast registration of neural positions in stacks of LSFM images. This is necessary to register brain structures and activities. To achieve fast registration of neural activities, we present a rigid registration architecture by implementation of Graphics Processing Unit (GPU). In this approach, the image stacks were preprocessed on GPU by mean stretching to reduce the computation effort. The present image was registered to the previous image stack that considered as reference. A fast Fourier transform (FFT) algorithm was used for calculating the shift of the image stack. The calculations for image registration were performed in different threads while the preparation functionality was refactored and called only once by the master thread. We implemented our registration algorithm on NVIDIA Quadro K4200 GPU under Compute Unified Device Architecture (CUDA) programming environment. The experimental results showed that the registration computation can speed-up to 550ms for a full high-resolution brain image. Our approach also has potential to be used for other dynamic image registrations in biomedical applications.

  13. Coherent total internal reflection dark-field microscopy: label-free imaging beyond the diffraction limit.

    PubMed

    von Olshausen, Philipp; Rohrbach, Alexander

    2013-10-15

    Coherent imaging is barely applicable in life-science microscopy due to multiple interference artifacts. Here, we show how these interferences can be used to improve image resolution and contrast. We present a dark-field microscopy technique with evanescent illumination via total internal reflection that delivers high-contrast images of coherently scattering samples. By incoherent averaging of multiple coherent images illuminated from different directions we can resolve image structures that remain unresolved by conventional (incoherent) fluorescence microscopy. We provide images of 190 nm beads revealing resolution beyond the diffraction limit and slightly increased object distances. An analytical model is introduced that accounts for the observed effects and which is confirmed by numerical simulations. Our approach may be a route to fast, label-free, super-resolution imaging in live-cell microscopy.

  14. Prototype study on a miniaturized dual-modality imaging system for photoacoustic microscopy and confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Sung-Liang; Xie, Zhixing; Guo, L. Jay; Wang, Xueding

    2014-03-01

    It is beneficial to study tumor angiogenesis and microenvironments by imaging the microvasculature and cells at the same time. Photoacoustic microscopy (PAM) is capable of sensitive three-dimensional mapping of microvasculature, while fluorescence microscopy may be applied to assessment of tissue pathology. In this work, a fiber-optic based PAM and confocal fluorescence microscopy (CFM) dual-modality imaging system was designed and built, serving as a prototype of a miniaturized dual-modality imaging probe for endoscopic applications. As for the design, we employed miniature components, including a microelectromechanical systems (MEMS) scanner, a miniature objective lens, and a small size optical microring resonator as an acoustic detector. The system resolutions were calibrated as 8.8 μm in the lateral directions for both PAM and CFM, and 19 μm and 53 μm in the axial direction for PAM and CFM, respectively. Images of the animal bladders ex vivo were demonstrated to show the ability of the system in imaging not only microvasculature but also cellular structure.

  15. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    NASA Astrophysics Data System (ADS)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  16. Imaging photonic crystals using Fourier plane imaging and Fourier ptychographic microscopy techniques implemented with a computer controlled hemispherical digital condenser

    NASA Astrophysics Data System (ADS)

    Sen, Sanchari; Desai, Darshan B.; Alsubaie, Meznh H.; Zhelyeznyakov, Maksym V.; Molina, L.; Sarraf, Hamed Sari; Bernussi, Ayrton A.; Peralta, Luis Grave de

    2017-01-01

    Fourier plane imaging (FPIM) and Fourier ptychographic (FPM) microscopy techniques were used to image photonic crystals. A computer-controlled hemispherical digital condenser provided required sample illumination with variable inclination. Notable improvement in image resolution was obtained with both methods. However, it was determined that the FPM technique cannot surpass the Rayleigh resolution limit when imaging photonic crystals.

  17. Combined atomic force microscopy and scanning tunneling microscopy imaging of cross-sectioned GaN light-emitting diodes.

    PubMed

    Bender, J W; Salmon, M E; Russell, P E

    2003-01-01

    Cross-sectional scanning tunneling microscopy (STM) was combined with atomic force microscopy (AFM) over the same area to characterize a cross-sectioned GaN light emitting diode. Because GaN is typically grown on a non-native substrate and also forms a wurtzite crystal structure, a cryogenic cleaving technique was developed to generate smooth surfaces. The depletion region surrounding the p-n junction was clearly identified using STM. Furthermore, by imaging under multiple sample biases, distinctions between the n-doped and p-doped GaN could be made.

  18. Dual photon excitation microscopy and image threshold segmentation in live cell imaging during compression testing.

    PubMed

    Moo, Eng Kuan; Abusara, Ziad; Abu Osman, Noor Azuan; Pingguan-Murphy, Belinda; Herzog, Walter

    2013-08-09

    Morphological studies of live connective tissue cells are imperative to helping understand cellular responses to mechanical stimuli. However, photobleaching is a constant problem to accurate and reliable live cell fluorescent imaging, and various image thresholding methods have been adopted to account for photobleaching effects. Previous studies showed that dual photon excitation (DPE) techniques are superior over conventional one photon excitation (OPE) confocal techniques in minimizing photobleaching. In this study, we investigated the effects of photobleaching resulting from OPE and DPE on morphology of in situ articular cartilage chondrocytes across repeat laser exposures. Additionally, we compared the effectiveness of three commonly-used image thresholding methods in accounting for photobleaching effects, with and without tissue loading through compression. In general, photobleaching leads to an apparent volume reduction for subsequent image scans. Performing seven consecutive scans of chondrocytes in unloaded cartilage, we found that the apparent cell volume loss caused by DPE microscopy is much smaller than that observed using OPE microscopy. Applying scan-specific image thresholds did not prevent the photobleaching-induced volume loss, and volume reductions were non-uniform over the seven repeat scans. During cartilage loading through compression, cell fluorescence increased and, depending on the thresholding method used, led to different volume changes. Therefore, different conclusions on cell volume changes may be drawn during tissue compression, depending on the image thresholding methods used. In conclusion, our findings confirm that photobleaching directly affects cell morphology measurements, and that DPE causes less photobleaching artifacts than OPE for uncompressed cells. When cells are compressed during tissue loading, a complicated interplay between photobleaching effects and compression-induced fluorescence increase may lead to interpretations in

  19. Integral imaging microscopy with enhanced depth-of-field using a spatial multiplexing.

    PubMed

    Kwon, Ki-Chul; Erdenebat, Munkh-Uchral; Alam, Md Ashraful; Lim, Young-Tae; Kim, Kwang Gi; Kim, Nam

    2016-02-08

    A depth-of-field enhancement method for integral imaging microscopy system using a spatial multiplexing structure consisting of a beamsplitter with dual video channels and micro lens arrays is proposed. A computational integral imaging reconstruction algorithm generates two sets of depth-sliced images for the acquired depth information of the captured elemental image arrays and the well-focused depth-slices of both image sets are combined where each is focused on a different depth plane of the specimen. A prototype is implemented, and the experimental results demonstrate that the depth-of-field of the reconstructed images in the proposed integral imaging microscopy is significantly increased compared with conventional integral imaging microscopy systems.

  20. Endoscopic fluorescence lifetime imaging microscopy (FLIM) images of aortic plaque: an automated classification method

    NASA Astrophysics Data System (ADS)

    Phipps, Jennifer; Sun, Yinghua; Hatami, Nisa; Fishbein, Michael C.; Rajaram, Amit; Saroufeem, Ramez; Marcu, Laura

    2010-02-01

    The objective of this study was to develop an automated algorithm which uses fluorescence lifetime imaging microscopy (FLIM) images of human aortic atherosclerotic plaque to provide quantitative and spatial information regarding compositional features related to plaque vulnerability such as collagen degradation, lipid accumulation, and macrophage infiltration. Images were acquired through a flexible fiber imaging bundle with intravascular potential at two wavelength bands optimal to recognizing markers of vulnerability: F377: 377/55 nm and F460: 460/50 nm (center wavelength/bandwidth). A classification method implementing principal components analysis and linear discriminant analysis to correlate FLIM data sets with histopathology was validated on a training set and then used to classify a validation set of FLIM images. The output of this algorithm was a false-color image with each pixel color coded to represent the chemical composition of the sample. Surface areas occupied by elastin, collagen, and lipid components were then calculated and used to define the vulnerability of each imaged location. Four groups were defined: early lesion, stable, mildly vulnerable and extremely vulnerable. Each imaged location was categorized in one of the groups based on histopathology and classification results; sensitivities (SE) and specificities (SP) were calculated (SE %/SP %): early lesion: 95/96, stable: 71/97, mildly vulnerable: 75/94, and extremely vulnerable: 100/93. The capability of this algorithm to use FLIM images to quickly determine the chemical composition of atherosclerotic plaque, particularly related to vulnerability, further enhances the potential of this system for implementation as an intravascular diagnostic modality.

  1. Image Alignment for Multiple Camera High Dynamic Range Microscopy

    PubMed Central

    Eastwood, Brian S.; Childs, Elisabeth C.

    2012-01-01

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera. PMID:22545028

  2. New developments in electron microscopy for serial image acquisition of neuronal profiles.

    PubMed

    Kubota, Yoshiyuki

    2015-02-01

    Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed.

  3. Imaging brain vasculature with BOLD 3D microscopy: MR detection limits determined by in vivo two-photon microscopy

    PubMed Central

    Park, Sung-Hong; Masamoto, Kazuto; Hendrich, Kristy; Kanno, Iwao; Kim, Seong-Gi

    2008-01-01

    Rat brain vasculature was imaged at 9.4 T with blood oxygenation level dependent (BOLD) microscopy. Data were acquired without exogenous contrast agent in < 35 min using 3D gradient-echo imaging with 78-μm isotropic resolution (N = 6). Detailed vascular patterns including intracortical veins and some branches were observed in simple magnitude-contrast data acquired at an experimentally-optimized echo time. The venous origin of the dark patterns was confirmed by oxygenation-dependent studies, and when the systemic arterial oxygen saturation level was < 80%, BOLD microscopy revealed additional intracortical vessels presumed to be of arterial orgin. Quantification shows a decrease of intracortical venous density with depth. The full width at half-minimum intensity was 90–190 μm for most intracortical venous vessels identifiable by BOLD venography. Since actual diameters are not directly quantifiable by BOLD, we also measured diameter-dependent intracortical venous density in vivo by two-photon excitation fluorescent microscopy (N = 5). Density comparisons between the two modalities, along with computer simulations, show that venous vessels as small as ~16–30 μm diameter are detectable with 9.4-T BOLD microscopy under our experimental conditions. PMID:18383285

  4. A specific Tween-80-Rhodamine S-MWNTs phosphorescent reagent for the detection of trace calcitonin.

    PubMed

    Liu, Jia-Ming; Huang, Xiao-Mei; Zhang, Li-Hong; Zheng, Zhi-Yong; Lin, Xuan; Zhang, Xiao-Yang; Jiao, Li; Cui, Ma-Lin; Jiang, Shu-Lian; Lin, Shao-Qin

    2012-09-26

    The present study proposed a simple sensitive and specific immunoassay for the quantification of calcitonin (CT) in human serum with water-soluble multi-walled carbon nanotubes (MWNTs). The COOH group of MWNTs could react with the NH group of rhodamine S (Rhod.S) molecules to form Rhod.S-MWNTs, which could emit room temperature phosphorescence (RTP) on acetate cellulose membrane (ACM) and react with Tween-80 to form micellar compound. Tween-80-Rhod.S-MWNTs (TRM), as a phosphorescent labelling reagent, could dramatically enhance the RTP signal of the system. The developed TRM phosphorescent reagent was used to label anti-calcitonin antibody (Ab(CT)) to form the TRM-Ab(CT) labelling product, which could take high specific immunoreaction with CT, and the ΔI(p) (= I(p2)-I(p1), I(p2) and I(p1) were the phosphorescence intensity of the test solution and the blank sample, respectively) of the system was linear to the content of CT. Hence, a new solid substrate room temperature phosphorescence immunoassay (SSRTPIA) was established for the determination of CT in human serum. This sensitive (limit of quantification (LOQ) was 8.0×10(-14) g mL(-1)), accurate, selective and precise method has been applied to determine CT in human serum and predict primary osteoporosis and fractures, with the results in good agreement with those obtained by chemiluminescence immunoassay (CLIA). Simultaneously, the structure of MWNTs was characterized with scanning electron microscopy (SEM) and infrared spectroscopy (IR), and the reaction mechanisms of both labelling Ab(CT) with TRM and SSRTPIA for the determination of trace CT were discussed.

  5. Dental caries imaging using hyperspectral stimulated Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Zi; Zheng, Wei; Jian, Lin; Huang, Zhiwei

    2016-03-01

    We report the development of a polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of dental caries. In our imaging system, hyperspectral SRS images (512×512 pixels) in both fingerprint region (800-1800 cm-1) and high-wavenumber region (2800-3600 cm-1) are acquired in minutes by scanning the wavelength of OPO output, which is a thousand times faster than conventional confocal micro Raman imaging. SRS spectra variations from normal enamel to caries obtained from the hyperspectral SRS images show the loss of phosphate and carbonate in the carious region. While polarization-resolved SRS images at 959 cm-1 demonstrate that the caries has higher depolarization ratio. Our results demonstrate that the polarization resolved-hyperspectral SRS imaging technique developed allows for rapid identification of the biochemical and structural changes of dental caries.

  6. Biological imaging with nonlinear photothermal microscopy using a compact supercontinuum fiber laser source.

    PubMed

    He, Jinping; Miyazaki, Jun; Wang, Nan; Tsurui, Hiromichi; Kobayashi, Takayoshi

    2015-04-20

    Nonlinear photothermal microscopy is applied in the imaging of biological tissues stained with chlorophyll and hematoxylin. Experimental results show that this type of organic molecules, which absorb light but transform dominant part of the absorbed energy into heat, may be ideal probes for photothermal imaging without photochemical toxicity. Picosecond pump and probe pulses, with central wavelengths of 488 and 632 nm, respectively, are spectrally filtered from a compact supercontinuum fiber laser source. Based on the light source, a compact and sensitive super-resolution imaging system is constructed. Further more, the imaging system is much less affected by thermal blurring than photothermal microscopes with continuous-wave light sources. The spatial resolution of nonlinear photothermal microscopy is ~ 188 nm. It is ~ 23% higher than commonly utilized linear photothermal microscopy experimentally and ~43% than conventional optical microscopy theoretically. The nonlinear photothermal imaging technology can be used in the evaluation of biological tissues with high-resolution and contrast.

  7. Dinuclear Ruthenium(II) Complexes as Two-Photon, Time-Resolved Emission Microscopy Probes for Cellular DNA**

    PubMed Central

    Baggaley, Elizabeth; Gill, Martin R; Green, Nicola H; Turton, David; Sazanovich, Igor V; Botchway, Stanley W; Smythe, Carl; Haycock, John W; Weinstein, Julia A; Thomas, Jim A

    2014-01-01

    The first transition-metal complex-based two-photon absorbing luminescence lifetime probes for cellular DNA are presented. This allows cell imaging of DNA free from endogenous fluorophores and potentially facilitates deep tissue imaging. In this initial study, ruthenium(II) luminophores are used as phosphorescent lifetime imaging microscopy (PLIM) probes for nuclear DNA in both live and fixed cells. The DNA-bound probes display characteristic emission lifetimes of more than 160 ns, while shorter-lived cytoplasmic emission is also observed. These timescales are orders of magnitude longer than conventional FLIM, leading to previously unattainable levels of sensitivity, and autofluorescence-free imaging. PMID:24458590

  8. Imaging Subcellular Dynamics with Fast and Light-Efficient Volumetrically Parallelized Microscopy

    PubMed Central

    Dean, Kevin M.; Roudot, Philippe; Welf, Erik S.; Pohlkamp, Theresa; Garrelts, Gerard; Herz, Joachim; Fiolka, Reto

    2017-01-01

    In fluorescence microscopy, the serial acquisition of 2D images to form a 3D volume limits the maximum imaging speed. This is particularly evident when imaging adherent cells in a light-sheet fluorescence microscopy format, as their elongated morphologies require ~200 image planes per image volume. Here, by illuminating the specimen with three light-sheets, each independently detected, we present a light-efficient, crosstalk free, and volumetrically parallelized 3D microscopy technique that is optimized for high-speed (up to 14 Hz) subcellular (300 nm lateral, 600 nm axial resolution) imaging of adherent cells. We demonstrate 3D imaging of intracellular processes, including cytoskeletal dynamics in single cell migration and collective wound healing for 1500 and 1000 time points, respectively. Further, we capture rapid biological processes, including trafficking of early endosomes with velocities exceeding 10 microns per second and calcium signaling in primary neurons. PMID:28944279

  9. Astigmatic multifocus microscopy enables deep 3D super-resolved imaging

    PubMed Central

    Oudjedi, Laura; Fiche, Jean-Bernard; Abrahamsson, Sara; Mazenq, Laurent; Lecestre, Aurélie; Calmon, Pierre-François; Cerf, Aline; Nöllmann, Marcelo

    2016-01-01

    We have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating. Then, two strategies for localizing emitters with our imaging method are presented and compared with a previously described deep 3D localization algorithm. Finally, we demonstrate the performance of the method by imaging the nuclear envelope of eukaryotic cells reaching a depth of field of ~4µm. PMID:27375935

  10. Frames-Based Denoising in 3D Confocal Microscopy Imaging.

    PubMed

    Konstantinidis, Ioannis; Santamaria-Pang, Alberto; Kakadiaris, Ioannis

    2005-01-01

    In this paper, we propose a novel denoising method for 3D confocal microscopy data based on robust edge detection. Our approach relies on the construction of a non-separable frame system in 3D that incorporates the Sobel operator in dual spatial directions. This multidirectional set of digital filters is capable of robustly detecting edge information by ensemble thresholding of the filtered data. We demonstrate the application of our method to both synthetic and real confocal microscopy data by comparing it to denoising methods based on separable 3D wavelets and 3D median filtering, and report very encouraging results.

  11. X-ray Phase Imaging Microscopy using a Fresnel Zone Plate and a Transmission Grating

    SciTech Connect

    Yashiro, Wataru; Momose, Atsushi; Takeuchi, Akihisa; Suzuki, Yoshio

    2010-06-23

    We report on a hard X-ray phase imaging microscopy (a phase-difference microscopy) that consists of an objective and a transmission grating. The simple optical system provides a quantitative phase image, and does not need a wave field mostly coherent on the objective. Our method has a spatial resolution almost same as that of the absorption contrast microscope image obtained by removing the grating. We demonstrate how our approach provides a phase image from experimentally obtained images. Our approach is attractive for easily appending a quantitative phase-sensitive mode to normal X-ray microscopes, and has potentially broad applications in biology and material sciences.

  12. Speckle-based volume holographic microscopy for optically sectioned multi-plane fluorescent imaging.

    PubMed

    Chen, Hsi-Hsun; Singh, Vijay Raj; Luo, Yuan

    2015-03-23

    Structured illumination microscopy has been widely used to reconstruct optically sectioned fluorescence images in wide-field fashion; however, it still requires axial scanning to obtain multiple depth information of a volumetric sample. In this paper, a new imaging scheme, called speckle-based volume holographic microscopy system, is presented. The proposed system incorporates volumetric speckle illumination and multiplexed volume holographic gratings to acquire multi-plane images with optical sectioning capability, without any axial scanning. We present the design, implementation, and experimental image data demonstrating the proposed system's ability to simultaneously obtain wide-field, optically sectioned, and multi-depth resolved images of fluorescently labeled microspheres and tissue structures.

  13. Subcellular chemical and morphological analysis by stimulated Raman scattering microscopy and image analysis techniques

    PubMed Central

    D’Arco, Annalisa; Brancati, Nadia; Ferrara, Maria Antonietta; Indolfi, Maurizio; Frucci, Maria; Sirleto, Luigi

    2016-01-01

    The visualization of heterogeneous morphology, segmentation and quantification of image features is a crucial point for nonlinear optics microscopy applications, spanning from imaging of living cells or tissues to biomedical diagnostic. In this paper, a methodology combining stimulated Raman scattering microscopy and image analysis technique is presented. The basic idea is to join the potential of vibrational contrast of stimulated Raman scattering and the strength of imaging analysis technique in order to delineate subcellular morphology with chemical specificity. Validation tests on label free imaging of polystyrene-beads and of adipocyte cells are reported and discussed. PMID:27231626

  14. Post-processing for statistical image analysis in light microscopy.

    PubMed

    Cardullo, Richard A; Hinchcliffe, Edward H

    2013-01-01

    Image processing of images serves a number of important functions including noise reduction, contrast enhancement, and feature extraction. Whatever the final goal, an understanding of the nature of image acquisition and digitization and subsequent mathematical manipulations of that digitized image is essential. Here we discuss the basic mathematical and statistical processes that are routinely used by microscopists to routinely produce high quality digital images and to extract key features of interest using a variety of extraction and thresholding tools. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Fast responsive and highly efficient optical upconverter based on phosphorescent OLED.

    PubMed

    Chu, Xinbo; Guan, Min; Niu, Litao; Zeng, Yiping; Li, Yiyang; Zhang, Yang; Zhu, Zhanping; Wang, Baoqiang

    2014-11-12

    In this work, an organic-inorganic hybrid optical upconverter that can convert irradiated 980 nm IR light to 510 nm green phosphorescence sensitively was fabricated and studied. fac-Tris(2-phenylpyridine) iridium (Ir(ppy)3) doped 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) was used as emitting layer in the phosphorescent organic light-emitting diode (OLED) unit. The upconverter using a phosphorescent OLED as display unit can achieve a higher upconversion efficiency and a low power consumption when compared with the one using fluorescent. An upconversion efficiency of 4.8% can be achieved for phosphorescent device at 15 V, much higher than that of fluorescent one (2.0%). The upconverter's transient optical and electric response to IR pulse were also investigated for the first time. The response time was found to be influenced by IR intensity and applied voltage. It has a response time as short as 60 μs. The rapid response property of the upconverter makes it feasible to be applied to high-speed IR imaging systems.

  16. Objective, comparative assessment of the penetration depth of temporal-focusing microscopy for imaging various organs

    PubMed Central

    Rowlands, Christopher J.; Bruns, Oliver T.; Bawendi, Moungi G.; So, Peter T. C.

    2015-01-01

    Abstract. Temporal focusing is a technique for performing axially resolved widefield multiphoton microscopy with a large field of view. Despite significant advantages over conventional point-scanning multiphoton microscopy in terms of imaging speed, the need to collect the whole image simultaneously means that it is expected to achieve a lower penetration depth in common biological samples compared to point-scanning. We assess the penetration depth using a rigorous objective criterion based on the modulation transfer function, comparing it to point-scanning multiphoton microscopy. Measurements are performed in a variety of mouse organs in order to provide practical guidance as to the achievable penetration depth for both imaging techniques. It is found that two-photon scanning microscopy has approximately twice the penetration depth of temporal-focusing microscopy, and that penetration depth is organ-specific; the heart has the lowest penetration depth, followed by the liver, lungs, and kidneys, then the spleen, and finally white adipose tissue. PMID:25844509

  17. Objective, comparative assessment of the penetration depth of temporal-focusing microscopy for imaging various organs

    NASA Astrophysics Data System (ADS)

    Rowlands, Christopher J.; Bruns, Oliver T.; Bawendi, Moungi G.; So, Peter T. C.

    2015-06-01

    Temporal focusing is a technique for performing axially resolved widefield multiphoton microscopy with a large field of view. Despite significant advantages over conventional point-scanning multiphoton microscopy in terms of imaging speed, the need to collect the whole image simultaneously means that it is expected to achieve a lower penetration depth in common biological samples compared to point-scanning. We assess the penetration depth using a rigorous objective criterion based on the modulation transfer function, comparing it to point-scanning multiphoton microscopy. Measurements are performed in a variety of mouse organs in order to provide practical guidance as to the achievable penetration depth for both imaging techniques. It is found that two-photon scanning microscopy has approximately twice the penetration depth of temporal-focusing microscopy, and that penetration depth is organ-specific; the heart has the lowest penetration depth, followed by the liver, lungs, and kidneys, then the spleen, and finally white adipose tissue.

  18. SIMS ion microscopy as a novel, practical tool for subcellular chemical imaging in cancer research

    NASA Astrophysics Data System (ADS)

    Chandra, S.

    2003-01-01

    The development of cryogenic sample preparations, subcellular image quantification schemes, and correlative confocal laser scanning microscopy and ion microscopy have made dynamic SIMS a versatile tool in biology and medicine. For example, ion microscopy can provide much needed, novel information on calcium influx and intracellular calcium stores at organelle resolution in normal and transformed cells in order to better understand the altered calcium signaling in malignant cells. 3-D SIMS imaging of cells revealed dynamic gradients of calcium in cells undergoing mitosis and cytokinesis. Studies of subcellular localization of anticancer drugs is another area of research where ion microscopy can provide novel observations in many types of cancers. Ion microscopy is already an essential tool in boron neutron capture therapy (BNCT) of brain cancer as it can be used to quantitatively image the subcellular location of boron in cells and tissues. This information is critically needed for testing the efficacy of boronated agents and for calculations of radiation dosimetry.

  19. Imaging calcium carbonate distribution in human sweat pore in vivo using nonlinear microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xueqin; Gasecka, Alicja; Formanek, Florian; Galey, Jean-Baptiste; Rigneault, Hervé

    2015-03-01

    Nonlinear microscopies, including two-photon excited autofluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS), were used to study individual human sweat pore morphology and topically applied antiperspirant salt penetration inside sweat pore, in vivo on human palms. Sweat pore inner morphology in vivo was imaged up to the depth of 100 μm by TPEF microscopy. The 3D penetration and distribution of "in situ calcium carbonate" (isCC), an antiperspirant salt model, was investigated using CARS microscopy.

  20. Large scale superres 3D imaging: light-sheet single-molecule localization microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lu, Chieh Han; Chen, Peilin; Chen, Bi-Chang

    2017-02-01

    Optical imaging techniques provide much important information in understanding life science especially cellular structure and morphology because "seeing is believing". However, the resolution of optical imaging is limited by the diffraction limit, which is discovered by Ernst Abbe, i.e. λ/2(NA) (NA is the numerical aperture of the objective lens). Fluorescence super-resolution microscopic techniques such as Stimulated emission depletion microscopy (STED), Photoactivated localization microscopy (PALM), and Stochastic optical reconstruction microscopy (STORM) are invented to have the capability of seeing biological entities down to molecular level that are smaller than the diffraction limit (around 200-nm in lateral resolution). These techniques do not physically violate the Abbe limit of resolution but exploit the photoluminescence properties and labelling specificity of fluorescence molecules to achieve super-resolution imaging. However, these super-resolution techniques limit most of their applications to the 2D imaging of fixed or dead samples due to the high laser power needed or slow speed for the localization process. Extended from 2D imaging, light sheet microscopy has been proven to have a lot of applications on 3D imaging at much better spatiotemporal resolutions due to its intrinsic optical sectioning and high imaging speed. Herein, we combine the advantage of localization microscopy and light-sheet microscopy to have super-resolved cellular imaging in 3D across large field of view. With high-density labeled spontaneous blinking fluorophore and wide-field detection of light-sheet microscopy, these allow us to construct 3D super-resolution multi-cellular imaging at high speed ( minutes) by light-sheet single-molecule localization microscopy.

  1. Superresolution upgrade for confocal spinning disk systems using image scanning microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg

    2017-02-01

    Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).

  2. Combining multiphoton and CARS microscopy for skin imaging

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Weinigel, M.; Kellner-Höfer, M.; Bückle, R.; Darvin, M. E.; Lademann, J.; König, K.

    2013-02-01

    Microscopic imaging based on multiphoton fluorescence, second harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) imaging has been realized in one common platform which is appropriate for use in hospitals. The different optical modalities non-invasively provide in vivo images from human skin with subcellular resolution, at different depths based on endogenous fluorescent, SHG-active molecules as well as non-fluorescent molecules with vibrational resonances at 2845 cm-1, in particular lipids. An overview of the system employing a Ti:sapphire laser and photonic crystal fiber to generate the excitation light as well as several imaging examples are presented.

  3. Making Microscopy Motivating, Memorable, & Manageable for Undergraduate Students with Digital Imaging Laboratories

    ERIC Educational Resources Information Center

    Weeks, Andrea; Bachman. Beverly; Josway, Sarah; North, Brittany; Tsuchiya, Mirian T.N.

    2013-01-01

    Microscopy and precise observation are essential skills that are challenging to teach effectively to large numbers of undergraduate biology students. We implemented student-driven digital imaging assignments for microscopy in a large enrollment laboratory for organismal biology. We detail how we promoted student engagement with the material and…

  4. Making Microscopy Motivating, Memorable, & Manageable for Undergraduate Students with Digital Imaging Laboratories

    ERIC Educational Resources Information Center

    Weeks, Andrea; Bachman. Beverly; Josway, Sarah; North, Brittany; Tsuchiya, Mirian T.N.

    2013-01-01

    Microscopy and precise observation are essential skills that are challenging to teach effectively to large numbers of undergraduate biology students. We implemented student-driven digital imaging assignments for microscopy in a large enrollment laboratory for organismal biology. We detail how we promoted student engagement with the material and…

  5. Limited-view light sheet fluorescence microscopy for three dimensional volume imaging

    NASA Astrophysics Data System (ADS)

    Rasmi, C. K.; Mohan, Kavya; Madhangi, M.; Rajan, K.; Nongthomba, U.; Mondal, Partha P.

    2015-12-01

    We propose and demonstrate a limited-view light sheet microscopy (LV-LSM) for three dimensional (3D) volume imaging. Realizing that longer and frequent image acquisition results in significant photobleaching, we have taken limited angular views (18 views) of the macroscopic specimen and integrated with maximum likelihood (ML) technique for reconstructing high quality 3D volume images. Existing variants of light-sheet microscopy require both rotation and translation with a total of approximately 10-fold more views to render a 3D volume image. Comparatively, LV-LSM technique reduces data acquisition time and consequently minimizes light-exposure by many-folds. Since ML is a post-processing technique and highly parallelizable, this does not cost precious imaging time. Results show noise-free and high contrast volume images when compared to the state-of-the-art selective plane illumination microscopy.

  6. Imaging the beating heart in the mouse using intravital microscopy techniques

    PubMed Central

    Vinegoni, Claudio; Aguirre, Aaron D; Lee, Sungon; Weissleder, Ralph

    2017-01-01

    Real-time microscopic imaging of moving organs at single-cell resolution represents a major challenge in studying complex biology in living systems. Motion of the tissue from the cardiac and respiratory cycles severely limits intravital microscopy by compromising ultimate spatial and temporal imaging resolution. However, significant recent advances have enabled single-cell resolution imaging to be achieved in vivo. In this protocol, we describe experimental procedures for intravital microscopy based on a combination of thoracic surgery, tissue stabilizers and acquisition gating methods, which enable imaging at the single-cell level in the beating heart in the mouse. Setup of the model is typically completed in 1 h, which allows 2 h or more of continuous cardiac imaging. This protocol can be readily adapted for the imaging of other moving organs, and it will therefore broadly facilitate in vivo high-resolution microscopy studies. PMID:26492138

  7. A 3D imaging and visualization workflow, using confocal microscopy and advanced image processing for brachyuran crab larvae.

    PubMed

    Kamanli, S A; Kihara, T C; Ball, A D; Morritt, D; Clark, P F

    2017-06-01

    Confocal laser scanning microscopy is an excellent tool for nondestructive imaging of arthropods and can provide detailed information on morphology including fine surface detail. A methodology is presented here for the visualization by confocal microscopy of arthropods, using brachyuran crab zoeal stages as examples and postprocessing techniques derived from micro-CT protocols to improve the final images. This protocol is divided into description of the preprocessing steps (cleaning, staining, digesting and mounting), confocal laser scanning microscopy and data visualization using open-source, freeware programs ImageJ and Drishti. The advantages of using ImageJ to standardize stack data and Drishti for surface rendering are discussed. The methodology has been comprehensively tested using data acquired from all four brands of confocal microscope (Leica, Nikon, Olympus and Zeiss). © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  8. Rigidification or interaction-induced phosphorescence of organic molecules.

    PubMed

    Baroncini, Massimo; Bergamini, Giacomo; Ceroni, Paola

    2017-02-09

    Phosphorescent materials are mostly based on metal complexes. Metal-free organic molecules usually display phosphorescence only in a rigid matrix at 77 K. In the last few years, there has been increasing interest in the design of organic molecules displaying long-lived and highly intense room-temperature phosphorescence, an extremely difficult task since these two properties are generally conflicting. This review reports the most recent and tutorial examples of molecules that are weakly or non-phosphorescent in deaerated fluid solution and whose room temperature phosphorescence is switched on upon aggregation. The examples are divided into two classes according to the mechanism responsible for switching on phosphorescence: (i) rigidification by crystallization or by encapsulation in a polymeric matrix and (ii) interaction with other molecules of the same type (self-aggregation) or a different type by taking advantage of heavy-atom effects.

  9. Label-free biomedical imaging of lipids by stimulated Raman scattering microscopy.

    PubMed

    Ramachandran, Prasanna V; Mutlu, Ayse Sena; Wang, Meng C

    2015-01-05

    Advances in modern optical microscopy have provided unparalleled tools to study intracellular structure and function, yet visualizing lipid molecules within a cell remains challenging. Stimulated Raman Scattering (SRS) microscopy is a recently developed imaging modality that addresses this challenge. By selectively imaging the vibration of chemical moieties enriched in lipids, this technique allows for rapid imaging of lipid molecules in vivo without the need for perturbative extrinsic labels. SRS microscopy has been effectively employed in the study of fat metabolism, helping uncover novel regulators of lipid storage. This unit provides a brief introduction to the principle of SRS microscopy, and describes methods for its use in imaging lipids in cells, tissues, and whole organisms.

  10. Fusion of lens-free microscopy and mobile-phone microscopy images for high-color-accuracy and high-resolution pathology imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2017-03-01

    Digital pathology and telepathology require imaging tools with high-throughput, high-resolution and accurate color reproduction. Lens-free on-chip microscopy based on digital in-line holography is a promising technique towards these needs, as it offers a wide field of view (FOV >20 mm2) and high resolution with a compact, low-cost and portable setup. Color imaging has been previously demonstrated by combining reconstructed images at three discrete wavelengths in the red, green and blue parts of the visible spectrum, i.e., the RGB combination method. However, this RGB combination method is subject to color distortions. To improve the color performance of lens-free microscopy for pathology imaging, here we present a wavelet-based color fusion imaging framework, termed "digital color fusion microscopy" (DCFM), which digitally fuses together a grayscale lens-free microscope image taken at a single wavelength and a low-resolution and low-magnification color-calibrated image taken by a lens-based microscope, which can simply be a mobile phone based cost-effective microscope. We show that the imaging results of an H&E stained breast cancer tissue slide with the DCFM technique come very close to a color-calibrated microscope using a 40x objective lens with 0.75 NA. Quantitative comparison showed 2-fold reduction in the mean color distance using the DCFM method compared to the RGB combination method, while also preserving the high-resolution features of the lens-free microscope. Due to the cost-effective and field-portable nature of both lens-free and mobile-phone microscopy techniques, their combination through the DCFM framework could be useful for digital pathology and telepathology applications, in low-resource and point-of-care settings.

  11. Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery

    NASA Astrophysics Data System (ADS)

    Sun, Yinghua; Hatami, Nisa; Yee, Matthew; Phipps, Jennifer; Elson, Daniel S.; Gorin, Fredric; Schrot, Rudolph J.; Marcu, Laura

    2010-09-01

    We demonstrate for the first time the application of an endoscopic fluorescence lifetime imaging microscopy (FLIM) system to the intraoperative diagnosis of glioblastoma multiforme (GBM). The clinically compatible FLIM prototype integrates a gated (down to 0.2 ns) intensifier imaging system with a fiber-bundle (fiber image guide of 0.5 mm diameter, 10,000 fibers with a gradient index lens objective 0.5 NA, and 4 mm field of view) to provide intraoperative access to the surgical field. Experiments conducted in three patients undergoing craniotomy for tumor resection demonstrate that FLIM-derived parameters allow for delineation of tumor from normal cortex. For example, at 460+/-25-nm wavelength band emission corresponding to NADH/NADPH fluorescence, GBM exhibited a weaker florescence intensity (35% less, p-value <0.05) and a longer lifetime τGBM-Amean=1.59+/-0.24 ns than normal cortex τNC-Amean=1.28+/-0.04 ns (p-value <0.005). Current results demonstrate the potential use of FLIM as a tool for image-guided surgery of brain tumors.

  12. Intracellular and in vivo oxygen sensing using phosphorescent iridium(III) complexes.

    PubMed

    Tobita, Seiji; Yoshihara, Toshitada

    2016-08-01

    Molecular oxygen plays an indispensable role as a terminal electron acceptor in the electron transport chain in mitochondria. Acute or chronic oxygen deprivation (hypoxia) in organisms results in various diseases, and the elucidation of the pathogenic mechanism of hypoxia-related diseases and various cellular responses to hypoxia is an urgent issue. Optical oxygen imaging methods using phosphorescent probes have opened up techniques for noninvasive imaging of the intracellular and tissue oxygen status, and oxygen-sensitive probes play a key role in the development of this approach. We expect that phosphorescent Ir(III) complexes can serve as new oxygen-sensing probes for intracellular and intravascular oxygen imaging in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Aberration-corrected Electron Microscopy Imaging for Nanoelectronics Applications

    NASA Astrophysics Data System (ADS)

    Kisielowski, C.; Specht, P.; Alloyeau, D.; Erni, R.; Ramasse, Q.

    2009-09-01

    This paper addresses advances in electron microscopy that were accomplished over the past years with the incorporation of new electron optical components such as aberration correctors, monochromators or high brightness guns. Many of these developments are currently pursued within the DoE's TEAM project. As a result electron microscopy has reached 50 pm resolution. In this paper it is shown how the resolution improvement has helped to boost signal to noise ratios enabling a detection of single atoms across the Periodic Table of Elements. The described achievements allow for investigations of single point defects in nanoelectronic devices even if printed on single sheets of carbon atoms (graphene). Further it is now possible to access depth information from single projections with a precision that has reached interatomic distances.

  14. Resolution of oblique-plane images in sectioning microscopy.

    PubMed

    Smith, C W; Botcherby, E J; Wilson, T

    2011-01-31

    Live biological specimens exhibit time-varying behavior on the microscale in all three dimensions. Although scanning confocal and two-photon microscopes are able to record three-dimensional image stacks through these specimens, they do so at relatively low speeds which limits the time resolution of the biological processes that can be observed. One way to improve the data acquisition rate is to image only the regions of a specimen that are of interest and so researchers have recently begun to acquire two-dimensional images of inclined planes or surfaces extending significantly into the z-direction. As the resolution is not uniform in x, y and z, the images possess non-isotropic resolution. We explore this theoretically and show that images of an oblique plane may contain spectral content that could not have been generated by specimen features lying wholly within the plane but must instead arise from a spatial variation in another direction. In some cases we find that the image contains frequencies three times higher than the resolution limit for in-plane features. We confirm this finding through numerical simulations and experiments on a novel, oblique-plane imaging system and suggest that care be taken in the interpretation of such images.

  15. Imaging proteins with atomic force microscopy: an overview.

    PubMed

    Silva, Luciano Paulino

    2005-08-01

    Atomic force microscopy (AFM) has become a common tool for biophysical studies of proteins; mainly due its property to perform characterizations near physiological conditions. The tertiary and quaternary structures, forces driving folding-unfolding processes, and secondary structure elements can be studied in their native environments allowing high resolution level associated with small distortions. This review outlines the operational principles and applications of AFM for protein biophysics.

  16. Tomographic diffractive microscopy with agile illuminations for imaging targets in a noisy background.

    PubMed

    Zhang, T; Godavarthi, C; Chaumet, P C; Maire, G; Giovannini, H; Talneau, A; Prada, C; Sentenac, A; Belkebir, K

    2015-02-15

    Tomographic diffractive microscopy is a marker-free optical digital imaging technique in which three-dimensional samples are reconstructed from a set of holograms recorded under different angles of incidence. We show experimentally that, by processing the holograms with singular value decomposition, it is possible to image objects in a noisy background that are invisible with classical wide-field microscopy and conventional tomographic reconstruction procedure. The targets can be further characterized with a selective quantitative inversion.

  17. Chemically specific imaging of cryptosporidium oocysts using coherent anti-Stokes Raman scattering (CARS) microscopy

    PubMed Central

    Murugkar, Sangeeta; Evans, Conor L.; Xie, X. Sunney; Anis, Hanan

    2013-01-01

    Summary We demonstrate the application of CARS microscopy for the rapid, label-free chemical imaging of water-borne pathogens. Chemically selective images of cryptosporidium were acquired in just a few seconds using CARS microscopy, demonstrating its capability for the rapid detection of cryptosporidium at the single oocyst level. We discuss the applicability of such a technique in a near-real time automated water testing system. PMID:19220690

  18. Microanalysis and imaging capabilities of synchrotron infrared microscopy

    NASA Astrophysics Data System (ADS)

    Dumas, P.

    2003-03-01

    By combining the chemical specificity afforded by infrared spectroscopy with the spatial resolution of an optical microscope, infrared microspectroscopy has become a mainstay analytical tool in both academia and industry. While applications abound in a wide variety of fields including chemistry, polymer science, material science, forensic science, physics, art conservation and biology, the spatial resolution has remained limited to few tens of microns. The high brightness (about three orders of magnitude) brings about by the use of a synchrotron source compared to a thermal source, has opened widely the investigation domain, and the spatial resolution has become diffraction limited. Two types of infrared sources, from a synchrotron radiation, have been identified, giving roughly the same brightness advantage in the frequency region of interest in microscopy (2.5-40 μm). The potentiality of this analytical tool is documented in this article, in the study of individual human cells. Combining X-ray microscopy and IR microscopy on the same sample location appears of great analytical potential, and is illustrated in the case of human hair study.

  19. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.

    PubMed

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1 ± 2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6 ± 8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  20. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C.; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E.

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1±2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6±8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  1. Three-dimensional super-resolution structured illumination microscopy with maximum a posteriori probability image estimation.

    PubMed

    Lukeš, Tomáš; Křížek, Pavel; Švindrych, Zdeněk; Benda, Jakub; Ovesný, Martin; Fliegel, Karel; Klíma, Miloš; Hagen, Guy M

    2014-12-01

    We introduce and demonstrate a new high performance image reconstruction method for super-resolution structured illumination microscopy based on maximum a posteriori probability estimation (MAP-SIM). Imaging performance is demonstrated on a variety of fluorescent samples of different thickness, labeling density and noise levels. The method provides good suppression of out of focus light, improves spatial resolution, and allows reconstruction of both 2D and 3D images of cells even in the case of weak signals. The method can be used to process both optical sectioning and super-resolution structured illumination microscopy data to create high quality super-resolution images.

  2. Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms

    PubMed Central

    Bouchard, Matthew B.; Voleti, Venkatakaushik; Mendes, César S.; Lacefield, Clay; Grueber, Wesley B.; Mann, Richard S.; Bruno, Randy M.; Hillman, Elizabeth M. C.

    2014-01-01

    We report a new 3D microscopy technique that allows volumetric imaging of living samples at ultra-high speeds: Swept, confocally-aligned planar excitation (SCAPE) microscopy. While confocal and two-photon microscopy have revolutionized biomedical research, current implementations are costly, complex and limited in their ability to image 3D volumes at high speeds. Light-sheet microscopy techniques using two-objective, orthogonal illumination and detection require a highly constrained sample geometry, and either physical sample translation or complex synchronization of illumination and detection planes. In contrast, SCAPE microscopy acquires images using an angled, swept light-sheet in a single-objective, en-face geometry. Unique confocal descanning and image rotation optics map this moving plane onto a stationary high-speed camera, permitting completely translationless 3D imaging of intact samples at rates exceeding 20 volumes per second. We demonstrate SCAPE microscopy by imaging spontaneous neuronal firing in the intact brain of awake behaving mice, as well as freely moving transgenic Drosophila larvae. PMID:25663846

  3. Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms.

    PubMed

    Bouchard, Matthew B; Voleti, Venkatakaushik; Mendes, César S; Lacefield, Clay; Grueber, Wesley B; Mann, Richard S; Bruno, Randy M; Hillman, Elizabeth M C

    2015-02-01

    We report a new 3D microscopy technique that allows volumetric imaging of living samples at ultra-high speeds: Swept, confocally-aligned planar excitation (SCAPE) microscopy. While confocal and two-photon microscopy have revolutionized biomedical research, current implementations are costly, complex and limited in their ability to image 3D volumes at high speeds. Light-sheet microscopy techniques using two-objective, orthogonal illumination and detection require a highly constrained sample geometry, and either physical sample translation or complex synchronization of illumination and detection planes. In contrast, SCAPE microscopy acquires images using an angled, swept light-sheet in a single-objective, en-face geometry. Unique confocal descanning and image rotation optics map this moving plane onto a stationary high-speed camera, permitting completely translationless 3D imaging of intact samples at rates exceeding 20 volumes per second. We demonstrate SCAPE microscopy by imaging spontaneous neuronal firing in the intact brain of awake behaving mice, as well as freely moving transgenic Drosophila larvae.

  4. Electron Microscopy and Image Analysis for Selected Materials

    NASA Technical Reports Server (NTRS)

    Williams, George

    1999-01-01

    This particular project was completed in collaboration with the metallurgical diagnostics facility. The objective of this research had four major components. First, we required training in the operation of the environmental scanning electron microscope (ESEM) for imaging of selected materials including biological specimens. The types of materials range from cyanobacteria and diatoms to cloth, metals, sand, composites and other materials. Second, to obtain training in surface elemental analysis technology using energy dispersive x-ray (EDX) analysis, and in the preparation of x-ray maps of these same materials. Third, to provide training for the staff of the metallurgical diagnostics and failure analysis team in the area of image processing and image analysis technology using NIH Image software. Finally, we were to assist in the sample preparation, observing, imaging, and elemental analysis for Mr. Richard Hoover, one of NASA MSFC's solar physicists and Marshall's principal scientist for the agency-wide virtual Astrobiology Institute. These materials have been collected from various places around the world including the Fox Tunnel in Alaska, Siberia, Antarctica, ice core samples from near Lake Vostoc, thermal vents in the ocean floor, hot springs and many others. We were successful in our efforts to obtain high quality, high resolution images of various materials including selected biological ones. Surface analyses (EDX) and x-ray maps were easily prepared with this technology. We also discovered and used some applications for NIH Image software in the metallurgical diagnostics facility.

  5. Electron Microscopy and Image Analysis for Selected Materials

    NASA Technical Reports Server (NTRS)

    Williams, George

    1999-01-01

    This particular project was completed in collaboration with the metallurgical diagnostics facility. The objective of this research had four major components. First, we required training in the operation of the environmental scanning electron microscope (ESEM) for imaging of selected materials including biological specimens. The types of materials range from cyanobacteria and diatoms to cloth, metals, sand, composites and other materials. Second, to obtain training in surface elemental analysis technology using energy dispersive x-ray (EDX) analysis, and in the preparation of x-ray maps of these same materials. Third, to provide training for the staff of the metallurgical diagnostics and failure analysis team in the area of image processing and image analysis technology using NIH Image software. Finally, we were to assist in the sample preparation, observing, imaging, and elemental analysis for Mr. Richard Hoover, one of NASA MSFC's solar physicists and Marshall's principal scientist for the agency-wide virtual Astrobiology Institute. These materials have been collected from various places around the world including the Fox Tunnel in Alaska, Siberia, Antarctica, ice core samples from near Lake Vostoc, thermal vents in the ocean floor, hot springs and many others. We were successful in our efforts to obtain high quality, high resolution images of various materials including selected biological ones. Surface analyses (EDX) and x-ray maps were easily prepared with this technology. We also discovered and used some applications for NIH Image software in the metallurgical diagnostics facility.

  6. Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin

    PubMed Central

    Zhao, Youbo; Graf, Benedikt W.; Chaney, Eric J.; Mahmassani, Ziad; Antoniadou, Eleni; DeVolder, Ross; Kong, Hyunjoon; Boppart, Marni D.; Boppart, Stephen A.

    2015-01-01

    An integrated multimodal optical microscope is demonstrated for high-resolution, structural and functional imaging of engineered and natural skin. This microscope incorporates multiple imaging modalities including optical coherence (OCM), multi-photon (MPM), and fluorescence lifetime imaging microscopy (FLIM), enabling simultaneous visualization of multiple contrast sources and mechanisms from cells and tissues. Spatially co-registered OCM/MPM/FLIM images of multi-layered skin tissues are obtained, which are formed based on complementary information provided by different modalities, i.e., scattering information from OCM, molecular information from MPM, and functional cellular metabolism states from FLIM. Cellular structures in both the dermis and epidermis, especially different morphological and physiological states of keratinocytes from different epidermal layers, are revealed by mutually-validating images. In vivo imaging of human skin is also investigated, which demonstrates the potential of multimodal microscopy for in vivo investigation during engineered skin engraftment. This integrated imaging technique and microscope show the potential for investigating cellular dynamics in developing engineered skin and following in vivo grafting, which will help refine the control and culturing conditions necessary to obtain more robust and physiologically-relevant engineered skin substitutes. Multimodal microscopy images of a microporous 3D hydrogel scaffold seeded with 3T3 fibroblasts. Representative spatially co-registered images were generated based on different methodologies including optical coherence (OCM), multiphoton (MPM), and fluorescence lifetime imaging (FLIM) microscopy. PMID:22371330

  7. Three-dimensional differential interference contrast microscopy using synthetic aperture imaging.

    PubMed

    Kim, Moonseok; Choi, Youngwoon; Fang-Yen, Christopher; Sung, Yongjin; Kim, Kwanhyung; Dasari, Ramachandra R; Feld, Michael S; Choi, Wonshik

    2012-02-01

    We implement differential interference contrast (DIC) microscopy using high-speed synthetic aperture imaging that expands the passband of coherent imaging by a factor of 2.2. For an aperture synthesized coherent image, we apply for the numerical post-processing and obtain a high-contrast DIC image for arbitrary shearing direction and bias retardation. In addition, we obtain images at different depths without a scanning objective lens by numerically propagating the acquired coherent images. Our method achieves high-resolution and high-contrast 3-D DIC imaging of live biological cells. The proposed method will be useful for monitoring 3-D dynamics of intracellular particles.

  8. Three-dimensional differential interference contrast microscopy using synthetic aperture imaging

    PubMed Central

    Kim, Moonseok; Choi, Youngwoon; Fang-Yen, Christopher; Sung, Yongjin; Kim, Kwanhyung; Dasari, Ramachandra R.; Feld, Michael S.

    2012-01-01

    Abstract. We implement differential interference contrast (DIC) microscopy using high-speed synthetic aperture imaging that expands the passband of coherent imaging by a factor of 2.2. For an aperture synthesized coherent image, we apply for the numerical post-processing and obtain a high-contrast DIC image for arbitrary shearing direction and bias retardation. In addition, we obtain images at different depths without a scanning objective lens by numerically propagating the acquired coherent images. Our method achieves high-resolution and high-contrast 3-D DIC imaging of live biological cells. The proposed method will be useful for monitoring 3-D dynamics of intracellular particles. PMID:22463035

  9. Laser phosphoroscope and applications to room-temperature phosphorescence.

    PubMed

    Payne, Sarah J; Zhang, Guoqing; Demas, James N; Fraser, Cassandra L; Degraff, Ben A

    2011-11-01

    A simple phosphoroscope with no moving parts is described. In one scan the total luminescence, the long-lived phosphorescence, and the short-lived fluorescence can be determined. A 50% duty cycle excitation from a diode laser is used to excite the sample, and from the digitized waveform the phosphorescence is extracted from the off period, the total emission from the full cycle, and the fluorescence from the on period corrected for the phosphorescence contribution. The performance of the system is demonstrated using room-temperature phosphorescence of organic dyes in boric acid glasses, a multi-emissive boron-polymer dye, and a europium chelate.

  10. Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.

    PubMed

    Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue

    2014-03-01

    One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

  11. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy.

    PubMed

    Xu, Jianquan; Tehrani, Kayvan F; Kner, Peter

    2015-03-24

    We demonstrate multicolor three-dimensional super-resolution imaging with quantum dots (QSTORM). By combining quantum dot asynchronous spectral blueing with stochastic optical reconstruction microscopy and adaptive optics, we achieve three-dimensional imaging with 24 nm lateral and 37 nm axial resolution. By pairing two short-pass filters with two appropriate quantum dots, we are able to image single blueing quantum dots on two channels simultaneously, enabling multicolor imaging with high photon counts.

  12. Tissue imaging using two-photon video rate microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Ki H.; Buehler, Christof; Dong, Chen-Yuan; Masters, Barry R.; So, Peter T. C.

    1999-06-01

    Non-invasive optical diagnosis of cellular and extracellular structure and biochemistry in thick tissue is becoming a reality with the maturation of the two-photon imaging. Today, the slow imaging speed of typical two-photon microscopes is a major hurdle in realizing their clinical potential. We have developed a high-speed two-photon microscope optimized for acquiring 3-D tissue images in real time. The scanning speed improvement of this system is obtained by the use of an air bearing polygonal mirror. The maximum achievable scanning rate is 40 microseconds per line, which is about 100 times faster than conventional scanning microscopes. High-resolution fluorescence images were recorded in real-time by an intensified CCD camera. Using this instrument, we have monitored the movements of protozoas and mapped the collagen/elastin fiber structures in excised human skin.

  13. Super-resolution fluorescence imaging of directly labelled DNA: from microscopy standards to living cells.

    PubMed

    Flors, C

    2013-07-01

    Super-resolution fluorescence microscopy is ideally suited to study the complex organization of cell DNA in the 10-100 nm range. Novel methods to image directly labelled DNA, instead of DNA-associated proteins, are being developed and refined. This minireview provides an update of recent progress in super-resolution fluorescence imaging methods for DNA. These developments should allow a deeper understanding of chromatin structure and widen the scope of biological processes that may be investigated with super-resolution fluorescence microscopy. © 2013 The Author Journal of Microscopy © 2013 Royal Microscopical Society.

  14. Bacterial Immobilization for Imaging by Atomic Force Microscopy

    SciTech Connect

    Allison, David P; Sullivan, Claretta; Mortensen, Ninell P; Retterer, Scott T; Doktycz, Mitchel John

    2011-01-01

    AFM is a high-resolution (nm scale) imaging tool that mechanically probes a surface. It has the ability to image cells and biomolecules, in a liquid environment, without the need to chemically treat the sample. In order to accomplish this goal, the sample must sufficiently adhere to the mounting surface to prevent removal by forces exerted by the scanning AFM cantilever tip. In many instances, successful imaging depends on immobilization of the sample to the mounting surface. Optimally, immobilization should be minimally invasive to the sample such that metabolic processes and functional attributes are not compromised. By coating freshly cleaved mica surfaces with porcine (pig) gelatin, negatively charged bacteria can be immobilized on the surface and imaged in liquid by AFM. Immobilization of bacterial cells on gelatin-coated mica is most likely due to electrostatic interaction between the negatively charged bacteria and the positively charged gelatin. Several factors can interfere with bacterial immobilization, including chemical constituents of the liquid in which the bacteria are suspended, the incubation time of the bacteria on the gelatin coated mica, surface characteristics of the bacterial strain and the medium in which the bacteria are imaged. Overall, the use of gelatin-coated mica is found to be generally applicable for imaging microbial cells.

  15. Embedding complementary imaging data in laser scanning microscopy micrographs by reversible watermarking.

    PubMed

    Dragoi, Ioan-Catalin; Stanciu, Stefan G; Hristu, Radu; Coanda, Henri-George; Tranca, Denis E; Popescu, Marius; Coltuc, Dinu

    2016-04-01

    Complementary laser scanning microscopy micrographs are considered as pairs consisting in a master image (MI) and a slave image (SI), the latter with potential for facilitating the interpretation of the MI. We propose a strategy based on reversible watermarking for embedding a lossy compressed version of the SI into the MI. The use of reversible watermarking ensures the exact recovery of the host image. By storing and/or transmitting the watermarked MI in a single file, the information contained in both images that constitute the pair is made available to a potential end-user, which simplifies data association and transfer. Examples are presented using support images collected by two complementary techniques, confocal scanning laser microscopy and transmission laser scanning microscopy, on Hematoxylin and Eosin stained tissue fragments. A strategy for minimizing the watermarking distortions of the MI, while preserving the content of the SI, is discussed in detail.

  16. Embedding complementary imaging data in laser scanning microscopy micrographs by reversible watermarking

    PubMed Central

    Dragoi, Ioan-Catalin; Stanciu, Stefan G.; Hristu, Radu; Coanda, Henri-George; Tranca, Denis E.; Popescu, Marius; Coltuc, Dinu

    2016-01-01

    Complementary laser scanning microscopy micrographs are considered as pairs consisting in a master image (MI) and a slave image (SI), the latter with potential for facilitating the interpretation of the MI. We propose a strategy based on reversible watermarking for embedding a lossy compressed version of the SI into the MI. The use of reversible watermarking ensures the exact recovery of the host image. By storing and/or transmitting the watermarked MI in a single file, the information contained in both images that constitute the pair is made available to a potential end-user, which simplifies data association and transfer. Examples are presented using support images collected by two complementary techniques, confocal scanning laser microscopy and transmission laser scanning microscopy, on Hematoxylin and Eosin stained tissue fragments. A strategy for minimizing the watermarking distortions of the MI, while preserving the content of the SI, is discussed in detail. PMID:27446641

  17. Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Ellingsen, Pa˚L. Gunnar; Lilledahl, Magnus Borstad; Aas, Lars Martin Sandvik; Davies, Catharina De Lange; Kildemo, Morten

    2011-11-01

    The collagen meshwork in articular cartilage of chicken knee is characterized using Mueller matrix imaging and multiphoton microscopy. Direction and degree of dispersion of the collagen fibers in the superficial layer are found using a Fourier transform image-analysis technique of the second-harmonic generated image. Mueller matrix images are used to acquire structural data from the intermediate layer of articular cartilage where the collagen fibers are too small to be resolved by optical microscopy, providing a powerful multimodal measurement technique. Furthermore, we show that Mueller matrix imaging provides more information about the tissue compared to standard polarization microscopy. The combination of these techniques can find use in improved diagnosis of diseases in articular cartilage, improved histopathology, and additional information for accurate biomechanical modeling of cartilage.

  18. IMART software for correction of motion artifacts in images collected in intravital microscopy

    PubMed Central

    Dunn, Kenneth W; Lorenz, Kevin S; Salama, Paul; Delp, Edward J

    2014-01-01

    Intravital microscopy is a uniquely powerful tool, providing the ability to characterize cell and organ physiology in the natural context of the intact, living animal. With the recent development of high-resolution microscopy techniques such as confocal and multiphoton microscopy, intravital microscopy can now characterize structures at subcellular resolution and capture events at sub-second temporal resolution. However, realizing the potential for high resolution requires remarkable stability in the tissue. Whereas the rigid structure of the skull facilitates high-resolution imaging of the brain, organs of the viscera are free to move with respiration and heartbeat, requiring additional apparatus for immobilization. In our experience, these methods are variably effective, so that many studies are compromised by residual motion artifacts. Here we demonstrate the use of IMART, a software tool for removing motion artifacts from intravital microscopy images collected in time series or in three dimensions. PMID:26090271

  19. High-speed quantitative interferometric microscopy based phase imaging cytometer

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Sun, Nan; Yan, Keding; Liu, Fei; Wang, Shouyu

    2014-11-01

    The paper proposed a simple large scale bio-sample phase detecting equipment called gravity driven phase detecting cytometer, which is based on quantitative interferometric microscopy to realize flowing red blood cells phase distribution detection. The method has advantages on high throughput phase detecting and statistical analysis with high detecting speed and in real-time. The statistical characteristics of red blood cells are useful for biological analysis and disease detection. We believe this method is shedding more light on quantitatively measurement of the phase distribution of bio-samples.

  20. Research and application on imaging technology of line structure light based on confocal microscopy

    NASA Astrophysics Data System (ADS)

    Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen

    2009-11-01

    In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.

  1. Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging.

    PubMed

    Dehez, Harold; Piché, Michel; De Koninck, Yves

    2013-07-01

    Laser scanning microscopy allows for three-dimensional imaging of cells with molecular specific labeling. However the spatial resolution of optical microscopy is fundamentally limited by the diffraction of light. In the last two decades many techniques have been introduced to enhance the resolution of laser scanning microscopes. However most of these techniques impose strong constraints on the specimen or rely on complex optical systems. These constraints limit the applicability of resolution improvement to various imaging modalities and sample types. To overcome these limitations, we introduce here a novel approach, which we called Switching LAser Mode (SLAM) microscopy, to enhance resolution and contrast in laser scanning microscopy. SLAM microscopy relies on subtracting images obtained with dark and bright modes, and exploits the smaller dimensions of the dark spot of the azimuthally polarized TE 01 mode. With this approach, resolution is improved by a factor of two in confocal microscopy. The technique is not based on complex nonlinear processes and thus requires laser power similar to that used in conventional imaging, minimizing photo-damage. The flexibility of the approach enables retrofitting in commercial confocal and two-photon microscopes and opens avenues for resolution enhancement in fluorescence-independent microscopy.

  2. Imaging of single retinal ganglion cell with differential interference contrast microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Oh, Juyeong; Kim, Yu Jeong; Kim, Chul-Ki; Lee, Taik Jin; Seo, Mina; Lee, Seok; Woo, Deok Ha; Jun, Seong Chan; Park, Ki-Ho; Kim, Seok Hwan; Kim, Jae Hun

    2017-02-01

    Glaucoma is a progressive optic neuropathy, characterized by the selective loss of retinal ganglion cells (RGCs). Therefore, monitoring the change of number or morphology of RGC is essential for the early detection as well as investigation of pathophysiology of glaucoma. Since RGC layer is transparent and hyporeflective, the direct optical visualization of RGCs has not been successful so far. Therefore, glaucoma evaluation mostly depends on indirect diagnostic methods such as the evaluation of optic disc morphology or retinal nerve fiber layer thickness measurement by optical coherence tomography. We have previously demonstrated single photoreceptor cell imaging with differential interference contrast (DIC) microscopy. Herein, we successfully visualized single RGC using DIC microscopy. Since RGC layer is much less reflective than photoreceptor layer, various techniques including the control of light wavelength and bandwidth using a tunable band pass filter were adopted to reduce the chromatic aberration in z-axis for higher and clearer resolution. To verify that the imaged cells were the RGCs, the flat-mounted retina of Sprague-Dawley rat, in which the RGCs were retrogradely labeled with fluorescence, was observed by both fluorescence and DIC microscopies for direct comparison. We have confirmed that the cell images obtained by fluorescence microscopy were perfectly matched with cell images by DIC microscopy. As conclusion, we have visualized single RGC with DIC microscopy, and confirmed with fluorescence microscopy.

  3. Whole slide imaging of unstained tissue using lensfree microscopy

    NASA Astrophysics Data System (ADS)

    Morel, Sophie Nhu An; Hervé, Lionel; Bordy, Thomas; Cioni, Olivier; Delon, Antoine; Fromentin, Catherine; Dinten, Jean-Marc; Allier, Cédric

    2016-04-01

    Pathologist examination of tissue slides provides insightful information about a patient's disease. Traditional analysis of tissue slides is performed under a binocular microscope, which requires staining of the sample and delays the examination. We present a simple cost-effective lensfree imaging method to record 2-4μm resolution wide-field (10 mm2 to 6 cm2) images of unstained tissue slides. The sample processing time is reduced as there is no need for staining. A wide field of view (10 mm2) lensfree hologram is recorded in a single shot and the image is reconstructed in 2s providing a very fast acquisition chain. The acquisition is multispectral, i.e. multiple holograms are recorded simultaneously at three different wavelengths, and a dedicated holographic reconstruction algorithm is used to retrieve both amplitude and phase. Whole tissue slides imaging is obtained by recording 130 holograms with X-Y translation stages and by computing the mosaic of a 25 x 25 mm2 reconstructed image. The reconstructed phase provides a phase-contrast-like image of the unstained specimen, revealing structures of healthy and diseased tissue. Slides from various organs can be reconstructed, e.g. lung, colon, ganglion, etc. To our knowledge, our method is the first technique that enables fast wide-field lensfree imaging of such unlabeled dense samples. This technique is much cheaper and compact than a conventional phase contrast microscope and could be made portable. In sum, we present a new methodology that could quickly provide useful information when a rapid diagnosis is needed, such as tumor margin identification on frozen section biopsies during surgery.

  4. Cerebral Blood Oxygenation Measurement Based on Oxygen-dependent Quenching of Phosphorescence

    PubMed Central

    Sakadžić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A.; Mandeville, Emiri T.; Srinivasan, Vivek J.; Arai, Ken; Ruvinskaya, Svetlana; Wu, Weicheng; Devor, Anna; Lo, Eng H.; Vinogradov, Sergei A.; Boas, David A.

    2011-01-01

    Monitoring of the spatiotemporal characteristics of cerebral blood and tissue oxygenation is crucial for better understanding of the neuro-metabolic-vascular relationship. Development of new pO2 measurement modalities with simultaneous monitoring of pO2 in larger fields of view with higher spatial and/or temporal resolution will enable greater insight into the functioning of the normal brain and will also have significant impact on diagnosis and treatment of neurovascular diseases such as stroke, Alzheimer's disease, and head injury. Optical imaging modalities have shown a great potential to provide high spatiotemporal resolution and quantitative imaging of pO2 based on hemoglobin absorption in visible and near infrared range of optical spectrum. However, multispectral measurement of cerebral blood oxygenation relies on photon migration through the highly scattering brain tissue. Estimation and modeling of tissue optical parameters, which may undergo dynamic changes during the experiment, is typically required for accurate estimation of blood oxygenation. On the other hand, estimation of the partial pressure of oxygen (pO2) based on oxygen-dependent quenching of phosphorescence should not be significantly affected by the changes in the optical parameters of the tissue and provides an absolute measure of pO2. Experimental systems that utilize oxygen-sensitive dyes have been demonstrated in in vivo studies of the perfused tissue as well as for monitoring the oxygen content in tissue cultures, showing that phosphorescence quenching is a potent technology capable of accurate oxygen imaging in the physiological pO2 range. Here we demonstrate with two different imaging modalities how to perform measurement of pO2 in cortical vasculature based on phosphorescence lifetime imaging. In first demonstration we present wide field of view imaging of pO2 at the cortical surface of a rat. This imaging modality has relatively simple experimental setup based on a CCD camera and a

  5. Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy.

    PubMed

    Carriles, Ramón; Schafer, Dawn N; Sheetz, Kraig E; Field, Jeffrey J; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W; Squier, Jeffrey A

    2009-08-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences.

  6. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  7. Wide-field optical sectioning for live-tissue imaging by plane-projection multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Yu, Jiun-Yann; Kuo, Chun-Hung; Holland, Daniel B.; Chen, Yenyu; Ouyang, Mingxing; Blake, Geoffrey A.; Zadoyan, Ruben; Guo, Chin-Lin

    2011-11-01

    Optical sectioning provides three-dimensional (3D) information in biological tissues. However, most imaging techniques implemented with optical sectioning are either slow or deleterious to live tissues. Here, we present a simple design for wide-field multiphoton microscopy, which provides optical sectioning at a reasonable frame rate and with a biocompatible laser dosage. The underlying mechanism of optical sectioning is diffuser-based temporal focusing. Axial resolution comparable to confocal microscopy is theoretically derived and experimentally demonstrated. To achieve a reasonable frame rate without increasing the laser power, a low-repetition-rate ultrafast laser amplifier was used in our setup. A frame rate comparable to that of epifluorescence microscopy was demonstrated in the 3D imaging of fluorescent protein expressed in live epithelial cell clusters. In this report, our design displays the potential to be widely used for video-rate live-tissue and embryo imaging with axial resolution comparable to laser scanning microscopy.

  8. Towards simultaneous single emission microscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cai, Liang

    In recent years, the combined nuclear imaging and magnetic resonance imaging (MRI) has drawn extensive research effort. They can provide simultaneously acquired anatomical and functional information inside the human/small animal body in vivo. In this dissertation, the development of an ultrahigh resolution MR-compatible SPECT (Single Photon Emission Computed Tomography) system that can be operated inside a pre-existing clinical MR scanner for simultaneous dual-modality imaging of small animals will be discussed. This system is constructed with 40 small pixel CdTe detector modules assembled in a fully stationary ring SPECT geometry. Series of experiments have demonstrated that this system is capable of providing an imaging resolution of <500?m, when operated inside MR scanners. The ultrahigh resolution MR-compatible SPECT system is built around a small pixel CdTe detector module that we recently developed. Each module consists of CdTe detectors having an overall size of 2.2 cm x 1.1 cm, divided into 64 x 32 pixels of 350 mum in size. A novel hybrid pixel-waveform (HPWF) readout system is also designed to alleviate several challenges for using small-pixel CdTe detectors in ultrahigh-resolution SPECT imaging applications. The HPWF system utilizes a modified version of a 2048-channel 2-D CMOS ASIC to readout the anode pixel, and a digitizing circuitry to sample the signal waveform induced on the cathode. The cathode waveform acquired with the HPWF circuitry offers excellent spatial resolution, energy resolution and depth of interaction (DOI) information, even with the presence of excessive charge-sharing/charge-loss between the small anode pixels. The HPWF CdTe detector is designed and constructed with a minimum amount of ferromagnetic materials, to ensure the MR-compatibility. To achieve sub-500?m imaging resolution, two special designed SPECT apertures have been constructed with different pinhole sizes of 300?m and 500?m respectively. It has 40 pinhole inserts that

  9. Imaging of Protein Crystals with Two-Photon Microscopy

    SciTech Connect

    Padayatti, Pius; Palczewska, Grazyna; Sun, Wenyu; Palczewski, Krzysztof; Salom, David

    2012-05-02

    Second-order nonlinear optical imaging of chiral crystals (SONICC), which portrays second-harmonic generation (SHG) by noncentrosymmetric crystals, is emerging as a powerful imaging technique for protein crystals in media opaque to visible light because of its high signal-to-noise ratio. Here we report the incorporation of both SONICC and two-photon excited fluorescence (TPEF) into one imaging system that allows visualization of crystals as small as 10 {mu}m in their longest dimension. Using this system, we then documented an inverse correlation between the level of symmetry in examined crystals and the intensity of their SHG. Moreover, because of blue-green TPEF exhibited by most tested protein crystals, we also could identify and image SHG-silent protein crystals. Our experimental data suggest that the TPEF in protein crystals is mainly caused by the oxidation of tryptophan residues. Additionally, we found that unspecific fluorescent dyes are able to bind to lysozyme crystals and enhance their detection by TPEF. We finally confirmed that the observed fluorescence was generated by a two-photon rather than a three-photon process. The capability for imaging small protein crystals in turbid or opaque media with nondamaging infrared light in a single system makes the combination of SHG and intrinsic visible TPEF a powerful tool for nondestructive protein crystal identification and characterization during crystallization trials.

  10. Imaging of plant cell walls by confocal Raman microscopy.

    PubMed

    Gierlinger, Notburga; Keplinger, Tobias; Harrington, Michael

    2012-09-01

    Raman imaging of plant cell walls represents a nondestructive technique that can provide insights into chemical composition in context with structure at the micrometer level (<0.5 μm). The major steps of the experimental procedure are described: sample preparation (embedding and microcutting), setting the mapping parameters, and finally the calculation of chemical images on the basis of the acquired Raman spectra. Every Raman image is based on thousands of spectra, each being a spatially resolved molecular 'fingerprint' of the cell wall. Multiple components are analyzed within the native cell walls, and insights into polymer composition as well as the orientation of the cellulose microfibrils can be gained. The most labor-intensive step of this process is often the sample preparation, as the imaging approach requires a flat surface of the plant tissue with intact cell walls. After finishing the map (acquisition time is ∼10 min to 10 h, depending on the size of the region of interest and scanning parameters), many possibilities exist for the analysis of spectral data and image generation.

  11. Observation of Localized Corrosion of Ni-Based Alloys Using Coupled Orientation Imaging Microscopy and Atomic Force Microscopy

    SciTech Connect

    Bedrossian, P.J.

    1999-11-24

    We present a method for assessing the relative vulnerabilities of distinct classes of grain boundaries to localized corrosion. Orientation imaging microscopy provides a spatial map which identifies and classifies grain boundaries at a metal surface. Once the microstructure of a region of a sample surface has been characterized, a sample can be exposed to repeated cycles of exposure to a corrosive environment alternating with topographic measurement by an atomic force microscope in the same region in which the microstructure had been mapped. When this procedure is applied to Ni and Ni-based alloys, we observe enhanced attack at random grain boundaries relative to special boundaries and twins in a variety of environments.

  12. Automatic segmentation and classification of human intestinal parasites from microscopy images.

    PubMed

    Suzuki, Celso T N; Gomes, Jancarlo F; Falcão, Alexandre X; Papa, João P; Hoshino-Shimizu, Sumie

    2013-03-01

    Human intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis.

  13. Imaging of Microwave Circuits Using Near-Field Microwave Microscopy

    NASA Astrophysics Data System (ADS)

    Anlage, Steven M.; Dutta, Sudeep; Vlahacos, C. P.; Steinhauer, David E.; Wellstood, F. C.

    1997-03-01

    Detailed models and simulations have been a major tool in the development and evaluation of microwave devices (e.g. circulators, superconducting filters, antennas). However actual quantitative measurements of performance are generally limited to global characteristics (such as reflection/transmission coefficients) leaving the models unverified in detail. With the near-field scanning microwave microscope(C. P. Vlahacos, et al.) Appl. Phys. Lett. 69 (21), 3272 (1996) (which uses an open-ended coaxial cable scanned in proximity to the surface to be imaged), we present a method of probing the internal fields of devices. By imaging simple device configurations (e.g. microstrip), where field patterns are easily calculated, we show how quantitative values for the electric field and potential can be calculated directly from the data. Resolution is dependent on the size of the coaxial cable, and has a limit of approximately 20 μm. Images of both data and models will be shown for comparison.

  14. Atomic Force Microscopy Imaging Techniques for Piezoelectric Materials

    NASA Astrophysics Data System (ADS)

    Kunz, Jeremy; Inglefield, Colin

    2009-10-01

    Using an Atomic Force Microscope (AFM) and a Lock-in Detector we investigated the effectiveness of two different methods of local piezoelectricity within a standard commercial piezoelectric material, Pb(Ti, Zr)O3 (PIC 151). In the first method, sometimes known as piezo-mode AFM, we applied an AC voltage to the sample locally through the tip of the AFM; we were able to image the local piezoelectric response while taking a topographical image. For the second set of measurements, we used a sample of the PIC 151 material with a uniform silver electrode over the entire surface. The voltage was applied to the entire sample through the electrodes and the AFM cantilever measured local response. Images based on the two techniques will be compared along with the methods themselves.

  15. A Minimal Optical Trapping and Imaging Microscopy System

    PubMed Central

    Hernández Candia, Carmen Noemí; Tafoya Martínez, Sara; Gutiérrez-Medina, Braulio

    2013-01-01

    We report the construction and testing of a simple and versatile optical trapping apparatus, suitable for visualizing individual microtubules (∼25 nm in diameter) and performing single-molecule studies, using a minimal set of components. This design is based on a conventional, inverted microscope, operating under plain bright field illumination. A single laser beam enables standard optical trapping and the measurement of molecular displacements and forces, whereas digital image processing affords real-time sample visualization with reduced noise and enhanced contrast. We have tested our trapping and imaging instrument by measuring the persistence length of individual double-stranded DNA molecules, and by following the stepping of single kinesin motor proteins along clearly imaged microtubules. The approach presented here provides a straightforward alternative for studies of biomaterials and individual biomolecules. PMID:23451216

  16. Neural imaging in songbirds using fiber optic fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Nooshabadi, Fatemeh; Hearn, Gentry; Lints, Thierry; Maitland, Kristen C.

    2012-02-01

    The song control system of juvenile songbirds is an important model for studying the developmental acquisition and generation of complex learned vocal motor sequences, two processes that are fundamental to human speech and language. To understand the neural mechanisms underlying song production, it is critical to characterize the activity of identified neurons in the song control system when the bird is singing. Neural imaging in unrestrained singing birds, although technically challenging, will advance our understanding of neural ensemble coding mechanisms in this system. We are exploring the use of a fiber optic microscope for functional imaging in the brain of behaving and singing birds in order to better understand the contribution of a key brain nucleus (high vocal center nucleus; HVC) to temporal aspects of song motor control. We have constructed a fluorescence microscope with LED illumination, a fiber bundle for transmission of fluorescence excitation and emission light, a ~2x GRIN lens, and a CCD for image acquisition. The system has 2 μm resolution, 375 μm field of view, 200 μm working distance, and 1 mm outer diameter. As an initial characterization of this setup, neurons in HVC were imaged using the fiber optic microscope after injection of quantum dots or fluorescent retrograde tracers into different song nuclei. A Lucid Vivascope confocal microscope was used to confirm the imaging results. Long-term imaging of the activity of these neurons in juvenile birds during singing may lead us to a better understanding of the central motor codes for song and the central mechanism by which auditory experience modifies song motor commands to enable vocal learning and imitation.

  17. Transillumination spatially modulated illumination microscopy for human chromosome imaging

    NASA Astrophysics Data System (ADS)

    Pitris, Costas; Heracleous, Peter; Patsalis, Philippos

    2005-03-01

    Human chromosome analysis is an essential task in cytogenetics, especially in prenatal screening, genetic syndrome diagnosis, cancer pathology research and mutagen dosimetry. Chromosomal analysis begins with the creation of a karyotype, which is a layout of chromosome images organized by decreasing size in pairs. Both manual and automatic classification of chromosomes are limited by the resolution of the microscope and imaging system used. One way to improve the results of classification and even detect subtleties now remaining undetected, is to enhance the resolution of the images. It is possible to achieve lateral resolution beyond the classical limit, by using spatially modulated illumination (SMI) in a wide-field, non-confocal microscope. In this case, the sample is illuminated with spatially modulated light, which makes normally inaccessible high-resolution information visible in the observed image by shifting higher frequencies within the OTF limits of the microscope. Although, SMI microscopes have been reported in the past, this manuscript reports the development of a transillumination microscope for opaque, non-fluorescent samples. The illumination path consisted of a light source illuminating a ruled grating which was subsequently imaged on the sample. The grating was mounted on a rotating and translating stage so that the magnification and rotation of the pattern could be adjusted. The imaging lens was a 1.25 NA oil immersion objective. Test samples showed resolution improvement, as judged from a comparison of the experimentally obtained FWHM. Further studies using smaller fringe distance or laser interference pattern illumination will be evaluated to further optimize the SMI results.

  18. Faster Fluorescence Microscopy: Advances in High Speed Biological Imaging

    PubMed Central

    Winter, Peter W.; Shroff, Hari

    2014-01-01

    The past decade has seen explosive growth in new high speed imaging methods. These can broadly be classified as either point-scanning (which offer better depth penetration) or parallelized systems (which offer higher speed). We discuss each class generally, and cover specific advances in diffraction-limited microscopes (laser-scanning confocal, spinning-disk, and light-sheet) and super-resolution microscopes (single-molecule imaging, stimulated emission-depletion, and structured illumination). A theme of our review is that there is no free lunch: each technique has strengths and weaknesses, and an advance in speed usually comes at the expense of either spatial resolution or depth penetration. PMID:24815857

  19. Faster fluorescence microscopy: advances in high speed biological imaging.

    PubMed

    Winter, Peter W; Shroff, Hari

    2014-06-01

    The past decade has seen explosive growth in new high speed imaging methods. These can broadly be classified as either point-scanning (which offer better depth penetration) or parallelized systems (which offer higher speed). We discuss each class generally, and cover specific advances in diffraction-limited microscopes (laser-scanning confocal, spinning-disk, and light-sheet) and superresolution microscopes (single-molecule imaging, stimulated emission-depletion, and structured illumination). A theme of our review is that there is no free lunch: each technique has strengths and weaknesses, and an advance in speed usually comes at the expense of either spatial resolution or depth penetration.

  20. Enhanced imaging in low dose electron microscopy using electron counting

    PubMed Central

    McMullan, G.; Clark, A.T.; Turchetta, R.; Faruqi, A.R.

    2009-01-01

    We compare the direct electron imaging performance at 120 keV of a monolithic active pixel sensor (MAPS) operated in a conventional integrating mode with the performance obtained when operated in a single event counting mode. For the combination of sensor and incident electron energy used here, we propose a heuristic approach with which to process the single event images in which each event is renormalised to have an integrated weight of unity. Using this approach we find enhancements in the Nyquist frequency modulation transfer function (MTF) and detective quantum efficiency (DQE) over the corresponding integrating mode values by factors of 8 and 3, respectively. PMID:19647366

  1. Simulation of bright-field microscopy images depicting pap-smear specimen

    PubMed Central

    Malm, Patrik; Brun, Anders; Bengtsson, Ewert

    2015-01-01

    As digital imaging is becoming a fundamental part of medical and biomedical research, the demand for computer-based evaluation using advanced image analysis is becoming an integral part of many research projects. A common problem when developing new image analysis algorithms is the need of large datasets with ground truth on which the algorithms can be tested and optimized. Generating such datasets is often tedious and introduces subjectivity and interindividual and intraindividual variations. An alternative to manually created ground-truth data is to generate synthetic images where the ground truth is known. The challenge then is to make the images sufficiently similar to the real ones to be useful in algorithm development. One of the first and most widely studied medical image analysis tasks is to automate screening for cervical cancer through Pap-smear analysis. As part of an effort to develop a new generation cervical cancer screening system, we have developed a framework for the creation of realistic synthetic bright-field microscopy images that can be used for algorithm development and benchmarking. The resulting framework has been assessed through a visual evaluation by experts with extensive experience of Pap-smear images. The results show that images produced using our described methods are realistic enough to be mistaken for real microscopy images. The developed simulation framework is very flexible and can be modified to mimic many other types of bright-field microscopy images. © 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of ISAC PMID:25573002

  2. Nanoparticle imaging. Electron microscopy of gold nanoparticles at atomic resolution.

    PubMed

    Azubel, Maia; Koivisto, Jaakko; Malola, Sami; Bushnell, David; Hura, Greg L; Koh, Ai Leen; Tsunoyama, Hironori; Tsukuda, Tatsuya; Pettersson, Mika; Häkkinen, Hannu; Kornberg, Roger D

    2014-08-22

    Structure determination of gold nanoparticles (AuNPs) is necessary for understanding their physical and chemical properties, but only one AuNP larger than 1 nanometer in diameter [a 102-gold atom NP (Au102NP)] has been solved to atomic resolution. Whereas the Au102NP structure was determined by x-ray crystallography, other large AuNPs have proved refractory to this approach. Here, we report the structure determination of a Au68NP at atomic resolution by aberration-corrected transmission electron microscopy, performed with the use of a minimal electron dose, an approach that should prove applicable to metal NPs in general. The structure of the Au68NP was supported by small-angle x-ray scattering and by comparison of observed infrared absorption spectra with calculations by density functional theory.

  3. Fluorescence Cell Imaging and Manipulation Using Conventional Halogen Lamp Microscopy

    PubMed Central

    Yamagata, Kazuo; Iwamoto, Daisaku; Terashita, Yukari; Li, Chong; Wakayama, Sayaka; Hayashi-Takanaka, Yoko; Kimura, Hiroshi; Saeki, Kazuhiro; Wakayama, Teruhiko

    2012-01-01

    Technologies for vitally labeling cells with fluorescent dyes have advanced remarkably. However, to excite fluorescent dyes currently requires powerful illumination, which can cause phototoxic damage to the cells and increases the cost of microscopy. We have developed a filter system to excite fluorescent dyes using a conventional transmission microscope equipped with a halogen lamp. This method allows us to observe previously invisible cell organelles, such as the metaphase spindle of oocytes, without causing phototoxicity. Cells remain healthy even after intensive manipulation under fluorescence observation, such as during bovine, porcine and mouse somatic cell cloning using nuclear transfer. This method does not require expensive epifluorescence equipment and so could help to reduce the science gap between developed and developing countries. PMID:22347500

  4. Image restoration applied to x-ray microscopy: application to images with low signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Sibarita, Jean-Baptiste; Chassery, Jean-Marc; Robert-Nicoud, Michel

    1995-02-01

    X-ray microscopy makes it possible to obtain images at a higher spatial resolution (about 20 nm) as compared to optical microscopy. Moreover, x-ray microscopy permits direct acquisition from the specimen in 2D or 3D mode, without any preparation step (staining, fixation, ...), which is not possible in electron microscopy. Here we present deblurring methods to restore images after the acquisition process. An additive Poisson noise is generated by the use of x rays and also contributes to image degradation. Our purpose is to analyze such noise and to restore images. Due to the optical properties of the Fresnel zone plate, we presently associate it to an optical circular lens as is done for the optical microscope. Here we use the Richardson Lucy algorithm to deconvolute. A first step is to observe results of restoration obtained on an image grating (a star pattern) with inner zones of dimensions near the resolution. The next step involves the suppression of noise effects arising from the deconvolution process. The characteristics of the noise after deconvolution are evaluated by Fourier analysis. These effects are eliminated by a filtering process in the Fourier spectrum. This filtering is applied on images with different signal to noise ratio (obtained after different time exposures), in order to compare results obtained on noisy images with long time exposure images.

  5. Nanoscale imaging of Bacillus thuringiensis flagella using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Gillis, Annika; Dupres, Vincent; Delestrait, Guillaume; Mahillon, Jacques; Dufrêne, Yves F.

    2012-02-01

    Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in cell surface appendages.Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in

  6. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    PubMed

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy

    NASA Astrophysics Data System (ADS)

    Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.

  8. A Motion Correction Framework for Time Series Sequences in Microscopy Images

    PubMed Central

    Kumar, Ankur N.; Short, Kurt W.; Piston, David W.

    2014-01-01

    With the advent of in vivo laser scanning fluorescence microscopy techniques, time-series and three-dimensional volumes of living tissue and vessels at micron scales can be acquired to firmly analyze vessel architecture and blood flow. Analysis of a large number of image stacks to extract architecture and track blood flow manually is cumbersome and prone to observer bias. Thus, an automated framework to accomplish these analytical tasks is imperative. The first initiative toward such a framework is to compensate for motion artifacts manifest in these microscopy images. Motion artifacts in in vivo microscopy images are caused by respiratory motion, heart beats, and other motions from the specimen. Consequently, the amount of motion present in these images can be large and hinders further analysis of these images. In this article, an algorithmic framework for the correction of time-series images is presented. The automated algorithm is comprised of a rigid and a nonrigid registration step based on shape contexts. The framework performs considerably well on time-series image sequences of the islets of Langerhans and provides for the pivotal step of motion correction in the further automatic analysis of microscopy images. PMID:23410911

  9. Helium ion microscopy: a new tool for imaging novel mesoporous silica and organosilica materials.

    PubMed

    Terpstra, Andrea S; Shopsowitz, Kevin E; Gregory, Camille F; Manning, Alan P; Michal, Carl A; Hamad, Wadood Y; Yang, Jijin; MacLachlan, Mark J

    2013-02-25

    Helium ion microscopy (HIM) has been used to image mesoporous silica and organosilica for the first time. Images of chiral nematic silica, ethylenesilica, and new benzenesilica reveal the structural organization, pore dimensions and connectivity of these materials on the nanometer length scale.

  10. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    SciTech Connect

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  11. Light-sheet microscopy imaging of a whole cleared rat brain with Thy1-GFP transgene

    PubMed Central

    Stefaniuk, Marzena; Gualda, Emilio J.; Pawlowska, Monika; Legutko, Diana; Matryba, Paweł; Koza, Paulina; Konopka, Witold; Owczarek, Dorota; Wawrzyniak, Marcin; Loza-Alvarez, Pablo; Kaczmarek, Leszek

    2016-01-01

    Whole-brain imaging with light-sheet fluorescence microscopy and optically cleared tissue is a new, rapidly developing research field. Whereas successful attempts to clear and image mouse brain have been reported, a similar result for rats has proven difficult to achieve. Herein, we report on creating novel transgenic rat harboring fluorescent reporter GFP under control of neuronal gene promoter. We then present data on clearing the rat brain, showing that FluoClearBABB was found superior over passive CLARITY and CUBIC methods. Finally, we demonstrate efficient imaging of the rat brain using light-sheet fluorescence microscopy. PMID:27312902

  12. Optical tomography complements light sheet microscopy for in toto imaging of zebrafish development

    PubMed Central

    Bassi, Andrea; Schmid, Benjamin; Huisken, Jan

    2015-01-01

    Fluorescently labeled structures can be spectrally isolated and imaged at high resolution in living embryos by light sheet microscopy. Multimodal imaging techniques are now needed to put these distinct structures back into the context of the surrounding tissue. We found that the bright-field contrast of unstained specimens in a selective plane illumination microscopy (SPIM) setup can be exploited for in vivo tomographic reconstructions of the three-dimensional anatomy of zebrafish, without causing phototoxicity. We report multimodal imaging of entire zebrafish embryos over several hours of development, as well as segmentation, tracking and automatic registration of individual organs. PMID:25655702

  13. Intensity Weighted Subtraction Microscopy Approach for Image Contrast and Resolution Enhancement

    NASA Astrophysics Data System (ADS)

    Korobchevskaya, Kseniya; Peres, Chiara; Li, Zhibin; Antipov, Alexei; Sheppard, Colin J. R.; Diaspro, Alberto; Bianchini, Paolo

    2016-05-01

    We propose and demonstrate a novel subtraction microscopy algorithm, exploiting fluorescence emission difference or switching laser mode and their derivatives for image enhancement. The key novelty of the proposed approach lies in the weighted subtraction coefficient, adjusted pixel-by-pixel with respect to the intensity distributions of initial images. This method produces significant resolution enhancement and minimizes image distortions. Our theoretical and experimental studies demonstrate that this approach can be applied to any optical microscopy techniques, including label free and non-linear methods, where common super-resolution techniques cannot be used.

  14. Subsurface defect of amorphous carbon film imaged by near field acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Zeng, J. T.; Zhao, K. Y.; Zeng, H. R.; Song, H. Z.; Zheng, L. Y.; Li, G. R.; Yin, Q. R.

    2008-05-01

    Amorphous carbon films were examined by low frequency scanning-probe acoustic microscopy (LF-SPAM). Local elastic properties as well as topography were imaged in the acoustic mode. Two kinds of subsurface defects were revealed by the LF-SPAM method. The influence of the subsurface defects on the elastic properties was also discussed. The ability to image subsurface defects was dependent on the scan area and the scan speed. Our results showed that the low frequency scanning-probe acoustic microscopy is a useful method for imaging subsurface defects with high resolution.

  15. Intensity Weighted Subtraction Microscopy Approach for Image Contrast and Resolution Enhancement

    PubMed Central

    Korobchevskaya, Kseniya; Peres, Chiara; Li, Zhibin; Antipov, Alexei; Sheppard, Colin J. R.; Diaspro, Alberto; Bianchini, Paolo

    2016-01-01

    We propose and demonstrate a novel subtraction microscopy algorithm, exploiting fluorescence emission difference or switching laser mode and their derivatives for image enhancement. The key novelty of the proposed approach lies in the weighted subtraction coefficient, adjusted pixel-by-pixel with respect to the intensity distributions of initial images. This method produces significant resolution enhancement and minimizes image distortions. Our theoretical and experimental studies demonstrate that this approach can be applied to any optical microscopy techniques, including label free and non-linear methods, where common super-resolution techniques cannot be used. PMID:27174367

  16. Point scanning confocal microscopy facilitates 3D human hair follicle imaging in tissue sections.

    PubMed

    Kloepper, Jennifer E; Bíró, Tamás; Paus, Ralf; Cseresnyés, Zoltán

    2010-07-01

    Efficiency is a key factor in determining whether a scientific method becomes widely accepted in practical applications. In dermatology, morphological characterisation of intact hair follicles by traditional methods can be rather inefficient. Samples are embedded, sliced, imaged and digitally reconstructed, which can be time-consuming. Confocal microscopy, on the other hand, is more efficient and readily applicable to study intact hair follicles. Modern confocal microscopes deliver and collect light very efficiently and thus allow high spatial resolution imaging of relatively thick samples. In this letter, we report that we successfully imaged entire intact human hair follicles using point scanning confocal microscopy. Light delivery and light-collection were further improved by preparing the samples in 2,2'-Thiodiethanol (TDE), thus reducing refractive index gradients. The relatively short total scan times and the high quality of the acquired 3D images make confocal microscopy a desirable method for studying intact hair follicles under normal and pathological conditions.

  17. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy.

    PubMed

    Gualda, Emilio J; Simão, Daniel; Pinto, Catarina; Alves, Paula M; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment.

  18. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    PubMed Central

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  19. Denoising time-resolved microscopy image sequences with singular value thresholding.

    PubMed

    Furnival, Tom; Leary, Rowan K; Midgley, Paul A

    2017-07-01

    Time-resolved imaging in microscopy is important for the direct observation of a range of dynamic processes in both the physical and life sciences. However, the image sequences are often corrupted by noise, either as a result of high frame rates or a need to limit the radiation dose received by the sample. Here we exploit both spatial and temporal correlations using low-rank matrix recovery methods to denoise microscopy image sequences. We also make use of an unbiased risk estimator to address the issue of how much thresholding to apply in a robust and automated manner. The performance of the technique is demonstrated using simulated image sequences, as well as experimental scanning transmission electron microscopy data, where surface adatom motion and nanoparticle structural dynamics are recovered at rates of up to 32 frames per second. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. A Correlative Method for Imaging Identical Regions of Samples by Micro-CT, Light Microscopy, and Electron Microscopy

    PubMed Central

    Sengle, Gerhard; Tufa, Sara F.; Sakai, Lynn Y.; Zulliger, Martin A.

    2013-01-01

    We present a method in which a precise region of interest within an intact organism is spatially mapped in three dimensions by non-invasive micro-computed X-ray tomography (micro-CT), then further evaluated by light microscopy (LM) and transmission electron microscopy (TEM). Tissues are prepared as if for TEM including osmium fixation, which imparts soft tissue contrast in the micro-CT due to its strong X-ray attenuation. This method may therefore be applied to embedded, archived TEM samples. Upon selection of a two-dimensional (2-D) projection from a region of interest (ROI) within the three-dimensional volume, the epoxy-embedded sample is oriented for microtomy so that the sectioning plane is aligned with the micro-CT projection. Registration is verified by overlaying LM images with 2-D micro-CT projections. Structures that are poorly resolved in the micro-CT may be evaluated at TEM resolution by observing the next serial ultrathin section, thereby accessing the same ROI by all three imaging techniques. We compare white adipose tissue within the forelimbs of mice harboring a lipid-altering mutation with their littermate controls. We demonstrate that individual osmium-stained lipid droplets as small as 15 µm and separated by as little as 35 µm may be discerned as separate entities in the micro-CT, validating this to be a high-resolution, non-destructive technique for evaluation of fat content. PMID:23264636

  1. Comparing Fourier optics and contrast transfer function modeling of image formation in low energy electron microscopy.

    PubMed

    Yu, K M; Locatelli, A; Altman, M S

    2017-03-24

    A theoretical understanding of image formation in cathode lens microscopy can facilitate image interpretation. We compare Fourier Optics (FO) and Contrast Transfer Function (CTF) approaches that were recently adapted from other realms of microscopy to model image formation in low energy electron microscopy (LEEM). Although these two approaches incorporate imaging errors from several sources similarly, they differ in the way that the image intensity is calculated. The simplification that is used in the CTF calculation advantageously leads to its computational efficiency. However, we find that lens aberrations, and spatial and temporal coherence may affect the validity of the CTF approach to model LEEM image formation under certain conditions. In particular, these effects depend strongly on the nature of the object being imaged and also become more pronounced with increasing defocus. While the use of the CTF approach appears to be justified for objects that are routinely imaged with LEEM, comparison of theory to experimental observations of a focal image series for rippled, suspended graphene reveals one example where FO works, but CTF does not. This work alerts us to potential pitfalls and guides the effective use of FO and CTF approaches. It also lays the foundation for quantitative image evaluation using these methods.

  2. Imaging Mouse Development with Confocal Time-Lapse Microscopy

    PubMed Central

    Nowotschin, Sonja; Ferrer-Vaquer, Anna; Hadjantonakis, Anna-Katerina

    2012-01-01

    The gene expression, signaling, and cellular dynamics driving mouse embryo development have emerged through embryology and genetic studies. However, since mouse development is a temporally regulated three-dimensional process, any insight needs to be placed in this context of real-time visualization. Live imaging using genetically encoded fluorescent protein reporters is pushing the envelope of our understanding by uncovering unprecedented insights into mouse development and leading to the formulation of quantitative accurate models. PMID:20691876

  3. Second-harmonic generation and fluorescence lifetime imaging microscopy through a rodent mammary imaging window

    NASA Astrophysics Data System (ADS)

    Young, Pamela A.; Nazir, Muhammad; Szulczewski, Michael J.; Keely, Patricia J.; Eliceiri, Kevin W.

    2012-03-01

    Tumor-Associated Collagen Signatures (TACS) have been identified that manifest in specific ways during breast tumor progression and that correspond to patient outcome. There are also compelling metabolic changes associated with carcinoma invasion and progression. We have characterized the difference in the autofluorescent properties of metabolic co-factors, NADH and FAD, between normal and carcinoma breast cell lines. Also, we have shown in vitro that increased collagen density alters metabolic genes which are associated with glycolysis and leads to a more invasive phenotype. Establishing the relationship between collagen density, cellular metabolism, and metastasis in physiologically relevant cancer models is crucial for developing cancer therapies. To study cellular metabolism with respect to collagen density in vivo, we use multiphoton fluorescence excitation microscopy (MPM) in conjunction with a rodent mammary imaging window implanted in defined mouse cancer models. These models are ideal for the study of collagen changes in vivo, allowing determination of corresponding metabolic changes in breast cancer invasion and progression. To measure cellular metabolism, we collect fluorescence lifetime (FLIM) signatures of NADH and FAD, which are known to change based on the microenvironment of the cells. Additionally, MPM systems are capable of collecting second harmonic generation (SHG) signals which are a nonlinear optical property of collagen. Therefore, MPM, SHG, and FLIM are powerful tools with great potential for characterizing key features of breast carcinoma in vivo. Below we present the current efforts of our collaborative group to develop intravital approaches based on these imaging techniques to look at defined mouse mammary models.

  4. Stress Imaging in Indented Si Wafers by Confocal Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Schoenmaker, Jeroen; Cook, Robert F.; Novotny, Lukas; Stranick, Stephan J.

    2007-03-01

    Controlling stress and strain, and consequently, carrier mobility in semiconductor devices is one of the main goals of recent electronic industry. On the other hand, fracture propagation is commonly related to performance degradation in microelectronic and microelectromechanical (MEMS) devices. As miniaturization reaches submicron scales, characterization tools with improved resolution and capable to detect buried surfaces is required. In this work we present confocal Raman imaging in Si wafers to analyze stress and fracture by means of hyperspectral measurements (typically 128x128 spectra). We analyzed indented Si wafers presenting wide range of plastic deformation and fractures. Wide scans (up to 150x150 μm^2) as well as high-resolution scans depict the stress distribution around indented regions and side fractures. Some of the samples were covered with 8 nm of Ti deposited in LN2 temperature. In these samples we acquired hyperspectral images in subsurface conditions and detected possible influences of thermal budged in the stress distribution. We also demonstrate depth sensitivity in a vertical scan. Images suggest 0.3 μm resolution.

  5. Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data.

    PubMed

    Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M

    2016-09-16

    We present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional data cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. We demonstrate this 'big data' approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.

  6. Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data

    NASA Astrophysics Data System (ADS)

    Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M.

    2016-09-01

    We present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional data cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. We demonstrate this ‘big data’ approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.

  7. Dynamic structured illumination microscopy: Focused imaging and optical sectioning for moving objects

    NASA Astrophysics Data System (ADS)

    Krzewina, Leo G.; Kim, Myung K.

    2006-02-01

    Structured illumination microscopy (SIM) is a valuable tool for three-dimensional microscopy and has numerous applications in bioscience. Its success has been limited to static objects, though, as three sequential image acquisitions are required per final processed, focused image. To overcome this problem we have developed a multicolored grid which when used in tandem with a color camera is capable of performing SIM with just a single exposure. Images and movies demonstrating optical sectioning of three-dimensional objects are presented, and results of applying color SIM for wide-field focused imaging are compared to those of SIM. From computer modeling and analytical calculations a theoretical estimate of the maximum observable object velocity in both the lateral and axial directions is available, implying that the new method will be capable of imaging a variety of live objects. Sample images of the technique applied to lens paper and a pigeon feather are included to show both advantages and disadvantages of CSIM.

  8. Three-dimensional tooth imaging using multiphoton and second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Min-Huey; Chen, Wei-Liang; Sun, Yen; Fwu, Peter Tramyeon; Lin, Ming-Gu; Dong, Chen-Yuan

    2007-02-01

    Detailed morphological and cellular information relating to the human tooth have traditionally been obtained through histological studies that required decalcification, staining, and fixation. With the recent invention of multiphoton microscopy, it has become possible to acquire high resolution images without histological procedures. Using an epiilluminated multiphoton microscope, we obtained two-photon excited autofluorescence and second harmonic generation (SHG) images of ex vivo human tooth. By combining these two imaging modalities we obtained submicron resolution images of the enamel, dentin, and the periodontal ligaments. The enamel emits endogenous two-photon autofluorescence. The structure of the dentin is visible from both the autofluorescence and second harmonic generation signals. The periodontal ligament composed mostly of collagen can be visualized by SHG imaging. We also constructed three dimensional images of the enamel, dentin, and periodontal ligament. The effectiveness of using multiphoton and second harmonic generation microscopy to obtain structural information of teeth suggest its potential use in dental diagnostics.

  9. Live imaging of Tribolium castaneum embryonic development using light-sheet-based fluorescence microscopy.

    PubMed

    Strobl, Frederic; Schmitz, Alexander; Stelzer, Ernst H K

    2015-10-01

    Tribolium castaneum has become an important insect model organism for evolutionary developmental biology, genetics and biotechnology. However, few protocols for live fluorescence imaging of Tribolium have been reported, and little image data is available. Here we provide a protocol for recording the development of Tribolium embryos with light-sheet-based fluorescence microscopy. The protocol can be completed in 4-7 d and provides procedural details for: embryo collection, microscope configuration, embryo preparation and mounting, noninvasive live imaging for up to 120 h along multiple directions, retrieval of the live embryo once imaging is completed, and image data processing, for which exemplary data is provided. Stringent quality control criteria for developmental biology studies are also discussed. Light-sheet-based fluorescence microscopy complements existing toolkits used to study Tribolium development, can be adapted to other insect species, and requires no advanced imaging or sample preparation skills.

  10. Spatiotemporal Rank Filtering Improves Image Quality Compared to Frame Averaging in 2-Photon Laser Scanning Microscopy

    PubMed Central

    Pinkard, Henry; Corbin, Kaitlin; Krummel, Matthew F.

    2016-01-01

    Live imaging of biological specimens using optical microscopy is limited by tradeoffs between spatial and temporal resolution, depth into intact samples, and phototoxicity. Two-photon laser scanning microscopy (2P-LSM), the gold standard for imaging turbid samples in vivo, has conventionally constructed images with sufficient signal-to-noise ratio (SNR) generated by sequential raster scans of the focal plane and temporal integration of the collected signals. Here, we describe spatiotemporal rank filtering, a nonlinear alternative to temporal integration, which makes more efficient use of collected photons by selectively reducing noise in 2P-LSM images during acquisition. This results in much higher SNR while preserving image edges and fine details. Practically, this allows for at least a four fold decrease in collection times, a substantial improvement for time-course imaging in biological systems. PMID:26938064

  11. Spatiotemporal Rank Filtering Improves Image Quality Compared to Frame Averaging in 2-Photon Laser Scanning Microscopy.

    PubMed

    Pinkard, Henry; Corbin, Kaitlin; Krummel, Matthew F

    2016-01-01

    Live imaging of biological specimens using optical microscopy is limited by tradeoffs between spatial and temporal resolution, depth into intact samples, and phototoxicity. Two-photon laser scanning microscopy (2P-LSM), the gold standard for imaging turbid samples in vivo, has conventionally constructed images with sufficient signal-to-noise ratio (SNR) generated by sequential raster scans of the focal plane and temporal integration of the collected signals. Here, we describe spatiotemporal rank filtering, a nonlinear alternative to temporal integration, which makes more efficient use of collected photons by selectively reducing noise in 2P-LSM images during acquisition. This results in much higher SNR while preserving image edges and fine details. Practically, this allows for at least a four fold decrease in collection times, a substantial improvement for time-course imaging in biological systems.

  12. Correlated Atomic Force Microscopy and Flourescence Lifetime Imaging of Live Bacterial Cells

    SciTech Connect

    Micic, Miodrag; Hu, Dehong; Suh, Yung D.; Newton, Greg J.; Romine, Margaret F.; Lu, H PETER.

    2004-04-01

    We report on the imaging of living bacterial cells by using a new correlated tapping-mode atomic force microscopy (AFM) and confocal al fluorescence lifetime imaging microscopy (FLIM). Different methods of preparing the bacterial sample were explored for optimal imaging of Gram-negative Shewanella oneidensis MR-1 cells on poly-1-lysine coated surfaces and agarose gel coated surfaces. We have found that the agarose gel containing 99% buffer can provide a local aqueous environment for single bacterial cells. Furthermore, the cell surface topography can be characterized by tapping-mode in-air AFM imaging for the single bacterial cells that are partially embedded. Using in-air rather than under-water AFM imaging of the living cells significantly enhanced the contrast and single-to-noise ration of the AFM images. Near-field AFM-tip enhanced fluorescence lifetime imaging (AFM-FLIM) holds great promise for obtaining fluorescence images beyond the optical diffraction limited spatial resolution. We have previously demonstrated near-field AFM-FLIM imaging of polymer beads beyond the diffraction limited spatial resolution. Here, as the first step of applying AFM-FLIM on imaging living bacterial cells, we demonstrate a correlated and consecutive AFM topographic imaging, fluorescence intensity imaging, and FLIM imaging to characterize cell polarity.

  13. Deep Learning Segmentation of Optical Microscopy Images Improves 3D Neuron Reconstruction.

    PubMed

    Li, Rongjian; Zeng, Tao; Peng, Hanchuan; Ji, Shuiwang

    2017-03-08

    Digital reconstruction, or tracing, of 3-dimensional (3D) neuron structure from microscopy images is a critical step toward reversing engineering the wiring and anatomy of a brain. Despite a number of prior attempts, this task remains very challenging, especially when images are contaminated by noises or have discontinued segments of neurite patterns. An approach for addressing such problems is to identify the locations of neuronal voxels using image segmentation methods prior to applying tracing or reconstruction techniques. This preprocessing step is expected to remove noises in the data, thereby leading to improved reconstruction results. In this work, we proposed to use 3D Convolutional neural networks (CNNs) for segmenting the neuronal microscopy images. Specifically, we designed a novel CNN architecture that takes volumetric images as the inputs and their voxel-wise segmentation maps as the outputs. The developed architecture allows us to train and predict using large microscopy images in an end-to-end manner. We evaluated the performance of our model on a variety of challenging 3D microscopy images from different organisms. Results showed that the proposed methods improved the tracing performance significantly when combined with different reconstruction algorithms.

  14. High-Resolution Microscopy-Coil MR Imaging of Skin Tumors: Techniques and Novel Clinical Applications.

    PubMed

    Budak, Matthew J; Weir-McCall, Jonathan R; Yeap, Phey M; White, Richard D; Waugh, Shelley A; Sudarshan, Thiru A P; Zealley, Ian A

    2015-01-01

    High-resolution magnetic resonance (MR) imaging performed with a microscopy coil is a robust radiologic tool for the evaluation of skin lesions. Microscopy-coil MR imaging uses a small surface coil and a 1.5-T or higher MR imaging system. Simple T1- and T2-weighted imaging protocols can be implemented to yield high-quality, high-spatial-resolution images that provide an excellent depiction of dermal anatomy. The primary application of microscopy-coil MR imaging is to delineate the deep margins of skin tumors, thereby providing a preoperative road map for dermatologic surgeons. This information is particularly useful for surgeons who perform Mohs micrographic surgery and in cases of nasofacial neoplasms, where the underlying anatomy is complex. Basal cell carcinoma is the most common nonmelanocytic skin tumor and has a predilection to manifest on the face, where it can be challenging to achieve complete surgical excision while preserving the cosmetic dignity of the patient. Microscopy-coil MR imaging provides dermatologic surgeons with valuable preoperative anatomic information that is not available at conventional clinical examination. ©RSNA, 2015.

  15. Iplt--image processing library and toolkit for the electron microscopy community.

    PubMed

    Philippsen, Ansgar; Schenk, Andreas D; Stahlberg, Henning; Engel, Andreas

    2003-01-01

    We present the foundation for establishing a modular, collaborative, integrated, open-source architecture for image processing of electron microscopy images, named iplt. It is designed around object oriented paradigms and implemented using the programming languages C++ and Python. In many aspects it deviates from classical image processing approaches. This paper intends to motivate developers within the community to participate in this on-going project. The iplt homepage can be found at http://www.iplt.org.

  16. Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells.

    PubMed

    Peckys, Diana B; de Jonge, Niels

    2014-04-01

    Scanning transmission electron microscopy (STEM) of specimens in liquid, so-called Liquid STEM, is capable of imaging the individual subunits of macromolecular complexes in whole eukaryotic cells in liquid. This paper discusses this new microscopy modality within the context of state-of-the-art microscopy of cells. The principle of operation and equations for the resolution are described. The obtained images are different from those acquired with standard transmission electron microscopy showing the cellular ultrastructure. Instead, contrast is obtained on specific labels. Images can be recorded in two ways, either via STEM at 200 keV electron beam energy using a microfluidic chamber enclosing the cells, or via environmental scanning electron microscopy at 30 keV of cells in a wet environment. The first series of experiments involved the epidermal growth factor receptor labeled with gold nanoparticles. The labels were imaged in whole fixed cells with nanometer resolution. Since the cells can be kept alive in the microfluidic chamber, it is also feasible to detect the labels in unfixed, live cells. The rapid sample preparation and imaging allows studies of multiple whole cells.

  17. Imaging horse tendons using multimodal 2-photon microscopy.

    PubMed

    Sivaguru, Mayandi; Eichorst, John Paul; Durgam, Sushmitha; Fried, Glenn A; Stewart, Allison A; Stewart, Matthew C

    2014-03-15

    Injuries and damage to tendons plague both human and equine athletes. At the site of injuries, various cells congregate to repair and re-structure the collagen. Treatments for collagen injury range from simple procedures such as icing and pharmaceutical treatments to more complex surgeries and the implantation of stem cells. Regardless of the treatment, the level of mechanical stimulation incurred by the recovering tendon is crucial. However, for a given tendon injury, it is not known precisely how much of a load should be applied for an effective recovery. Both too much and too little loading of the tendon could be detrimental during recovery. A mapping of the complex local environment imparted to any cell present at the site of a tendon injury may however, convey fundamental insights related to their decision making as a function of applied load. Therefore, fundamentally knowing how cells translate mechanical cues from their external environment into signals regulating their functions during repair is crucial to more effectively treat these types of injuries. In this paper, we studied systems of tendons with a variety of 2-photon-based imaging techniques to examine the local mechanical environment of cells in both normal and injured tendons. These tendons were chemically treated to instigate various extents of injury and in some cases, were injected with stem cells. The results related by each imaging technique distinguish with high contrast and resolution multiple morphologies of the cells' nuclei and the alignment of the collagen during injury. The incorporation of 2-photon FLIM into this study probed new features in the local environment of the nuclei that were not apparent with steady-state imaging. Overall, this paper focuses on horse tendon injury pattern and analysis with different 2-photon confocal modalities useful for wide variety of application in damaged tissues. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Chemoselective imaging of mouse brain tissue via multiplex CARS microscopy.

    PubMed

    Pohling, Christoph; Buckup, Tiago; Pagenstecher, Axel; Motzkus, Marcus

    2011-08-01

    The fast and reliable characterization of pathological tissue is a debated topic in the application of vibrational spectroscopy in medicine. In the present work we apply multiplex coherent anti-Stokes Raman scattering (MCARS) to the investigation of fresh mouse brain tissue. The combination of imaginary part extraction followed by principal component analysis led to color contrast between grey and white matter as well as layers of granule and Purkinje cells. Additional quantitative information was obtained by using a decomposition algorithm. The results perfectly agree with HE stained references slides prepared separately making multiplex CARS an ideal approach for chemoselective imaging.

  19. In vivo calcium imaging from dentate granule cells with wide-field fluorescence microscopy

    PubMed Central

    Yawata, Satoshi; Funabiki, Kazuo; Hikida, Takatoshi

    2017-01-01

    A combination of genetically-encoded calcium indicators and micro-optics has enabled monitoring of large-scale dynamics of neuronal activity from behaving animals. In these studies, wide-field microscopy is often used to visualize neural activity. However, this method lacks optical sectioning capability, and therefore its axial resolution is generally poor. At present, it is unclear whether wide-field microscopy can visualize activity of densely packed small neurons at cellular resolution. To examine the applicability of wide-field microscopy for small-sized neurons, we recorded calcium activity of dentate granule cells having a small soma diameter of approximately 10 micrometers. Using a combination of high numerical aperture (0.8) objective lens and independent component analysis-based image segmentation technique, activity of putative single granule cell activity was separated from wide-field calcium imaging data. The result encourages wider application of wide-field microscopy in in vivo neurophysiology. PMID:28700611

  20. In vivo calcium imaging from dentate granule cells with wide-field fluorescence microscopy.

    PubMed

    Hayashi, Yuichiro; Yawata, Satoshi; Funabiki, Kazuo; Hikida, Takatoshi

    2017-01-01

    A combination of genetically-encoded calcium indicators and micro-optics has enabled monitoring of large-scale dynamics of neuronal activity from behaving animals. In these studies, wide-field microscopy is often used to visualize neural activity. However, this method lacks optical sectioning capability, and therefore its axial resolution is generally poor. At present, it is unclear whether wide-field microscopy can visualize activity of densely packed small neurons at cellular resolution. To examine the applicability of wide-field microscopy for small-sized neurons, we recorded calcium activity of dentate granule cells having a small soma diameter of approximately 10 micrometers. Using a combination of high numerical aperture (0.8) objective lens and independent component analysis-based image segmentation technique, activity of putative single granule cell activity was separated from wide-field calcium imaging data. The result encourages wider application of wide-field microscopy in in vivo neurophysiology.

  1. Towards real-time image deconvolution: application to confocal and STED microscopy

    PubMed Central

    Zanella, R.; Zanghirati, G.; Cavicchioli, R.; Zanni, L.; Boccacci, P.; Bertero, M.; Vicidomini, G.

    2013-01-01

    Although deconvolution can improve the quality of any type of microscope, the high computational time required has so far limited its massive spreading. Here we demonstrate the ability of the scaled-gradient-projection (SGP) method to provide accelerated versions of the most used algorithms in microscopy. To achieve further increases in efficiency, we also consider implementations on graphic processing units (GPUs). We test the proposed algorithms both on synthetic and real data of confocal and STED microscopy. Combining the SGP method with the GPU implementation we achieve a speed-up factor from about a factor 25 to 690 (with respect the conventional algorithm). The excellent results obtained on STED microscopy images demonstrate the synergy between super-resolution techniques and image-deconvolution. Further, the real-time processing allows conserving one of the most important property of STED microscopy, i.e the ability to provide fast sub-diffraction resolution recordings. PMID:23982127

  2. An open data mining framework for the analysis of medical images: application on obstructive nephropathy microscopy images.

    PubMed

    Doukas, Charalampos; Goudas, Theodosis; Fischer, Simon; Mierswa, Ingo; Chatziioannou, Aristotle; Maglogiannis, Ilias

    2010-01-01

    This paper presents an open image-mining framework that provides access to tools and methods for the characterization of medical images. Several image processing and feature extraction operators have been implemented and exposed through Web Services. Rapid-Miner, an open source data mining system has been utilized for applying classification operators and creating the essential processing workflows. The proposed framework has been applied for the detection of salient objects in Obstructive Nephropathy microscopy images. Initial classification results are quite promising demonstrating the feasibility of automated characterization of kidney biopsy images.

  3. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods.

    PubMed

    Tam, Johnny; Merino, David

    2015-11-01

    Stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion (STED) microscopy are two super-resolution optical microscopy approaches that have rapidly gained popularity in recent years. Both modalities offer super-resolution imaging capabilities with the potential for imaging in multiple colors, three-dimensions, and the possibility to image in live cells. In this review, we focus on the specific advantages and disadvantages of each technique in the context of each other. STORM has been reported to achieve higher spatial resolution when compared to STED, but a lengthy acquisition may be required. STED utilizes relatively higher laser intensities, but is able to generate a super-resolution image immediately after acquisition without the need for any additional data processing. Ultimately, the choice between STORM and STED will depend not only on the specific application, but also on the users' ability to understand and optimize the various parameters ranging from sample preparation to image acquisition, which determine the quality of the final image. Stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion (STED) are two super-resolution microscopy approaches that have rapidly gained popularity in recent years. STORM is based on the precise localization of a large number of individual molecules that together form a super-resolved image (bottom), whereas STED is based on the scanning of two super-imposed light sources which together allow for a super-resolved spot on the sample to be imaged (top). We discuss the specific advantages and disadvantages of each technique and explain the various parameters that affect image quality, which should be taken into consideration when planning experiments. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  4. Pancreas++: Automated Quantification of Pancreatic Islet Cells in Microscopy Images

    PubMed Central

    Chen, Hongyu; Martin, Bronwen; Cai, Huan; Fiori, Jennifer L.; Egan, Josephine M.; Siddiqui, Sana; Maudsley, Stuart

    2013-01-01

    The microscopic image analysis of pancreatic Islet of Langerhans morphology is crucial for the investigation of diabetes and metabolic diseases. Besides the general size of the islet, the percentage and relative position of glucagon-containing alpha-, and insulin-containing beta-cells is also important for pathophysiological analyses, especially in rodents. Hence, the ability to identify, quantify and spatially locate peripheral, and “involuted” alpha-cells in the islet core is an important analytical goal. There is a dearth of software available for the automated and sophisticated positional quantification of multiple cell types in the islet core. Manual analytical methods for these analyses, while relatively accurate, can suffer from a slow throughput rate as well as user-based biases. Here we describe a newly developed pancreatic islet analytical software program, Pancreas++, which facilitates the fully automated, non-biased, and highly reproducible investigation of islet area and alpha- and beta-cell quantity as well as position within the islet for either single or large batches of fluorescent images. We demonstrate the utility and accuracy of Pancreas++ by comparing its performance to other pancreatic islet size and cell type (alpha, beta) quantification methods. Our Pancreas++ analysis was significantly faster than other methods, while still retaining low error rates and a high degree of result correlation with the manually generated reference standard. PMID:23293605

  5. Automated podosome identification and characterization in fluorescence microscopy images.

    PubMed

    Meddens, Marjolein B M; Rieger, Bernd; Figdor, Carl G; Cambi, Alessandra; van den Dries, Koen

    2013-02-01

    Podosomes are cellular adhesion structures involved in matrix degradation and invasion that comprise an actin core and a ring of cytoskeletal adaptor proteins. They are most often identified by staining with phalloidin, which binds F-actin and therefore visualizes the core. However, not only podosomes, but also many other cytoskeletal structures contain actin, which makes podosome segmentation by automated image processing difficult. Here, we have developed a quantitative image analysis algorithm that is optimized to identify podosome cores within a typical sample stained with phalloidin. By sequential local and global thresholding, our analysis identifies up to 76% of podosome cores excluding other F-actin-based structures. Based on the overlap in podosome identifications and quantification of podosome numbers, our algorithm performs equally well compared to three experts. Using our algorithm we show effects of actin polymerization and myosin II inhibition on the actin intensity in both podosome core and associated actin network. Furthermore, by expanding the core segmentations, we reveal a previously unappreciated differential distribution of cytoskeletal adaptor proteins within the podosome ring. These applications illustrate that our algorithm is a valuable tool for rapid and accurate large-scale analysis of podosomes to increase our understanding of these characteristic adhesion structures.

  6. Fluorescent Nanodiamond-Gold Hybrid Particles for Multimodal Optical and Electron Microscopy Cellular Imaging.

    PubMed

    Liu, Weina; Naydenov, Boris; Chakrabortty, Sabyasachi; Wuensch, Bettina; Hübner, Kristina; Ritz, Sandra; Cölfen, Helmut; Barth, Holger; Koynov, Kaloian; Qi, Haoyuan; Leiter, Robert; Reuter, Rolf; Wrachtrup, Jörg; Boldt, Felix; Scheuer, Jonas; Kaiser, Ute; Sison, Miguel; Lasser, Theo; Tinnefeld, Philip; Jelezko, Fedor; Walther, Paul; Wu, Yuzhou; Weil, Tanja

    2016-10-12

    There is a continuous demand for imaging probes offering excellent performance in various microscopy techniques for comprehensive investigations of cellular processes by more than one technique. Fluorescent nanodiamond-gold nanoparticles (FND-Au) constitute a new class of "all-in-one" hybrid particles providing unique features for multimodal cellular imaging including optical imaging, electron microscopy, and, and potentially even quantum sensing. Confocal and optical coherence microscopy of the FND-Au allow fast investigations inside living cells via emission, scattering, and photothermal imaging techniques because the FND emission is not quenched by AuNPs. In electron microscopy, transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) analysis of FND-Au reveals greatly enhanced contrast due to the gold particles as well as an extraordinary flickering behavior in three-dimensional cellular environments originating from the nanodiamonds. The unique multimodal imaging characteristics of FND-Au enable detailed studies inside cells ranging from statistical distributions at the entire cellular level (micrometers) down to the tracking of individual particles in subcellular organelles (nanometers). Herein, the processes of endosomal membrane uptake and release of FNDs were elucidated for the first time by the imaging of individual FND-Au hybrid nanoparticles with single-particle resolution. Their convenient preparation, the availability of various surface groups, their flexible detection modalities, and their single-particle contrast in combination with the capability for endosomal penetration and low cytotoxicity make FND-Au unique candidates for multimodal optical-electronic imaging applications with great potential for emerging techniques, such as quantum sensing inside living cells.

  7. Covalent and reversible short-range electrostatic imaging in noncontact atomic force microscopy.

    PubMed

    Dieska, Peter; Stich, Ivan; Pérez, Rubén

    2003-11-21

    We present a computational study of atomic-scale image formation in noncontact atomic force microscopy on metallic surfaces. We find two imaging scenarios: (1). atomic resolution arising due to very strong covalent tip-sample interaction exhibiting striking similarity with the imaging mechanism found on semiconductor surfaces, and (2). a completely new mechanism, reversible short-range electrostatic imaging, arising due to subtle charge-transfer interactions. Contrary to the strong covalent-bond imaging, the newly identified mechanism causes only negligible surface perturbation and can account for results recently observed experimentally.

  8. Note: Fast imaging of DNA in atomic force microscopy enabled by a local raster scan algorithm.

    PubMed

    Huang, Peng; Andersson, Sean B

    2014-06-01

    Approaches to high-speed atomic force microscopy typically involve some combination of novel mechanical design to increase the physical bandwidth and advanced controllers to take maximum advantage of the physical capabilities. For certain classes of samples, however, imaging time can be reduced on standard instruments by reducing the amount of measurement that is performed to image the sample. One such technique is the local raster scan algorithm, developed for imaging of string-like samples. Here we provide experimental results on the use of this technique to image DNA samples, demonstrating the efficacy of the scheme and illustrating the order-of-magnitude improvement in imaging time that it provides.

  9. Note: Fast imaging of DNA in atomic force microscopy enabled by a local raster scan algorithm

    SciTech Connect

    Huang, Peng; Andersson, Sean B.

    2014-06-15

    Approaches to high-speed atomic force microscopy typically involve some combination of novel mechanical design to increase the physical bandwidth and advanced controllers to take maximum advantage of the physical capabilities. For certain classes of samples, however, imaging time can be reduced on standard instruments by reducing the amount of measurement that is performed to image the sample. One such technique is the local raster scan algorithm, developed for imaging of string-like samples. Here we provide experimental results on the use of this technique to image DNA samples, demonstrating the efficacy of the scheme and illustrating the order-of-magnitude improvement in imaging time that it provides.

  10. Imaging graphite in air by scanning tunneling microscopy - Role of the tip

    NASA Technical Reports Server (NTRS)

    Colton, R. J.; Baker, S. M.; Driscoll, R. J.; Youngquist, M. G.; Baldeschwieler, J. D.; Kaiser, W. J.

    1988-01-01

    Atomically resolved images of highly oriented pyrolytic graphite (HOPG) in air at point contact have been obtained. Direct contact between tip and sample or contact through a contamination layer provides a conduction mechanism in addition to the exponential tunneling mechanism responsible for scanning tunneling microscopy (STM) imaging. Current-voltage (I-V) spectra were obtained while scanning in the current imaging mode with the feedback circuit interrupted in order to study the graphite imaging mechanism. Multiple tunneling tips are probably responsible for images without the expected hexagonal or trigonal symmetry. The observations indicate that the use of HOPG for testing and calibration of STM instrumentation may be misleading.

  11. Atomic Force Microscopy Imaging of Filamentous Aggregates from an N-Terminal Peptide Fragment of Barnase

    NASA Astrophysics Data System (ADS)

    Shibata-Seki, Teiko; Masai, Junji; Yoshida, Kenji; Sato, Kazuki; Yanagawa, Hiroshi

    1993-06-01

    This paper reports the atomic force microscopy (AFM) imaging of filamentous aggregates derived from an N-terminal peptide fragment of barnase, a ribonuclease from Bacillus amyloliquefaciens. The sample was deposited on a freshly cleaved mica surface and observed in ambient conditions. The overall shapes of the filamentous structures imaged with two different kinds of AFMs were similar to those obtained with a transmission electron microscope (TEM), except that the filaments in AFM images were broader than those in TEM images. This broadening phenomenon characteristic of AFM images was explained in terms of the convolution-type distortion of the specimen diameter by the scanning-tip apex.

  12. Imaging and manipulation of nanometer-size liquid droplets by scanning polarization force microscopy

    SciTech Connect

    Hu, J.; Carpick, R.W.; Salmeron, M.; Xiao, X.

    1996-03-01

    Using atomic force microscopy in noncontact mode, we have imaged nanometer-size liquid droplets of KOH water solutions on the surfaces of highly oriented pyrolitic graphite and mica. On graphite the droplets prefer to be adsorbed on atomic step edges. Droplets on the same step tend to be evenly spaced and of similar size. The droplets can be manipulated by the atomic force microscopy tip allowing the controllable formation of droplet patterns on the surface. {copyright} {ital 1996 American Vacuum Society}

  13. Band Excitation in Scanning Probe Microscopy: Recognition and Functional Imaging

    SciTech Connect

    Jesse, Stephen; Vasudevan, Dr. Rama; Collins, Liam; Strelcov, Evgheni; Okatan, Mahmut B; Belianinov, Alex; Baddorf, Arthur P; Proksch, Roger; Kalinin, Sergei V

    2014-01-01

    Field confinement at the junction between a biased scanning probe microscope s (SPM) tip and solid surface enables local probing of various bias-induced transformations such as polarization switching, ionic motion, or electrochemical reactions to name a few. The nanoscale size of the biased region is smaller or comparable to features like grain boundaries and dislocations, potentially allows for the study of kinetics and thermodynamics at the level of a single defect. In contrast to classical statistically averaged approaches, this allows one to link structure to functionality and deterministically decipher associated mesoscopic and atomistic mechanisms. Furthermore, this type of information can serve as a fingerprint of local material functionality, allowing for local recognition imaging. Here, current progress in multidimensional SPM techniques based on band-excitation time and voltage spectroscopies is illustrated, including discussions on data acquisition, dimensionality reduction, and visualization along with future challenges and opportunities for the field.

  14. Arbitrary-scan imaging for two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Botcherby, Edward; Smith, Christopher; Booth, Martin; Juskaitis, Rimas; Wilson, Tony

    2010-02-01

    In this paper, we present details of a scanning two-photon fluorescence microscope we have built with a nearisotropic scan rate. This means that the focal spot can be scanned at high speed along any direction in the specimen, without introducing systematic aberrations. We present experimental point spread function measurements for this system using an Olympus 0.8 NA 40X water dipping objective lens that demonstrates an axial range of operation greater than 200 μm. We give details of a novel actuator device used to displace the focusing element and demonstrate axial scan responses up to 3.5 kHz. Finally, we present a bioscience application of this system to image dendritic processes that follow non-linear paths in three-dimensional space. The focal spot was scanned along one such process at 400 Hz with an axial range of more than 90 μm.

  15. Live cardiomyocyte imaging via hybrid TPEF-SHG microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Honghai; Qin, Wan; Shao, Yonghong; Liu, Qiuying; Ma, Zhen; Borg, Thomas K.; Gao, Bruce Z.

    2012-03-01

    Utilizing a custom-built, on-stage incubator-combined, two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) imaging system, we observed new-sarcomere addition in rat neonatal cardiomyocytes during 10 hours of on-stage incubation. This addition occurred at one end of an existing myofibril, the sides of existing myofibrils, and at the interstice of several separated myofibrils; in the cases of the latter two, we observed mature myofibrils acting as templates. We found that during sarcomeric addition, myosin filaments are assembled onto the premyofibril laterally. This lateral addition, which proceeds stepwise along the axial direction, plays an important role in the accumulation of Z-bodies to form mature Z-disks and in the regulation of sarcomeric length during maturation.

  16. Digital image processing of crystalline specimens examined by electron microscopy.

    PubMed

    Kanaya, K

    1988-12-01

    Crystalline specimens imaged in the electron microscope are analysed using digital processing. Some principles of structural analysis using the method of Fourier decomposition are discussed. Complementary techniques, such as enhancement by gradient and Laplacian operators, have been found useful in analysing electron micrographs. The application of these techniques to some problems in Materials Science and Biology are reviewed. By selecting and phase-correcting spots in the computed diffraction pattern, it was possible to localize atoms, molecules, and their defective arrangement in evaporated gold, sputter-deposited tungsten films, and single crystals of cadmium selenide. Digital processing based on the theory of helical diffraction was used to explore the three-dimensional arrangement of molecules in cellular components of alveolar soft part sarcoma, Hirano bodies, and neurofibrillar tangles in the human brain.

  17. Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology.

    PubMed

    Johnson, Sam A

    2015-01-01

    Imaging methods have presented scientists with powerful means of investigation for centuries. The ability to resolve structures using light microscopes is though limited to around 200 nm. Fluorescence-based super-resolution light microscopy techniques of several principles and methods have emerged in recent years and offer great potential to extend the capabilities of microscopy. This resolution improvement is especially promising for nanoscience where the imaging of nanoscale structures is inherently restricted by the resolution limit of standard forms of light microscopy. Resolution can be improved by several distinct approaches including structured illumination microscopy, stimulated emission depletion, and single-molecule positioning methods such as photoactivated localization microscopy and stochastic optical reconstruction microscopy and several derivative variations of each of these. These methods involve substantial differences in the resolutions achievable in the different axes, speed of acquisition, compatibility with different labels, ease of use, hardware complexity, and compatibility with live biological samples. The field of super-resolution imaging and its application to nanotechnology is relatively new and still rapidly developing. An overview of how these methods may be used with nanomaterials is presented with some examples of pioneering uses of these approaches.

  18. In vivo multiphoton microscopy associated to 3D image processing for human skin characterization

    NASA Astrophysics Data System (ADS)

    Baldeweck, T.; Tancrède, E.; Dokladal, P.; Koudoro, S.; Morard, V.; Meyer, F.; Decencière, E.; Pena, A.-M.

    2012-03-01

    Multiphoton microscopy has emerged in the past decade as a promising non-invasive skin imaging technique. The aim of this study was to assess whether multiphoton microscopy coupled to specific 3D image processing tools could provide new insights into the organization of different skin components and their age-related changes. For that purpose, we performed a clinical trial on 15 young and 15 aged human female volunteers on the ventral and dorsal side of the forearm using the DermaInspectR medical imaging device. We visualized the skin by taking advantage of intrinsic multiphoton signals from cells, elastic and collagen fibers. We also developed 3D image processing algorithms adapted to in vivo multiphoton images of human skin in order to extract quantitative parameters in each layer of the skin (epidermis and superficial dermis). The results show that in vivo multiphoton microscopy is able to evidence several skin alterations due to skin aging: morphological changes in the epidermis and modifications in the quantity and organization of the collagen and elastic fibers network. In conclusion, the association of multiphoton microscopy with specific image processing allows the three-dimensional organization of skin components to be visualized and quantified thus providing a powerful tool for cosmetic and dermatological investigations.

  19. Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Steele, A.; Goddard, D.; Beech, I. B.; Tapper, R. C.; Stapleton, D.; Smith, J. R.

    1998-01-01

    A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al. (Search for past life on Mars--possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, pp. 924-930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.

  20. Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Steele, A.; Goddard, D.; Beech, I. B.; Tapper, R. C.; Stapleton, D.; Smith, J. R.

    1998-01-01

    A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al. (Search for past life on Mars--possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, pp. 924-930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.